Sample records for compounds voc emitted

  1. [Volatile organic compounds (VOCs) emitted from furniture and electrical appliances].

    PubMed

    Tanaka-Kagawa, Toshiko; Jinno, Hideto; Furukawa, Yoko; Nishimura, Tetsuji

    2010-01-01

    Organic chemicals are widely used as ingredients in household products. Therefore, furniture and other household products as well as building products may influence the indoor air quality. This study was performed to estimate quantitatively influence of household products on indoor air quality. Volatile organic compound (VOC) emissions were investigated for 10 products including furniture (chest, desk, dining table, sofa, cupboard) and electrical appliances (refrigerator, electric heater, desktop personal computer, liquid crystal display television and audio) by the large chamber test method (JIS A 1912) under the standard conditions of 28 degrees C, 50% relative humidity and 0.5 times/h ventilation. Emission rate of total VOC (TVOC) from the sofa showed the highest; over 7900 microg toluene-equivalent/unit/h. Relatively high TVOC emissions were observed also from desk and chest. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and ventilation frequency of 0.5 times/h. The estimated TVOC increment for the sofa was 911 microg/m3, accounting for almost 230% of the provisional target value, 400 microg/m3. The values of estimated increment of toluene emitted from cupboard and styrene emitted from refrigerator were 10% and 16% of guideline values, respectively. These results revealed that VOC emissions from household products may influence significantly indoor air quality.

  2. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Cheng, Shuiyuan; Li, Guohao; Wang, Gang; Wang, Haiyan

    2014-06-01

    This study made a field VOCs (volatile organic compounds) measurement for a petroleum refinery in Beijing by determining 56 PAMS VOCs, which are demanded for photochemical assessment in US, and obtained the characteristics of VOCs emitted from the whole refinery and from its inner main devices. During the monitoring period, this refinery brought about an average increase of 61 ppbv in the ambient TVOCs (sum of the PAMS VOCs) at the refinery surrounding area, while the background of TVOCs there was only 10-30 ppbv. In chemical profile, the VOCs emitted from the whole refinery was characteristic by isobutane (8.7%), n-butane (7.9%), isopentane (6.3%), n-pentane (4.9%%), n-hexane (7.6%), C6 branched alkanes (6.0%), propene (12.7%), 1-butene (4.1%), benzene (7.8%), and toluene (5.9%). On the other hand, the measurement for the inner 5 devices, catalytic cracking units (CCU2 and CCU3), catalytic reforming unit (CRU), tank farm (TF), and wastewater treatment(WT), revealed the higher level of VOCs pollutions (about several hundred ppbv of TVOCs), and the individual differences in VOCs chemical profiles. Based on the measured speciated VOCs data at the surrounding downwind area, PMF receptor model was applied to identify the VOCs sources in the refinery. Then, coupling with the VOCs chemical profiles measured at the device areas, we concluded that CCU1/3 contributes to 25.9% of the TVOCs at the surrounding downwind area by volume, followed by CCU2 (24.7%), CRU (18.9%), TF (18.3%) and WT (12.0%), which was accordant with the research of US EPA (2008). Finally, ozone formation potentials of the 5 devices were also calculated by MIR technique, which showed that catalytic cracking units, accounting for about 55.6% to photochemical ozone formation, should be given the consideration of VOCs control firstly.

  3. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    PubMed Central

    Bennett, Joan W.; Inamdar, Arati A.

    2015-01-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties. PMID:26402705

  4. [Evaluation of volatile organic compounds (VOCs) emitted from household products by small chamber test method].

    PubMed

    Tanaka-Kagawa, Toshiko; Jinno, Hideto; Obama, Tomoko; Miyagawa, Makoto; Yoshikawa, Jun; Komatsu, Kazuhiro; Tokunaga, Hiroshi

    2007-01-01

    Identification and removal/replacement of sources of indoor air pollutants, such as volatile organic compounds (VOCs) and aldehydes, are most effective measures to reduce indoor chemical exposures. For instance, formaldehyde emissions from building materials have been successfully decreased by the restrictions on interior finishing materials under the amended Building Standard Low in Japan. This study was performed to estimate quantitatively influence of household products on indoor air quality. VOC emissions were investigated for 51 products including interior materials, bedclothes, stationeries, toys and printed matters by the small chamber test method (JIS A 1901) under the standard conditions of 28 degrees C, 50% relative humidity and 0.5 times/h ventilation. Total VOC (TVOC) emissions from the tablecloth and gloves, both of which were made of polyvinyl chloride, showed the highest emission rates; over 2000 microg/(m2 x h) after 1 day, and then rapidly decreased to less than 500 microg/(m2 x h) in a week. Among stationeries/toys for schoolchildren and infants, jigsaw puzzle and play mat exhibited higher TVOC emission rates (38 and 24 microg/(m2 x h) after 1 day, respectively). As for VOCs emitted from printed matters, high boiling-point compounds (higher than that of n-tridecane) were typically identified along with toluene, xylenes and ethylbenzene. These results revealed that VOC emissions from household products may influence significantly indoor air quality.

  5. Volatile Organic Compound (VOC) Emissions from Dairy Cows and Their Waste

    NASA Astrophysics Data System (ADS)

    Shaw, S.; Holzinger, R.; Mitloehner, F.; Goldstein, A.

    2005-12-01

    Biogenic VOCs are typically defined as those directly emitted from plants, but approximately 6% of global net primary production is consumed by cattle that carry out enteric fermentation and then emit VOCs that could also be considered biogenic. Current regulatory estimates suggest that dairy cattle in central California emit VOCs at rates comparable to those from passenger vehicles in the region, and thus contribute significantly to the extreme non-attainment of ozone standards there. We report PTR-MS measurements of ammonia and VOCs, and cavity-enhanced-absorption gas analyzer (Los Gatos Research, Inc.) measurements of CH4, emitted from dairy cattle in various stages of pregnancy/lactation and their waste. Experiments were conducted in chambers at UC Davis that simulate freestall cow housing conditions. CH4 fluxes ranged from 125-374 lb/cow/year. The compounds with the highest fluxes from '3 cows+waste' treatments were: ammonia (1-18), methanol (0-2.3), acetone+propanal (0.2-0.7), dimethylsulfide (0-0.4), and mass 109 (likely ID = p-cresol; 0-0.3) in lb/cow/year. Mass 60 (likely ID = trimethylamine) and acetic acid were also abundant. There were 10s of additional compounds with detectable, but small, emissions. A few compounds that were likely emitted (i.e. ethanol, formaldehyde, and dimethylamine) were not quantified by the PTR-MS. The total flux for all measured organic gases (TOG = CH4 + PTR-MS VOCs(including acetone+propanal)) averaged 246±45 lb/cow/year for '3 cows+waste' treatments, and was dominated by methane (>98%). TOG flux for 'waste only' treatments averaged 1.1±0.1 lb/cow/year, and was instead dominated by VOC (>84%). The PTR-MS VOCs as a percent of TOG (0.6±0.2%) emitted from '3 cows+waste' treatments in chamber conditions was a factor of 10 smaller than that currently estimated by the California Air Resources Board. In addition, the ozone forming potentials of the most abundant VOCs are only about 10% those of typical combustion or plant

  6. Emission of volatile organic compounds (VOCs) from PVC floor coverings.

    PubMed

    Wiglusz, R; Igielska, B; Sitko, E; Nikel, G; Jarnuszkiewicz, I

    1998-01-01

    In this study 29 PVC floor coverings were tested for emission of vinyl chloride (VC) and other volatile organic compounds (VOCs). A study on the effect of higher temperature on emission of VOCs from newly manufactured PVC flooring was also carried out. The study was conducted in climatic chamber, according to Polish Standard PN-89/Z-04021. GC method was used for analyzing of the compounds emitted. VC was not emitted from any of the floorings tested. Other VOCs were emitted in different concentrations. The influence of temperature on emission was conducted at temperatures of 23 degrees C and 35 degrees C from 2 hrs up to 180 days after introduction of materials in the chamber. The increase of temperature caused increase of total volatile organic compounds (TVOC) emission during 24 hrs of experiment. Then the emission was comparable for both temperatures. After 9 days emission of identified and unidentified compounds (TVOC) showed a rapid decay and stayed on very low level during a few months. The study conducted showed that PVC floorings after 10 days of installation in the room should not be source of indoor air contamination.

  7. Real-time and online screening method for materials emitting volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kim, Changhyuk; Sul, Yong Tae; Pui, David Y. H.

    2016-09-01

    In the semiconductor industry, volatile organic compounds (VOCs) in the cleanroom air work as airborne molecular contamination, which reduce the production yield of semiconductor chips by forming nanoparticles and haze on silicon wafers and photomasks under ultraviolet irradiation during photolithography processes. Even though VOCs in outdoor air are removed by gas filters, VOCs can be emitted from many kinds of materials used in cleanrooms, such as organic solvents and construction materials (e.g., adhesives, flame retardants and sealants), threatening the production of semiconductors. Therefore, finding new replacements that emit lower VOCs is now essential in the semiconductor industry. In this study, we developed a real-time and online method to screen materials for developing the replacements by converting VOCs into nanoparticles under soft X-ray irradiation. This screening method was applied to measure VOCs emitted from different kinds of organic solvents and adhesives. Our results showed good repeatability and high sensitivity for VOCs, which come from aromatic compounds, some alcohols and all tested adhesives (Super glue and cleanroom-use adhesives). In addition, the overall trend of measured VOCs from cleanroom-use adhesives was well matched with those measured by a commercial thermal desorption-gas chromatography-mass spectrometry, which is a widely used off-line method for analyzing VOCs. Based on the results, this screening method can help accelerate the developing process for reducing VOCs in cleanrooms.

  8. Proton Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF-MS) determination of volatile organic compounds (VOCs) emitted from a biomass fire developed under stable nocturnal conditions

    NASA Astrophysics Data System (ADS)

    Brilli, Federico; Gioli, Beniamino; Ciccioli, Paolo; Zona, Donatella; Loreto, Francesco; Janssens, Ivan A.; Ceulemans, Reinhart

    2014-11-01

    Combustion of solid and liquid fuels is the largest source of potentially toxic volatile organic compounds (VOCs), which can strongly affect health and the physical and chemical properties of the atmosphere. Among combustion processes, biomass burning is one of the largest at global scale. We used a Proton Transfer Reaction “Time-of-Flight” Mass Spectrometer (PTR-TOF-MS), which couples high sensitivity with high mass resolution, for real-time detection of multiple VOCs emitted by burned hay and straw in a barn located near our measuring station. We detected 132 different organic ions directly attributable to VOCs emitted from the fire. Methanol, acetaldehyde, acetone, methyl vinyl ether (MVE), acetic acid and glycolaldehyde dominated the VOC mixture composition. The time-course of the 25 most abundant VOCs, representing ∼85% of the whole mixture of VOCs, was associated with that of carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) emissions. The strong linear relationship between the concentrations of pyrogenic VOC and of a reference species (i.e. CO) allowed us to compile a list of emission ratios (ERs) and emission factors (EFs), but values of ER (and EF) were overestimated due to the limited mixing of the gases under the stable (non-turbulent) nocturnal conditions. In addition to the 25 most abundant VOCs, chemical formula and concentrations of the residual, less abundant VOCs in the emitted mixture were also estimated by PTR-TOF-MS. Furthermore, the evolution of the complex combustion process was described on the basis of the diverse types of pyrogenic gases recorded.

  9. Volatile organic compound (VOC) emissions during malting and beer manufacture

    NASA Astrophysics Data System (ADS)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  10. Emission characteristics of VOCs emitted from consumer and commercial products and their ozone formation potential.

    PubMed

    Dinh, Trieu-Vuong; Kim, Su-Yeon; Son, Youn-Suk; Choi, In-Young; Park, Seong-Ryong; Sunwoo, Young; Kim, Jo-Chun

    2015-06-01

    The characteristics of volatile organic compounds (VOCs) emitted from several consumer and commercial products (body wash, dishwashing detergent, air freshener, windshield washer fluid, lubricant, hair spray, and insecticide) were studied and compared. The spray products were found to emit the highest amount of VOCs (~96 wt%). In contrast, the body wash products showed the lowest VOC contents (~1.6 wt%). In the spray products, 21.6-96.4 % of the VOCs were propane, iso-butane, and n-butane, which are the components of liquefied petroleum gas. Monoterpene (C10H16) was the dominant component of the VOCs in the non-spray products (e.g., body wash, 53-88 %). In particular, methanol was present with the highest amount of VOCs in windshield washer fluid products. In terms of the number of carbon, the windshield washer fluids, lubricants, insecticides, and hair sprays comprised >95 % of the VOCs in the range C2-C5. The VOCs in the range C6-C10 were predominantly found in the body wash products. The dishwashing detergents and air fresheners contained diverse VOCs from C2 to C11. Besides comprising hazardous VOCs, VOCs from consumer products were also ozone precursors. The ozone formation potential of the consumer and commercial spray products was estimated to be higher than those of liquid and gel materials. In particular, the hair sprays showed the highest ozone formation potential.

  11. [Study on control and management for industrial volatile organic compounds (VOCs) in China].

    PubMed

    Wang, Hai-Lin; Zhang, Guo-Ning; Nei, Lei; Wang, Yu-Fei; Hao, Zheng-Ping

    2011-12-01

    Volatile organic compounds (VOCs) emitted from industrial sources account for a large percent of total anthropogenic VOCs. In this paper, VOCs emission characterization, control technologies and management were discussed. VOCs from industrial emissions were characterized by high intensity, wide range and uneven distribution, which focused on Bejing-Tianjin Joint Belt, Shangdong Peninsula, Yangtze River Delta and the Pearl River Delta. The current technologies for VOCs treatment include adsorption, catalytic combustion, bio-degradation and others, which were applied in petrochemical, oil vapor recovery, shipbuilding, printing, pharmaceutical, feather manufacturing and so on. The scarcity of related regulations/standards plus ineffective supervision make the VOCs management difficult. Therefore, it is suggested that VOCs treatment be firstly performed from key areas and industries, and then carried out step by step. By establishing of actual reducing amount control system and more detailed VOCs emission standards and regulations, applying practical technologies together with demonstration projects, and setting up VOCs emission registration and classification-related-charge system, VOCs could be reduced effectively.

  12. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    PubMed

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  13. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2012-11-01

    As volatile organic compounds (VOCs) significantly affect atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects), emission inventories defining regional and global biogenic VOC emission strengths are important. The aim of this work was to achieve a description of VOC emissions from poorly described tropical vegetation to be compared with the quite well investigated and highly heterogeneous emissions from Mediterranean vegetation. For this task, common plant species of both ecosystems were investigated. Sixteen plant species from the Mediterranean area, which is known for its special diversity in VOC emitting plant species, were chosen. In contrast, little information is currently available regarding emissions of VOCs from tropical tree species at the leaf level. Twelve plant species from different environments of the Amazon basin, i.e. Terra firme, Várzea and Igapó, were screened for emission of VOCs at leaf level with a branch enclosure system. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was quantitatively the most dominant compound emitted followed by monoterpenes, methanol and acetone. Most of the Mediterranean species emitted a variety of monoterpenes, whereas only five tropical species were monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene > limonene > sabinene > β-pinene). Mediterranean plants showed additional emissions of sesquiterpenes, whereas in the case of plants from the Amazon region no sesquiterpenes were detected probably due to a lack of sensitivity in the measuring systems. On the other hand methanol emissions, an indicator of growth, were common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions

  14. Pollution profiles and health risk assessment of VOCs emitted during e-waste dismantling processes associated with different dismantling methods.

    PubMed

    An, Taicheng; Huang, Yong; Li, Guiying; He, Zhigui; Chen, Jiangyao; Zhang, Chaosheng

    2014-12-01

    Pollution profiles of typical volatile organic compounds (VOCs) emitted during dismantling of various printed circuit board assemblies (PCBAs) of e-wastes using different methods were comparatively investigated in the real e-waste dismantling workshops in South China in April 2013. Similar pollution profiles and concentrations of VOCs were observed between dismantling mobile phone and hard disk PCBAs by using electric blowers and between dismantling television and power supplier PCBAs using electric heating furnaces. Aromatic hydrocarbons (accounting for >60% of the sum of VOCs) were the dominant group during using electric blowers, while aromatic (accounting for >44% of the sum of VOCs) and halogenated hydrocarbons (accounting for >48% of the sum of VOCs) were the two dominant groups which contributed equally using electric heating furnaces. However, the distribution profiles of VOCs emitted during dismantling of televisions, hard disks and micro motors using rotary incinerators varied greatly, though aromatic hydrocarbons were still the dominant group. The combustion of e-wastes led to the most severe contamination of VOCs, with total VOCs (3.3×10(4) μg m(-3)) using rotary incinerators about 190, 180, 139, and 40 times higher than those using mechanical cutting, electric soldering iron, electric blower, and electric heating furnace, respectively. Both cancer and non-cancer risks existed for workers due to exposure to on-site emitted VOCs in all workshops especially in those using rotary incinerators according to the USEPA methodology, whereas only cancer risks existed in rotary incinerator workshops according to the American Conference of Industrial Hygienists methodology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Gastrophysa polygoni herbivory on Rumex confertus: Single leaf VOC induction and dose dependent herbivore attraction/repellence to individual compounds

    USDA-ARS?s Scientific Manuscript database

    We report large induction (> 65fold increases) of volatile organic compounds (VOCs) emitted from a single leaf of the invasive weed mossy sorrel, Rumex confertus Willd. (Polygonaceae), by herbivory of the dock leaf beetle, Gastrophysa polygoni L. (Coleoptera: Chrysomelidae). The R. confertus VOC ble...

  16. Application of headspace for research volatile organic compounds emitted from building materials

    NASA Astrophysics Data System (ADS)

    Kultys, Beata; Waląg, Karolina

    2018-01-01

    Headspace technique and gas chromatography method with mas detector has been used for the determination of volatile organic compounds (VOC) emitted from various building and finishing materials, such as sealing foams, mounting strips, paints, varnishes, floor coverings. The tests were carried out for different temperatures (in the temperature range of 60 to 180 °C) and the time of heated vials with tested materials inside. These tests were conducted to verify the possibility of use this method of determination the VOC emission. Interpretation of chromatograms and mass spectra allowed to identify the type of compounds emitted from the tested materials and the optimum time and temperature for each type of material was determined. The increase in heating temperature of the samples resulted in increase the type and number of identified compounds: for four materials the increase was in the whole temperature range, for others it was from 90 °C. On the other hand, emission from mineral wool was low in whole temperature range. 30-minutes heating of the samples was sufficient to identify emitted compounds for most of tested materials. Applying a longer time, i.e. 24 hours, significantly increased the sensitivity of the method.

  17. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  18. The impact of the fuel chemical composition on volatile organic compounds emitted by an in-service aircraft gas turbine engine

    NASA Astrophysics Data System (ADS)

    Setyan, A.; Kuo, Y. Y.; Brem, B.; Durdina, L.; Gerecke, A. C.; Heeb, N. V.; Haag, R.; Wang, J.

    2017-12-01

    Aircraft emissions received increased attention recently because of the steady growth of aviation transport in the last decades. Aircraft engines substantially contribute to emissions of particulate matter and gaseous pollutants in the upper and lower troposphere. Among all the pollutants emitted by aircrafts, volatile organic compounds (VOCs) are particularly important because they are mainly emitted at ground level, posing a serious health risk for people living or working near airports. A series of measurements was performed at the aircraft engine testing facility of SR Technics (Zürich airport, Switzerland). Exhausts from an in-service turbofan engine were sampled at the engine exit plane by a multi-point sampling probe. A wide range of instruments was connected to the common sampling line to determine physico-chemical characteristics of non-volatile particulate matter and gaseous pollutants. Conventional Jet A-1 fuel was used as the base fuel, and measurements were performed with the base fuel doped with two different mixtures of aromatic compounds (Solvesso 150 and naphthalene-depleted Solvesso 150) and an alternative fuel (hydro-processed esters and fatty acids [HEFA] jet fuel). During this presentation, we will show results obtained for VOCs. These compounds were sampled with 3 different adsorbing cartridges, and analyzed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS, for Tenax TA and Carboxen 569) and by ultra-performance liquid chromatography/ mass spectrometry (UPLC/MS, for DNPH). The total VOC concentration was also measured with a flame ionization detector (FID). In addition, fuel samples were also analyzed by GC/MS, and their chemical compositions were compared to the VOCs emitted via engine exhaust. Total VOCs concentrations were highest at ground idle (>200 ppm C at 4-7% thrust), and substantially lower at high thrust (<3 ppm C during take-off, 100% thrust). Fuel samples were dominated by alkanes, whereas VOCs emitted by the

  19. Field observations of volatile organic compound (VOC) exchange in red oaks

    NASA Astrophysics Data System (ADS)

    Cappellin, Luca; Algarra Alarcon, Alberto; Herdlinger-Blatt, Irina; Sanchez, Juaquin; Biasioli, Franco; Martin, Scot T.; Loreto, Francesco; McKinney, Karena A.

    2017-03-01

    Volatile organic compounds (VOCs) emitted by forests strongly affect the chemical composition of the atmosphere. While the emission of isoprenoids has been largely characterized, forests also exchange many oxygenated VOCs (oVOCs), including methanol, acetone, methyl ethyl ketone (MEK), and acetaldehyde, which are less well understood. We monitored total branch-level exchange of VOCs of a strong isoprene emitter (Quercus rubra L.) in a mixed forest in New England, where canopy-level fluxes of VOCs had been previously measured. We report daily exchange of several oVOCs and investigated unknown sources and sinks, finding several novel insights. In particular, we found that emission of MEK is linked to uptake of methyl vinyl ketone (MVK), a product of isoprene oxidation. The link was confirmed by corollary experiments proving in vivo detoxification of MVK, which is harmful to plants. Comparison of MEK, MVK, and isoprene fluxes provided an indirect indication of within-plant isoprene oxidation. Furthermore, besides confirming bidirectional exchange of acetaldehyde, we also report for the first time direct evidence of benzaldehyde bidirectional exchange in forest plants. Net emission or deposition of benzaldehyde was found in different periods of measurements, indicating an unknown foliar sink that may influence atmospheric concentrations. Other VOCs, including methanol, acetone, and monoterpenes, showed clear daily emission trends but no deposition. Measured VOC emission and deposition rates were generally consistent with their ecosystem-scale flux measurements at a nearby site.

  20. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    NASA Astrophysics Data System (ADS)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  1. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants.

    PubMed

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M; Verheggen, François; Massart, Sébastien

    2017-05-16

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants.

  2. Measuring volatile organic compounds and stable isotopes emitted from trees and soils of the Biosphere 2 Rainforest

    NASA Astrophysics Data System (ADS)

    Meraz, J. C.; Meredith, L. K.; Van Haren, J. L. M.; Volkmann, T. H. M.

    2017-12-01

    Rainforest trees and soils play an important role in volatile organic compound (VOC) emissions. It is known that many rainforest tree species emit these organic compounds, such as terpenes, which can have an impact on the atmosphere and can be indicative of their metabolic functions. Some VOCs also absorb infrared radiation at wavelengths at which water isotopes are measured with laser spectrometers. Normal concentrations are not high enough for ambient sampling, but increased concentrations resulting from soil and plant samples extracted using equilibrium methods affect observed isotope ratios. There is thus a need to characterize volatile emissions from soil and plant samples, and to develop better methods to account for VOC interference during water isotope measurements. In this study, we collected soil and leaf samples from plants of the Biosphere 2 Rainforest Biome, a mesocosm system created to stimulate natural tropical rainforest habitats . Volatile concentrations were measured using a Gasmet DX4015 FTIR analyzer and a custom sampling system with sulfur hexafluoride (SF6) used as a tracer gas to test for leakage, and a commercial laser spectrometer was used for isotopic analysis. We determined that the different types of tree species emit different kinds of VOCs, such as isoprenes, alcohols, and aldehydes, that will potentially have to be accounted for. This study will help build the understanding of which organic compounds are emitted and develop new methods to test for water isotopes and gas fluxes in clear and precise measures. Such measures can help characterize the functioning of environmental systems such as the Biosphere 2 Rainforest Biome.

  3. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene). Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous

  4. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    EPA Science Inventory

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  5. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops.

    PubMed

    He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng

    2015-04-01

    The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth.

    PubMed

    Lee, Samantha; Hung, Richard; Yap, Melanie; Bennett, Joan W

    2015-06-01

    Studying the effects of microbial volatile organic compounds (VOCs) on plant growth is challenging because the production of volatiles depends on many environmental factors. Adding to this complexity, the method of volatile exposure itself can lead to different responses in plants and may account for some of the contrasting results. In this work, we present an improved experimental design, a plate-within-a-plate method, to study the effects of VOCs produced by filamentous fungi. We demonstrate that the plant growth response to VOCs is dependent on the age of the plant and fungal cultures. Plants exposed to volatiles emitted by 5-day-old Trichoderma atroviride for 14 days exhibited inhibition, while plants exposed to other exposure conditions had growth promotion or no significant change. Using GC-MS, we compared fungal volatile emission of 5-day-old and 14-day-old T. atroviride. As the fungi aged, a few compounds were no longer detected, but 24 new compounds were discovered.

  7. Assessment of Volatile Organic Compounds (VOCs) in indooor parking facilities at Houston, Texas

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari

    This dissertation identified the types, magnitudes, sources, and assessed risk exposure of VOCs in different types of indoor parking facilities. VOCs are ones of major pollutants emitted from automobiles. The indoor parking facilities included were attached garages, grounds, and underground parking. Modification of method TO15 by EPA had been applied for identifying types and magnitudes of VOCs. Results of these identifications are presented. Eight most abundant VOCs could be identified in every sampling location with toluene as the most abundant compound followed by m,p-xylene, ethylbenzene and benzene. Compare to ground and underground parking, attached garages have the highest concentration of TVOCs. For sources identification, BTEX, m,p-xylene and benzene, and toluene and benzene ratios are calculated. BTEX ratios for ground and underground parking are similar compare to attached garage due to the similar pattern of driving speed and the content of gasoline fuel. On the other hand the ratios of m,p-xylene and benzene and toluene and benzene in attached garage are higher compare to the same ratios for ground and underground parking due to other significant contributor of VOCs such as solvent, household cleanings stored. Cancer and noncancer risk assessment were also calculated. Results showed that cancer and noncancer risk due human exposures to VOC in indoor parking facilities were relatively low. However the risk of the human exposure to VOCs from indoor parking facilities has to be considered as a part of total risks of VOC exposures on human during their daily activities. When people in Houston have already exposed to high VOC concentrations from outdoor environment activities such as traffic and refineries and petrochemical facilities, additional activities causing VOC exposures will add the risk significantly.

  8. Fragranced consumer products: Chemicals emitted, ingredients unlisted

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinemann, Anne C., E-mail: acstein@u.washington.ed; MacGregor, Ian C.; Gordon, Sydney M.

    2011-04-15

    Fragranced consumer products are pervasive in society. Relatively little is known about the composition of these products, due to lack of prior study, complexity of formulations, and limitations and protections on ingredient disclosure in the U.S. We investigated volatile organic compounds (VOCs) emitted from 25 common fragranced consumer products-laundry products, personal care products, cleaning supplies, and air fresheners-using headspace analysis with gas chromatography/mass spectrometry (GC/MS). Our analysis found 133 different VOCs emitted from the 25 products, with an average of 17 VOCs per product. Of these 133 VOCs, 24 are classified as toxic or hazardous under U.S. federal laws, andmore » each product emitted at least one of these compounds. For 'green' products, emissions of these compounds were not significantly different from the other products. Of all VOCs identified across the products, only 1 was listed on any product label, and only 2 were listed on any material safety data sheet (MSDS). While virtually none of the chemicals identified were listed, this nonetheless accords with U.S. regulations, which do not require disclosure of all ingredients in a consumer product, or of any ingredients in a mixture called 'fragrance.' Because the analysis focused on compounds emitted and listed, rather than exposures and effects, it makes no claims regarding possible risks from product use. Results of this study contribute to understanding emissions from common products, and their links with labeling and legislation.« less

  9. SUBSTRATE EFFECTS ON VOC EMISSIONS FROM A LATEX PAINT

    EPA Science Inventory

    The effects of two substrates -- a stainless steel plate and a gypsum board -- on the volatile organic compound (VOC) emissions from a latex paint were evaluated by environmental chamber tests. It was found that the amount of VOCs emitted from the painted stainless steel was 2 to...

  10. Adsorption studies of volatile organic compounds on germanene nanotube emitted from banana fruit for quality assessment - A density functional application.

    PubMed

    Srimathi, U; Nagarajan, V; Chandiramouli, R

    2018-06-01

    We report the density functional application of adsorption behavior of volatile organic compounds (VOCs) emitted from the different ripening stages of banana fruit on germanene nanotube (GNT). Initially, the geometric structural stability of GNT is ascertained and the tunable electronic properties lead to the application of GNT as a base material in order to know the adsorption features of VOCs. We further explored the adsorption behavior of VOCs on to GNT through charge transfer, adsorption energy and band gap variation. The energy band structure and density of states (DOS) spectrum shows a noteworthy variation upon adsorption of different VOCs on to the GNT. Also, the electron density variation is noticed upon adsorption of VOCs emitted from the banana on to the GNT base material. Besides, the difference in the energy band gap of GNT upon emission of VOCs from banana leads to the use of GNT as a chemiresistor to assess fruit freshness with adsorption studies. Moreover, we suggest the use of GNT to discriminate the fruit freshness of banana through the adsorption process of VOCs on to GNT. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    PubMed Central

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses. PMID:27790067

  12. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air.

    PubMed

    Lee, Samantha; Hung, Richard; Yin, Guohua; Klich, Maren A; Grimm, Casey; Bennett, Joan W

    2016-09-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor , and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

  13. Measurements of volatile organic compounds emitted from plants in the metropolitan area of São Paulo City , Brazil.

    NASA Astrophysics Data System (ADS)

    Carvalho, L.; Pisani, S.; Pool, C.; Vasconcellos, P.

    2003-04-01

    The presence of the biogenic hydrocarbons in an NO_x-containing atmosphere can enhance ozone generation and the impact of volatile organic compounds (VOCs) emitted from vegetation on atmospheric chemistry has been investigated. No study of VOC emission rates from plant species has been carried out in São Paulo City, Brazil, prior to this work. This study is part of a three-years project on biogenic volatile organic compounds emissions from species of plants found in the vegetation of the São Paulo metropolitan area. Typical plants (Alchornea sidifolia, Cupania oblongifolia, Cecropia pachystachia, Casearia sylvestris, Machaerium villosum, Croton floribundus, Myrcia rostrata, Solanum erianthum and Ficus insípida) were selected and identical species were studied in urban, sub-urban and forest regions. Biogenic hydrocarbons were determined placing branches of plants in enclosures and measuring the accumulation of emitted compounds in an all-Teflon chamber, the cuvette system. Measuring ambient VOC concentration adsorptive preconcentration, followed by GC-MS after thermal desorption of the sample, was employed to determine components heavier than C_5. Collection of carbonyl compounds on 2, 4-dinitrophenylhydrazine coated particles followed by HPLC-UV was used to analyze low molecular weight carbonyl compounds. Emissions rates of isoprene, a-pinene, camphene and limonene ranged from 0.01 to 2.16 μg C/h.g and emissions rates of aldehydes (C_1 - C_6), acrolein, methacrolein, 2-butanone and acetone ranged from 0.04 to 4.20 μg C/h.g. Ambient and chamber temperatures, relative humidity, light intensity, O_3 and NO_x were monitored during experiments.

  14. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    NASA Astrophysics Data System (ADS)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge

  15. Emissions of Volatile Organic Compounds (VOCs) from Animal Husbandry: Chemical Compositions, Separation of Sources and Animal Types

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Coggon, M.; Koss, A.; Warneke, C.; Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; De Gouw, J. A.

    2016-12-01

    Concentrated animal feeding operations (CAFOs) are important sources of volatile organic compounds (VOCs) in the atmosphere. We used a hydronium ion time-of-flight chemical ionization mass spectrometer (H3O+ ToF-CIMS) to measure VOC emissions from CAFOs in the Northern Front Range of Colorado during an aircraft campaign (SONGNEX) for regional contributions and from a mobile laboratory sampling for chemical characterizations of individual animal feedlots. The main VOCs emitted from CAFOs include carboxylic acids, alcohols, carbonyls, phenolic species, sulfur- and nitrogen-containing species. Alcohols and carboxylic acids dominate VOC concentrations. Sulfur-containing and phenolic species become more important in terms of odor activity values and NO3 reactivity, respectively. The high time-resolution mobile measurements allow the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the increase of ethanol concentrations were primarily associated with feed storage and handling. We apply a multivariate regression analysis using NH3 and ethanol as tracers to attribute the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls and carboxylic acids. Phenolic species and nitrogen-containing species are predominantly associated with animals and their waste. VOC ratios can be potentially used as indicators for the separation of emissions from dairy and beef cattle from the regional aircraft measurements.

  16. Plant communication: mediated by individual or blended VOCs?

    PubMed

    Ueda, Hirokazu; Kikuta, Yukio; Matsuda, Kazuhiko

    2012-02-01

    Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.

  17. Estimation of Biogenic VOC Emissions From Ecosystems in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Zemankova, K.; Brechler, J.

    2008-12-01

    Volatile organic compounds (VOC) are one of the crucial elements in photochemical reactions in the atmosphere which lead to tropospheric ozone formation. While modelling concentration of low-level ozone proper information about VOC sources and sinks is necessary. VOC are emitted into the atmosphere both from anthropogenic and natural sources. It has been shown in previous studies (e.g. Simpson et al, 1995) that contribution of volatile organic compounds emitted from biogenic sources to total amount of VOC in the atmosphere can be significant. Our work focuses on estimation of VOC emissions from natural ecosystems, most importantly from forests, and its application in photochemical modelling. Preliminary results have shown that inclusion of biogenic emissions in model input data leads to improvement of resulting ozone concentration which encouraged us to work on detailed biogenic VOC emission estimation. Using grid of 1x1km CORINE Land Cover over the area of the Czech Republic, emissions from deciduous, coniferous and mixed forests were estimated aplying the algorithm of Guenther et al., 1995. According to data from Forest Management Institute each cell of model grid has been assigned a proportional composition of each of thirteen tree species which are the the main forest constituents in the Czech Republic. Aggregating data of tree species composition with land cover category emission factor of particular chemical compound (isoprene, monoterpenes) has been obtained for each cell. Annual emissions of VOC on hourly basis have been calculated for domain of the Czech Republic. Biogenic emissions of isoprene and monoterpenes were compared with the emission inventory of anthropogenic sources. The inventory is provided by Czech Hydrometeorological Institute and covers emissions from major stationary sources, area sources (including domestic heating) and mobile sources. Our results show that natural emissions are approximately half the amount of organic compounds emitted

  18. Cross-kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum) plants infested by the greenhouse whitefly (Trialeurodes vaporariorum).

    PubMed

    Ángeles López, Yesenia Ithaí; Martínez-Gallardo, Norma Angélica; Ramírez-Romero, Ricardo; López, Mercedes G; Sánchez-Hernández, Carla; Délano-Frier, John Paul

    2012-11-01

    Volatile organic compounds (VOCs) emitted from plants in response to insect infestation can function as signals for the attraction of predatory/parasitic insects and/or repulsion of herbivores. VOCs also may play a role in intra- and inter-plant communication. In this work, the kinetics and composition of VOC emissions produced by tomato (Solanum lycopersicum) plants infested with the greenhouse whitefly Trialeurodes vaporariorum was determined within a 14 days period. The VOC emission profiles varied concomitantly with the duration of whitefly infestation. A total of 36 different VOCs were detected during the experiment, 26 of which could be identified: 23 terpenoids, plus decanal, decane, and methyl salicylate (MeSA). Many VOCs were emitted exclusively by infested plants, including MeSA and 10 terpenoids. In general, individual VOC emissions increased as the infestation progressed, particularly at 7 days post-infestation (dpi). Additional tunnel experiments showed that a 3 days exposure to VOC emissions from whitefly-infested plants significantly reduced infection by a biotrophic bacterial pathogen. Infection of VOC-exposed plants induced the expression of a likely tomato homolog of a methyl salicylate esterase gene, which preceded the expression of pathogenesis-related protein genes. This expression pattern correlated with reduced susceptibility in VOC-exposed plants. The observed cross-kingdom effect of plant-plant signaling via VOCs probably represents a generalized defensive response that contributes to increased plant fitness, considering that resistance responses to whiteflies and biotrophic bacterial pathogens in tomato share many common elements.

  19. Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Coggon, Matthew M.; Koss, Abigail R.; Warneke, Carsten; Eilerman, Scott; Peischl, Jeff; Aikin, Kenneth C.; Ryerson, Thomas B.; de Gouw, Joost A.

    2017-04-01

    Concentrated animal feeding operations (CAFOs) emit a large number of volatile organic compounds (VOCs) to the atmosphere. In this study, we conducted mobile laboratory measurements of VOCs, methane (CH4) and ammonia (NH3) downwind of dairy cattle, beef cattle, sheep and chicken CAFO facilities in northeastern Colorado using a hydronium ion time-of-flight chemical-ionization mass spectrometer (H3O+ ToF-CIMS), which can detect numerous VOCs. Regional measurements of CAFO emissions in northeastern Colorado were also performed using the NOAA WP-3D aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign. Alcohols and carboxylic acids dominate VOC concentrations and the reactivity of the VOCs with hydroxyl (OH) radicals. Sulfur-containing and phenolic species provide the largest contributions to the odor activity values and the nitrate radical (NO3) reactivity of VOC emissions, respectively. VOC compositions determined from mobile laboratory and aircraft measurements generally agree well with each other. The high time-resolution mobile measurements allow for the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the emissions of ethanol are primarily associated with feed storage and handling. Based on mobile laboratory measurements, we apply a multivariate regression analysis using NH3 and ethanol as tracers to determine the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls, carboxylic acids and sulfur-containing species. Emissions of phenolic species and nitrogen-containing species are predominantly associated with animals and their waste.

  20. VOC Metabolite Emissions from the Brachypodium/Soil/Microbe Ecosystem

    NASA Astrophysics Data System (ADS)

    Gu, D.; Shilling, J.; Guenther, A. B.; Lindenmaier, R.

    2017-12-01

    Volatile Organic Compounds (VOCs) emitted from plants and associated microbiota are important for understanding the plant responses to environmental perturbations. VOC emissions from plants are the largest source of hydrocarbons to the atmosphere, which influence oxidants and aerosols leading to complex feed backs and interactions between atmosphere and biosphere. The integrated Plant-Atmosphere-Soil Systems (iPASS) Initiative is a Pacific Northwest National Laboratory (PNNL) project aimed at deciphering fundamental principles that govern the plant ecosystem, from plant genotype through multiple scales to ecosystem traits and response. We take the opportunity of iPASS initiative, and measured VOC metabolite emissions from the Brachypodium/Soil/Microbe Ecosystem. In the experiments, we have been working on (1) identifying VOC metabolites emitted by Brachypodium plants using dynamic vegetation enclosure measurements, (2) understanding the relative contribution of plants, microbes, and soil to VOC emissions, (3) investigating changes that occur in these emissions under different induced stress, and (4) relating VOC emissions from the plant/soil/microbe ecosystem to plant genotype. Taking advantage of experiment results, we also can develop a noninvasive technique for quantifying plant stress by using VOC observations, use VOC observations to improve screening tool for identifying stress resistant phenotypes, and apply the measurements into earth system modeling for better understanding of the impacts of stress on ecosystems.

  1. Biofiltration for control of volatile organic compounds (VOCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, D.F.; Govind, R.

    1995-10-01

    Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size andmore » geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.« less

  2. Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010-2020

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wang, Shuxiao; Hao, Jiming; Cheng, Shuiyuan

    2011-12-01

    The future (2010-2020) anthropogenic volatile organic compounds (VOCs) emissions in China were projected in this study using 2005 as the reference year. The projections are based on the assumptions of a lower population growth rate (less than 1%), continuous economic development with high GDP growth, and increased urbanization. The results show that the national VOCs emissions would continuously increase from 19.4 Tg in 2005 to 25.9 Tg in 2020, even if China's legislative standards for VOCs emissions are implemented effectively in the future (assumed as control scenario I). The contributions of various emission sources were found to differ greatly in the period of 2010-2020. Solvent utilization would become the largest contributor rising from 22% to 37%, along with an increase for industrial processes from 17% to 24%. However, road vehicle emissions would rapidly decrease from 25% to 11% due to the strict VOCs emission limit standards in China, along with the decrease for stationary fuel combustion from 23% to 16% caused by the reduction of domestic biofuel consumption. Additionally, there would be a notable divergence among provincial emissions. The developed eastern and coastal regions would emit more VOCs than the relatively underdeveloped western and inland regions. Moreover, this divergence grows in the future. When we assumed stricter control measures for solvent utilization and industrial processes (control scenario II) for that period, the projections revealed national VOCs emissions per year would remain at about 20 Tg, if exhaust after-treatment systems are installed in newly-built factories (after 2005) for the most important industrial sources, and the market shares of "low/zero-VOCs" products in paints, adhesives and printing ink raise to the present levels of developed countries. The emission abatements of the two types of measures were estimated to be similar. While scenario II indicates that the sectoral and provincial differences of VOCs emissions

  3. Characteristics of volatile organic compounds (VOCs) from the evaporative emissions of modern passenger cars

    NASA Astrophysics Data System (ADS)

    Yue, Tingting; Yue, Xin; Chai, Fahe; Hu, Jingnan; Lai, Yitu; He, Liqang; Zhu, Rencheng

    2017-02-01

    Volatile organic compounds (VOCs) from vehicle evaporative emissions contribute substantially to photochemical air pollution. Yet, few studies of the characteristics of VOCs emitted from vehicle evaporative emissions have been published. We investigate the characteristics of 57 VOCs in hot soak, 24 h diurnal and 48 h diurnal emissions by applying the Sealed Housing Evaporative Determination unit (SHED) test to three modern passenger cars (one US Tier 2 and two China IV vehicles) using two different types of gasoline. The characteristics of the VOCs from the hot soak, 24 h diurnal and 48 h diurnal emissions were different due to their different emission mechanisms. In the hot soak emissions, toluene, isopentane/n-pentane, and 2,2,4-trimethylpentane were dominant species. In the 24 h and 48 h diurnal emissions, isopentane and n-pentane were dominant species. Toluene was the third most dominant component in the 24 h diurnal emissions but decreased by a mass of 42%-80% in the 48 h diurnal emissions. In the hot soak, 24 h diurnal and 48 h diurnal emissions, alkanes were generally the dominant hydrocarbons, followed by aromatics and olefins. However, owing to different evaporative emission mechanisms, the weight percentages of the aromatic hydrocarbons decreased and the weight percentages of the alkanes increased from the hot soak test to the 24 h diurnal and 48 h diurnal tests for each vehicle. The dominant contributors to the ozone formation potentials (OFPs) were also different in the hot soak, 24 h diurnal and 48 h diurnal emissions. The OFPs (g O3/g VOC) of the hot soak emissions were higher than those of the 24 h and 48 h diurnal emissions. In addition, the combined effect of decreasing the olefin and aromatic contents of gasoline on vehicle evaporative emissions was investigated. The aromatics all decreased substantially in the hot soak, 24 h and 48 h diurnal emissions, and the total masses of the VOCs and OFPs decreased, with the greatest reduction occurring in

  4. Temporal variation of VOC fluxes measured with PTR-TOF above a boreal forest

    NASA Astrophysics Data System (ADS)

    Schallhart, Simon; Rantala, Pekka; Kajos, Maija K.; Aalto, Juho; Mammarella, Ivan; Ruuskanen, Taina M.; Kulmala, Markku

    2018-01-01

    Between April and June 2013 fluxes of volatile organic compounds (VOCs) were measured in a Scots pine and Norway spruce forest using the eddy covariance (EC) method with a proton transfer reaction time-of-flight (PTR-TOF) mass spectrometer. The observations were performed above a boreal forest at the SMEAR II site in southern Finland.We found a total of 25 different compounds with exchange and investigated their seasonal variations from spring to summer. The majority of the net VOC flux was comprised of methanol, monoterpenes, acetone and butene + butanol. The butene + butanol emissions were concluded to not originate from the forest and, therefore, be anthropogenic. The VOC exchange followed a seasonal trend and the emissions increased from spring to summer. Only three compounds were emitted during the snowmelt while in summer emissions of some 19 VOCs were observed. During the measurement period in April, the emissions were dominated by butene + butanol, while during the start of the growing season and in summer, methanol was the most emitted compound. The main source of methanol was likely the growth of new biomass. During a 21-day period in June, the net VOC flux was 2.1 nmol m-2 s-1. This is on the lower end of PTR-TOF flux measurements from other ecosystems, which range from 2 to 10 nmol m-2 s-1. The EC flux results were compared with surface layer profile measurements, using a proton transfer reaction quadrupole mass spectrometer, which is permanently installed at the SMEAR II site. For the major compounds, the fluxes measured with the two different methods agreed well.

  5. Ionic liquid technology to recover volatile organic compounds (VOCs).

    PubMed

    Salar-García, M J; Ortiz-Martínez, V M; Hernández-Fernández, F J; de Los Ríos, A P; Quesada-Medina, J

    2017-01-05

    Volatile organic compounds (VOCs) comprise a wide variety of carbon-based materials which are volatile at relatively low temperatures. Most of VOCs pose a hazard to both human health and the environment. For this reason, in the last years, big efforts have been made to develop efficient techniques for the recovery of VOCs produced from industry. The use of ionic liquids (ILs) is among the most promising separation technologies in this field. This article offers a critical overview on the use of ionic liquids for the separation of VOCs both in bulk and in immobilized form. It covers the most relevant works within this field and provides a global outlook on the limitations and future prospects of this technology. The extraction processes of VOCs by using different IL-based assemblies are described in detail and compared with conventional methods This review also underlines the advantages and limitations posed by ionic liquids according to the nature of the cation and the anions present in their structure and the stability of the membrane configurations in which ILs are used as liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. New device for time-averaged measurement of volatile organic compounds (VOCs).

    PubMed

    Santiago Sánchez, Noemí; Tejada Alarcón, Sergio; Tortajada Santonja, Rafael; Llorca-Pórcel, Julio

    2014-07-01

    Contamination by volatile organic compounds (VOCs) in the environment is an increasing concern since these compounds are harmful to ecosystems and even to human health. Actually, many of them are considered toxic and/or carcinogenic. The main sources of pollution come from very diffuse focal points such as industrial discharges, urban water and accidental spills as these compounds may be present in many products and processes (i.e., paints, fuels, petroleum products, raw materials, solvents, etc.) making their control difficult. The presence of these compounds in groundwater, influenced by discharges, leachate or effluents of WWTPs is especially problematic. In recent years, law has been increasingly restrictive with the emissions of these compounds. From an environmental point of view, the European Water Framework Directive (2000/60/EC) sets out some VOCs as priority substances. This binding directive sets guidelines to control compounds such as benzene, chloroform, and carbon tetrachloride to be at a very low level of concentration and with a very high frequency of analysis. The presence of VOCs in the various effluents is often highly variable and discontinuous since it depends on the variability of the sources of contamination. Therefore, in order to have complete information of the presence of these contaminants and to effectively take preventive measures, it is important to continuously control, requiring the development of new devices which obtain average concentrations over time. As of today, due to technical limitations, there are no devices on the market that allow continuous sampling of these compounds in an efficient way and to facilitate sufficient detection limits to meet the legal requirements which are capable of detecting very sporadic and of short duration discharges. LABAQUA has developed a device which consists of a small peristaltic pump controlled by an electronic board that governs its operation by pre-programming. A constant flow passes

  7. Measurement of volatile organic compounds emitted in libraries and archives: an inferential indicator of paper decay?

    PubMed Central

    2012-01-01

    Background A sampling campaign of indoor air was conducted to assess the typical concentration of indoor air pollutants in 8 National Libraries and Archives across the U.K. and Ireland. At each site, two locations were chosen that contained various objects in the collection (paper, parchment, microfilm, photographic material etc.) and one location was chosen to act as a sampling reference location (placed in a corridor or entrance hallway). Results Of the locations surveyed, no measurable levels of sulfur dioxide were detected and low formaldehyde vapour (< 18 μg m-3) was measured throughout. Acetic and formic acids were measured in all locations with, for the most part, higher acetic acid levels in areas with objects compared to reference locations. A large variety of volatile organic compounds (VOCs) was measured in all locations, in variable concentrations, however furfural was the only VOC to be identified consistently at higher concentration in locations with paper-based collections, compared to those locations without objects. To cross-reference the sampling data with VOCs emitted directly from books, further studies were conducted to assess emissions from paper using solid phase microextraction (SPME) fibres and a newly developed method of analysis; collection of VOCs onto a polydimethylsiloxane (PDMS) elastomer strip. Conclusions In this study acetic acid and furfural levels were consistently higher in concentration when measured in locations which contained paper-based items. It is therefore suggested that both acetic acid and furfural (possibly also trimethylbenzenes, ethyltoluene, decane and camphor) may be present in the indoor atmosphere as a result of cellulose degradation and together may act as an inferential non-invasive marker for the deterioration of paper. Direct VOC sampling was successfully achieved using SPME fibres and analytes found in the indoor air were also identified as emissive by-products from paper. Finally a new non

  8. Speciated VOC Emissions from an Outdoor Residential Pellet burning Hydronic Heater

    EPA Science Inventory

    Outdoor hydronic heaters used for residential heating emit air pollutants such as particulate matter and volatile organic compounds (VOCs), which can lead to deleterious impacts on local air quality and human health. Detailed speciated emissions measurements are required to accur...

  9. Temporal variation of VOC emission from solvent and water based wood stains

    NASA Astrophysics Data System (ADS)

    de Gennaro, Gianluigi; Loiotile, Annamaria Demarinis; Fracchiolla, Roberta; Palmisani, Jolanda; Saracino, Maria Rosaria; Tutino, Maria

    2015-08-01

    Solvent- and water-based wood stains were monitored using a small test emission chamber in order to characterize their emission profiles in terms of Total and individual VOCs. The study of concentration-time profiles of individual VOCs enabled to identify the compounds emitted at higher concentration for each type of stain, to examine their decay curve and finally to estimate the concentration in a reference room. The solvent-based wood stain was characterized by the highest Total VOCs emission level (5.7 mg/m3) that decreased over time more slowly than those related to water-based ones. The same finding was observed for the main detected compounds: Benzene, Toluene, Ethylbenzene, Xylenes, Styrene, alpha-Pinene and Camphene. On the other hand, the highest level of Limonene was emitted by a water-based wood stain. However, the concentration-time profile showed that water-based product was characterized by a remarkable reduction of the time of maximum and minimum emission: Limonene concentration reached the minimum concentration in about half the time compared to the solvent-based product. According to AgBB evaluation scheme, only one of the investigated water-based wood stains can be classified as a low-emitting product whose use may not determine any potential adverse effect on human health.

  10. VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS

    Treesearch

    C. Warneke; J. M. Roberts; P. Veres; J. Gilman; W. C. Kuster; I. Burling; R. Yokelson; J. A. de Gouw

    2011-01-01

    Volatile organic compounds (VOCs) emitted from fires of biomass commonly found in the southeast and southwest U.S. were investigated with PTR-MS and PIT-MS, which are capable of fast measurements of a large number of VOCs. Both instruments were calibrated with gas standards and mass dependent calibration curves are determined. The sensitivity of the PIT-MS linearly...

  11. Head-space, small-chamber and in-vehicle tests for volatile organic compounds (VOCs) emitted from air fresheners for the Korean market.

    PubMed

    Jo, Wan-Kuen; Lee, Jong-Hyo; Kim, Mo-Keun

    2008-02-01

    The present study investigated the emission characteristics of gel-type air fresheners (AFs), using head-space, small-chamber, and in-vehicle tests. Five toxic or hazardous analytes were found in the headspace phase of AFs (toluene, benzene, ethyl benzene, and m,p-xylene) at a frequency of more than 50%. Limonene and linalool, which are known to be unsaturated ozone-reactive VOCs, were detected at a frequency of 58 and 35%, respectively. The empirical model fitted well with the time-series concentrations in the chamber, thereby suggesting that the empirical model was suitable for testing emissions. Limonene exhibited the highest emission rate, followed by m,p-xylene, toluene, ethyl benzene, and benzene. For most target VOCs, higher air change per hour (ACH) levels exhibited increased emission rates. In contrast, higher ACH levels resulted in lower chamber concentrations. The mean concentration of limonene was significantly higher in passenger cars with an AF than without. For other target compounds, there were no significant differences between the two conditions tested. Consequently, it was suggested that unlike limonene, the emission strength for aromatic compounds identified in the chamber tests was not strong enough to elevate in-vehicle levels.

  12. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    PubMed

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. [Characteristics of odors and VOCs from sludge direct drying process].

    PubMed

    Chen, Wen-He; Deng, Ming-Jia; Luo, Hui; Zhang, Jing-Ying; Ding, Wen-Jie; Liu, Jun-Xin; Liu, Jun-Xin

    2014-08-01

    Co-processing sewage sludge by using the high-temperature feature of cement kiln can realize harmless disposal and energy recycling. In this paper, investigation on characteristics of the flue gas from sludge drying process was carried out in Guangzhou Heidelberg Yuexiu Cement Co., LTD. The composition and the main source of odors and volatile organic compounds (VOCs) emitted during the drying process were analyzed, aimed to provide scientific basis for the treatment of sewage sludge. Results showed that there were a large number of malodorous substances and VOCs in the flue gas. Sulfur dioxide and other sulfur-containing compounds were the main components in the malodorous substances, while benzene derivatives were predominant in VOCs. The compositions of odors and VOCs were influenced by the characteristics of the sludge and the heat medium (kiln tail gas). Total organic compounds in the sludge were significantly decreased after drying. Other organic substances such as volatile fatty acid, protein, and polysaccharide were also obviously reduced. The organic matter in sludge was the main source of VOCs in the flue gas. Part of sulfurous substances, such as sulfur dioxide, carbon disulfide, were from sulfur-containing substances in the sludge, and the rest were from the kiln tail gas itself.

  14. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards.

    PubMed

    Gminski, Richard; Tang, Tao; Mersch-Sundermann, Volker

    2010-06-16

    Due to the massive reduction of air-change rates in modern, energy-saving houses and dwellings, the contribution of volatile organic compound (VOCs) emissions from wood-based materials to indoor air quality has become increasingly important. To evaluate toxicity of VOC mixtures typically emitted from pine wood and oriented strand boards (OSB) and their main constituents (selected terpenes and aldehydes), cytotoxicity and genotoxicity were investigated in human A549 lung cells. To facilitate exposure directly via gas phase, a 250 L emission chamber was combined with a Vitrocell exposure system. VOC exposure concentrations were measured by GC/MSD. Biological effects were determined after an exposure time of 1h by measuring cytotoxicity (erythrosine B staining) and genotoxicity (comet assay). Neither cytotoxic nor genotoxic effects were observed for VOC mixtures emitted from pine wood or OSB at loading factors of approximately 13 m(2)/m(3) (worst case conditions) of the panels (with maximum VOC levels of about 80 mg/m(3)) in comparison to clean air. While alpha-pinene and Delta(3)-carene did not induce toxic effects even at exposure concentrations of up to 1800 mg/m(3) and 600 mg/m(3), respectively, hexanal showed a cytotoxic effect at 2000 mg/m(3). The alpha,beta-unsaturated aldehydes 2-heptenal and 2-octenal caused genotoxic effects in concentrations exceeding 100mg/m(3) and 40 mg/m(3), respectively. In conclusion, high concentrations of VOCs and VOC mixtures emitted from pine wood and OSB did not lead to adverse effects in A549 human lung cells even at concentrations 10(2) to 10(5)-fold higher than those found in normal indoor air. Attention must be paid to mutagenic and possibly carcinogenic alpha,beta-unsaturated aldehydes. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. On the use of plant emitted volatile organic compounds for atmospheric chemistry simulation experiments

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Hohaus, T.; Yu, Z.; Tillmann, R.; Kuhn, U.; Andres, S.; Kaminski, M.; Wegener, R.; Novelli, A.; Fuchs, H.; Wahner, A.

    2015-12-01

    Biogenic volatile organic compounds (BVOC) contribute to about 90% of the emitted VOC globally with isoprene being one of the most abundant BVOC (Guenther 2002). Intensive efforts in studying and understanding the impact of BVOC on atmospheric chemistry were undertaken in the recent years. However many uncertainties remain, e.g. field studies have shown that in wooded areas measured OH reactivity can often not be explained by measured BVOC and their oxidation products (e.g. Noelscher et al. 2012). This discrepancy may be explained by either a lack of understanding of BVOC sources or insufficient understanding of BVOC oxidation mechanisms. Plants emit a complex VOC mixture containing likely many compounds which have not yet been measured or identified (Goldstein and Galbally 2007). A lack of understanding BVOC sources limits bottom-up estimates of secondary products of BVOC oxidation such as SOA. Similarly, the widespread oversimplification of atmospheric chemistry in simulation experiments, using single compound or simple BVOC mixtures to study atmospheric chemistry processes limit our ability to assess air quality and climate impacts of BVOC. We will present applications of the new extension PLUS (PLant chamber Unit for Simulation) to our atmosphere simulation chamber SAPHIR. PLUS is used to produce representative BVOC mixtures from direct plant emissions. We will report on the performance and characterization of the newly developed chamber. As an exemplary application, trees typical of a Boreal forest environment were used to compare OH reactivity as directly measured by LIF to the OH reactivity calculated from BVOC measured by GC-MS and PTRMS. The comparison was performed for both, primary emissions of trees without any influence of oxidizing agents and using different oxidation schemes. For the monoterpene emitters investigated here, we show that discrepancies between measured and calculated total OH reactivity increase with increasing degree of oxidation

  16. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    PubMed

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-21

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for "green" buildings and the use of "environmentally friendly" products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m³, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates.

  17. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    PubMed Central

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-01

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates. PMID:28117727

  18. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    PubMed

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    NASA Astrophysics Data System (ADS)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  20. Predicting the emission of volatile organic compounds from silage systems

    USDA-ARS?s Scientific Manuscript database

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  1. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  2. Derived Emission Rates and Photochemical Production Rates of Volatile Organic Compounds (VOCs) Associated with Oil and Natural Gas Operations in the Uintah Basin, UT During a Wintertime Ozone Formation Event

    NASA Astrophysics Data System (ADS)

    Koss, A.; De Gouw, J. A.; Warneke, C.; Gilman, J.; Lerner, B. M.; Graus, M.; Yuan, B.; Edwards, P. M.; Brown, S. S.; Wild, R. J.; Roberts, J. M.; Bates, T. S.; Quinn, P.

    2014-12-01

    The Uintah Basin, an oil and natural gas extraction field in Utah, experienced extremely high levels of volatile organic compounds (VOCs) and ozone during the winter of 2013 - up to 100 ppmv carbon and 150 ppbv O3. Here we interpret VOCs measured during an ozone formation event from 31 Jan 2013 to 8 Feb 2013. Ratios of VOCs show strong diurnal cycles and week-long trends. A simple analysis was applied to ratios of aromatic VOCs measured by proton transfer reaction mass spectrometer (PTR-MS) to explain these trends and to estimate emission rates of aromatic VOCs from oil and natural gas extraction, VOC emission ratios relative to benzene, and ambient [OH]. The analysis incorporates the following assumptions: (1) the source composition of emitted VOCs and their emission rates were temporally and spatially constant, and (2) the removal of VOCs was governed by reaction with OH, diurnal profile of which is constrained by measured photolysis rates. The main findings are (1) the emission rate of methane, extrapolated from the emission rate of benzene, is on the same order as an independent estimate from aircraft measurements of methane in 2012, (2) the derived aromatic emission ratios are consistent with source contributions from both oil and gas producing wells, and (3) calculated daily OH concentrations are low, peaking at 1x106 molecules cm-3. The analysis was extended to investigate secondary production of oxygenated VOCs measured by PTR-MS. The analysis is able to explain daytime production, but it does not adequately explain nighttime behavior, which may be affected by complex deposition to snow and ice surfaces. The relative carbon mass of primary and secondary compounds was calculated and compared to observations. At the end of the ozone formation event (day 6), our analysis predicts that secondary (oxidized) VOCs should comprise about 40% of total carbon mass. However, only 12% of these compounds are accounted for by measured oxygenated VOCs and organic aerosol

  3. VOLATILE ORGANIC COMPOUNDS (VOC) RECOVERY ...

    EPA Pesticide Factsheets

    The purpose of the seminar was to bring researchers, technology developers, and industry representatives together to discuss recovery technologies and techniques for VOCs. The seminar focused on the specific VOC recovery needs of industry and on case studies that summarize effective VOC product recovery techniques applicable to air, water, and solid waste. The case studies highlighted examples in which existing and new recovery technologies resulted in significant cost savings to industry. The seminar focused on the following key issues:. Status and future direction of EPA< DOE, and other major research programs.. What are the latest technology innovations in VOC treatment and recovery?. Performance and cost effectiveness of VOC recovery techniques.. How are recovery techniques applied to air, water, and solid waste?Presenters were from industry, academia, EPA, and various consulting firms. The presentations were followed by several facilitated breakout sessions; these sessions allowed participants an opportunity to discuss their needs and opinions on VOC recovery trends, research, and other issues.This document contains summaries of the presentations and discussions during the seminar. It does not constitute an actual proceedings, since the presentations were informal and no written versions were required. The list of participants and contact information are included in Appendix A. Information

  4. Influence of relative humidity on VOC concentrations in indoor air.

    PubMed

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    Volatile organic compounds (VOCs) may be emitted from surfaces indoors leading to compromised air quality. This study scrutinized the influence of relative humidity (RH) on VOC concentrations in a building that had been subjected to water damage. While air samplings in a damp room at low RH (21-22%) only revealed minor amounts of 2-ethylhexanol (3 μg/m(3)) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB, 8 μg/m(3)), measurements performed after a rapid increase of RH (to 58-75%) revealed an increase in VOC concentrations which was 3-fold for 2-ethylhexanol and 2-fold for TXIB. Similar VOC emission patterns were found in laboratory analyses of moisture-affected and laboratory-contaminated building materials. This study demonstrates the importance of monitoring RH when sampling indoor air for VOCs in order to avoid misleading conclusions from the analytical results.

  5. Emissions of volatile organic compounds during the decomposition of plant litter

    NASA Astrophysics Data System (ADS)

    Gray, Christopher M.; Monson, Russell K.; Fierer, Noah

    2010-09-01

    Volatile organic compounds (VOCs) are emitted during plant litter decomposition, and such VOCs can have wide-ranging impacts on atmospheric chemistry, terrestrial biogeochemistry, and soil ecology. However, we currently have a limited understanding of the relative importance of biotic versus abiotic sources of these VOCs and whether distinct types of litter emit different types and quantities of VOCs during decomposition. We analyzed VOCs emitted by microbes or by abiotic mechanisms during the decomposition of litter from 12 plant species in a laboratory experiment using proton transfer reaction mass spectrometry (PTR-MS). Net emissions from litter with active microbial populations (non-sterile litters) were between 0 and 11 times higher than emissions from sterile controls over a 20-d incubation period, suggesting that abiotic sources of VOCs are generally less important than biotic sources. In all cases, the sterile and non-sterile litter treatments emitted different types of VOCs, with methanol being the dominant VOC emitted from litters during microbial decomposition, accounting for 78 to 99% of the net emissions. We also found that the types of VOCs released during biotic decomposition differed in a predictable manner among litter types with VOC profiles also changing as decomposition progressed over time. These results show the importance of incorporating both the biotic decomposition of litter and the species-dependent differences in terrestrial vegetation into global VOC emission models.

  6. The pollution characteristics of odor, volatile organochlorinated compounds and polycyclic aromatic hydrocarbons emitted from plastic waste recycling plants.

    PubMed

    Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang

    2009-02-01

    Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.

  7. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    PubMed

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China.

    PubMed

    Wang, Hongli; Xiang, Zhiyuan; Wang, Lina; Jing, Shengao; Lou, Shengrong; Tao, Shikang; Liu, Jing; Yu, Mingzhou; Li, Li; Lin, Li; Chen, Ying; Wiedensohler, Alfred; Chen, Changhong

    2018-04-15

    Cooking emission is one of sources for ambient volatile organic compounds (VOCs), which is deleterious to air quality, climate and human health. These emissions are especially of great interest in large cities of East and Southeast Asia. We conducted a case study in which VOC emissions from kitchen extraction stacks have been sampled in total 57 times in the Megacity Shanghai. To obtain representative data, we sampled VOC emissions from kitchens, including restaurants of seven common cuisine types, canteens, and family kitchens. VOC species profiles and their chemical reactivities have been determined. The results showed that 51.26%±23.87% of alkane and 24.33±11.69% of oxygenated VOCs (O-VOCs) dominate the VOC cooking emissions. Yet, the VOCs with the largest ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) were from the alkene and aromatic categories, accounting for 6.8-97.0% and 73.8-98.0%, respectively. Barbequing has the most potential of harming people's heath due to its significant higher emissions of acetaldehyde, hexanal, and acrolein. Methodologies for calculating VOC emission factors (EF) for restaurants that take into account VOCs emitted per person (EF person ), per kitchen stove (EF kitchen stove ) and per hour (EF hour ) are developed and discussed. Methodologies for deriving VOC emission inventories (S) from restaurants are further defined and discussed based on two categories: cuisine types (S type ) and restaurant scales (S scale ). The range of S type and S scale are 4124.33-7818.04t/year and 1355.11-2402.21t/year, respectively. We also found that S type and S scale for 100,000 people are 17.07-32.36t/year and 5.61-9.95t/year, respectively. Based on Environmental Kuznets Curve, the annual total amount of VOCs emissions from catering industry in different provinces in China was estimated, which was 5680.53t/year, 6122.43t/year, and 66,244.59t/year for Shangdong and Guangdong provinces and whole China, respectively

  9. High-VOC biochar-effectiveness of post-treatment measures and potential health risks related to handling and storage.

    PubMed

    Buss, Wolfram; Mašek, Ondřej

    2016-10-01

    Biochar can contain volatile organic compounds (VOCs), formed and introduced during the pyrolysis process. In some pyrolysis units or under specific conditions during production, pyrolysis vapours can deposit on biochar in significant amounts resulting in high-VOC biochar. In this study, it was tested to which extent VOCs are released from such high-VOC biochars when openly stored, which post-treatment measures are most effective in reducing phytotoxic potential and whether the VOC emissions could exceed human health-related threshold values. It was shown that the initial VOC release of high-VOC biochars can exceed occupational exposure limit values and even after 2 months, the biochars still emitted VOCs exceeding air quality guideline values. Consequently, these specific high-VOC biochars pose health risks when handled or stored openly. Simple open-air storage turned out to be insufficient for VOC removal. Low temperature treatment, on the other hand, removed VOCs from the high-VOC biochars effectively and alleviated any human health risks and phytotoxic effects. In addition to the high-VOC biochars, a low-VOC biochar was tested which did not emit any VOCs and was even able to sorb VOCs from the VOC-rich biochar to a certain extent. Thermal treatment and blending with low-VOC biochar are methods which could be used in practise to treat high-VOC biochar, reducing VOC emissions. This study revealed significant new findings on the topic of VOCs in biochar which highlights the need to include VOCs in the list of priority contaminants in biochar.

  10. Static SPME sampling of VOCs emitted from indoor building materials: prediction of calibration curves of single compounds for two different emission cells.

    PubMed

    Mocho, Pierre; Desauziers, Valérie

    2011-05-01

    Solid-phase microextraction (SPME) is a powerful technique, easy to implement for on-site static sampling of indoor VOCs emitted by building materials. However, a major constraint lies in the establishment of calibration curves which requires complex generation of standard atmospheres. Thus, the purpose of this paper is to propose a model to predict adsorption kinetics (i.e., calibration curves) of four model VOCs. The model is based on Fick's laws for the gas phase and on the equilibrium or the solid diffusion model for the adsorptive phase. Two samplers (the FLEC® and a home-made cylindrical emission cell), coupled to SPME for static sampling of material emissions, were studied. A good agreement between modeling and experimental data is observed and results show the influence of sampling rate on mass transfer mode in function of sample volume. The equilibrium model is adapted to quite large volume sampler (cylindrical cell) while the solid diffusion model is dedicated to small volume sampler (FLEC®). The limiting steps of mass transfer are the diffusion in gas phase for the cylindrical cell and the pore surface diffusion for the FLEC®. In the future, this modeling approach could be a useful tool for time-saving development of SPME to study building material emission in static mode sampling.

  11. VOC emission into the atmosphere by trees and leaf litter in Polish forests

    NASA Astrophysics Data System (ADS)

    Isidorov, V.; Smolewska, M.; Tyszkiewicz, Z.

    2009-04-01

    It is generally recognized at present that the vegetation of continents is the principal source of reactive volatile organic compounds (VOC) of the atmosphere. The upper limit of the evaluation of global phytogenic VOC is 1100-1500 Tg/yr (Isidorov, 1990; Guenther et al., 1995). Although these global evaluations showing the place of phytogenic emission among of other VOC sources are important, evaluations for individual countries are also very important. This poster represents the results of the estimation of VOC emission from Polish forests. Calculations took into account the composition and age of forests. According to our estimation, the total VOC emission by the arboreal vegetation differs from 190 to 750 kt/yr, depending of weather conditions in different years. There are only few studies conducted on decaying plant material as a source of atmospheric VOCs, but still they are able to give evidence of the importance of this source. For Polish forests, the litter mass is estimated to be (16-19)106 t/yr. These organic materials undergo decomposition by mesofauna and microorganisms. In these processes volatile organic compounds (VOC) stored in the litter and secondary metabolites of litter-destroying fungi are emitted into the atmosphere. The scale of the phenomenon makes leaf litter an important VOC source in the atmosphere. The filling of numerous gaps in researches of VOC emissions from decomposing leaf litter demands carrying out of long term field experiments in various climatic conditions. In this communication we report also the results of 3.5-year experiment on qualitative and quantitative GC-MS investigations of VOC emitted into the gas phase from leaves litter of some species of deciduous and coniferous trees of Polish forests. Apart from terpenes and their oxygenated derivatives, which are usual in plant tissues, leaf litter intensively emits vast amounts of lower alcohols and carbonyl compounds. We suppose that these volatile substances are products

  12. Seasonal variations in VOC emission rates from gorse (Ulex europaeus)

    NASA Astrophysics Data System (ADS)

    Boissard, C.; Cao, X.-L.; Juan, C.-Y.; Hewitt, C. N.; Gallagher, M.

    Seasonal variations of biogenic volatile organic compound (VOC) emission rates and standardised emission factors from gorse (Ulex europaeus) have been measured at two sites in the United Kingdom, from October 1994 to September 1995, within temperature and PAR conditions ranging from 3 to 34°C and 10-1300 μmol m-2 s-1, respectively. Isoprene was the dominant emitted compound with a relative composition fluctuating from 7% of the total VOC (winter) to 97% (late summer). The monoterpenes α-pinene, camphene, sabinene, β-pinene, myrcene, limonene, trans-ocimene and γ-terpinene were also emitted, with α-pinene being the dominant monoterpene during most the year. Trans-ocimene represented 33-66% of the total monoterpene during the hottest months from June to September. VOC emissions were found to be accurately predicted using existing algorithms. Standard (normalised) emission factors of VOCs from gorse were calculated using experimental parameters measured during the experiment and found to fluctuate with season, from 13.3±2.1 to 0.1±0.1 μg C (g dwt)-1 h-1 in August 1995 and January 1995, respectively, for isoprene, and from 2.5±0.2 to 0.4±0.2 μg C (g dwt)-1 h-1 in July and November 1995, respectively, for total monoterpenes. No simple clear relation was found to allow prediction of these seasonal variations with respect to temperature and light intensity. The effects of using inappropriate algorithms to derive VOC fluxes from gorse were assessed for isoprene and monoterpenes. Although on an annual basis the discrepancies are not significant, monthly estimation of isoprene were found to be overestimated by more than a factor of 50 during wintertime when the seasonality of emission factors is not considered.

  13. Control of VOCs emissions by condenser pre-treatment in a semiconductor fab.

    PubMed

    Lin, Yu-Chih; Chang, Feng-Tang; Bai, Hsunling; Pei, Bau-Shei

    2005-04-11

    The performance of a modified design of local condensers to pre-treat a variety of volatile organic compounds (VOCs) emitted from the stripping process of a semiconductor fab was tested in this study. The reaction temperature of the condensers was controlled at around 10 degrees C, it is relatively higher than the traditional condenser reaction temperature. Both VOCs and water vapors were condensed and formed liquid films. This resulted in an enhancement of the VOCs removals, especially for VOCs of high boiling points or solubility. This can help to prevent the follow up zeolite concentrator from damage. The performance of the integrated system of condenser/zeolite concentrator could, therefore, remain highly efficient for a longer operation time. Its annualized cost would also be lower than installing the zeolite concentrator only.

  14. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.

    PubMed

    Shi, Jianwu; Deng, Hao; Bai, Zhipeng; Kong, Shaofei; Wang, Xiuyan; Hao, Jiming; Han, Xinyu; Ning, Ping

    2015-05-15

    107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on

  15. QTL validation and stability for volatile organic compounds (VOCs) in apple.

    PubMed

    Costa, Fabrizio; Cappellin, Luca; Zini, Elena; Patocchi, Andrea; Kellerhals, Markus; Komjanc, Matteo; Gessler, Cesare; Biasioli, Franco

    2013-10-01

    The aroma trait in apple is a key factor for fruit quality strongly affecting the consumer appreciation, and its detection and analysis is often an extremely laborious and time consuming procedure. Molecular markers associated to this trait can to date represent a valuable selection tool to overcome these limitations. QTL mapping is the first step in the process of targeting valuable molecular markers to be employed in marker-assisted breeding programmes (MAB). However, a validation step is usually required before a newly identified molecular marker can be implemented in marker-assisted selection. In this work the position of a set of QTLs associated to volatile organic compounds (VOCs) was confirmed and validated in three different environments in Switzerland, namely Wädenswil, Conthey and Cadenazzo, where the progeny 'Fiesta×Discovery' was replicated. For both QTL identification and validation, the phenotypic data were represented by VOCs produced by mature apple fruit and assessed with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS) instrument. The QTL-VOC combined analysis performed among these three locations validated the presence of important QTLs in three specific genomic regions, two located in the linkage group 2 and one in linkage group 15, respectively, for compounds related to esters (m/z 43, 61 and 131) and to the hormone ethylene (m/z 28). The QTL set presented here confirmed that in apple some compounds are highly genetically regulated and stable across environments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Novel collection method for volatile organic compounds (VOCs) from dogs

    USDA-ARS?s Scientific Manuscript database

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cy...

  17. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    NASA Astrophysics Data System (ADS)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  18. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.

    PubMed

    Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming

    2014-10-01

    Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Experiments in the EMRP project KEY-VOCs: Adsorption/desorption effects of VOCs in different tubing materials and preparation and analysis of a zero gas

    NASA Astrophysics Data System (ADS)

    Englert, Jennifer; Claude, Anja; Kubistin, Dagmar; Tensing, Erasmus; Michl, Katja; Plass-Duelmer, Christian

    2017-04-01

    Atmospheric chemistry and composition are influenced by volatile organic compounds (VOCs) emitted from natural and anthropogenic sources. Due to their toxicity and their crucial role in ozone and aerosol formation VOCs impact air quality and climate change and high quality observations are demanded. The European Metrology Research Programme (EMRP) project KEY-VOCs has targeted the improvement of VOC measurement capabilities with the focus on VOCs relevant for indoor air as well as for air quality and climate monitoring programmes. One major uncertainty is the influence of surface effects of the measurement devices. By developing a test system the adsorption/desorption effects of certain VOCs can be systematically examined. Different tubing materials e.g. stainless steel and PFA were analysed with the oxygenated VOC methanol and results of these experiments will be presented. In air quality monitoring very low levels of VOCs have to be measured. Purified air or nitrogen is widely used as a zero gas to characterize measurement systems and procedures as well as for instrument calibration. A high quality zero gas is an important contributor to the quality of the measurements and generally achieved by using state-of-the-art purification technologies. The efficiency of several air purifiers was assessed and the results have been analysed.

  20. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds

    PubMed Central

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-01

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool. PMID:26819529

  1. Emission of volatile organic compounds from silage: Compounds, sources, and implications

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Howard, Cody; Muck, Richard E.; Franco, Roberta B.; Montes, Felipe; Green, Peter G.; Mitloehner, Frank; Trabue, Steven L.; Rotz, C. Alan

    2013-10-01

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission rates and identify practices that could reduce emissions. Through a literature review, we have focused on identifying the most important compounds emitted from corn silage (the most common type of silage in the US) and the sources of these compounds by quantifying their production and emission potential in silage and describing production pathways. We reviewed measurements of VOC emission from silage and assessed the importance of individual silage VOCs through a quantitative analysis of VOC concentrations within silage. Measurements of VOC emission from silage and VOCs present within silage indicated that alcohols generally make the largest contribution to emission from corn silage, in terms of mass emitted and potential ozone formation. Ethanol is the dominant alcohol in corn silage; excluding acids, it makes up more than half of the mean mass of VOCs present. Acids, primarily acetic acid, may be important when emission is high and all VOCs are nearly depleted by emission. Aldehydes and esters, which are more volatile than acids and alcohols, are important when exposure is short, limiting emission of more abundant but less volatile compounds. Variability in silage VOC concentrations is very high; for most alcohols and acids, tolerance intervals indicate that 25% of silages have concentrations a factor of two away from median values, and possibly much further. This observation suggests that management practices can significantly influence VOC concentrations. Variability also makes prediction of emissions difficult. The most important acids, alcohols, and aldehydes present in silage are probably produced by bacteria (and, in the case of ethanol, yeasts) during fermentation and

  2. Biofiltration kinetics for volatile organic compounds (VOCs) and development of a structure-biodegradability relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govind, R.; Wang, Z.; Bishop, D.F.

    1997-12-31

    In recent years, regulation of hazardous air pollutants under the Clean Air Act and its amendments, has emerged as a major environmental issue. Major sources of volatile organic compounds (VOCs) in air are chemical production plants, manufacturing sites using common solvents, combustion sources, and waste treatment operations, such as waste water treatment plants, vacuum extraction of contaminated soils, and ground water stripping operations. Biofiltration is an emerging technology for treatment of biodegradable volatile organic compounds (VOCs) present in air. In biofiltration, the contaminants are contacted with active microorganisms present either in naturally bioactive materials, such as soil, peat, compost, etc.,more » or immobilized on an inactive support media. Design of biofilters requires information on biodegradation kinetics which controls biofilter size. In this paper, an experimental microbiofilter system is presented which can be used to measure biofiltration kinetics for any volatile organic compound. A mathematical model is used to derive the Monod biokinetic parameters from the experimental data. Finally, a structure-bioactivity relationship is derived for estimating the biofiltration biokinetic parameters for a variety of VOCs.« less

  3. Duration of emission of volatile organic compounds from mechanically damaged plant leaves.

    PubMed

    Smith, Lincoln; Beck, John J

    2015-09-01

    Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice, no-choice and field conditions. Secondary plant compounds are likely to have an important influence on host plant specificity. However, relatively little is known about the volatile organic compounds (VOCs) that are emitted by target and nontarget plants, and how environmental conditions may affect their emission. Previous studies have shown that mechanical damage of leaves increases the composition and content of VOCs emitted. In this study we measured the VOC emissions of five species of plants in the subtribe Centaureinae (Asteraceae)--Carthamus tinctorius, Centaurea cineraria, Centaurea melitensis, Centaurea rothrockii, and Centaurea solstitialis--that have previously been used in host specificity experiments for a prospective biological control agent of yellow starthistle (C. solstitialis). Leaves of each plant were punctured with a needle and the VOCs were collected by solid-phase microextraction (SPME) periodically over 48 h and analyzed by GC-MS. A total of 49 compounds were detected. Damage caused an immediate increase of 200-600% in the composition of VOCs emitted from each plant species, and the amounts generally remained high for at least 48 h. The results indicate that a very unspecific mechanical damage can cause a prolonged change in the VOC profile of plants. Published by Elsevier GmbH.

  4. VOC emissions from residential combustion of Southern and mid-European woods

    NASA Astrophysics Data System (ADS)

    Evtyugina, Margarita; Alves, Célia; Calvo, Ana; Nunes, Teresa; Tarelho, Luís; Duarte, Márcio; Prozil, Sónia O.; Evtuguin, Dmitry V.; Pio, Casimiro

    2014-02-01

    Emissions of trace gases (carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC)), and volatile organic compounds (VOCs) from combustion of European beech, Pyrenean oak and black poplar in a domestic woodstove and fireplace were studied. These woods are widely used as biofuel in residential combustion in Southern and mid-European countries. VOCs in the flue gases were collected in Tedlar bags, concentrated in sorbent tubes and analysed by thermal desorption-gas chromatography-flame ionisation detection (GC-FID). CO2 emissions ranged from 1415 ± 136 to 1879 ± 29 g kg-1 (dry basis). The highest emission factors for CO and THC, 115.8 ± 11.7 and 95.6 24.7 ± 6.3 g kg-1 (dry basis), respectively, were obtained during the combustion of black poplar in the fireplace. European beech presented the lowest CO and THC emission factors for both burning appliances. Significant differences in emissions of VOCs were observed among wood species burnt and combustion devices. In general the highest emission factors were obtained from the combustion of Pyrenean oak in the woodstove. Among the VOCs identified, benzene and related compounds were always the most abundant group, followed by oxygenated compounds and aliphatic hydrocarbons. The amount and the composition of emitted VOCs were strongly affected by the wood composition, the type of burning device and operating conditions. Emission data obtained in this work are useful for modelling the impact of residential wood combustion on air quality and tropospheric ozone formation.

  5. Characterization of Volatile Organic Compound (VOC) Emissions at Sites of Oil Sands Extraction and Upgrading in northern Alberta

    NASA Astrophysics Data System (ADS)

    Marrero, J.; Simpson, I. J.; Meinardi, S.; Blake, D. R.

    2011-12-01

    The crude oil reserves in Canada's oil sands are second only to Saudi Arabia, holding roughly 173 billion barrels of oil in the form of bitumen, an unconventional crude oil which does not flow and cannot be pumped without heating or dilution. Oil sands deposits are ultimately used to make the same petroleum products as conventional forms of crude oil, though more processing is required. Hydrocarbons are the basis of oil, coal and natural gas and are an important class of gases emitted into the atmosphere during oil production, particularly because of their effects on air quality and human health. However, they have only recently begun to be independently assessed in the oil sands regions. As part of the 2008 ARCTAS airborne mission, whole air samples were collected in the boundary layer above the surface mining operations of northern Alberta. Gas chromatography analysis revealed enhanced concentrations of 53 VOCs (C2 to C10) over the mining region. When compared to local background levels, the measured concentrations were enhanced up to 1.1-400 times for these compounds. To more fully characterize emissions, ground-based studies were conducted in summer 2010 and winter 2011 in the oil sands mining and upgrading areas. The data from the 200 ground-based samples revealed enhancements in the concentration of 65 VOCs. These compounds were elevated up to 1.1-3000 times above background concentrations and include C2-C8 alkanes, C1-C5 alkyl nitrates, C2-C4 alkenes and potentially toxic aromatic compounds such as benzene, toluene, and xylenes.

  6. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  7. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  8. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  9. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  10. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  11. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B

    2018-08-01

    Exposure to ambient volatile organic compound (VOCs) in urban areas is of interest because of their potential chronic and acute adverse effects to public health. Limited information is available about VOC sources in urban areas in Canada. An investigation of ambient VOCs levels, their potential sources and associated risks to public health was undertaken for the urban core of Alberta's largest city (downtown Calgary) for the period 2010-2015. Twenty-four hour arithmetic and geometric mean concentrations of total VOCs were 42μg/m 3 and 39μg/m 3 , respectively and ranged from 16 to 160μg/m 3 , with winter levels about two-fold higher than summer. Alkanes (58%) were the most dominant compounds followed by halogenated VOCs (22%) and aromatics (11%). Mean and maximum 24h ambient concentrations of selected VOCs of public health concern were below chronic and acute health risk screening criteria of the United States regulatory agencies and a cancer screening benchmark used in Alberta equivalent to 1 in 100,000 lifetime risk. The Positive matrix factorization (PMF) model revealed nine VOC sources at downtown Calgary, where oil/natural gas extraction/combustion (26%), fuel combustion (20%), traffic sources including gasoline exhaust, diesel exhaust, mixed fugitive emissions (10-15%), and industrial coatings/solvents (12%) were predominant. Other sources included dry cleaning (3.3%), biogenic (3.5%) and a background source (18%). Source-specific health risk values were also estimated. Estimated cancer risks for all sources were below the Alberta cancer screening benchmark, and estimated non-cancer risks for all sources were well below a safe level. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds.

    PubMed

    Cheng, Yan; He, Huijun; Yang, Chunping; Zeng, Guangming; Li, Xiang; Chen, Hong; Yu, Guanlong

    2016-11-01

    Volatile organic compounds (VOCs) emitted to the environment highly probably result in ecological and health risks. Many biotechnologies for waste gases containing hydrophobic VOCs have been developed in recent years. However, these biological processes usually exhibit poor removal performances for hydrophobic VOCs due to the low bioavailability. This review presents an overview of enhanced removal of hydrophobic VOCs in biofilters. Mechanisms and problems relevant to the biological removal of hydrophobic VOCs are reviewed, and then solutions including the addition of surfactants, application of fungal biocatalysts, biofiltration with pretreatment, innovative bioreactors and utilization of hydrophilic compounds are discussed in detail. Future research needs are also proposed. This review provides new insights into hydrophobic VOC removal by biofiltration. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS.

    PubMed

    Thriumani, Reena; Zakaria, Ammar; Hashim, Yumi Zuhanis Has-Yun; Jeffree, Amanina Iymia; Helmy, Khaled Mohamed; Kamarudin, Latifah Munirah; Omar, Mohammad Iqbal; Shakaff, Ali Yeon Md; Adom, Abdul Hamid; Persaud, Krishna C

    2018-04-02

    Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells. The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium. This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells. The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.

  14. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China.

    PubMed

    Hong-Li, Wang; Sheng-Ao, Jing; Sheng-Rong, Lou; Qing-Yao, Hu; Li, Li; Shi-Kang, Tao; Cheng, Huang; Li-Ping, Qiao; Chang-Hong, Chen

    2017-12-31

    Volatile Organic Compounds (VOCs) source profiles of on-road vehicles were widely studied as their critical roles in VOCs source apportionment and abatement measures in megacities. Studies of VOCs source profiles from on-road motor vehicles from 2001 to 2016 were summarized in this study, with a focus on the comparisons among different studies and the potential impact of different factors. Generally, non-methane hydrocarbons dominated the source profile of on-road vehicle emissions. Carbonyls, potential important components of vehicle emission, were seldom considered in VOCs emissions of vehicles in the past and should be paid more attention to in further study. VOCs source profiles showed some variations among different studies, and 6 factors were extracted and studied due to their impact to VOCs source profile of on-road vehicles. Vehicle types, being dependent on engine types, and fuel types were two dominant factors impacting VOCs sources profiles of vehicles. In comparison, impacts of ignitions, driving conditions and accumulated mileage were mainly due to their influence on the combustion efficiency. An opening and interactive database of VOCs from vehicle emissions was critically essential in future, and mechanisms of sharing and inputting relative research results should be formed to encourage researchers join the database establishment. Correspondingly, detailed quality assurance and quality control procedures were also very important, which included the information of test vehicles and test methods as detailed as possible. Based on the community above, a better uncertainty analysis could be carried out for the VOCs emissions profiles, which was critically important to understand the VOCs emission characteristics of the vehicle emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Louie, Peter K. K.; Ho, Josephine W. K.; Tsang, Roy C. W.; Blake, Donald R.; Lau, Alexis K. H.; Yu, Jian Zhen; Yuan, Zibing; Wang, Xinming; Shao, Min; Zhong, Liuju

    2013-09-01

    Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement.

  16. Reduced volatile organic compound (VOC) ammunition coatings. Progress report, October 1994-September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.L.

    1996-05-01

    Production requirements and film thickness limitations typically require that ammunition coating systems consist of a single film. This single film must provide the corrosion resistance of a primer plus such properties as color, gloss, and solvent resistance that are required of a topcoat, a compromise at best. Federal and local regulations resulting from the Clean Air Act and its amendments restrict the amount of VOC emitted during the application of protective coatings, and regulations on worker safety restrict exposure to hazardous materials such as chromates. These materials also generate hazardous wastes and the associated high disposal costs. This report summarizesmore » progress in developing ammunition coatings that perform as well as or better than current systems, but at reduced VOC levels with chromate-free pigmentation.« less

  17. LakeVOC; A Deterministic Model to Estimate Volatile Organic Compound Concentrations in Reservoirs and Lakes

    USGS Publications Warehouse

    Bender, David A.; Asher, William E.; Zogorski, John S.

    2003-01-01

    This report documents LakeVOC, a model to estimate volatile organic compound (VOC) concentrations in lakes and reservoirs. LakeVOC represents the lake or reservoir as a two-layer system and estimates VOC concentrations in both the epilimnion and hypolimnion. The air-water flux of a VOC is characterized in LakeVOC in terms of the two-film model of air-water exchange. LakeVOC solves the system of coupled differential equations for the VOC concentration in the epilimnion, the VOC concentration in the hypolimnion, the total mass of the VOC in the lake, the volume of the epilimnion, and the volume of the hypolimnion. A series of nine simulations were conducted to verify LakeVOC representation of mixing, dilution, and gas exchange characteristics in a hypothetical lake, and two additional estimates of lake volume and MTBE concentrations were done in an actual reservoir under environmental conditions. These 11 simulations showed that LakeVOC correctly handled mixing, dilution, and gas exchange. The model also adequately estimated VOC concentrations within the epilimnion in an actual reservoir with daily input parameters. As the parameter-input time scale increased (from daily to weekly to monthly, for example), the differences between the measured-averaged concentrations and the model-estimated concentrations generally increased, especially for the hypolimnion. This may be because as the time scale is increased from daily to weekly to monthly, the averaging of model inputs may cause a loss of detail in the model estimates.

  18. VOLATILE ORGANIC COMPOUNDS (VOC) RECOVERY SEMINAR

    EPA Science Inventory

    The purpose of the seminar was to bring researchers, technology developers, and industry representatives together to discuss recovery technologies and techniques for VOCs. The seminar focused on the specific VOC recovery needs of industry and on case studies that summarize effec...

  19. Quantifying VOC emissions from East Asia using 10 years of satellite observations

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Muller, J. F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; Boersma, F.; van der A, R. J.; Pierre-Francois, C.; Clerbaux, C.

    2016-12-01

    China's emissions are in the spotlight of efforts to mitigate climate change and improve regional and city-scale air quality. Despite growing efforts to better quantify China's emissions, the current estimates are often poor or inadequate. Complementary to bottom-up inventories, inverse modeling of fluxes has the potential to improve those estimates through the use of atmospheric observations of trace gas compounds. As formaldehyde (HCHO) is a high-yield product in the oxidation of most volatile organic compounds (VOCs) emitted by anthropogenic and natural sources, satellite observations of HCHO hold the potential to inform us on the spatial and temporal variability of the underlying VOC sources. The 10-year record of space-based HCHO column observations from the OMI instrument is used to constrain VOC emission fluxes in East Asia in a source inversion framework built on the IMAGES chemistry-transport model and its adjoint. The interannual and seasonal variability, spatial distribution and potential trends of the top-down VOC fluxes (anthropogenic, pyrogenic and biogenic) are presented and confronted to existing emission inventories, satellite observations of other species (e.g. glyoxal and nitrogen oxides), and past studies.

  20. Sensitivity-Based VOC Reactivity Calculation

    EPA Science Inventory

    Volatile Organic Compound (VOC) reactivity scales are used to compare the ozone-forming potentials of various compounds. The comparison allows for substitution of compounds to lessen formation of ozone from paints, solvents, and other products. Current reactivity scales for VOC c...

  1. EMISSIONS OF BIOGENIC OXIDANT AND PM PRECURSORS: VERY HIGH REACTIVITY VOCS AND SURFACE LAYER CHEMISTRY ABOVE FORESTS

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOCs) -- chemicals emitted naturally by the green foliage of a forest, for example -- have been repeatedly shown to be important contributors to ozone pollution levels in many parts of the country. Recently, both the National Rese...

  2. Evaluation of Bio-VOC Sampler for Analysis of Volatile Organic Compounds in Exhaled Breath

    PubMed Central

    Kwak, Jae; Fan, Maomian; Harshman, Sean W.; Garrison, Catherine E.; Dershem, Victoria L.; Phillips, Jeffrey B.; Grigsby, Claude C.; Ott, Darrin K.

    2014-01-01

    Monitoring volatile organic compounds (VOCs) from exhaled breath has been used to determine exposures of humans to chemicals. Prior to analysis of VOCs, breath samples are often collected with canisters or bags and concentrated. The Bio-VOC breath sampler, a commercial sampling device, has been recently introduced to the market with growing use. The main advantage for this sampler is to collect the last portion of exhaled breath, which is more likely to represent the air deep in the lungs. However, information about the Bio-VOC sampler is somewhat limited. Therefore, we have thoroughly evaluated the sampler here. We determined the volume of the breath air collected in the sampler was approximately 88 mL. When sampling was repeated multiple times, with the succeeding exhalations applied to a single sorbent tube, we observed linear relationships between the normalized peak intensity and the number of repeated collections with the sampler in many of the breath VOCs detected. No moisture effect was observed on the Tenax sorbent tubes used. However, due to the limitation in the collection volume, the use of the Bio-VOC sampler is recommended only for detection of VOCs present at high concentrations unless repeated collections of breath samples on the sampler are conducted. PMID:25532709

  3. StreamVOC - A deterministic source-apportionment model to estimate volatile organic compound concentrations in rivers and streams

    USGS Publications Warehouse

    Asher, William E.; Bender, David A.; Zogorski, John S.; Bartholomay, Roy C.

    2006-01-01

    This report documents the construction and verification of the model, StreamVOC, that estimates (1) the time- and position-dependent concentrations of volatile organic compounds (VOCs) in rivers and streams as well as (2) the source apportionment (SA) of those concentrations. The model considers how different types of sources and loss processes can act together to yield a given observed VOC concentration. Reasons for interest in the relative and absolute contributions of different sources to contaminant concentrations include the need to apportion: (1) the origins for an observed contamination, and (2) the associated human and ecosystem risks. For VOCs, sources of interest include the atmosphere (by absorption), as well as point and nonpoint inflows of VOC-containing water. Loss processes of interest include volatilization to the atmosphere, degradation, and outflows of VOC-containing water from the stream to local ground water. This report presents the details of StreamVOC and compares model output with measured concentrations for eight VOCs found in the Aberjona River at Winchester, Massachusetts. Input data for the model were obtained during a synoptic study of the stream system conducted July 11-13, 2001, as part of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey. The input data included a variety of basic stream characteristics (for example, flows, temperature, and VOC concentrations). The StreamVOC concentration results agreed moderately well with the measured concentration data for several VOCs and provided compound-dependent SA estimates as a function of longitudinal distance down the river. For many VOCs, the quality of the agreement between the model-simulated and measured concentrations could be improved by simple adjustments of the model input parameters. In general, this study illustrated: (1) the considerable difficulty of quantifying correctly the locations and magnitudes of ground-water-related sources of

  4. Volatile organic compound emissions from silage systems

    USDA-ARS?s Scientific Manuscript database

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  5. Removal mechanisms of volatile organic compounds (VOCs) from effluent of common effluent treatment plant (CETP).

    PubMed

    Padalkar, Ashwini V; Kumar, Rakesh

    2018-05-01

    This study investigated the occurrence, removal and influence of plant-operating conditions on removal mechanisms of 83 VOCs in different treatment units of a CETP in Mumbai, treating industrial waste on primary and secondary level. A mass balance approach was used to predict VOC removal by volatilization, stripping, weir drop, adsorption, and biodegradation. Results indicate that ∼17% of VOCs were removed by stripping in equalization tank and ∼8% were removed by weir drop in primary clari-flocculator respectively. Biodegradation was the dominant mechanism in aeration tank and was relatively poor for hydrophobic compounds which were more vulnerable to removal by stripping. Stripping rates could be reduced by increasing the active biomass concentration and using fine pore diffusers to reduce the air/effluent ratio. Decrease in Henry's constant and compound concentration can shift the main removal mechanism from stripping to biodegradation. Results also show considerable agreement between measured (71.2%) and predicted (67.1%) total removal, especially in aeration tanks. Equalization tanks (actual, 20.5%, predicted, 16.9%), primary clari-flocculator (actual, 14.2%, predicted, 7.7%), and secondary clarifier units (actual, 29.5%, predicted, 16.8%) showed fairly acceptable differences in measured and predicted removal. The effect of other mechanisms on VOC removal need to be further explored owing to their major contribution to VOC removal. This study is the first attempt in understanding the mechanisms behind the removal of VOCs in each treatment unit, especially equalization tanks and clarifier units, which have been severely underestimated till date. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Quantification of VOC emissions from paint spraying on a construction site using solid phase microextraction devices.

    PubMed

    Cheng, Wen-Hsi; Huang, Hsiao-Lin; Chen, Kang-Shin; Chang, Yu-Jen

    2017-10-15

    The objective of this study was to measure the emission of, and personal exposure to workers, volatile organic compound (VOC) during paint spraying on a construction site. Needle trap samplers (NTSs), which are a green solid phase microextraction sampling technology, were used to obtain air samples at a large music exhibition center. The standard active sampling method using charcoal tubes and a personal air pump, Method 1501, was simultaneously utilized at the sampling sites to assess the workers' VOC exposures. Analysis of the data thus obtained showed that benzene, toluene, ethylenebenzene, and xylenes (BTEXs) were the main emission compounds. Acetone and isobutyl alcohol, which are used as thinning solvents, were detected as minor emission compounds. The emitted concentrations of most compounds were lower than the legal emission limits in Taiwan except that of benzene, for which the 2-ppm time weighted average short-term exposure limit was exceeded. The packed divinylbenzene (DVB) in the NTS was observed under an environmental scanning electron microscope, and many fine aerosols were found to be deposited on the surface of the DVB adsorbents, causing VOC extraction efficiencies after the fifth sampling in the field to decline. Workers on construction sites should be protected from emissions of VOC and fine particulates to preserve their occupational health.

  7. Diffusion-controlled reference material for VOC emissions testing: proof of concept.

    PubMed

    Cox, S S; Liu, Z; Little, J C; Howard-Reed, C; Nabinger, S J; Persily, A

    2010-10-01

    Because of concerns about indoor air quality, there is growing awareness of the need to reduce the rate at which indoor materials and products emit volatile organic compounds (VOCs). To meet consumer demand for low emitting products, manufacturers are increasingly submitting materials to independent laboratories for emissions testing. However, the same product tested by different laboratories can result in very different emissions profiles because of a general lack of test validation procedures. There is a need for a reference material that can be used as a known emissions source and that will have the same emission rate when tested by different laboratories under the same conditions. A reference material was created by loading toluene into a polymethyl pentene film. A fundamental emissions model was used to predict the toluene emissions profile. Measured VOC emissions profiles using small-chamber emissions tests compared reasonably well to the emissions profile predicted using the emissions model, demonstrating the feasibility of the proposed approach to create a diffusion-controlled reference material. To calibrate emissions test chambers and improve the reproducibility of VOC emission measurements among different laboratories, a reference material has been created using a polymer film loaded with a representative VOC. Initial results show that the film's VOC emission profile measured in a conventional test chamber compares well to predictions based on independently determined material/chemical properties and a fundamental emissions model. The use of such reference materials has the potential to build consensus and confidence in emissions testing as well as 'level the playing field' for product testing laboratories and manufacturers.

  8. Detection and quantification of methane and VOC emissions from oil and gas production operations using remote measurements, Interim report

    EPA Science Inventory

    Improved understanding of air pollutant emissions from oil and gas production operations is needed. With a steadily increasing number of production sources, the impact of emitted volatile organic compounds (VOCs) on regional ozone is potentially significant. As the separation dis...

  9. Catabolism of volatile organic compounds influences plant survival.

    PubMed

    Oikawa, Patricia Y; Lerdau, Manuel T

    2013-12-01

    Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Analysis of a GC/MS thermal desorption system with simultaneous sniffing for determination of off-odor compounds and VOCs in fumes formed during extrusion coating of low-density polyethylene.

    PubMed

    Villberg, K; Veijanen, A

    2001-03-01

    A thermal desorption equipment introducing volatile organic compounds (VOCs) into the gas chromatographic/ mass spectrometric system (GC/MS) with simultaneous sniffing (SNIFF) is a suitable method for identifying the volatile organic off-odor compounds formed during the extrusion coating process of low-density polyethylene. Fumes emitted during the extrusion coating process of three different plastic materials were collected at two different temperatures (285 and 315 degrees C) from an outgoing pipe and near an extruder. The VOCs of fumes were analyzed by drawing a known volume of air through the adsorbent tube filled with a solid adsorbent (Tenax GR). The air samples were analyzed by using a special thermal desorption device and GC/MS determination. The simultaneous sniffing was carried out to detect off-odors and to assist in the identification of those compounds that contribute to tainting and smelling. The amounts of off-odor carbonyl compounds and the total content of the volatile organic compounds were determined. The most odorous compounds were identified as carboxylic acids while the majority of the volatile compounds were hydrocarbons. The detection and quantification of carboxylic acids were based on the characteristic ions of their mass spectra. The higher the extrusion temperature the more odors were detected. An important observation was that the total concentration of volatiles was dependent not only on the extrusion temperature but also on the plastic material.

  11. VOC removal and deodorization of effluent gases from an industrial plant by photo-oxidation, chemical oxidation, and ozonization.

    PubMed

    Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina

    2010-04-01

    The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.

  12. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms.

    PubMed

    Werner, Stephanie; Polle, Andrea; Brinkmann, Nicole

    2016-10-01

    We reviewed the impact of fungal volatile organic compounds (VOCs) on soil-inhabiting organisms and their physiological and molecular consequences for their targets. Because fungi can only move by growth to distinct directions, a main mechanism to protect themselves from enemies or to manipulate their surroundings is the secretion of exudates or VOCs. The importance of VOCs in this regard has been significantly underestimated. VOCs not only can be means of communication, but also signals that are able to specifically manipulate the recipient. VOCs can reprogram root architecture of symbiotic partner plants or increase plant growth leading to enlarged colonization surfaces. VOCs are also able to enhance plant resistance against pathogens by activating phytohormone-dependent signaling pathways. In some cases, they were phytotoxic. Because the response was specific to distinct species, fungal VOCs may contribute to regulate the competition of plant communities. Additionally, VOCs are used by the producing fungus to attack rivaling fungi or bacteria, thereby protecting the emitter or its nutrient sources. In addition, animals, like springtails, nematodes, and earthworms, which are important components of the soil food web, respond to fungal VOCs. Some VOCs are effective repellents for nematodes and, therefore, have applications as biocontrol agents. In conclusion, this review shows that fungal VOCs have a huge impact on soil fauna and flora, but the underlying mechanisms, how VOCs are perceived by the recipients, how they manipulate their targets and the resulting ecological consequences of VOCs in inter-kingdom signaling is only partly understood. These knowledge gaps are left to be filled by future studies.

  13. World Calibration Center for VOC (WCC-VOC), a new Facility for the WMO-GAW-Programme

    NASA Astrophysics Data System (ADS)

    Rappenglueck, B.-

    2002-12-01

    Volatile organic compounds (VOC) are recognized to be important precursors of tropospheric ozone as well as other oxidants and organic aerosols. In order to design effective control measures for the reduction of photooxidants, photochemical processes have to be understood and the sources of the precursors known. Reliable and representative measurements of VOCs are necessary to describe the anthropogenic and biogenic sources, to follow the photochemical degradation of VOCs in the troposphere. Measurement of VOCs is of key importance for the understanding of tropospheric chemistry. Tropospheric VOCs have been one of the recommended measurements to be made within the GAW programme. The purpose will be to monitor their atmospheric abundance, to characterize the various compounds with regard to anthropogenic and biogenic sources and to evaluate their role in the tropospheric ozone formation process. An international WMO/GAW panel of experts for VOC measurements developed the rational and objectives for this GAW activity and recommended the configuration and required activities of the WCC-VOC. In reflection of the complexity of VOC measurements and the current status of measurement technology, a "staged" approach was adopted. Stage 1 measurements: C2-C9 hydrocarbons, including alkanes, alkenes, alkynes, dienes and monocyclics. (The WCC-VOC operates currently under this mode). Stage 2 measurements: C10-C14 hydrocarbons, including higher homologs of the Stage 1 set as well as biogenic hydrocarbon compounds. Stage 3 measurements: Oxygenated VOCs, including alcohols, carbonyls, carboxylic acids. The Quality Assurance/Science Activity Centre (QA/SAC) Germany currently has established the World Calibration Centre for VOC (WCC-VOC). The WCC-VOC has operated in the research mode und has become operational recently. From now on, the WCC-VOC conducts one round-robin calibration audit per year at all global stations that measure VOCs and assists other stations in setting up VOC

  14. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix.

    PubMed

    Hu, Bin; Jarosch, Ann-Mareike; Gauder, Martin; Graeff-Hönninger, Simone; Schnitzler, Jörg-Peter; Grote, Rüdiger; Rennenberg, Heinz; Kreuzwieser, Jürgen

    2018-06-01

    Energy crops are an important renewable source for energy production in future. To ensure high yields of crops, N fertilization is a common practice. However, knowledge on environmental impacts of bioenergy plantations, particularly in systems involving trees, and the effects of N fertilization is scarce. We studied the emission of volatile organic compounds (VOC), which negatively affect the environment by contributing to tropospheric ozone and aerosols formation, from Miscanthus and willow plantations. Particularly, we aimed at quantifying the effect of N fertilization on VOC emission. For this purpose, we determined plant traits, photosynthetic gas exchange and VOC emission rates of the two systems as affected by N fertilization (0 and 80 kg ha -1 yr -1 ). Additionally, we used a modelling approach to simulate (i) the annual VOC emission rates as well as (ii) the OH . reactivity resulting from individual VOC emitted. Total VOC emissions from Salix was 1.5- and 2.5-fold higher compared to Miscanthus in non-fertilized and fertilized plantations, respectively. Isoprene was the dominating VOC in Salix (80-130 μg g -1 DW h -1 ), whereas it was negligible in Miscanthus. We identified twenty-eight VOC compounds, which were released by Miscanthus with the green leaf volatile hexanal as well as dimethyl benzene, dihydrofuranone, phenol, and decanal as the dominant volatiles. The pattern of VOC released from this species clearly differed to the pattern emitted by Salix. OH . reactivity from VOC released by Salix was ca. 8-times higher than that of Miscanthus. N fertilization enhanced stand level VOC emissions, mainly by promoting the leaf area index and only marginally by enhancing the basal emission capacity of leaves. Considering the higher productivity of fertilized Miscanthus compared to Salix together with the considerably lower OH . reactivity per weight unit of biomass produced, qualified the C 4 -perennial grass Miscanthus as a superior source of future

  15. Primary emissions and chemical oxidation of volatile organic compounds emitted from laboratory biomass burning sources during the 2016 FIREX FireLab campaign: measurements from a H3O+ chemical ionization mass spectrometer

    NASA Astrophysics Data System (ADS)

    Coggon, M. M.; Warneke, C.; Koss, A.; Sekimoto, K.; Yuan, B.; Lim, C. Y.; Hagan, D. H.; Kroll, J. H.; Cappa, C. D.; Gilman, J.; Lerner, B. M.; Jimenez, J. L.; Yokelson, R. J.; Roberts, J. M.; De Gouw, J. A.

    2017-12-01

    Non-methane organic gases (NMOG) emitted by biomass burning constitute a large source of reactive carbon in the atmosphere. Once emitted, these compounds may undergo series of reactions with the OH radical and nitrogen oxides to form secondary organic aerosol (SOA), ozone, or other health-impacting products. The complex emission profile and strong variability of biomass burning NMOG play an important, yet understudied, role in the variability of air quality outcomes such as SOA and ozone. In this study, we summarize measurements of biomass burning volatile organic compounds (VOCs) conducted using a H3O+ chemical ionization mass spectrometer (H3O+-CIMS) during the 2016 FIREX laboratory campaign in Missoula, MT. Specifically, we will present data demonstrating the chemical evolution of biomass burning VOCs artificially aged in a field-deployable photooxidation chamber and an oxidation flow reactor. More than 50 OH-oxidation experiments were conducted with biomass types representing a range of North American fuels. Across many fuel types, VOCs with high SOA and ozone formation potential, such as aromatics and furans, were observed to quickly react with the OH radical while oxidized species were generated. We compare the calculated OH reactivity of the primary emissions to the calculated OH reactivity used in many photochemical models and highlight areas requiring additional research in order to improve model/measurement comparisons.

  16. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    PubMed

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  17. On-road emission characteristics of VOCs from diesel trucks in Beijing, China

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Shen, Xianbao; Ye, Yu; Cao, Xinyue; Jiang, Xi; Zhang, Yingzhi; He, Kebin

    2015-02-01

    This paper is the first in our series of papers aimed at understanding the volatile organic compound (VOC) emissions of vehicles in Beijing by conducting on-board emission measurements. This paper focuses on diesel vehicles. In this work, 18 China III diesel vehicles, including seven light-duty diesel trucks (LDDTs), four medium-duty diesel trucks (MDDTs) and seven heavy-duty diesel trucks (HDDTs), were examined when the vehicles were driven on predesigned fixed test routes in Beijing in China using a portable emissions measurement system (PEMS). Tedlar bag sampling and 2,4-dinitrophenyhydrazine (DNPH) cartridge sampling were used to collect VOC species, and gas chromatography-mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC) were used to analyze these samples. We obtained the VOC emission factors and relative compositions for diesel trucks of different sizes under different driving patterns. In total, 64 VOC species were quantified in this study, including 25 alkanes, four alkenes, 13 aromatics, 13 carbonyls and nine other compounds. The emission factors of the total VOCs based on mileage traveled for HDDTs were higher than those of LDDTs and MDDTs. Carbonyls, aromatics and alkanes were the dominant VOC species. Carbonyls accounted for 42.7%-69.2% of the total VOCs in the three types of tested diesel trucks. The total VOC emission factors of the tested vehicles that were driven on non-highway routes were 1.5-2.0 times higher than those of the vehicles driven on the highway. As for the OFP calculation results, with increased vehicle size, the ozone formation potential presented an increasing trend. Among the VOC components, carbonyls were the primary contributor to OFP. In addition, the OFPs under non-highway driving cycles were 1.3-1.7 times those under highway driving cycles. The results of this study will be helpful in improving our understanding of VOCs emitted from on-road diesel trucks in China.

  18. Source reduction of VOC and hazardous organic emissions from wood furniture coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, E.W.; McCrillis, R.C.

    1996-12-31

    Under US EPA sponsorship, AeroVironment, Inc. and Adhesives Coating Co. are teaming up to develop and demonstrate a wood furniture coating system containing no volatile organic compounds (VOCs) and no hazardous air pollutants (HAPs), making it less hazardous to use, and emitting no detectable VOCs and HAPs during curing, therefore contributing significantly to emission reduction. Earlier work on a new topcoat showed excellent performance characteristics in terms of adhesion, gloss value, dry time, hardness, organic solvents content, and chemical/stain resistance. The VOC contents of both the clear topcoat and the white pigmented topcoat were less than 10 g/L, the detectionmore » list of the test method (EPA Method 24). This coating`s performance and properties compared favorably with those of other low-VOC waterborne coatings. Currently, low-/no-VOC stain and sealer wood coatings are being developed so that a complete low-/no-VOC wood coating system will be available for public use. The compatibility of coating components (a stain and sealer) to go with the topcoat is currently being evaluated. The complete system will be demonstrated at several furniture plants. A marketing plan of the developed products is part of this demonstration project.« less

  19. Analysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco

    PubMed Central

    Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro

    2013-01-01

    We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408

  20. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Limits for Automobile Refinish Coatings 1 Table 1 to Subpart B of Part 59 Protection of Environment... Automobile Refinish Coatings Pt. 59, Subpt. B, Table 1 Table 1 to Subpart B of Part 59—Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter Pounds...

  1. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Limits for Automobile Refinish Coatings 1 Table 1 to Subpart B of Part 59 Protection of Environment... Automobile Refinish Coatings Pt. 59, Subpt. B, Table 1 Table 1 to Subpart B of Part 59—Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter Pounds...

  2. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Limits for Automobile Refinish Coatings 1 Table 1 to Subpart B of Part 59 Protection of Environment... Automobile Refinish Coatings Pt. 59, Subpt. B, Table 1 Table 1 to Subpart B of Part 59—Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter Pounds...

  3. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limits for Automobile Refinish Coatings 1 Table 1 to Subpart B of Part 59 Protection of Environment... Automobile Refinish Coatings Pt. 59, Subpt. B, Table 1 Table 1 to Subpart B of Part 59—Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter Pounds...

  4. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Limits for Automobile Refinish Coatings 1 Table 1 to Subpart B of Part 59 Protection of Environment... Automobile Refinish Coatings Pt. 59, Subpt. B, Table 1 Table 1 to Subpart B of Part 59—Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter Pounds...

  5. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants

    PubMed Central

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2015-01-01

    Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions

  6. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.

    PubMed

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A M; Voesenek, Laurentius A C J; Pierik, Ronald

    2015-05-01

    Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions. © The Author 2015. Published by Oxford University Press on

  7. VOCs elimination and health risk reduction in e-waste dismantling workshop using integrated techniques of electrostatic precipitation with advanced oxidation technologies.

    PubMed

    Chen, Jiangyao; Huang, Yong; Li, Guiying; An, Taicheng; Hu, Yunkun; Li, Yunlu

    2016-01-25

    Volatile organic compounds (VOCs) emitted during the electronic waste dismantling process (EWDP) were treated at a pilot scale, using integrated electrostatic precipitation (EP)-advanced oxidation technologies (AOTs, subsequent photocatalysis (PC) and ozonation). Although no obvious alteration was seen in VOC concentration and composition, EP technology removed 47.2% of total suspended particles, greatly reducing the negative effect of particles on subsequent AOTs. After the AOT treatment, average removal efficiencies of 95.7%, 95.4%, 87.4%, and 97.5% were achieved for aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, as well as nitrogen- and oxygen-containing compounds, respectively, over 60-day treatment period. Furthermore, high elimination capacities were also seen using hybrid technique of PC with ozonation; this was due to the PC unit's high loading rates and excellent pre-treatment abilities, and the ozonation unit's high elimination capacity. In addition, the non-cancer and cancer risks, as well as the occupational exposure cancer risk, for workers exposed to emitted VOCs in workshop were reduced dramatically after the integrated technique treatment. Results demonstrated that the integrated technique led to highly efficient and stable VOC removal from EWDP emissions at a pilot scale. This study points to an efficient approach for atmospheric purification and improving human health in e-waste recycling regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Exposure of jeepney drivers in Manila, Philippines, to selected volatile organic compounds (VOCs).

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2009-01-01

    The objective of this study was to assess the occupational exposure of jeepney drivers to selected volatile organic compounds (VOCs) in Manila, Philippines. Personal sampling was conducted on 15 jeepney drivers. Area sampling was conducted to determine the background VOC concentration in Manila as compared to that in a rural area. Both personal and area samples were collected for 5 working days. Samples were obtained using diffusive samplers and were analyzed for 6 VOCs (benzene, toluene, ethylbenzene, m,p-xylene and o-xylene) using gas chromatography. Results showed that the average personal exposure concentration of jeepney drivers was 55.6 (+/-9.3), 196.6 (+/-75.0), 17.9 (+/-9.0), 72.5 (+/-21.1) and 88.5 (+/-26.5) microg/m(3) for benzene, toluene, ethylbenzene, m,p-xylene and o-xylene, respectively. The urban ambient concentration was 11.8 (+/-2.2), 83.7 (+/-40.5) and 38.0 (+/-12.1) microg/m(3) for benzene, toluene and o-xylene, respectively. The rural ambient concentration was 14.0 (+/-6.0) and 24.7 (+/-11.9) microg/m(3) for toluene and o-xylene, respectively. The personal samples had significantly higher (p<0.05) concentrations for all selected VOCs than the urban area samples. Among the area samples, the urban concentrations of benzene and toluene were significantly higher (p<0.05) than the rural concentrations. The personal exposures for all the target VOCs were not significantly different among the jeepney drivers.

  9. Biogenic VOC Emissions from Tropical Landscapes

    NASA Astrophysics Data System (ADS)

    Guenther, A.; Greenberg, J.; Harley, P.; Otter, L.; Vanni Gatti, L.; Baker, B.

    2003-04-01

    Biogenic VOC have an important role in determining the chemical composition of atmosphere. As a result, these compounds are important for visibility, biogeochemical cycling, climate and radiative forcing, and the health of the biosphere. Tropical landscapes are estimated to release about 80% of total global biogenic VOC emissions but have been investigated to lesser extent than temperate regions. Tropical VOC emissions are particularly important due to the strong vertical transport and the rapid landuse change that is occurring there. This presentation will provide an overview of field measurements of biogenic VOC emissions from tropical landscapes in Amazonia (Large-scale Biosphere-atmosphere experiment in Amazonia, LBA) Central (EXPRESSO) and Southern (SAFARI 2000) Africa, Asia and Central America. Flux measurement methods include leaf-scale (enclosure measurements), canopy-scale (above canopy tower measurements), landscape-scale (tethered balloon), and regional-scale (aircraft measurements) observations. Typical midday isoprene emission rates for different landscapes vary by more than a factor of 20 with the lowest emissions observed from degraded forests. Emissions of alpha-pinene vary by a similar amount with the highest emissions associated with landscapes dominated by light dependent monoterpene emitting plants. Isoprene emissions tend to be higher for neotropical forests (Amazon and Costa Rica) in comparison to Africa and Asian tropical forests but considerable differences are observed within regions. Strong seasonal variations were observed in both the Congo and the Amazon rainforests with peak emissions during the dry seasons. Substantial emissions of light dependent monoterpenes, methanol and acetone are characteristic of at least some tropical landscapes.

  10. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors.

    PubMed

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S

    2016-12-03

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

  11. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors

    PubMed Central

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S.

    2016-01-01

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use. PMID:27918484

  12. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor); Reid, Ray D. (Inventor)

    2018-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  13. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor); Bhartia, Rohit (Inventor)

    2016-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  14. Rendering plant emissions of volatile organic compounds during sterilization and cooking processes.

    PubMed

    Bhatti, Z A; Maqbool, F; Langenhove, H V

    2014-01-01

    The rendering process emits odorous volatile compounds in the atmosphere; if these volatile organic compounds (VOCs) are not handled properly they can cause a serious environmental problem. During this process not all emitted compounds are odorous and hazardous but some of them have been found associated with health problems. Samples were collected in the plastic bags from the Arnout rendering plant. In this study, VOCs emission from two different processes (cooking and sterilization) was compared. For the analysis of various emitted compounds, gas chromatograph and mass spectrophotometer were used. A sterilization process was added in the rendering plant to inactivate the prion protein from meat bone meal prepared during the rendering process. The identification of mass spectrum was performed by using a mass spectral database system. The most odorous classes of compounds identified were aliphatic hydrocarbons (HCs) (29.24%), furans (28.74%), aromatic HCs (18.32%), most important sulphur-containing compounds (12.15%), aldehyde (10.91%) and ketones (0.60%). Emissions released during cooking and sterilization were 32.73 x 10(2) and 36.85 x 10(2) mg m(-3), respectively. In this study, it was observed that after the addition of the sterilization process VOCs' emissions were increased. A total of 87 mg m(-3) dimethyl disulphide (DMS) was detected only during the cooking process, whereas dimethly trisulphide (DMTS) was detected in both cooking (300 mg m(-3)) and sterilization (301 mg m(-3)) processes. About 11 mg m3 of DMS was detected during the cooking process, which was a small concentration compared with 299 mg m(-3) found during the sterilization process. At high temperature and pressure, DMTS and DMS were released more than any other sulphur-containing compounds. A condenser was applied to control the combined emission and it was successful in the reduction of VOCs to 22.83 x 10(2) mg m(-3) (67% reduction).

  15. Detection, composition and treatment of volatile organic compounds from waste treatment plants.

    PubMed

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  16. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    PubMed Central

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835

  17. Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs)

    PubMed Central

    Ganassi, Sonia; Pistillo, Marco O.; Di Domenico, Carmela; De Cristofaro, Antonio; Di Palma, Antonella Marta

    2017-01-01

    The meadow spittlebug, Philaenus spumarius L. (Hemiptera, Aphrophoridae) is a commonly found vector of Xylella fastidiosa Wells et al. (1987) strain subspecies pauca associated with the “Olive Quick Decline Syndrome” in Italy. To contribute to the knowledge of the adult P. spumarius chemoreceptivity, electroantennographic (EAG) responses of both sexes to 50 volatile organic compounds (VOCs) including aliphatic aldehydes, alcohols, esters, and ketones, terpenoids, and aromatics were recorded. Measurable EAG responses were elicited by all compounds tested. In both sexes, octanal, 2-octanol, 2-decanone, (E)-2-hexenyl acetate, and vanillin elicited the strongest antennal amplitude within the chemical groups of aliphatic saturated aldehydes, aliphatic alcohols, aliphatic acetates and aromatics, respectively. Male and female EAG responses to sulcatol, (±)linalool, and sulcatone were higher than those to other terpenoinds. In both sexes, the weakest antennal stimulants were phenethyl alcohol and 2-pentanone. Sexual differences in the EAG amplitude were found only for four of test compounds suggesting a general similarity between males and females in antennal sensitivity. The olfactory system of both sexes proved to be sensitive to changes in stimulus concentration, carbon chain length, and compound structure. Compounds with short carbon chain length (C5—C6) elicited lower EAG amplitudes than compounds with higher carbon chain length (C9—C10) in all classes of aliphatic hydrocarbons with different functional groups. The elucidation of the sensitivity profile of P. spumarius to a variety of VOCs provides a basis for future identification of behaviorally-active compounds useful for developing semiochemical-based control strategies of this pest. PMID:29287108

  18. Emissions of volatile organic compounds from new carpets measured in a large-scale environmental chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, A.T.; Wooley, J.D.; Daisey, J.M.

    1993-03-01

    This study was undertaken to quantify the emissions of volatile organic compounds (VOCs) released by new carpets. Samples of four typical carpets, including two with styrene-butadiene rubber (SBR) latex adhesive and two with different backings, were collected from the finish lines at manufacturers' mills. Individual VOCs released from these samples were identified, and their concentrations, emission rates and mass emissions were measured under simulated indoor conditions in a 20 m[sup 3] environmental chamber over one week periods. Concentrations and emission rates of VOCs emitted by a new SBR carpet were also measured in a house. The carpets emitted a varietymore » of VOCs. The two SBR carpets primarily emitted 4-phenylcyclohexene (4-PCH), the source of [open quotes]new carpet[close quotes] odor, and styrene. The concentrations and emission rates of 4-PCH were similar for the two carpets, while the styrene values varied significantly. The carpet with a polyvinyl chloride backing emitted formaldehyde, vinyl acetate, isooctane, 1,2-propanediol, and 2-ethyl-1-hexanol. Of these, vinyl acetate and propanediol had the highest concentrations and emission rates. The carpet with a polyurethane backing primarily emitted butylated hydroxytoluene. With the exception of formaldehyde, little is known about the health effects of these VOCs at low concentrations. 23 refs., 3 figs., 6 tabs.« less

  19. Behavior of VOCs and Carbonyl Compounds Emission from Different Types of Wallpapers in Korea

    PubMed Central

    Lim, Jungyun; Kim, Suejin; Kim, ARong; Lee, Wooseok; Han, Jinseok; Cha, Jun-Seok

    2014-01-01

    Emissions of volatile organic compounds (VOCs) and carbonyls from three types of commercially available wallpapers (i.e., PVC-coated, paper-backed, natural material-coated) in Korea were evaluated using a 20 L small chamber. A total of 332 products were tested for emission factors, frequencies of occurrence and composition ratios. Toluene and formaldehyde concentrations were below Korean standard values for all products; however, the total VOC (TVOC) concentrations exceeded current standards (4.0 mg/m2·h) for 30 products. The TVOC emission factor for PVC-coated wallpapers, for which polymer materials are used in the manufacturing process, was seven and 16 times higher than those of paper-backed and natural material-coated wallpapers, respectively. The detection frequencies for toluene and formaldehyde were the highest (82.5%) and fourth highest (79.5%), respectively among the 50 target chemical species. The composition ratios for BTEX ranged from 0.3% to 5.1% and unidentified VOCs, which were not qualitatively analyzed using standard gas methods, ranged from 90.2% to 94.8%. Among six carbonyl compounds (acrolein was not detected in any type of wallpaper), acetone had the highest concentrations in PVC-coated (44.6%) and paper-backed (66.6%) wallpapers. Formaldehyde emissions were highest (64.6%) for natural material-coated wallpapers, a result of the formaldehyde-based resin used in the manufacturing process for these products. PMID:24747540

  20. Matrix effect on the performance of headspace solid phase microextraction method for the analysis of target volatile organic compounds (VOCs) in environmental samples.

    PubMed

    Higashikawa, Fábio S; Cayuela, Maria Luz; Roig, Asunción; Silva, Carlos A; Sánchez-Monedero, Miguel A

    2013-11-01

    Solid phase microextraction (SPME) is a fast, cheap and solvent free methodology widely used for environmental analysis. A SPME methodology has been optimized for the analysis of VOCs in a range of matrices covering different soils of varying textures, organic matrices from manures and composts from different origins, and biochars. The performance of the technique was compared for the different matrices spiked with a multicomponent VOC mixture, selected to cover different VOC groups of environmental relevance (ketone, terpene, alcohol, aliphatic hydrocarbons and alkylbenzenes). VOC recovery was dependent on the nature itself of the VOC and the matrix characteristics. The SPME analysis of non-polar compounds, such as alkylbenzenes, terpenes and aliphatic hydrocarbons, was markedly affected by the type of matrix as a consequence of the competition for the adsorption sites in the SPME fiber. These non-polar compounds were strongly retained in the biochar surfaces limiting the use of SPME for this type of matrices. However, this adsorption capacity was not evident when biochar had undergone a weathering/aging process through composting. Polar compounds (alcohol and ketone) showed a similar behavior in all matrices, as a consequence of the hydrophilic characteristics, affected by water content in the matrix. SPME showed a good performance for soils and organic matrices especially for non-polar compounds, achieving a limit of detection (LD) and limit of quantification (LQ) of 0.02 and 0.03 ng g(-1) for non-polar compounds and poor extraction for more hydrophilic and polar compounds (LD and LQ higher 310 and 490 ng g(-1)). The characteristics of the matrix, especially pH and organic matter, had a marked impact on SPME, due to the competition of the analytes for active sites in the fiber, but VOC biodegradation should not be discarded in matrices with active microbial biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Removal of volatile organic compounds (VOC`s) generated by Forest Product Industries using biofiltration technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliland, G.A.; Ramaswami, R.D.; Patel, D.N.

    1995-12-31

    Implementation of Clean Air Act Title V and the increasing environmental concerns of the public are imposing greater demands on the Forest Product industries to control their air emissions. As implementation of this Clean Air Act has begun, Forest Product Industries are recognizing the overall lack of historical emissions data, emissions testing information and knowledge of the economics of emission control technologies needed to reduce emissions. This study was undertaken to evaluate the types of VOC`s produced in drying and pressing wood composites, and determine how effective biofiltration technology could be used in reducing the levels of these products beforemore » they are released into the air. More specifically, the experiments were conducted to isolate microorganisms capable of degrading VOC`s and determine their biodegradation rates using bench scale biofilters.« less

  2. Controlling VOCs and odor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zmuda, J.

    1994-07-01

    Few environmental issues attract more attention than odor emissions. The odor source can quickly be identified, coming under immediate public scrutiny. Often, odor is not merely a public nuisance problem but can be indicative of volatile organic compound (VOC) control needs at the facility. In some cases, odor-producing compounds are VOCs regulated under different sections of federal, state or local law. Specific requirements for VOC or odor control depend on many factors, including the source and nature of the emissions, the quantity of emissions and the location of the facility. Many states impose specific odor-control requirements, in addition to themore » regulations of the Clean Air Act Amendments of 1990 (CAAA), under which odor-causing emissions may be regulated under Titles 1 and/or 3. Under Title 1, the non-attainment title, facilities located in major metropolitan areas not in attainment of the National Ambient Air Quality Standards (NAAQS) for ozone likely will be required to reduce emissions of VOCs.« less

  3. Evaluation of an on-line methodology for measuring volatile organic compounds (VOC) fluxes by eddy-covariance with a PTR-TOF-Qi-MS

    NASA Astrophysics Data System (ADS)

    Loubet, Benjamin; Buysse, Pauline; Lafouge, Florence; Ciuraru, Raluca; Decuq, Céline; Zurfluh, Olivier

    2017-04-01

    Field scale flux measurements of volatile organic compounds (VOC) are essential for improving our knowledge of VOC emissions from ecosystems. Many VOCs are emitted from and deposited to ecosystems. Especially less known, are crops which represent more than 50% of French terrestrial surfaces. In this study, we evaluate a new on-line methodology for measuring VOC fluxes by Eddy Covariance with a PTR-Qi-TOF-MS. Measurements were performed at the ICOS FR-GRI site over a crop using a 30 m long high flow rate sampling line and an ultrasonic anemometer. A Labview program was specially designed for acquisition and on-line covariance calculation: Whole mass spectra ( 240000 channels) were acquired on-line at 10 Hz and stored in a temporary memory. Every 5 minutes, the spectra were mass-calibrated and normalized by the primary ion peak integral at 10 Hz. The mass spectra peaks were then retrieved from the 5-min averaged spectra by withdrawing the baseline, determining the resolution and using a multiple-peak detection algorithm. In order to optimize the peak detection algorithm for the covariance, we determined the covariances as the integrals of the peaks of the vertical-air-velocity-fluctuation weighed-averaged-spectra. In other terms, we calculate , were w is the vertical component of the air velocity, Sp is the spectra, t is time, lag is the decorrelation lag time and <.> denotes an average. The lag time was determined as the decorrelation time between w and the primary ion (at mass 21.022) which integrates the contribution of all reactions of VOC and water with the primary ion. Our algorithm was evaluated by comparing the exchange velocity of water vapor measured by an open path absorption spectroscopy instrument and the water cluster measured with the PTRQi-TOF-MS. The influence of the algorithm parameters and lag determination is discussed. This study was supported by the ADEME-CORTEA COV3ER project (http://www6.inra.fr/cov3er).

  4. Leaf ontogeny dominates the seasonal exchange of volatile organic compounds (VOC) in a SRC-poplar plantation during an entire growing season

    NASA Astrophysics Data System (ADS)

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Zenone, Terenzio; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan; Ceulemans, Reinhart

    2015-04-01

    The declining cost of many renewable energy technologies and changes in the prices of fossil fuels have recently encouraged governments policies to subsidize the use of biomass as a sustainable source of energy. Deciduous poplars (Populus spp.) trees are often selected for biomass production in short rotation coppiced (SRC) for their high CO2 photosynthetic assimilation rates and their capacity to develop dense canopies with high values of leaf area index (LAI). So far, observations and projections of seasonal variations of many VOC fluxes has been limited to strong isoprenoids emitting evergreen ecosystems such tropical and Mediterranean forests as well as Citrus and oil palm plantation, all having constant values of LAI. We run a long-term field campaign where the exchange of VOC, together with CO2 and water vapor was monitored during an entire growing season (June - November, 2012) above a SRC-based poplar plantation. Our results confirmed that isoprene and methanol were the most abundant fluxes emitted, accounting for more than 90% of the total carbon released in form of VOC. However, Northern climates characterized by fresh summertime temperatures and recurring precipitations favored poplar growth while inhibiting the development of isoprene emission that resulted in only 0.7% of the net ecosystem carbon exchange (NEE). Besides, measurements of a multitude of VOC fluxes by PTR-TOF-MS showed bi-directional exchange of oxygenated-VOC (OVOC) such as: formaldehyde, acetaldehyde, acetone, isoprene oxidation products (iox, namely MVK, MAC and MEK) as well as ethanol and formic acid. The application of Self Organizing Maps to visualize the relationship between the full time-series of many VOC fluxes and the observed seasonal variations of environmental, physiological and structural parameters proved the most abundant isoprene ad methanol fluxes to occur mainly on the hottest days under mid-high light intensities when also NEE and evapotraspiration reached the highest

  5. AMBIENT LEVEL VOLATILE ORGANIC COMPOUND (VOC) MONITORING USING SOLID ADSORBANTS - RECENT U.S. EPA STUDIES

    EPA Science Inventory

    Ambient air spiked with 1-10 ppbv concentrations of 41 toxic volatile organic compounds (VOCs) listed in U.S. Environmental Protection Agency (EPA) Compendium Method TO-14A was monitored using solid sorbents for sample collection and a Varian Saturn 2000 ion trap mass spectrome...

  6. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C.

    PubMed

    Schmidt, Ruth; Jager, Victor de; Zühlke, Daniela; Wolff, Christian; Bernhardt, Jörg; Cankar, Katarina; Beekwilder, Jules; Ijcken, Wilfred van; Sleutels, Frank; Boer, Wietse de; Riedel, Katharina; Garbeva, Paolina

    2017-04-13

    The ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the fungal pathogen Fusarium culmorum. We find that the bacterium responds to fungal VOCs with changes in gene and protein expression related to motility, signal transduction, energy metabolism, cell envelope biogenesis, and secondary metabolite production. Metabolomic analysis of the bacterium exposed to the fungal VOCs, gene cluster comparison, and heterologous co-expression of a terpene synthase and a methyltransferase revealed the production of the unusual terpene sodorifen in response to fungal VOCs. These results strongly suggest that VOCs are not only a metabolic waste but important compounds in the long-distance communication between fungi and bacteria.

  7. Development and Mining of a Volatile Organic Compound Database

    PubMed Central

    Abdullah, Azian Azamimi; Ono, Naoaki; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online. PMID:26495281

  8. Profiling of soil volatile organic compounds after long-term application of inorganic, organic and organic-inorganic mixed fertilizers and their effect on plant growth.

    PubMed

    Raza, Waseem; Mei, Xinlan; Wei, Zhong; Ling, Ning; Yuan, Jun; Wang, Jichen; Huang, Qiwei; Shen, Qirong

    2017-12-31

    The complexity of soil processes involved in the production, consumption and accumulation of volatile organic compounds (VOCs) makes hard to access the overall dynamics of VOCs in the soil. In this study, the field soil, applied with inorganic (CF), organic (OF) and inorganic-organic mixed (CFOF) fertilizers for ten years was evaluated for the emission of VOCs at different temperature and moisture levels. We identified 30-50 soil emitted VOCs representing the most common soil VOCs groups by using the solid-phase microextraction (SPME) fiber and gas chromatography-mass spectroscopy. The highest total emission of VOCs was found in OF treatment, but it was non-significantly different with CF treatment. The emission of VOCs was significantly increased with the decrease in moisture contents and increase in the temperature of the soil. Among different fertilizer treatments, the emission of VOCs was significantly higher in OF treatment at 5% moisture, and in CF and OF treatments at 35°C. Further, the VOCs emitted from soil treated with CFOF showed the highest increase in plant growth while CF and OF treatments showed similar results. The VOCs were also extracted from the soil using methanol to better understand the dynamics of VOCs. The abundance of VOCs extracted from the soil was 44-61%, while the richness was 65-70% higher than the VOCs emitted from the soil in different treatments. Taken together the results of emitted and extracted VOCs from the soil, we conclude that the fertilizers are able to discriminate among the VOC patterns of soil. In addition, most of the VOCs are retained in the soil and the emission of VOCs from soil depends on the type of VOCs, soil properties and environmental conditions; however, more research is required to find out better soil VOCs analysis methods. Copyright © 2017. Published by Elsevier B.V.

  9. PARAMETRIC EVALUATION OF VOC/HAP (VOLATILE ORGANIC COMPOUNDS-HAZARDOUS/TOXIC AIR POLLUTANTS) DESTRUCTION VIA CATALYTIC INCINERATION

    EPA Science Inventory

    The report describes the use of a pilot-scale catalytic incineration unit/solvent generation system to investigate the effectiveness of catalytic incineration as a way to destroy volatile organic compounds (VOCs) and hazardous/toxic air pollutants (HAPs). Objectives of the study ...

  10. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtinen, Jenni, E-mail: jenni.k.lehtinen@jyu.fi; Tolvanen, Outi; Nivukoski, Ulla

    Highlights: ► Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ► VOC concentrations did not exceed occupational exposure limit concentrations. ► 2,3-Butanedione as the health effecting compound is discussed. ► Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes.more » In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m{sup 3} which clearly exceeded the threshold value of 90 EU/m{sup 3}. In the wheel loader cabin the endotoxin concentrations were below 1 EU/m{sup 3}. High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m{sup 3}, a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The

  11. Volatile organic compounds at swine facilities: a critical review.

    PubMed

    Ni, Ji-Qin; Robarge, Wayne P; Xiao, Changhe; Heber, Albert J

    2012-10-01

    Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions. Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples. The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts. Identification and quantification of VOCs were restricted by using instruments based on

  12. Quantification of Methane and VOC Emissions from Natural Gas Production in Two Basins with High Ozone Events

    NASA Astrophysics Data System (ADS)

    Edie, R.; Robertson, A.; Snare, D.; Soltis, J.; Field, R. A.; Murphy, S. M.

    2015-12-01

    Since 2005, the Uintah Basin of Utah and the Upper Green River Basin of Wyoming frequently exceeded the EPA 8-hour allowable ozone level of 75 ppb, spurring interest in volatile organic compounds (VOCs) emitted during oil and gas production. Debate continues over which stage of production (drilling, flowback, normal production, transmission, etc.) is the most prevalent VOC source. In this study, we quantify emissions from normal production on well pads by using the EPA-developed Other Test Method 33a. This methodology combines ground-based measurements of fugitive emissions with 3-D wind data to calculate the methane and VOC emission fluxes from a point source. VOC fluxes are traditionally estimated by gathering a canister of air during a methane flux measurement. The methane:VOC ratio of this canister is determined at a later time in the laboratory, and applied to the known methane flux. The University of Wyoming Mobile Laboratory platform is equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction-Time of Flight-Mass Spectrometer, which provide real-time methane and VOC data for each well pad. This independent measurement of methane and VOCs in situ reveals multiple emission sources on one well pad, with varying methane:VOC ratios. Well pad emission estimates of methane, benzene, toluene and xylene for the two basins will be presented. The different emission source VOC profiles and the limitations of real-time and traditional VOC measurement methods will also be discussed.

  13. Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Shao, Min; de Gouw, Joost; Parrish, David D.; Lu, Sihua; Wang, Ming; Zeng, Limin; Zhang, Qian; Song, Yu; Zhang, Jianbo; Hu, Min

    2012-12-01

    Volatile organic compounds (VOCs) were measured online at an urban site in Beijing in August-September 2010. Diurnal variations of various VOC species indicate that VOCs concentrations were influenced by photochemical removal with OH radicals for reactive species and secondary formation for oxygenated VOCs (OVOCs). A photochemical age-based parameterization method was applied to characterize VOCs chemistry. A large part of the variability in concentrations of both hydrocarbons and OVOCs was explained by this method. The determined emission ratios of hydrocarbons to acetylene agreed within a factor of two between 2005 and 2010 measurements. However, large differences were found for emission ratios of some alkanes and C8 aromatics between Beijing and northeastern United States secondary formation from anthropogenic VOCs generally contributed higher percentages to concentrations of reactive aldehydes than those of inert ketones and alcohols. Anthropogenic primary emissions accounted for the majority of ketones and alcohols concentrations. Positive matrix factorization (PMF) was also used to identify emission sources from this VOCs data set. The four resolved factors were three anthropogenic factors and a biogenic factor. However, the anthropogenic factors are attributed here to a common source at different stages of photochemical processing rather than three independent sources. Anthropogenic and biogenic sources of VOCs concentrations were not separated completely in PMF. This study indicates that photochemistry of VOCs in the atmosphere complicates the information about separated sources that can be extracted from PMF and the influence of photochemical processing must be carefully considered in the interpretation of source apportionment studies based upon PMF.

  14. Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China.

    PubMed

    Liu, Benhua; Chen, Liang; Huang, Linxian; Wang, Yongseng; Li, Yuehua

    2015-01-01

    This paper focuses on the distribution of volatile organic compounds (VOCs) in the surface water, soil, and groundwater within a chemical industry park in Eastern China. At least one VOC was detected in each of the 20 sampling sites, and the maximum number of VOCs detected in the surface water, groundwater, and soil were 13, 16, and 14, respectively. Two of the 10 VOCs with elevated concentrations detected in surface water, groundwater, and soil were chloroform and 1,2-dichloroethane. The characteristics of VOCs, which include volatility, boiling point, and solubility, could significantly affect their distribution in surface water, soil, and groundwater. However, due to the direct discharging of chemical industry wastewater into surface water, higher concentrations of VOCs (except chloroform) were detected in surface water than in soil and groundwater. Fortunately, the higher volatility of VOCs prevents the VOCs from impacting groundwater, which helps to maintain a lower concentration of VOCs in the groundwater than in both surface water and soil. This is because pollutants with relatively higher boiling points and lower solubilities have higher detection frequencies in soil, and contaminants with relatively lower boiling points and higher solubilities have higher detection frequencies in water, notably in surface water.

  15. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year

    NASA Astrophysics Data System (ADS)

    Zheng, Huang; Kong, Shaofei; Xing, Xinli; Mao, Yao; Hu, Tianpeng; Ding, Yang; Li, Gang; Liu, Dantong; Li, Shuanglin; Qi, Shihua

    2018-04-01

    Oil and natural gas are important for energy supply around the world. The exploring, drilling, transportation and processing in oil and gas regions can release a lot of volatile organic compounds (VOCs). To understand the VOC levels, compositions and sources in such regions, an oil and gas station in northwest China was chosen as the research site and 57 VOCs designated as the photochemical precursors were continuously measured for an entire year (September 2014-August 2015) using an online monitoring system. The average concentration of total VOCs was 297 ± 372 ppbv and the main contributor was alkanes, accounting for 87.5 % of the total VOCs. According to the propylene-equivalent concentration and maximum incremental reactivity methods, alkanes were identified as the most important VOC groups for the ozone formation potential. Positive matrix factorization (PMF) analysis showed that the annual average contributions from natural gas, fuel evaporation, combustion sources, oil refining processes and asphalt (anthropogenic and natural sources) to the total VOCs were 62.6 ± 3.04, 21.5 ± .99, 10.9 ± 1.57, 3.8 ± 0.50 and 1.3 ± 0.69 %, respectively. The five identified VOC sources exhibited various diurnal patterns due to their different emission patterns and the impact of meteorological parameters. Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models based on backward trajectory analysis indicated that the five identified sources had similar geographic origins. Raster analysis based on CWT analysis indicated that the local emissions contributed 48.4-74.6 % to the total VOCs. Based on the high-resolution observation data, this study clearly described and analyzed the temporal variation in VOC emission characteristics at a typical oil and gas field, which exhibited different VOC levels, compositions and origins compared with those in urban and industrial areas.

  16. Modeling emissions of volatile organic compounds from silage

    USDA-ARS?s Scientific Manuscript database

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  17. Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China

    NASA Astrophysics Data System (ADS)

    Li, Bowei; Ho, Steven Sai Hang; Xue, Yonggang; Huang, Yu; Wang, Liqin; Cheng, Yan; Dai, Wenting; Zhong, Haobin; Cao, Junji; Lee, Shuncheng

    2017-07-01

    Vehicular emission (VE) is one of the important anthropogenic sources for ground-level volatile organic compounds (VOCs) in both urban and suburban areas. A first comprehensive campaign was conducted at an urban roadside in Xi'an, China in summer, 2016. A total of 57 VOCs, as known as critical surface ozone (O3) precursors, and other trace gases were measured simultaneously during the sampling period. Iso-pentane, a tracer of gasoline evaporation, was the most abundant VOC in the roadside samples, followed by isobutane and benzene, attributed to the largest composition (∼70%) of gasoline-fueled vehicles on the road. The molar ratio of toluene/benzene (T/B) in our study (0.36) is far lower than the range reported in other cities, indicating the stronger contributions from diesel emissions. The results of source apportionment achieved with positive matrix factorization (PMF) receptor model were highly consistent with the vehicles compositions, strongly evidenced that the precise characterization of the VE sources from those marker species. The degrees of individual compound contributed to O3 production were weighed by ozone formation potential (OFP). Propylene (20%), 1-butene (11%) and iso-pentane(10%) were the top three contributors at the roadside. The information of this study complements the VOCs database regarding to the VE sources in Northwestern China.

  18. Emission characteristics of volatile organic compounds from semiconductor manufacturing.

    PubMed

    Chein, HungMin; Chen, Tzu Ming

    2003-08-01

    A huge amount of volatile organic compounds (VOCs) is produced and emitted with waste gases from semiconductor manufacturing processes, such as cleaning, etching, and developing. VOC emissions from semiconductor factories located at Science-Based Industrial Park, Hsin-chu, Taiwan, were measured and characterized in this study. A total of nine typical semiconductor fabricators (fabs) were monitored over a 12-month period (October 2000-September 2001). A flame ionization analyzer was employed to measure the VOC emission rate continuously in a real-time fashion. The amount of chemical use was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County as per the regulation of the Taiwan Environmental Protection Administration. The VOC emission factor, defined as the emission rate (kg/month) divided by the amount of chemical use (L/month), was determined to be 0.038 +/- 0.016 kg/L. A linear regression equation is proposed to fit the data with the correlation coefficient (R2)=0.863. The emission profiles of VOCs, which were drawn using the gas chromatograph/mass spectrometer analysis method, show that isopropyl alcohol is the dominant compound in most of the fabs.

  19. The indoor volatile organic compound (VOC) characteristics and source identification in a new university campus in Tianjin, China.

    PubMed

    Kang, Jian; Liu, Junjie; Pei, Jingjing

    2017-06-01

    This study investigates the volatile organic compounds (VOCs) constituents and concentration levels on a new university campus, where all of the buildings including classrooms and student dormitories were newly built and decorated within 1 year. Investigated indoor environments include dormitories, classrooms, and the library. About 30 dormitory buildings with different furniture loading ratios were measured. The characteristics of the indoor VOCs species are analyzed and possible sources are identified. The VOCs were analyzed with gas chromatography-mass spectroscopy (GC-MS). It was found that the average total VOC (TVOC) concentration can reach 2.44 mg/m 3 . Alkenes were the most abundant VOCs in dormitory rooms, contributing up to 86.5% of the total VOCs concentration. The concentration of α-pinene is the highest among the alkenes. Unlike the dormitory rooms, there is almost no room with TVOC concentration above 0.6 mg/m 3 in classroom and library buildings. Formaldehyde concentration in the dormitory rooms increased about 23.7% after the installation of furniture, and the highest level reached 0.068 mg/m 3 . Ammonia released from the building antifreeze material results in an average indoor concentration of 0.28 mg/m 3 , which is 100% over the threshold and should be seriously considered. Further experiments were conducted to analyze the source of the α-pinene and some alkanes in dormitory rooms. The results showed that the α-pinene mainly comes from the bed boards, while the wardrobes are the main sources of alkanes. The contribution of the pinewood bed boards to the α-pinene and TVOC concentration can reach up to above 90%. The same type rooms were sampled 1 year later and the decay rate of α-pinene is quite high, close to 100%, so that it almost cannot be detected in the sampled rooms. Analysis of indoor volatile organic compounds (VOCs) in newly built campus buildings in China identified the specific constituents of indoor VOCs contaminants exposed to

  20. Volatile organic compound emissions from green waste composting: Characterization and ozone formation

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Alaimo, Christopher P.; Horowitz, Robert; Mitloehner, Frank M.; Kleeman, Michael J.; Green, Peter G.

    2011-04-01

    Composting of green waste separated from the disposed solid waste stream reduces biodegradable inputs into landfills, and contributes valuable soil amendments to agriculture. Agencies in regions with severe air quality challenges, such as California's San Joaquin Valley (SJV), have raised concerns about gases emitted during the composting process, which are suspected to contribute to persistent high levels of ground-level ozone formation. The goal of the current study is to thoroughly characterize volatile organic compound (VOC) emissions from green waste compost piles of different ages (fresh tipped piles, 3-6 day old windrows, and 2-3 week old windrows). Multiple sampling and analytical approaches were applied to ensure the detection of most gaseous organic components emitted. More than 100 VOCs were detected and quantified in this study, including aliphatic alkanes, alkenes, aromatic hydrocarbons, biogenic organics, aldehydes, ketones, alcohols, furans, acids, esters, ether, halogenated hydrocarbons and dimethyl disulfide (DMDS). Alcohols were found to be the dominating VOC in the emissions from a compost pile regardless of age, with fluxes ranging from 2.6 to 13.0 mg m -2 min -1 with the highest emissions coming from the younger composting windrows (3-6 days). Average VOC emissions other than alcohols were determined to be 2.3 mg m -2 min -1 from younger windows, which was roughly two times higher than either the fresh tipping pile (1.2 mg m -2 min -1) or the older windrows (1.4 mg m -2 min -1). It was also observed that the older windrows emit a slightly larger proportion of more reactive compounds. Approximately 90% of the total VOCs were found to have maximum incremental reactivity of less than 2. Net ozone formation potential of the emissions was also assessed.

  1. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds.

    PubMed

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M; Park, Kyungseok

    2015-05-29

    Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens SS101 (Pf.SS101) have not been precisely elucidated. The effects of Pf.SS101 and its VOCs on augmentation of plant growth promotion were investigated in vitro and in planta. A significant growth promotion was observed in plants exposed Pf.SS101 under both conditions, suggesting that its VOCs play a key role in promoting plant growth. Solid-phase micro-extraction (SPME) and a gas chromatography-mass spectrophotometer (GC-MS) system were used to characterize the VOCs emitted by Pf.SS101 and 11 different compounds were detected in samples inoculated this bacterium, including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene. Application of these compounds resulted in enhanced plant growth. This study suggests that Pf.SS101 promotes the growth of plants via the release of VOCs including 13-Tetradecadien-1-ol, 2-butanone and 2-Methyl-n-1-tridecene, thus increasing understanding of the role of VOCs in plant-bacterial inter-communication. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Venus flytrap attracts insects by the release of volatile organic compounds.

    PubMed

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  3. MEMBRANE BIOTREATMENT OF VOC-LADEN AIR

    EPA Science Inventory

    The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...

  4. DEVELOPING A NO-VOC WOOD TOPCOAT

    EPA Science Inventory

    The paper reports an evaluation of a new low-VOC (volatile organic compound) wood coating technology, its performance characteristics, and its application and emissions testing. The low-VOC wood coating selected for the project was a two-component, water-based epoxy coating. Poly...

  5. Determination of volatile organic compounds (VOCs) from wrapping films and wrapped PDO Italian cheeses by using HS-SPME and GC/MS.

    PubMed

    Panseri, Sara; Chiesa, Luca Maria; Zecconi, Alfonso; Soncini, Gabriella; De Noni, Ivano

    2014-06-25

    Nowadays food wrapping assures attractive presentation and simplifies self-service shopping. Polyvinylchloride (PVC)- and polyethylene (PE)-based cling-films are widely used worldwide for wrapping cheeses. For this purpose, films used in retail possess suitable technical properties such as clinginess and unrolling capacity, that are achieved by using specific plasticizers during their manufacturing process. In the present study, the main VOCs of three cling-films (either PVC-based or PE-based) for retail use were characterized by means of Solid-Phase Micro-Extraction and GC/MS. In addition, the effects of cling film type and contact time on the migration of VOCs from the films to four different PDO Italian cheeses during cold storage under light or dark were also investigated. Among the VOCs isolated from cling-films, PVC released 2-ethylhexanol and triacetin. These compounds can likely be considered as a "non-intentionally added substance". These same compounds were also detected in cheeses wrapped in PVC films with the highest concentration found after 20 days storage. The PE cling-film was shown to possess a simpler VOC profile, lacking some molecules peculiar to PVC films. The same conclusions can be drawn for cheeses wrapped in the PE cling-film. Other VOCs found in wrapped cheeses were likely to have been released either by direct transfer from the materials used for the manufacture of cling-films or from contamination of the films. Overall, HS-SPME is shown to be a rapid and solvent free technique to screen the VOCs profile of cling-films, and to detect VOCs migration from cling-films to cheese under real retail storage conditions.

  6. Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean

    NASA Astrophysics Data System (ADS)

    Derstroff, Bettina; Hüser, Imke; Bourtsoukidis, Efstratios; Crowley, John N.; Fischer, Horst; Gromov, Sergey; Harder, Hartwig; Janssen, Ruud H. H.; Kesselmeier, Jürgen; Lelieveld, Jos; Mallik, Chinmay; Martinez, Monica; Novelli, Anna; Parchatka, Uwe; Phillips, Gavin J.; Sander, Rolf; Sauvage, Carina; Schuladen, Jan; Stönner, Christof; Tomsche, Laura; Williams, Jonathan

    2017-08-01

    During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34° 57' N/32° 23' E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy) and eastern (Turkey, Greece) Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80-100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5-3 ppbv median level by day, range: ca. 1-8 ppbv) than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days) of air masses originating from eastern and western Europe. Ozone and many OVOC levels were ˜ 20 and ˜ 30-60 % higher, respectively, in air arriving from the east. Using the FLEXPART calculated transport time, the contribution of photochemical

  7. Fungal succession in relation to volatile organic compounds emissions from Scots pine and Norway spruce leaf litter-decomposing fungi

    NASA Astrophysics Data System (ADS)

    Isidorov, Valery; Tyszkiewicz, Zofia; Pirożnikow, Ewa

    2016-04-01

    Leaf litter fungi are partly responsible for decomposition of dead material, nutrient mobilization and gas fluxes in forest ecosystems. It can be assumed that microbial destruction of dead plant materials is an important source of volatile organic compounds (VOCs) emitted into the atmosphere from terrestrial ecosystems. However, little information is available on both the composition of fungal VOCs and their producers whose community can be changed at different stages of litter decomposition. The fungal community succession was investigated in a litter bag experiment with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) needle litter. The succession process can be divided into a several stages controlled mostly by changes in litter quality. At the very first stages of decomposition the needle litter was colonized by ascomycetes which can use readily available carbohydrates. At the later stages, the predominance of Trichoderma sp., the known producers of cellulolytic enzymes, was documented. To investigate the fungi-derived VOCs, eight fungi species were isolated. As a result of gas chromatographic analyses, as many as 75C2sbnd C15 fungal volatile compounds were identified. Most components detected in emissions were very reactive substances: the principal groups of VOCs were formed by monoterpenes, carbonyl compounds and aliphatic alcohols. It was found that production of VOCs by fungi is species specific: only 10 metabolites were emitted into the gas phase by all eight species. The reported data confirm that the leave litter decomposition is important source of reactive organic compounds under the forest canopy.

  8. The scent of disease: volatile organic compounds of the human body related to disease and disorder.

    PubMed

    Shirasu, Mika; Touhara, Kazushige

    2011-09-01

    Hundreds of volatile organic compounds (VOCs) are emitted from the human body, and the components of VOCs usually reflect the metabolic condition of an individual. Therefore, contracting an infectious or metabolic disease often results in a change in body odour. Recent progresses in analytical techniques allow rapid analyses of VOCs derived from breath, blood, skin and urine. Disease-specific VOCs can be used as diagnostic olfactory biomarkers of infectious diseases, metabolic diseases, genetic disorders and other kinds of diseases. Elucidation of pathophysiological mechanisms underlying production of disease-specific VOCs may provide novel insights into therapeutic approaches for treatments for various diseases. This review summarizes the current knowledge on chemical and clinical aspects of body-derived VOCs, and provides a brief outlook at the future of olfactory diagnosis.

  9. Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation.

    PubMed

    Han, Deming; Wang, Zhen; Cheng, Jinping; Wang, Qian; Chen, Xiaojia; Wang, Heling

    2017-08-01

    To better understand the characterization and secondary organic aerosol (SOA) formation of volatile organic compounds (VOCs) during non-haze and haze days, ambient VOCs were continuously measured by a vehicle-mounted online thermal desorption system coupled with a gas chromatography-mass spectrometry (TD-GC/MS) system in Shanghai, China. The average concentrations of VOCs in haze episodes (193.2 μg m -3 ) were almost 50% higher than in non-haze periods (130.8 μg m -3 ). VOC concentrations exhibited a bi-modal pattern in the morning and evening rush hour periods on both non-haze and haze days. The ratios of toluene to benzene (T/B) and m,p-xylene to ethylbenzene (X/E) indicated that VOCs were aged air mass transported from nearby areas. The estimated SOA yields were 12.6 ± 5.3 and 16.7 ± 6.7 μg m -3 for non-haze and haze days, respectively, accounting for 9.6 and 8.7% of the corresponding PM 2.5 concentrations, which were slightly underestimated. VOCs-sensitivity (VOCs-S) based on a PM 2.5 -dependent model was used to investigate the variation between VOCs and PM 2.5 concentrations in the morning rush hour. It was found that VOCs were more sensitive to PM 2.5 on clean days than during periods of heavy particulate pollution. VOCs-sensitivity was significantly correlated with the ratio of specific PM 2.5 to background PM 2.5 , with a simulated equation of y = 0.84x -0.62 (r 2  = 0.93, p < 0.001). Our findings suggest that strategies to mitigate VOC emissions and further alleviate haze episodes in Shanghai based on reducing gasoline vehicle-related sources would be very efficient.

  10. Oil and Natural Gas Industry Sources Covered by the 2012 New Source Performance Standards (NSPS) for Volatile Organic Compounds (VOCs) and the 2016 NSPS for Methane and VOCs, by Site

    EPA Pesticide Factsheets

    This is a 2016 table that looks at oil and natural gas industry site types and lists the applicable rules for the 2012 and 2016 new source performance standards (NSPS) and Volatile Organic Compounds (VOC) rules.

  11. Application of horizontal spiral coil heat exchanger for volatile organic compounds (VOC) emission control.

    PubMed

    Deshpande, P M; Dawande, S D

    2013-04-01

    The petroleum products have wide range of volatility and are required to be stored in bulk. The evaporation losses are significant and it is a economic as well as environmental concern, since evaporative losses of petroleum products cause increased VOC in ambient air. Control of these losses poses a major problem for the storage tank designers. Ever rising cost of petroleum products further adds to the gravity of the problem. Condensation is one of the technologies for reducing volatile organic compounds emissions. Condensation is effected by condenser, which is basically a heat exchanger and the heat exchanger configuration plays an important role. The horizontal spiral coil heat exchanger is a promising configuration that finds an application in VOC control. This paper attempts to understand underlying causes of emissions and analyse the option of horizontal spiral coil heat exchanger as vent condenser.

  12. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desiresmore » a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected

  13. Sensitivity of volatile organic compounds (VOCs) and ozone to land surface processes and vegetation distributions in California

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Huang, M.; Fast, J. D.; Berg, L. K.; Qian, Y.; Guenther, A. B.; Gu, D.; Shrivastava, M. B.; Liu, Y.; Walters, S.; Jin, J.

    2014-12-01

    Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect secondary organic aerosol (SOA) formation and ultimately aerosol radiative forcing. These uncertainties result from many factors, including coupling strategy between biogenic emissions and land-surface schemes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (VOCs). In this study, sensitivity experiments are conducted using the Weather Research and Forecasting model with chemistry (WRF-Chem) to examine the sensitivity of simulated VOCs and ozone to land surface processes and vegetation distributions in California. The measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010 provide a good opportunity to evaluate the simulations. First, the biogenic VOC emissions in the WRF-Chem simulations with the two land surface schemes, Noah and CLM4, are estimated by the Model of Emissions of Gases and Aerosols from Nature version one (MEGANv1), which has been publicly released and widely used with WRF-Chem. The impacts of land surface processes on estimating biogenic VOC emissions and simulating VOCs and ozone are investigated. Second, in this study, a newer version of MEGAN (MEGANv2.1) is coupled with CLM4 as part of WRF-Chem to examine the sensitivity of biogenic VOC emissions to the MEGAN schemes used and determine the importance of using a consistent vegetation map between a land surface scheme and the biogenic VOC emission scheme. Specifically, MEGANv2.1 is embedded into the CLM4 scheme and shares a consistent vegetation map for estimating biogenic VOC emissions. This is unlike MEGANv1 in WRF-Chem that uses a standalone vegetation map that differs from what is used in land surface schemes. Furthermore, we examine the impact

  14. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  15. Detection of new VOC compounds with iCRDS

    NASA Astrophysics Data System (ADS)

    Huang, H.; Leen, J. B.; Gardner, A.; Gupta, M.; Baer, D. S.

    2015-12-01

    The instrument at Los Gatos Research (a member of ABB Inc.) which is based on incoherent cavity ringdown spectroscopy (iCRDS) that operates in the mid-infrared (bands from 860-1060 cm-1 or 970-1280 cm-1) is capable of detecting a broad range of VOCs, in situ, continuously and autonomously, for example, BTEX compounds (benzene, toluene, ethylbenzene, xylene), including differentiation of xylene isomers. Previously, we have demonstrated the measurement of trichloroethylene (TCE) in zero air with a precision of 0.17 ppb (1σ in 4 minutes), and the measurement of tetrachloroethylene (PCE) with a precision of 0.15 ppb (1σ in 4 minutes). Both of these measured precisions exceed the EPA's commercial building action limit, which for TCE is 0.92 ppb (5 µg/m3) and for PCE is 0.29 ppb (2 µg/m3). This ability has been fully demonstrated by the deployment of the instrument to the Superfund site at Moffett Naval Air Station in Mountain View, California where contaminated ground water results in vapor intrusion of TCE and PCE. For two weeks, the instrument operated continuously and autonomously, successfully measuring TCE and PCE concentrations in both the breathing zone and steam tunnel air, in excellent agreement with previous TO-15 data. In this poster, we present laboratory performance data targeting new toxic molecules with the same instrument. We have demonstrated the measurement of trichlorofluolomethane (Freon 11) in zero air with a precision of 1 ppb (3σ at 1075cm-1), and hexafluoropropene in zero air with a precision of about 0.3 ppb (3σ per spectrum). The iCRDS instrument has shown the ability to continuously and autonomously measure sub-ppb levels of toxic VOCs in the lab/field, offering an unprecedented picture of the short term dynamics associated with vapor intrusion and ground water pollution.

  16. Uptake of VOC by sunflower

    NASA Astrophysics Data System (ADS)

    Folkers, A.; Miebach, M.; Kleist, E.; Wildt, J.

    2003-04-01

    To study potential VOC uptake by plants we exposed sunflower (Helianthus annuus) to different VOC in continuously stirred tank reactors. For many VOC like methanol, ethanol, acetone, methylvinylketone, isoprene or limonene no uptake was detectable within the accuracy of our analytic set up. Other VOC like hexanal, octanal, (E)-3-hexenol and nopinone were taken up by sunflower. The uptake was related to stomatal aperture. Obviously, these VOC enter the plants through stomata. In case of hexanal, octanal, and (E)-3-hexenol the uptake was only limited by stomatal aperture implying that these VOC are rapidly metabolised. For nopinone the uptake seems to be limited by a slow metabolization. Estimations of deposition velocities showed that dry deposition of these compounds cannot be neglected as sink if diffusion through stomata is the limiting step for dry deposition. In such cases the lifetime with respect to dry deposiotion is comparable to the lifetime with respect to oxidation by hydroxyl radicals.

  17. Analysis and quantitation of volatile organic compounds emitted from plastics used in museum construction by evolved gas analysis-gas chromatography-mass spectrometry.

    PubMed

    Samide, Michael J; Smith, Gregory D

    2015-12-24

    Construction materials used in museums for the display, storage, and transportation of artwork must be assessed for their tendency to emit harmful pollution that could potentially damage cultural treasures. Traditionally, a subjective metals corrosion test known as the Oddy test has been widely utilized in museums for this purpose. To augment the Oddy test, an instrumental sampling approach based on evolved gas analysis (EGA) coupled to gas chromatography (GC) with mass spectral (MS) detection has been implemented for the first time to qualitatively identify off-gassed pollutants under specific conditions. This approach is compared to other instrumental methods reported in the literature. This novel application of the EGA sampling technique yields several benefits over traditional testing, including rapidity, high sensitivity, and broad detectability of volatile organic compounds (VOCs). Furthermore, unlike other reported instrumental approaches, the EGA method was used to determine quantitatively the amount of VOCs emitted by acetate resins and polyurethane foams under specific conditions using both an external calibration method as well as surrogate response factors. EGA was successfully employed to rapidly characterize emissions from 12 types of common plastics. This analysis is advocated as a rapid pre-screening method to rule out poorly performing materials prior to investing time and energy in Oddy testing. The approach is also useful for rapid, routine testing of construction materials previously vetted by traditional testing, but which may experience detrimental formulation changes over time. As an example, a case study on batch re-orders of rigid expanded poly(vinyl chloride) board stock is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The scent fingerprint of hepatocarcinoma: in-vitro metastasis prediction with volatile organic compounds (VOCs)

    PubMed Central

    Amal, Haitham; Ding, Lu; Liu, Bin-bin; Tisch, Ulrike; Xu, Zhen-qin; Shi, Da-you; Zhao, Yan; Chen, Jie; Sun, Rui-xia; Liu, Hu; Ye, Sheng-Long; Tang, Zhao-you; Haick, Hossam

    2012-01-01

    Background: Hepatocellular carcinoma (HCC) is a common and aggressive form of cancer. Due to a high rate of postoperative recurrence, the prognosis for HCC is poor. Subclinical metastasis is the major cause of tumor recurrence and patient mortality. Currently, there is no reliable prognostic method of invasion. Aim: To investigate the feasibility of fingerprints of volatile organic compounds (VOCs) for the in-vitro prediction of metastasis. Methods: Headspace gases were collected from 36 cell cultures (HCC with high and low metastatic potential and normal cells) and analyzed using nanomaterial-based sensors. Predictive models were built by employing discriminant factor analysis pattern recognition, and the classification success was determined using leave-one-out cross-validation. The chemical composition of each headspace sample was studied using gas chromatography coupled with mass spectrometry (GC-MS). Results: Excellent discrimination was achieved using the nanomaterial-based sensors between (i) all HCC and normal controls; (ii) low metastatic HCC and normal controls; (iii) high metastatic HCC and normal controls; and (iv) high and low HCC. Several HCC-related VOCs that could be associated with biochemical cellular processes were identified through GC-MS analysis. Conclusion: The presented results constitute a proof-of-concept for the in-vitro prediction of the metastatic potential of HCC from VOC fingerprints using nanotechnology. Further studies on a larger number of more diverse cell cultures are needed to evaluate the robustness of the VOC patterns. These findings could benefit the development of a fast and potentially inexpensive laboratory test for subclinical HCC metastasis. PMID:22888249

  19. Urban and Industrial VOC Emissions in the Seoul Metropolitan Area and Surrounding Region during the KORUS-AQ Field Study

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Blake, D. R.; Blake, N. J.; Meinardi, S.; Barletta, B.; Hughes, S.; Vizenor, N.; Emmons, L. K.; Barré, J.; Woo, J. H.; Kim, J.; Schroeder, J.; Knote, C. J.; Fried, A.; Armin, W.; Min, K. E.; Jeong, S.

    2017-12-01

    The Korea-United States Air Quality Study (KORUS-AQ) took place in May and June, 2016 to better understand air pollution in Korea. During the campaign 2650 whole air samples were collected aboard the NASA DC-8 aircraft and analyzed for more than 80 C1-C10 volatile organic compounds (VOCs), including alkanes, aromatics, alkenes, halocarbons and organic nitrates. Approximately 300 samples were collected at low altitude (< 1 km) over the Seoul Metropolitan Area (SMA), and 20 downwind of the Daesan industrial facility southwest of Seoul. The Seoul and Daesan samples showed distinct chemical signals. Air in the SMA was rich in VOCs such as ethane, propane, toluene, ethyne and n-butane, reflecting a mix of source influences including natural gas, liquefied petroleum gas, vehicle exhaust and industrial solvents. Aromatics (e.g., toluene, xylenes) and alkenes (e.g., isoprene) were strong contributors to OH reactivity in the SMA. The Daesan plumes were rich in VOCs such as ethene, benzene and n-hexane, and at least 25 VOCs showed their highest mixing ratios of the mission in these plumes. Because some of the emitted industrial compounds are known carcinogens (e.g., benzene, 1,3-butadiene), more work is needed to assess potential long-term health effects for facility workers and local residents. Ongoing work includes further clarifying specific source influences in the SMA, assessing emission inventories and the contribution of individual VOCs to ozone production, and linking the airborne data to ground-based measurements.

  20. Leaf enclosure measurement for determining marijuana volatile organic compound emission factors

    NASA Astrophysics Data System (ADS)

    Wang, C. T.; Vizuete, W.; Wiedinmyer, C.; Ashworth, K.; Harley, P. C.; Ortega, J. V.

    2017-12-01

    In 2014, Colorado became the first US state to legalize the industrial-scale cultivation of marijuana plants. There are now more than 700 marijuana cultivation facilities (MCFs) in operation in the greater Denver area. High concentrations of biogenic volatile organic compounds (VOCs), predominantly monoterpenes (C10H16) such as alpha-pinene, myrcene, and limonene have been observed in the grow rooms of MCFs, suggesting MCFs have the potential to release a significant amount of reactive VOCs into the atmosphere. Further, many MCFs are located in the urban core, where other urban emission sources are concentrated, resulting in interactions which can lead to the formation of ozone, impacting air quality. The little research done on marijuana has focused on indoor air quality and occupational exposure, or identification of the compounds associated with the characteristic smells of marijuana plants. We know of no previous studies that have identified or quantified the monoterpene emission rates from marijuana. Here, we collected air samples from leaf enclosures from different marijuana clones at different growth stages onto sorbent cartridges. These samples were analyzed using GC-MS/-FID to identify and quantify the VOCs emitted by growing marijuana plants. These results were then used to estimate basal emission rates at standard conditions (T=30 C, PPFD = 1000 umol/m2/s) using standard algorithms. We discuss the potential impact on air quality from these VOCs emitted into the atmosphere using air quality models.

  1. Analyses of volatile organic compounds from human skin

    PubMed Central

    Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G.

    2008-01-01

    Summary Background Human skin emits a variety of volatile metabolites, many of them odorous. Much previous work has focused upon chemical structure and biogenesis of metabolites produced in the axillae (underarms), which are a primary source of human body odour. Nonaxillary skin also harbours volatile metabolites, possibly with different biological origins than axillary odorants. Objectives To take inventory of the volatile organic compounds (VOCs) from the upper back and forearm skin, and assess their relative quantitative variation across 25 healthy subjects. Methods Two complementary sampling techniques were used to obtain comprehensive VOC profiles, viz., solid-phase micro extraction and solvent extraction. Analyses were performed using both gas chromatography/mass spectrometry and gas chromatography with flame photometric detection. Results Nearly 100 compounds were identified, some of which varied with age. The VOC profiles of the upper back and forearm within a subject were, for the most part, similar, although there were notable differences. Conclusions The natural variation in nonaxillary skin odorants described in this study provides a baseline of compounds we have identified from both endogenous and exogenous sources. Although complex, the profiles of volatile constituents suggest that the two body locations share a considerable number of compounds, but both quantitative and qualitative differences are present. In addition, quantitative changes due to ageing are also present. These data may provide future investigators of skin VOCs with a baseline against which any abnormalities can be viewed in searching for biomarkers of skin diseases. PMID:18637798

  2. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    PubMed

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Pollution characteristics and health risk assessment of atmospheric volatile organic compounds (VOCs) in pesticide factory].

    PubMed

    Tan, Bing; Wang, Tie-Yu; Pang, Bo; Zhu, Zhao-Yun; Wang, Dao-Han; Lü, Yong-Long

    2013-12-01

    A method for determining volatile organic compounds (VOCs) in air by summa canister collecting and gas chromatography/ mass spectroscopy detecting was adopted. Pollution condition and characteristics of VOCs were discussed in three representative pesticide factories in Zhangjiakou City, Hebei Province. Meanwhile, an internationally recognized four-step evaluation model of health risk assessment was applied to preliminarily assess the health risk caused by atmospheric VOCs in different exposure ways, inhalation and dermal exposure. Results showed that serious total VOCs pollution existed in all factories. Concentrations of n-hexane (6161.90-6910.00 microg x m(-3)), benzene (126.00-179.30 microg x m(-3)) and 1,3-butadiene (115.00-177.30 microg x m(-3)) exceeded the Chronic Inhalation Reference Concentrations recommended by USEPA, corresponding to 700, 30 and 2 microg x m(-3), respectively. Concentration of dichloromethane (724.00 microg x m(-3)) in factory B was also higher than the reference concentration (600 microg x m(-3)). Results of health risk assessment indicated that non-carcinogenic risk indexes of VOCs ranged from 1.00E-04 to 1.00E + 00 by inhalation exposure, and 1.00E-09 to 1.00E-05 by dermal exposure. Risk indexes of n-hexane and dichloromethane by inhalation exposure in all factories exceeded 1, and risk index of benzene by inhalation in factory B was also higher than 1. Carcinogenic risk indexes exposed to VOCs ranged from 1.00E-08 to 1.00E-03 by inhalation exposure and 1. oo00E -13 to 1.00E-08 by dermal exposure. Cancer risk of 1,3-butadiene by inhalation exceeded 1.0E-04, which lead to definite risk, and those of benzene by inhalation also exceeded the maximum allowable level recommended by International Commission on Radiological Protection (5.0E-05). The risks of dermal exposure presented the same trend as inhalation exposure, but the level was much lower than that of inhalation exposure. Thus, inhalation exposure of atmospheric VOCs was the

  4. Volatile Organic Compounds from Logwood Combustion: Emissions and Transformation under Dark and Photochemical Aging Conditions in a Smog Chamber.

    PubMed

    Hartikainen, Anni; Yli-Pirilä, Pasi; Tiitta, Petri; Leskinen, Ari; Kortelainen, Miika; Orasche, Jürgen; Schnelle-Kreis, Jürgen; Lehtinen, Kari E J; Zimmermann, Ralf; Jokiniemi, Jorma; Sippula, Olli

    2018-04-17

    Residential wood combustion (RWC) emits high amounts of volatile organic compounds (VOCs) into ambient air, leading to formation of secondary organic aerosol (SOA), and various health and climate effects. In this study, the emission factors of VOCs from a logwood-fired modern masonry heater were measured using a Proton-Transfer-Reactor Time-of-Flight Mass Spectrometer. Next, the VOCs were aged in a 29 m 3 Teflon chamber equipped with UV black lights, where dark and photochemical atmospheric conditions were simulated. The main constituents of the VOC emissions were carbonyls and aromatic compounds, which accounted for 50%-52% and 30%-46% of the detected VOC emission, respectively. Emissions were highly susceptible to different combustion conditions, which caused a 2.4-fold variation in emission factors. The overall VOC concentrations declined considerably during both dark and photochemical aging, with simultaneous increase in particulate organic aerosol mass. Especially furanoic and phenolic compounds decreased, and they are suggested to be the major precursors of RWC-originated SOA in all aging conditions. On the other hand, dark aging produced relatively high amounts of nitrogen-containing organic compounds in both gas and particulate phase, while photochemical aging increased especially the concentrations of certain gaseous carbonyls, particularly acid anhydrides.

  5. A process-based emission model for volatile organic compounds from silage sources on farms

    USDA-ARS?s Scientific Manuscript database

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources suc...

  6. Prevention of VOC releases from bridge painting operations.

    DOT National Transportation Integrated Search

    2007-06-01

    Bridge maintenance painting employs solvent-based coatings that generate volatile organic compounds (VOCs) that contribute to air-quality problems. Methods for capturing VOCs during normal Kentucky Transportation Cabinet (KYTC) maintenance painting o...

  7. The Venus flytrap attracts insects by the release of volatile organic compounds

    PubMed Central

    Kreuzwieser, Jürgen; Honsel, Anne

    2014-01-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap. PMID:24420576

  8. Quantification of volatile organic compounds in smoke from prescribed burning and comparison with occupational exposure limits

    NASA Astrophysics Data System (ADS)

    Romagnoli, E.; Barboni, T.; Santoni, P.-A.; Chiaramonti, N.

    2014-05-01

    Prescribed burning represents a serious threat to personnel fighting fires due to smoke inhalation. The aim of this study was to investigate exposure by foresters to smoke from prescribed burning, focusing on exposure to volatile organic compounds (VOCs). The methodology for smoke sampling was first evaluated. Potentially dangerous compounds were identified among the VOCs emitted by smoke fires at four prescribed burning plots located around Corsica. The measured mass concentrations for several toxic VOCs were generally higher than those measured in previous studies due to the experimental framework (short sampling distance between the foresters and the flame, low combustion, wet vegetation). In particular, benzene, phenol and furfural exceeded the legal short-term exposure limits published in Europe and/or the United States. Other VOCs such as toluene, ethybenzene or styrene remained below the exposure limits. In conclusion, clear and necessary recommendations were made for protection of personnel involved in fighting fires.

  9. A Compendium of Volatile Organic Compounds (VOCs) Released By Human Cell Lines

    PubMed Central

    Filipiak, Wojciech; Mochalski, Pawel; Filipiak, Anna; Ager, Clemens; Cumeras, Raquel; Davis, Cristina E.; Agapiou, Agapios; Unterkofler, Karl; Troppmair, Jakob

    2016-01-01

    Volatile organic compounds (VOCs) offer unique insights into ongoing biochemical processes in healthy and diseased humans. Yet, their diagnostic use is hampered by the limited understanding of their biochemical or cellular origin and their frequently unclear link to the underlying diseases. Major advancements are expected from the analyses of human primary cells, cell lines and cultures of microorganisms. In this review, a database of 125 reliably identified VOCs previously reported for human healthy and diseased cells was assembled and their potential origin is discussed. The majority of them have also been observed in studies with other human matrices (breath, urine, saliva, feces, blood, skin emanations). Moreover, continuing improvements of qualitative and quantitative analyses, based on the recommendations of the ISO-11843 guidelines, are suggested for the necessary standardization of analytical procedures and better comparability of results. The data provided contribute to arriving at a more complete human volatilome and suggest potential volatile biomarkers for future validation. Dedication: This review is dedicated to the memory of Prof. Dr. Anton Amann, who sadly passed away on January 6, 2015. He was motivator and motor for the field of breath research. PMID:27160536

  10. Monitoring Volatile Organic Compounds (VOCs) in real-time on oil and natural gas production sites

    NASA Astrophysics Data System (ADS)

    Lupardus, R.; Franklin, S. B.

    2017-12-01

    Oil and Natural Gas (O&NG) development, production, infrastructure, and associated processing activities can be a substantial source of air pollution, yet relevant data and real-time quantification methods are lacking. In the current study, O&NG fugitive emissions of Volatile Organic Compounds (VOCs) were quantified in real-time and used to determine the spatial and temporal windows of exposure for proximate flora and fauna. Eleven O&NG sites on the Pawnee National Grassland in Northeastern Colorado were randomly selected and grouped according to production along with 13 control sites from three geographical locations. At each site, samples were collected 25 m from the wellhead in NE, SE, and W directions. In each direction, two samples were collected with a Gasmet DX4040 gas analyzer every hour from 8:00 am to 2:00 pm (6 hours total), July to October, 2016 (N=864). VOC concentrations generally increased during the 6 hr. day with the exception of N2O and were predominately the result of O&NG production and not vehicle exhaust. Thirteen of 24 VOCs had significantly different levels between production groups, frequently above reference standards and at biologically relevant levels for flora and fauna. The most biologically relevant VOCs, found at concentrations exceeding time weighted average permissible exposure limits (TWA PELs), were benzene and acrolein. Generalized Estimating Equations (GEEs) measured the relative quality of statistical models predicting benzene concentrations on sites. The data not only confirms that O&NG emissions are impacting the region, but also that this influence is present at all sites, including controls. Increased real-time VOC monitoring on O&NG sites is required to identify and contain fugitive emissions and to protect human and environmental health.

  11. ESTIMATES OF REGIONAL NATURAL VOLATILE ORGANIC COMPOUND FLUXES FROM ENCLOSURE AND AMBIENT MEASUREMENTS

    EPA Science Inventory

    The paper discusses results of an investigation at two forested sites in the Southeastern United States. A variety of VOC compounds including methanol, 2-methyl-3-buten-2-ol, 6-methyl-5-hepten-
    2-one, isoprene, and 15 monoterpenes were emitted from vegetation at these sites. D...

  12. Aromatic VOCs global influence in the ozone production

    NASA Astrophysics Data System (ADS)

    Cabrera-Perez, David; Pozzer, Andrea

    2016-04-01

    Aromatic hydrocarbons are a subgroup of Volatile Organic Compounds (VOCs) of special interest in the atmosphere of urban and semi-urban areas. Aromatics form a high fraction of VOCs, are highly reactive and upon oxidation they are an important source of ozone. These group of VOCs are released to the atmosphere by processes related to biomass burning and fossil fuel consumption, while they are removed from the atmosphere primarily by OH reaction and by dry deposition. In addition, a branch of aromatics (ortho-nitrophenols) produce HONO upon photolysis, which is responsible of certain amount of the OH recycling. Despite their importance in the atmosphere in anthropogenic polluted areas, the influence of aromatics in the ozone production remains largely unknown. This is of particular relevance, being ozone a pollutant with severe side effects on air quality, health and climate. In this work the atmospheric impacts at global scale of the most emitted aromatic VOCs in the gas phase (benzene, toluene, xylenes, ethylbenzene, styrene, phenol, benzaldehyde and trimethylbenzenes) are analysed and assessed. Specifically, the impact on ozone due to aromatic oxidation is estimated, as this is of great interest in large urban areas and can be helpful for developing air pollution control strategies. Further targets are the quantification of the NOx loss and the OH recycling due to aromatic oxidation. In order to investigate these processes, two simulations were performed with the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The simulations compare two cases, one with ozone concentrations when aromatics are present or the second one when they are missing. Finally, model simulated ozone is compared against a global set of observations in order to better constrain the model accuracy.

  13. A Real-Time Fast-Flow Tube Study of VOC and Particulate Emissions from Electronic, Potentially Reduced-Harm, Conventional, and Reference Cigarettes

    PubMed Central

    Blair, Sandra L.; Epstein, Scott A.; Nizkorodov, Sergey A.; Staimer, Norbert

    2015-01-01

    Tobacco-free electronic cigarettes (e-cigarettes), which are currently not regulated by the FDA, have become widespread as a “safe” form of smoking. One approach to evaluate the potential toxicity of e-cigarettes and other types of potentially “reduced-harm” cigarettes is to compare their emissions of volatile organic compounds (VOCs), including reactive organic electrophillic compounds such as acrolein, and particulate matter to those of conventional and reference cigarettes. Our newly designed fast-flow tube system enabled us to analyze VOC composition and particle number concentration in real-time by promptly diluting puffs of mainstream smoke obtained from different brands of combustion cigarettes and e-cigarettes. A proton transfer reaction time-of-flight mass spectrometer (PTRMS) was used to analyze real-time cigarette VOC emissions with a 1 s time resolution. Particles were detected with a condensation particle counter (CPC). This technique offers real-time analysis of VOCs and particles in each puff without sample aging and does not require any sample pretreatment or extra handling. Several important determining factors in VOC and particle concentration were investigated: (1) puff frequency; (2) puff number; (3) tar content; (4) filter type. Results indicate that electronic cigarettes are not free from acrolein and acetaldehyde emissions and produce comparable particle number concentrations to those of combustion cigarettes, more specifically to the 1R5F reference cigarette. Unlike conventional cigarettes, which emit different amounts of particles and VOCs each puff, there was no significant puff dependence in the e-cigarette emissions. Charcoal filter cigarettes did not fully prevent the emission of acrolein and other VOCs. PMID:26726281

  14. Semivolatile organic compound emissions from heavy-duty trucks operating on diesel and bio-diesel fuel blends

    EPA Science Inventory

    This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...

  15. The European wool-carder bee (Anthidium manicatum) eavesdrops on plant volatile organic compounds (VOCs) during trichome collection.

    PubMed

    Graham, Kelsey K; Brown, Steve; Clarke, Stephanie; Röse, Ursula S R; Starks, Philip T

    2017-11-01

    The plant-pollinator relationship is generally considered mutualistic. This relationship is less clear, however, when pollinators also cause tissue damage. Some Megachilidae bees collect plant material for nests from the plants they pollinate. In this study, we examined the relationship between Anthidium manicatum, the European wool-carder bee, and the source of its preferred nesting material - Stachys byzantina, lamb's ear. Female A. manicatum use their mandibles to trim trichomes from plants for nesting material (a behaviour dubbed "carding"). Using volatile organic compound (VOC) headspace analysis and behavioural observations, we explored (a) how carding effects S. byzantina and (b) how A. manicatum may choose specific S. byzantina plants. We found that removal of trichomes leads to a dissimilar VOC bouquet compared to intact leaves, with a significant increase in VOC detection following damage. A. manicatum also visit S. byzantina plants with trichomes removed at a greater frequency compared to plants with trichomes intact. Our data suggest that A. manicatum eavesdrop on VOCs produced by damaged plants, leading to more carding damage for individual plants due to increased detectability by A. manicatum. Accordingly, visitation by A. manicatum to S. byzantina may incur both a benefit (pollination) and cost (tissue damage) to the plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 40 CFR Table 1 to Subpart D of... - Volatile Organic Compound (VOC), Content Limits for Architectural Coatings

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...), Content Limits for Architectural Coatings [Unless otherwise specified, limits are expressed in grams of... any water, exempt compounds, or colorant added to tint bases.] Coating category Grams VOC per liter... Opaque 550 4.6 Stains: Clear and semitransparent 550 4.6 Opaque 350 2.9 Low solids b 120 b 1.0 Stain...

  17. 40 CFR Table 1 to Subpart D of... - Volatile Organic Compound (VOC), Content Limits for Architectural Coatings

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), Content Limits for Architectural Coatings [Unless otherwise specified, limits are expressed in grams of... any water, exempt compounds, or colorant added to tint bases.] Coating category Grams VOC per liter... Opaque 550 4.6 Stains: Clear and semitransparent 550 4.6 Opaque 350 2.9 Low solids b 120 b 1.0 Stain...

  18. 40 CFR Table 1 to Subpart D of... - Volatile Organic Compound (VOC), Content Limits for Architectural Coatings

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), Content Limits for Architectural Coatings [Unless otherwise specified, limits are expressed in grams of... any water, exempt compounds, or colorant added to tint bases.] Coating category Grams VOC per liter... Opaque 550 4.6 Stains: Clear and semitransparent 550 4.6 Opaque 350 2.9 Low solids b 120 b 1.0 Stain...

  19. 40 CFR Table 1 to Subpart D of... - Volatile Organic Compound (VOC), Content Limits for Architectural Coatings

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...), Content Limits for Architectural Coatings [Unless otherwise specified, limits are expressed in grams of... any water, exempt compounds, or colorant added to tint bases.] Coating category Grams VOC per liter... Opaque 550 4.6 Stains: Clear and semitransparent 550 4.6 Opaque 350 2.9 Low solids b 120 b 1.0 Stain...

  20. 40 CFR Table 1 to Subpart D of... - Volatile Organic Compound (VOC), Content Limits for Architectural Coatings

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), Content Limits for Architectural Coatings [Unless otherwise specified, limits are expressed in grams of... any water, exempt compounds, or colorant added to tint bases.] Coating category Grams VOC per liter... Opaque 550 4.6 Stains: Clear and semitransparent 550 4.6 Opaque 350 2.9 Low solids b 120 b 1.0 Stain...

  1. Method for lowering the VOCS emitted during drying of wood products

    DOEpatents

    Banerjee, Sujit; Boerner, James Robert; Su, Wei

    2000-01-01

    The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

  2. A comparison of sample preparation methods for extracting volatile organic compounds (VOCs) from equine faeces using HS-SPME.

    PubMed

    Hough, Rachael; Archer, Debra; Probert, Christopher

    2018-01-01

    Disturbance to the hindgut microbiota can be detrimental to equine health. Metabolomics provides a robust approach to studying the functional aspect of hindgut microorganisms. Sample preparation is an important step towards achieving optimal results in the later stages of analysis. The preparation of samples is unique depending on the technique employed and the sample matrix to be analysed. Gas chromatography mass spectrometry (GCMS) is one of the most widely used platforms for the study of metabolomics and until now an optimised method has not been developed for equine faeces. To compare a sample preparation method for extracting volatile organic compounds (VOCs) from equine faeces. Volatile organic compounds were determined by headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GCMS). Factors investigated were the mass of equine faeces, type of SPME fibre coating, vial volume and storage conditions. The resultant method was unique to those developed for other species. Aliquots of 1000 or 2000 mg in 10 ml or 20 ml SPME headspace were optimal. From those tested, the extraction of VOCs should ideally be performed using a divinylbenzene-carboxen-polydimethysiloxane (DVB-CAR-PDMS) SPME fibre. Storage of faeces for up to 12 months at - 80 °C shared a greater percentage of VOCs with a fresh sample than the equivalent stored at - 20 °C. An optimised method for extracting VOCs from equine faeces using HS-SPME-GCMS has been developed and will act as a standard to enable comparisons between studies. This work has also highlighted storage conditions as an important factor to consider in experimental design for faecal metabolomics studies.

  3. LOW-VOC COATINGS FOR AUTOMOBILE REFINISHING USING NOVEL POLYMER RESINS

    EPA Science Inventory

    Coating operations release a significant portion of the non-mobile source, volatile organic compounds (VOCs) into the air. The U.S. EPA's Emissions Characterization and Prevention Branch has formulated novel low-VOC coatings for the automotive refinishing sector that reduce VOC l...

  4. Multiple internal standard normalization for improving HS-SPME-GC-MS quantitation in virgin olive oil volatile organic compounds (VOO-VOCs) profile.

    PubMed

    Fortini, Martina; Migliorini, Marzia; Cherubini, Chiara; Cecchi, Lorenzo; Calamai, Luca

    2017-04-01

    The commercial value of virgin olive oils (VOOs) strongly depends on their classification, also based on the aroma of the oils, usually evaluated by a panel test. Nowadays, a reliable analytical method is still needed to evaluate the volatile organic compounds (VOCs) and support the standard panel test method. To date, the use of HS-SPME sampling coupled to GC-MS is generally accepted for the analysis of VOCs in VOOs. However, VOO is a challenging matrix due to the simultaneous presence of: i) compounds at ppm and ppb concentrations; ii) molecules belonging to different chemical classes and iii) analytes with a wide range of molecular mass. Therefore, HS-SPME-GC-MS quantitation based upon the use of external standard method or of only a single internal standard (ISTD) for data normalization in an internal standard method, may be troublesome. In this work a multiple internal standard normalization is proposed to overcome these problems and improving quantitation of VOO-VOCs. As many as 11 ISTDs were used for quantitation of 71 VOCs. For each of them the most suitable ISTD was selected and a good linearity in a wide range of calibration was obtained. Except for E-2-hexenal, without ISTD or with an unsuitable ISTD, the linear range of calibration was narrower with respect to that obtained by a suitable ISTD, confirming the usefulness of multiple internal standard normalization for the correct quantitation of VOCs profile in VOOs. The method was validated for 71 VOCs, and then applied to a series of lampante virgin olive oils and extra virgin olive oils. In light of our results, we propose the application of this analytical approach for routine quantitative analyses and to support sensorial analysis for the evaluation of positive and negative VOOs attributes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impacts of simulated herbivory on VOC emission profiles from coniferous plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine ( Pinus aristata), blue spruce ( Picea pungens), western redcedar ( Thuja plicata), grand fir ( Abies grandis), and Douglas-fir ( Pseudotsugas menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate, an herbivory proxy. Gas-phase species were measuredmore » continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  6. Impacts of simulated herbivory on VOC emission profiles from coniferous plants

    DOE PAGES

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2014-09-18

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine ( Pinus aristata), blue spruce ( Picea pungens), western redcedar ( Thuja plicata), grand fir ( Abies grandis), and Douglas-fir ( Pseudotsugas menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate, an herbivory proxy. Gas-phase species were measuredmore » continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  7. A Gas Chromatographic Continuous Emissions Monitoring System for the Determination of VOCs and HAPs.

    PubMed

    Coleman, William M; Gordon, Bert M

    1996-01-01

    This article describes a new gas chromatography-based emissions monitoring system for measuring volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). The system is composed of a dual-column gas chromatograph equipped with thermal conductivity detectors, in which separation is optimized for fast chromatography. The system has the necessary valving for stream selection, which allows automatic calibration of the system at predetermined times and successive measurement of individual VOCs before and after a control device. Nine different VOCs (two of which are HAPs), plus methane (CH4) and carbon dioxide (CO2) are separated and quantified every two minutes. The accuracy and precision of this system has been demonstrated to be greater than 95%. The system employs a mass flow measurement device and also calculates and displays processed emission data, such as control device efficiency and total weight emitted during given time periods. Two such systems have been operational for one year in two separate gravure printing facilities; minimal upkeep is required, about one hour per month. One of these systems, used before and after a carbon adsorber, has been approved by the pertinent local permitting authority.

  8. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  9. Assessment of the reduction methods used to develop chemical schemes: building of a new chemical scheme for VOC oxidation suited to three-dimensional multiscale HOx-NOx-VOC chemistry simulations

    NASA Astrophysics Data System (ADS)

    Szopa, S.; Aumont, B.; Madronich, S.

    2005-09-01

    The objective of this work was to develop and assess an automatic procedure to generate reduced chemical schemes for the atmospheric photooxidation of volatile organic carbon (VOC) compounds. The procedure is based on (i) the development of a tool for writing the fully explicit schemes for VOC oxidation (see companion paper Aumont et al., 2005), (ii) the application of several commonly used reduction methods to the fully explicit scheme, and (iii) the assessment of resulting errors based on direct comparison between the reduced and full schemes.

    The reference scheme included seventy emitted VOCs chosen to be representative of both anthropogenic and biogenic emissions, and their atmospheric degradation chemistry required more than two million reactions among 350000 species. Three methods were applied to reduce the size of the reference chemical scheme: (i) use of operators, based on the redundancy of the reaction sequences involved in the VOC oxidation, (ii) grouping of primary species having similar reactivities into surrogate species and (iii) grouping of some secondary products into surrogate species. The number of species in the final reduced scheme is 147, this being small enough for practical inclusion in current three-dimensional models. Comparisons between the fully explicit and reduced schemes, carried out with a box model for several typical tropospheric conditions, showed that the reduced chemical scheme accurately predicts ozone concentrations and some other aspects of oxidant chemistry for both polluted and clean tropospheric conditions.

  10. Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC).

    PubMed

    Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M

    2014-12-01

    In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.

  11. Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model

    PubMed Central

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C.; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Background Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. Methods To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Results Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Conclusions Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases. PMID:22802943

  12. Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model.

    PubMed

    Bönisch, Ulrike; Böhme, Alexander; Kohajda, Tibor; Mögel, Iljana; Schütze, Nicole; von Bergen, Martin; Simon, Jan C; Lehmann, Irina; Polte, Tobias

    2012-01-01

    Epidemiological studies suggest an association between exposure to volatile organic compounds (VOCs) and adverse allergic and respiratory symptoms. However, whether VOCs exhibit a causal role as adjuvants in asthma development remains unclear. To investigate the effect of VOC exposure on the development of allergic airway inflammation Balb/c mice were exposed to VOCs emitted by new polyvinylchloride (PVC) flooring, sensitized with ovalbumin (OVA) and characterized in acute and chronic murine asthma models. Furthermore, prevalent evaporated VOCs were analyzed and mice were exposed to selected single VOCs. Exposure of mice to PVC flooring increased eosinophilic lung inflammation and OVA-specific IgE serum levels compared to un-exposed control mice. The increased inflammation was associated with elevated levels of Th2-cytokines. Long-term exposure to PVC flooring exacerbated chronic airway inflammation. VOCs with the highest concentrations emitted by new PVC flooring were N-methyl-2-pyrrolidone (NMP) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB). Exposure to NMP or TXIB also increased the allergic immune response in OVA-sensitized mice. In vitro or in vivo exposure to NMP or TXIB reduced IL-12 production in maturing dendritic cells (DCs) and enhanced airway inflammation after adoptive DC transfer into Balb/c mice. At higher concentrations both VOCs induced oxidative stress demonstrated by increased isoprostane and glutathione-S-transferase-pi1 protein levels in the lung of non-sensitized mice. Treatment of PVC flooring-exposed mice with N-acetylcysteine prevented the VOC-induced increase of airway inflammation. Our results demonstrate that exposure to VOCs may increase the allergic immune response by interfering with DC function and by inducing oxidative stress and has therefore to be considerate as risk factor for the development of allergic diseases.

  13. Safety Evaluation of Osun River Water Containing Heavy Metals and Volatile Organic Compounds (VOCs) in Rats.

    PubMed

    Azeez, L; Salau, A K; Adewuyi, S O; Osineye, S O; Tijani, K O; Balogun, R O

    2015-12-20

    This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its safety in rats. Heavy metals were determined by atomic absorption spectrophotometry (AAS) while VOCs were determined by gas chromatography coupled with flame ionization detector (GC-FID). Male and female rats were exposed to Osun river water for three weeks and then sacrificed. The abundance of heavy metals in Osun river followed the trend Pb > Cd > Zn > Fe > Cr > Cu while VOCs followed the trend benzene < ethylbenzene < toluene < xylene. The concentrations of Pb, Cd and benzene were higher than the permissible limits of Standards Organization of Nigeria (SON) and World Health Organization (WHO) respectively. Rats exposed to Osun river water for three weeks had increased WBC, thiobarbituric acid reactive substances (TBARS), serum proteins and serum aminotransferases. There were also significant decreases in HCT, PLT, liver aminotransferases and liver glutathione compared to the control. These results show that the pollutants in Osun river water are capable of inducing hematological imbalance and liver cell injury. The toxicity induced in blood was sex-dependent affecting female rats more than male rats.

  14. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France)

    NASA Astrophysics Data System (ADS)

    Baudic, Alexia; Gros, Valérie; Sauvage, Stéphane; Locoge, Nadine; Sanchez, Olivier; Sarda-Estève, Roland; Kalogridis, Cerise; Petit, Jean-Eudes; Bonnaire, Nicolas; Baisnée, Dominique; Favez, Olivier; Albinet, Alexandre; Sciare, Jean; Bonsang, Bernard

    2016-09-01

    Within the framework of air quality studies at the megacity scale, highly time-resolved volatile organic compound (C2-C8) measurements were performed in downtown Paris (urban background sites) from January to November 2010. This unique dataset included non-methane hydrocarbons (NMHCs) and aromatic/oxygenated species (OVOCs) measured by a GC-FID (gas chromatograph with a flame ionization detector) and a PTR-MS (proton transfer reaction - mass spectrometer), respectively. This study presents the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources. Clear seasonal and diurnal patterns differed from one VOC to another as the result of their different origins and the influence of environmental parameters (solar radiation, temperature). Source apportionment (SA) was comprehensively conducted using a multivariate mathematical receptor modeling. The United States Environmental Protection Agency's positive matrix factorization tool (US EPA, PMF) was used to apportion and quantify ambient VOC concentrations into six different sources. The modeled source profiles were identified from near-field observations (measurements from three distinct emission sources: inside a highway tunnel, at a fireplace and from a domestic gas flue, hence with a specific focus on road traffic, wood-burning activities and natural gas emissions) and hydrocarbon profiles reported in the literature. The reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO), black carbon (BC) and meteorological data (temperature). The largest contributors to the predicted VOC concentrations were traffic-related activities (including motor vehicle exhaust, 15 % of the total mass on the annual average, and evaporative sources, 10 %), with the remaining emissions from natural gas and background (23 %), solvent use (20 %), wood-burning (18 %) and a biogenic source (15 %). An important finding of

  15. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model wasmore » based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.« less

  16. Health risk assessment and personal exposure to Volatile Organic Compounds (VOCs) in metro carriages - A case study in Shanghai, China.

    PubMed

    Gong, Yu; Wei, Yijie; Cheng, Jinghui; Jiang, Tianyao; Chen, Ling; Xu, Bin

    2017-01-01

    Air pollution in transportation cabins has recently become a public concern. However, few studies assessed the exposure levels of suspected air pollutants including Volatile Organic Compounds (VOCs). This paper studied the exposure levels of in-carriage VOCs (benzene, toluene, ethylbenzene, xylene, styrene, formaldehyde, acetaldehyde, acetone and acrolein) in Shanghai, China and estimated the health risk in different conditions. The results indicated that VOCs concentrations in metro carriages varied from different train models, due to the difference in carriage size and ventilation system. The concentrations of aromatic VOCs in old metro carriage were 1-2 times higher than the new ones, as better paintings were used in new trains. Poor air circulation and ventilation in the underground track was likely to be the cause of higher VOCs levels (~10%) than the above-ground track. Lower aromatic compounds levels and higher carbonyls levels were observed in metro carriages at suburban areas than those at urban areas, likely due to less aromatic emission sources and more carbonyls emission sources in suburban areas. Acetone and acrolein were found to increase from 7.71 to 26.28μg/m 3 with number of commuters increasing from 40 to 200 in the carriages. According to the acceptable level proposed by the World Health Organization (1×10 -6 -1×10 -5 ), the life carcinogenic risk of commuters by subway (8.5×10 -6 -4.8×10 -5 ) was little above the acceptable level in Shanghai. Further application of our findings is possible to act as a reference in facilitating regulations for metro systems in other cities around world, so that in-carriage air quality might be improved. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Volatile organic compounds from fungi isolated after hurricane katrina induce developmental defects and apoptosis in a Drosophila melanogaster model.

    PubMed

    Inamdar, Arati A; Bennett, Joan W

    2015-05-01

    In previous work, our laboratory developed a Drosophila model for studying the adverse effects of fungal volatile organic compounds (VOCs) emitted by growing cultures of molds. In this report, we have extended these studies and compared the toxic effects of fungal VOCs emitted from living cultures of four molds isolated after Hurricane Katrina from a flooded home in New Orleans. Strains of Aspergillus, Mucor, Penicillium, and Trichoderma were grown with wild-type larvae and the toxic effects of volatile products on the developmental stages of Drosophila larvae were evaluated. Furthermore, heterozygous mutants of Drosophila carrying the apoptotic genes, reaper and dronc, were used to assess the role of apoptosis in fungal VOCs mediated toxicity. Third-instar larvae of Drosophila carrying these apoptotic genes were exposed to fungal VOCs emitted from growing mold cultures for 10 days. The larval strains carrying apoptopic genes survived longer than the control wild type larvae; moreover, of those that survived, heterozygous reaper and dronc strains progressed to pupae and adult phases more rapidly, suggesting that fungal VOCs may induce apoptotic changes in flies. These data lend support to the use of Drosophila as an inexpensive and genetically versatile toxicological model to investigate the mechanistic basis for some of the human illnesses/symptoms associated with exposure to mold-contaminated indoor air, especially after hurricanes. © 2013 Wiley Periodicals, Inc.

  18. Volatile Organic Compound (VOC) emissions from feedlot pen surface materials as affected by within pen location, moisture, and temperature

    USDA-ARS?s Scientific Manuscript database

    A laboratory study was conducted to evaluate the effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC) from surface materials obtained from feedlot pens where beef cattle were fed a diet containing 30% wet distillers grain plus solubles. Surface material...

  19. CRITICAL EVALUATION OF THE DIFFUSION HYPOTHESIS IN THE THEORY OF POROUS MEDIA VOLATILE ORGANIC COMPOUND (VOC) SOURCES AND SINKS

    EPA Science Inventory

    The paper proposes three alternative, diffusion-limited mathematical models to account for volatile organic compound (VOC) interactions with indoor sinks, using the linear isotherm model as a reference point. (NOTE: Recent reports by both the U.S. EPA and a study committee of the...

  20. Blood miRNAs as sensitive and specific biological indicators of environmental and occupational exposure to volatile organic compound (VOC).

    PubMed

    Song, Mi-Kyung; Ryu, Jae-Chun

    2015-10-01

    To date, there is still shortage of highly sensitive and specific minimally invasive biomarkers for assessment of environmental toxicants exposure. Because of the significance of microRNA (miRNA) in various diseases, circulating miRNAs in blood may be unique biomarkers for minimally invasive prediction of toxicants exposure. We identified and validated characteristic miRNA expression profiles of human whole blood in workers exposed to volatile organic compounds (VOCs) and compared the usefulness of miRNA indicator of VOCs with the effectiveness of the already used urinary biomarkers of occupational exposure. Using a microarray based approach we screened and detected deregulated miRNAs in their expression in workers exposed to VOCs (toluene [TOL], xylene [XYL] and ethylbenzene [EBZ]). Total 169 workers from four dockyards were enrolled in current study, and 50 subjects of them were used for miRNA microarray analysis. We identified 467 miRNAs for TOL, 211 miRNAs for XYL, and 695 miRNAs for XYL as characteristic discernible exposure indicator, which could discerned each VOC from the control group with higher accuracy, sensitivity, and specificity than urinary biomarkers. Current observations from this study point out that the altered levels of circulating miRNAs can be a reliable novel, minimally invasive biological indicator of occupational exposure to VOCs. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Elimination of volatile organic compounds by biofiltration: a review.

    PubMed

    Nikiema, Josiane; Dastous, Paul-André; Heitz, Michèle

    2007-01-01

    Volatile organic compounds (VOCs) are pollutants that are responsible for the formation of the tropospheric ozone, one of the precursors of smog. VOCs are emitted by various industries including chemical plants, pulp and paper mills, pharmaceuticals, cosmetics, electronics and agri-food industries. Some VOCs cause odor pollution while many of them are harmful to environment and human or animal health. For the removal of VOCs, biofiltration, a biological process, has proved to be reliable when properly operated. This process has therefore been widely applied in Europe and North America. The main advantages associated with the use of biofiltration are related to its set-up, maintenance, and operating costs which are usually lower than those related to other VOCs control technologies and because it is less harmful for the environment than conventional processes like incineration. In the present paper, the main parameters (type, moisture, pH, and temperature of filter bed, microbial population, nutrients concentrations, and VOCs' inlet load) to be controlled during the biofiltration are identified and described in detail. The main phenomena involved in biofiltration are also discussed. For improving the efficiency of VOC control biotechnology, new techniques are now proposed that include the use of membranes, biphasic reactors, UV photolysis, and many others.

  2. Volatile organic compound (VOC) emissions from beef feedlot pen surface as affected by within pen location, moisture, and temperature

    USDA-ARS?s Scientific Manuscript database

    A laboratory study was conducted to determine effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC). Feedlot surface material (FSM) was obtained from pens where cattle were fed a diet containing 30% wet distillers grain plus soluble (WDGS). The FSM were ...

  3. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  4. Biogenic volatile organic compound emissions from vegetation fires.

    PubMed

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  5. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood

    NASA Astrophysics Data System (ADS)

    Manninen, Anne-Marja; Pasanen, Pertti; Holopainen, Jarmo K.

    The emissions of volatile organic compounds (VOCs) from air-dried Scots pine wood and from heat-treated Scots pine wood were compared with GC-MS analysis. Air-dried wood blocks released about 8 times more total VOCs than heat-treated (24 h at 230°C) ones. Terpenes were clearly the main compound group in the air-dried wood samples, whereas aldehydes and carboxylic acids and their esters dominated in the heat-treated wood samples. Only 14 compounds out of 41 identified individual compounds were found in both wood samples indicating considerable changes in VOC emission profile during heat-treatment process. Of individual compounds α-pinene, 3-carene and hexanal were the most abundant ones in the air-dried wood. By contrast, in the heat-treated wood 2-furancarboxaldehyde, acetic acid and 2-propanone were the major compounds of VOC emission. Current emission results reveal that significant chemical changes have occurred, and volatile monoterpenes and other low-molecular-weight compounds have evaporated from the wood during the heat-treatment process when compared to air-dried wood. Major chemical changes detected in VOC emissions are explained by the thermal degradation and oxidation of main constituents in wood. The results suggest that if heat-treated wood is used in interior carpentry, emissions of monoterpenes are reduced compared to air-dried wood, but some irritating compounds might be released into indoor air.

  6. Outdoor, Indoor, and Personal Exposure to VOCs in Children

    PubMed Central

    Adgate, John L.; Church, Timothy R.; Ryan, Andrew D.; Ramachandran, Gurumurthy; Fredrickson, Ann L.; Stock, Thomas H.; Morandi, Maria T.; Sexton, Ken

    2004-01-01

    We measured volatile organic compound (VOC) exposures in multiple locations for a diverse population of children who attended two inner-city schools in Minneapolis, Minnesota. Fifteen common VOCs were measured at four locations: outdoors (O), indoors at school (S), indoors at home (H), and in personal samples (P). Concentrations of most VOCs followed the general pattern O ≈ S < P ≤ H across the measured microenvironments. The S and O environments had the smallest and H the largest influence on personal exposure to most compounds. A time-weighted model of P exposure using all measured microenvironments and time–activity data provided little additional explanatory power beyond that provided by using the H measurement alone. Although H and P concentrations of most VOCs measured in this study were similar to or lower than levels measured in recent personal monitoring studies of adults and children in the United States, p-dichlorobenzene was the notable exception to this pattern, with upper-bound exposures more than 100 times greater than those found in other studies of children. Median and upper-bound H and P exposures were well above health benchmarks for several compounds, so outdoor measurements likely underestimate long-term health risks from children’s exposure to these compounds. PMID:15471730

  7. Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Greenberg, Jim; Guenther, Alex; Zimmerman, Pat; Geron, Chris

    1998-09-01

    Biogenic volatile organic compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs such as chlorofluorocarbons (CFCs), alkanes, alkenes and aromatic compounds. Isoprene was the dominant BVOC during daytime. Primary products from BVOC oxidation were methylvinylketone, methacrolein and 3-methylfuran. Other compounds studied include the BVOCs α-pinene, camphene, β-pinene, p-cymene, limonene and cis-3-hexenyl acetate and a series of light alkanes, aromatic hydrocarbons and seven of the CFCs. The correlation of meteorological parameters, with the mixing ratios of these different compounds, reveals information on atmospheric oxidation processes and transport. Long-lived VOCs show very steady mixing ratio time series. Regionally and anthropogenically emitted VOCs display distinct diurnal cycles with a strong mixing ratio decrease in the morning from the breakup of the nocturnal boundary layer. Nighttime mixing ratio increases of CFCs and anthropogenic VOCs are suspected to derive from emissions within the Knoxville urban area into the shallow nocturnal boundary layer. In contrast, the time series of BVOCs and their oxidation products are determined by a combination of emission control, atmospheric oxidation and deposition, and boundary layer dynamics. Mixing ratio time series data for monoterpenes and cis-3-hexenyl acetate suggest a temporarily emission rate increase during and after heavy rain events. The isoprene oxidation products demonstrate differences in the oxidation pathways during night and day and in their dry and wet deposition rates.

  8. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    NASA Astrophysics Data System (ADS)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2017-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  9. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    NASA Astrophysics Data System (ADS)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2016-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  10. Real-time quantification of emissions of volatile organic compounds from land spreading of pig slurry measured by PTR-MS and wind tunnels.

    PubMed

    Liu, Dezhao; Nyord, Tavs; Rong, Li; Feilberg, Anders

    2018-10-15

    Volatile organic compounds (VOC) and hydrogen sulfide are emitted from land spreading of manure slurry to the atmosphere and contribute to odour nuisance, particle formation and tropospheric ozone formation. Data on emissions is almost non-existing partly due to lack of suitable quantitative methods for measuring emissions in full scale. Here we present a method based on application of wind tunnels for simulation of air exchange combined with the use of online mass spectrometry (PTR-MS). The focus was on odorous VOC but all relevant VOC were included. A method for quantification of VOC emission based on calculated proton-transfer reaction rate constants was validated by comparison to reference concentrations for typical VOC emitted from pig manure slurry. Wall losses of volatile sulfur compounds in the wind tunnels were assessed to be insignificant and recoveries >95% were observed for these compounds. An influence of air exchange rate was clearly observed highlighting the need to identify realistic air exchange rates for future application of the method. Emission data was obtained for spreading of pig manure slurry as an example of an important source of gases. Emissions were monitored for ~37 h following land spreading and time-resolved emission data was presented for the first time. Highest emissions were observed for short-chain volatile carboxylic acids (C 2 -C 6 ) with acetic acid being the most abundant compound. Emission peaks were observed immediately following application and were followed by declining emissions until the second day at which emissions reached a second peak for several compounds. This second emission peak was speculated to be caused by a temperature-induced diurnal effect. Emissions of volatile sulfur compounds occurred on a short time-scale and ceased shortly after application. Odour activity values were dominated by C 4 -C 5 carboxylic acids and 4-methylphenol with a less pronounced influence of 4-methylphenol on day 2. Copyright

  11. Analysis of Plant Growth-Promoting Effects of Fluorescent Pseudomonas Strains Isolated from Mentha piperita Rhizosphere and Effects of Their Volatile Organic Compounds on Essential Oil Composition

    PubMed Central

    Santoro, Maricel V.; Bogino, Pablo C.; Nocelli, Natalia; Cappellari, Lorena del Rosario; Giordano, Walter F.; Banchio, Erika

    2016-01-01

    Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present. PMID:27486441

  12. NICS report links VOCs to respiratory problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirschner, E.

    1992-04-22

    Children who live near the chemical plants of Kanawha Valley, WV, suffer more acute and chronic respiratory aliments than those farther away, says a Harvard University School of Public Health report. In the $1-million, five-year study commissioned by the National Institute for Chemical Studies (NICS:Charleston, WV) and funded by the Environmental Protection Agency, proximity to chemical plants that emit volatile organic compounds (VOCs) was linked to higher incidence of asthma, acute eye irritation, shortness of breath, and chronic cough. The researchers say they adjusted for most other factors, such as parental smoking and petroleum. {open_quotes}The research hypothesis was whether childrenmore » in the valley had more symptoms,{close_quotes} says NICS president Paul Hill. {open_quotes}Yes, there is a difference.{close_quotes} The study showed that some ailments were up to 28% more prevalent in children in the valley than in other Kanawha County children.« less

  13. Ambient VOC-Measurements by GC-PTR-TOF

    NASA Astrophysics Data System (ADS)

    Langebner, S.; Schnitzhofer, R.; Hasler, C.; Jocher, M.; Hansel, A.; Brilli, F.

    2011-12-01

    Authors: Stephan LANGEBNER, Federico BRILLI, Ralf SCHNITZHOFER, Christoph HASLER, Markus JOCHER, Armin HANSEL; During the past 16 years PTR MS (Proton Transfer Reaction Mass Spectrometry) became a well established technique for real time measurements of environmentally important volatile organic compounds (VOCs) [HANSEL 1995]. The recent development of PTR ToF [GRAUS 2010] increased the VOC separation capability by strongly improving the mass separation capability and the duty cycle. Now isobaric compounds can be separated and whole mass spectra are recorded within a fraction of a second. Isomeric VOCs, however, remain undistinguishable with this technique. Therefore a Thermo-Desorption-System-Gas-Chromatograph (TDS GC) with isomeric separation capabilities was coupled with a PTR ToF. The performance of this new GC PTR TOF instrument was evaluated analysing ambient air for several days. The measurement cycle started with simultaneous GC-sampling and direct PTR ToF measurements of ambient air. After the fifteen minute TDS cycle, the output of the GC column was directed to the PTR ToF and the timely separated VOC peaks were recorded for 40 minutes. We will present first results which look very promising e.g. different monoterpene isomers can be clearly distinguished at ambient levels.

  14. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 1. ASSESSMENT OF CATALYTIC INCINERATION AND COMPETING CONTROLS

    EPA Science Inventory

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incin...

  15. The Calculation of VOCs Diffusion Coefficient for Building Materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Deng, Quancai; Chen, Haijiang; Wu, Xiaoyun

    2018-05-01

    Volatile Organic Compounds (VOCS), as one of the major sources of air contaminations, has an important bearing on one’s general health. The adsorption capacity and velocity of the material for VOCs can be described separately using. In this paper, the detailed process and method of VOCs diffusion and partition coefficients by genetic algorithm is introduced, the algorithm is realized easily by computer program and the result by the method is precise and practical.

  16. [Emission Characteristics of VOCs from Typical Restaurants in Beijing].

    PubMed

    Cui, Tong; Cheng, Jing-chen; He, Wan-qing; Ren, Pei-fang; Nie, Lei; Xu, Dong-yao; Pan, Tao

    2015-05-01

    Using the EPA method, emission of volatile organic compounds (VOCs) , sampled from barbecue, Chinese and Western fast-food, Sichuan cuisine and Zhejiang cuisine restaurants in Beijing was investigated. VOCs concentrations and components from different cuisines were studied. The results indicated that based on the calibrated baseline ventilation volume, the VOCs emission level from barbecue was the highest, reaching 12.22 mg · m(-3), while those from fast-food of either Chinese or Western, Sichuan cuisine and Zhejiang cuisine were about 4 mg · m(-3). The components of VOCs from barbecue were different from those in the other cuisines, which were mainly propylene, 1-butene, n-butane, etc. The non-barbecue cuisines consisted of high concentration of alcohols, and Western fast-food contained relatively high proportion of aldehydes and ketones organic compounds. According to emission concentration of baseline ventilation volume, barbecue released more pollutants than the non-barbecue cuisines at the same scale. So, barbecue should be supervised and controlled with the top priority.

  17. Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans, and Drosophila melanogaster

    PubMed Central

    Popova, Alexandra A.; Koksharova, Olga A.; Lipasova, Valentina A.; Zaitseva, Julia V.; Katkova-Zhukotskaya, Olga A.; Eremina, Svetlana Iu.; Mironov, Alexander S.; Chernin, Leonid S.; Khmel, Inessa A.

    2014-01-01

    In previous research, volatile organic compounds (VOCs) emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to suppress quorum-sensing cell-to-cell communication in bacteria, and to stimulate plant growth. Here, volatiles produced by Pseudomonas and Serratia strains isolated mainly from the soil or rhizosphere exhibited bacteriostatic action on phytopathogenic Agrobacterium tumefaciens and fungi and demonstrated a killing effect on cyanobacteria, flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans). VOCs emitted by the rhizospheric Pseudomonas chlororaphis strain 449 and by Serratia proteamaculans strain 94 isolated from spoiled meat were identified using gas chromatography-mass spectrometry analysis, and the effects of the main headspace compounds—ketones (2-nonanone, 2-heptanone, 2-undecanone) and dimethyl disulfide—were inhibitory toward the tested microorganisms, nematodes, and flies. The data confirmed the role of bacterial volatiles as important compounds involved in interactions between organisms under natural ecological conditions. PMID:25006575

  18. Biogenic volatile organic compounds - small is beautiful

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three floral stages of a fig-wasp dependency mechanism: receptive, post pollinator and interfloral. Of 28 compounds detected, transcaryophyllene with trans-β-farnesene were the most important at the receptor stage, trans-caryophyllene was the most abundant at the post-pollinator stage, and isoprene was the most abundant in the interfloral stage. Alpinia kwangsiensis presents two morphologies for the reproductive parts of the flower. The "anaflexistyle" morphology has the flower style lowered in the morning and raised in the afternoon. This is reversed for the "cataflexistyle" morphology. The bVOC mixture emitted by each morphology in morning and afternoon was complex. However for compounds showing a difference (cis-ocimene and Z + E epoxy -ocimene), the emissions from the anaflexistyle were greater than from the cataflexistyle, and were greater in the afternoon compared with the morning emissions. Where large flowering plant species are abundant, big changes in monoterpene emissions at < 2m above ground level over relatively small periods of time during pollination are likely to be missed in larger scale integrated flux measurements.

  19. VOC EMISSIONS FROM AN AIR FRESHENER IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    The paper describes results of tests, conducted in the U.S. Environmental Protection Agency (EPA) large chamber facility, that investigated emissions of volatile organic compounds (VOCS) from one electrical plug-in type air freshener with pine-scented refills. VOCs were measured ...

  20. Source Signature of Volatile Organic Compounds (VOCs) associated with oil and natural gas operations in Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Young, C. J.; Edwards, P.; Brown, S. S.; Wolfe, D. E.; Williams, E. J.; De Gouw, J. A.

    2012-12-01

    The U.S. Energy Information Administration has reported a sharp increase in domestic oil and natural gas production from "unconventional" reserves (e.g., shale and tight sands) between 2005 and 2012. The recent growth in drilling and fossil fuel production has led to environmental concerns regarding local air quality. Severe wintertime ozone events (greater than 100 ppb ozone) have been observed in Utah's Uintah Basin and Wyoming's Upper Green River Basin, both of which contain large natural gas fields. Raw natural gas is a mixture of approximately 60-95 mole percent methane while the remaining fraction is composed of volatile organic compounds (VOCs) and other non-hydrocarbon gases. We measured an extensive set of VOCs and other trace gases near two highly active areas of oil and natural gas production in Utah's Uintah Basin and Colorado's Denver-Julesburg Basin in order to characterize primary emissions of VOCs associated with these industrial operations and identify the key VOCs that are precursors for potential ozone formation. UBWOS (Uintah Basin Winter Ozone Study) was conducted in Uintah County located in northeastern Utah in January-February 2012. Two Colorado studies were conducted at NOAA's Boulder Atmospheric Observatory in Weld County in northeastern Colorado in February-March 2011 and July-August 2012 as part of the NACHTT (Nitrogen, Aerosol Composition, and Halogens on a Tall Tower) and SONNE (Summer Ozone Near Natural gas Emissions) field experiments, respectively. The C2-C6 hydrocarbons were greatly enhanced for all of these studies. For example, the average propane mixing ratio observed during the Utah study was 58 ppb (median = 35 ppb, minimum = 0.8, maximum = 520 ppb propane) compared to urban averages which range between 0.3 and 6.0 ppb propane. We compare the ambient air composition from these studies to urban measurements in order to show that the VOC source signature from oil and natural gas operations is distinct and can be clearly

  1. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR USE OF THE ACTIVE VOC SAMPLER FOR THE COLLECTION OF AIRBORNE VOCS AT FIXED INDOOR AND OUTDOOR SITES (UA-F-11.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the methods used to collect indoor and outdoor air samples for the determination of selected volatile organic compounds (VOC's) using a pump to draw air through a Carbotrap Sampler. Volatile organic compounds (VOCs) present in the air are p...

  2. The identification of polar organic compounds found in consumer products and their toxicological properties.

    PubMed

    Cooper, S D; Raymer, J H; Pellizzari, E D; Thomas, K W

    1995-01-01

    Exposure to volatile organic compounds (VOCs) in the indoor environment has received substantial research attention in the past several years, with the goal of better understanding the impact of such exposures on human health and well-being. Many VOCs can arise from consumer products used within the indoor environment. The VOCs emitted from five representative consumer products were collected onto Tenax-GC and subjected to thermal desorption and analysis by gas chromatography, in combination with low-resolution mass spectrometry (MS), high-resolution MS, and matrix-isolation Fourier transform infrared spectroscopy for structural characterization. An emphasis was placed on the polar organic compounds often used to provide fragrance in these products. The structures of a number of these compounds were confirmed, and an electronic literature search was carried out on them to determine any known toxic properties. The search revealed that many of the VOCs possess toxic properties when studied at acute, relatively high-level exposures. In addition, toxic effects were reported for a few of the chemicals, such as benzaldehyde, alpha-terpineol, benzyl acetate, and ethanol, at relatively low dose levels of 9-14 mg/kg. In general, the data were unclear as to the effect of chronic, low-level exposures. The widespread use of such chemicals suggests that the health effects of chronic exposures need to be determined. Validated analytical methods for the quantitative characterization of polar organic compounds at low concentrations will be required to make such work possible.

  3. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  4. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China.

    PubMed

    Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua

    2013-07-01

    Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Screening the Emission Sources of Volatile Organic Compounds (VOCs) in China Based on Multi-effect Evaluation

    NASA Astrophysics Data System (ADS)

    Niu, H., Jr.

    2015-12-01

    Volatile organic compounds (VOCs) in the atmosphere have adverse impacts via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Few studies have integrated these effects to prioritize control measures for VOCs sources. In this study, we developed a multi-effect evaluation methodology based on updated emission inventories and source profiles, which was combined with ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data to identify important emission sources and key species. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were determined, and the contribution and share of each source to each of these adverse effects was calculated. Weightings were given to the three adverse effects by expert scoring, and the integrated impact was determined. Using 2012 as the base year, solvent usage and industrial process were found to be the most important anthropogenic sources, accounting for 24.2 and 23.1% of the integrated environmental effect, respectively. This was followed by biomass burning, transportation, and fossil fuel combustion, all of which had a similar contribution ranging from 16.7 to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiber products, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. In China, emissions reductions are required for styrene, toluene, ethylene, benzene, and m/p-xylene. The 10 most abundant chemical species contributed 76.5% of the integrated impact. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five leading provinces when considering the integrated effects. Besides, the chemical mass balance model (CMB) was used to verify the VOCs inventories of 47 cities in China, so as to optimize our evaluation results. We suggest that multi-effect evaluation is necessary to

  6. VOC source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS-Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Edwards, Rufus D.; Jurvelin, J.; Koistinen, K.; Saarela, K.; Jantunen, M.

    Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.

  7. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.

    PubMed

    Aylward, Lesa L; Kirman, Chris R; Blount, Ben C; Hays, Sean M

    2010-10-01

    The National Health and Nutrition Examination Survey (NHANES) generates population-representative biomonitoring data for many chemicals including volatile organic compounds (VOCs) in blood. However, no health or risk-based screening values are available to evaluate these data from a health safety perspective or to use in prioritizing among chemicals for possible risk management actions. We gathered existing risk assessment-based chronic exposure reference values such as reference doses (RfDs), reference concentrations (RfCs), tolerable daily intakes (TDIs), cancer slope factors, etc. and key pharmacokinetic model parameters for 47 VOCs. Using steady-state solutions to a generic physiologically-based pharmacokinetic (PBPK) model structure, we estimated chemical-specific steady-state venous blood concentrations across chemicals associated with unit oral and inhalation exposure rates and with chronic exposure at the identified exposure reference values. The geometric means of the slopes relating modeled steady-state blood concentrations to steady-state exposure to a unit oral dose or unit inhalation concentration among 38 compounds with available pharmacokinetic parameters were 12.0 microg/L per mg/kg-d (geometric standard deviation [GSD] of 3.2) and 3.2 microg/L per mg/m(3) (GSD=1.7), respectively. Chemical-specific blood concentration screening values based on non-cancer reference values for both oral and inhalation exposure range from 0.0005 to 100 microg/L; blood concentrations associated with cancer risk-specific doses at the 1E-05 risk level ranged from 5E-06 to 6E-02 microg/L. The distribution of modeled steady-state blood concentrations associated with unit exposure levels across VOCs may provide a basis for estimating blood concentration screening values for VOCs that lack chemical-specific pharmacokinetic data. The screening blood concentrations presented here provide a tool for risk assessment-based evaluation of population biomonitoring data for VOCs and

  8. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 8. CATALYTIC INCINERATOR PERFORMANCE AT INDUSTRIAL SITE C-6

    EPA Science Inventory

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incin...

  9. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 7. CATALYTIC INCINERATOR PERFORMANCE AT INDUSTRIAL SITE C-5

    EPA Science Inventory

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incin...

  10. CONTROL OF INDUSTRIAL VOC (VOLATILE ORGANIC COMPOUND) EMISSIONS BY CATALYTIC INCINERATION. VOLUME 5. CATALYTIC INCINERATOR PERFORMANCE AT INDUSTRIAL SITE C-3

    EPA Science Inventory

    The report is part of a two-phase EPA effort to assess the performance, suitability, and costs of various technologies to control emissions of volatile organic compounds (VOCs). In Phase 1, information was assembled from the literature on the use and cost of using catalytic incin...

  11. Investigations of VOCs in and around buildings close to service stations

    NASA Astrophysics Data System (ADS)

    Hicklin, William; Farrugia, Pierre S.; Sinagra, Emmanuel

    2018-01-01

    Gas service stations are one of the major sources of volatile organic compounds in urban environments. Their emissions are expected not only to affect the ambient air quality but also that in any nearby buildings. This is particularly the case in Malta where most service stations have been built within residential zones. For this reason, it is important to understand the dispersion of volatile organic compounds (VOCs) from service stations and their infiltration into nearby residences. Two models were considered; one to predict the dispersion of VOCs in the outdoor environment in the vicinity of the service station and another one to predict the filtration of the compounds indoors. The two models can be used in tandem to predict the concentration of indoor VOCs that originate from a service station in the vicinity. Outdoor and indoor concentrations of VOCs around a service station located in a street canyon were measured, and the results used to validate the models. Predictions made using the models were found to be in general agreement with the measured concentrations of the pollutants.

  12. Investigation of Volatiles Emitted from Freshly Cut Onions (Allium cepa L.) by Real Time Proton-Transfer Reaction-Mass Spectrometry (PTR-MS)

    PubMed Central

    Løkke, Mette Marie; Edelenbos, Merete; Larsen, Erik; Feilberg, Anders

    2012-01-01

    Volatile organic compounds (VOCs) in cut onions (Allium cepa L.) were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor) and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration. PMID:23443367

  13. Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions

    NASA Astrophysics Data System (ADS)

    Asensio, Dolores; Peñuelas, Josep; Ogaya, Romà; Llusià, Joan

    Available information on soil volatile organic compound (VOC) exchange, emissions and uptake, is very scarce. We here describe the amounts and seasonality of soil VOC exchange during a year in a natural Mediterranean holm oak forest growing in Southern Catalonia. We investigated changes in soil VOC dynamics in drought conditions by decreasing the soil moisture to 30% of ambient conditions by artificially excluding rainfall and water runoff, and predicted the response of VOC exchange to the drought forecasted in the Mediterranean region for the next decades by GCM and ecophysiological models. The annual average of the total (detected) soil VOC and total monoterpene exchange rates were 3.2±3.2 and -0.4±0.3 μg m -2 h -1, respectively, in control plots. These values represent 0.003% of the total C emitted by soil at the study site as CO 2 whereas the annual mean of soil monoterpene exchange represents 0.0004% of total C. Total soil VOC exchange rates in control plots showed seasonal variations following changes in soil moisture and phenology. Maximum values were found in spring (17±8 μg m -2 h -1). Although there was no significant global effect of drought treatment on the total soil VOC exchange rates, annual average of total VOC exchange rates in drought plots resulted in an uptake rate (-0.5±1.8 μg m -2 h -1) instead of positive net emission rates. Larger soil VOC and monoterpene exchanges were measured in drought plots than in control plots in summer, which might be mostly attributable to autotrophic (roots) metabolism. The results show that the diversity and magnitude of monoterpene and VOC soil emissions are low compared with plant emissions, that they are driven by soil moisture, that they represent a very small part of the soil-released carbon and that they may be strongly reduced or even reversed into net uptakes by the predicted decreases of soil water availability in the next decades. In all cases, it seems that VOC fluxes in soil might have greater

  14. Effect of traffic restriction on reducing ambient volatile organic compounds (VOCs): Observation-based evaluation during a traffic restriction drill in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Huang, Xinyu; Zhang, Yanli; Yang, Weiqiang; Huang, Zuzhao; Wang, Yujun; Zhang, Zhou; He, Quanfu; Lü, Sujun; Huang, Zhonghui; Bi, Xinhui; Wang, Xinming

    2017-07-01

    Traffic restriction (TR) is a widely adopted control measure in case of heavy air pollution particularly in urban areas, yet it is hard to evaluate the effect of TR on reducing VOC emissions based on monitoring data since ambient VOC mixing ratios are influenced not only by source emissions but also by meteorological conditions and atmospheric degradation. Here we collected air samples for analysis of VOCs before, during and after a TR drill carried out in Guangzhou in September 2010 at both a roadside and a rooftop (∼50 m above the ground) site. TR measures mainly included the "odd-even license" rule and banning high-emitting "yellow label" vehicles. The mixing ratios of non-methane hydrocarbons (NMHCs) did not show significant changes at the roadside site with total NMHCs of 39.0 ± 11.8 ppbv during non-TR period and 39.1 ± 14.8 ppbv during TR period, whereas total NMHCs decreased from 30.4 ± 14.3 ppbv during the non-TR period to 22.1 ± 10.6 ppbv during the TR period at rooftop site. However, the ratios of methyl tert-butyl ether (MTBE), benzene and toluene against carbon monoxide (MTBE/CO, T/CO and B/CO) at the both sampling sites dropped significantly. The ratios of toluene to benzene (T/B) instead increased significantly. Changes in these ratios all consistently indicated reduced input from traffic emissions particularly gasoline vehicles. Source attribution by positive matrix factorization (PMF) confirmed that during the TR period gasoline vehicles contributed less VOCs in percentages while industrial sources, biomass burning and LPG shared larger percentages. Assuming that emissions from industrial sources remained unchanged during the TR and non-TR periods, we further used the PMF-retrieved contribution percentages to deduce the reduction rate of traffic-related VOC emissions, and obtained a reduction rate of 31% based on monitoring data at the roadside site and of 34% based on the monitoring data at the rooftop site. Considering VOC emissions from all

  15. Direct Roadside Measurements of Volatile Organic Compounds in Vehicle Emissions Using NO+ Time-of-Flight Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Finewax, Z.; Koss, A.; Coggon, M.; Gilman, J.; Ziemann, P. J.; De Gouw, J. A.

    2017-12-01

    Vehicle emissions are a large source of volatile organic compounds (VOCs) in urban areas. As vehicle emissions have strongly decreased over the last few decades, several studies have shown that a relatively small fraction of vehicles are now responsible for total mobile emissions. While tunnel studies have measured on-road vehicular emissions representative of a vehicular fleet, there is limited data describing vehicle-specific, on-road VOC profiles. In this study VOCs were measured in real-time at one-second time resolution using NO+ time-of-flight chemical ionization mass spectrometry (NO+ ToF-CIMS) on a Denver Metro freeway ramp for several hours in the summer of 2016 and on Highway 7, east of Boulder, Colorado, in the summer of 2017. With this setup plumes from single vehicles were successfully measured. Using positive matrix factorization (PMF), three VOC sources were obtained from the data: gasoline vapor, gasoline exhaust and diesel exhaust, which were validated by laboratory samples of gasoline and diesel headspace, of vehicle exhaust and from literature. Chemical identification of the PMF factors was further aided by authentic samples of canisters via improved Whole Air Sampling (iWAS) and Gas Chromatography - NO+ ToF-CIMS. A small portion of total vehicles measured had VOC emissions greatly exceeding the average vehicle sampled. These high-emitting vehicles will be investigated to determine the relative importance of high-emitting vehicles to overall emissions in urban areas, and how the emissions composition of high-emitting vehicles is different from the average vehicle.

  16. Exposures to volatile organic compounds (VOCs) and associated health risks of socio-economically disadvantaged population in a "hot spot" in Camden, New Jersey

    NASA Astrophysics Data System (ADS)

    Wu, Xiangmei (May); Fan, Zhihua (Tina); Zhu, Xianlei; Jung, Kyung Hwa; Ohman-Strickland, Pamela; Weisel, Clifford P.; Lioy, Paul J.

    2012-09-01

    To address disparities in health risks associated with ambient air pollution for racial/ethnic minority groups, this study characterized personal and ambient concentrations of volatile organic compounds (VOCs) in a suspected hot spot of air pollution - the Village of Waterfront South (WFS), and an urban reference community - the Copewood/Davis Streets (CDS) neighborhood in Camden, New Jersey. Both are minority-dominant, impoverished communities. We collected 24-h integrated personal air samples from 54 WFS residents and 53 CDS residents, with one sample on a weekday and one on a weekend day during the summer and winter seasons of 2004-2006. Ambient air samples from the center of each community were also collected simultaneously during personal air sampling. Toluene, ethylbenzene, and xylenes (TEX) presented higher (p < 0.05) ambient levels in WFS than in CDS, particularly during weekdays. A stronger association between personal and ambient concentrations of MTBE and TEX was found in WFS than in CDS. Fourteen to forty-two percent of the variation in personal MTBE, hexane, benzene, and TEX was explained by local outdoor air pollution. These observations indicated that local sources impacted the community air pollution and personal exposure in WFS. The estimated cancer risks resulting from two locally emitted VOCs, benzene and ethylbenzene, and non-cancer neurological and respiratory effects resulting from hexane, benzene, toluene, and xylenes exceeded the US EPA risk benchmarks in both communities. These findings emphasized the need to address disparity in health risks associated with ambient air pollution for the socio-economically disadvantaged groups. This study also demonstrated that air pollution hot spots similar to WFS can provide robust setting to investigate health effects of ambient air pollution.

  17. VOCs monitoring system simulation and design

    NASA Astrophysics Data System (ADS)

    Caldararu, Florin; Vasile, Alexandru; Vatra, Cosmin

    2010-11-01

    The designed and simulated system will be used in the tanning industry, for Volatile Organic Compound (VOC) measurements. In this industry, about 90% of the solvent contained in the emulsions evaporates during its application, giving rise to VOC, which are at the same time hazardous atmospheric pollutants and one of the sources of ground level photochemical ozone formation. It results that a monitoring system is necessary in a leather finishing process, in order to detect hazardous VOC concentration and conducting process in order of VOC concentration diminishing. The paper presents the design of a VOC monitoring system, which includes sensors for VOCs and temperature, the conditioning circuitry for these sensors, the suction system of the gas in the hood, the data acquisition and the computing system and graphic interface. The used sensor in the detection system is a semiconductor sensor, produced by Figaro Engineering Inc., characterized by a short response time, high sensitivity at almost all VOC substances. The design of the conditioning circuitry and data acquisition is done in order to compensate the sensor response variation with temperature and to maintain the low response time of the sensor. The temperature compensation is obtained by using a thermistor circuitry, and the compensation is done within the software design. A Mitsubishi PLC is used to receive the output signals of the circuits including the sensor and of the thermistor, respectively. The acquisition and computing system is done using Mitsubishi ALPHA 2 controller and a graphical terminal, GOT 1000.

  18. Comparison of Adsorption/Desorption of Volatile Organic Compounds (VOCs) on Electrospun Nanofibers with Tenax TA for Potential Application in Sampling

    PubMed Central

    Chu, Lanling; Deng, Siwei; Zhao, Renshan; Deng, Jianjun; Kang, Xuejun

    2016-01-01

    The objective of this study was to compare the adsorption/desorption of target compounds on homemade electrospun nanofibers, polystyrene (PS) nanofibers, acrylic resin (AR) nanofibers and PS-AR composite nanofibers with Tenax TA. Ten volatile organic compounds (VOCs) were analyzed by preconcentration onto different sorbents followed by desorption (thermal and solvent orderly) and analysis by capillary gas chromatography. In comparison to Tenax TA, the electrospun nanofibers displayed a significant advantage in desorption efficiency and adsorption selectivity. Stability studies were conducted as a comparative experiment between PS-AR nanofibers and Tenax TA using toluene as the model compound. No stability problems were observed upon storage of toluene on both PS-AR nanofibers and Tenax TA over 60 hours period when maintained in an ultra-freezer (−80°C). The nanofibers provided slightly better stability for the adsorbed analytes than Tenax TA under other storage conditions. In addition, the nanofibers also provided slightly better precision than Tenax TA. The quantitative adsorption of PS-AR nanofibers exhibited a good linearity, as evidenced by the 0.988–0.999 range of regression coefficients (R). These results suggest that for VOCs sampling the electrospun nanofibers can be a potential ideal adsorbent. PMID:27776140

  19. Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber.

    PubMed

    Gallego, E; Perales, J F; Roca, F J; Guardino, X

    2014-02-01

    Closed landfills can be a source of VOC and odorous nuisances to their atmospheric surroundings. A self-designed cylindrical air flux chamber was used to measure VOC surface emissions in a closed industrial landfill located in Cerdanyola del Vallès, Catalonia, Spain. The two main objectives of the study were the evaluation of the performance of the chamber setup in typical measurement conditions and the determination of the emission rates of 60 different VOC from that industrial landfill, generating a valuable database that can be useful in future studies related to industrial landfill management. Triplicate samples were taken in five selected sampling points. VOC were sampled dynamically using multi-sorbent bed tubes (Carbotrap, Carbopack X, Carboxen 569) connected to SKC AirCheck 2000 pumps. The analysis was performed by automatic thermal desorption coupled with a capillary gas chromatograph/mass spectrometry detector. The emission rates of sixty VOC were calculated for each sampling point in an effort to characterize surface emissions. To calculate average, minimum and maximum emission values for each VOC, the results were analyzed by three different methods: Global, Kriging and Tributary area. Global and Tributary area methodologies presented similar values, with total VOC emissions of 237 ± 48 and 222 ± 46 g day(-1), respectively; however, Kriging values were lower, 77 ± 17 gd ay(-1). The main contributors to the total emission rate were aldehydes (nonanal and decanal), acetic acid, ketones (acetone), aromatic hydrocarbons and alcohols. Most aromatic hydrocarbon (except benzene, naphthalene and methylnaphthalenes) and aldehyde emission rates exhibited strong correlations with the rest of VOC of their family, indicating a possible common source of these compounds. B:T ratio obtained from the emission rates of the studied landfill suggested that the factors that regulate aromatic hydrocarbon distributions in the landfill emissions are different from the ones

  20. Comprehensive Analyzer for Biogenic Volatile Organic Compounds Detected as Total Ozone Reactivity

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.

    2011-12-01

    Volatile organic compounds, VOCs, are emitted from various sources into the atmosphere. Through the reactions of VOCs with atmospheric radicals (eg. daytime OH, nighttime NO3, and all-day O3), formation of photochemical oxidants and secondary organic aerosols, SOA, are important. To investigate the mechanisms of reactions in the atmosphere and to control such secondary products effectively, it is essential to capture the behavior of VOC emission with the radical reactivity of VOCs considered. Recently, in addition to OH reactions of anthropogenic VOCs, SOA formation due to ozonolysis of biogenic VOCs (BVOCs) is one of the hottest topics in the atmospheric chemistry. It is difficult to analyze all the species individually due to the great number of VOCs. In this study, a comprehensive tool for capturing the total reactivity of BVOCs with ozone is realized utilizing a chemiluminescence ozone analyzer. A sensitive and fast-response ozone analyzer was developed based on an existing chemiluminescent NO analyzer (CLD). The CLD-O3 analyzer was used to monitor the fast variation of O3 in the sample of the VOC + O3 experiment. When O3 was added to the VOC sample, the reduction of O3 due to VOC was monitored and the O3 reactivity RO3 was determined with the reaction time considered. Dependence of the response of analyzer on the reaction time and the reactivity of sample was examined and confirmed as reasonable. As a result, VOCs can be detected at the level of ppbv (as limonene, S/N = 3). The detection limit of RO3 was 0.0002 s-1. For the test of ozone reactivity measurement of BVOCs emitted from the real vegetation, variation of ozone reactivity was significantly observed after the nursery was put into a closed chamber. In addition, just after the leaves of the plant were physically stimulated, observed reactivity increased. It was experimentally confirmed that stimulus to the leaves of the plant resulted in the increase of total BVOC emission. Consequently, it was

  1. Volatile Organic Compounds Induced by Herbivory of the Soybean Looper Chrysodeixis includens in Transgenic Glyphosate-Resistant Soybean and the Behavioral Effect on the Parasitoid, Meteorus rubens.

    PubMed

    Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G

    2016-08-01

    Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.

  2. Characterization of volatile organic compounds from different cooking emissions

    NASA Astrophysics Data System (ADS)

    Cheng, Shuiyuan; Wang, Gang; Lang, Jianlei; Wen, Wei; Wang, Xiaoqi; Yao, Sen

    2016-11-01

    Cooking fume is regarded as one of the main sources of urban atmospheric volatile organic compounds (VOCs) and its chemical characteristics would be different among various cooking styles. In this study, VOCs emitted from four different Chinese cooking styles were collected. VOCs concentrations and emission characteristics were analyzed. The results demonstrated that Barbecue gave the highest VOCs concentrations (3494 ± 1042 μg/m3), followed by Hunan cuisine (494.3 ± 288.8 μg/m3), Home cooking (487.2 ± 139.5 μg/m3), and Shandong cuisine (257.5 ± 98.0 μg/m3). The volume of air drawn through the collection hood over the stove would have a large impact on VOCs concentration in the exhaust. Therefore, VOCs emission rates (ER) and emission factors (EF) were also estimated. Home cooking had the highest ER levels (12.2 kg/a) and Barbecue had the highest EF levels (0.041 g/kg). The abundance of alkanes was higher in Home cooking, Shandong cuisine and Hunan cuisine with the value of 59.4%-63.8%, while Barbecue was mainly composed of alkanes (34.7%) and alkenes (39.9%). The sensitivity species of Home cooking and Hunan cuisine were alkanes, and that of Shandong cuisine and Barbecue were alkenes. The degree of stench pollution from cooking fume was lighter.

  3. Clinical Application of Volatile Organic Compound Analysis for Detecting Infectious Diseases

    PubMed Central

    Nanda, Ranjan; Chakraborty, Trinad

    2013-01-01

    SUMMARY This review article introduces the significance of testing of volatile organic compounds (VOCs) in clinical samples and summarizes important features of some of the technologies. Compared to other human diseases such as cancer, studies on VOC analysis in cases of infectious diseases are limited. Here, we have described results of studies which have used some of the appropriate technologies to evaluate VOC biomarkers and biomarker profiles associated with infections. The publications reviewed include important infections of the respiratory tract, gastrointestinal tract, urinary tract, and nasal cavity. The results highlight the use of VOC biomarker profiles resulting from certain infectious diseases in discriminating between infected and healthy subjects. Infection-related VOC profiles measured in exhaled breath as well as from headspaces of feces or urine samples are a source of information with respect to disease detection. The volatiles emitted in clinical matrices may on the one hand represent metabolites of the infecting pathogen or on the other hand reflect pathogen-induced host responses or, indeed, a combination of both. Because exhaled-breath samples are easy to collect and online instruments are commercially available, VOC analysis in exhaled breath appears to be a promising tool for noninvasive detection and monitoring of infectious diseases. PMID:23824368

  4. Volatile organic compounds (VOCs) from biomass burning: GC-MS analysis of primary combustion emissions of fuels common to North America

    NASA Astrophysics Data System (ADS)

    Gilman, J.; De Gouw, J. A.; Coggon, M.; Koss, A.; Lerner, B. M.; Roberts, J. M.; Selimovic, V.; Sekimoto, K.; Yokelson, R. J.; Yuan, B.; Warneke, C.

    2017-12-01

    Biomass burning (BB), both natural and human-caused, is a significant source of atmospheric gases and particles. Combustion of biomass releases a complex variety of carbon-containing gases called volatile organic compounds (VOCs) that may adversely affect air quality and climate. Here we present results from the first phase of Fire Influence on Regional and Global Environments Experiment (FIREX) that was conducted at the USDA Fire Sciences Laboratory in Missoula, Montana in the fall of 2016. The goal of these laboratory experiments were to measure primary combustion emissions of fuels common to Northwestern U.S. and Canada using a variety of state-of-the-art analytical instrumentation. The data presented here utilizes a custom-built gas chromatography - mass spectrometry (GC-MS) instrument to characterize C2-C12 VOCs via in-situ sampling as well as offline analysis of diluted smoke samples stored in electropolished stainless steel whole air samplers (WAS). This analysis focuses on identifying VOCs that are (i) biomass burning and/or fuel-specific tracers, (ii) air toxics and (iii) highly-reactive VOCs that are potential precursors for photochemical ozone and/or organic aerosol formation. Of particular interest, is the identification and characterization of VOC tracers that may be useful for biomass burning specific photochemical clocks such as furan and nitrile-based molecules. Comparison of concurrently collected in-situ and whole air samples of diluted smoke will be used to identify potential sampling artefacts associated with WAS intended for use in the upcoming FIREX NOAA WP-3D research flights in 2019.

  5. Source profiles of volatile organic compounds associated with solvent use in Beijing, China

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Shao, Min; Lu, Sihua; Wang, Bin

    2010-05-01

    Compositions of volatile organic compound (VOC) emissions from painting applications and printing processes were sampled and measured by gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) in Beijing. Toluene and C8 aromatics were the most abundant species, accounting for 76% of the total VOCs emitted from paint applications. The major species in printing emissions included heavier alkanes and aromatics, such as n-nonane, n-decane, n-undecane, toluene, and m/p-xylene. Measurements of VOCs obtained from furniture paint emissions in 2003 and 2007 suggest a quick decline in benzene levels associated with formulation changes in furniture paints during these years. A comparison of VOC source profiles for painting and printing between Beijing and other parts of the world showed significant region-specific discrepancies, probably because of different market demands and environmental standards. We conducted the evaluation of the source reactivities for various VOC emission sources. The ozone formation potential (OFP) for unit mass of VOCs source emissions is the highest for paint applications. Substituting solvent-based paints by water-based in Beijing will lead to an OFP reduction of 152,000 tons per year, which is more than 1/4 of the OFPs for VOCs emissions from vehicle exhaust in the city.

  6. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.

    PubMed

    Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang

    2017-01-01

    Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  8. Characterization of Emissions of Volatile Organic Compounds from Interior Alkyd Paint.

    PubMed

    Fortmann, Roy; Roache, Nancy; Chang, John C S; Guo, Zhishi

    1998-10-01

    Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9-C12); C8-C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m 3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variables, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint

  9. Characterization of emissions of volatile organic compounds from interior alkyd paint.

    PubMed

    Fortmann, R; Roache, N; Chang, J C; Guo, Z

    1998-10-01

    Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9-C12); C8-C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variable, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint

  10. Application of inverse dispersion model for estimating volatile organic compounds emitted from the offshore industrial park

    NASA Astrophysics Data System (ADS)

    Tsai, M.; Lee, C.; Yu, H.

    2013-12-01

    In the last 20 years, the Yunlin offshore industrial park has significantly contributed to the economic development of Taiwan. Its annual production value has reached almost 12 % of Taiwan's GDP in 2012. The offshore industrial park also balanced development of urban and rural in areas. However, the offshore industrial park is considered the major source of air pollution to nearby counties, especially, the emission of Volatile Organic Compounds(VOCs). Studies have found that exposures to high level of some VOCs have caused adverse health effects on both human and ecosystem. Since both health and ecological effects of air pollution have been the subject of numerous studies in recent years, it is a critical issue in estimating VOCs emissions. Nowadays emission estimation techniques are usually used emissions factors in calculation. Because the methodology considered totality of equipment activities based on statistical assumptions, it would encounter great uncertainty between these coefficients. This study attempts to estimate VOCs emission of the Yunlin Offshore Industrial Park using an inverse atmospheric dispersion model. The inverse modeling approach will be applied to the combination of dispersion modeling result which input a given one-unit concentration and observations at air quality stations in Yunlin. The American Meteorological Society-Environmental Protection Agency Regulatory Model (AERMOD) is chosen as the tool for dispersion modeling in the study. Observed concentrations of VOCs are collected by the Taiwanese Environmental Protection Administration (TW EPA). In addition, the study also analyzes meteorological data including wind speed, wind direction, pressure and temperature etc. VOCs emission estimations from the inverse atmospheric dispersion model will be compared to the official statistics released by Yunlin Offshore Industrial Park. Comparison of estimated concentration from inverse dispersion modeling and official statistical concentrations will

  11. 40 CFR Table 1 to Subpart C - VOC Content Limits by Product Category

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false VOC Content Limits by Product Category... PRODUCTS National Volatile Organic Compound Emission Standards for Consumer Products Pt. 59, Subpt. C, Table 1 Table 1 to Subpart C—VOC Content Limits by Product Category Product category VOC content limit...

  12. 40 CFR Table 1 to Subpart C - VOC Content Limits by Product Category

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false VOC Content Limits by Product Category... PRODUCTS National Volatile Organic Compound Emission Standards for Consumer Products Pt. 59, Subpt. C, Table 1 Table 1 to Subpart C—VOC Content Limits by Product Category Product category VOC content limit...

  13. 40 CFR Table 1 to Subpart C - VOC Content Limits by Product Category

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false VOC Content Limits by Product Category... PRODUCTS National Volatile Organic Compound Emission Standards for Consumer Products Pt. 59, Subpt. C, Table 1 Table 1 to Subpart C—VOC Content Limits by Product Category Product category VOC content limit...

  14. Unmetabolized VOCs in urine as biomarkers of low level occupational exposure.

    PubMed

    Janasik, Beata; Jakubowski, Marek; Wesołowski, Wiktor; Kucharska, Małgorzata

    2010-01-01

    To compare the usefulness of determining unchanged forms of volatile organic compounds (VOCs), namely toluene (TOL), ethylbenzene (EB) and xylene (XYL), in urine with the effectiveness of the already used biomarkers of occupational exposure. Surveys were conducted in two workplaces (paint factory and footwear factory). In total, 65 subjects participated in the study. Air samples were collected using individual samplers during work shift. Urine and blood samples were collected at the end of work shift. Urine samples were analyzed for unchanged compounds and selected metabolites, while blood samples were tested for unchanged compounds. VOCs in blood and urine were determined by solid phase microextraction gas chromatography (SPME-GC-MS). In the paint factory, the geometric mean (GM) concentrations of VOCs in the air ranged as follows: 0.2-4.7 mg/m(3) for TOL, 0.4-40.9 mg/m(3) for EB and 0.1-122.6 mg/m(3) for XYL. In the footwear factory, the GM concentration of TOL in the air amounted to 105.4 mg/m(3). A significant correlation (p < 0.05) was observed between VOCs in blood, urine and air. The regression analyses performed for paint factory workers showed that TOL-U and TOL-B were better biomarkers of exposure (r = 0.72 and r = 0.81) than benzoic acid (r = 0.12) or o-cresol (r = 0.55). The findings of the study point out that the concentration of unchanged VOCs in urine can be a reliable biological indicator of low level occupational exposure to these compounds.

  15. Global comparison of VOC and CO observations in urban areas

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, Erika; Monks, Paul S.; Plass-Duelmer, Christian

    2010-12-01

    Speciated volatile organic compound (VOC) and carbon monoxide (CO) measurements from the Marylebone Road site in central London from 1998 through 2008 are presented. Long-term trends show statistically significant decreases for all the VOCs considered, ranging from -3% to -26% per year. Carbon monoxide decreased by -12% per year over the measurement period. The VOC trends observed at the kerbside site in London showed greater rates of decline relative to trends from monitoring sites in rural England (Harwell) and a remote high-altitude site (Hohenpeissenberg), which showed decreases for individual VOCs from -2% to -13% per year. Over the same 1998 through 2008 period VOC to CO ratios for London remained steady, an indication that emissions reduction measures affected the measured compounds equally. Relative trends comparing VOC to CO ratios between Marylebone Road and Hohenpeissenberg showed greater similarities than absolute trends, indicating that emissions reductions measures in urban areas are reflected by regional background locations. A comparison of VOC mixing ratios and VOC to CO ratios was undertaken for London and other global cities. Carbon monoxide and VOCs (alkanes greater than C 5, alkenes, and aromatics) were found to be strongly correlated (>0.8) in the Annex I countries, whereas only ethene and ethyne were strongly correlated with CO in the non-Annex I countries. The correlation results indicate significant emissions from traffic-related sources in Annex I countries, and a much larger influence of other sources, such as industry and LPG-related sources in non-Annex I countries. Yearly benzene to ethyne ratios for London from 2000 to 2008 ranged from 0.17 to 0.29 and compared well with previous results from US cities and three global megacities.

  16. Source Characterization of Volatile Organic Compounds Affecting the Air Quality in a Coastal Urban Area of South Texas

    PubMed Central

    Sanchez, Marciano; Karnae, Saritha; John, Kuruvilla

    2008-01-01

    Selected Volatile Organic Compounds (VOC) emitted from various anthropogenic sources including industries and motor vehicles act as primary precursors of ozone, while some VOC are classified as air toxic compounds. Significantly large VOC emission sources impact the air quality in Corpus Christi, Texas. This urban area is located in a semi-arid region of South Texas and is home to several large petrochemical refineries and industrial facilities along a busy ship-channel. The Texas Commission on Environmental Quality has setup two continuous ambient monitoring stations (CAMS 633 and 634) along the ship channel to monitor VOC concentrations in the urban atmosphere. The hourly concentrations of 46 VOC compounds were acquired from TCEQ for a comprehensive source apportionment study. The primary objective of this study was to identify and quantify the sources affecting the ambient air quality within this urban airshed. Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) was applied to the dataset. PCA identified five possible sources accounting for 69% of the total variance affecting the VOC levels measured at CAMS 633 and six possible sources affecting CAMS 634 accounting for 75% of the total variance. APCS identified natural gas emissions to be the major source contributor at CAMS 633 and it accounted for 70% of the measured VOC concentrations. The other major sources identified at CAMS 633 included flare emissions (12%), fugitive gasoline emissions (9%), refinery operations (7%), and vehicle exhaust (2%). At CAMS 634, natural gas sources were identified as the major source category contributing to 31% of the observed VOC. The other sources affecting this site included: refinery operations (24%), flare emissions (22%), secondary industrial processes (12%), fugitive gasoline emissions (8%) and vehicle exhaust (3%). PMID:19139530

  17. Particle and VOC emission factor measurements for anthropogenic sources in West Africa

    NASA Astrophysics Data System (ADS)

    Keita, Sekou; Liousse, Cathy; Yoboué, Véronique; Dominutti, Pamela; Guinot, Benjamin; Assamoi, Eric-Michel; Borbon, Agnès; Haslett, Sophie L.; Bouvier, Laetitia; Colomb, Aurélie; Coe, Hugh; Akpo, Aristide; Adon, Jacques; Bahino, Julien; Doumbia, Madina; Djossou, Julien; Galy-Lacaux, Corinne; Gardrat, Eric; Gnamien, Sylvain; Léon, Jean F.; Ossohou, Money; Touré N'Datchoh, E.; Roblou, Laurent

    2018-06-01

    A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (Air Pollution and Health) of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) FP7 program. Emission sources considered here include wood (hevea and iroko) and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM), elemental carbon (EC), primary organic carbon (OC) and volatile organic compounds (VOCs) have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea), and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10). Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg-1 of fuel burned (g kg-1), 11.05 ± 4.55 and 41.12 ± 24.62 g kg-1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg-1 fuel for EC, 65.11 g kg-1 fuel for OC and 496 g kg-1 fuel for TPM). The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg-1 fuel). EC is primarily emitted in the ultrafine fraction, with 77 % of

  18. Volatile organic compounds in stormwater from a community of Beijing, China.

    PubMed

    Li, Haiyan; Wang, Youshu; Liu, Fei; Tong, Linlin; Li, Kun; Yang, Hua; Zhang, Liang

    2018-08-01

    Stormwater samples were collected from six different land use sites with three time-intervals during a precipitation event on August 12, 2016, from a community of Beijing, China. A total of 46 species volatile organic compounds (VOCs) were detected in these stormwater samples, including methyl tertiary-butyl ether (MTBE), aromatic hydrocarbons, halogenated aromatics, Halogenated alkanes, and alkenes. The total VOC concentrations varied in the six sites following order: highway junction > city road > gas station > park > campus > residential area, except for MTBE, which was much higher at gas station compared to other land use sites. ANOVA results indicated both land use and precipitation time intervals could significantly affect the VOC concentrations even in the small area. The Beijing atmospheric VOC concentrations were too low to explain the high concentrations in stormwater, suggesting that land surfaces may be the main sources of VOC other than the ambient atmosphere. MTBE and other VOCs correlation analysis indicated that MTBE mostly came from gasoline emissions, spills or vehicle exhausts, whereas the BTEX (benzene, toluene, ethylbenzene, Xylenes) and the halogenated aromatics were transferred from chemical plants through land surfaces accumulating and the wind blowing atmospheric VOCs. Xylenes/ethylbenzene (X/E) ratios variations indicated that stormwater incorporated larger amount of fresh emitted air during the precipitation event than prior to it. Information of these stormwater VOCs in this study could be used in the community pollution reduction strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. EVALUATION OF LOW-VOC LATEX PAINTS

    EPA Science Inventory

    The paper gives results of an evaluation of four commercially available low-VOC (volatile organic compound) latex paints as substitutes for conventional latex paints by assessing both their emission characteristics and their performance as coatings. Bulk analysis indicated that ...

  20. Occurrence of Indoor VOCs in Nursery School - Case Study

    NASA Astrophysics Data System (ADS)

    Juhasova Senitkova, Ingrid

    2017-10-01

    Children’s exposure to air pollutants is an important public health challenge. Particular attention should be paid to preschools because younger children are more vulnerable to air pollution than higher grade children and spend more time indoors. The concentrations of volatile organic compounds (VOCs) as well as carbon dioxide (CO2) concentrations in younger and older children’s classrooms during the winter season were studied. An electronic nose based on gas chromatography was used for the analysis of individual VOCs and a photoionization detector with a UV lamp was used for the determination of total volatile organic compounds (TVOC) concentration. Continuous measurements of CO2 concentrations both inside classrooms and outside each building were performed using automatic portable monitors. Improving ventilation, decreasing the occupancy per room and completing cleaning activities following occupancy periods can contribute to alleviating high CO2 and VOCs occurrence levels.

  1. Contrasting VOC Composition in London, UK and Beijing, China

    NASA Astrophysics Data System (ADS)

    Dunmore, R.; Hopkins, J. R.; Shaw, M.; Squires, F. A.; Lee, J. D.; Lewis, A. C.; Hamilton, J. F.

    2017-12-01

    With an increasing fraction of the world's population now living in megacities, urban air quality in those locations has the potential to be one of the largest controllable factors for public health. Both London and Beijing are classified as megacities, with the latter almost twice as densely populated. The key drivers and trajectory of air pollution are unique to each location; London has substantially reduced PM10 concentrations over the past two decades but continues to have high urban NO2. Beijing has had well-reported high levels of PM, is now in a phase of gradual decline, and has proportionately low NO2. Both locations however, continue to emit a mix of gas phase pollutants with the potential to form photochemical ozone. Whilst the abundance of NOx in each city is relatively straightforward to quantify, the VOC mixtures that are present differ between these two cities and this has consequential impacts on the downwind ozone formation potential. This work reports a comprehensive assessment of VOC speciation, reactivity and abundance in the two cities using a common set of inter-comparable measurement approaches. Hourly observations of VOCs over the range C2 - C13+ were made using two gas chromatography (GC) instruments; a PLOT column based GC for the most volatile fraction (C2-C7) and a comprehensive two-dimensional GC (GCxGC) for VOCs with more than 7 carbons. London has atmospheric VOC concentrations that in mass and reactivity terms are dominated by longer chain VOCs from diesel fuel. The VOC mixture in ambient Beijing air is dominated by short chain VOCs, a mix of both alkenes from incomplete combustion sources and alkanes and aromatics from petrochemical sources. The substantial difference in the fleet proportions of gasoline and diesel powered vehicles between the two cities is clearly reflected in ambient VOCs. In summertime, isoprene was a notable contributor to VOC reactivity in both cities despite both being highly urbanised locations. The absolute

  2. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate.

    PubMed

    Forbes, Shari L; Perrault, Katelynn A; Stefanuto, Pierre-Hugues; Nizio, Katie D; Focant, Jean-François

    2014-01-01

    The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography--time-of-flight mass spectrometry (GC × GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC × GC-TOFMS were demonstrated

  3. Volatile organic compound emissions from municipal solid waste disposal sites: a case study of Mumbai, India.

    PubMed

    Majumdar, Dipanjali; Srivastava, Anjali

    2012-04-01

    Improper solid waste management leads to aesthetic and environmental problems. Emission ofvolatile organic compounds (VOCs) is one of the problems from uncontrolled dumpsite. VOCs are well known to be hazardous to human health and many of them are known or potential carcinogens. They also contribute to ozone formation at ground level and climate change as well. The qualitative and quantitative analysis of VOCs emitting from two municipal waste (MSW) disposal sites in Mumbai, India, namely Deonar and Malad, are presented in this paper. Air at dumpsites was sampled and analyzed on gas chromatography-mass spectrometry (GC-MS) in accordance with U.S. Environmental Protection Agency (EPA) TO-17 compendium method for analysis of toxic compounds. As many as 64 VOCs were qualitatively identified, among which 13 are listed under hazardous air pollutants (HAPs). Study of environmental distribution of a few major VOCs indicates that although air is the principal compartment of residence, they also get considerably partitioned in soil and vegetation. The CO2 equivalent of target VOCs from the landfills in Malad and Deonar shows that the total yearly emissions are 7.89E+03 and 8.08E+02 kg, respectively. The total per hour ozone production from major VOCs was found to be 5.34E-01 ppb in Deonar and 9.55E-02 ppb in Malad. The total carcinogenic risk for the workers in the dumpsite considering all target HAPs are calculated to be 275 persons in 1 million in Deonar and 139 persons in 1 million in Malad.

  4. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts.

    PubMed

    Li, Guohao; Wei, Wei; Shao, Xia; Nie, Lei; Wang, Hailin; Yan, Xiao; Zhang, Rui

    2018-05-01

    In China, volatile organic compound (VOC) control directives have been continuously released and implemented for important sources and regions to tackle air pollution. The corresponding control requirements were based on VOC emission amounts (EA), but never considered the significant differentiation of VOC species in terms of atmospheric chemical reactivity. This will adversely influence the effect of VOC reduction on air quality improvement. Therefore, this study attempted to develop a comprehensive classification method for typical VOC sources in the Beijing-Tianjin-Hebei region (BTH), by combining the VOC emission amounts with the chemical reactivities of VOC species. Firstly, we obtained the VOC chemical profiles by measuring 5 key sources in the BTH region and referencing another 10 key sources, and estimated the ozone formation potential (OFP) per ton VOC emission for these sources by using the maximum incremental reactivity (MIR) index as the characteristic of source reactivity (SR). Then, we applied the data normalization method to respectively convert EA and SR to normalized EA (NEA) and normalized SR (NSR) for various sources in the BTH region. Finally, the control index (CI) was calculated, and these sources were further classified into four grades based on the normalized CI (NCI). The study results showed that in the BTH region, furniture coating, automobile coating, and road vehicles are characterized by high NCI and need to be given more attention; however, the petro-chemical industry, which was designated as an important control source by air quality managers, has a lower NCI. Copyright © 2017. Published by Elsevier B.V.

  5. The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo

    PubMed Central

    MacKenzie, A. R.; Langford, B.; Pugh, T. A. M.; Robinson, N.; Misztal, P. K.; Heard, D. E.; Lee, J. D.; Lewis, A. C.; Jones, C. E.; Hopkins, J. R.; Phillips, G.; Monks, P. S.; Karunaharan, A.; Hornsby, K. E.; Nicolas-Perea, V.; Coe, H.; Gabey, A. M.; Gallagher, M. W.; Whalley, L. K.; Edwards, P. M.; Evans, M. J.; Stone, D.; Ingham, T.; Commane, R.; Furneaux, K. L.; McQuaid, J. B.; Nemitz, E.; Seng, Yap Kok; Fowler, D.; Pyle, J. A.; Hewitt, C. N.

    2011-01-01

    We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity. PMID:22006961

  6. Volatile organic compound mixing ratios above Beijing in November and December 2016

    NASA Astrophysics Data System (ADS)

    Acton, William; Shaw, Marvin; Huang, Zhonghui; Wang, Zhaoyi; Wang, Xinming; Zhang, Yanli; Davison, Brian; Langford, Ben; Mullinger, Neil; Nemitz, Eiko; Fu, Pingqing; Squires, Freya; Carpenter, Lucy; Lewis, Alastair; Hewitt, Nick

    2017-04-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from vegetation and anthropogenic sources such as fossil fuel combustion, biomass burning and the evaporation of petroleum products. These compounds play an important role in the chemistry of the lower atmosphere through secondary organic aerosol (SOA) formation and facilitating the formation of tropospheric ozone. As well as their indirect impact on human health via the formation of ozone and SOA, some VOCs, including benzene, directly affect human health adversely. Here we report VOC mixing ratios measured in Beijing during a 5 week intensive field campaign from the 7th November to the 10th December 2016. This work was carried out as part of the Sources and Emissions of Air Pollutants in Beijing (AIRPOLL-Beijing) work project within the Air Pollution and Human Health in a Developing Megacity (APHH-Beijing) research programme. APHH is a large multi-institutional study which aims to record the concentrations and identify the sources of urban air pollutants in Beijing, determine exposure, understand their effects on human health, and to identify solutions. VOC mixing ratios were recorded using a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS, Ionicon Analytik) and a Selected Ion Flow Tube-Mass Spectrometer (SIFT-MS, SYFT Technologies). During the measurement period Beijing was subject to multiple pollution events that alternated with periods of relatively good air quality, allowing the VOCs within the polluted air masses to be identified and quantified. VOCs were sampled at 102 m with additional gradient measurements made at 3, 15, 32 and 64 m providing a vertical profile of VOC mixing ratios. Mixing ratios of methanol, acetonitrile, acetaldehyde, acetone, isoprene and aromatics species will be reported together with a discussion of potential sources. Comparisons will then be drawn with other large cities.

  7. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds

    USDA-ARS?s Scientific Manuscript database

    Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...

  8. Pollution characteristics of volatile organic compounds, polycyclic aromatic hydrocarbons and phthalate esters emitted from plastic wastes recycling granulation plants in Xingtan Town, South China

    NASA Astrophysics Data System (ADS)

    Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang

    2013-06-01

    With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.

  9. Quantification of indoor and outdoor volatile organic compounds (VOCs) in pubs and cafés in Pamplona, Spain

    NASA Astrophysics Data System (ADS)

    Parra, M. A.; Elustondo, D.; Bermejo, R.; Santamaría, J. M.

    Indoor and outdoor concentrations of volatile organic compounds (VOCs) were measured in 30 pubs and cafés (13 smoking, 13 non-smoking and 4 mixed atmospheres) in Pamplona city, Spain. The samples were obtained using a sampling pocket pump connected to stainless steel tubes filled with Tenax TA, and subsequently analysed by means of GC-MS coupled to a thermal desorption unit. The levels registered were found to be generally higher indoors. Smoking, cleaning products and the entrance of outdoor pollutants were identified as the main sources of these compounds, the later being especially relevant in non-smoking areas. BTEX concentrations were higher during the winter months and higher in smoking areas also.

  10. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Tanushree

    Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g.,more » perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.« less

  11. Source signature of volatile organic compounds from oil and natural gas operations in northeastern Colorado.

    PubMed

    Gilman, J B; Lerner, B M; Kuster, W C; de Gouw, J A

    2013-02-05

    An extensive set of volatile organic compounds (VOCs) was measured at the Boulder Atmospheric Observatory (BAO) in winter 2011 in order to investigate the composition and influence of VOC emissions from oil and natural gas (O&NG) operations in northeastern Colorado. BAO is 30 km north of Denver and is in the southwestern section of Wattenberg Field, one of Colorado's most productive O&NG fields. We compare VOC concentrations at BAO to those of other U.S. cities and summertime measurements at two additional sites in northeastern Colorado, as well as the composition of raw natural gas from Wattenberg Field. These comparisons show that (i) the VOC source signature associated with O&NG operations can be clearly differentiated from urban sources dominated by vehicular exhaust, and (ii) VOCs emitted from O&NG operations are evident at all three measurement sites in northeastern Colorado. At BAO, the reactivity of VOCs with the hydroxyl radical (OH) was dominated by C(2)-C(6) alkanes due to their remarkably large abundances (e.g., mean propane = 27.2 ppbv). Through statistical regression analysis, we estimate that on average 55 ± 18% of the VOC-OH reactivity was attributable to emissions from O&NG operations indicating that these emissions are a significant source of ozone precursors.

  12. COMPOSITE SAMPLING FOR SOIL VOC ANALYSIS

    EPA Science Inventory

    Data published by numerous researchers over the last decade demonstrate that there is a high degree of spatial variability in the measurement of volatile organic compounds (VOCs) in soil at contaminated waste sites. This phenomenon is confounded by the use of a small sample aliqu...

  13. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  14. Volatile organic compound emissions from the oil and natural gas industry in the Uinta Basin, Utah: point sources compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J.; Lerner, B.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-05-01

    The emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uinta Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas wells using dry-gas collection, which means dehydration happens at the well, were clearly associated with higher mixing ratios than other wells. Another large source was the flowback pond near a recently hydraulically re-fractured gas well. The comparison of the VOC composition of the emissions from the oil and natural gas wells showed that wet gas collection wells compared well with the majority of the data at Horse Pool and that oil wells compared well with the rest of the ground site data. Oil wells on average emit heavier compounds than gas wells. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  15. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  16. [Characteristics of volatile organic compounds (VOCs) emission from electronic products processing and manufacturing factory].

    PubMed

    Cui, Ru; Ma, Yong-Liang

    2013-12-01

    Based on the EPA method T0-11 and 14/15 for measurement of toxic organics in air samples, fast VOCs detector, Summa canister and DNPH absorbent were used to determine the VOCs concentrations and the compositions in the ambient air of the workshops for different processes as well as the emission concentration in the exhaust gas. In all processes that involved VOCs release, concentrations of total VOCs in the workshops were 0.1-0.5 mg x m(-3), 1.5-2.5 mg x m(-3) and 20-200 mg x m(-3) for casting, cutting and painting respectively. Main compositions of VOCs in those workshops were alkanes, eneynes, aromatics, ketones, esters and ethers, totally over 20 different species. The main compositions in painting workshop were aromatics and ketones, among which the concentration of benzene was 0.02-0.34 mg x m(-3), toluene was 0.24-3.35 mg x m(-3), ethyl benzene was 0.04-1.33 mg x m(-3), p-xylene was 0.13-0.96 mg x m(-3), m-xylene was 0.02-1.18 mg x m(-3), acetone was 0.29-15.77 mg x m(-3), 2-butanone was 0.06-22.88 mg x m(-3), cyclohexene was 0.02-25.79 mg x m(-3), and methyl isobutyl ketone was 0-21.29 mg x m(-3). The VOCs emission from painting process was about 14 t x a(-1) for one single manufacturing line, and 840 t x a(-1) for the whole factory. According to the work flows and product processes, the solvent used during painting process was the main source of VOCs emission, and the exhaust gas was the main emission point.

  17. Analysis of Odor-Causing VOCs and Semi-VOCs Associated with Particulate Matter in Swine Barns Using SPME-GC-MS-Olfactometry

    NASA Astrophysics Data System (ADS)

    Cai, Lingshuang; Koziel, Jacek A.; Lo, Yin-Cheung; Hoff, Steven J.

    2009-05-01

    Swine operations can affect air quality by emissions of odor, volatile organic compounds (VOCs) and other gases, and particulate matter (PM). Particulate matter has been proposed to be an important pathway for carrying odor. However, little is known about the odor-VOCs-PM interactions. In this research, continuous PM sampling was conducted simultaneously with three collocated TEOM analyzers inside a 1000-head swine finish barn located in central Iowa. Each TEOM (tapered element oscillating microbalance) was fitted with total suspended particulate (TSP), PM-10, PM-2.5 and PM-1 preseparators. Used filters were stored in 40 mL vials and transported to the laboratory. VOCs adsorbed/absorbed to dust were allowed to equilibrate with vial headspace. Solid-phase microextraction (SPME) Carboxen/polydimethylsiloxane(PDMS) 85 μm fibers were used to extract VOCs. Simultaneous chemical and olfactometry analyses of VOCs and odor associated with swine PM were completed using a gas chromatography-mass-olfactometry (GC-MS-O) system. Fifty VOCs categorized into nine chemical function groups were identified and confirmed with standards. Five of them are classified as hazardous air pollutants. VOCs were characterized with a wide range of molecular weight, boiling points, vapor pressures, water solubilities, odor detection thresholds, and atmospheric reactivities. All characteristic swine VOCs and odorants were present in PM and their abundance was proportional to PM size. However, the majority of VOCs and characteristic swine odorants were preferentially bound to smaller-size PM. The findings indicate that a significant fraction of swine odor can be carried by PM. Research of the effects of PM control on swine odor mitigation is warranted.

  18. Effects of cold temperature and ethanol content on VOC ...

    EPA Pesticide Factsheets

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 °C and 24 °C). The cold start phase and cold ambient temperature increased VOC and MSAT emissions dramatically by up to several orders of magnitude compared to emissions during other phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials during the cold starts were significantly higher during cold temperature tests by 7 to 21 times the warm temperature values. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, the VOC emissions from E0 and E10 fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles. This manuscript communicates APPCD research activities on air toxics VOC emissions from mobile sources from the EPAct dynamometer study. Speciated VOC emissions from light-duty vehicles running on gasoline and ethanol blends at cold tem

  19. Determination of VOCs in the Indoor Air of a New and a Renovated Apartment

    NASA Astrophysics Data System (ADS)

    Meciarova, Ludmila; Vilcekova, Silvia

    2016-06-01

    This study deals with the occurrence of volatile organic compounds (VOCs) in the indoor environment of a new and a renovated apartment. Qualitative determination of VOCs was carried out with a gas chromatograph with surface acoustic wave detector (GC/SAW). Concentrations of total volatile organic compounds (TVOC) were determined by a photoionization detector with UV lamp. Simultaneously, temperature and relative humidity were monitored with a data logger. The aim of this study was to determine of TVOC concentrations, to use of GC/SAW for determination of individual VOCs in indoor air as well as to predict possible sources of VOCs in these apartments. Measurements were performed after each construction work for better resolution of the contributions of individual materials to the levels of VOC. Mean concentrations of TVOC were 624 μg/m3 in the renovated apartment and 1,686 μg/m3 in the new apartment after completion of all works. The results from the renovated apartment showed that the use of new materials can lead to lower levels of organic compounds in indoor air compared to old materials that were less environmentally friendly. Many types of VOCs were found in both apartments. After reviewing the possible sources, it seems that the main sources of these substances were applied coatings and flooring materials.

  20. Pre-oxidation for Colorimetric Sensor Array Detection of VOCs

    PubMed Central

    Lin, Hengwei; Jang, Minseok; Suslick, Kenneth S.

    2011-01-01

    A disposable pre-oxidation technique is reported that dramatically improves the detection and identification of volatile organic compounds (VOCs) by a colorimetric sensor array. By passing a vapor stream through a tube packed with chromic acid on silica immediately before the colorimetric sensor array, the sensitivity to less reactive VOCs is substantially increased and limits of detection (LODs) are improved ~300-fold, permitting the detection, identification, and discrimination of 20 commonly found indoor VOC pollutants at both their immediately dangerous to life or health (IDLH) and at permissible exposure limits (PEL) concentrations. LODs of these pollutants were on average 1.4% of their respective PELs. PMID:21967478

  1. Cold Temperature Effects on Speciated VOC Emissions from modern GDI Light Duty Truck

    EPA Science Inventory

    Although gasoline direct injection (GDI) vehicles represent nearly half of the light-duty vehicle market share, few studies have reported speciated volatile organic compounds (VOCs) in GDI vehicle exhaust emissions. In this study, speciated VOC emissions were characterized from t...

  2. Comparison of the Decomposition VOC Profile during Winter and Summer in a Moist, Mid-Latitude (Cfb) Climate

    PubMed Central

    Forbes, Shari L.; Perrault, Katelynn A.; Stefanuto, Pierre-Hugues; Nizio, Katie D.; Focant, Jean-François

    2014-01-01

    The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC×GC-TOFMS were demonstrated for

  3. GEIGER BRICKEL BENEFITS FROM LOW -VOC COATINGS

    EPA Science Inventory

    Midwest Research Institute, under a cooperative agreement with the U.S. Environmental Protection Agency (EPA), conducted a study to identify wood furniture manufacturing facilities that had converted to low-volatile organic compound (VOC)/hazardous air pollutant (HAP) wood furnit...

  4. In Vivo Volatile Organic Compound Signatures of Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Bergmann, Andreas; Trefz, Phillip; Fischer, Sina; Klepik, Klaus; Walter, Gudrun; Steffens, Markus; Ziller, Mario; Schubert, Jochen K.; Reinhold, Petra; Köhler, Heike; Miekisch, Wolfram

    2015-01-01

    Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of a chronic enteric disease of ruminants. Available diagnostic tests are complex and slow. In vitro, volatile organic compound (VOC) patterns emitted from MAP cultures mirrored bacterial growth and enabled distinction of different strains. This study was intended to determine VOCs in vivo in the controlled setting of an animal model. VOCs were pre-concentrated from breath and feces of 42 goats (16 controls and 26 MAP-inoculated animals) by means of needle trap microextraction (breath) and solid phase microextraction (feces) and analyzed by gas chromatography/ mass spectrometry. Analyses were performed 18, 29, 33, 41 and 48 weeks after inoculation. MAP-specific antibodies and MAP-specific interferon-γ-response were determined from blood. Identities of all marker-VOCs were confirmed through analysis of pure reference substances. Based on detection limits in the high pptV and linear ranges of two orders of magnitude more than 100 VOCs could be detected in breath and in headspace over feces. Twenty eight substances differed between inoculated and non-inoculated animals. Although patterns of most prominent substances such as furans, oxygenated substances and hydrocarbons changed in the course of infection, differences between inoculated and non-inoculated animals remained detectable at any time for 16 substances in feces and 3 VOCs in breath. Differences of VOC concentrations over feces reflected presence of MAP bacteria. Differences in VOC profiles from breath were linked to the host response in terms of interferon-γ-response. In a perspective in vivo analysis of VOCs may help to overcome limitations of established tests. PMID:25915653

  5. EVALUATION OF SINK EFFECTS ON VOCS FROM A LATEX PAINT

    EPA Science Inventory

    The sink strength of two common indoor materials, a carpet and a gypsum board, was evaluated by environmental chamber tests with four volatile organic compounds (VOCs): propylene glycol, ethylene glycol, 2-(2-butoxyethoxy)ethanol (BEE), and texanol. These oxygenated compounds rep...

  6. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    NASA Astrophysics Data System (ADS)

    Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.

    2011-01-01

    Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ - water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  7. VOC Emission and Deposition Eddy Covariance Fluxes above Grassland using PTR-TOF

    NASA Astrophysics Data System (ADS)

    Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.

    2010-12-01

    Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+ - water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmolC m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  8. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    NASA Astrophysics Data System (ADS)

    Ruuskanen, T. M.; Müller, M.; Schnitzhofer, R.; Karl, T.; Graus, M.; Bamberger, I.; Hörtnagl, L.; Brilli, F.; Wohlfahrt, G.; Hansel, A.

    2010-09-01

    Eddy covariance (EC) is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5-20 Hz). For volatile organic compounds (VOC) soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF) for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+-water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes. The smallest reliable fluxes we determined were less than 0.1 nmol m-2 s-1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmol C m-2 s-1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  9. VERIFYING THE VOC CONTROL PERFORMANCE OF BIOREACTORS

    EPA Science Inventory

    The paper describes the verification testing approach used to collect high-quality, peer-reviewed data on the performance of bioreaction-based technologies for the control of volatile organic compounds (VOCs). The verification protocol that describes the approach for these tests ...

  10. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    PubMed

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district.

  11. OH reactivity and potential SOA yields from volatile organic compounds and other trace gases measured in controlled laboratory biomass burns

    Treesearch

    J. B. Gilman; C. Warneke; W. C. Kuster; P. D. Goldan; P. R. Veres; J. M. Roberts; J. A. de Gouw; I. R. Burling; R. J. Yokelson

    2010-01-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire...

  12. FULL-SCALE VIBRATING PERVAPORATION MEMBRANE UNIT: VOC REMOVAL FROM WATER AND SURFACTANT SOLUTIONS

    EPA Science Inventory

    A commercial-scale vibrating membrane system was evaluated for the separation of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Experiments with surrogate solutions of up to five VOCs in the presence and absence of a surfactant were performed to compar...

  13. FULL-SCALE VIBRATING PERVAPORATION MEMBRANE UNIT: VOC REMOVAL FROM WATER AND SURFACTANT SOLUTIONS

    EPA Science Inventory

    A commercial-scale vibrating membrane system with 10 square meters of membrane area was evaluated for the separation of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Experiments with surrogate solutions of up to five VOCs in the presence and absence o...

  14. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro.

    PubMed

    Filipiak, Wojciech; Sponring, Andreas; Mikoviny, Tomas; Ager, Clemens; Schubert, Jochen; Miekisch, Wolfram; Amann, Anton; Troppmair, Jakob

    2008-11-24

    The aim of this work was to confirm the existence of volatile organic compounds (VOCs) specifically released or consumed by lung cancer cells. 50 million cells of the human non-small cell lung cancer (NSCLC) cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours). Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS). Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  15. Volatile Organic Compound (VOC) Analysis For Disease Detection: Proof Of Principle For Field Studies Detecting Paratuberculosis And Brucellosis

    NASA Astrophysics Data System (ADS)

    Knobloch, Henri; Köhler, Heike; Nicola, Commander; Reinhold, Petra; Turner, Claire; Chambers, Mark

    2009-05-01

    A proof of concept investigation was performed to demonstrate that two independent infectious diseases of cattle result in different patterns of volatile organic compounds (VOC) in the headspace of serum samples detectable using an electronic nose (e-nose). A total of 117 sera from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis (paraTB, n = 43) or Brucella sp. (n = 26) and sera from corresponding control animals (n = 48) were randomly and analysed blind to infection status using a ST214 e-nose (Scensive Ltd, Leeds, UK). Samples were collected under non-standardised conditions on different farms from the UK (brucellosis) and Germany (paraTB). The e-nose could differentiate the sera from brucellosis infected, paraTB infected and healthy animals at the population level, but the technology used was not suitable for determination of the disease status of individual animals. Nevertheless, the data indicate that there are differences in the sensor responses depending on the disease status, and therefore, it shows the potential of VOC analysis from serum headspace samples for disease detection.

  16. Influence of Beijing outflow on Volatile Organic Compounds (VOC) observed at a mountain site in North China Plain

    NASA Astrophysics Data System (ADS)

    Suthawaree, Jeeranut; Kato, Shungo; Pochanart, Pakpong; Kanaya, Yugo; Akimoto, Hajime; Wang, Zifa; Kajii, Yoshizumi

    2012-07-01

    In order to elucidate an impact of Beijing outflow on air quality in the mountainous area, measurement campaign was carried out in Mt. Mang, located 40 km north of Beijing in September 2007. Volatile Organic Compounds (VOC) observed at the site were mainly influenced by air masses arriving from urban areas. No significant impact of local emission was found. Correlation plots between selected VOC suggests several major emission sources as internal combustion, industrial emission, and coal, oil and biofuel burning. Air masses were classified into “polluted” (influence of Beijing and its satellite cities) and “clean” air mass by using backward trajectory analysis. Two air mass categories revealed significant different characteristics and mixing ratios. Reaction with OH is a major factor controlling mixing ratio of “clean” air mass while impact of dilution is also play important role on “polluted” air mass. Estimation of photochemical age of “polluted” air mass by assuming “clean” air mass for background mixing ratios reveals an averaged of 1.5-1.8 days.

  17. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    1998-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.

  18. TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR

    EPA Science Inventory

    The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...

  19. Diffuse emissions of Volatile Organic Compounds (VOCs) from soil in volcanic and hydrothermal systems: evidences for the influence of microbial activity on the carbon budget

    NASA Astrophysics Data System (ADS)

    Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco

    2017-04-01

    Soils in volcanic and hydrothermal areas are affected by anomalously high concentrations of gases released from the deep reservoirs, which consists of both inorganic (mainly CO2 and H2S) and organic (volatile organic compounds; VOCs) species. VOCs in volcanic and hydrothermal fluids are mainly composed of saturated and unsaturated hydrocarbons (alkanes, aromatics, alkenes, and cyclics), with variable concentrations of O- and S-bearing compounds and halocarbons, depending on the physicochemical conditions at depth. VOCs in interstitial soil gases and fumarolic emissions from four volcanic and hydrothermal systems in the Mediterranean area (Solfatara Crater, Poggio dell'Olivo and Cava dei Selci, in Italy, and Nisyros Island, in Greece) evidenced clear compositional differences, suggesting that their behavior is strongly affected by secondary processes occurring at shallow depths and likely controlled by microbial activity. Long-chain saturated hydrocarbons were significantly depleted in interstitial soil gases with respect to those from fumarolic discharges, whereas enrichments in O-bearing compounds (e.g. aldehydes, ketones), DMSO2 and cyclics were commonly observed. Benzene was recalcitrant to degradation processes, whereas methylated aromatics were relatively instable. The chemical and isotopic (δ13C in CO2 and CH4) composition of soil gases collected along vertical profiles down to 50 cm depth at both Solfatara Crater and Poggio dell'Olivo (Italy) showed evidences of relevant oxidation processes in the soil, confirming that microbial activity likely plays a major role in modifying the composition of deep-derived VOCs. Despite their harsh conditions, being typically characterized by high temperatures, low pH, and high toxic gases and metal contents, the variety of habitats characterizing volcanic and hydrothermal environments offers ideal biomes to extremophilic microbes, whose metabolic activity can consume and/or produce VOCs. In the Solfatara Crater, microbial

  20. A gas sensor array for the simultaneous detection of multiple VOCs.

    PubMed

    Zhang, Yumin; Zhao, Jianhong; Du, Tengfei; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-05-16

    Air quality around the globe is declining and public health is seriously threatened by indoor air pollution. Typically, indoor air pollutants are composed of a series of volatile organic compounds (VOCs) that are generally harmful to the human body, especially VOCs with low molecular weights (less than 100 Da). Moreover, in some situations, more than one type of VOC is present; thus, a device that can detect one or more VOCs simultaneously would be most beneficial. Here, we synthesized a sensor array with 4 units to detect 4 VOCs: acetone (unit 1), benzene (unit 2), methanol (unit 3) and formaldehyde (unit 4) simultaneously. All units were simultaneously exposed to 2.5 ppm of all four VOCs. The sensitivity of unit 1 was 14.67 for acetone and less than 2.54 for the other VOCs. The sensitivities of units 2, 3 and 4 to benzene, methanol and formaldehyde were 2 18.64, 20.98 and 17.26, respectively, and less than 4.01 for the other VOCs. These results indicated that the sensor array exhibited good selectivity and could be used for the real-time monitoring of indoor air quality. Thus, this device will be useful in situations requiring the simultaneous detection of multiple VOCs.

  1. Time-activity relationships to VOC personal exposure factors

    NASA Astrophysics Data System (ADS)

    Edwards, Rufus D.; Schweizer, Christian; Llacqua, Vito; Lai, Hak Kan; Jantunen, Matti; Bayer-Oglesby, Lucy; Künzli, Nino

    Social and demographic factors have been found to play a significant role in differences between time-activity patterns of population subgroups. Since time-activity patterns largely influence personal exposure to compounds as individuals move across microenvironments, exposure subgroups within the population may be defined by factors that influence daily activity patterns. Socio-demographic and environmental factors that define time-activity subgroups also define quantifiable differences in VOC personal exposures to different sources and individual compounds in the Expolis study. Significant differences in exposures to traffic-related compounds ethylbenzene, m- and p-xylene and o-xylene were observed in relation to gender, number of children and living alone. Categorization of exposures further indicated time exposed to traffic at work and time in a car as important determinants. Increased exposures to decane, nonane and undecane were observed for males, housewives and self-employed. Categorization of exposures indicated exposure subgroups related to workshop use and living downtown. Higher exposures to 3-carene and α-pinene commonly found in household cleaning products and fragrances were associated with more children, while exposures to traffic compounds ethylbenzene, m- and p-xylene and o-xylene were reduced with more children. Considerable unexplained variation remained in categorization of exposures associated with home product use and fragrances, due to individual behavior and product choice. More targeted data collection methods in VOC exposure studies for these sources should be used. Living alone was associated with decreased exposures to 2-methyl-1-propanol and 1-butanol, and traffic-related compounds. Identification of these subgroups may help to reduce the large amount of unexplained variation in VOC exposure studies. Further they may help in assessing impacts of urban planning that result in changes in behavior of individuals, resulting in shifts in

  2. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Wealthall, Gary P.; Dearden, Rachel A.; McAlary, Todd A.

    2011-04-01

    Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone — VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site — VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes — e.g., multi-mechanistic sorption phase partitioning, and

  3. VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking water in the United States

    USGS Publications Warehouse

    Squillace, P.J.; Scott, J.C.; Moran, M.J.; Nolan, B.T.; Kolpin, D.W.

    2002-01-01

    Samples of untreated groundwater from 1255 domestic drinking-water wells and 242 public supply wells were analyzed as part of the National Water-Quality Assessment Program of the U.S. Geological Survey between 1992 and 1999. Wells were sampled to define the regional quality of the groundwater resource and, thus, were distributed geographically across large aquifers, primarily in rural areas. For each sample, as many as 60 volatile organic compounds (VOCs), 83 pesticides, and nitrate were analyzed. On the basis of previous studies, nitrate concentrations as nitrogen ≥3 mg/L were considered to have an anthropogenic origin. VOCs were detected more frequently (44%) than pesticides (38%) or anthropogenic nitrate (28%). Seventy percent of the samples contained at least one VOC, pesticide, or anthropogenic nitrate; 47% contained at least two compounds; and 33% contained at least three compounds. The combined concentrations of VOCs and pesticides ranged from about 0.001 to 100 μg/L, with a median of 0.02 μg/L. Water from about 12% of the wells contained one or more compounds that exceeded U.S. Environmental Protection Agency drinking-water standards or human health criteria, primarily because of nitrate concentrations exceeding the maximum contaminant level in domestic wells. A mixture is defined as a unique combination of two or more particular compounds, regardless of the presence of other compounds that may occur in the same sample. There were 100 mixtures (significantly associated with agricultural land use) that had a detection frequency between 2% and 19%. There were 302 mixtures (significantly associated with urban land use) that had a detection frequency between 1% and <2%. Only 14 compounds (seven VOCs, six pesticides, and nitrate) contributed over 95% of the detections in these 402 mixtures; however, most samples with these mixtures also contain a variety of other compounds.

  4. The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs

    NASA Astrophysics Data System (ADS)

    Kawashima, H.

    2014-12-01

    Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene

  5. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductionsmore » of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.« less

  6. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Volatile organic compounds in surface and ground water, 1978-94

    USGS Publications Warehouse

    Andrews, W.J.; Fallon, J.D.; Kroening, S.E.

    1995-01-01

    Examination of water-quality data from widely distributed sampling networks of river sites and wells in the study area led to the following conclusions: 1) trace amounts of chlorinated VOC's were detected sporadically in waters of the Mississippi, Minnesota, St. Croix, and Vermillion Rivers; 2) benzene, ethylbenzene, toluene, and meta+paraxylene were detected sporadically in waters sampled from the chain of lakes used as the municipal supply for St. Paul, Minnesota; 3) the target VOC's were detected in less than five percent of ground-water samples at relatively low concentrations, generally near detection limits which ranged from 1 to 5 micrograms per liter; 4) VOC's were generally detected at similar frequencies, but at higher concentrations, in water samples from wells completed in sand and gravel aquifers than in water samples from wells completed in bedrock aquifers; 5) VOC's were most commonly detected in ground water in the vicinity of identifiable emission sites of VOC's, such as landfills, dumps, or major industries; 6) trichloroethene, a commonly used degreasing agent in dry cleaning, metal cleaning and cleaning septic lines, was the most frequently detected target VOC in ground water sampled from wells completed in both sand and gravel and bedrock aquifers; 7) wells producing water with detectable concentrations of the target VOC's tended to be shallower than wells producing water with no detectable concentrations of those compounds, but the differences in well depths were not statistically significant at a 95 percent confidence level; and 8) chlorination of water substantially increased the frequency of detection of trihalomethane compounds. The low frequencies of detection of the target VOC's and THM's in surface and ground water sampled from widely distributed sampling networks in the study area indicate that, although there are thousands of sites which can potentially emit these compounds to water, soil, and the atmosphere, these compounds have not

  7. ASSESSMENT OF VOC EMISSIONS FROM FIBERGLASS BOAT MANUFACTURING

    EPA Science Inventory

    The report presents an assessment of volatile organic compound (VOC) emissions from fiberglass boat manufacturing. Description of the industry structure is presented, including estimates of the number of facilities, their size, and geographic distribution. The fiberglass boat m...

  8. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-12-01

    Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C2-C10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenated hydrocarbons, halocarbons and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, which were measured in situ aboard the DC-8. Carbon dioxide, CH4, CO, NO, NO2, NOy, SO2 and 53 VOCs (e.g., non-methane hydrocarbons, halocarbons, sulphur species) showed clear statistical enhancements (1.1-397×) over the oil sands compared to local background values and, with the exception of CO, were greater over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (<10%) over the oil sands. Ozone levels remained low because of titration by NO, and three VOCs (propyne, furan, MTBE) remained below their 3 pptv detection limit throughout the flight. Based on their correlations with one another, the compounds emitted by the oil sands industry fell into two groups: (1) evaporative emissions from the oil sands and its

  9. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-08-01

    Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C2-C10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenates, halocarbons, and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, which were measured in situ aboard the DC-8. Methane, CO, CO2, NO, NO2, NOy, SO2 and 53 VOCs (e.g., halocarbons, sulphur species, NMHCs) showed clear statistical enhancements (up to 1.1-397×) over the oil sands compared to local background values and, with the exception of CO, were higher over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (< 10%) over the oil sands. Ozone levels remained low because of titration by NO, and three VOCs (propyne, furan, MTBE) remained below their 3 pptv detection limit throughout the flight. Based on their mutual correlations, the compounds emitted by the oil sands industry fell into two groups: (1) evaporative emissions from the oil sands and its products and/or from the diluent used to

  10. Characterization of VOCs Emissions from Industrial Facilities and Natural Gas Production Sites: A Mobile Sensing Approach

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Gu, J.; Trask, B.; Lyon, D. R.; Albertson, J. D.

    2017-12-01

    With the recent expansion of U.S. oil and gas (O&G) production, many studies have focused on the quantification of fugitive methane emissions. However, only a few studies have explored the emissions of volatile organic compounds (VOCs) from O&G production sites that affect human health in adjacent communities, both directly through exposure to toxic chemical compounds and indirectly via formation of ground-level ozone. In this study, we seek to quantify emissions of VOCs from O&G production sites and petrochemical facilities using a mobile sensing approach, with both high-end analyzers and relatively low-cost sensors. A probabilistic source characterization approach is used to estimate emission rates of VOCs, directly taking into account quantitative measure of sensor accuracy. This work will provide data with proper spatiotemporal resolution and coverage, so as to improve the understanding of VOCs emission from O&G production sites, VOCs-exposure of local communities, and explore the feasibility of low-cost sensors for VOCs monitoring. The project will provide an important foundational step to enable large scale studies.

  11. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    PubMed

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  12. Investigation of VOCs associated with different characteristics of breast cancer cells

    PubMed Central

    Lavra, Luca; Catini, Alexandro; Ulivieri, Alessandra; Capuano, Rosamaria; Baghernajad Salehi, Leila; Sciacchitano, Salvatore; Bartolazzi, Armando; Nardis, Sara; Paolesse, Roberto; Martinelli, Eugenio; Di Natale, Corrado

    2015-01-01

    The efficacy of breath volatile organic compounds (VOCs) analysis for the screening of patients bearing breast cancer lesions has been demonstrated by using gas chromatography and artificial olfactory systems. On the other hand, in-vitro studies suggest that VOCs detection could also give important indications regarding molecular and tumorigenic characteristics of tumor cells. Aim of this study was to analyze VOCs in the headspace of breast cancer cell lines in order to ascertain the potentiality of VOCs signatures in giving information about these cells and set-up a new sensor system able to detect breast tumor-associated VOCs. We identified by Gas Chromatography-Mass Spectrometry analysis a VOCs signature that discriminates breast cancer cells for: i) transformed condition; ii) cell doubling time (CDT); iii) Estrogen and Progesterone Receptors (ER, PgR) expression, and HER2 overexpression. Moreover, the signals obtained from a temperature modulated metal oxide semiconductor gas sensor can be classified in order to recognize VOCs signatures associated with breast cancer cells, CDT and ER expression. Our results demonstrate that VOCs analysis could give clinically relevant information about proliferative and molecular features of breast cancer cells and pose the basis for the optimization of a low-cost diagnostic device to be used for tumors characterization. PMID:26304457

  13. ENVIRONMENTALLY SAFE, NO VOC AUTOMOTIVE COATING - PHASE II

    EPA Science Inventory

    The EPA recognizes that volatile organic compounds (VOCs) must be eliminated from automotive coating formulations to improve worker safety and reduce environmental pollution. The phase I project resulted in the production of a polymer-based coating material that was clear, ...

  14. Non-thermal Plasma for VOC Treatment in Flue Gases

    NASA Astrophysics Data System (ADS)

    Ikaunieks, Janis; Mezmale, Liga; Zandeckis, Aivars; Pubule, Jelena; Blumberga, Andra; Veidenbergs, Ivars

    2011-01-01

    The paper discusses non-thermal plasmas, their generation and characteristics, formation mechanisms of ozone and the treatment of volatile organic compounds (VOCs). In the experimental part, undecane (C11H24 as model VOCs) was treated with assistance of low temperature plasma at an atmospheric pressure which was generated in the so-called stack reactor. The gas composition was 13% of oxygen in nitrogen with impurities of carbon dioxide, carbon monoxide and undecane. The formation of by-products, as well as the removal efficiency, were investigated.

  15. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices.

    PubMed

    Schiavon, Marco; Martini, Luca Matteo; Corrà, Cesare; Scapinello, Marco; Coller, Graziano; Tosi, Paolo; Ragazzi, Marco

    2017-12-01

    The complaints arising from the problem of odorants released by composting plants may impede the construction of new composting facilities, preclude the proper activity of existing facilities or even lead to their closure, with negative implications for waste management and local economy. Improving the knowledge on VOC emissions from composting processes is of particular importance since different VOCs imply different odour impacts. To this purpose, three different organic matrices were studied in this work: dewatered sewage sludge (M1), digested organic fraction of municipal solid waste (M2) and untreated food waste (M3). The three matrices were aerobically biodegraded in a bench-scale bioreactor simulating composting conditions. A homemade device sampled the process air from each treatment at defined time intervals. The samples were analysed for VOC detection. The information on the concentrations of the detected VOCs was combined with the VOC-specific odour thresholds to estimate the relative weight of each biodegraded matrix in terms of odour impact. When the odour formation was at its maximum, the waste gas from the composting of M3 showed a total odour concentration about 60 and 15,000 times higher than those resulting from the composting of M1 and M2, respectively. Ethyl isovalerate showed the highest contribution to the total odour concentration (>99%). Terpenes (α-pinene, β-pinene, p-cymene and limonene) were abundantly present in M2 and M3, while sulphides (dimethyl sulphide and dimethyl disulphide) were the dominant components of M1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Real-world volatile organic compound emission rates from seated adults and children for use in indoor air studies.

    PubMed

    Stönner, C; Edtbauer, A; Williams, J

    2018-01-01

    Human beings emit many volatile organic compounds (VOCs) of both endogenous (internally produced) and exogenous (external source) origin. Here we present real-world emission rates of volatile organic compounds from cinema audiences (50-230 people) as a function of time in multiple screenings of three films. The cinema location and film selection allowed high-frequency measurement of human-emitted VOCs within a room flushed at a known rate so that emissions rates could be calculated for both adults and children. Gas-phase emission rates are analyzed as a function of time of day, variability during the film, and age of viewer. The average emission rates of CO 2 , acetone, and isoprene were lower (by a factor of ~1.2-1.4) for children under twelve compared to adults while for acetaldehyde emission rates were equivalent. Molecules influenced by exogenous sources such as decamethylcyclopentasiloxanes and methanol tended to decrease over the course of day and then rise for late evening screenings. These results represent average emission rates of people under real-world conditions and can be used in indoor air quality assessments and building design. Averaging over a large number of people generates emission rates that are less susceptible to individual behaviors. © 2017 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  17. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    PubMed

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  18. Emission characteristics of NOx, CO, NH3 and VOCs from gas-fired industrial boilers based on field measurements in Beijing city, China

    NASA Astrophysics Data System (ADS)

    Yue, Tao; Gao, Xiang; Gao, Jiajia; Tong, Yali; Wang, Kun; Zuo, Penglai; Zhang, Xiaoxi; Tong, Li; Wang, Chenlong; Xue, Yifeng

    2018-07-01

    In the past decade, due to the management policies and coal combustion controls in Beijing, the consumption of natural gas has increased gradually. Nevertheless, the research on the emission characteristics of gaseous pollutants emitted from gas-fired industrial boilers, especially considering the influence of low nitrogen (low-NOx) retrofit policy of gas boilers, is scarcely. In this study, based on literature and field investigations, onsite measurements of NOx, CO, NH3 and VOCs (Volatile Organic Compounds) emissions from gas-fired industrial boilers as well as the key factors that affected the emission of gaseous pollutants were discussed. Category-specific emission factors (EFs) of NOx, CO, NH3 and VOCs were obtained from the field measurements of 1107 "low-NOx" retrofitted and unabated gas-fired industrial boilers. Our results showed that operating load and control measures were the two key factors affecting the formation of gaseous pollutants. The EFs of NOx (EFNOx) and CO (EFCO) of atmospheric combustion boilers (ACBs) were much higher than the EFs of chamber combustion boilers (CCBs). The total emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing in the year of 2015 were estimated at 10489.6 t, 3272.8 t, 196.4 t and 235.4 t, respectively. Alkanes, BTEX, oxygenated VOCs and non-reactive organic matter were the four main chemical components of VOCs. As for the spatial distributions, the emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing were predominantly concentrated in central six urban districts. In the future, more detailed investigation and field tests for all kinds of gas-fired industrial boilers are still greatly needed to achieve more reliable estimations of atmospheric pollutants from gas-fired industrial boilers.

  19. Measurement of volatile organic compounds in human blood.

    PubMed Central

    Ashley, D L; Bonin, M A; Cardinali, F L; McCraw, J M; Wooten, J V

    1996-01-01

    Volatile organic compounds (VOCs) are an important public health problem throughout the developed world. Many important questions remain to be addressed in assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in the analytical determination of VOCs. The analytical methodology chosen to measure toxicants in biological materials must be well validated and carefully carried out; poor quality assurance can lead to invalid results that can have a direct bearing on treating exposed persons. The pharmacokinetics of VOCs show that most of the internal dose of these compounds is quickly eliminated, but there is a fraction that is only slowly removed, and these compounds may bioaccumulate. VOCs are found in the general population at the high parts-per-trillion range, but some people with much higher levels have apparently been exposed to VOC sources away from the workplace. Smoking is the most significant confounder to internal dose levels of VOCs and must be considered when evaluating suspected cases of exposure. PMID:8933028

  20. Building materials. VOC emissions, diffusion behaviour and implications from their use.

    PubMed

    Katsoyiannis, Athanasios; Leva, Paolo; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2012-10-01

    Five cement- and five lime-based building materials were examined in an environmental chamber for their emissions of Volatile Organic Compounds (VOCs). Typical VOCs were below detection limits, whereas not routinely analysed VOCs, like neopentyl glycol (NPG), dominated the cement-based products emissions, where, after 72 h, it was found to occur, in levels as high as 1400 μg m(-3), accounting for up to 93% of total VOCs. The concentrations of NPG were not considerably changed between the 24 and 72 h of sampling. The permeability of building materials was assessed through experiments with a dual environmental chamber; it was shown that building materials facilitate the diffusion of chemicals through their pores, reaching equilibrium relatively fast (6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. In-vehicle VOCs composition of unconditioned, newly produced cars.

    PubMed

    Brodzik, Krzysztof; Faber, Joanna; Łomankiewicz, Damian; Gołda-Kopek, Anna

    2014-05-01

    The in-vehicle volatile organic compounds (VOCs) concentrations gains the attention of both car producers and users. In the present study, an attempt was made to determine if analysis of air samples collected from an unconditioned car cabin can be used as a quality control measure. The VOCs composition of in-vehicle air was analyzed by means of active sampling on Carbograph 1TD and Tenax TA sorbents, followed by thermal desorption and simultaneous analysis on flame ionization and mass detector (TD-GC/FID-MS). Nine newly produced cars of the same brand and model were chosen for this study. Within these, four of the vehicles were equipped with identical interior materials and five others differed in terms of upholstery and the presence of a sunroof; one car was convertible. The sampling event took place outside of the car assembly plant and the cars tested left the assembly line no later than 24 hr before the sampling took place. More than 250 compounds were present in the samples collected; the identification of more than 160 was confirmed by comparative mass spectra analysis and 80 were confirmed by both comparison with single/multiple compounds standards and mass spectra analysis. In general, aliphatic hydrocarbons represented more than 60% of the total VOCs (TVOC) determined. Depending on the vehicle, the concentration of aromatic hydrocarbons varied from 12% to 27% of total VOCs. The very short period between car production and sampling of the in-vehicle air permits the assumption that the entire TVOC originates from off-gassing of interior materials. The results of this study expand the knowledge of in-vehicle pollution by presenting information about car cabin air quality immediately after car production. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS

    EPA Science Inventory


    The report gives results of a study in which wood furniture manufacturing facilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous Air pollutant (HAP) wood furniture coatings: high-solids, water...

  3. Characterization of VOCs Across Pennsylvania: Assessing Emissions from Rural, Forested, Agricultural and Natural Gas Drilling-Impacted Areas

    NASA Astrophysics Data System (ADS)

    Grannas, A. M.; Fuentes, J. D.; Ramos-Garcés, F.; Wang, D. K.; Martins, D. K.

    2012-12-01

    Volatile organic compounds (VOCs) of both biogenic and anthropogenic origin are important to troposphere chemistry, particularly the formation of photochemical smog and secondary organic aerosol. There is concern that increased natural gas exploration may lead to increased emissions of certain VOCs during well development and due to fugitive emissions from operational well sites and pipelines. For a six-day period in June 2012, a variety of VOCs were measured using canister sampling from a mobile measurement platform. Transects from southwestern to northeastern Pennsylvania were studied, with samples obtained in rural, forested, urban, farm-impacted and gas well-impacted sites. As expected, biogenic VOCs and isoprene oxidation products were enhanced in forested regions, while anthropogenic non-methane hydrocarbons were enhanced in urban areas. BTEX (benzene, toluene, ethylbenzene and xylenes) was enhanced in urban areas, but the concentrations of BTEX measured near developing and existing natural gas sites were similar to rural and forested sites. Halogenated hydrocarbons and Freon compounds were consistent at all site locations. We will discuss the specific concentrations and signatures of these compounds and assess the potential impact of agricultural activities and gas well development on the observed VOC concentrations and variability.

  4. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use... building enclosure. During the capture efficiency measurement, all organic compound emitting operations... enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting...

  5. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods... organic compound emitting operations inside the building enclosure, other than the coating operation for... the capture efficiency measurement, all organic compound emitting operations inside the building...

  6. 40 CFR 63.4565 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...

  7. 40 CFR 63.4565 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...

  8. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods... organic compound emitting operations inside the building enclosure, other than the coating operation for... the capture efficiency measurement, all organic compound emitting operations inside the building...

  9. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use... building enclosure. During the capture efficiency measurement, all organic compound emitting operations... enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting...

  10. VOC Monitoring to Understand Changes in Secondary Pollution in Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Jaimes-Palomera, M.; Retama, A.; Neria, A.; Rivera, O.; Elias, G.

    2015-12-01

    Previous studies have documented the distribution, diurnal pattern, magnitude, and reactivity of the volatile organic compounds (VOCs) within and downwind of Mexico City. These studies have provided valuable data, but their duration has been restricted to a few weeks since the majority have been part of intensive field campaigns. With the aim of addressing the VOC pollution problem during longer monitoring periods and evaluating control measures to reduce the production of ozone and secondary aerosols, the environmental authorities of Mexico City through its Air Quality Monitoring Network have developed a program to monitor over 50 VOC species every hour in selected existing air quality monitoring stations inside and outside the urban sprawl. The program started with a testing period of six months in 2012 covering the ozone-season (Mar-May). Results of this first campaign are presented in this paper. Using as reference VOC data collected in 2003, reductions in the mixing ratios of light alkanes associated with the consumption of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents were observed. In contrast, a clear increase in the mixing ratio of olefins was observed. This increase is of relevance to understand the moderate success in the reduction of ozone and fine aerosols in recent years in comparison to other criteria pollutants, which have substantially decreased. Particular features of the diurnal profiles, reactivity with the hydroxyl radical and correlations between individual VOCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here expect to highlight the importance of monitoring VOCs to better understand the drivers and impacts of secondary pollution in large cities like Mexico City.

  11. Ambient air/near-field measurements of methane and Volatile Organic Compounds (VOCs) from a natural gas facility in Northern Europe

    NASA Astrophysics Data System (ADS)

    Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod

    2015-04-01

    Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.

  12. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    PubMed Central

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F.

    2018-01-01

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds. PMID:29346281

  13. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    PubMed

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  14. Content and Formation Cause of VOCs in Medical Waste Non-incineration Treatment Project

    NASA Astrophysics Data System (ADS)

    Dengchao, Jin; Hongjun, Teng; Zhenbo, Bao; Yang, Li

    2018-02-01

    When medical waste is treated by non-incineration technology, volatile organic compounds in the waste will be volatile out and form odor pollution. This paper studied VOCs productions in medical waste steam treatment project, microwave treatment project and chemical dinifection project. Sampling and analysis were carried out on the waste gas from treatment equipment and the gas in treatment workshop. The contents of nine VOCs were determined. It was found that the VOCs content in the exhaust gas at the outlet of steam treatment unit was much higher than that of microwave and chemical treatment unit, while the content of VOCs in the chemical treatment workshop was higher than that in the steam and microwave treatment workshop. The formation causes of VOCs were also analyzed and discussed in this paper.

  15. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    NASA Astrophysics Data System (ADS)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  16. Air filters from HVAC systems as possible source of volatile organic compounds (VOC) - laboratory and field assays

    NASA Astrophysics Data System (ADS)

    Schleibinger, Hans; Rüden, Henning

    The emission of volatile organic compounds (VOC) from air filters of HVAC systems was to be evaluated. In a first study carbonyl compounds (14 aldehydes and two ketones) were measured by reacting them with 2,4-dinitrophenylhydrazine (DNPH). Analysis was done by HPLC and UV detection. In laboratory experiments pieces of used and unused HVAC filters were incubated in test chambers. Filters to be investigated were taken from a filter bank of a large HVAC system in the centre of Berlin. First results show that - among those compounds - formaldehyde and acetone were found in higher concentrations in the test chambers filled with used filters in comparison to those with unused filters. Parallel field measurements were carried out at the prefilter and main filter banks of the two HVAC systems. Here measurements were carried out simultaneously before and after the filters to investigate whether those aldehydes or ketones arise from the filter material on site. Formaldehyde and acetone significantly increased in concentration after the filters of one HVAC system. In parallel experiments microorganisms were proved to be able to survive on air filters. Therefore, a possible source of formaldehyde and acetone might be microbes.

  17. Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus)

    NASA Astrophysics Data System (ADS)

    Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Stavroulas, Iasonas; Salameh, Thérèse; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Sarda-Esteve, Roland; Baisnée, Dominique; Bonsang, Bernard; Savvides, Chrysanthos; Vrekoussis, Mihalis; Locoge, Nadine

    2017-09-01

    More than 7000 atmospheric measurements of over 60 C2 - C16 volatile organic compounds (VOCs) were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins) that were measured online by flame ionization detection-gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia), indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together), identified as being either of local origin

  18. The Bidirectional Exchange of VOCs between a Mixed Forest and the Atmosphere in the Southeast US

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Arata, C.; Su, L.; Park, J. H.; Holzinger, R.; Seco, R.; Kaser, L.; Mak, J. E.; Guenther, A. B.; Goldstein, A. H.

    2014-12-01

    Biogenic and anthropogenic volatile organic compounds (VOC) are known to play important roles in atmospheric chemistry, formation of secondary organic aerosol (SOA), and thus climate. However, understanding the full range of emissions, and the fate of these organic compounds following their oxidation in the atmosphere is currently a major quantitative challenge. We looked closer to investigate emission, oxidation, and deposition of VOCs in a forested region of the South East US as part of the SOAS summer 2013 campaign. Fluxes and concentration of gas-phase VOCs were measured at 10 Hz by a PTR-ToF-MS which was coupled to a 10 Hz RM Young sonic anemometer at the top of the Centreville SEARCH tower located in a mixed deciduous forest near Brent, Alabama. Investigations of BVOC oxidation pathways were also explored in the CalTech chamber during the FIXIT study. The combination of laboratory oxidation studies and concentrations and fluxes measured in the field provides a broader dynamic picture of the physical and chemical processes behind effective oxidation yields which can improve understanding of BVOC oxidation compound fates and thus the accuracies of SOA formation estimates. We investigate the relative contribution of individual VOCs, and classes of VOCs distinguished by the number of oxygen they include, to the mixing ratio, emission and deposition flux burdens. We also investigate how the exchange velocities of VOCs differ during the day and highlight the bidirectional character of the fluxes occurring for a large fraction of observed organic ions.

  19. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  20. 40 CFR 63.4565 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...

  1. 40 CFR 63.4565 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...

  2. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT DUTY VEHICLES

    EPA Science Inventory

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI v...

  3. Study of VOCs transport and storage in porous media and assemblies

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    Indoor VOCs concentrations are influenced greatly by the transport and storage of VOCs in building and furnishing materials, majority of which belong to porous media. The transport and storage ability of a porous media for a given VOC can be characterized by its diffusion coefficient and partition coefficient, respectively, and such data are currently lacking. Besides, environmental conditions are another important factor that affects the VOCs emission. The main purposes of this dissertation are: (1) validate the similarity hypothesis between the transport of water vapor and VOCs in porous materials, and help build a database of VOC transport and storage properties with the assistance of the similarity hypothesis; (2) investigate the effect of relative humidity on the diffusion and partition coefficients; (3) develop a numerical multilayer model to simulate the VOCs' emission characteristics in both short and long term. To better understand the similarity and difference between moisture and volatile organic compounds (VOCs) diffusion through porous media, a dynamic dual-chamber experimental system was developed. The diffusion coefficients and partition coefficients of moisture and selected VOCs in materials were compared. Based on the developed similarity theory, the diffusion behavior of each particular VOC in porous media is predictable as long as the similarity coefficient of the VOC is known. Experimental results showed that relative humidity in the 80%RH led to a higher partition coefficient for formaldehyde compared to 50%RH. However, between 25% and 50% RH, there was no significant difference in partition coefficient. The partition coefficient of toluene decreased with the increase of humidity due to competition with water molecules for pore surface area and the non-soluble nature of toluene. The solubility of VOCs was found to correlate well with the partition coefficient of VOCs. The partition coefficient of VOCs was not simply inversely proportional to

  4. Source Apportionment of VOCs in Edmonton, Alberta

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Brown, S. G.; Aklilu, Y.; Lyder, D. A.

    2012-12-01

    Regional emissions at Edmonton, Alberta, are complex, containing emissions from (1) transportation sources, such as cars, trucks, buses, and rail; (2) industrial sources, such as petroleum refining, light manufacturing, and fugitive emissions from holding tanks or petroleum terminals; and (3) miscellaneous sources, such as biogenic emissions and natural gas use and processing. From 2003 to 2009, whole air samples were collected at two sites in Edmonton and analyzed for over 77 volatile organic compounds (VOCs). VOCs were sampled in the downtown area (Central) and the industrial area on the eastern side of the city (East). Concentrations of most VOCs were highest at the East site. The positive matrix factorization (PMF) receptor model was used to apportion ambient concentration measurements of VOCs into eleven factors, which were associated with emissions source categories. Factors of VOCs identified in the final eleven-factor solution include transportation sources (both gasoline and diesel vehicles), industrial sources, a biogenic source, and a natural-gas-related source. Transportation sources accounted for more mass at the Central site than at the East site; this was expected because Central is in a core urban area where transportation emissions are concentrated. Transportation sources accounted for nearly half of the VOC mass at the Central site, but only 6% of the mass at the East site. Encouragingly, mass from transportation sources has declined by about 4% a year in this area; this trend is similar to the decline found throughout the United States, and is likely due to fleet turnover as older, more highly polluting cars are replaced with newer, cleaner cars. In contrast, industrial sources accounted for ten times more VOC mass at the East site than at the Central site and were responsible for most of the total VOC mass observed at the East site. Of the six industrial factors identified at the East site, four were linked to petrochemical industry production

  5. Next Generation Air Monitoring (NGAM) VOC Sensor Evaluation Report

    EPA Science Inventory

    This report summarizes the results of next generation air monitor (NGAM) volatile organic compound (VOC) evaluations performed using both laboratory as well as field scale settings. These evaluations focused on challenging lower cost (<$2500) NGAM technologies to either controlle...

  6. Knot, heartwood, and sapwood extractives related to VOCs from drying southern pine lumber

    Treesearch

    Leonard L. Ingram; M. Curry Templeton; G. Wayne McGraw; Richard W. Hemingway

    2000-01-01

    The presence of knots or heartwood influences the amount and composition of volatile organic compound (VOC) emissions associated with drying of southern pine lumber. Experimental kiln charges of lumber containing 0 to 5% of knot volume gave VOC emissions ranging from 2.86 to 4.25 lb of carbonldry ton of wood. Studies of emissions from sapwood and knots showed that...

  7. VOCs Air Pollutant Cleaning with Polyacrylonitrile/Fly Ash Nanocomposite Electrospun Nanofibrous Membranes

    NASA Astrophysics Data System (ADS)

    Cong Ge, Jun; Wang, Zi Jian; Kim, Min Soo; Choi, Nag Jung

    2018-01-01

    Volatile organic compounds (VOCs) as an environmental pollution, which have many kinds of chemical structures, and many of them are very toxic. Therefore, controlling and reducing the presence of VOCs has become a hot topic among researchers for many years. In this study, the VOCs adsorption capacity of polyacrylonitrile/fly ash (PAN/FA) nanocomposite electrospun nanofibrous membranes were investigated. The results indicated that the PAN with different contents of FA powder (20%, 40%, 60%, 80%, and 100% compared with PAN by weight) could be spun well by electrospinning. The diameter of the fiber was very fine and its arrangement was irregular. The PAN nanofibrous membrane containing 60 wt% FA powder had the highest VOCs absorption capacity compared with other nanofibrous membranes due to its large specific surface area.

  8. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato.

    PubMed

    Rajer, Faheem Uddin; Wu, Huijun; Xie, Yongli; Xie, Shanshan; Raza, Waseem; Tahir, Hafiz Abdul Samad; Gao, Xuewen

    2017-04-01

    Rhizobacterial volatile organic compounds (VOCs) play an important role in the suppression of soil-borne phytopathogens. In this study, the VOCs produced by a soil-isolate, Bacillus subtilis FA26, were evaluated in vitro for their antibacterial activity against Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. The VOCs emitted by FA26 inhibited the growth of Cms significantly compared with the control. Scanning and transmission electron microscopy analyses revealed distorted colony morphology and a wide range of abnormalities in Cms cells exposed to the VOCs of FA26. Varying the inoculation strategy and inoculum size showed that the production and activity of the antibacterial VOCs of FA26 were dependent on the culture conditions. Headspace solid-phase microextraction/gas chromatography-mass spectrometry analyses revealed that FA26 produced 11 VOCs. Four VOCs (benzaldehyde, nonanal, benzothiazole and acetophenone) were associated with the antibacterial activity against Cms. The results suggested that the VOCs produced by FA26 could control the causal agent of bacterial ring rot of potato. This information will increase our understanding of the microbial interactions mediated by VOCs in nature and aid the development of safer strategies for controlling plant disease.

  9. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS).

    PubMed

    Mochalski, Paweł; Wiesenhofer, Helmut; Allers, Maria; Zimmermann, Stefan; Güntner, Andreas T; Pineau, Nicolay J; Lederer, Wolfgang; Agapiou, Agapios; Mayhew, Christopher A; Ruzsanyi, Veronika

    2018-02-15

    Human smuggling and associated cross-border crimes have evolved as a major challenge for the European Union in recent years. Of particular concern is the increasing trend of smuggling migrants hidden inside shipping containers or trucks. Therefore, there is a growing demand for portable security devices for the non-intrusive and rapid monitoring of containers to detect people hiding inside. In this context, chemical analysis of volatiles organic compounds (VOCs) emitted from the human body is proposed as a locating tool. In the present study, an in-house made ion mobility spectrometer coupled with gas chromatography (GC-IMS) was used to monitor the volatile moieties released from the human body under conditions that mimic entrapment. A total of 17 omnipresent volatile compounds were identified and quantified from 35 ion mobility peaks corresponding to human presence. These are 7 aldehydes (acrolein, 2-methylpropanal, 3-methylbutanal, 2-ethacrolein, n-hexanal, n-heptanal, benzaldehyde), 3 ketones (acetone, 2-pentanone, 4-methyl-2-pentanone), 5 esters (ethyl formate, ethyl propionate, vinyl butyrate, butyl acetate, ethyl isovalerate), one alcohol (2-methyl-1-propanol) and one organic acid (acetic acid). The limits of detection (0.05-7.2 ppb) and relative standard deviations (0.6-11%) should be sufficient for detecting these markers of human presence in field conditions. This study shows that GC-IMS can be used as a portable field detector of hidden or entrapped people. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. DuPont Petition to Exempt HFO from VOC List

    EPA Pesticide Factsheets

    Petition to exclude the chemcial 1, 1, 4, 4-hexafluorobut-2-ene (HFO 1336 mzz-Z) from the definition of volatile organic compound (VOC) and therefore allow it to be used in the US without regulation as a potential precursor to tropospheric ozone.

  11. RESEARCH AND PRODUCT DEVELOPMENT OF LOW-VOC WOOD COATINGS

    EPA Science Inventory

    The report discusses a project, cofunded by the South Coast Air Quality Management District (SCAQMD) and the U.S. EPA, to develop a new, low volatile organic compound (VOC) wood coating. Traditional wood furniture coating technologies contain organic solvents which become air pol...

  12. Air exchange rates and migration of VOCs in basements and residences

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Rowe, Zachary; Chin, Jo-Yu

    2015-01-01

    Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multi-tracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walkthrough survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52 h−1, respectively, and had strong and opposite seasonal trends, e.g., AERs were highest in residences during the summer, and highest in basements during the winter. Air flows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, e.g., 90th percentile benzene, toluene, naphthalene and limonene concentrations were 4.0, 19.1, 20.3 and 51.0 μg m−3, respectively; maximum concentrations were 54, 888, 1117 and 134 μg m−3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. PMID:25601281

  13. DEVELOPMENT OF A SYSTEMATIC APPROACH TO ACCURATELY MEASURE TRACE LEVELS OF VOLATILE ORGANIC COMPOUNDS (VOCS) IN SOIL AND SEDIMENT CONTAINING HIGH MOISTURE TO MEET THE EPA'S RISK ASSESSMENT NEEDS

    EPA Science Inventory

    A majority of the contaminated sites within the United States contain volatile organic compounds (VOCs), either as industrial chlorinated solvents or petroleum products commonly referred to as BTEX (benzene, toluene, ethyl benzene, and xylene). The present EPA methods for low le...

  14. Short-Term Intra-Subject Variation in Exhaled Volatile Organic Compounds (VOCs) in COPD Patients and Healthy Controls and Its Effect on Disease Classification

    PubMed Central

    Phillips, Christopher; Mac Parthaláin, Neil; Syed, Yasir; Deganello, Davide; Claypole, Timothy; Lewis, Keir

    2014-01-01

    Exhaled volatile organic compounds (VOCs) are of interest for their potential to diagnose disease non-invasively. However, most breath VOC studies have analyzed single breath samples from an individual and assumed them to be wholly consistent representative of the person. This provided the motivation for an investigation of the variability of breath profiles when three breath samples are taken over a short time period (two minute intervals between samples) for 118 stable patients with Chronic Obstructive Pulmonary Disease (COPD) and 63 healthy controls and analyzed by gas chromatography and mass spectroscopy (GC/MS). The extent of the variation in VOC levels differed between COPD and healthy subjects and the patterns of variation differed for isoprene versus the bulk of other VOCs. In addition, machine learning approaches were applied to the breath data to establish whether these samples differed in their ability to discriminate COPD from healthy states and whether aggregation of multiple samples, into single data sets, could offer improved discrimination. The three breath samples gave similar classification accuracy to one another when evaluated separately (66.5% to 68.3% subjects classified correctly depending on the breath repetition used). Combining multiple breath samples into single data sets gave better discrimination (73.4% subjects classified correctly). Although accuracy is not sufficient for COPD diagnosis in a clinical setting, enhanced sampling and analysis may improve accuracy further. Variability in samples, and short-term effects of practice or exertion, need to be considered in any breath testing program to improve reliability and optimize discrimination. PMID:24957028

  15. Short-Term Intra-Subject Variation in Exhaled Volatile Organic Compounds (VOCs) in COPD Patients and Healthy Controls and Its Effect on Disease Classification.

    PubMed

    Phillips, Christopher; Mac Parthaláin, Neil; Syed, Yasir; Deganello, Davide; Claypole, Timothy; Lewis, Keir

    2014-05-09

    Exhaled volatile organic compounds (VOCs) are of interest for their potential to diagnose disease non-invasively. However, most breath VOC studies have analyzed single breath samples from an individual and assumed them to be wholly consistent representative of the person. This provided the motivation for an investigation of the variability of breath profiles when three breath samples are taken over a short time period (two minute intervals between samples) for 118 stable patients with Chronic Obstructive Pulmonary Disease (COPD) and 63 healthy controls and analyzed by gas chromatography and mass spectroscopy (GC/MS). The extent of the variation in VOC levels differed between COPD and healthy subjects and the patterns of variation differed for isoprene versus the bulk of other VOCs. In addition, machine learning approaches were applied to the breath data to establish whether these samples differed in their ability to discriminate COPD from healthy states and whether aggregation of multiple samples, into single data sets, could offer improved discrimination. The three breath samples gave similar classification accuracy to one another when evaluated separately (66.5% to 68.3% subjects classified correctly depending on the breath repetition used). Combining multiple breath samples into single data sets gave better discrimination (73.4% subjects classified correctly). Although accuracy is not sufficient for COPD diagnosis in a clinical setting, enhanced sampling and analysis may improve accuracy further. Variability in samples, and short-term effects of practice or exertion, need to be considered in any breath testing program to improve reliability and optimize discrimination.

  16. Biofiltration of airborne VOCs with green wall systems-Microbial and chemical dynamics.

    PubMed

    Mikkonen, A; Li, T; Vesala, M; Saarenheimo, J; Ahonen, V; Kärenlampi, S; Blande, J D; Tiirola, M; Tervahauta, A

    2018-05-06

    Botanical air filtration is a promising technology for reducing indoor air contaminants, but the underlying mechanisms need better understanding. Here, we made a set of chamber fumigation experiments of up to 16 weeks of duration, to study the filtration efficiencies for seven volatile organic compounds (VOCs; decane, toluene, 2-ethylhexanol, α-pinene, octane, benzene, and xylene) and to monitor microbial dynamics in simulated green wall systems. Biofiltration functioned on sub-ppm VOC levels without concentration-dependence. Airflow through the growth medium was needed for efficient removal of chemically diverse VOCs, and the use of optimized commercial growth medium further improved the efficiency compared with soil and Leca granules. Experimental green wall simulations using these components were immediately effective, indicating that initial VOC removal was largely abiotic. Golden pothos plants had a small additional positive impact on VOC filtration and bacterial diversity in the green wall system. Proteobacteria dominated the microbiota of rhizosphere and irrigation water. Airborne VOCs shaped the microbial communities, enriching potential VOC-utilizing bacteria (especially Nevskiaceae and Patulibacteraceae) in the irrigation water, where much of the VOC degradation capacity of the biofiltration systems resided. These results clearly show the benefits of active air circulation and optimized growth media in modern green wall systems. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments.

    PubMed

    Azimi, Parham; Zhao, Dan; Pouzet, Claire; Crain, Neil E; Stephens, Brent

    2016-02-02

    Previous research has shown that desktop 3D printers can emit large numbers of ultrafine particles (UFPs, particles less than 100 nm) and some hazardous volatile organic compounds (VOCs) during printing, although very few filament and 3D printer combinations have been tested to date. Here we quantify emissions of UFPs and speciated VOCs from five commercially available filament extrusion desktop 3D printers utilizing up to nine different filaments by controlled experiments in a test chamber. Median estimates of time-varying UFP emission rates ranged from ∼10(8) to ∼10(11) min(-1) across all tested combinations, varying primarily by filament material and, to a lesser extent, bed temperature. The individual VOCs emitted in the largest quantities included caprolactam from nylon-based and imitation wood and brick filaments (ranging from ∼2 to ∼180 μg/min), styrene from acrylonitrile butadiene styrene (ABS) and high-impact polystyrene (HIPS) filaments (ranging from ∼10 to ∼110 μg/min), and lactide from polylactic acid (PLA) filaments (ranging from ∼4 to ∼5 μg/min). Results from a screening analysis of potential exposure to these products in a typical small office environment suggest caution should be used when operating many of the printer and filament combinations in poorly ventilated spaces or without the aid of combined gas and particle filtration systems.

  18. Volatile Organic Compound Emissions from Natural Gas Facilities in the Denver-Julesburg Basin, the Uintah Basin and the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Li, X.; Omara, M.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    Natural gas has been widely considered as a "bridge" fuel in the future. Because of the rapid advancement of horizontal drilling and hydraulic fracturing techniques, the production of crude oil and natural gas in US increased dramatically in recent years; and currently natural gas contributes to about 25% of total US energy consumption. Recent studies suggest that shale gas extraction facilities may emit Volatile Organic Compounds (VOCs), which could contribute to the formation of ozone and affect regional air quality, public health and climate change. In this study we visited 37 natural gas facilities in Denver-Julesburg and Uintah Basins from March to May, 2015. VOCs and methane concentrations were measured downwind of individual facilities with our mobile lab. In total 13 VOCs, including benzene and toluene, were measured by a SRI 8610C Gas Chromatograph. Similar measurements will be conducted in the Marcellus Shale in late August 2015. Preliminary results show that VOC emissions from individual shale gas facilities are variable, which suggests that a single VOC profile may not characterize all natural gas production facilities, though there may be some common characteristics. Measured VOC concentrations will be normalized to concurrently-measured methane emissions, and coupled with methane emission rates measured at these facilities, used to obtain VOC emission factors from natural gas production. This presentation will also compare VOC emission rates from the Marcellus shale with that from the Denver-Julesburg and Uintah basins.

  19. Quantifying automobile refinishing VOC air emissions - a methodology with estimates and forecasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.P.; Rubick, C.

    1996-12-31

    Automobile refinishing coatings (referred to as paints), paint thinners, reducers, hardeners, catalysts, and cleanup solvents used during their application, contain volatile organic compounds (VOCs) which are precursors to ground level ozone formation. Some of these painting compounds create hazardous air pollutants (HAPs) which are toxic. This paper documents the methodology, data sets, and the results of surveys (conducted in the fall of 1995) used to develop revised per capita emissions factors for estimating and forecasting the VOC air emissions from the area source category of automobile refinishing. Emissions estimates, forecasts, trends, and reasons for these trends are presented. Future emissionsmore » inventory (EI) challenges are addressed in light of data availability and information networks.« less

  20. VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS

    EPA Science Inventory

    A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

  1. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2014-01-01

    In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592

  2. Measurement of volatile organic compounds inside automobiles.

    PubMed

    Fedoruk, Marion J; Kerger, Brent D

    2003-01-01

    The objective of the current study was to evaluate the types and concentrations of volatile organic compounds (VOCs) in the passenger cabin of selected sedan automobiles under static (parked, unventilated) and specified conditions of operation (i.e., driving the vehicle using air conditioning alone, vent mode alone, or driver's window half open). Data were collected on five different passenger sedan vehicles from three major automobile manufacturers. Airborne concentrations were assessed using 90-min time-weighted average (TWA) samples under U.S. Environmental Protection Agency (USEPA) Method IP-1B to assess individual VOC compounds and total VOCs (TVOCs) calibrated to toluene. Static vehicle testing demonstrated TVOC levels of approximately 400-800 microg/m(3) at warm interior vehicle temperatures (approximately 80 degrees F), whereas TVOCs at least fivefold higher were observed under extreme heat conditions (e.g., up to 145 degrees F). The profile of most prevalent individual VOC compounds varied considerably according to vehicle brand, age, and interior temperature tested, with predominant compounds including styrene, toluene, and 8- to 12-carbon VOCs. TVOC levels under varied operating conditions (and ventilation) were generally four- to eightfold lower (at approximately 50-160 microg/m(3)) than the static vehicle measurements under warm conditions, with the lowest measured levels generally observed in the trials with the driver's window half open. These data indicate that while relatively high concentrations of certain VOCs can be measured inside static vehicles under extreme heat conditions, normal modes of operation rapidly reduce the inside-vehicle VOC concentrations even when the air conditioning is set on recirculation mode.

  3. DEMONSTRATION OF NO-VOC/NO-HAP WOOD FURNITURE COATING SYSTEM

    EPA Science Inventory

    The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesives Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating s...

  4. New observations of VOC emissions and concentrations in, above, and around the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Goldstein, A. H.; Fares, S.; Gentner, D. R.; Park, J.; Weber, R.; Ormeno, E.; Holzinger, R.; Misztal, P. K.; Karl, T. R.; Guenther, A. B.; Fischer, M. L.; Harley, R. A.; Karlik, J. F.

    2011-12-01

    Large portions of the Central Valley of California are out of compliance with current state and federal air quality standards for ozone and particulate matter, and the relative importance of biogenic and anthropogenic VOC emissions to their photochemical production in this region remains uncertain. In 2009-2011 multiple measurement campaigns were completed investigating the VOC emission inventory and concentration distributions. In 2009 BVOC emissions from more than 20 species of major agricultural crops in California were measured in a greenhouse using branch enclosures by both PTRMS and in-situ GC. Overall, crops were found to emit low amounts of BVOC compared to the natural forests surrounding the valley. Crops mainly emitted methanol and terpenes, with a broad array of other species emitted at lower levels, and all the measured crops showed negligible emissions of isoprene. Navel oranges were the largest crop BVOC emitters measured so a full year of flux measurements were made in an orange grove near Visalia in 2010 by eddy covariance(EC)-PTRMS with two multi-week periods of concentration measurements by hourly in-situ GC, and one month of high mass resolution flux measurements by EC-PTR-TOF-MS. The dominant BVOC emissions from the orange grove were methanol and terpenes, followed by acetone, acetaldehyde, and a low level of emissions for many other species. In 2011 aircraft eddy covariance measurements of BVOC fluxes were made by EC-PTRMS covering a large area of California as part of the California Airborne Bvoc Emission Research in Natural Ecosystem Transects (CABERNET) campaign aimed at improving BVOC emission models on regional scales, mainly profiling BVOC emissions from oak woodlands surrounding the Central Valley. In 2010, hourly in-situ VOC measurements were made via in-situ GC in Bakersfield, CA as part of the CalNex experiment. Additionally, in-situ measurements of fresh motor vehicle exhaust were made in Oakland's Caldecott tunnel. Measurements by

  5. Emissions of volatile organic compounds from hybrid poplar depend on CO2 concentration and genotype

    NASA Astrophysics Data System (ADS)

    Eller, A. S.; de Gouw, J. A.; Monson, R. K.

    2010-12-01

    Hybrid poplar is a fast-growing tree species that is likely to be an important source of biomass for the production of cellulose-based biofuels and may influence regional atmospheric chemistry through the emission of volatile organic compounds (VOCs). We used proton-transfer reaction mass spectrometry to measure VOC emissions from the leaves of four different hybrid poplar genotypes grown under ambient (400 ppm) and elevated (650 ppm) carbon dioxide concentration (CO2). The purpose of this experiment was to determine whether VOC emissions are different among genotypes and whether these emissions are likely to change as atmospheric CO2 rises. Methanol and isoprene made up over 90% of the VOC emissions and were strongly dependent on leaf age, with young leaves producing primarily methanol and switching to isoprene production as they matured. Monoterpene emissions were small, but tended to be higher in young leaves. Plants grown under elevated CO2 emitted smaller quantities of both methanol and isoprene, but the magnitude of the effect was dependent on genotype. Isoprene emission rates from mature leaves dropped from ~35 to ~28 nmol m-2 s-1 when plants were grown under elevated CO2. Emissions from individuals grown under ambient CO2 varied more based on genotype than those grown under elevated CO2, which means that we might expect smaller differences between genotypes in the future. Genotype and CO2 also affected how much carbon (C) individuals allocated to the production of VOCs. The emission rate of C from VOCs was 0.5 - 2% of the rate at which C was assimilated via net photosynthesis. The % C emitted was strongly related to genotype; clones from crosses between Populus deltoides and P. trichocarpa (T x D) allocated a greater % of their C to VOC emissions than clones from crosses of P. deltoids and P. nigra (D x N). Individuals from all four genotypes allocated a smaller % of their C to the emission of VOCs when they were grown under elevated CO2. These results

  6. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea.

    PubMed

    Shuai, Jianfei; Kim, Sunshin; Ryu, Hyeonsu; Park, Jinhyeon; Lee, Chae Kwan; Kim, Geun-Bae; Ultra, Venecio U; Yang, Wonho

    2018-04-20

    Studying human health in areas with industrial contamination is a serious and complex issue. In recent years, attention has increasingly focused on the health implications of large industrial complexes. A variety of potential toxic chemicals have been produced during manufacturing processes and activities in industrial complexes in South Korea. A large number of dyeing industries gathered together in Daegu dyeing industrial complex. The residents near the industrial complex could be often exposed to volatile organic compounds. This study aimed to evaluate VOCs levels in the ambient air of DDIC, to assess the impact on human health risks, and to find more convincing evidences to prove these VOCs emitted from DDIC. According to deterministic risk assessment, inhalation was the most important route. Residential indoor, outdoor and personal exposure air VOCs were measured by passive samplers in exposed area and controlled area in different seasons. Satisfaction with ambient environments and self-reported diseases were also obtained by questionnaire survey. The VOCs concentrations in exposed area and controlled area was compared by t-test. The relationships among every VOC were tested by correlation. The values of hazard quotient (HQ) and life cancer risk were estimated. The concentrations of measured VOCs were presented, moreover, the variety of concentrations according the distances from the residential settings to the industrial complex site in exposed area. The residential indoor, outdoor, and personal exposure concentrations of toluene, DMF and chloroform in exposed area were significantly higher than the corresponding concentrations in controlled area both in summer and autumn. Toluene, DMF, chloroform and MEK had significantly positive correlations with each other in indoor and outdoor, and even in personal exposure. The HQ for DMF exceeded 1, and the life cancer risk of chloroform was greater than 10 - 4 in exposed area. The prevalence of respiratory diseases

  7. Volatile organic compounds sources and sinks in a wheat canopy. Analysis based on combined eddy-covariance fluxes, in-canopy profiles and chamber measurements with a PTR-TOF-Qi-MS

    NASA Astrophysics Data System (ADS)

    Loubet, Benjamin; Gonzaga, Lais; Buysse, Pauline; Ciuraru, Raluca; Lafouge, Florence; Decuq, Céline; Zurfluh, Olivier; Fortineau, Alain; Fanucci, Olivier; Sarda-Esteve, Roland; Zannoni, Nora; Truong, Francois; Boissard, Christophe; Gros, Valérie

    2017-04-01

    Volatile organic compounds (VOC) are essential drivers of atmospheric chemistry. Many VOCs are emitted from and deposited to ecosystems. While forests and grasslands have already been substantially studied, exchanges of VOCs with crops are less known, although these ecosystems represent more than 50% of the surface in France. In this study, we analyze sources and sinks of VOCs in a wheat field (at the ICOS FR-GRI site near Paris) at anthesis based on measurements of fluxes, concentration profiles and branch chambers. The VOCs were measured using a PTR-TOF-Qi-MS (where Qi stands for Quad Ion guide). Air was successively sampled through lines located at different heights within and above the canopy, of which one was used for Eddy Covariance and located near a sonic anemometer. Additional measurements included the standard ICOS meteorological data as well as leaf area index profiles and photosynthesis curves at several heights in the canopy. We report fluxes and profiles for more than 500 VOCs. The deposition velocities of depositing compounds are compared to the maximum exchange velocity and the ozone deposition velocity. The sources and sinks location and magnitude are evaluated by inverse Lagrangian modelling assuming no reaction and simple reaction schemes in the canopy. The sources and sinks of VOC in the canopy are interpreted in terms crop phenology and the potential for reaction with ozone and NOx is evaluated. This study takes place in the ADEME CORTEA COV3ER French project (http://www6.inra.fr/cov3er).

  8. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    NASA Astrophysics Data System (ADS)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard

  9. A review of photocatalysts prepared by sol-gel method for VOCs removal.

    PubMed

    Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin

    2010-05-28

    The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature.

  10. A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal

    PubMed Central

    Tseng, Ting Ke; Lin, Yi Shing; Chen, Yi Ju; Chu, Hsin

    2010-01-01

    The sol-gel process is a wet-chemical technique (chemical solution deposition), which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs) are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO) is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature. PMID:20640156

  11. ASSESSMENT OF EXISTING TEST REPORTS FOR EVALUATING VOC CONTROL EFFECTIVENESS

    EPA Science Inventory

    The report outlines the approach taken by EPA to review existing test reports for evaluating volatile organic compound (VOC) control device effectiveness and identifying missing control device effectiveness information. A format is presented to provide guidance and serve as the b...

  12. Emissions of Volatile Organic Compounds (VOCs) Associated with Natural Gas Production in the Uintah Basin, Utah

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Zahn, A.; Graus, M.; De Gouw, J. A.; Gilman, J. B.; Lerner, B. M.; Roberts, J. M.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Peischl, J.; Ryerson, T. B.; Williams, E. J.; Petron, G.; Kofler, J.; Sweeney, C.; Karion, A.; Dlugokencky, E. J.

    2012-12-01

    Technological advances such as hydraulic fracturing have led to a rapid increase in the production of natural gas from several basins in the Rocky Mountain West, including the Denver-Julesburg basin in Colorado, the Uintah basin in Utah and the Upper Green River basin in Wyoming. There are significant concerns about the impact of natural gas production on the atmosphere, including (1) emissions of methane, which determine the net climate impact of this energy source, (2) emissions of reactive hydrocarbons and nitrogen oxides, and their contribution to photochemical ozone formation, and (3) emissions of air toxics with direct health effects. The Energy & Environment - Uintah Basin Wintertime Ozone Study (UBWOS) in 2012 was focused on addressing these issues. During UBWOS, measurements of volatile organic compounds (VOCs) were made using proton-transfer-reaction mass spectrometry (PTR-MS) instruments from a ground site and a mobile laboratory. Measurements at the ground site showed mixing ratios of VOCs related to oil and gas extraction were greatly enhanced in the Uintah basin, including several days long periods of elevated mixing ratios and concentrated short term plumes. Diurnal variations were observed with large mixing ratios during the night caused by low nighttime mixing heights and a shift in wind direction during the day. The mobile laboratory sampled a wide variety of individual parts of the gas production infrastructure including active gas wells and various processing plants. Included in those point sources was a new well that was sampled by the mobile laboratory 11 times within two weeks. This new well was previously hydraulically fractured and had an active flow-back pond. Very high mixing ratios of aromatics were observed close to the flow-back pond. The measurements of the mobile laboratory are used to determine the source composition of the individual point sources and those are compared to the VOC enhancement ratios observed at the ground site. The

  13. Modelling Contribution of Biogenic VOCs to New Particle Formation in the Jülich Plant Atmosphere Chamber

    NASA Astrophysics Data System (ADS)

    Liao, L.; Boy, M.; Mogensen, D.; Mentel, T. F.; Kleist, E.; Kiendler-Scharr, A.; Tillman, R.; Kulmala, M. T.; Dal Maso, M.

    2012-12-01

    Biogenic VOCs are substantially emitted from vegetation to atmosphere. The oxidation of BVOCs by OH, O3, and NO3 in air generating less volatile compounds may lead to the formation and growth of secondary organic aerosol, and thus presents a link to the vegetation, aerosol, and climate interaction system (Kulmala et al, 2004). Studies including field observations, laboratory experiments and modelling have improved our understanding on the connection between BVOCs and new particle formation mechanism in some extent (see e.g. Tunved et al., 2006; Mentel et al., 2009). Nevertheless, the exact formation process still remains uncertain, especially from the perspective of BVOC contributions. The purpose of this work is using the MALTE aerosol dynamics and air chemistry box model to investigate aerosol formation from reactions of direct tree emitted VOCs in the presence of ozone, UV light and artificial solar light in an atmospheric simulation chamber. This model employs up to date air chemical reactions, especially the VOC chemistry, which may potentially allow us to estimate the contribution of BVOCs to secondary aerosol formation, and further to quantify the influence of terpenes to the formation rate of new particles. Experiments were conducted in the plant chamber facility at Forschungszentrum Jülich, Germany (Jülich Plant Aerosol Atmosphere Chamber, JPAC). The detail regarding to the chamber facility has been written elsewhere (Mentel et al., 2009). During the experiments, sulphuric acid was measured by CIMS. VOC mixing ratios were measured by two GC-MS systems and PTR-MS. An Airmodus Particle size magnifier coupled with a TSI CPC and a PH-CPC were used to count the total particle number concentrations with a detection limit close to the expected size of formation of fresh nanoCN. A SMPS measured the particle size distribution. Several other parameters including ozone, CO2, NO, Temperature, RH, and flow rates were also measured. MALTE is a modular model to predict

  14. Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae).

    PubMed

    Caissard, Jean-Claude; Meekijjironenroj, Aroonrat; Baudino, Sylvie; Anstett, Marie-Charlotte

    2004-08-01

    Volatile compounds, which frequently play important roles in plant-insect interaction, can be produced either by flowers to attract pollinators or by leaves to deter herbivores. The specialized structures associated with odor production differ in these two organs. The European dwarf palm Chamaerops humilis represents a unique intermediate between these two. In previous work, its leaves were shown to produce volatile organic compounds (VOCs) that attract pollinators only during flowering. Because the leaf sinuses look like a gland, the sinus was examined histologically and with environmental scanning electron microscopy (ESEM) for evidence that the sinus emits VOCs. Volatile compounds emitted by the different parts of the leaf were extracted by washes and headspace then analyzed by gas chromatograph-mass spectrometer (GC-MS). The sinus does not have the expected gland-like structure; the VOCs are actually produced by the whole leaf, even if the composition of the VOCs emitted by the sinus slightly differs. Thus, attraction of pollinators does not result from specialized secreting cells in leaves of flowering European dwarf palms. The results are discussed in the context of a convergent evolution of leaves toward petals.

  15. BREATH MEASUREMENT AND MODELS TO ASSESS VOC DERMAL ABSORPTION IN WATER

    EPA Science Inventory

    Dermal exposure to volatile organic compounds (VOCs) in water results from environmental contamination of surface, ground-, and drinking waters. This exposure occurs both in occupational and residential settings. Compartmental models incorporating body burden measurements have ...

  16. Synthesis and Electroluminescent Property of New Orange Iridium Compounds for Flexible White Organic Light Emitting Diodes.

    PubMed

    Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung

    2015-10-01

    Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications.

  17. Worker exposure to volatile organic compounds in the vehicle repair industry.

    PubMed

    Wilson, Michael P; Hammond, S Katharine; Nicas, Mark; Hubbard, Alan E

    2007-05-01

    This study evaluated exposures among vehicle repair technicians to hexane, acetone, toluene, and total volatile organic compounds (VOCs). On randomly selected workdays, we observed a characteristic pattern of solvent use among 36 technicians employed in 10 repair shops, each of which used an aerosol solvent product. We obtained quantitative exposure measurements from a subset of nine technicians (employed in three of these shops) who used an aerosol product containing hexane (25-35%), acetone (45-55%), and toluene (5-10%). The time-weighted average (TWA) exposure concentration for task-length breathing zone (BZ) samples (n = 23) was 36 mg/m(3) for hexane, 50 mg/m(3) for acetone, and 10 mg/m(3) for toluene. The TWA area concentrations (n = 49) obtained contemporaneously with BZ samples ranged from 25% to 35% of the BZ concentrations. The solvent emission rate (grams emitted/task time) was correlated with the total VOC exposure concentration (R(2) = 0.45). The proportions of VOCs in the BZ samples were highly correlated (r = 0.89 to 0.95) and were similar to those of the bulk product. Continuous exposure measurements for total VOCs (n = 1238) during 26 tasks produced a mean BZ VOC "pulse" of 394 mg/m(3) within 1 min following initiation of solvent spraying. The geometric mean air speed was 5.2 meters/min in the work areas (n = 870) and was associated with 0.8 air changes per minute in the BZ. The findings suggest that vehicle repair technicians who use aerosol solvent products experience episodic, inhalation exposures to the VOCs contained in these products, and the proportions of VOCs in the breathing zone are similar to those of the bulk product. Because acetone appears to amplify the severity and duration of the neurotoxic effects of n-hexane, products formulated with both hexane and acetone should be avoided. Further evaluation of exposures to VOCs is needed in this industry, along with information on effective alternatives to aerosol solvent products.

  18. Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew M.; Veres, Patrick R.; Yuan, Bin; Koss, Abigail; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Peischl, Jeff; Aikin, Kenneth C.; Stockwell, Chelsea E.; Hatch, Lindsay E.; Ryerson, Thomas B.; Roberts, James M.; Yokelson, Robert J.; Gouw, Joost A.

    2016-09-01

    Volatile organic compounds (VOCs) emitted from residential wood and crop residue burning were measured in Colorado, U.S. When compared to the emissions from crop burning, residential wood burning exhibited markedly lower concentrations of acetonitrile, a commonly used biomass burning tracer. For both herbaceous and arboraceous fuels, the emissions of nitrogen-containing VOCs (NVOCs) strongly depend on the fuel nitrogen content; therefore, low NVOC emissions from residential wood burning result from the combustion of low-nitrogen fuel. Consequently, the emissions of compounds hazardous to human health, such as HNCO and HCN, and the formation of secondary pollutants, such as ozone generated by NOx, are likely to depend on fuel nitrogen. These results also demonstrate that acetonitrile may not be a suitable tracer for domestic burning in urban areas. Wood burning emissions may be best identified through analysis of the emissions profile rather than reliance on a single tracer species.

  19. Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Li, Xiangshang; Jeon, Wonbae; Souri, Amir Hossein

    2015-11-01

    A WRF-SMOKE-CMAQ modeling system was used to study Volatile Organic Compound (VOC) emissions and their impact on surface VOC and ozone concentrations in southeast Texas during September 2013. The model was evaluated against the ground-level Automated Gas Chromatograph (Auto-GC) measurement data from the Texas Commission on Environmental Quality (TCEQ). The comparisons indicated that the model over-predicted benzene, ethylene, toluene and xylene, while under-predicting isoprene and ethane. The mean biases between simulated and observed values of each VOC species showed clear daytime, nighttime, weekday and weekend variations. Adjusting the VOC emissions using simulated/observed ratios improved model performance of each VOC species, especially mitigating the mean bias substantially. Simulated monthly mean ozone showed a minor change: a 0.4 ppb or 1.2% increase; while a change of more than 5 ppb was seen in hourly ozone data on high ozone days, this change moved model predictions closer to observations. The CMAQ model run with the adjusted emissions better reproduced the variability in the National Aeronautics and Space Administration (NASA)'s Ozone Monitoring Instrument (OMI) formaldehyde (HCHO) columns. The adjusted model scenario also slightly better reproduced the aircraft HCHO concentrations from NASA's DISCOVER-AQ campaign conducted during the simulation episode period; Correlation, Mean Bias and RMSE improved from 0.34, 1.38 ppb and 2.15 ppb to 0.38, 1.33 ppb and 2.08 ppb respectively. A process analysis conducted for both industrial/urban and rural areas suggested that chemistry was the main process contributing to ozone production in both areas, while the impact of chemistry was smaller in rural areas than in industrial and urban areas. For both areas, the positive chemistry contribution increased in the sensitivity simulation largely due to the increase in emissions. Nudging VOC emissions to match the observed concentrations shifted the ozone hotspots

  20. Comparison of VOC and ammonia emissions from individual PVC materials, adhesives and from complete structures.

    PubMed

    Järnström, H; Saarela, K; Kalliokoski, P; Pasanen, A-L

    2008-04-01

    Emission rates of volatile organic compounds (VOCs) and ammonia measured from six PVC materials and four adhesives in the laboratory were compared to the emission rates measured on site from complete structures. Significantly higher specific emission rates (SERs) were generally measured from the complete structures than from individual materials. There were large differences between different PVC materials in their permeability for VOCs originating from the underlying structure. Glycol ethers and esters from adhesives used in the installation contributed to the emissions from the PVC covered structure. Emissions of 2-ethylhexanol and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were common. High ammonia SERs were measured from single adhesives but their contribution to the emissions from the complete structure did not appear as obvious as for VOCs. The results indicate that three factors affected the VOC emissions from the PVC flooring on a structure: 1) the permeability of the PVC product for VOCs, 2) the VOC emission from the adhesive used, and 3) the VOC emission from the backside of the PVC product.

  1. Determination of tobacco smoking influence on volatile organic compounds constituent by indoor tobacco smoking simulation experiment

    NASA Astrophysics Data System (ADS)

    Xie, Juexin; Wang, Xingming; Sheng, Guoying; Bi, Xinhui; Fu, Jiamo

    Tobacco smoking simulation experiment was conducted in a test room under different conditions such as cigarette brands, smoking number, and post-smoke decay in forced ventilation or in closed indoor environments. Thirty-seven chemical species were targeted and monitored, including volatile organic compounds (VOCs) and environmental tobacco smoke (ETS) markers. The results indicate that benzene, d-limonene, styrene, m-ethyltoluene and 1,2,4/1,3,5-trimethylbenzene are correlated well with ETS markers, but toluene, xylene, and ethylbenzene are not evidently correlated with ETS markers because there are some potential indoor sources of these compounds. 2,5-dimethylfuran is considered to be a better ETS marker due to the relative stability in different cigarette brands and a good relationship with other ETS markers. The VOCs concentrations emitted by tobacco smoking were linearly associated with the number of cigarettes consumed, and different behaviors were observed in closed indoor environment, of which ETS markers, d-limonene, styrene, trimethylbenzene, etc. decayed fast, whereas benzene, toluene, xylene, ethylbenzene, etc. decayed slowly and even increased in primary periods of the decay; hence ETS exposure in closed environments is believed to be more dangerous. VOCs concentrations and the relative percentage constituent of ETS markers of different brand cigarettes emissions vary largely, but the relative percentage constituent of ETS markers for the same brand cigarette emissions is similar.

  2. Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas.

    PubMed

    Lerner, Jorge Esteban Colman; Kohajda, Tibor; Aguilar, Myriam Elisabeth; Massolo, Laura Andrea; Sánchez, Erica Yanina; Porta, Atilio Andrés; Opitz, Philipp; Wichmann, Gunnar; Herbarth, Olf; Mueller, Andrea

    2014-01-01

    After reductions of fugitive and diffuse emissions by an industrial complex, a follow-up study was performed to determine the time variability of volatile organic compounds (VOCs) and the lifetime cancer risk (LCR). Passive samplers (3 M monitors) were placed outdoors (n = 179) and indoors (n = 75) in industrial, urban, and control areas for 4 weeks. Twenty-five compounds including n-alkanes, cycloalkanes, aromatics, chlorinated hydrocarbons, and terpenes were determined by GC/MS. The results show a significant decrease of all VOCs, especially in the industrial area and to a lesser extent in the urban area. The median outdoor concentration of benzene in the industrial area declined compared to the former study, around 85% and about 50% in the urban area, which in the past was strongly influenced by industrial emissions. Other carcinogenic compounds like styrene and tetrachloroethylene were reduced to approximately 60%. VOC concentrations in control areas remained nearly unchanged. According to the determined BTEX ratios and interspecies correlations, in contrast to the previous study, traffic was identified as the main emission source in the urban and control areas and showed an increased influence in the industrial area. The LCR, calculated for benzene, styrene, and tetrachloroethylene, shows a decrease of one order of magnitude in accordance to the decreased total VOC concentrations and is now acceptable according to values proposed by the World Health Organization.

  3. Ecosystem scale VOC exchange measurements at Bosco Fontana (IT) and Hyytiälä (FI)

    NASA Astrophysics Data System (ADS)

    Schallhart, S.; Rantala, P.; Taipale, R.; Nemitz, E.; Tillmann, R.; Mentel, T. F.; Ruuskanen, T.; Rinne, J.

    2013-12-01

    The ozone production and destruction mechanisms in the troposphere depend on the abundance of NOx and volatile organic compounds (VOCs). As the latter originate not only from human activities, but to a large extent from vegetation it is important to quantify these biogenic sources as well. The VOC-fluxes were measured in Bosco Fontana forest as a part of an intensive measurement campaign of the Eclaire project, which investigates how climate change alters the threat of air pollution. Measurements were carried out at the Nature Reserve 'Bosco della Fontana' in the Po valley, Italy. The area of the forest is 198 ha and the dominanting tree species are Quercus robur (English oak), Quercus cerris (Turkey oak) and Carpinus betulus (hornbeam). The fluxes were measured on at a height of 32 metres using the eddy covariance method. A PTR-TOF (Ionicon Analytik, Austria) measured volatile organic compounds up to a mass of 300 atomic mass units. The instrument is capable of recording full spectra of VOCs in real-time with a resolution of 10 Hz. In addition to the mass spectrometer a 3D Anemometer was placed next to the inlet. Results will be presented and compared with disjunct eddy covariance measurements (Taipale et al. 2011) from a Pinus sylvestris (Scots Pine) dominated forest in Hyytiälä, Finland. The two forests are characterized by a different emission profile; the Bosco Fontana forest emits large amounts of isoprene, whereas the terpenoid emissions from Hyytiälä forest are dominated by monoterpenes. The magnitude of the emissions differs as emission from Bosco Fontana is much higher. The monoterpene emission from Bosco Fontana is likely to follow different dynamics than that from Hyytiälä as it correlates well with the radiation. This leads to the conclusion, that monoterpenes are released right after they are produced (de novo). In Hyytiälä the emissions are light and temperature dependent, which is caused by de novo and storage emissions. Pines have large

  4. Development of new VOC exposure metrics and their relationship to ''Sick Building Syndrome'' symptoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ten Brinke, JoAnn

    1995-08-01

    Volatile organic compounds (VOCs) are suspected to contribute significantly to ''Sick Building Syndrome'' (SBS), a complex of subchronic symptoms that occurs during and in general decreases away from occupancy of the building in question. A new approach takes into account individual VOC potencies, as well as the highly correlated nature of the complex VOC mixtures found indoors. The new VOC metrics are statistically significant predictors of symptom outcomes from the California Healthy Buildings Study data. Multivariate logistic regression analyses were used to test the hypothesis that a summary measure of the VOC mixture, other risk factors, and covariates for eachmore » worker will lead to better prediction of symptom outcome. VOC metrics based on animal irritancy measures and principal component analysis had the most influence in the prediction of eye, dermal, and nasal symptoms. After adjustment, a water-based paints and solvents source was found to be associated with dermal and eye irritation. The more typical VOC exposure metrics used in prior analyses were not useful in symptom prediction in the adjusted model (total VOC (TVOC), or sum of individually identified VOCsVOC i)). Also not useful were three other VOC metrics that took into account potency, but did not adjust for the highly correlated nature of the data set, or the presence of VOCs that were not measured. High TVOC values (2--7 mg m -3) due to the presence of liquid-process photocopiers observed in several study spaces significantly influenced symptoms. Analyses without the high TVOC values reduced, but did not eliminate the ability of the VOC exposure metric based on irritancy and principal component analysis to explain symptom outcome.« less

  5. COMPETITIVE ADSORPTION OF VOCS AND BOM-OXIC AND ANOXIC ENVIRONMENTS

    EPA Science Inventory

    The effect of the presence of molecular oxygen on the adsorption of volatile organic compounds (VOCs) in distilled Milli-Q water and in water supplemented with background organic matter (BOM) is evaluated. Experiments are conducted under conditions where molecular oxygen is prese...

  6. Treatment of munitions manufacturing airborne VOC`s by biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severin, B.F.; Neilson, L.M.; Kim, B.J.

    1997-12-31

    The US Army Construction Engineering Research Laboratory contracted MBI International to perform a biofiltration study of industrial waste gas streams. Phase I of the study was a laboratory investigation of the treatability of a specific gas stream. The laboratory study was concluded in September, 1995. Phase II was the design, placement and operation of a full-scale biofilter. The project was completed in August, 1996. The specific gas stream originates from a munitions drying operation at the Olin Chemical Company, Lake City, AAP, Independence, MO. The production line is a blank bullet coating operation in the production line, slats of blankmore » ammunition are inverted and dipped into a coating material to seal the shell tips. The slats are then righted and moved into a drying box. The major solvent in the coating is ethyl acetate (70%) with about 30% of other solvent, such as, xylene and low molecular weight alcohols. The coating is thinned 50% with ethyl acetate, such that ethyl acetate represents more than 90% of the VOC load. The concentration of VOC`s is 400 ug/L at an air flow rate of 1000 ft{sup 3}/min. Laboratory results were collected on six test biofilter columns (15L). Steady state operations over a wide range of VOC loads were studied. The biofilters consistently destroyed 90-95% of the VOC`s. Square-wave dynamic loading cycles were studied to represent shift changes at the production facility. At high loadings, the biofilter performed well. At low organic loadings at applications of 5 hr/day of the gas stream, the filters required a small supplement of glucose to maintain column efficacy. A 1000 cubic foot bed volume, engineered media, biofilter was installed at Lake City AAP in January, 1996. The unit consists of a skid-mounted, class-1 division-1 explosion proof design including the blower package, biofilter media, nutrient addition, and automated VOC monitoring with PID. The unit was monitored for six months.« less

  7. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    NASA Astrophysics Data System (ADS)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  8. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    PubMed Central

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-01-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange. PMID:27311826

  9. NHEXAS PHASE I REGION 5 STUDY--VOCS IN BLOOD ANALYTICAL RESULTS

    EPA Science Inventory

    This data set includes analytical results for measurements of VOCs (volatile organic compounds) in 145 blood samples. These samples were collected to examine the relationships between personal exposure measurements, environmental measurements, and body burden. Venous blood sample...

  10. A comparative study of fungal and bacterial biofiltration treating a VOC mixture.

    PubMed

    Estrada, José M; Hernández, Sergio; Muñoz, Raúl; Revah, Sergio

    2013-04-15

    Bacterial biofilters usually exhibit a high microbial diversity and robustness, while fungal biofilters have been claimed to better withstand low moisture contents and pH values, and to be more efficient coping with hydrophobic volatile organic compounds (VOCs). However, there are only few systematic evaluations of both biofiltration technologies. The present study compared fungal and bacterial biofiltration for the treatment of a VOC mixture (propanal, methyl isobutyl ketone-MIBK, toluene and hexanol) under the same operating conditions. Overall, fungal biofiltration supported lower elimination capacities than its bacterial counterpart (27.7 ± 8.9 vs 40.2 ± 5.4 gCm(-3) reactor h(-1)), which exhibited a final pressure drop 60% higher than that of the bacterial biofilter due to mycelial growth. The VOC mineralization ratio was also higher in the bacterial bed (≈ 63% vs ≈ 43%). However, the substrate biodegradation preference order was similar for both biofilters (propanal>hexanol>MIBK>toluene) with propanal partially inhibiting the consumption of the rest of the VOCs. Both systems supported an excellent robustness versus 24h VOC starvation episodes. The implementation of a fungal/bacterial coupled system did not significantly improve the VOC removal performance compared to the individual biofilter performances. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  12. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  13. MEMBRANE-MODERATED STRIPPING PROCESS FOR REMOVING VOCS FROM WATER IN A COMPOSITE HOLLOW FIBER MODULE. (R825511C027)

    EPA Science Inventory

    The "stripmeation" process for removing volatile organic compounds (VOCs) from water has been introduced and studied. An aqueous solution of the VOC is passed through the bores of hydrophobic microporous polypropylene hollow fibers having a plasma polymerized silicone ...

  14. The urban atmosphere as a non-point source for the transport of MTBE and other volatile organic compounds (VOCS) to shallow groundwater

    USGS Publications Warehouse

    Pankow, J.F.; Thomson, N.R.; Johnson, Richard L.; Baehr, A.L.; Zogorski, J.S.

    1997-01-01

    Infiltration and dispersion (including molecular diffusion) can transport volatile organic compounds (VOCs) from urban air into shallow groundwater. The gasoline additive methyl-tert-butyl ether (MTBE) is of special interest because of its (1) current levels in some urban air, (2) strong partitioning from air into water, (3) resistance to degradation, (4) use as an octane-booster since the 1970s, (5) rapidly increasing use in the 1990s to reduce CO and O3 in urban air, and (6) its frequent detection at low microgram per liter levels in shallow urban groundwater in Denver, New England, and elsewhere. Numerical simulations were conducted using a 1-D model domain set in medium sand (depth to water table = 5 m) to provide a test of whether MTBE and other atmospheric VOCs could move to shallow groundwater within the 10−15 y time frame over which MTBE has now been used in large amounts. Degradation and sorption were assumed negligible. In case 1 (no infiltration, steady atmospheric source), 10 y was not long enough to permit significant VOC movement by diffusion into shallow groundwater. Case 2 considered a steady atmospheric source plus 36 cm/y of net infiltration; groundwater at 2 m below the water table became nearly saturated with atmospheric levels of VOC within 5 y. Case 3 was similar to case 2, but considered the source to be seasonal, being “on” for only 5 of 12 months each year, as with the use of MTBE during the winter fuel-oxygenate season; groundwater at 2 m below the water table became equilibrated with 5/12 of the “source-on” concentration within 5 y. Cases 4 and 5 added an evapotranspiration (ET) loss of 36 cm/y, resulting in no net recharge. Case 4 took the ET from the surface, and case 5 took the ET from the capillary fringe at a depth of 3.5 m. Net VOC mass transfer to shallow groundwater after 5 y was less for both cases 4 and 5 than for case 3. However, it was significantly greater for cases 4 and 5 than for case 1, even though cases 1, 4

  15. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS (PROJECT SUMMARY)

    EPA Science Inventory

    The report gives results of a study in which wood furniture manufacturing fa-cilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous air pollut-ant (HAP) wood furniture coatings [high-solids, waterbo...

  16. Characterizing relationships between personal exposures to VOCs and socioeconomic, demographic, behavioral variables

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Wei; Majeed, Mohammed A.; Chu, Pei-Ling; Lin, Hui-Chih

    Socioeconomic and demographic factors have been found to significantly affect time-activity patterns in population cohorts that can subsequently influence personal exposures to air pollutants. This study investigates relationships between personal exposures to eight VOCs (benzene, toluene, ethylbenzene, o-xylene, m-,p-xylene, chloroform, 1,4-dichlorobenzene, and tetrachloroethene) and socioeconomic, demographic, time-activity pattern factors using data collected from the 1999-2000 National Health and Nutrition Examination Survey (NHANES) VOC study. Socio-demographic factors (such as race/ethnicity and family income) were generally found to significantly influence personal exposures to the three chlorinated compounds. This was mainly due to the associations paired by race/ethnicity and urban residence, race/ethnicity and use of air freshener in car, family income and use of dry-cleaner, which can in turn affect exposures to chloroform, 1,4-dichlorobenzene, and tetrachloroethene, respectively. For BTEX, the traffic-related compounds, housing characteristics (leaving home windows open and having an attached garage) and personal activities related to the uses of fuels or solvent-related products played more significant roles in influencing exposures. Significant differences in BTEX exposures were also commonly found in relation to gender, due to associated significant differences in time spent at work/school and outdoors. The coupling of Classification and Regression Tree (CART) and Bootstrap Aggregating (Bagging) techniques were used as effective tools for characterizing robust sets of significant VOC exposure factors presented above, which conventional statistical approaches could not accomplish. Identification of these significant VOC exposure factors can be used to generate hypotheses for future investigations about possible significant VOC exposure sources and pathways in the general U.S. population.

  17. Estimating human-equivalent no observed adverse-effect levels for VOCs (volatile organic compounds) based on minimal knowledge of physiological parameters. Technical paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, J.H.; Jarabek, A.M.

    1989-01-01

    The U.S. EPA advocates the assessment of health-effects data and calculation of inhaled reference doses as benchmark values for gauging systemic toxicity to inhaled gases. The assessment often requires an inter- or intra-species dose extrapolation from no observed adverse effect level (NOAEL) exposure concentrations in animals to human equivalent NOAEL exposure concentrations. To achieve this, a dosimetric extrapolation procedure was developed based on the form or type of equations that describe the uptake and disposition of inhaled volatile organic compounds (VOCs) in physiologically-based pharmacokinetic (PB-PK) models. The procedure assumes allometric scaling of most physiological parameters and that the value ofmore » the time-integrated human arterial-blood concentration must be limited to no more than to that of experimental animals. The scaling assumption replaces the need for most parameter values and allows the derivation of a simple formula for dose extrapolation of VOCs that gives equivalent or more-conservative exposure concentrations values than those that would be obtained using a PB-PK model in which scaling was assumed.« less

  18. Clinical breath analysis: Discriminating between human endogenous compounds and exogenous (environmental) chemical confounders

    EPA Science Inventory

    Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous ...

  19. Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro

    PubMed Central

    2013-01-01

    Background Volatile organic compounds (VOCs) emitted by human body offer a unique insight into biochemical processes ongoing in healthy and diseased human organisms. Unfortunately, in many cases their origin and metabolic fate have not been yet elucidated in sufficient depth, thus limiting their clinical application. The primary goal of this work was to identify and quantify volatile organic compounds being released or metabolized by HepG2 hepatocellular carcinoma cells. Methods The hepatocellular carcinoma cells were incubated in specially designed head-space 1-L glass bottles sealed for 24 hours prior to measurements. Identification and quantification of volatiles released and consumed by cells under study were performed by gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap device extraction (HS-NTD) as the pre-concentration technique. Most of the compounds were identified both by spectral library match as well as retention time comparison based on standards. Results A total of nine compounds were found to be metabolised and further twelve released by the cells under study (Wilcoxon signed-rank test, p<0.05). The former group comprised 6 aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-ethylacrolein, 3-methyl butanal, n-hexanal and benzaldehyde), n-propyl propionate, n-butyl acetate, and isoprene. Amongst the released species there were five ketones (2-pentanone, 3-heptanone, 2-heptanone, 3-octanone, 2-nonanone), five volatile sulphur compounds (dimethyl sulfide, ethyl methyl sulfide, 3-methyl thiophene, 2-methyl-1-(methylthio)- propane and 2-methyl-5-(methylthio) furan), n-propyl acetate, and 2-heptene. Conclusions The emission and uptake of the aforementioned VOCs may reflect the activity of abundant liver enzymes and support the potential of VOC analysis for the assessment of enzymes function. PMID:23870484

  20. [Concentration and change of VOCs in summer and autumn in Tangshan].

    PubMed

    Sun, Jie; Wang, Yue-si; Wu, Fang-kun; Qiu, Jun

    2010-07-01

    In order to study the potential impact of volatile organic compounds (VOCs) in summer and autumn on region ozone, ambient concentrations and changes of VOCs were analyzed at Tangshan from June to September 2007 and 2008, by using the method of two-step-concentration-gas spectrometry/mass (CCD-GC/MS). The average concentration in Tangshan was 163.5 x 10(-9) C. The major components were alkanes, aromatics, alkenes and halogen hydrocarbons which accounted for 45.9%, 29.9%, 5.9% and 18.9% respectively. The average concentration decreased 51.9% compare with 2007 (340.4 x 10(-9) C), confine gas stations is the main reason of the decline of alkyl, the large decline is aromatic hydrocarbons, 67%, which has the most potential impact of ozone formation, and dichlorobenzene in industrial emissions has increased. The concentrations of VOCs in Tangshan were lower 8% than that of Beijing during the same period in 2008. The changes of VOCs during 2008 Beijing Olympic show that in addition to traffic source industrial emissions is also an important source of atmospheric pollution.

  1. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  2. Volatile organic compounds in storm water from a parking lot

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Rutherford, D.W.; Hiatt, M.H.

    2000-01-01

    A mass balance approach was used to determine the most important nonpoint source of volatile organic compounds (VOCs) in storm water from an asphalt parking lot without obvious point sources (e.g., gasoline stations). The parking lot surface and atmosphere are important nonpoint sources of VOCs, with each being important for different VOCs. The atmosphere is an important source of soluble, oxygenated VOCs (e.g., acetone), and the parking lot surface is an important source for the more hydrophobic VOCs (e.g., benzene). VOCs on the parking lot surface appear to be concentrated in oil and grease and organic material in urban particles (e.g., vehicle soot). Except in the case of spills, asphalt does not appear to be an important source of VOCs. The uptake isotherm of gaseous methyl tert-butyl ether on urban particles indicates a mechanism for dry deposition of VOCs from the atmosphere. This study demonstrated that a mass balance approach is a useful means of understanding non-point-source pollution, even for compounds such as VOCs, which are difficult to sample.

  3. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry.

    PubMed

    Gotor-Vila, A; Teixidó, N; Di Francesco, A; Usall, J; Ugolini, L; Torres, R; Mari, M

    2017-06-01

    The present work focuses on the antifungal effect of volatile organic compounds (VOCs) produced by Bacillus amyloliquefaciens CPA-8 against Monilinia laxa, M. fructicola and Botrytis cinera, three postharvest fruit pathogens of sweet cherry fruit. VOCs were evaluated with a double petri dish assay against mycelial and colony growth of target pathogens. For this purpose, CPA-8 was grown on different media and cultured for 24 and 48 h at 30 °C before assays. Data showed that mycelial growth inhibition was higher when CPA-8 was grown on Tryptone Soya Agar (TSA) while no differences were generally observed when CPA-8 was cultured for either, 24 and 48 h. Moreover, no effects were observed on colony growth. The main volatile compounds emitted by CPA-8 were identified by solid-phase microextraction (SPME)-gas chromatography as 1,3 pentadiene, acetoin (3-hydroxy-2-butanone) and thiophene. Pure compounds were also tested in vitro on mycelial growth inhibition and their EC 50 values against the three pathogens were estimated. Thiophene was the most effective VOC, showing more than 82% suppression of mycelial growth at the highest concentration (1.35 μL/mL headspace) and EC 50 values ranging from 0.06 to 6.67 μL/mL headspace. Finally, the effectiveness of thiophene and CPA-8 VOCs was evaluated against artificially inoculated cherry fruits. Among the target pathogens, M. fructicola was clearly controlled by CPA-8 with less than 25% of rotten fruits compared to the control (65% disease incidence) and for all pathogens, less than 37.5% of CPA-8 treated decayed fruits produced spores (disease sporulation). Otherwise, pure thiophene showed no effect against any pathogen on disease incidence and disease sporulation. The results indicated that VOCs produced by B. amyloliquefaciens CPA-8 could develop an additive antifungal effect against postharvest fruit pathogens on stone fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 40 CFR 60.562-2 - Standards: Equipment leaks of VOC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Volatile Organic Compound (VOC) Emissions from the Polymer Manufacturing Industry § 60.562-2 Standards... feature of the pump whereby polymer fluid used to provide lubrication and/or cooling of the pump shaft...

  5. Volatile Organic Compounds (VOCs) measurements onboard the HALO research aircraft during OMO-ASIA

    NASA Astrophysics Data System (ADS)

    Safadi, Layal; Neumaier, Marco; Fischbeck, Garlich; Geiger, Felix; Förster, Eric; Tomsche, Laura; Zahn, Andreas

    2017-04-01

    The objective of the OMO-Asia campaign that took place in summer 2015 was to study the free-radical chemistry at higher altitudes during the Asian summer monsoon taken over a wide area of Asia. VOC measurements (e.g. acetone, acetonitrile, benzene, and toluene) were conducted using a strongly modified instrument based on a commercial Proton-Transfer-Reaction Mass Spectrometer (PTRMS) from Ionicon. The PTRMS data are generally in good agreement with VOC measurements taken by the GC instrument from Max Planck Institute for Chemistry. In the outflow of the Monsoon plume acetone and acetonitrile volume mixing ratios (VMR) up to 1500 pptV and 180 pptV have been measured, respectively, pointing to a small contribution from biomass burning sources of which acetonitrile is an important tracer. Comparison with VOCs simulated in the atmospheric chemistry model EMAC model exhibits an underestimation (factor of 3 for acetone). The measured data were analyzed with the help of 10 days back trajectories to distinguish air mass origins. For air masses originating from North America (NA) an enhancement of 500 pptV acetone relative to the atmospheric background ( 500 pptV) can be traced back to active biogenic acetone sources in the NA boreal summer. An average enhancement of 400 pptV acetone comes from the Asian summer monsoon. Acetone - CO correlations in the monsoon relative to background air is being analyzed for further characterization and estimation of the sources.

  6. PROCEEDINGS: POLLUTION PREVENTION CONFERENCE ON LOW- AND NO-VOC COATING TECHNOLOGIES

    EPA Science Inventory

    The report documents a conference that provided a forum for the exchange of technical information on coating technologies. It focused on improved and emerging technologies that result in fewer volatile organic compound (VOC) and toxic air emissions than traditional coating emissi...

  7. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection.

    PubMed

    Liu, Lei; Zhang, Diming; Zhang, Qian; Chen, Xing; Xu, Gang; Lu, Yanli; Liu, Qingjun

    2017-07-15

    Volatile organic compounds (VOCs) detection is in high demand for clinic treatment, environment monitoring, and food quality control. Especially, VOCs from human exhaled breath can serve as significant biomarkers of some diseases, such as lung cancer and diabetes. In this study, a smartphone-based sensing system was developed for real-time VOCs monitoring using alternative current (AC) impedance measurement. The interdigital electrodes modified with zinc oxide (ZnO), graphene, and nitrocellulose were used as sensors to produce impedance responses to VOCs. The responses could be detected by a hand-held device, sent out to a smartphone by Bluetooth, and reported with concentration on an android program of the smartphone. The smartphone-based system was demonstrated to detect acetone at concentrations as low as 1.56ppm, while AC impedance spectroscopy was used to distinguish acetone from other VOCs. Finally, measurements of the exhalations from human being were carried out to obtain the concentration of acetone in exhaled breath before and after exercise. The results proved that the smartphone-based system could be applied on the detection of VOCs in real settings for healthcare diagnosis. Thus, the smartphone-based system for VOCs detection provided a convenient, portable and efficient approach to monitor VOCs in exhaled breath and possibly allowed for early diagnosis of some diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. REDUCING UNCERTAINTY IN AIR TOXICS RISK ASSESSMENT: A MECHANISTIC EXPOSURE-DOSE-RESPONSE (EDR) MODEL FOR ASSESSING THE ACUTE NEUROTOXICITY OF VOLATILE ORGANIC COMPOUNDS (VOCS) BASED UPON A RECEPTOR-MEDIATED MODE OF ACTION

    EPA Science Inventory

    SUMMARY: The major accomplishment of NTD’s air toxics program is the development of an exposure-dose- response model for acute exposure to volatile organic compounds (VOCs), based on momentary brain concentration as the dose metric associated with acute neurological impairments...

  9. Measurements of major VOCs released into the closed cabin environment of different automobiles under various engine and ventilation scenarios.

    PubMed

    Kim, Ki-Hyun; Szulejko, Jan E; Jo, Hyo-Jae; Lee, Min-Hee; Kim, Yong-Hyun; Kwon, Eilhann; Ma, Chang-Jin; Kumar, Pawan

    2016-08-01

    Volatile organic compounds (VOCs) in automobile cabins were measured quantitatively to describe their emission characteristics in relation to various idling scenarios using three used automobiles (compact, intermediate sedan, and large sedan) under three different idling conditions ([1] cold engine off and ventilation off, [2] exterior air ventilation with idling warm engine, and [3] internal air recirculation with idling warm engine). The ambient air outside the vehicle was also analyzed as a reference. A total of 24 VOCs (with six functional groups) were selected as target compounds. Accordingly, the concentration of 24 VOC quantified as key target compounds averaged 4.58 ± 3.62 ppb (range: 0.05 (isobutyl alcohol) ∼ 38.2 ppb (formaldehyde)). Moreover, if their concentrations are compared between different automobile operational modes: the 'idling engine' levels (5.24 ± 4.07) was 1.3-5 times higher than the 'engine off' levels (4.09 ± 3.23) across all 3 automobile classes. In summary, automobile in-cabin VOC emissions are highly contingent on changes in engine and ventilation modes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. CAPSTONE REPORT ON THE DEVELOPMENT OF A STANDARD TEST METHOD FOR VOC EMISSIONS FROM INTERIOR LATEX PAINT AND ALKYD PAINTS

    EPA Science Inventory

    The report gives details of a small-chamber test method developed by the EPA for characterizing volatile organic compound (VOC) emissions from interior latex and alkyd paints. Current knowledge about VOC, including hazardous air pollutant, emissions from interior paints generated...

  11. DEVELOPMENT OF A NO-VOC/NO-HAP WOOD FURNITURE COATINGS SYSTEM

    EPA Science Inventory

    The report gives results of the development and demonstration of a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The performance characteristics of the new coating system are excellent in terms of adhesion, drying time, gloss, ...

  12. Modeling and analysis of personal exposures to VOC mixtures using copulas

    PubMed Central

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2014-01-01

    Environmental exposures typically involve mixtures of pollutants, which must be understood to evaluate cumulative risks, that is, the likelihood of adverse health effects arising from two or more chemicals. This study uses several powerful techniques to characterize dependency structures of mixture components in personal exposure measurements of volatile organic compounds (VOCs) with aims of advancing the understanding of environmental mixtures, improving the ability to model mixture components in a statistically valid manner, and demonstrating broadly applicable techniques. We first describe characteristics of mixtures and introduce several terms, including the mixture fraction which represents a mixture component's share of the total concentration of the mixture. Next, using VOC exposure data collected in the Relationship of Indoor Outdoor and Personal Air (RIOPA) study, mixtures are identified using positive matrix factorization (PMF) and by toxicological mode of action. Dependency structures of mixture components are examined using mixture fractions and modeled using copulas, which address dependencies of multiple variables across the entire distribution. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) are evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks are calculated for mixtures, and results from copulas and multivariate lognormal models are compared to risks calculated using the observed data. Results obtained using the RIOPA dataset showed four VOC mixtures, representing gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection by-products, and cleaning products and odorants. Often, a single compound dominated the mixture, however, mixture fractions were generally heterogeneous in that the VOC composition of the mixture changed with concentration. Three mixtures were identified by mode of action, representing VOCs associated with hematopoietic, liver

  13. Unbiased profiling of volatile organic compounds in the headspace of Allium plants using an in-tube extraction device.

    PubMed

    Kusano, Miyako; Kobayashi, Makoto; Iizuka, Yumiko; Fukushima, Atsushi; Saito, Kazuki

    2016-02-29

    Plants produce and emit important volatile organic compounds (VOCs), which have an essential role in biotic and abiotic stress responses and in plant-plant and plant-insect interactions. In order to study the bouquets from plants qualitatively and quantitatively, a comprehensive, analytical method yielding reproducible results is required. We applied in-tube extraction (ITEX) and solid-phase microextraction (SPME) for studying the emissions of Allium plants. The collected HS samples were analyzed by gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS), and the results were subjected to multivariate analysis. In case of ITEX-method Allium cultivars released more than 300 VOCs, out of which we provisionally identified 50 volatiles. We also used the VOC profiles of Allium samples to discriminate among groups of A. fistulosum, A. chinense (rakkyo), and A. tuberosum (Oriental garlic). As we found 12 metabolite peaks including dipropyl disulphide with significant changes in A. chinense and A. tuberosum when compared to the control cultivar, these metabolite peaks can be used for chemotaxonomic classification of A. chinense, tuberosum, and A. fistulosum. Compared to SPME-method our ITEX-based VOC profiling technique contributes to automatic and reproducible analyses. Hence, it can be applied to high-throughput analyses such as metabolite profiling.

  14. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source.

    PubMed

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  15. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    NASA Astrophysics Data System (ADS)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-06-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photooxidation under a range of controlled conditions (RH ∼65-89%, VOC/NOx ∼3-9 and NOx ∼2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line, chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene, but low isoprene emitter, and its emissions were observed to produce measureable amounts of SOA via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e., in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photooxidation products of the minor VOCs co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally-isoprene emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally-isoprene-emitting

  16. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrationsmore » were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.« less

  17. Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop.

    PubMed

    Di, Yanqiang; Liu, Jiemin; Liu, Jianguo; Liui, Siyuan; Yan, Luchun

    2013-10-01

    Gas chromatography-mass spectrometry, olfactometry, and other related methods were applied for the qualitative and quantitative analysis of the characteristics of odorous gases in the pretreatment workshop. The composition of odorous gases emitted from municipal food waste was also investigated in this study. The results showed that the tested gases are mainly composed of aromatic gases, which account for 49% of the total volatile organic compounds (VOC) concentrations. The nitrogenous compounds comprise 15% of the total concentration and the other gases comprise the remaining 36%. The level of odor concentration ranged from 2523 odor units (OU) m(-3) to 3577 OU m(-3). The variation of the total chemical composition ranged from 19,725 microg m(-3) to 24,184 microg m(-3). Among the selected four sampling points, the discharge outlet was detected to have the highest concentration in terms of odor, total chemical, sulfur compounds, and aromatics. The correlation analysis showed that the odor concentrations were evidently related to the total chemical composition, sulfur compounds, and aromatics (P < 0.05, n = 5). The odor activity value analysis identified the top three compounds, hydrogen sulfide (91.8), ethyl sulfide (35.8), and trimethylamine (70.6), which contribute to air pollution complaint of waste materials.

  18. Natural attenuation of volatile organic compounds (VOCs) in the leachate plume of a municipal landfill: Using alkylbenzenes as process probes

    USGS Publications Warehouse

    Eganhouse, R.P.; Cozzarelli, I.M.; Scholl, M.A.; Matthews, L.L.

    2001-01-01

    More than 70 individual VOCs were identified in the leachate plume of a closed municipal landfill. Concentrations were low when compared with data published for other landfills, and total VOCs accounted for less than 0.1% of the total dissolved organic carbon. The VOC concentrations in the core of the anoxic leachate plume are variable, but in all cases they were found to be near or below detection limits within 200 m of the landfall. In contrast to the VOCs, the distributions of chloride ion, a conservative tracer, and nonvolatile dissolved organic carbon, indicate little dilution over the same distance. Thus, natural attentuation processes are effectively limiting migration of the VOC plume. The distribution of C2-3-benzenes, paired on the basis of their octanol-water partition coefficients and Henry's law constants, were systematically evaluated to assess the relative importance of volatilization, sorption, and biodegradation as attenuation mechanisms. Based on our data, biodegradation appears to be the process primarily responsible for the observed attenuation of VOCs at this site. We believe that the alkylbenzenes are powerful process probes that can and should be exploited in studies of natural attenuation in contaminated ground water systems.

  19. CASTNet Air Toxics Monitoring Program (CATMP): VOC and carbonyl data for July, 1993 through March, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harlos, D.P.; Edgerton, E.S.

    1994-12-31

    The US EPA has, under the auspices of the CASTNet program (Clean Air Status and Trends Network), initiated the CASTNet Air Toxics Monitoring Program (CATMP). Volatile Organic Compounds (VOC) and carbonyls and metals are sampled for 24-hour periods on a 12-day schedule using TO-14 samplers (SUMMA canisters) and dinitrophenylhydrazine-coated (dmph) sorbent cartridges and high volume particle samplers. Sampling was begun at most sites in July of 1993. The sites are operated by state and local air pollution control programs and all analysis is performed by Environmental Science and Engineering (ESE) in Gainesville, Florida. The network currently supports 15 VOC sites,more » of which 7 also sample carbonyls. Three sites sample metals only in Pinellas County, Florida. The limits of detection of 0.05 ppb for VOCs allow routine tracking of a wide range of pollutants including several greenhouse gases, transportation pollutants and photochemically-derived compounds. The sites range from major urban areas (Chicago, St. Louis) to a rural village (Waterbury, Vermont). Results of the first three quarters of VOC and carbonyl data collection are summarized in this presentation.« less

  20. Variation in the Volatile Profiles of Black and Manchurian Ash in Relation to Emerald Ash Borer Oviposition Preferences.

    PubMed

    Rigsby, Chad M; McCartney, Nathaniel B; Herms, Daniel A; Tumlinson, James H; Cipollini, Don

    2017-08-01

    Emerald ash borer (EAB; Agrilus planipennis) is a devastating pest of ash (Fraxinus spp.) in its invaded range in North America. Its coevolved Asian hosts are more resistant and less preferred for oviposition than susceptible North American species. We compared EAB oviposition preferences and bark and canopy volatile organic compound (VOC) emissions of resistant Manchurian ash and susceptible black ash, and examined relationships between VOC profiles and oviposition. In the field, black ash was highly preferred for oviposition while no eggs were laid on Manchurian ash, and we found clear differences in the VOC profiles of Manchurian and black ash. We detected 78 compounds emitted from these species, including 16 compounds that elicited EAB antennal activity in prior studies. Four compounds were unique to black and 11 to Manchurian ash. Emission rates of 14 canopy and 19 bark volatiles varied among the two species, including four previously reported as antennally active. Specifically, 7-epi-sesquithujene (bark) emissions were greater from black ash, while β-caryophyllene (canopy), linalool (bark), and α-cubebene (bark) were emitted at higher rates by Manchurian ash. No relationships were found between the emission rate of any single compound or group of compounds (e.g. monoterpenes) suggesting that preference may be based on complex profile combinations. This is the first study to directly compare VOCs of black and Manchurian ash as well as the first to examine bark- and canopy-specific VOCs. The unique bark and canopy VOC profiles of these two species implicates potentially important variation in VOCs between a closely related resistant and susceptible species that provides a foundation for future studies of host preferences of EAB.

  1. State of California; Sacramento Metropolitan AQMD; Approval of Air Plan Revisions; VOC Emissions

    EPA Pesticide Factsheets

    EPA is taking final action to approve a revision to the Sacramento Metropolitan AQMD portion of the California State Implementation Plan (SIP), concerning volatile organic compound (VOC) emissions from Organic Chemical Manufacturing Operations.

  2. Seasonal cycle of indoor-VOCs: comparison of apartments and cities

    NASA Astrophysics Data System (ADS)

    Schlink, U.; Rehwagen, M.; Damm, M.; Richter, M.; Borte, M.; Herbarth, O.

    On the basis of 2103 measurements of volatile organic compounds (VOCs) in indoor air we study the intensity of a seasonal pattern. The data are representative for the German population and were gathered in different cities (Leipzig, München, Köln), in rooms of different type (children's, living, sleeping rooms, and other rooms), and in households of smokers and non-smokers. In addition to the randomly selected different apartments that were sampled each month, we repeatedly measured in a fixed set of 10 apartments. The analysis comprised concentrations of 30 VOCs belonging to the groups of alkanes, cycloalkanes, aromatics, volatile halogenated hydrocarbons, and terpenes. The annual cycle for total VOC concentrations was observed at every site. Seasonality proved to be the most dominant pattern, but it may be modified by further factors, such as the city, the considered VOC component, and the type of the considered room. Highest concentrations occurred during the winter months and amount to approximately three to four times the summer burden. As seasonality may bias the results of health effect studies we fit a seasonal model to our measurements and develop a procedure for seasonal adjustment, which enables to roughly estimate the annual peak concentration utilizing one monthly observation. The seasonal pattern proved to be a general feature of indoor VOC concentrations and, therefore, this adjustment procedure may be generally applicable. For Leipzig, München, and Köln we present site-specific adjustment factors for indoor concentrations of aromatics, terpenes, and alkanes.

  3. Fire emissions constrained by the synergistic use of formaldehyde and glyoxal SCIAMACHY columns in a two-compound inverse modelling framework

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Muller, J.; de Smedt, I.; van Roozendael, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.

    2008-12-01

    Formaldehyde (HCHO) and glyoxal (CHOCHO) are carbonyls formed in the oxidation of volatile organic compounds (VOCs) emitted by plants, anthropogenic activities, and biomass burning. They are also directly emitted by fires. Although this primary production represents only a small part of the global source for both species, yet it can be locally important during intense fire events. Simultaneous observations of formaldehyde and glyoxal retrieved from the SCIAMACHY satellite instrument in 2005 and provided by the BIRA/IASB and the Bremen group, respectively, are compared with the corresponding columns simulated with the IMAGESv2 global CTM. The chemical mechanism has been optimized with respect to HCHO and CHOCHO production from pyrogenically emitted NMVOCs, based on the Master Chemical Mechanism (MCM) and on an explicit profile for biomass burning emissions. Gas-to-particle conversion of glyoxal in clouds and in aqueous aerosols is considered in the model. In this study we provide top-down estimates for fire emissions of HCHO and CHOCHO precursors by performing a two- compound inversion of emissions using the adjoint of the IMAGES model. The pyrogenic fluxes are optimized at the model resolution. The two-compound inversion offers the advantage that the information gained from measurements of one species constrains the sources of both compounds, due to the existence of common precursors. In a first inversion, only the burnt biomass amounts are optimized. In subsequent simulations, the emission factors for key individual NMVOC compounds are also varied.

  4. CORONA DESTRUCTION: AN INNOVATIVE CONTROL TECHNOLOGY FOR VOCS AND AIR TOXICS

    EPA Science Inventory

    This paper discusses the work and results to date leading to the demonstration of the corona destruction process at pilot scale. The research effort in corona destruction of volatile organic compounds (VOCs) and air toxics has shown significant promise for providing a valuable co...

  5. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    NASA Astrophysics Data System (ADS)

    George, I. J.; Black, R.; Walker, J. T.; Hays, M. D.; Tabor, D.; Gullett, B.

    2013-12-01

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared to burning of other types of biomass. However, few studies have characterized the gas and particulate emissions from peat burning. To assess the atmospheric impact of peat fires, particulate matter (PM) and volatile organic compounds (VOCs) were quantified from controlled small-scale peat fire experiments. Major carbon emissions (i.e. CO2, CO, methane and total hydrocarbons) were measured during the peat burn experiments. Speciated PM mass was also determined from the peat burns from filter and polyurethane foam samples. Whole air samples were taken in SUMMA canisters and analyzed by gas chromatography-mass spectrometry to measure 82 trace VOCs. Additional gaseous carbonyl species were measured by sampling with dinitrophenylhydrazine-coated cartridges and analyzed with high performance liquid chromatography. VOCs with highest observed concentrations measured from the peat burns were propylene, benzene, chloromethane and toluene. Gas-phase carbonyls with highest observed concentrations included acetaldehyde, formaldehyde and acetone. Emission factors of major pollutants will be compared with recommended values for peat and other biomass burning.

  6. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.

    PubMed

    Võ, Uyên-Uyén T; Morris, Michael P

    2014-06-01

    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  7. Can fine-scale post-pollination variation of fig volatile compounds explain some steps of the temporal succession of fig wasps associated with Ficus racemosa?

    NASA Astrophysics Data System (ADS)

    Proffit, Magali; Bessière, Jean-Marie; Schatz, Bertrand; Hossaert-McKey, Martine

    2018-07-01

    Volatile organic compounds (VOCs) emitted by flowers play an essential role in mediating the attraction of pollinators. However, they also attract other species exploiting resources associated with flowers. For instance, VOCs emitted by figs play a major role in encounters between Ficus spp., their mutualistic pollinating wasps, and all the members of the community of non-pollinating fig wasps (NPFWs) that exploit the mutualistic interaction. Because pollinators might be in limited supply for a tree bearing many inflorescences, the plant might maximize its individual reproductive success by reducing the attractiveness of inflorescences once they are pollinated, so that pollinators orient only towards the tree's unpollinated figs. Changes in VOCs emission that bring this about could represent an important cue for NPFWs that exploit particular stages of fig development. In this study, by monitoring precisely the presence of fig-associated wasps on figs of F. racemosa, a common widespread fig species, we demonstrated that 4-5 days and 15 days following pollination represent two critical transitional steps in the succession of different wasp species. Then, focusing on the first one of these transitional steps, by investigating the composition of fig VOCs at receptivity and from 1 to 5 days following pollination, we detected progressive quantitative and qualitative variation of floral scent following pollination. These changes are significant at 5 days following pollination. The qualitative changes are mainly due to an increase in the relative proportions of two monoterpenes (α-pinene and limonene). These variations of the floral VOCs following pollination could explain why pollinating wasps stop visiting figs very shortly after the first pollinators enter receptive figs. They also possibly explain the succession of non-pollinating wasps on the figs following pollination.

  8. Characterization of odorous charge and photochemical reactivity of VOC emissions from a full-scale food waste treatment plant in China.

    PubMed

    Ni, Zhe; Liu, Jianguo; Song, Mingying; Wang, Xiaowei; Ren, Lianhai; Kong, Xin

    2015-03-01

    Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air. Copyright © 2015. Published by Elsevier B.V.

  9. Volatile organic compounds in pesticide formulations: Methods to estimate ozone formation potential

    NASA Astrophysics Data System (ADS)

    Zeinali, Mazyar; McConnell, Laura L.; Hapeman, Cathleen J.; Nguyen, Anh; Schmidt, Walter F.; Howard, Cody J.

    2011-05-01

    The environmental fate and toxicity of active ingredients in pesticide formulations has been investigated for many decades, but relatively little research has been conducted on the fate of pesticide co-formulants or inerts. Some co-formulants are volatile organic compounds (VOCs) and can contribute to ground-level ozone pollution. Effective product assessment methods are required to reduce emissions of the most reactive VOCs. Six emulsifiable concentrate pesticide products were characterized for percent VOC by thermogravimetric analysis (TGA) and gas chromatography-mass spectrometry (GC-MS). TGA estimates exceeded GC-MS by 10-50% in all but one product, indicating that for some products a fraction of active ingredient is released during TGA or that VOC contribution was underestimated by GC-MS. VOC profiles were examined using TGA-Fourier transform infrared (FTIR) evolved gas analysis and were compared to GC-MS results. The TGA-FTIR method worked best for products with the simplest and most volatile formulations, but could be developed into an effective product screening tool. An ozone formation potential ( OFP) for each product was calculated using the chemical composition from GC-MS and published maximum incremental reactivity ( MIR) values. OFP values ranged from 0.1 to 3.1 g ozone g -1 product. A 24-h VOC emission simulation was developed for each product assuming a constant emission rate calculated from an equation relating maximum flux rate to vapor pressure. Results indicate 100% VOC loss for some products within a few hours, while other products containing less volatile components will remain in the field for several days after application. An alternate method to calculate a product OFP was investigated utilizing the fraction of the total mass of each chemical emitted at the end of the 24-h simulation. The ideal assessment approach will include: 1) unambiguous chemical composition information; 2) flexible simulation models to estimate emissions under

  10. Use of Compound-Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    DTIC Science & Technology

    2012-01-01

    published, in all cases involving some form of preconcentration of VOCs from larger volumes of air on adsorbents or cryogenic traps. Researchers in...volumes of air in that case are collected in multiple stainless cylinders and the VOCs are recovered by cryogenic focusing. This approach is...Summa cylinders are directed into a second-stage concentrator (for example, a standard commercial purge and trap (P&T)) and then transferred into a

  11. Use of Compound Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    DTIC Science & Technology

    2012-01-01

    published, in all cases involving some form of preconcentration of VOCs from larger volumes of air on adsorbents or cryogenic traps. Researchers in...volumes of air in that case are collected in multiple stainless cylinders and the VOCs are recovered by cryogenic focusing. This approach is...Summa cylinders are directed into a second-stage concentrator (for example, a standard commercial purge and trap (P&T)) and then transferred into a

  12. Volatile organic compounds in the unsaturated zone from radioactive wastes

    USGS Publications Warehouse

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  13. Volatile organic compounds in ground water from rural private wells, 1986 to 1999

    USGS Publications Warehouse

    Moran, M.J.; Lapham, W.W.; Rowe, B.L.; Zogorski, J.S.

    2004-01-01

    The U.S. Geological Survey (USGS) collected or compiled data on volatile organic compounds (VOCs) in samples of untreated ground water from 1,926 rural private wells during 1986 to 1999. At least one VOC was detected in 12 percent of samples from rural private wells. Individual VOCs were not commonly detected with the seven most frequently detected compounds found in only 1 to 5 percent of samples at or above a concentration of 0.2 microgram per liter (??g/l). An assessment level of 0.2 ??g/l was selected so that comparisons of detection frequencies between VOCs could be made. The seven most frequently detected VOCs were: trichloromethane, methyl tert-butyl ether, tetrachloroethene, dichlorodifluoromethane, methylbenzene, 1,1,1-trichloroethane, and 1,2-dibromo-3-chloropropane. Solvents and trihalomethanes were the most frequently detected VOC groups in private wells. The distributions of detections of gasoline oxygenates and fumigants seemed to be related to the use patterns of compounds in these groups. Mixtures were a common mode of occurrence of VOCs with one-quarter of all samples with detections including two or more VOCs. The concentrations of most detected VOCs were relatively small and only 1.4 percent of samples had one or more VOC concentrations that exceeded a federally established drinking water standard or health criterion.

  14. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The paper discusses the measurment and analysis of the patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board, using small environmental chamber tests. The formaldehyde emissions resulted in sharp increase of chamber air...

  15. PROCEEDINGS: LOW- AND NO-VOC COATING TECHNOLOGIES - 2ND BIENNIAL INTERNATIONAL CONFERENCE

    EPA Science Inventory

    The report documents an international conference that provided a forum for the exchange of technical information on coating technologies. It focused on improved and emerging technologies that result in fewer volatile organic compound (VOC) and toxic air emissions that those from ...

  16. [VOCs tax policy on China's economy development].

    PubMed

    Liu, Chang-Xin; Wang, Yu-Fei; Wang, Hai-Lin; Hao, Zheng-Ping; Wang, Zheng

    2011-12-01

    In this paper, environmental tax was designed to control volatile organic compounds (VOCs) emissions. Computable general equilibrium (CGE) model was used to explore the impacts of environmental tax (in forms of indirect tax) on the macro-economy development at both national and sector levels. Different levels of tax were simulated to find out the proper tax rate. It is found out that imposing environmental tax on high emission sectors can cause the emission decreased immediately and can lead to negative impacts on macro-economy indicators, such as GDP (gross domestic products), total investment, total product and the whole consumption etc. However, only the government income increased. In addition, the higher the tax rate is, the more pollutants can be reduced and the worse economic effects can be caused. Consequently, it is suggested that, the main controlling policies of VOCs abatement should be mandatory orders, and low environmental tax can be implemented as a supplementary.

  17. Smartphone-Based VOC Sensor Using Colorimetric Polydiacetylenes.

    PubMed

    Park, Dong-Hoon; Heo, Jung-Moo; Jeong, Woomin; Yoo, Young Hyuk; Park, Bum Jun; Kim, Jong-Man

    2018-02-07

    Owing to a unique colorimetric (typically blue-to-red) feature upon environmental stimulation, polydiacetylenes (PDAs) have been actively employed in chemosensor systems. We developed a highly accurate and simple volatile organic compound (VOC) sensor system that can be operated using a conventional smartphone. The procedure begins with forming an array of four different PDAs on conventional paper using inkjet printing of four corresponding diacetylenes followed by photopolymerization. A database of color changes (i.e., red and hue values) is then constructed on the basis of different solvatochromic responses of the 4 PDAs to 11 organic solvents. Exposure of the PDA array to an unknown solvent promotes color changes, which are imaged using a smartphone camera and analyzed using the app. A comparison of the color changes to the database promoted by the 11 solvents enables the smartphone app to identify the unknown solvent with 100% accuracy. Additionally, it was demonstrated that the PDA array sensor was sufficiently sensitive to accurately detect the 11 VOC gases.

  18. On-line measurements of nitro organic compounds emitted from automobiles by proton transfer reaction mass spectrometry: Laboratory experiments and a field measurement

    NASA Astrophysics Data System (ADS)

    Inomata, S.; Tanimoto, H.; Fujitani, Y.; Fushimi, A.; Sato, K.; Sekimoto, K.; Yamada, H.; Hori, S.; Shimono, A.; Hikida, T.

    2011-12-01

    On-line measurements of nitro organic compounds in automobile exhaust were carried out by proton transfer reaction mass spectrometry (PTR-MS) with a chassis dynamometer. Diesel vehicles with oxidation catalyst system (diesel vehicle A) and with diesel PM-NOx reduction system ((diesel vehicle B) and a gasoline vehicle were used as a test vehicle. In the case of the diesel vehicle A, the emissions of nitromethane, nitrophenol (NPh), C7-, C8-, C9-, and C10-nitrophenols, and dihydroxynitrobenzenes (DHNB) were observed in the diesel exhaust from the experiment under the constant driving at 60 km hr-1. Temporal variations of mixing ratios for nitromethane, NPh, and DHNB along with related volatile organic compounds (VOCs) were measured during a transient driving cycle. The time-resolved measurement revealed that the nitromethane emission was strongly correlated with the emissions of CO, benzene, and acetone, which are relatively quickly produced in acceleration processes and appeared as sharp peaks. On the other hand, the NPh emission was moderately correlated with the emissions of acetic acid and phenol, which peaks were broad. The emission of nitromethane was observed from the exhaust of the diesel vehicle B but the emission of other nitro organic compounds was not observed. This suggests that the emission of nitro organic compounds besides nitromethane may depend on the diesel exhaust aftertreatment devices. The emission of nitromethane was also observed from the exhaust of the gasoline vehicle with cold start. An in-situ measurement of nitro organic compounds and their related VOCs was carried out at the crossing of an urban city, Kawasaki. Nitromethane was observed at the crossing and we found that the concentration of nitrometane varied rapidly. During the measurement, the maximum of the concentration of nitrometane reached 5 ppbv. Not only nitrophenols but also nitroaromatics were sometimes detected in the field measurement.

  19. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials.

    PubMed

    Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua

    2014-08-26

    Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials.

  20. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials

    PubMed Central

    Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua

    2014-01-01

    Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials. PMID:28788181

  1. Semivolatile and volatile organic compound emissions from wood-fired hydronic heaters.

    PubMed

    Aurell, Johanna; Gullett, Brian K; Tabor, Dennis; Touati, Abderrahmane; Oudejans, Lukas

    2012-07-17

    Emissions including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), polyaromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs), were sampled from different wood-fired hydronic heater (HH) technologies. Four commercially available HH technologies were studied: a single-stage conventional combustor with natural updraft, a three-stage downdraft combustion system, a bottom-fed pellet burner, and a two-stage heater with both a combustion and gasification chamber. The fuel consisted of three wood types (red oak, white pine, and white ash), one hardwood pellet brand, and one fuel mixture containing 95% red oak and 5% residential refuse by weight. The various HHs and fuel combinations were tested in a realistic homeowner fuel-charging scenario. Differences in emission levels were found between HH technologies and fuel types. PCDD/PCDF emissions ranged from 0.004 to 0.098 ng toxic equivalency/MJ(input) and PAHs from 0.49 to 54 mg/MJ(input). The former was increased by the presence of 5% by weight refuse. The white pine fuel had the highest PAH emission factor, while the bottom fed pellet burner had the lowest. The major VOCs emitted were benzene, acetylene, and propylene. The highest emissions of PAHs, VOCs, and PCDDs/PCDFs were observed with the conventional unit, likely due to the rapid changes in combustion conditions effected by the damper opening and closing.

  2. Selective permeation of moisture and VOCs through polymer membranes used in total heat exchangers for indoor air ventilation.

    PubMed

    Zhang, L-Z; Zhang, X-R; Miao, Q-Z; Pei, L-X

    2012-08-01

    Fresh air ventilation is central to indoor environmental control. Total heat exchangers can be key equipment for energy conservation in ventilation. Membranes have been used for total heat exchangers for more than a decade. Much effort has been spent to achieve water vapor permeability of various membranes; however, relatively little attention has been paid to the selectivity of moisture compared with volatile organic compounds (VOCs) through such membranes. In this investigation, the most commonly used membranes, both hydrophilic and hydrophobic ones, are tested for their permeability for moisture and five VOCs (acetic acid, formaldehyde, acetaldehyde, toluene, and ethane). The selectivity of moisture vs. VOCs in these membranes is then evaluated. With a solution-diffusion model, the solubility and diffusivity of moisture and VOCs in these membranes are calculated. The resulting data could provide some reference for future material selection. Total heat exchangers are important equipment for fresh air ventilation with energy conservation. However, their implications for indoor air quality in terms of volatile organic compound permeation have not been known. The data in this article help us to clarify the impacts on indoor VOC levels of membrane-based heat exchangers. Guidelines for material selection can be obtained for future use total heat exchangers for building ventilation. © 2011 John Wiley & Sons A/S.

  3. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Selection of Sustainable Technology for VOC Abatement in an Industry: An Integrated AHP-QFD Approach

    NASA Astrophysics Data System (ADS)

    Gupta, Alok Kumar; Modi, Bharat A.

    2018-04-01

    Volatile organic compounds (VOCs) are universally present in global atmospheric pollutants. These VOCs are responsible for photo chemical reaction in atmosphere leading to serious harmful effects on human health and environment. VOCs are produced from both natural and man-made sources and may have good commercial value if it can be utilized as alternate fuel. As per data from US EPA, 15% of total VOC emissions are generated from surface coating industry but VOC concentration and exhaust air volume varies to a great extent and is dependent on processes used by industry. Various technologies are available for abatement of VOCs. Physical, Chemical and Biological technologies are available to remove VOCs by either recovery or destruction with many advantages and limitations. With growing environmental awareness and considering the resource limitations of medium and small scale industries, requirement of a tool for selecting appropriate techno economically viable solution for removal of VOCs from industrial process exhaust is envisaged. The aim of the present study is to provide management a tool to determine the overall effect of implementation of VOC abatement technology on business performance and VOC emissions. The primary purpose of this work is to outline a methodology to rate various VOC abatement technologies with respect to the constraint of meeting current and foreseeable future regulatory requirements, operational flexibility and Over All Economics Parameters considering conservation of energy. In this paper an integrated approach has been proposed to select most appropriate abatement technology strategically. Analytical hierarchy process and Quality function deployment have been integrated for Techno-commercial evaluation. A case study on selection of VOC abatement technology for a leading aluminium foil surface coating, lamination and printing facility using this methodology is presented in this study.

  5. Long-term stability measurements of low concentration Volatile Organic Compound gas mixtures

    NASA Astrophysics Data System (ADS)

    Allen, Nick; Amico di Meane, Elena; Brewer, Paul; Ferracci, Valerio; Corbel, Marivon; Worton, David

    2017-04-01

    VOCs (Volatile Organic Compounds) are a class of compounds with significant influence on the atmosphere due to their large anthropogenic and biogenic emission sources. VOC emissions have a significant impact on the atmospheric hydroxyl budget and nitrogen reservoir species, while also contributing indirectly to the production of tropospheric ozone and secondary organic aerosol. However, the global budget of many of these species are poorly constrained. Moreover, the World Meteorological Organization's (WMO) Global Atmosphere Watch (GAW) have set challenging data quality objectives for atmospheric monitoring programmes for these classes of traceable VOCs, despite the lack of available stable gas standards. The Key-VOCs Joint Research Project is an ongoing three-year collaboration with the aim of improving the measurement infrastructure of important atmospheric VOCs by providing traceable and comparable reference gas standards and by validating new measurement systems in support of the air monitoring networks. It focuses on VOC compounds that are regulated by European legislation, that are relevant for indoor air monitoring and for air quality and climate monitoring programmes like the VOC programme established by the WMO GAW and the European Monitoring and Evaluation Programme (EMEP). These VOCs include formaldehyde, oxy[genated]-VOCs (acetone, ethanol and methanol) and terpenes (a-pinene, 1,8-cineole, δ-3-carene and R-limonene). Here we present the results of a novel long term stability study for low concentration formaldehyde, oxy-VOC and terpenes gas mixtures produced by the Key-VOCs consortium with discussion regarding the implementation of improved preparation techniques and the use of novel cylinder passivation chemistries to guarantee mixture stability.

  6. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after... duration of the compliance period: (A) 3,870 kg (8,531 lb) of VOC per 28 days, (B) 4,010 kg (8,846 lb) of VOC per 29 days, (C) 4,150 kg (9,149 lb) of VOC per 30 days, (D) 4,280 kg (9,436 lb) of VOC per 31...

  7. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated withmore » VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.« less

  8. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board were measured and analyzed by small environmental chamber tests. It was found that the formaldehyde emissions resulted in sharp increase of chamber air formaldehy...

  9. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation.

    PubMed

    Costagliola, M Antonietta; Murena, Fabio; Prati, M Vittoria

    2014-01-15

    Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1-C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ≤ 50 cm(3)) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm(3)). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of PTWs in urban areas, was significant: 30-51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30-40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic VOCs show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50-80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted. © 2013.

  10. Development of sampling method and chromatographic analysis of volatile organic compounds emitted from human skin.

    PubMed

    Grabowska-Polanowska, Beata; Miarka, Przemysław; Skowron, Monika; Sułowicz, Joanna; Wojtyna, Katarzyna; Moskal, Karolina; Śliwka, Ireneusz

    2017-10-01

    The studies on volatile organic compounds emitted from skin are an interest for chemists, biologists and physicians due to their role in development of different scientific areas, including medical diagnostics, forensic medicine and the perfume design. This paper presents a proposal of two sampling methods applied to skin odor collection: the first one uses a bag of cellulose film, the second one, using cellulose sachets filled with active carbon. Volatile organic compounds were adsorbed on carbon sorbent, removed via thermal desorption and analyzed using gas chromatograph with mass spectrometer. The first sampling method allowed identification of more compounds (52) comparing to the second one (30). Quantitative analyses for acetone, butanal, pentanal and hexanal were done. The skin odor sampling method using a bag of cellulose film, allowed the identification of many more compounds when compared with the method using a sachet filled with active carbon.

  11. National survey of MTBE and other VOCs in community drinking-water sources

    USGS Publications Warehouse

    Clawges, Rick M.; Rowe, Barbara L.; Zogorski, John S.

    2001-01-01

    Methyl tert-butyl ether (MTBE) is a volatile organic compound (VOC) that is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The chemical properties and widespread use of MTBE can result in contamination of private and public drinking-water sources. MTBE contamination is a concern in drinking water because of the compound's low taste and odor threshold and potential human-health effects.Because of this concern, a survey was initiated in collaboration with researchers and water suppliers. The purpose of this survey is to provide sound, unbiased, scientific information on the occurrence of MTBE and other VOCs in ground water, reservoirs, and rivers that are sources of drinking water used by communities of various sizes throughout the Nation. This fact sheet presents a general description of the survey.

  12. Volatile organic compounds as non-invasive markers for plant phenotyping.

    PubMed

    Niederbacher, B; Winkler, J B; Schnitzler, J P

    2015-09-01

    Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. California; Antelope Valley Air Quality Management District; VOCs from Motor Vehicle Assembly Coating Operations

    EPA Pesticide Factsheets

    EPA is proposing to approve a revision to the Antelope Valley Air Quality Management District portion of the California SIP concerning emissions of volatile organic compounds (VOCs) from motor vehicle assembly coating operations.

  14. Gaseous emissions during the solid state fermentation of different wastes for enzyme production at pilot scale.

    PubMed

    Maulini-Duran, Caterina; Abraham, Juliana; Rodríguez-Pérez, Sheila; Cerda, Alejandra; Jiménez-Peñalver, Pedro; Gea, Teresa; Barrena, Raquel; Artola, Adriana; Font, Xavier; Sánchez, Antoni

    2015-03-01

    The emissions of volatile organic compounds (VOC), CH4, N2O and NH3 during the solid state fermentation process of some selected wastes to obtain different enzymes have been determined at pilot scale. Orange peel+compost (OP), hair wastes+raw sludge (HW) and winterization residue+raw sludge (WR) have been processed in duplicate in 50 L reactors to provide emission factors and to identify the different VOC families present in exhaust gaseous emissions. Ammonia emission from HW fermentation (3.2±0.5 kg Mg(-1) dry matter) and VOC emission during OP processes (18±6 kg Mg(-1) dry matter) should be considered in an industrial application of these processes. Terpenes have been the most emitted VOC family during all the processes although the emission of sulphide molecules during HW SSF is notable. The most emitted compound was dimethyl disulfide in HW and WR processes, and limonene in the SSF of OP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Advances in chemical sensing technologies for VOCs in breath for security/threat assessment, illicit drug detection, and human trafficking activity.

    PubMed

    Giannoukos, S; Agapiou, A; Taylor, S

    2018-01-17

    On-site chemical sensing of compounds associated with security and terrorist attacks is of worldwide interest. Other related bio-monitoring topics include identification of individuals posing a threat from illicit drugs, explosive manufacturing, as well as searching for victims of human trafficking and collapsed buildings. The current status of field analytical technologies is directed towards the detection and identification of vapours and volatile organic compounds (VOCs). Some VOCs are associated with exhaled breath, where research is moving from individual breath testing (volatilome) to cell breath (microbiome) and most recently to crowd breath metabolites (exposome). In this paper, an overview of field-deployable chemical screening technologies (both stand-alone and those with portable characteristics) is given with application to early detection and monitoring of human exposome in security operations. On-site systems employed in exhaled breath analysis, i.e. mass spectrometry (MS), optical spectroscopy and chemical sensors are reviewed. Categories of VOCs of interest include (a) VOCs in human breath associated with exposure to threat compounds, and (b) VOCs characteristic of, and associated with, human body odour (e.g. breath, sweat). The latter are relevant to human trafficking scenarios. New technological approaches in miniaturised detection and screening systems are also presented (e.g. non-scanning digital light processing linear ion trap MS (DLP-LIT-MS), nanoparticles, mid-infrared photo-acoustic spectroscopy and hyphenated technologies). Finally, the outlook for rapid and precise, real-time field detection of threat traces in exhaled breath is revealed and discussed.

  16. VOCs-Mediated Location of Olive Fly Larvae by the Braconid Parasitoid Psyttalia concolor: A Multivariate Comparison among VOC Bouquets from Three Olive Cultivars

    PubMed Central

    Giunti, Giulia; Benelli, Giovanni; Conte, Giuseppe; Mele, Marcello; Caruso, Giovanni; Gucci, Riccardo; Flamini, Guido; Canale, Angelo

    2016-01-01

    Herbivorous activity induces plant indirect defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by parasitoids for host location. Psyttalia concolor is a larval pupal endoparasitoid, attacking a number of tephritid flies including B. oleae. In this research, we investigated the olfactory cues routing host location behavior of P. concolor towards B. oleae larvae infesting three different olive cultivars. VOCs from infested and healthy fruits were identified using GC-MS analyses. In two-choice behavioral assays, P. concolor females preferred infested olive cues, which also evoked ovipositional probing by female wasps. GC-MS analysis showed qualitative and quantitative differences among volatiles emitted by infested and healthy olives. Volatile emissions were peculiar for each cultivar analyzed. Two putative HIPVs were detected in infested fruits, regardless of the cultivar, the monoterpene (E)-β-ocimene, and the sesquiterpene (E-E)-α-farnesene. Our study adds basic knowledge to the behavioral ecology of P. concolor. From an applied point of view, the field application of the above-mentioned VOCs may help to enhance effectiveness of biological control programs and parasitoid mass-rearing techniques. PMID:26989691

  17. Characterization of volatile organic compounds and the impacts on the regional ozone at an international airport.

    PubMed

    Yang, Xiaowen; Cheng, Shuiyuan; Wang, Gang; Xu, Ran; Wang, Xiaoqi; Zhang, Hanyu; Chen, Guolei

    2018-03-28

    In this study, the measurement of volatile organic compounds (VOCs) was conducted at Beijing Capital International Airport (ZBAA) and a background reference site in four seasons of 2015. Total concentrations of VOCs were 72.6 ± 9.7, 65.5 ± 8.7, 95.8 ± 11.0, and 79.2 ± 10.8 μg/m 3 in winter, spring, summer, and autumn, respectively. The most abundant specie was toluene (10.1%-17.4%), followed by benzene, ethane, isopentane, ethane, acetylene, and n-butane. Seasonal variations of VOCs were analyzed, and it was found that the highest concentration occurring in summer, while the lowest in spring. For the diurnal variation, the concentration of VOCs in the daytime (9:00-15:00) was less than that at night (15:00-21:00) obviously. Ozone Formation Potential (OFP) was calculated by using Maximum Incremental Reactivity (MIR) method. The greatest contribution to OFP from alkenes and aromatics, which accounted for 27.3%-51.2% and 36.6%-58.6% of the total OFP. The WRF-CMAQ model was used to simulate the impact of airport emissions on the surrounding area. The results indicated that the maximum impact of VOCs emissions and all sources emissions at the airport on O 3 was 0.035 and -23.8 μg/m 3 , respectively. Meanwhile, within 1 km from the airport, the concentration of O 3 around the airport was greatly affected by airport emitted. Copyright © 2018. Published by Elsevier Ltd.

  18. On-road emission characteristics of VOCs from rural vehicles and their ozone formation potential in Beijing, China

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Wu, Bobo; Shen, Xianbao; Cao, Xinyue; Jiang, Xi; Ye, Yu; He, Kebin

    2015-03-01

    This paper is the second in a series of papers aimed at understanding volatile organic compound (VOC) emissions from motor vehicles in Beijing using on-board emission measurements, focusing specifically on rural vehicles (RVs). In this work, 13 RVs, including 6 different 3-wheel (3-W) RVs and 7 different 4-wheel (4-W) RVs, were examined using a portable emissions measurement system (PEMS) as the vehicles were driven on predesigned fixed test routes in rural areas of Beijing. Overall, 50 VOC species were quantified in this study, including 18 alkanes, 5 alkenes, 11 aromatics, 13 carbonyls and 3 other compounds. The average emission factor (EF) of the total VOCs for the 4-W RVs based on the distance traveled was 326.2 ± 129.3 mg/km, which is 2.5 times greater than that of the 3-W RVs. However, the VOC emissions for the 3-W RVs had higher EFs based on their CO2 emissions due to the different fuel economies of the two types of RVs. Formaldehyde, toluene, acetaldehyde, m-xylene, p-xylene, isopentane, benzene, ethylbenzene, n-pentane, 2-methoxy-2-methylpropane and butenal were the dominant VOC species from the RVs, accounting for an average of 68.6% of the total VOC emissions. Overall, the RVs had high proportions of aromatics and carbonyls. The ozone formation potentials (OFPs) were 670.6 ± 227.2 and 1454.1 ± 643.0 mg O3/km for the 3-W and 4-W RVs, respectively, and approximately 60%-70% of the OFP resulted from carbonyls. We estimated that the 3-W and 4-W RVs accounted for approximately 50% and 10%, respectively, of the total OFP caused by diesel vehicles (including diesel trucks and RVs) in Beijing in 2012. Thus, more attention should be given to VOC emissions and their impact on ozone formation.

  19. Comparative Analysis of VOCs in Exhaled Breath of Amyotrophic Lateral Sclerosis and Cervical Spondylotic Myelopathy Patients.

    PubMed

    Wang, Changsong; Li, Mingjuan; Jiang, Hongquan; Tong, Hongshuang; Feng, Yue; Wang, Yue; Pi, Xin; Guo, Lei; Nie, Maomao; Feng, Honglin; Li, Enyou

    2016-05-23

    Amyotrophic lateral sclerosis (ALS) is an incurable neurological degenerative disease. It can cause irreversible neurological damage to motor neurons; typical symptoms include muscle weakness and atrophy, bulbar paralysis and pyramidal tract signs. The ALS-mimicking disease cervical spondylotic myelopathy (CSM) presents similar symptoms, but analysis of breath volatile organic compounds (VOCs) can potentially be used to distinguish ALS from CSM. In this study, breath samples were collected from 28 ALS and 13 CSM patients. Subsequently, gas chromatography/mass spectrometry (GCMS) was used to analyze breath VOCs. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLSDA) were the statistical methods used to process the final data. We identified 4 compounds with significantly decreased levels in ALS patients compared with CSM controls: (1) carbamic acid, monoammonium salt; (2) 1-alanine ethylamide, (S)-; (3) guanidine, N,N-dimethyl-; and (4) phosphonic acid, (p-hydroxyphenyl)-. Currently, the metabolic origin of the VOCs remains unclear; however, several pathways might explain the decreasing trends observed. The results of this study demonstrate that there are specific VOC profiles associated with ALS and CSM patients that can be used to differentiate between the two. In addition, these metabolites could contribute to a better understanding of the underlying pathophysiological mechanisms of ALS.

  20. [Estimation of VOC emission from forests in China based on the volume of tree species].

    PubMed

    Zhang, Gang-feng; Xie, Shao-dong

    2009-10-15

    Applying the volume data of dominant trees from statistics on the national forest resources, volatile organic compounds (VOC) emissions of each main tree species in China were estimated based on the light-temperature model put forward by Guenther. China's VOC emission inventory for forest was established, and the space-time and age-class distributions of VOC emission were analyzed. The results show that the total VOC emissions from forests in China are 8565.76 Gg, of which isoprene is 5689.38 Gg (66.42%), monoterpenes is 1343.95 Gg (15.69%), and other VOC is 1532.43 Gg (17.89%). VOC emissions have significant species variation. Quercus is the main species responsible for emission, contributing 45.22% of the total, followed by Picea and Pinus massoniana with 6.34% and 5.22%, respectively. Southwest and Northeast China are the major emission regions. In specific, Yunnan, Sichuan, Heilongjiang, Jilin and Shaanxi are the top five provinces producing the most VOC emissions from forests, and their contributions to the total are 15.09%, 12.58%, 10.35%, 7.49% and 7.37%, respectively. Emissions from these five provinces occupy more than half (52.88%) of the national emissions. Besides, VOC emissions show remarkable seasonal variation. Emissions in summer are the largest, accounting for 56.66% of the annual. Forests of different ages have different emission contribution. Half-mature forests play a key role and contribute 38.84% of the total emission from forests.

  1. SUMMARY OF JOINT DOD, EPA RESEARCH TO CONTROL VOC AND TOXIC EMISSIONS

    EPA Science Inventory

    The paper summarizes the results of joint projects conducted during last 6 years by the Department of Defense and EPA to control volatile organic compounds (VOCs) and toxic emissions. ajor emphasis has been on product coating and metal finishing: (1) paint stripping using plastic...

  2. DEMONSTRATION OF A NO-VOC/NO-HAP WOOD KITCHEN CABINET COATING SYSTEM

    EPA Science Inventory

    The report gives results of the development and demonstration of a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system at two cabinet manufacturing plants: one in Portland, OR, and the other in Redwood City, CA. Technology transfer ef...

  3. Priming of Production in Maize of Volatile Organic Defence Compounds by the Natural Plant Activator cis-Jasmone

    PubMed Central

    Oluwafemi, Sunday; Dewhirst, Sarah Y.; Veyrat, Nathalie; Powers, Stephen; Bruce, Toby J. A.; Caulfield, John C.; Pickett, John A.; Birkett, Michael A.

    2013-01-01

    cis-Jasmone (CJ) is a natural plant product that activates defence against herbivores in model and crop plants. In this study, we investigated whether CJ could prime defence in maize, Zea mays, against the leafhopper, Cicadulina storeyi, responsible for the transmission of maize streak virus (MSV). Priming occurs when a pre-treatment, in this case CJ, increases the potency and speed of a defence response upon subsequent attack on the plant. Here, we tested insect responses to plant volatile organic compounds (VOCs) using a Y-tube olfactometer bioassay. Our initial experiments showed that, in this system, there was no significant response of the herbivore to CJ itself and no difference in response to VOCs collected from unexposed plants compared to CJ exposed plants, both without insects. VOCs were then collected from C. storeyi-infested maize seedlings with and without CJ pre-treatment. The bioassay revealed a significant preference by this pest for VOCs from infested seedlings without the CJ pre-treatment. A timed series of VOC collections and bioassays showed that the effect was strongest in the first 22 h of insect infestation, i.e. before the insects had themselves induced a change in VOC emission. Chemical analysis showed that treatment of maize seedlings with CJ, followed by exposure to C. storeyi, led to a significant increase in emission of the defensive sesquiterpenes (E)-(1R,9S)-caryophyllene, (E)-α-bergamotene, (E)-β-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene, known to act as herbivore repellents. The chemical analysis explains the behavioural effects observed in the olfactometer, as the CJ treatment caused plants to emit a blend of VOCs comprising more of the repellent components in the first 22 h of insect infestation than control plants. The speed and potency of VOC emission was increased by the CJ pre-treatment. This is the first indication that CJ can prime plants for enhanced production of defensive VOCs antagonist towards herbivores. PMID

  4. An extended baseline examination of indoor VOCs in a city of low ambient pollution: Perth, Western Australia

    NASA Astrophysics Data System (ADS)

    Maisey, S. J.; Saunders, S. M.; West, N.; Franklin, P. J.

    2013-12-01

    This study of indoor air quality reports VOC concentrations in 386 suburban homes located in Perth Western Australia, a city of low ambient pollution and temperate climate. Details of indoor VOC concentrations, temperature, relative humidity, and information on house characteristics and occupant activities were collected during the sampling periods. The concentration of VOCs observed in typical homes was low and individual compounds rarely exceeded 5 μg m-3. Median individual VOC concentrations ranged from 0.06 μg m-3 for 1,1,1 trichloroethane and butyl ether to 26.6 μg m-3 for cis/trans 2-butene. Recently renovated homes had higher concentrations of VOCs than non renovated homes, including ∑VOCs (p = 0.026), ∑BTEX (p = 0.03), ∑xylene (p = 0.013), toluene (p = 0.05), cyclohexane (p = 0.039), and propyl benzene (p = 0.039). Statistical analyses showed house age and attached garages were not significant factors for any of the VOCs tested. The concentrations of indoor VOCs in Perth were lower than overseas observations and those reported in recent Australian studies, with inferences made to differences in the climate and the occupant behaviour. The results are a baseline profile of indoor VOCs over the period 2006-2011, in an Australian city of low population density and of generally low ambient pollution.

  5. Volatile organic compounds in Gulf of Mexico sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, T.J.

    1988-01-01

    Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, andmore » benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.« less

  6. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine ( Pinus aristata), blue spruce ( Picea pungens), western redcedar ( Thuja plicata), grand fir ( Abies grandis), and Douglas-fir ( Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species weremore » measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC–MS–FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. Here, the compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  7. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    DOE PAGES

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-28

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine ( Pinus aristata), blue spruce ( Picea pungens), western redcedar ( Thuja plicata), grand fir ( Abies grandis), and Douglas-fir ( Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species weremore » measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC–MS–FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. Here, the compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  8. Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Uria-Tellaetxe, Iratxe; Navazo, Marino; de Blas, Maite; Durana, Nieves; Alonso, Lucio; Iza, Jon

    2016-04-01

    Despite the toxicity of naphthalene and the fact that it is a precursor of atmospheric photooxidants and secondary aerosol, studies on ambient gas-phase naphthalene are generally scarce. Moreover, as far as we are concerned, this is the first published one using long-term hourly ambient gas-phase naphthalene concentrations. In this work, it has been also demonstrated the usefulness of ambient gas-phase naphthalene to identify major sources of volatile organic compounds (VOC) in complex scenarios. Initially, in order to identify main benzene emission sources, hourly ambient measurements of 60 VOC were taken during a complete year together with meteorological data in an urban/industrial area. Later, due to the observed co-linearity of some of the emissions, a procedure was developed to recover naphthalene concentration data from recorded chromatograms to use it as a tracer of the combustion and distillation of petroleum products. The characteristic retention time of this compound was determined comparing previous GC-MS and GC-FID simultaneous analysis by means of relative retention times, and its concentration was calculated by using relative response factors. The obtained naphthalene concentrations correlated fairly well with ethene (r = 0.86) and benzene (r = 0.92). Besides, the analysis of daily time series showed that these compounds followed a similar pattern, very different from that of other VOC, with minimum concentrations at day-time. This, together with the results from the assessment of the meteorological dependence pointed out a coke oven as the major naphthalene and benzene emitting sources in the study area.

  9. Occurrence of volatile organic compounds in selected urban streams in the United States, 1995-2003

    USGS Publications Warehouse

    Bender, David A.; Delzer, Gregory C.; Price, Curtis V.; Zogorski, John S.

    2009-01-01

    As part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program, urban indicator sites were monitored to (1) characterize the stream quality from drainage basins with predominantly residential and commercial land use, and (2) determine which selected natural and anthropogenic factors affect stream quality. A total of 869 water samples were collected from 37 urban streams during 1995-2003 and were analyzed for 87 volatile organic compounds (VOCs). The occurrence of VOCs in urban streams is described in this report for (1) all samples as a single dataset, (2) all samples grouped by streamflow pentiles, and (3) all samples grouped by warmer (April through September) and cooler (October through March) months by the detection frequency and (or) concentration of (a) any VOC, (b) VOC groups, and (c) individual compounds. An assessment level of 0.02 microgram per liter (ug/L) was used to compute the detection frequencies and concentrations of VOCs. Concentrations of VOCs were compared to (1) U.S. Environmental Protection Agency's (USEPA) drinking-water Maximum Contaminant Levels (MCLs) or Drinking Water Advisories, (2) Health-Based Screening Levels (HBSLs) developed by the USGS in collaboration with the USEPA and other agencies, and (3) USEPA and Canadian aquatic-life criteria. One or more VOCs were detected in 97.1 percent of 869 samples, and one or more VOCs were detected frequently (greater than 80 percent) at all sites. The median total VOC concentration for all samples was 0.57 ug/L, and total VOC concentrations in a single sample ranged from not detected to 698 ug/L. About 85 percent of the samples contained two or more VOCs, and about one-half contained five or more VOCs. The gasoline hydrocarbons were the most frequently occurring VOC group followed by solvents, trihalomethanes (THMs), gasoline oxygenates, organic synthesis compounds, fumigants, and refrigerants. Concentration ranges for most VOC groups were distributed over at

  10. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.

    PubMed

    Saini, Vipin K; Pires, João

    2017-05-01

    Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.

  11. Preparation and analysis of zero gases for the measurement of trace VOCs in air monitoring

    NASA Astrophysics Data System (ADS)

    Englert, Jennifer; Claude, Anja; Demichelis, Alessia; Persijn, Stefan; Baldan, Annarita; Li, Jianrong; Plass-Duelmer, Christian; Michl, Katja; Tensing, Erasmus; Wortman, Rina; Ghorafi, Yousra; Lecuna, Maricarmen; Sassi, Guido; Sassi, Maria Paola; Kubistin, Dagmar

    2018-06-01

    Air quality observations are performed globally to monitor the status of the atmosphere and its level of pollution and to assess mitigation strategies. Regulations of air quality monitoring programmes in various countries demand high-precision measurements for harmful substances often at low trace concentrations. These requirements can only be achieved by using high-quality calibration gases including high-purity zero gas. For volatile organic compound (VOC) observations, zero gas is defined as being hydrocarbon-free and can be, for example, purified air, nitrogen or helium. It is essential for the characterisation of the measurement devices and procedures, for instrument operation as well as for calibrations. Two commercial and one self-built gas purifiers were tested for their VOC removal efficiency following a standardised procedure. The tested gas purifiers included one adsorption cartridge with an inorganic media and two types of metal catalysts. A large range of VOCs were investigated, including the most abundant species typically measured at air monitoring stations. Both catalysts were able to remove a large range of VOCs whilst the tested adsorption cartridge was not suitable to remove light compounds up to C4. Memory effects occurred for the adsorption cartridge when exposed to higher concentration. This study emphasises the importance of explicitly examining a gas purifier for its intended application before applying it in the field.

  12. What do PANs Tell us about VOC-NOx Photochemistry in the Urban/Rural Interface?

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.; Flocke, F. M.; Zheng, W.; Bertman, S.; Marchewka, M.; Williams, E.; Lerner, B.; Kuster, W.; Goldan, P.; Gilman, J.; Sommariva, R.; Trainer, M.; Fehsenfeld, F.

    2006-12-01

    Peroxycarboxylic Nitric Anhydrides (PANs) are co-products of the VOC-NOx photochemistry that is responsible for O3 and secondary organic aerosol (SOA) formation in the troposphere. The relative abundance of the various PAN type compounds can provide important diagnostic information as to the contribution of different VOC sources to these processes. Anthropogenic, biogenic and petrochemical VOC sources have shown distinct profiles of PAN, PPN, MPAN, PiBN, and APAN, which can be analyzed using simple numerical models and compared to the results of detailed chemical mechanisms. One result of these studies is that the PAN compounds can be used to better define the contribution of isoprene to O3 production in the urban/rural interface. Another result is that high relative concentrations of APAN are characteristic of high petrochemical source impact. In addition, changes in the relative abundance of PPN and PAN can indicate the aging of a continental photochemical plume. This paper will present selected results from five field experiments and modeling studies from the Nashville 1999 Southern Oxidant Study up through the TexAQS 2006 study, in and around Houston, TX.

  13. Sources, Sinks and Chemistry of Volatile Organic Compounds: A Summary of Results from Multiple Airborne, Ship-Based and Surface Measurements

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Gilman, J. B.; Goldan, P. D.; Kuster, W. C.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Welsh-Bon, D.

    2009-12-01

    Volatile Organic compounds (VOCs) are emitted from a wide variety of natural and man-made sources. In the atmosphere, VOCs are oxidized on a time scale ranging from minutes to months by reactions with OH, NO3 and ozone, and by photolysis. While the removal of hydrocarbons is well described by these removal processes, the chemical formation and direct emissions of oxygenated VOCs are poorly characterized and understood. VOC oxidation in the atmosphere contributes to the formation of ozone and secondary organic aerosol (SOA). Both species are important ingredients of polluted air and represent a significant radiative forcing to the climate system. We have measured VOCs during several different field studies using both mass spectrometric and gas chromatographic methods. Airborne measurements from the NOAA WP-3D aircraft were carried out along the U.S. West Coast in 2002, in the northeastern U.S. in 2004, in Texas in 2006 and in Alaska in 2008. Ship-based measurements were conducted in the Gulf of Maine in 2002 and 2004, in the Gulf of Mexico in 2006 and in the northern Atlantic in 2008. Surface measurements were made in Beijing in 2005, in Mexico City in 2006 and at Blodgett Forest in 2007. In this presentation we will first make a comparison of the averaged observations between these different field studies. Average altitude profiles, surface mixing ratios and the diurnal variations therein will be compared, which gives a unique and detailed insight into the atmospheric distribution of VOCs. We will next turn to several case studies describing our observations in urban, forest fire and industrial plumes with a special focus on oxygenated VOCs. Insights into the natural sources of oxygenated VOCs from forests and oceans are described. Finally, we will briefly discuss new instrument developments in our laboratory.

  14. Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina

    NASA Astrophysics Data System (ADS)

    Colman Lerner, J. E.; Sanchez, E. Y.; Sambeth, J. E.; Porta, A. A.

    2012-08-01

    To detect volatile organic compounds (VOCs) in indoor air in small enterprises in La Plata city and surrounding areas, sampling was conducted using passive diffusion monitors (3M-3500) and analysis of the samples were performed byCG-FID. Analytic methodology was optimized for 23 VOCs (n-alkanes, cycloalkanes, aromatic and chlorinated compounds, ketones and terpenes compounds) by determining the recovery factor and detection limit for each analyte. Different recovery values were obtained by desorbing with a mixture of dichloromethane: methanol (50:50), with a standard deviation lower than 5%. Enterprise analyzed included chemical analysis laboratories, sewing workrooms, electromechanical repair and car painting centers, take away food shops, and a photocopy center. The highest levels of VOCs were found to be in electromechanical repair and car painting centers (hexane, BTEX, CHCl3, CCl4) followed by chemical analysis laboratories and sewing workrooms. Cancer and noncancer risks were assessed using conventional approaches (HQ and LCR, US EPA) using the benzene, trichloroethylene, chloroform for cancer risk, and toluene, xylene and n-hexane, for noncancer risks as markers. The results showed different LCR for benzene and trichloroethylene between the different indoor environments analyzed (electromechanical repair and car painting center ≫ others) and chloroform (laboratory > others), but comparing with the results obtained by other research, are in similar order of magnitude for equivalents activities. Similar finding were founded for HQ. Comparing these results with the worker protection legislation the electromechanical repair and car painting center and chemical analysis laboratories are close to the limits advised by OSHA and ACGIH. These facts show the importance of the use of abatement technologies for the complete reduction of VOCs levels, to mitigate their impact in the worker's health and their venting to the atmosphere.

  15. Heterogeneous Decomposition of Volatile Organic Compounds by Visible-Light Activated N, C, S-Embedded Titania.

    PubMed

    Chun, Ho-Hwan; Jo, Wan-Kuen

    2016-05-01

    In this study, a N-, C-, and S-doped titania (NCS-TiO2) composite was prepared by combining the titanium precursor with a single dopant source, and the photocatalytic activity of this system for the decomposition of volatile organic compounds (VOCs) at indoor-concentration levels, under exposure to visible light, was examined. The NCS-TiO2 composite and the pure TiO2 photocatalyst, used as a reference, were characterized via X-ray diffraction, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The average efficiencies of benzene, toluene, ethyl benzene, and o-xylene decomposition using NCS-TiO2 for were 70, 87, -100, and -100%, respectively, whereas the values obtained using the pure TiO2 powder were -0, 18, 49, and 51%, respectively. These results suggested that, for the photocatalytic decomposition of toxic VOCs under visible-light exposure conditions, NCS-TiO2 was superior to the reference photocatalyst. The decomposition efficiencies of the target VOCs were inversely related to the initial concentration and relative humidity as well as to the air-flow rate. The decomposition efficiencies of the target chemicals achieved with a conventional lamp/NCS-TiO2 system were higher than those achieved with a light emitting diode/NCS-TiO2 system. Overall, NCS-TiO2 can be used for the efficient decomposition of VOCs under visible-light exposure, if the operational conditions are optimized.

  16. THE USE OF MICROMETEROLOGICAL PARAMETERS IN THE ESTABLISHMENT OF A VOC MONITORING NETWORK

    EPA Science Inventory

    This report is part of the National Network for Environmental Management Studies Program conducted under the auspices of the Office of Cooperative Environmental Management - U.S. Environmental Protection Agency. As part of an ongoing volatile organic compounds (VOC) ambient air s...

  17. MEASUREMENT OF VOCS DESORBED FROM BUILDING MATERIALS--A HIGH TEMPERATURE DYNAMIC CHAMBER METHOD

    EPA Science Inventory

    Mass balance is a commonly used approach for characterizing the source and sink behavior of building materials. Because the traditional sink test methods evaluate the adsorption and desorption of volatile organic compounds (VOC) at ambient temperatures, the desorption process is...

  18. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    EPA Science Inventory

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  19. The effect of wet film thickness on VOC emissions from a finishing varnish.

    PubMed

    Lee, Shun-Cheng; Kwok, Ngai-Hong; Guo, Hai; Hung, Wing-Tat

    2003-01-20

    Finishing varnishes, a typical type of oil-based varnishes, are widely used to shine metal, wood trim and cabinet surfaces in Hong Kong. The influence of wet film thickness on volatile organic compound (VOC) emissions from a finishing varnish was studied in an environmental test chamber. The varnish was applied on an aluminium foil with three different wet film thickness (35.2, 69.9 and 107.3 microm). The experimental conditions were 25.0 degrees C, 50.0% relative humidity (RH) with an air exchange rate of 0.5 h(-1). The concentrations of the major VOCs were monitored for the first 10 h. The air samples were collected by canisters and analysed by gas chromatography/mass selective detector (GC/MSD). Six major VOCs including toluene, chlorobenzene, ethylbenzene, m,p-xylene, o-xylene and 1,3,5-trimethylbenzene were identified and quantified. Marked differences were observed for three different film thicknesses. VOC concentrations increased rapidly during the first few hours and then decreased as the emission rates declined. The thicker the wet film, the higher the VOC emissions. A model expression included an exponentially decreasing emission rate of varnish film. The concentration and time data measured in the chamber were used to determine the parameters of empirical emission rate model. The present work confirmed that the film thickness of varnish influenced markedly the concentrations and emissions of VOCs. Copyright 2002 Elsevier Science B.V.

  20. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.

    PubMed

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-09-27

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.