Science.gov

Sample records for compressed fcc crystals

  1. Folding in FCC metal single crystals under compression

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Alfyorova, E. A.

    2015-10-01

    Results of the analysis of folding during compression deformation of metals with fcc lattice are presented. Single crystals with orientations at angles of the standard stereographic triangle and different crystallographic orientations of lateral faces have been studied. It has been found that the major factor affecting the folding intensity is the slip plane shear with respect to lateral faces. Such a shear results in face bending and the formation of fold systems in maximum curvature regions. It has been shown that, among all considered orientations, the maximum susceptibility to the formation of different folds is inherent in single crystals with bar 1 compression axis orientation. For this orientation, the development of shear and rotational components during folding is traced by interference microscopy and electron backscatter diffraction methods. It has been found that an excess dislocation density is accumulated when shear is activated in the folding region, which results in an increase in fold misorientation. The activation of this process in fcc metals is promoted by an increase in the homologous deformation temperature and stacking fault energy.

  2. Phonon instabilities in uniaxially compressed fcc metals as seen in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kimminau, Giles; Erhart, Paul; Bringa, Eduardo M.; Remington, Bruce; Wark, Justin S.

    2010-03-01

    We show that the generation of stacking faults in perfect face-centered-cubic (fcc) crystals, uniaxially compressed along [001], is due to transverse-acoustic phonon instabilities. The position in reciprocal space where the instability first manifests itself is not a point of high symmetry in the Brillouin zone. This model provides a useful explanation for the magnitude of the elastic limit, in addition to the affects of box size, temperature, and compression on the time scale for the generation of stacking faults. We observe this phenomenon in both simulations that use the Lennard-Jones potential and embedded atom potentials. Not only does this work provide fundamental insight into the microscopic response of the material but it also describes certain behavior seen in previous molecular dynamics simulations of single-crystal fcc metals shock compressed along the principal axis.

  3. Atomistically-informed Dislocation Dynamics in fcc Crystals

    SciTech Connect

    Martinez, E; Marian, J; Arsenlis, T; Victoria, M; Perlado, J M

    2006-09-06

    We develop a nodal dislocation dynamics (DD) model to simulate plastic processes in fcc crystals. The model explicitly accounts for all slip systems and Burgers vectors observed in fcc systems, including stacking faults and partial dislocations. We derive simple conservation rules that describe all partial dislocation interactions rigorously and allow us to model and quantify cross-slip processes, the structure and strength of dislocation junctions and the formation of fcc-specific structures such as stacking fault tetrahedra. The DD framework is built upon isotropic non-singular linear elasticity, and supports itself on information transmitted from the atomistic scale. In this fashion, connection between the meso and micro scales is attained self-consistently with core parameters fitted to atomistic data. We perform a series of targeted simulations to demonstrate the capabilities of the model, including dislocation reactions and dissociations and dislocation junction strength. Additionally we map the four-dimensional stress space relevant for cross-slip and relate our findings to the plastic behavior of monocrystalline fcc metals.

  4. Germanium FCC structure from a colloidal crystal template

    SciTech Connect

    Miguez, H.; Meseguer, F.; Lopez, C.; Holgado, M.; Andreasen, G.; Mifsud, A.; Fornes, V.

    2000-05-16

    Here, the authors show a method to fabricate a macroporous structure in which the pores, essentially identical, arrange regularly in a face-centered cubic (FCC) lattice. The result is a network of air spheres in a germanium medium. This structure presents the highest dielectric contrast ({epsilon}{sub Ge}/{epsilon}{sub air} = 16) ever achieved in the optical regime in such periodic structures, which could result in important applications in photonics. The authors employ solid silica colloidal crystals (opals) as templates within which a cyclic germanium growth process is carried out. Thus, the three-dimensional periodicity of the host is inherited by the guest. Afterward, the silica is removed and a germanium opal replica is obtained.

  5. Atomistic simulation of the fcc-hcp transition in single-crystal Al under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Li, L.; Shao, J. L.; Duan, S. Q.; Liang, J. Q.

    2010-03-01

    The dynamic behavior of the single-crystal Al under [001] uniaxial strain is simulated by classic molecular dynamics. The fcc-hcp structural transition is successfully observed when the loading pressure reaches about 90 GPa, and the reverse transition is also found with hysteresis. The mechanism and morphology evolution of both the forward and backward transitions are analyzed in detail. It is found in the process of the structural transition that the (010)fcc or (100)fcc planes transit into (0001)hcp planes, and the twins of the hcp phase along the (112)-plane appear, whose boundaries finally become along the (110)-plane. Besides, we find the twinning (along the (110)fcc planes) in the hcp phase prior to the back transition (hcp-fcc). Our simulations show the coexistence of fcc and hcp phases over a wide range of pressures, and finally, the phase transition is evaluated by using the radial distribution functions.

  6. Local compressibilities in crystals

    NASA Astrophysics Data System (ADS)

    Martín Pendás, A.; Costales, Aurora; Blanco, M. A.; Recio, J. M.; Luaña, Víctor

    2000-12-01

    An application of the atoms in molecules theory to the partitioning of static thermodynamic properties in condensed systems is presented. Attention is focused on the definition and the behavior of atomic compressibilities. Inverses of bulk moduli are found to be simple weighted averages of atomic compressibilities. Two kinds of systems are investigated as examples: four related oxide spinels and the alkali halide family. Our analyses show that the puzzling constancy of the bulk moduli of these spinels is a consequence of the value of the compressibility of an oxide ion. A functional dependence between ionic bulk moduli and ionic volume is also proposed.

  7. Multilayer Relaxation and Surface Energies of FCC and BCC Metals Using Equivalent Crystal Theory

    NASA Technical Reports Server (NTRS)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    The multilayer relaxation of fcc and bcc metal surfaces is calculated using equivalent crystal theory. The results for changes in interplanar spacings of planes close to the surface and the ensuing surface energies are discussed in reference to other theoretical results and compared to available experimental data. The calculation includes high-index surfaces for which no other theoretical results are known.

  8. 3D crack tip fields for FCC single crystals

    SciTech Connect

    Cuitino, A.M.; Ortiz, M.

    1995-12-31

    Cracks in single crystals are of concern in a number of structural and non-structural applications, ranging form single-crystal turbine blades and rotors to metal interconnect lines in microcircuits. In this paper we present 3D numerical simulations of the crack-tip fields of a Cu single crystal, including stress, strain and slip activity patterns. The orientation of the crack tip is along the crystallographic orientation (101), while the crack plane is (010). A material model based on dislocation mechanics is used in these simulations. This model correctly predicts the observed behavior of Cu, including the basic hardening characteristics of single crystals, orientation dependence and stage I-II-III structure of the stress-strain curves, the observed levels of latent hardening and their variation with orientation and deformation in the primary system and slip activities and dislocation densities. We use the FEM within the context of finite deformation plasticity. In the figure below, we show the finite element mesh composed by 12-noded tetrahedrons with 6-noded triangular faces. The model simulates half of a beam, which is subjected to a concentrated load at 1/8 of total length from the support. Detailed results of the stress, deformation and slip activity are presented at different radii from crack tip and at different depths from the surface. In general, the results show a strong difference in the slip activity pattern form the interior to the exterior, while smaller differences are encountered in the stress and strain fields.

  9. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  10. Flow-induced alignment of (100) fcc thin film colloidal crystals.

    PubMed

    Joy, Midhun; Muangnapoh, Tanyakorn; Snyder, Mark A; Gilchrist, James F

    2015-09-28

    The realization of structural diversity in colloidal crystals obtained by self-assembly techniques remains constrained by thermodynamic considerations and current limits on our ability to alter structure over large scales using imposed fields and confinement. In this work, a convective-based procedure to fabricate multi-layer colloidal crystal films with extensive square-like symmetry is enabled by periodic substrate motion imposed during the continuous assembly. The formation of film-spanning domains of (100) fcc symmetry as a result of added vibration is robust across a range of micron-scale monosized spherical colloidal suspensions (e.g., polystyrene, silica) as well as substrate surface chemistries (e.g., hydrophobic, hydrophilic). The generation of extensive single crystalline (100) fcc domains as large as 15 mm(2) and covering nearly 40% of the colloidal crystalline film is possible by simply tuning coating conditions and multi-layer film thickness. Preferential orientation of the square-packed domains with respect to the direction of deposition is attributed to domain generation based upon a shear-related mechanism. Visualization during assembly gives clues toward the mechanism of this flow-driven self-assembly method. PMID:26238223

  11. Quantum calculation of disordered length in fcc single crystals using channelling techniques

    NASA Astrophysics Data System (ADS)

    Abu-Assy, M. K.

    2006-04-01

    Lattices of face-centred cubic crystals (fcc), due to irradiation processes, may become disordered in stable configurations like the dumb-bell configuration (DBC) or body-centred interstitial (BCI). In this work, a quantum mechanical treatment for the calculation of transmission coefficients of channelled positrons from their bound states in the normal lattice regions into the allowed bound states in the disordered regions is given as a function of the length of the disordered regions. In order to obtain more reliable results, higher anharmonic terms in the planar channelling potential are considered in the calculations by using first-order perturbation theory where new bound states have been found. The calculations were executed in the energy range 10 200 MeV of the incident positron on a copper single crystal in the planar direction (100).

  12. Ideal compressive strength of fcc Co, Ni, and Ni-rich alloys along the <001 > direction: A first-principles study

    NASA Astrophysics Data System (ADS)

    Breidi, A.; Fries, S. G.; Ruban, A. V.

    2016-04-01

    We perform density functional theory based first-principles calculations to identify promising alloying elements (X ) capable of enhancing the compressive uniaxial theoretical (ideal) strength of the fcc Ni-matrix along the <001 > direction. The alloying element belongs to a wide range of 3 d ,4 d , and 5 d series with nominal composition of 6.25 at. %. Additionally, a full elastic study is carried to investigate the ideal strength of fcc Ni and fcc Co. Our results indicate that the most desirable alloying elements are those with half d -band filling, namely, Os, Ir, Re, and Ru.

  13. Transition saddle points and associated defects for a triaxially stretched FCC crystal

    NASA Astrophysics Data System (ADS)

    Delph, T. J.; Zimmerman, J. A.

    2016-05-01

    We demonstrate the use of a single-ended method for locating saddle points on the potential energy surface for a triaxially stretched FCC crystal governed by a Lennard-Jones potential. Single-ended methods require no prior knowledge of the defected state and are shown to have powerful advantages in this application, principally because the nature of the associated defects can be quite complicated and hence extremely difficult to predict ab initio. We find that while classical spherical cavitation occurs for high stretch values, for lower values the defect mode transitions to a non-spherical pattern without any apparent symmetries. This non-spherical mode plays the primary role in harmonic transition state theory predictions that are used to examine how instabilities vary with applied loading rate. Such a defect mode would be difficult to determine using double-ended methods for finding saddle points.

  14. Crystal Dynamics of (delta) fcc Pu-Ga by High Resolution Inelastic X-Ray Scattering

    SciTech Connect

    Wong, J; Krisch, M; Farber, D; Occelli, F; Xu, R; Chiang, T C; Clatterbuck, D; Schwartz, A J; Wall, M; Boro, C

    2004-09-28

    We have used a microbeam on large grain sample concept to carry out an inelastic x-ray scattering experiment to map the full phonon dispersion curves of an fcc {delta}-phase Pu-Ga alloy. This approach obviates experimental difficulties with conventional inelastic neutron scattering due to the high absorption cross section of the common {sup 239}Pu isotope and the non-availability of large (mm size) single crystal materials for Pu and its alloys. A classical Born von-Karman force constant model was used to model the experimental results, and no less than 4th nearest neighbor interactions had to be included to account for the observation. Several unusual features including, a large elastic anisotropy, a small shear elastic modulus, (C{sub 11}-C{sub 12})/2, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the T[111] branch towards the L point in the Brillouin are found. These features can be related to the phase transitions of plutonium and to strong coupling between the crystal structure and the 5f valence instabilities. Our results represent the first full phonon dispersions ever obtained for any Pu-bearing material, thus ending a 40-year quest for this fundamental data. The phonon data also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium.

  15. Nanostructuring and ductility of crystals under compression

    NASA Astrophysics Data System (ADS)

    Magomedov, M. N.

    2016-05-01

    Nanostructuring of crystals into domains under uniform compression, the ductility of a solid nanostructure under pressure, and the bimodal distribution of domain size are explained based on the dependence of the surface energy and surface pressure on the shape, size, and density of a nanocrystal.

  16. Investigation of Three-Dimensional Stress Fields and Slip Systems for FCC Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Magnan, Shannon; Ebrahimi, Fereshteh; Ferroro, Luis

    2004-01-01

    Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e. plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g. cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing, become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a FCC single crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of 3D stress fields and evolution of slip sector boundaries near notches in FCC single crystal tension test specimens, and demonstrate that a 3D linear elastic finite element model that includes the effect of material anisotropy is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near FCC single crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single crystal notches.

  17. Shock Compression of Ammonium Perchlorate Single Crystals

    NASA Astrophysics Data System (ADS)

    Gupta, Y. M.; Yuan, Gang; Feng, Ruqiang

    1997-07-01

    The shock response of ammonium perchlorate (AP) single crystals has been examined for uniaxial strain compression along the [210] and [001] directions. Quartz gauge and VISAR measurements have provided the wave profiles at the impact surface and after propagation through thin samples (1-3 mm thickness) for peak stresses ranging between 10 and 65 kbar. A two wave structure due to elastic-plastic deformation was observed for both orientations. The measured HEL values for the [210] and [001] orientations were about 4.3 and 3.5 kbar, respectively. Data for the two orientations reveal small stress relaxation effects and small differences due to crystal orientation effects. We have chosen to fit both sets of results with a simple elastic-perfectly plastic model used for isotropic materials. Reasonable agreement between the calculations and experimental results was obtained. Over the stress range examined to date, no evidence of chemical decomposition was observed for the time durations in our experiments.

  18. Fabrication of FCC-SiO2 colloidal crystals using the vertical convective self-assemble method

    NASA Astrophysics Data System (ADS)

    Castañeda-Uribe, O. A.; Salcedo-Reyes, J. C.; Méndez-Pinzón, H. A.; Pedroza-Rodríguez, A. M.

    2014-05-01

    In order to determine the optimal conditions for the growth of high-quality 250 nm-SiO2 colloidal crystals by the vertical convective self-assemble method, the Design of Experiments (DoE) methodology is applied. The influence of the evaporation temperature, the volume fraction, and the pH of the colloidal suspension is studied by means of an analysis of variance (ANOVA) in a 33 factorial design. Characteristics of the stacking lattice of the resulting colloidal crystals are determined by scanning electron microscopy and angle-resolved transmittance spectroscopy. Quantitative results from the statistical test show that the temperature is the most critical factor influencing the quality of the colloidal crystal, obtaining highly ordered structures with FCC stacking lattice at a growth temperature of 40°C.

  19. Fabrication of FCC-SiO{sub 2} colloidal crystals using the vertical convective self-assemble method

    SciTech Connect

    Castañeda-Uribe, O. A.; Salcedo-Reyes, J. C.; Méndez-Pinzón, H. A.; Pedroza-Rodríguez, A. M.

    2014-05-15

    In order to determine the optimal conditions for the growth of high-quality 250 nm-SiO{sub 2} colloidal crystals by the vertical convective self-assemble method, the Design of Experiments (DoE) methodology is applied. The influence of the evaporation temperature, the volume fraction, and the pH of the colloidal suspension is studied by means of an analysis of variance (ANOVA) in a 3{sup 3} factorial design. Characteristics of the stacking lattice of the resulting colloidal crystals are determined by scanning electron microscopy and angle-resolved transmittance spectroscopy. Quantitative results from the statistical test show that the temperature is the most critical factor influencing the quality of the colloidal crystal, obtaining highly ordered structures with FCC stacking lattice at a growth temperature of 40°C.

  20. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the

  1. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGESBeta

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature

  2. Nucleation of liquid droplets and voids in a stretched Lennard-Jones fcc crystal

    SciTech Connect

    Baidakov, Vladimir G. Tipeev, Azat O.

    2015-09-28

    The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal–liquid phase equilibrium when the melting line comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.

  3. Crystal dynamics of δ fcc Pu-Ga alloy by high-resolution inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Wong, Joe; Krisch, M.; Farber, D. L.; Occelli, F.; Xu, R.; Chiang, T.-C.; Clatterbuck, D.; Schwartz, A. J.; Wall, M.; Boro, C.

    2005-08-01

    We have used a microbeam on large grain sample concept to carry out inelastic x-ray scattering experiments to measure the phonon dispersion curves of a fcc δ -phase Pu-Ga alloy along the main symmetry directions of the cubic lattice. This approach obviates experimental difficulties with conventional inelastic neutron scattering due to the high absorption cross section of the common Pu239 isotope and the nonavailability of large (millimeter size) single crystal materials for Pu and its alloys. A classical Born-von Kármán force constant model was used to model the experimental results, and up to fourth nearest neighbor interactions had to be included to obtain sufficient agreement. Several unusual features including, a large elastic anisotropy, a small shear elastic modulus (C11-C12)/2 , a positive kink in the T1[0ξξ] branch, and a pronounced bending (toward lower energy) of the T[ξξξ] branch near the L point in the Brillouin zone are found. These features are discussed in light of the various phase transformations of δ plutonium. The phonon dispersion data also provide a critical test and benchmark for theoretical treatments of highly correlated 5f electron systems.

  4. Dislocation-kinetic analysis of FCC and BCC crystal spallation under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Ogarkov, S. L.; Andriyash, A. V.

    2015-09-01

    Within the dislocation-kinetic model of the formation and propagation of shock waves in crystals under their intense shock-wave loading, the crystal spallation mechanism at micro- and macrolevels has been discussed taking into account published empirical data. It has been shown that the spallation time t f for Cu, Ni, α-Fe, and Ta crystals in the time interval of 10-6-10-9 s at the macroscopic level changes with variations in the wave pressure σ as , where = is the plastic strain rate according to the Swegle-Grady relation; K f , K σ, and ɛ f = K f K σ ≈ 3-5% are the pressure-independent spallation coefficients and strain, respectively; and E is the Young's modulus. At the microlevel, the dislocation-kinetic calculation of plastic zones around pore nuclei as stress concentrators and plastic strain localization regions at the shock wave front has been performed. It has been shown that the pore coalescence and spall fracture formation result from the superposition of shear stresses and plastic deformations in interpore spacings when the latter decrease to a size of the order of two pore sizes.

  5. The Effect of Lattice Disorder on the Channeling Potential in fcc Single Crystals

    NASA Astrophysics Data System (ADS)

    Abu-Assy, M. K.

    The axial and planar potential for α-particles in copper single crystal disordered by dumb-bell configuration (DBC) or body-centered interstitial (BCI) is calculated according to the continuum potential approximation by using Moliere potential and Biersack's universal potential and compared with the channeling potential of the normal lattice. The calculations showed that the axial potential for DBC or BCI are the same, but the planar potential has different estimations for each kind of lattice disorder. The point of minimum potential in the disordered lattice has been determined for both axial and planar channel.

  6. Highly compressed ammonia forms an ionic crystal.

    PubMed

    Pickard, Chris J; Needs, R J

    2008-10-01

    Ammonia is an important compound with many uses, such as in the manufacture of fertilizers, explosives and pharmaceuticals. As an archetypal hydrogen-bonded system, the properties of ammonia under pressure are of fundamental interest, and compressed ammonia has a significant role in planetary physics. We predict new high-pressure crystalline phases of ammonia (NH(3)) through a computational search based on first-principles density-functional-theory calculations. Ammonia is known to form hydrogen-bonded solids, but we predict that at higher pressures it will form ammonium amide ionic solids consisting of alternate layers of NH(4)(+) and NH(2)(-) ions. These ionic phases are predicted to be stable over a wide range of pressures readily obtainable in laboratory experiments. The occurrence of ionic phases is rationalized in terms of the relative ease of forming ammonium and amide ions from ammonia molecules, and the volume reduction on doing so. We also predict that the ionic bonding cannot be sustained under extreme compression and that, at pressures beyond the reach of current static-loading experiments, ammonia will return to hydrogen-bonded structures consisting of neutral NH(3) molecules. PMID:18724375

  7. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  8. Shock compression of [001] single crystal silicon

    DOE PAGESBeta

    Zhao, S.; Remington, B.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  9. Epitaxial growth of fcc-Co{sub x}Ni{sub 100-x} thin films on MgO(110) single-crystal substrates

    SciTech Connect

    Ohtake, Mitsuru; Nukaga, Yuri; Sato, Yoichi; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-12-15

    Co{sub x}Ni{sub 100-x} (x=100, 80, 20, 0 at. %) epitaxial thin films were prepared on MgO(110) single-crystal substrates heated at 300 deg. C by ultrahigh vacuum molecular beam epitaxy. The growth mechanism is discussed based on lattice strain and crystallographic defects. CoNi(110) single-crystal films with a fcc structure are obtained for all compositions. Co{sub x}Ni{sub 100-x} film growth follows the Volmer-Weber mode. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the Co{sub x}Ni{sub 100-x} films are in agreement within +-0.5% with the values of the respective bulk Co{sub x}Ni{sub 100-x} crystals, suggesting that the strain in the film is very small. High-resolution cross-sectional transmission microscopy shows that an atomically sharp boundary is formed between a Co(110){sub fcc} film and a MgO(110) substrate, where periodical misfit dislocations are preferentially introduced in the film at the Co/MgO interface. The presence of such periodical misfit dislocations relieves the strain caused by the lattice mismatch between the film and the substrate.

  10. Alignment and Stiffening of Liquid Crystal Elastomers under Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Agrawal, Aditya; Patra, Prabir; Ajayan, Pulickel; Chapman, Walter; Verduzco, Rafael

    2013-03-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury, and mechanical stresses, a phenomenon known ``functional adaptation'' or ``remodeling''. Herein, we report similar behavior in polydomain liquid crystal elastomers. Liquid crystal elastomers dramatically increase in stiffness by up to 90 % under low-amplitude, repetitive (dynamic) compression. By studying a systematic series of materials, we demonstrate that the stiffness increase is directly influenced by the liquid crystal content of the elastomers, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through a combination of rheological measurements, polarizing optical microscopy and 2-D X-ray diffraction, we demonstrate that self-stiffening arises due to rotations of the nematic director in response to dynamic compression, and show that the behavior is consistent with the theory for nematic rubber elasticity. Previous work with liquid crystal elastomers has focused primarily on `soft elastic' deformations at large strains, but our findings indicate rich behavior at previously overlooked low-strain, dynamic deformations.

  11. MOFs under pressure: the reversible compression of a single crystal.

    PubMed

    Gagnon, Kevin J; Beavers, Christine M; Clearfield, Abraham

    2013-01-30

    The structural change and resilience of a single crystal of a metal-organic framework (MOF), Zn(HO(3)PC(4)H(8)PO(3)H)·2H(2)O (ZAG-4), was investigated under high pressures (0-9.9 GPa) using in situ single crystal X-ray diffraction. Although the unit cell volume decreases over 27%, the quality of the single crystal is retained and the unit cell parameters revert to their original values after pressure has been removed. This framework is considerably compressible with a bulk modulus calculated at ∼11.7 GPa. The b-axis also exhibits both positive and negative linear compressibility. Within the applied pressures investigated, there was no discernible failure or amorphization point for this compound. The alkyl chains in the structure provide a spring-like cushion to stabilize the compression of the system allowing for large distortions in the metal coordination environment, without destruction of the material. This intriguing observation only adds to the current speculation as to whether or not MOFs may find a role as a new class of piezofunctional solid-state materials for application as highly sensitive pressure sensors, shock absorbing materials, pressure switches, or smart body armor. PMID:23320490

  12. Shock compression experiments on Lithium Deuteride single crystals.

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  13. Resonance compression of an acoustic beam in a crystal

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Bessonov, D. A.; Lyubimov, V. N.

    2016-04-01

    The resonance excitation of an intense acoustic beam in a crystal is described for a special geometry of pump-wave reflection from the crystal surface. The resonance appears in the vicinity of the total internal reflection angle under the condition that the wave field in a compressed reflected beam propagating almost parallel to the surface is close to the volume eigenmode satisfying the free boundary condition. Criteria for the existence of such modes are considered in detail. Conversion conditions are analyzed under which a "parasitic" reflected wave of the same branch as the incident wave is absent and entire energy from the incident wave falls within a narrow intense acoustic beam of another branch. It is shown that, when the surface is chosen parallel to the crystal symmetry plane, the conversion criterion is reduced to the sole condition on the elastic moduli of the medium. Analysis is performed by analytic and numerical methods for skew cuts of monoclinic, rhombic, trigonal, and hexagonal crystals, when the boundary is the symmetry plane, while the sagittal plane has no symmetry. A number of crystals are found in which resonance excitation is very close to conversion.

  14. Dependence of Initial Grain Orientation on the Evolution of Anisotropy in FCC and BCC Metals Using Crystal Plasticity and Texture Analysis

    NASA Astrophysics Data System (ADS)

    Raja, Daniel Selvakumar

    Abundant experimental analyses and theoretical computational analyses that had been performed on metals to understand anisotropy and its evolution and its dependence on initial orientation of grains have failed to provide theories that can be used in macro-scale plasticity. Ductile metals fracture after going through a large amount of plastic deformation, during which the anisotropy of the material changes significantly. Processed metal sheets or slabs possess anisotropy due to textures produced by metal forming processes (such as drawing, bending and press braking). Metals that were initially isotropic possess anisotropy after undergoing forming processes, i.e., through texture formation due to large amount of plastic deformation before fracture. It is therefore essential to consider the effect of anisotropy to predict the characteristics of fracture and plastic flow performances in the simulation of ductile fracture and plastic flow of materials. Crystal plasticity simulations carried out on grains at the meso-scale level with different initial orientations (ensembles) help to derive the evolution of anisotropy at the macro-scale level and its dependence on initial orientation of grains. This paper investigates the evolution of anisotropy in BCC and FCC metals and its dependence on grain orientation using crystal plasticity simulations and texture analysis to reveal the mechanics behind the evolution of anisotropy. A comparison of anisotropy evolution between BCC and FCC metals is made through the simulation, which can be used to propose the theory of anisotropy evolution in macro-scale plasticity. Keywords: ensembles; grains; initial orientation; anisotropy; evolution of anisotropy; crystal plasticity; textures; homogeneity; isotropy; inelastic; equivalent strain.

  15. Impact sensitivity and crystal lattice compressibility/free space.

    PubMed

    Politzer, Peter; Murray, Jane S

    2014-05-01

    There is considerable evidence, which we discuss, indicating that compressibility and available free space in the crystal lattice are among the factors that govern the sensitivity of an explosive compound. Expanding and extending earlier work, we demonstrate, for 25 explosives, that there is an overall general tendency for greater impact sensitivity as the estimated free space per molecule increases. More specific relationships can be discerned by looking at subgroups of the compounds. The nitramine sensitivities, most of which are quite high, increase nearly linearly but only very gradually with free space. The nitroaromatics cover a wide range of sensitivities but all have an approximately similar intermediate level of free space. The remaining types of compounds show a reasonable sensitivity-free space relationship with one outlier: FOX-7 (1,1-diamino-2,2-dinitroethylene). PMID:24756553

  16. Rarefaction shock waves in shock-compressed diamond <110> crystal

    NASA Astrophysics Data System (ADS)

    Perriot, Romain; Lin, You; Zhakhovsky, Vasily; White, Carter; Oleynik, Ivan

    2013-03-01

    Piston-driven shock compression of diamond <110> crystal was simulated by molecular dynamics using the REBO potential. At piston velocities between 2 and 5 km/s and corresponding pressures 117 GPA < P < 278 GPa, diamond sample undergoes a polymorphic phase transition, characterized by the coexistence of two elastically compressed phases, low-pressure phase A and high-pressure phase B. This phase transition results in the splitting of the shock wave into two elastic shock waves, composed of pure phase A and a mixture of phases A and B. Upon removal of the piston, a release wave is observed at the rear of the sample, turning into a rarefaction shock wave where the material undergoes the reverse phase transition from coexisting phases to the original low-pressure phase. For strong plastic waves induced by larger piston velocities the release wave propagates as a rarefaction wave without any phase transition corresponding to the adiabatic expansion along the plastic branch of the Hugoniot.

  17. Observation of soliton compression in silicon photonic crystals

    PubMed Central

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with <10 pJ energy. We demonstrate a ~1-ps free-carrier-induced pulse acceleration and show that picosecond input pulses are critical to these observations. These experiments are enabled by a dispersion-engineered slow-light photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  18. Coarse-grained density and compressibility of nonideal crystals: General theory and an application to cluster crystals

    NASA Astrophysics Data System (ADS)

    Häring, J. M.; Walz, C.; Szamel, G.; Fuchs, M.

    2015-11-01

    The isothermal compressibility of a general crystal is analyzed within classical density functional theory. Our approach can be used for homogeneous and unstrained crystals containing an arbitrarily high density of local defects. We start by coarse-graining the microscopic particle density and then obtain the long-wavelength limits of the correlation functions of elasticity theory and the thermodynamic derivatives. We explicitly show that the long-wavelength limit of the microscopic density correlation function differs from the isothermal compressibility. We apply our theory to crystals consisting of soft particles which can multiply occupy lattice sites ("cluster crystals"). The multiple occupancy results in a strong local disorder over an extended range of temperatures. We determine the cluster crystals' isothermal compressibility, the fluctuations of the lattice occupation numbers and their correlation functions, and the dispersion relations. We also discuss their low-temperature phase diagram.

  19. FCC main fractionator revamps

    SciTech Connect

    Golden, S.W.; Martin, G.R.; Sloley, A.W. )

    1993-03-01

    Structured packing use in fluid catalytic cracker (FCC) main fractionators significantly impacts unit pressure profile. Unit pressure balance links the FCC main fractionator, reactor, regenerator, air compressor and wet gas compressor. Unit pressure balance should be viewed as a design variable when evaluating FCC unit revamps. Depending upon limitations of the particular FCC unit, capacity increases of 12.5% to 22.5% have been achieved without modifications to major rotating equipment, by revamping FCC main fractionators with structured packing. An examination of three FCC main fractionator revamps show improvements to pressure profiles and unit capacity. The three revamps described included a wet gas compressor volume limit; an air blower limitation; and a wet gas compressor motor limitation.

  20. Compression of Single-Crystal Orthopyroxene to 60GPa

    NASA Astrophysics Data System (ADS)

    Finkelstein, G. J.; Dera, P. K.; Holl, C. M.; Dorfman, S. M.; Duffy, T. S.

    2010-12-01

    Orthopyroxene ((Mg,Fe)SiO3) is one of the dominant phases in Earth’s upper mantle - it makes up ~20% of the upper mantle by volume. At high pressures and temperatures, this phase undergoes several well-characterized phase transitions. However, when compressed at low temperature and high-pressure, orthopyroxene is predicted to exhibit metastable behavior(1). Previous researchers have found orthoenstatite (Mg endmember of orthopyroxene) persists up to ~10 GPa, and diffraction(2-3), Raman(4), and elasticity(5) experiments suggest a phase transition above this pressure to an as-yet unidentified structure. While earlier diffraction data has surprisingly only been evaluated for structural information to ~9 GPa(2), changes in high-pressure Raman spectra to ~70 GPa indicate that several more high-pressure phase transitions in orthopyroxene are likely, including at least one change in Si-coordination(6). We have recently conducted exploratory experiments to further elucidate the high-pressure behavior of orthopyroxene. Compressing a single crystal of Fe-rich orthopyroxene (Fe0.66Mg0.24Ca0.05SiO3) using a diamond anvil cell, we observe phase transitions at ~10, 14, and 30 GPa, with the new phases having monoclinic, orthorhombic, and orthorhombic symmetries, respectively. While the first two transitions do not show a significant change in volume, the phase transition at ~30 GPa shows a large decrease in volume, which is consistent with a change in Si coordination number to mixed 4- and 6-fold coordination. References: [1] S. Jahn, American Mineralogist 93, 528-532 (2008). [2] R. J. Angel, J. M. Jackson, American Mineralogist 87, 558-561 (2002). [3] R. J. Angel, D. A. Hugh-Jones, Journal of Geophysical Research-Solid Earth 99, 19,777-19,783 (1994). [4] G. Serghiou, Journal of Raman Spectroscopy 34, 587-590 (2003). [5] J. Kung et al., Physics of the Earth and Planetary Interiors 147, 27-44 (2004). [6] G. Serghiou, A. Chopelas, R. Boehler, Journal of Physics: Condensed

  1. Development of a numerical procedure for mixed mode K-solutions and fatigue crack growth in FCC single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Ranjan, Srikant

    2005-11-01

    Fatigue-induced failures in aircraft gas turbine and rocket engine turbopump blades and vanes are a pervasive problem. Turbine blades and vanes represent perhaps the most demanding structural applications due to the combination of high operating temperature, corrosive environment, high monotonic and cyclic stresses, long expected component lifetimes and the enormous consequence of structural failure. Single crystal nickel-base superalloy turbine blades are being utilized in rocket engine turbopumps and jet engines because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. These materials have orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Computation of stress intensity factors (SIFs) and the ability to model fatigue crack growth rate at single crystal cracks subject to mixed-mode loading conditions are important parts of developing a mechanistically based life prediction for these complex alloys. A general numerical procedure has been developed to calculate SIFs for a crack in a general anisotropic linear elastic material subject to mixed-mode loading conditions, using three-dimensional finite element analysis (FEA). The procedure does not require an a priori assumption of plane stress or plane strain conditions. The SIFs KI, KII, and KIII are shown to be a complex function of the coupled 3D crack tip displacement field. A comprehensive study of variation of SIFs as a function of crystallographic orientation, crack length, and mode-mixity ratios is presented, based on the 3D elastic orthotropic finite element modeling of tensile and Brazilian Disc (BD) specimens in specific crystal orientations. Variation of SIF through the thickness of the specimens is also analyzed. The resolved shear stress intensity coefficient or effective SIF, Krss, can be computed as a function of crack tip SIFs and the

  2. The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals

    NASA Astrophysics Data System (ADS)

    Baryshevsky, V. G.

    2016-06-01

    The use of spin rotation effect in bent crystals for measuring the magnetic moment of short-lived particles in the range of LHC and FCC energies is considered. It is shown that the estimated number of produced baryons that are captured into a bent crystal grows as ∼γ 3 / 2 with increasing particle energy. Hence it may be concluded that the experimental measurement of magnetic moments of short-lived particles using the spin rotation effect is feasible at LHC and higher energies (for LHC energies, e.g., the running time required for measuring the magnetic moment of Λc+is 2 ÷ 16 hours).

  3. The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals

    NASA Astrophysics Data System (ADS)

    Baryshevsky, V. G.

    2016-06-01

    The use of spin rotation effect in bent crystals for measuring the magnetic moment of short-lived particles in the range of LHC and FCC energies is considered. It is shown that the estimated number of produced baryons that are captured into a bent crystal grows as ∼γ 3 / 2 with increasing particle energy. Hence it may be concluded that the experimental measurement of magnetic moments of short-lived particles using the spin rotation effect is feasible at LHC and higher energies (for LHC energies, e.g., the running time required for measuring the magnetic moment of Λc+ is 2 ÷ 16 hours).

  4. Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal

    NASA Astrophysics Data System (ADS)

    Xiu-Rong, Ma; Yu-Qing, Liang; Song, Wang; Shuang-Gen, Zhang; Yun-Long, Shan

    2016-07-01

    We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation (AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-ion-doped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo’s intensity and efficiency. The theoretical analysis is validated by numerical simulations. Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin, China (Grant No. 10FDZDGX00400) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).

  5. Avalanches, plasticity, and ordering in colloidal crystals under compression

    NASA Astrophysics Data System (ADS)

    McDermott, D.; Reichhardt, C. J. Olson; Reichhardt, C.

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  6. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events. PMID:27415320

  7. Self-Consistent Theory of Elastic Properties of Strongly Anharmonic Crystals I:. General Treatment and Comparison with Computer Simulations and Experiment for Fcc Crystals

    NASA Astrophysics Data System (ADS)

    Zubov, V. I.; Sanchez, J. F.; Tretiakov, N. P.; Yusef, A. E.

    Based on the correlative method of an unsymmetrized self-consistent field,16-23 we have derived expressions for elastic constant tensors of strongly anharmonic crystals of cubic symmetry. Each isothermal elastic constant consists of four terms. The first one is the zeroth approximation containing the main anharmonicity (up to the fourth order). The second term is the quantum correction. It is important at temperatures below the De-bye characteristic temperature. Finally, the third and fourth terms are the perturbation theory corrections which take into account the influence of the correlations in atomic displacements from the lattice points and that of the high-order anharmonicity respectively. These corrections appear to be small up to the melting temperatures. It is sufficient for a personal computer to perform all our calculations with just a little computer time. A comparison with certain Monte Carlo simulations and with experimental data for Ar and Kr is made. For the most part, our results are between. The quasi-harmonic approximation fails at high temperatures, confirming once again the crucial role of strong anharmonicity.

  8. Along-track scanning using a liquid crystal compressive hyperspectral imager.

    PubMed

    Oiknine, Yaniv; August, Isaac; Stern, Adrian

    2016-04-18

    In various applications, such as remote sensing and quality inspection, hyperspectral (HS) imaging is performed by spatially scanning an object. In this work, we present a new compressive hyperspectral imaging method that performs along-track scanning. The method relies on the compressive sensing miniature ultra-spectral imaging (CS-MUSI) system, which uses a single liquid crystal (LC) cell for spectral encoding and provides a more efficient way of HS data acquisition, compared to classical spatial scanning based systems. The experimental results show that a compression ratio of about 1:10 can be reached. Owing to the inherent compression, the captured data is preprepared for efficient storage and transmission. PMID:27137283

  9. The FCC and Broadcasting.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report outlines the Federal Communications Commission's (FCC) regulatory authority over the licensing and operation of commercial, educational, and public broadcasting in the United States. Also described are rules and regulations governing the program content and advertising, in relation to the fairness doctrine, free speech, and public…

  10. Electrical impedance of FCC

    NASA Technical Reports Server (NTRS)

    Liu, Y. S.

    1972-01-01

    The electrical characteristics of FCC are investigated in the context of multiple transmission lines theory. Analytical expressions for the coefficients of capacitance of conductors in a single cable are obtained. Numerical values calculated with these expressions are in good agreement with experimental data. Crosstalk, attenuation constants and phase angles of the current and voltage in flat conductor cable are also calculated.

  11. A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2

    PubMed Central

    Zhai, Wentao; Ko, Yoorim; Zhu, Wenli; Wong, Anson; Park, Chul B.

    2009-01-01

    The crystallization and melting behaviors of linear polylactic acid (PLA) treated by compressed CO2 was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO2 exposure significantly increased PLA’s crystallization rate; a high crystallinity of 16.5% was achieved after CO2 treatment for only 1 min at 100 °C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA’s crystallization equilibrium. PMID:20054476

  12. Strain-induced folding on [ 1 1 bar 1 bar ]-copper single crystals under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Tarasov, S. Yu; Chumaevskii, A. V.; Alfyorova, E. A.

    2016-05-01

    Using uniaxial compression we studied the mechanical instability by folded structure formation on initially smooth and plain faces of copper single crystals with deformation axis orientation along [ 1 1 bar 1 bar ]. These folded structures can be found within several zones on the crystal's faces after compression test. We classified the folds based upon their scale, localization, state of the interfold boundaries, presence and amount of the slip bands in the folds. Subsurface crystalline lattice reorientation by deformation banding has been found to be the reason for folded structures generation. We suggest that folds generated on the [ 1 1 bar 1 bar ]-single crystals under compression are the inherent surface relief components which denote the deformation processes occurring both in the subsurface and in the bulk of the sample. In view of that, they can be used for analyzing the deformation under compression along with other surface structural components. The main specificity behind the folded structure generation mechanism which differs them from other orientations is slipping by parallel octahedral planes in some specific local areas.

  13. FCC catalyst selection

    SciTech Connect

    Carter, G.D.L. ); McElhiney, G. )

    1989-09-01

    This paper discusses a commonly used technique for comparing FCC catalytic selectivities based on the ASTM microactivity test (MAT) procedure, ASTM D-3907-80. In its original form the ASTM test provides only very limited information on selectivity. However, extension of the ASTM MAT procedure by using additional product analyses gives a microselectivity test capable of providing detailed yield structure information. This modified MAT procedure thus provides a cost-effective and rapid means of comparing many catalysts.

  14. Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser

    SciTech Connect

    Kalantar, D.H.; Chandler, E.A.; Colvin, J.D.; Lee, R.; Remington, B.A.; Weber, S.V.; Wiley, L.G.; Hauer, A.; Wark, J.S.; Loveridge, A.; Failor, B.H.; Meyers, M.A.; Ravichandran, G.

    1999-01-01

    Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented. {copyright} {ital 1999 American Institute of Physics.}

  15. High pressure nano-crystalline microstructure of shock compressed single crystal iron

    SciTech Connect

    Hawreliak, J; Kalantar, D; Stolken, J; Remington, B; Lorenzana, H; Wark, J

    2007-12-11

    We discuss the first grain size measurements made during shock compression using in situ x-ray diffraction. Our experiments have shown unambiguously that single crystal iron shock loaded above 13 GPa along the [100] direction will transform from the ambient {alpha}-phase (BCC) to a highly ordered polycrystalline {epsilon}-phase (HCP). Here, we present a detailed shape analysis of the diffraction peaks using a modified Warren-Averbach method to quantify the microstructure of shock compressed high pressure iron. The {epsilon}-phase was determined through this method to have grain sizes between of 2 and 15 nm, in reasonable agreement with results from large scale MD simulations. We conclude that single crystal iron becomes nano-crystalline in shock transforming from the {alpha} to {epsilon} phase.

  16. The hierarchical characterization of deformation heterogeneities in compressed metal single crystals

    NASA Astrophysics Data System (ADS)

    Magid, Karen Ruth

    Plastic deformation is an inherently heterogeneous process whose understanding is still incomplete after more than 50 years of study. The traditional methods of analysis look at both bulk material deformation and properties and the microscale features which comprise the inherent deformation processes. A large amount of information occurring on the mesoscale, from 1 to 100 microns, has not been analyzed. Here we present the results from an x-ray diffraction technique with submicron spatial resolution used to analyze compressed metal single crystals. The mesoscopic structure of the inhomogeneous macroscopic deformation pattern was explored with selected area diffraction, using a focused synchrotron radiation polychromatic beam with a resolution of 1-3 mum. Single crystals of copper, molybdenum, and zinc were oriented for single slip tested to ˜2-14% strain in nearly uniaxial compression, using a specifically designed 6 degree of freedom compressive test device. The macroscopic strain field was monitored during the test by optical image correlation methods that mapped the strain field with a spatial resolution of about 100 mum. The copper and molybdenum crystals deformed unexpectedly, exhibiting significant amounts of secondary slip activity alongside the primary slip. Areas of interest from adjacent faces were identified from the image correlation and mapped for their orientation, excess defect density, and shear stress. The mesoscopic defect structure in the copper specimens consisted of broad, somewhat irregular primary bands that lay nominally parallel to (111), in an almost periodic distribution with a period of about 30 mum. These primary bands were dominant even in the region of conjugate strain. There were also broad conjugate defect bands, almost precisely perpendicular to the primary bands that tended to bridge primary bands and terminate at them. In addition, a tantalum bicrystal, previously compressed and characterized using electron back

  17. Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals.

    PubMed

    Liu, Yikun; Wu, You; Chen, Chun-Wei; Zhou, Jianying; Lin, Tsung-Hsien; Khoo, Iam Choon

    2016-05-16

    We have experimentally demonstrated the feasibility of direct compression, or stretching and recompression of laser pulses in a very wide temporal time scale spanning 10's fs to ~1 ps time with sub-mm thick cholesteric liquid crystal (CLC) cells. The mechanisms at work here are the strong dispersion at the photonic band-edges and nonlinear phase modulation associated with the non-resonant ultrafast molecular electronic optical nonlinearity. The observed pulse compression limit, spectral characteristics and intensity dependence of the compression are in good agreement with theoretical expectations and simulations based on a coupled-mode propagation model. Owing to the large degree of freedom to engineer the wavelength locations of CLC photonic bandgap and band-edges, these self-action all-optical processes can be realized with ultrafast lasers pulses in a very wide spectral region from the visible to near infrared, with potential applications in compact ultrafast photonic modulation devices/platforms. PMID:27409869

  18. Analysis of compression behavior of a [011] Ta single crystal with orientation imaging microscopy and crystal plasticity

    SciTech Connect

    Adams, B L; Campbell, G H; King, W E; Lassila, D H; Stolken, J S; Sun, S; Swartz, A J

    1999-02-03

    High-purity tantalum single crystal cylinders oriented with [011] parallel to the cylinder axis were deformed 10, 20, and 30 percent in compression. The engineering stress-strain curve exhibited an up-turn at strains greater than {approximately}20% while the samples took on an ellipsoidal shape during testing, elongated along the [100] direction with almost no dimensional change along [0{bar 1}1]. Two orthogonal planes were selected for characterization using Orientation Imaging Microscopy (OIM): one plane containing [100] and [011] (longitudinal) and the other in the plane containing [0{bar 1}1] and [011] (transverse). OIM revealed patterns of alternating crystal rotations that develop as a function of strain and exhibit evolving length scales. The spacing and magnitude of these alternating misorientations increases in number density and decreases in spacing with increasing strain. Classical crystal plasticity calculations were performed to simulate the effects of compression deformation with and without the presence of friction. The calculated stress-strain response, local lattice reorientations, and specimen shape are compared with experiment.

  19. Shock Compression of Beryllium Single Crystals: Time-Dependent, Anisotropic Elastic-Plastic Response

    NASA Astrophysics Data System (ADS)

    Winey, J.; Gupta, Y.

    2013-06-01

    To gain insight into inelastic deformation mechanisms in shocked Be single crystals, wave propagation simulations were performed for crystals shocked along the c-axis, a-axis, and other crystal directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics and deformation twinning based descriptions of inelastic deformation. The simulation results showed good qualitative agreement with the measured wave profiles, including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. The measured wave profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning. Our results provide insight into the complex nature of inelastic deformation in shocked Be, and are also expected to be valuable for understanding the anisotropic inelastic response of analogous hcp metals subjected to shock compression. Work supported by ARL and DOE/NNSA.

  20. Magnetic anisotropy of vicinal (001) fcc Co films: Role of crystal splitting and structure relaxation in the step-decoration effect

    NASA Astrophysics Data System (ADS)

    Cinal, M.; Umerski, A.

    2006-05-01

    The uniaxial in-plane magnetic anisotropy (UIP-MA) constant is calculated for a single step on the (001) surface of fcc Co(N) films. The calculations are done for both an undecorated step and the step decorated with one or more, up to seven, Cu wires. Our objective is to explain the mechanisms by which the decoration decreases the UIP-MA constant, which is the effect observed experimentally for ultrathin Co films deposited on vicinal (001) Cu surfaces and can lead to reorientation of magnetization within the film plane. Theoretical calculations performed with a realistic tight-binding model show that the step decoration changes the UIP-MA constant significantly only if the splitting between the on-site energies of various d -orbitals is included for atoms located near the step edge. The local relaxation of atomic structure around the step is also shown to have a significant effect on the shift of the UIP-MA constant. The influence of these two relevant factors is analyzed further by examining individual contributions to the UIP-MA constant from atoms around the step. The magnitude of the obtained UIP-MA shift agrees well with experimental data. It is also found that an additional shift due to possible charge transfer between Cu and Co atoms is very small.

  1. Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Jester, Shai; Qi, Tingting; Reed, Evan

    Understanding the kinetics of shock-compressed SiO2 is of great importance for mitigating optical damage for high-intensity lasers and for understanding meteoroid impacts. Experimental work has placed some thermodynamic bounds on the formation of high-pressure phases of this material, but the formation kinetics and underlying microscopic mechanisms are yet to be elucidated. Here, by employing multiscale molecular dynamics studies of shock-compressed fused silica and quartz, we find that silica transforms into a poor glass former that subsequently exhibits ultrafast crystallization within a few nanoseconds. We also find that, as a result of the formation of such an intermediate disordered phase, the transition between silica polymorphs obeys a homogeneous reconstructive nucleation and grain growth model. Moreover, we construct a quantitative model of nucleation and grain growth, and compare its predictions with stishovite grain sizes observed in laser-induced damage and meteoroid impact events.

  2. Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Jester, Shai B.; Qi, Tingting; Reed, Evan J.

    2016-01-01

    Understanding the kinetics of shock-compressed SiO2 is of great importance for mitigating optical damage for high-intensity lasers and for understanding meteoroid impacts. Experimental work has placed some thermodynamic bounds on the formation of high-pressure phases of this material, but the formation kinetics and underlying microscopic mechanisms are yet to be elucidated. Here, by employing multiscale molecular dynamics studies of shock-compressed fused silica and quartz, we find that silica transforms into a poor glass former that subsequently exhibits ultrafast crystallization within a few nanoseconds. We also find that, as a result of the formation of such an intermediate disordered phase, the transition between silica polymorphs obeys a homogeneous reconstructive nucleation and grain growth model. Moreover, we construct a quantitative model of nucleation and grain growth, and compare its predictions with stishovite grain sizes observed in laser-induced damage and meteoroid impact events.

  3. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder.

    PubMed

    August, Isaac; Oiknine, Yaniv; AbuLeil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-01-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems. PMID:27004447

  4. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    NASA Astrophysics Data System (ADS)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  5. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    PubMed Central

    August, Isaac; Oiknine, Yaniv; AbuLeil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-01-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems. PMID:27004447

  6. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  7. Commercial FCC License Study Guide.

    ERIC Educational Resources Information Center

    Swearer, Harvey F.

    Jobs in radio arts, from serviceman to station engineer, are easier to get if one has a recommendation of the U.S. Government in the form of a license from the Federal Communications Commission (FCC). This study guide for FCC radiotelephone licenses is designed to thoroughly prepare the applicant for any radiotelephone exam and to serve as a…

  8. Increasing FCC regenerator catalyst level

    SciTech Connect

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  9. Experiments with phase transitions at very high pressure. [compressed solidifed gases, semiconductors, superconductors, and molecular crystals

    NASA Technical Reports Server (NTRS)

    Spain, I. L.

    1983-01-01

    Diamond cells were constructed for use to 1 Mbar. A refrigerator for cooling diamond cells was adapted for studies between 15 and 300 K. A cryostat for superconductivity studies between 1.5 to 300 K was constructed. Optical equipment was constructed for fluorescence, transmission, and reflectance studies. X-ray equipment was adapted for use with diamond cells. Experimental techniques were developed for X-ray diffraction studies using synchrotron radiation. AC susceptibility techniques were developed for detecting superconducting transitions. The following materials were studied: compressed solidified gases (Xe, Ar), semiconductors (Ge, Si, GaAs), superconductors (Nb3Ge, Nb3Si, Nb3As, CuCl), molecular crystals (I).

  10. Electromechanical properties of high coupling single crystals under large electric drive and uniaxial compression.

    PubMed

    Amin, Ahmed

    2005-10-01

    This work investigates the 33-mode electromechanical response of relaxor-ferroelectric lead magnesium niobate-lead titanate (PMN-PT) single crystals when driven with large fields approximately 0.4 MV/m under a combined direct current (DC) field and mechanical bias similar to those used in the design of sound projectors. It demonstrates that the remarkable small signal length extensional coupling (k33 > 0.90) and other electromechanical properties of morphotropic PMN-PT single crystals prevail under large drive. The observed k33 roll-off at 42 MPa compressive stress is analyzed in terms of the recent structural data and the high-order Devonshire theory of possible ferroelectric-ferroelectric transition trajectories. PMID:16382615

  11. Technique for compressing light intensity ranges utilizing a specifically designed liquid crystal notch filter

    DOEpatents

    Rushford, Michael C.

    1988-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten metal in an atomic vapor laser isotope separation (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. To accomplish this, the assembly utilizes the combination of interference filter and a liquid crystal notch filter. The latter which preferably includes a cholesteric liquid crystal arrangement is configured to pass light at all wavelengths, except a relatively narrow wavelength band which defines the filter's notch, and includes means for causing the notch to vary to at least a limited extent with the intensity of light at its light incidence surface.

  12. Negative linear compressibility in a crystal of α-BiB3O6.

    PubMed

    Kang, Lei; Jiang, Xingxing; Luo, Siyang; Gong, Pifu; Li, Wei; Wu, Xiang; Li, Yanchun; Li, Xiaodong; Chen, Chuangtian; Lin, Zheshuai

    2015-01-01

    Negative linear compressibility (NLC), a rare and important mechanical effect with many application potentials, in a crystal of α-BiB3O6 (BIBO) is comprehensively investigated using first-principles calculations and high-pressure synchrotron X-ray diffraction experiments. The results indicate that the BIBO crystal exhibits the second largest NLC among all known inorganic materials over a broad pressure range. This unusual NLC behaviour is due to the rotation and displacement of the rigid [BO3] and [BO4] building units that result in hinge motion in an umbrella-like topology. More importantly, the parallel-polar lone-pair electrons on the Bi(3+) cations act as "umbrella stands" to withstand the B-O hinges, thus significantly enhancing the NLC effect. BIBO presents a unique example of a "collapsible umbrella" mechanism for achieving NLC, which could be applied to other framework materials with lone-pair electrons. PMID:26305262

  13. Negative linear compressibility in a crystal of α-BiB3O6

    PubMed Central

    Kang, Lei; Jiang, Xingxing; Luo, Siyang; Gong, Pifu; Li, Wei; Wu, Xiang; Li, Yanchun; Li, Xiaodong; Chen, Chuangtian; Lin, Zheshuai

    2015-01-01

    Negative linear compressibility (NLC), a rare and important mechanical effect with many application potentials, in a crystal of α-BiB3O6 (BIBO) is comprehensively investigated using first-principles calculations and high-pressure synchrotron X-ray diffraction experiments. The results indicate that the BIBO crystal exhibits the second largest NLC among all known inorganic materials over a broad pressure range. This unusual NLC behaviour is due to the rotation and displacement of the rigid [BO3] and [BO4] building units that result in hinge motion in an umbrella-like topology. More importantly, the parallel-polar lone-pair electrons on the Bi3+ cations act as “umbrella stands” to withstand the B-O hinges, thus significantly enhancing the NLC effect. BIBO presents a unique example of a “collapsible umbrella” mechanism for achieving NLC, which could be applied to other framework materials with lone-pair electrons. PMID:26305262

  14. Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber.

    PubMed

    Chang, W; Hölzer, P; Travers, J C; Russell, P St J

    2013-08-15

    We numerically investigate self-frequency blueshifting of a fundamental soliton in a gas-filled hollow-core photonic crystal fiber. Because of the changing underlying soliton parameters, the blueshift gives rise to adiabatic soliton compression. Based on these features, we propose a device that enables frequency shifting over an octave and pulse compression from 30 fs down to 2.3 fs. PMID:24104627

  15. Tensile and compression testing of single-crystal gamma Ti-55.5Al

    SciTech Connect

    Zupan, M.; LaVan, D.; Hemker, K.J.

    1997-12-31

    Gamma based titanium aluminides are considered to be promising high temperature application alloys because of their exceptional high temperature mechanical properties and good oxidation resistance. Moreover, with a density less than half of current nickel based super alloys, the increased power to weight ratio that can be realized by using titanium aluminides is very attractive to the automotive and aircraft industries. Here the orientation and temperature dependence of the flow strength of {gamma}-TiAl is being measured to promote a fundamental understanding of the deformation mechanisms that are active in this alloy. High quality single crystals of {gamma}-Ti-55.5 Al have been grown using an optical float zone furnace, which allows for crystal seeding and provides a containerless growth environment. These crystals have been oriented using back reflection Laue and TEM and cut into microsample tensile specimens by electric discharge machining. The microsample testing technique developed at Johns Hopkins is being utilized to measure the orientation, temperature and tension/compression dependence of the flow strength of TiAl. An outline of the microsample testing techniques that have been developed for this study and preliminary results follow in this paper.

  16. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber.

    PubMed

    Mak, K F; Travers, J C; Joly, N Y; Abdolvand, A; Russell, P St J

    2013-09-15

    We demonstrate temporal pulse compression in gas-filled kagomé hollow-core photonic crystal fiber (PCF) using two different approaches: fiber-mirror compression based on self-phase modulation under normal dispersion, and soliton effect self-compression under anomalous dispersion with a decreasing pressure gradient. In the first, efficient compression to near-transform-limited pulses from 103 to 10.6 fs was achieved at output energies of 10.3 μJ. In the second, compression from 24 to 6.8 fs was achieved at output energies of 6.6 μJ, also with near-transform-limited pulse shapes. The results illustrate the potential of kagomé-PCF for postprocessing the output of fiber lasers. We also show that, using a negative pressure gradient, ultrashort pulses can be delivered directly into vacuum. PMID:24104822

  17. Status and availability of FCC hardware

    NASA Technical Reports Server (NTRS)

    Romriell, G. K.

    1973-01-01

    The source availability of FCC and/or FCC connectors was surveyed. The results for the following areas are presented: (1) cost of FCC versus standard round cable, (2) qualification status, (3) size of wire available in FCC, (4) availability of hermetic connectors for FCC, (5) conversion from flat cable to round cable and visa versa, (6) availability of shielded flat cable for RF usage, (7) termination techniques, and (8) repair techniques.

  18. Molecular Dynamics Modelling of Laser-Pulse Compression of a Ta single crystal with dislocations

    NASA Astrophysics Data System (ADS)

    Ruestes, Carlos; Remington, Tane; Bringa, Eduardo; Meyers, Marc; Remington, Bruce

    2013-06-01

    The nanoindentation of a defect-free Ta [001] single crystal is studied by Molecular Dynamics simulations. The potential by, an EFS potential, and a recent EAM potential by are tested and their results analyzed in terms of dislocation slip planes. Dislocations emitted from the indented zone interact forming prismatic loops. The Ta dislocated structure is then subjected to shock compression induced by a piston hitting the sample at various speeds. The shock-induced dislocation generation and motion mechanisms are studied in order to compare to on-going experiments. This research was funded by ANPCyT PRH, PICT2008-1325, PICT2009-0092, SecTyP UNCuyo 06/M035 and UC Research Lab grants.

  19. Long-time behavior of solution for the compressible nematic liquid crystal flows in R3

    NASA Astrophysics Data System (ADS)

    Gao, Jincheng; Tao, Qiang; Yao, Zheng-an

    2016-08-01

    In this paper, we investigate the global existence and long-time behavior of classical solution for the compressible nematic liquid crystal flows in three-dimensional whole space. First of all, the global existence of classical solution is established under the condition that the initial data are close to the constant equilibrium state in HN (R3) (N ≥ 3)-framework. Then, one establishes algebraic time decay for the classical solution by weighted energy method. Finally, the algebraic decay rate of classical solution in Lp (R3)-norm with 2 ≤ p ≤ ∞ and optimal decay rate of their spatial derivative in L2 (R3)-norm are obtained if the initial perturbation belong to L1 (R3) additionally.

  20. Crystal-structure properties and the molecular nature of hydrostatically compressed realgar

    NASA Astrophysics Data System (ADS)

    Hejny, Clivia; Sagl, Raffaela; Többens, Daniel M.; Miletich, Ronald; Wildner, Manfred; Nasdala, Lutz; Ullrich, Angela; Balic-Zunic, Tonci

    2012-05-01

    The structure of realgar, As4S4, and its evolution with pressure have been investigated employing in situ X-ray diffraction, optical absorption and vibrational spectroscopy on single-crystal samples in diamond-anvil cells. Compression under true hydrostatic conditions up to 5.40 GPa reveals equation-of-state parameters of V 0 = 799.4(2.4) Å3 and K 0 = 10.5(0.4) GPa with K_0^' = 8.7. The remarkably high compressibility can be attributed to a denser packing of the As4S4 molecules with shortening of the intermolecular bonds of up to 12 %, while the As4S4 molecules remain intact showing rigid-unit behaviour. From ambient pressure to 4.5 GPa, Raman spectra exhibit a strong blue shift of the Raman bands of the lattice-phonon regime of 24 cm-1, whereas frequencies from intramolecular As-S stretching modes show negligible or no shifts at all. On pressurisation, realgar shows a continuous and reversible colour change from bright orange over deep red to black. Optical absorption spectroscopy shows a shift of the absorption edge from 2.30 to 1.81 eV up to 4.5 GPa, and DFT calculations show a corresponding reduction in the band gap. Synchrotron-based measurements on polycrystalline samples up to 45.5 GPa are indexed according to the monoclinic structure of realgar.

  1. Nucleation of fcc Ta when heating thin films

    SciTech Connect

    Janish, Matthew T.; Mook, William M.; Carter, C. Barry

    2014-10-25

    Thin tantalum films have been studied during in-situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in-situ at 450°C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. As a result, these observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.

  2. Compression of ultra-short light pulses using the graded refractive index one-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Shiri, R.; Bananej, A.; Safari, E.

    2016-09-01

    The one-dimensional photonic crystals (1D PCs) containing a graded refractive index layer have been theoretically utilized to compress the positively chirped ultra-short pulses of light. Two types of simple and graded index multi-layer structures consisting alternating layers of TiO2 and SiO2 with the same total thicknesses and periodicity have been investigated and compared. For the graded structure, three different refractive index distributions including linear, exponential and parabolic profiles have been considered. The results revealed that replacing one of the homogeneous layers of the unit cells in simple photonic crystal with a graded material having parabolic refractive index profile efficiently improves compression behavior of the structure. The compress factors of as much as 47% and 78% depending on the pulse's initial chirp rate obtained with parabolic profile of such the structures.

  3. Surface and crystalline analysis of aluminum oxide single crystal treated by quasistationary compression plasma flow

    SciTech Connect

    Maletic, S.; Popovic, D.M.; Cubrovic, V.; Zekic, A.A.; Dojcilovic, J.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The effects of treatment of Al{sub 2}O{sub 3} (0001) surface by CPF are analyzed. Black-Right-Pointing-Pointer Oriented low-dimensional structures are occurred for the treated Al{sub 2}O{sub 3} crystal. Black-Right-Pointing-Pointer The dimension of these ripples are 1 {mu}m and the distance between them is about 10 {mu}m. Black-Right-Pointing-Pointer The ripple-shaped structures contain a higher percentage of oxygen than the surroundings. Black-Right-Pointing-Pointer Results could promote CPF as a tool for producing organized oxygen-rich structures. -- Abstract: Material such as aluminum oxide (Al{sub 2}O{sub 3}) is important in electronics industry. On the other hand, plasma is one of the most efficient and sophisticated tools for materials processing. In this work a treatment of Al{sub 2}O{sub 3} (0001) surface by quasistationary compression plasma flow (CPF) is analyzed in detail. Offline metrology was performed using dielectric measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). Oriented low-dimensional periodic structures are occurred for the plasma treated Al{sub 2}O{sub 3} single crystal. In the paper is reported that these oriented ripple-shaped structures contain a higher percentage of oxygen than the surrounding crystal surface. This could be the framework for usage of CPF as a tool in manufacturing of surfaces containing the highly organized oxygen-rich structures.

  4. Consider topped crude for FCC

    SciTech Connect

    Louder, K.E.; Juno, E.J.; Kulapaditharom, L.

    1985-09-01

    A case study is presented that illustrates the mechanics for evaluating use of topped crude to load the FCC for more profit. Declining product demands combined with high crude costs has shut down many refineries and left others operting well below design capacity. The study illustrates the step-by-step requirements to debottleneck an existing Kellogg Orthoflow Model B FCC to process topped crude mixed with gas oils. This study was limited to the catalytic converter defined as the reactor, regenerator, air blower, and wet gas compressor. The scope was to examine the ability to process topped crude and to consider modernizing the FCC to employ riser cracking and complete CO combustion regeneration.

  5. Use desalting for FCC feedstocks

    SciTech Connect

    Harris, J.R.

    1996-08-01

    The heart of profitability in a modern refinery is the fluid catalytic cracking unit (FCCU). As a major process unit, the FCCU generates substantial profits from small improvements. One such improvement, desalting FCC feedstocks, increases refinery profits by over $25,000 per day after a two-month payout period. Desalting improves FCC feedstocks in three distinct ways: (1) reducing feed sodium content, (2) eliminating entrained water or slugs of water, and (3) reducing particulates and contaminants in both the water and hydrocarbon. Each of these improvements reduces or eliminates several problems in the typical FCCU. The paper discusses each of these mechanisms, the cost of desalting, and a typical case.

  6. FCC-ee: Energy Calibration

    SciTech Connect

    Koratzinos, M.; Blondel, A.; Gianfelice-Wendt, E.; Zimmermann, F.

    2015-06-02

    The FCC-ee aims to improve on electroweak precision measurements, with goals of 100 ke V on the Z mass and width, and a fraction of MeV on the W mass. Compared to LEP, this implies a much improved knowledge of the center-of-mass energy when operating at the Z peak and WW threshold. This can be achieved by making systematic use of resonant depolarization. A number of issues have been identified, due in particular to the long polarization times. However the smaller emittance and energy spread of FCC-ee with respect to LEP should help achieve a much improved performance.

  7. Controlled FCC/on-top binding of H/Pt(111) using surface stress

    NASA Astrophysics Data System (ADS)

    Shuttleworth, I. G.

    2016-08-01

    The preferred binding site of H/Pt(111) has been shown to be change from the on-top to FCC as the Pt(111) surface goes approximately from a state of compressive to tensile strain. A chemical analysis of the system has shown that for both FCC and on-top bound cases the H ssbnd Pt s and H ssbnd Pt d interactions have a similar importance in determining the preferred binding position. It has been seen that FCC-bound H forms a distinct state below the Pt d-band, whereas the on-top bound H does not.

  8. High-pressure Brillouin study on plastic crystals of neopentane and adamantane

    NASA Astrophysics Data System (ADS)

    Sasaki, Shigeo; Horibe, Yasuhiro; Kume, Tetsuji

    2013-06-01

    Spherical top molecules neopentane and adamantane with Td symmetry crystallize face centered cubic (fcc) plastic crystals in which molecules are rather freely rotating at fcc lattice points. In the case of fcc plastic crystalline methane, the value of elastic anisotropy A is above 5 which is large than A ~ 2.5 of rare gas solids without molecular rotation, and shows strong pressure dependence because of the enhancement of the molecular rotation-translation (R-T) coupling by compression. Therefore, the purpose of the present study is to carry out the high-pressure Brillouin measurements for the fcc plastic crystals of neopentane and adamantane up to 0.75 and 0.5 GPa, respectively, and to clarify the dependence of the R-T coupling on pressure and molecular weight. The obtained value of A of fcc neopentane is 6.1 at 0.18 GPa and steeply increase up to 12.8 at 0.72 GPa. This remarkably large A values and its strong pressure dependence indicate that the R-T coupling effect in the plastic phase of neopentane is obviously large in comparison with methane. On the other hand, the plastic crystal of adamantane shows almost constant (A = 2.5) which is nearly the same as the rare gas solids, suggesting no R-T coupling effect.

  9. Real time synchrotron x-ray diffraction measurements to determine material strength of shocked single crystals following compression and release

    SciTech Connect

    Turneaure, Stefan J.; Gupta, Y.M.

    2009-09-15

    We present a method to use real time, synchrotron x-ray diffraction measurements to determine the strength of shocked single crystals following compression and release during uniaxial strain loading. Aluminum and copper single crystals shocked along [111] were examined to peak stresses ranging from 2 to 6 GPa. Synchrotron x rays were used to probe the longitudinal lattice strains near the rear free surface (16 and 5 {micro}m depths for Al and Cu, respectively) of the metal crystals following shock compression and release. The 111 diffraction peaks showed broadening indicating a heterogeneous microstructure in the released state. The diffraction peaks also shifted to lower Bragg angles relative to the ambient Bragg angle; the magnitude of the shift increased with increasing impact stress. The Bragg angle shifts and appropriate averaging procedures were used to determine the macroscopic or continuum strength following compression and release. For both crystals, the strengths upon release increased with increasing impact stress and provide a quantitative measure of the strain hardening that occurs in Al(111) and Cu(111) during the shock and release process. Our results for Al(111) are in reasonable agreement with a previous determination based solely on continuum measurements. Two points are noteworthy about the developments presented here: Synchrotron x rays are needed because they provide the resolution required for analyzing the data in the released state; the method presented here can be extended to the shocked state but will require additional measurements.

  10. FCC, CATV, ETV, and ITFS.

    ERIC Educational Resources Information Center

    Schwartz, Louis; Woods, Robert A.

    Actions taken in 1970 by the Federal Communications Commission (FCC) are reviewed and discussed in this paper. These actions include amendment of educational broadcast rules for the first time in 17 years, decisions in the area of educational programing, a decision regarding the ultra high frequency (UHF)-land mobile dilemma, and a promise to…

  11. 47 CFR 95.117 - Where to contact the FCC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES General Mobile Radio Service (GMRS) § 95.117 Where to contact the FCC. Additional GMRS information...) FCC World Wide Web homepage: http://www.fcc.gov/wtb/prs. (c) In writing, to the FCC, Attention:...

  12. Dynamic mechanical response of magnesium single crystal under compression loading: Experiments, model, and simulations

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    2011-05-01

    Magnesium single crystal samples are compressed at room temperature under quasistatic (˜0.001 s-1) loading in a universal testing machine and dynamic (430, 1000, and 1200 s-1) loading in a split Hopkinson pressure bar system. Stress-strain curves show that (a) the fracture strain slightly increases with the strain rate; and (b) the maximum strength and strain hardening rate increase significantly when the testing changes from quasistatic to dynamic, although they do not vary much when the strain rate for dynamic testing varies in the range of 430-1200 s-1. The operation of the secondary pyramidal slip system is the dominating deformation mechanism, which leads to a fracture surface with an angle of ˜42° with respect to the loading axial direction. A theoretical material model based on Johnson-Cook law is also derived. The model includes the strain hardening and strain rate hardening terms, and provides the stress-strain relations matching with the experimental results. Finite element simulations for the strain rates used in the experiments predict the mechanical responses of the material that agree well with the experimental data.

  13. Crystal structure of HgGa{sub 2}Se{sub 4} under compression

    SciTech Connect

    Gomis, Oscar; Vilaplana, Rosario; Manjón, Francisco Javier; Santamaría-Pérez, David [Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider Team, Avenida Complutense s Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C Errandonea, Daniel [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C and others

    2013-06-01

    Highlights: ► Single crystals of HgGa{sub 2}Se{sub 4} with defect-chalcopyrite structure were synthesized. ► HgGa{sub 2}Se{sub 4} exhibits a phase transition to a disordered rock salt structure at 17 GPa. ► HgGa{sub 2}Se{sub 4} undergoes a phase transition below 2.1 GPa to a disordered zinc blende. - Abstract: We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa{sub 2}Se{sub 4}). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa{sub 2}Se{sub 4} exhibits a phase transition on upstroke toward a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.

  14. Strain Rate Dependency of Coarse Crystal Marble Under Uniaxial Compression: Strength, Deformation and Strain Energy

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; Huang, Da; Li, Xi'an

    2014-07-01

    Strain rate during testing, uniaxial or triaxial, has important influence on the measured mechanical properties of rocks. Uniaxial compression tests were performed at nine pre-specified static-to-quasistatic strain rates (ranging from 1 × 10-5 to 1 × 10-1 s-1) on coarse crystal marble. The aim is to gain deep insight into the influence of strain rate on characteristic stresses, deformation properties and conversion of strain energy of such rock. It is found that the strain rate of 5 × 10-3 s-1 is the threshold to delineate the failure modes the tested coarse marble behaves in. At a strain rate less than this threshold, single-plane shear and conjugate X-shaped shear are the main failure modes, while beyond this threshold, extensile and splitting failures are dominant. The stress for crack initiation, the critical stress for dilation, the peak stress, and Young's modulus are all found to increase with strain rate, with an exception that the above stresses and modulus appear relatively low compared to the strain rate in the range of between 1 × 10-4 and 5 × 10-3 s-1. The pre-peak absorbed strain energy, damage strain energy and elastic strain energy are found to increase with strain rate. In addition, the elastic strain energy stored before peak point favors brittle failure of the specimen, as the more stored elastic energy in the specimen, the stronger the fragmenting.

  15. Global Existence and Large Time Behavior of Strong Solutions to the 2-D Compressible Nematic Liquid Crystal Flows with Vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Teng

    2016-02-01

    This paper is concerned with the strong solutions to the Cauchy problem of a simplified Ericksen-Leslie system of compressible nematic liquid crystals in two or three dimensions with vacuum as far field density. For strong solutions, some a priori decay rate (in large time) for the pressure, the spatial gradient of velocity field and the second spatial gradient of liquid crystal director field are obtained provided that the initial total energy is suitably small. Furthermore, with the help of the key decay rates, we establish the global existence and uniqueness of strong solutions (which may be of possibly large oscillations) in two spatial dimensions.

  16. Elevated temperature tension, compression and creep-rupture behavior of (001)-oriented single crystal superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Miner, Robert V.

    1987-01-01

    Tensile and compressive flow behavior at various temperatures and strain rates, and tensile creep rupture behavior at 850 and 1050 C and various stresses were studied for (001)-oriented single crystals of the Ni-base superalloy PWA 1480. At temperatures up to 760 C, the flow stress is insensitive to strain rate and of greater magnitude in tension than in compression. At temperatures of 800 C and above, the flow stress decreases continuously with decreasing strain rate and the tension/compression anisotropy diminishes. The second stage creep rate and rupture time exhibited power law relationships with the applied stress for both 850 and 1050 C, however with different stress dependencies. The stress exponent for the steady state creep rate was about 7 at 1050 C, but much higher at 850 C, about 12. Directional coarsening of the gamma' phase occurred during creep at 1050 C, but not at 850 C.

  17. An Elliptical Crystal Spectrometer Suitable for EXAFS Studies of Laser Compressed Materials and for High Resolution X-Ray Spectroscopy.

    PubMed

    Ridgeley, A; Goodman, D; Hall, T A

    1995-01-01

    Using an x-ray spectrometer with an elliptically curved crystal it is possible to study absorption spectra from a target placed at one focus of the ellipse using a backlighting source placed at the other focus. This principle has been used to develop a spectrometer for EXAFS studies of laser compressed materials. The backlighting source is placed at one focus of the ellipse and the laser compressed EXAFS sample at the other. Using this technique a small area of the EXAFS target can be probed, thereby minimizing any spatial variations in the compressed plasma due to nonuniformities in the laser beams. Also, the dispersive nature of the crystal ensures that it acts as a bandpass filter, so that the EXAFS sample is not probed by other x-ray wavelengths which may cause unwanted heating. Another advantage is that compressed and uncompressed EXAFS spectra can be compared on a single shot. The optical properties of the spectrometer are discussed analytically and using a computer ray-tracing program. The development and alignment of the elliptical spectrometer are discussed, and its performance using both x-ray film and a CCD detector is evaluated. The use of the elliptical spectrometer as a high-resolution x-ray instrument is presented. PMID:21307480

  18. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    DOE PAGESBeta

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  19. A methodology to study crystal plasticity inside a compression test sample based on image correlation and EBSD

    SciTech Connect

    Rehrl, C.; Kleber, S.; Antretter, T.; Pippan, R.

    2011-08-15

    Modified compression tests in a coarse-grained austenitic stainless steel have been carried out in order to examine the crystal plasticity behavior for large plastic deformations. The measurements of local in-plane strains provide deeper insight into the deformation process on the local scale. These measurements are performed by digital image correlation technique (DIC) in combination with local crystal orientation measurements by using the electron backscatter diffraction technique (EBSD). Split test samples are prepared to track the strong microstructural changes during deformation, which is done incrementally in 10% steps up to 60% total macroscopic strain. The clear correlation of local strains with crystal orientation changes - e.g. in the case of mechanical twinning - permits to identify the acting deformation mechanisms. Such, experimentally determined local strain maps can be used for verification of crystal plasticity finite element method simulations (CPFEM). - Research Highlights: {yields} Method to study large strain crystal plasticity inside an austenitic FeCrNi-alloy. {yields} Correlation of local strain analyses with crystal orientation measurements. {yields} Deformation mechanism changes locally from dislocation glide to mechanical twinning. {yields} Suitable to study grain-grain interactions, slip system activation and grain boundary effects. {yields} Provide essential data for crystal plasticity FEM studies.

  20. Advances in FCC reactor technology

    SciTech Connect

    Schnaith, M.W.; Gilbert, A.T.; Lomas, D.A.; Myers, D.N.

    1995-09-01

    The riser termination device and the feed distribution system are the key elements that enable FCC reactor technology to achieve the high performance demanded in the 1990s and beyond. UOP`s development efforts have combined cold flow modeling and commercial optimization testing to produce new technology in both areas. A key differentiation of the UOP feed-catalyst contacting system is the use of a catalyst acceleration zone to moderate density and achieve plug flow before feed injection. Commercial data confirm the benefit and importance of elevated feed injection and proper catalyst environment in this three-phase system. A new high-performance Optimix feed nozzle has been developed and cold-flow tested and is currently undergoing commercial demonstration. New riser disengagement technology with prestripping has been extended to internal riser FCC units. The new disengager design will achieve at least 98% hydrocarbon containment. Cold-flow modeling has confirmed catalyst separation efficiency, and the design has been accepted for two FCC reactor revamps scheduled for mid-1995 and for 1996.

  1. Effects of compression direction on the plasticity and rheology of hydrolytically weakened synthetic quartz crystals at atmospheric pressure

    SciTech Connect

    Linker, M.F.; Kirby, S.H.; Ord, A.; Christie, J.M.

    1984-06-10

    A hydrothermally grown synthetic quartz crystal with 370 +- 60 ppm hydroxyl impurity was cut into right rectangular prisms in eight crystallographic orientations. We compressed the prisms under constant axial force corresponding to a uniaxial stress of 140.0 +- 0.5 MPa, and temperatures of 510/sup 0/ and 750/sup 0/C. All but one of the samples sustained permanent axial strains of 2--3%. We established the operating slip systems from specimen shape change, slip bands and dislocation etch pits on polished surfaces, crystallographic orientation changes, stress optical features in thin sections, and transmission electron microscopy. The observed creep behavior and plasticity divided the samples into three groups: (1) Crystals compressed at 45/sup 0/ to (0001) and (2110) and those compressed perpendicular(0111) and perpendicular(0111) deformed principally by slip parallel to (0001). Creep rates were relatively high and were not strongly sensitive to test temperature. Dislocation arrays approximately parallel to (2110) are common. Dislocation loops are elongate parallel to (0001), indicating that the edge segments were more mobile than the screw segements. (2) The second groups of samples were loaded normal to (0001) in three orientation: perpendicular(2110), perpendicular(0110), and at 45/sup 0/ to (1100). These samples deformed primarily by 0 )1010) slip with some evidence for secondary slip on the other systems. They were more creep resistant than the first group and displayed a much higher sensitivity of creep rate to test temperature.

  2. Lattice compression of Si crystals and crystallographic position of As impurities measured with x-ray standing wave spectroscopy

    SciTech Connect

    Herrera-Gomez, A. |; Rousseau, P.M.; Woicik, J.C.; Kendelewicz, T.; Plummer, J.; Spicer, W.E.

    1999-02-01

    In an earlier letter [Appl. Phys. Lett. {bold 68}, 3090 (1996)] we reported results about heavily arsenic doped silicon crystals, where we unambiguously showed, based on x-ray standing wave spectroscopy (XSW) and other techniques, that electrically deactivated As remains essentially substitutional. In this article we present the analysis methodology that led us to said conclusion, and show how from further analysis it is possible to extract the compression or expansion of thin epitaxial layers. We report the evolution of the compression of highly As doped Si epitaxial layers as deactivation takes place. The XSW measurements required a very small thickness of the doped layer and a perfect registry between the substrate and the surface layer. We found larger values for compression than previously reported, which may be explained by the absence of structural defects on our samples that relax the interface stress. Our results show a saturation on the compression as the electron concentration increases. We also report an estimation of the small displacement from perfect substitutional positions suffered by deactivated As. {copyright} {ital 1999 American Institute of Physics.}

  3. Deformation mechanisms of olivine single crystals compressed at 300 MPa and 800-1100°C

    NASA Astrophysics Data System (ADS)

    Cordier, Patrick; Demouchy, Sylvie; Mussi, Alexandre; Tommasi, Andrea

    2013-04-01

    Rheology of mantle rocks at lithospheric temperatures remains poorly constrained, since most experimental studies on creep mechanisms of olivine single crystals ((MgFe)2SiO4, Pbnm) and polycrystalline olivine aggregates were performed at high-temperatures (T >> 1200oC). In this study, we have performed deformation experiments on oriented single crystals of San Carlos olivine and polycrystalline olivine aggregate at temperatures relevant of the uppermost mantle (ranging from 800o to 1090oC) in tri-axial compression. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at various constant strain rates (from 7 × 10-6 s-1 to 1 × 10-4 s-1). Mechanical tests yield differential stresses ranging from 88 to 1076 MPa. All samples were deformed at constant displacement rate and for finite strains ranging from 4 to 23 %, to provide insight into possible effects of hardening, softening or stick-and-slip. The single crystals were compressed along several crystallographic directions to test the possibility of activating different slip systems (e.g. [100](001), [001](100), [001](010) and [100](010)). We will present the characterization of the dislocation microstructures performed in the TEM.

  4. Refractometry of uniaxially compressed triglycine sulphate crystals doped with L-valine

    NASA Astrophysics Data System (ADS)

    Stadnyk, V. Yo.; Kiryk, Yu. I.

    2012-05-01

    The temperature and spectral dependences of the refractive indices n i of triglycine sulphate (TGS) crystals doped with L-valine have been investigated. Doping is found to weaken the temperature dependence of n i of TGS crystals. The electronic polarizabilities α i , refractions R i , and parameters of UV oscillators (λ0 i , B 1 i ) of mechanically distorted doped TGS crystals have been calculated. The temperature coefficients of the shift of the phase-transition point, ∂ T c /∂σ m , are found to be somewhat smaller than those for pure TGS crystals, which is confirmed by the increase in the hardness of TGS crystals after doping.

  5. Tuning avalanche criticality: Acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal

    NASA Astrophysics Data System (ADS)

    Niemann, R.; Baró, J.; Heczko, O.; Schultz, L.; Fähler, S.; Vives, E.; Mañosa, L.; Planes, A.

    2012-12-01

    The propagation of a phase front during a thermally induced martensitic transition is discontinuous due to pinning at various defects, an effect which results in acoustic emission. Here we analyze the consequences of an applied compressive stress exemplarily on a Ni50.4Mn27.9Ga21.7 single crystal. Our experiments show that the distribution of the energies of the acoustic emission events follows a power law for more than three decades. This indicates that the transition exhibits avalanche criticality. The exponent characterizing the distribution of energies depends on the applied stress, and decreases from 1.9±0.1 at zero stress to 1.5±0.2 at stress above 3MPa. This decrease could be attributed to the reduced multiplicity of variants possible under uniaxial compression.

  6. An electron microscopy study of dislocation structures in Mg single crystals compressed along [0 0 0 1] at room temperature

    DOE PAGESBeta

    Kumar, K. S.; Chisholm, Matthew F.; Geng, J.; Mishra, R. K.

    2016-01-09

    We compressed Mg single crystals along [0 0 0 1] at room temperature to various stress levels (40, 80, 120, 160 and 320 MPa) and the evolution of dislocation structure with stress increment was investigated by TEM slip is confirmed to be the dominant deformation mode; the predominance of edge dislocation debris lying along the <1 0more » $$\\bar{1}$$ 0> implies that screw dislocations are more mobile than their edge counterpart. The edge dislocation may dissociate into and dislocations, and the latter can extend further on the basal plane and bound a basal-stacking fault.« less

  7. Role of distortion in the hcp vs fcc competition in rare-gas solids

    NASA Astrophysics Data System (ADS)

    Krainyukova, N. V.

    2011-05-01

    As a prototype of an initial or intermediate structure between hcp and fcc lattices we consider a distorted bcc crystal. We calculate the temperature and pressure dependences of the lattice parameters for the heavier rare gas solids Ar, Kr, Xe in a quasiharmonic approximation with Aziz potentials, and confirm earlier predictions that the hcp structure predominates over fcc in the bulk within wide ranges of P and T. The situation is different for confined clusters with up to 105 atoms, where, owing to the specific surface energetics and terminations, structures with five-fold symmetry made up of fcc fragments are dominant. As a next step we consider the free relaxation of differently distorted bcc clusters, and show that two types (monoclinic and orthorhombic) of initial distortion are a driving force for the final hcp vs fcc configurations. Possible energy relationships between the initial and final structures are obtained and analyzed.

  8. Shock wave compression and release of hexagonal-close-packed metal single crystals: Inelastic deformation of c-axis magnesium

    NASA Astrophysics Data System (ADS)

    Winey, J. M.; Renganathan, P.; Gupta, Y. M.

    2015-03-01

    To understand inelastic deformation mechanisms for shocked hexagonal-close-packed (hcp) metals, shock compression and release wave profiles, previously unavailable for hcp single crystals, were measured for c-axis magnesium crystals. The results show that the elastic-inelastic loading response is strongly time-dependent. Measured release wave profiles showed distinct peaked features, which are unusual for inelastic deformation during unloading of shocked metals. Numerical simulations show that pyramidal slip provides a reasonably good description of the inelastic loading response. However, { 10 1 ¯ 2 } twinning is needed to explain the unloading response. The results and analysis presented here provide insight into the relative roles of dislocation slip and deformation twinning in the response of shocked hcp metals.

  9. The FCC and the Electric Church.

    ERIC Educational Resources Information Center

    Abrams, Michael F.

    This newsletter focuses on the relationship between the Federal Communications Commission (FCC) and religious broadcasters. It traces the history of that relationship and discusses some of the pressures put on both. It includes a discussion of a recent avalanche of mail at the FCC supporting the church on the airways. It also summarizes some of…

  10. New FCC Goal in Ownership Regulation.

    ERIC Educational Resources Information Center

    Rappaport, Josh

    By first describing the historical stance of the Federal Communications Commission (FCC) toward ownership of broadcast facilities and then describing the FCC's most recent policy statements, this report compares the differing viewpoints and recognizes that the new value or goal that seems to have been established conflicts with the past emphasis…

  11. High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber.

    PubMed

    Heidt, Alexander M; Rothhardt, Jan; Hartung, Alexander; Bartelt, Hartmut; Rohwer, Erich G; Limpert, Jens; Tünnermann, Andreas

    2011-07-18

    We demonstrate nonlinear pulse compression based on recently introduced highly coherent broadband supercontinuum (SC) generation in all-normal dispersion photonic crystal fiber (ANDi PCF). The special temporal properties of the octave-spanning SC spectra generated with 15 fs, 1.7 nJ pulses from a Ti:Sapphire oscillator in a 1.7 mm fiber piece allow the compression to 5.0 fs high quality pulses by linear chirp compensation with a compact chirped mirror compressor. This is the shortest pulse duration achieved to date from the external recompression of SC pulses generated in PCF. Numerical simulations in excellent agreement with the experimental results are used to discuss the scalability of the concept to the single-cycle regime employing active phase shaping. We show that previously reported limits to few-cycle pulse generation from compression of SC spectra generated in conventional PCF possessing one or more zero dispersion wavelengths do not apply for ANDi PCF. PMID:21934748

  12. Three-Dimensional Crystal Plasticity Finite Element Simulation of Hot Compressive Deformation Behaviors of 7075 Al Alloy

    NASA Astrophysics Data System (ADS)

    Li, Lei-Ting; Lin, Y. C.; Li, Ling; Shen, Lu-Ming; Wen, Dong-Xu

    2015-03-01

    Three-dimensional crystal plasticity finite element (CPFE) method is used to investigate the hot compressive deformation behaviors of 7075 aluminum alloy. Based on the grain morphology and crystallographic texture of 7075 aluminum alloy, the microstructure-based representative volume element (RVE) model was established by the pole figure inversion approach. In order to study the macroscopic stress-strain response and microstructural evolution, the CPFE simulations are performed on the established microstructure-based RVE model. It is found that the simulated stress-strain curves and deformation texture well agree with the measured results of 7075 aluminum alloy. With the increasing deformation degree, the remained initial weak Goss texture component tends to be strong and stable, which may result in the steady flow stress. The grain orientation and grain misorientation have significant effects on the deformation heterogeneity during hot compressive deformation. In the rolling-normal plane, the continuity of strain and misorientation can maintain across the low-angle grain boundaries, while the discontinuity of strain and misorientation is observed at the high-angle grain boundaries. The simulated results demonstrate that the developed CPFE model can well describe the hot compressive deformation behaviors of 7075 aluminum alloy under elevated temperatures.

  13. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    PubMed Central

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.

    2015-01-01

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. PMID:26337754

  14. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    DOE PAGESBeta

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; et al

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueationmore » of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.« less

  15. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2.

    PubMed

    Gleason, A E; Bolme, C A; Lee, H J; Nagler, B; Galtier, E; Milathianaki, D; Hawreliak, J; Kraus, R G; Eggert, J H; Fratanduono, D E; Collins, G W; Sandberg, R; Yang, W; Mao, W L

    2015-01-01

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump-probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. PMID:26337754

  16. Electronic Structure of Crystalline Buckyballs: fcc-C60

    NASA Astrophysics Data System (ADS)

    Jalali-Asadabadi, Saeid; Ghasemikhah, E.; Ouahrani, T.; Nourozi, B.; Bayat-Bayatani, M.; Javanbakht, S.; Aliabad, H. A. Rahnamaye; Ahmad, Iftikhar; Nematollahi, J.; Yazdani-Kachoei, M.

    2016-01-01

    The electronic properties of pristine fcc-C60 are calculated by utilizing a variety of density functional theory (DFT) approaches including the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), PBE-GGA+DFT-D3(vdW), Engel and Vosko GGA (EV-GGA), GGA plus Hubbard U parameter (GGA+U), hybrids Becke-Perdew-Wang hybrid functional (B3PW91), Becke-Lee-Yang-Parr hybrid functional (B3LYP), the PBE exchange-correlation functional (PBE0), and Tran and Blaha regular and non-regular modified Becke and Johnson (TB-mBJ) potential within a DFT frame work using augmented plane waves plus local orbital method. The comparison of the calculated results with the experimental values shows that the non-regular TB-mBJ method reproduces a correct experimental direct band gap of 2.12 eV at X symmetry for this compound. The effectiveness of this theoretical approach in the reproduction of the experimental band gap is due to the proper treatment of the electrons in the interstitial region of the crystal. Our results show that the C60 clusters are weakly interacting with each other in the fcc crystal. This study also reveals that the five-fold degeneracies of the isolated C60 molecule due to its icosahedral symmetry are completely lifted at an X symmetry point by the crystal field.

  17. Recrystallization of plane strain compressed Al-1 wt.% Mn alloy single crystals of typical unstable orientations.

    PubMed

    Bijak, M; Paul, H; Driver, J H

    2010-03-01

    A systematic study of crystal lattice reorientation in early stages of recrystallization has been carried out to correlate the orientations of recrystallization nuclei with the deformation microtexture and with slip systems. Microstructure and texture of Al-1 wt.% Mn single crystals of unstable initial orientations of {112}111, {100}001 and {001}110 have been examined by high-resolution field-emission gun scanning electron microscope local orientation measurements. All single crystals were channel-die deformed at room temperature and then annealed for a short time. It was shown that often observed presence of the 112 directions as rotation axes in the formation of new nuclei orientation directly suggested a close link with the deformation process. PMID:20500369

  18. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electronically via the Internet at http://www.fcc.gov/eas. The code may be obtained at any time prior to... marketing. Labelling of such equipment may include model or type numbers, but shall not include a...

  19. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electronically via the Internet at http://www.fcc.gov/eas. The code may be obtained at any time prior to... marketing. Labelling of such equipment may include model or type numbers, but shall not include a...

  20. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electronically via the Internet at http://www.fcc.gov/eas. The code may be obtained at any time prior to... marketing. Labelling of such equipment may include model or type numbers, but shall not include a...

  1. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... representative may receive a grantee code electronically via the Internet at https://gullfoss2.fcc.gov/prod/oet... which has not been granted equipment authorization where such grant is required prior to...

  2. 47 CFR 2.926 - FCC identifier.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... representative may receive a grantee code electronically via the Internet at https://gullfoss2.fcc.gov/prod/oet... which has not been granted equipment authorization where such grant is required prior to...

  3. Apparatus and method for determining microscale interactions based on compressive sensors such as crystal structures

    SciTech Connect

    McAdams, Harley; AlQuraishi, Mohammed

    2015-04-21

    Techniques for determining values for a metric of microscale interactions include determining a mesoscale metric for a plurality of mesoscale interaction types, wherein a value of the mesoscale metric for each mesoscale interaction type is based on a corresponding function of values of the microscale metric for the plurality of the microscale interaction types. A plurality of observations that indicate the values of the mesoscale metric are determined for the plurality of mesoscale interaction types. Values of the microscale metric are determined for the plurality of microscale interaction types based on the plurality of observations and the corresponding functions and compressed sensing.

  4. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  5. Economically recover olefins from FCC offgases

    SciTech Connect

    Netzer, D.

    1997-04-01

    The concept of ethylene and propylene recovery from fluid catalytic cracking (FCC) offgases is not new; however, its application has been infrequent. For typical catalytic cracking of atmospheric and vacuum gas oils, ethylene yields range from 2.0 to 3.5 lb/bbl of FCC feed. The ethylene typically amounts to 8 to 18 vol% of FCC offgas and is normally routed to the fuel gas system. Variations in ethylene concentrations are affected by the FCC feed composition and cracking severity. This ethylene yield is anywhere from 0.7% to 1.1% of the FCC feed, as opposed to 26% to 36% for naphtha or gas oil cracking in conventional olefin plants. Due to high FCC unit feedrates (typically 25,000 to 85,000 bpsd for most North American refineries) even with a low ethylene yield, the olefins production can be significant. Here, two approaches to olefins recovery are addressed. In the first, ethylene is recovered as a dilute gas at a concentration of about 15 vol% and serves as raw material for ethylbenzene and, subsequently, styrene. In the second approach, ethylene is recovered as a pure polymer-grade liquid. Propylene recovery is identical for both approaches. The concept for producing polymer-grade liquid ethylene is described in detail in terms of process technology, cost estimates and economic parameters.

  6. The Strength of Single Crystal Copper under Uniaxial Shock Compression at Mbar pressures

    SciTech Connect

    Murphy, W; Higginbotham, A; Kimminau, G; Barbrel, B; Bringa, E; Hawreliak, J; Koenig, M; McBarron, W; Meyers, M; Nagler, B; Ozaki, N; Park, N; Remington, B; Rothman, S; Vinko, S M; Whitcher, T; Wark, J

    2009-05-21

    In situ x-ray diffraction has been used to measure the shear strain (and thus strength) of single crystal copper shocked to Mbar pressures along the [001] and [111] axes. These direct shear strain measurements indicate shear strengths at these ultra-high strain rates (of order 10{sup 9} s{sup -1}) of a few GPa, which are both broadly in agreement with the extrapolation of lower strain-rate data and with non-equilibrium molecular dynamics simulations.

  7. Multilayered polycrystallization in single-crystal YSZ by laser-shock compression

    NASA Astrophysics Data System (ADS)

    Nishimura, Yasuhiko; Kitagawa, Yoneyoshi; Mori, Yoshitaka; Hioki, Tatsumi; Azuma, Hirozumi; Motohiro, Tomoyoshi; Komeda, Osamu; Ishii, Katsuhiro; Hanayama, Ryohei; Sekine, Takashi; Sunahara, Atsushi; Kajino, Tsutomu; Nishi, Teppei; Kondo, Takuya; Fujine, Manabu; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Kan, Hirofumi; Miura, Eisuke; Sentoku, Yasuhiko

    2015-08-01

    A single shot of an ultra-intense laser with 0.8 J of energy and a pulse width of 110 fs (peak intensity of 1.15× {{10}17} W cm-2) is divided into two beams and the two beams counter-irradiated onto a 0.5 mm-thick single crystal yttria-stabilized zirconia (YSZ), changing the YSZ into a multilayered polycrystalline state. The laser-driven shock wave of the intensity ˜ 7.6× {{10}12} Pa penetrated the crystal as deep as 96 μ m, causing formation of a four-layered structure (the first layer from the surface to 12 μ m, the second from 12 to 28 μ m, the third from 28 to 96 μ m, and the fourth from 96 to 130 μ m, respectively). The grain size of the first layer was 1 μ m, while that of the second layer was broken into a few tens nanometers. The grain size of the third layer was a few hundred nanometers to a few ten micrometers. The area deeper than 96 μ m remained as a single crystal. The plasma heat wave might remelt the first layer, resulting in the grain size becoming larger than that of the second layer. The surface polycrystallization seems to maintain the residual stresses frozen in the film thickness direction. Our experimentally observed spatial profile of the grain size can be explained by this shock and heat waves model.

  8. On-chip frame memory reduction using a high-compression-ratio codec in the overdrives of liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Min, Kyeong-Yuk; Chong, Jong-Wha

    2010-11-01

    Overdrive is commonly used to reduce the liquid-crystal response time and motion blur in liquid-crystal displays (LCDs). However, overdrive requires a large frame memory in order to store the previous frame for reference. In this paper, a high-compression-ratio codec is presented to compress the image data stored in the on-chip frame memory so that only 1 Mbit of on-chip memory is required in the LCD overdrives of mobile devices. The proposed algorithm further compresses the color bitmaps and representative values (RVs) resulting from the block truncation coding (BTC). The color bitmaps are represented by a luminance bitmap, which is further reduced and reconstructed using median filter interpolation in the decoder, while the RVs are compressed using adaptive quantization coding (AQC). Interpolation and AQC can provide three-level compression, which leads to 16 combinations. Using a rate-distortion analysis, we select the three optimal schemes to compress the image data for video graphics array (VGA), wide-VGA LCD, and standard-definitionTV applications. Our simulation results demonstrate that the proposed schemes outperform interpolation BTC both in PSNR (by 1.479 to 2.205 dB) and in subjective visual quality.

  9. Phase stability, ordering, and magnetism of single-phase fcc Fe-Au alloys

    NASA Astrophysics Data System (ADS)

    An, Joonhee M.; Barabash, Sergey V.; Belashchenko, Kirill D.

    2013-03-01

    Motivated by experimental evidence of L10 ordering in single-phase fcc Fe-Au nanoparticles, we study the structural thermodynamics of Fe-Au alloys. First, separate cluster expansions for fcc and bcc lattices are constructed for fully optimized ferromagnetic structures using density functional theory calculations. The optimized structures were assigned to fcc or bcc lattice by a structural filter. Although the lowest formation enthalpy at 50% Au is reached in the bcc lattice, the fcc lattice is preferred for the random alloy. Dynamical stability of specific orderings strongly depends on the magnetic configuration. To analyze the ordering tendencies of the fcc alloy, we restrict uniform lattice relaxations and separate the contributions of chemical interaction and local relaxations. By using the effective tetrahedron model (Ruban et al., Phys. Rev. B 67, 214302 (2003)) and explicit calculations for ordered and special quasi-random structures, we find that the local relaxation energies depend weakly on the magnetization. Although the L10 ordering is the ground state at 50% Au on the ideal lattice, local relaxations make it unfavorable compared to the random alloy. Moderate compression due to the size effect tends to slightly stabilize the L10 ordering.

  10. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGESBeta

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; McDowell, David L.

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide

  11. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    SciTech Connect

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; McDowell, David L.

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes the rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight

  12. Modelling off Hugoniot Loading Using Ramp Compression in Single Crystal Copper

    SciTech Connect

    Hawreliak, J; Remington, B A; Lorenzana, H; Bringa, E; Wark, J

    2010-11-29

    The application of a ramp load to a sample is a method by which the thermodynamic variables of the high pressure state can be controlled. The faster the loading rate, the higher the entropy and higher the temperature. This paper describes moleculer dynamics (MD) simulations with 25 million atoms which investigate ramp loading of single crystal copper. The simulations followed the propagation of a 300ps ramp load to 3Mbar along the [100] direction copper. The simulations were long enough to allow the wave front to steepen into a shock, at which point the simulated copper sample shock melted.

  13. Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power.

    PubMed

    Heckl, O H; Saraceno, C J; Baer, C R E; Südmeyer, T; Wang, Y Y; Cheng, Y; Benabid, F; Keller, U

    2011-09-26

    In this study we demonstrate the suitability of Hollow-Core Photonic Crystal Fibers (HC-PCF) for multiwatt average power pulse compression. We spectrally broadened picosecond pulses from a SESAM mode-locked thin disk laser in a xenon gas filled Kagome-type HC-PCF and compressed these pulses to below 250 fs with a hypocycloid-core fiber and 470 fs with a single cell core defect fiber. The compressed average output power of 7.2 W and 10.2 W at a pulse repetition rate of approximately 10 MHz corresponds to pulse energies of 0.7 µJ and 1 µJ and to peak powers of 1.6 MW and 1.7 MW, respectively. Further optimization of the fiber parameters should enable pulse compression to below 50 fs duration at substantially higher pulse energies. PMID:21996856

  14. Superconductivity in compressed sulfur hydride: Dependences on pressure, composition, and crystal structure from first principles

    NASA Astrophysics Data System (ADS)

    Akashi, Ryosuke

    The recent discovery of high-temperature superconductivity in sulfur hydride under extreme pressure has broken the long-standing record of superconducting transition temperature (Tc) in the Hg-cuprate. According to the isotope effect measurement and theoretical calculations, the superconducting transition is mainly ascribed to the conventional phonon-mediated pairing interaction. It is, however, not enough for understanding the high-Tc superconductivity in the sulfur hydride. To elucidate various possible effects on Tc with accuracy, we have analyzed Tc with first-principles methods without any empirical parameters. First, for various pressures and theoretically proposed crystal structures, we calculated Tc with the density functional theory for superconductors (SCDFT) to examine which structure(s) can explain experimentally measured Tc data [Akashi et al., PRB 91, 224513 (2015)]. We next solved the Eliashberg equations without introducing the renormalized Coulomb parameter mu*, which is the Green-function-based counterpart of the SCDFT, and evaluated the effects of rapidly varying electron density of states, atomic zero-point motion, and phonon anharmonic corrections on Tc [Sano et al., in preparation]. In the talk, we review these results and discuss the dominant factors for the Tc and their relation to the experimental results. We also report some crystal structures that we recently found with first-principles calculations, which could have a key role for the pressure-induced transformation to the high-Tc phase.

  15. CuAl{sub 2} revisited: Composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy

    SciTech Connect

    Grin, Yuri . E-mail: grin@cpfs.mpg.de; Wagner, Frank R.; Armbruester, Marc; Kohout, Miroslav; Leithe-Jasper, Andreas; Schwarz, Ulrich; Wedig, Ulrich; Georg von Schnering, Hans

    2006-06-15

    The structure of CuAl{sub 2} is usually described as a framework of base condensed tetragonal antiprisms [CuAl{sub 8/4}]. The appropriate symmetry governed periodic nodal surface (PNS) divides the space of the structure into two labyrinths. All atoms are located in one labyrinth, whereas the second labyrinth seems to be 'empty'. The bonding of the CuAl{sub 2} structure was analyzed by the electron localization function (ELF), crystal orbital Hamiltonian population (COHP) analysis and Raman spectroscopy. From the ELF representation it is seen, that the 'empty' labyrinth is in fact the place of important covalent interactions. ELF, COHP in combination with high-pressure X-ray diffraction and Raman spectroscopy show that the CuAl{sub 2} structure is described best as a network built of interpenetrating graphite-like nets of three-bonded aluminum atoms with the copper atoms inside the tetragonal-antiprismatic cavities. - Graphical abstract: Atomic interactions in the crystal structure of the intermetallic compound CuAl{sub 2}: Three-bonded aluminum atoms form interpenetrating graphite-like nets. The copper atoms are located in the channels of aluminum network by means of three-center bonds. The bonding model is in agreement with the result of polarized Raman spectroscopy and high-pressure X-ray powder diffraction.

  16. Dynamic range compression/expansion of light beams by photorefractive crystals

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Hua-Kuang (Inventor)

    1988-01-01

    An apparatus is provided which greatly reduces the intensity of bright portions of an image while only moderately reducing the brightness of dimmer portions of the image, to thereby compress the range of light intensities to facilitate detection of the image. The apparatus includes a light detector device formed by a chip of photorefractive material. A 2-D array of light beams from an object to be detected passes through a beam splitter to form two arrays of light beams. The two arrays are directed at different angles against a surface of the chip of photorefractive material, the two arrays of light beams forming coincident images on the surface. One of the 2-D arrays of beams emerging from an opposite surface of the chip has a lower range of intensities, to facilitate detection of the object despite very bright spots in its image. The other array of light beams emerging from the chip has a greater range of intensities than the unprocessed image of the object.

  17. Molecular dynamics simulation of shock compression of metals: Iron and iron-sulfur solutions

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.; Ostrovskii, O. I.

    2011-06-01

    The embedded atom model potential suggested earlier was improved to correctly describe iron at high pressures and temperatures. Correction was introduced using the shock compression data. The properties of body- and face-centered cubic (BCC and FCC) lattices and liquid iron at compression degrees up to 50% of the normal volume and temperatures up to 10000 K were calculated. At degrees of compression 0.7-0.6 and 0 K, the FCC lattice is thermodynamically stable. The temperature of fusion increases to ≈9700 K at compression to 50% of initial volume (pressure 585 GPa). The pressure of pure iron at 5000 K and density 12.5 g/cm3 is ≈250 GPa and is substantially lower than in the center of the Earth according to the geophysical data (360 GPa). An embedded atom model potential for a 10 at % solution of sulfur in iron which allows the properties of the melt in the center of the Earth to be described correctly is suggested; the viscosity of the melt under these conditions is not high (0.0156 Pa s); these results are close to those obtained in ab initio calculations. The possibility of partial Earth core crystallization is shown.

  18. Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques

    NASA Astrophysics Data System (ADS)

    Kang, Zhe; Yuan, Jin-Hui; Li, Sha; Xie, Song-Lin; Yan, Bin-Bin; Sang, Xin-Zhu; Yu, Chong-Xiu

    2013-11-01

    In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/km is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.

  19. Catalytic reforming of heart cut fcc naphthas

    SciTech Connect

    Gerritsen, L.A.

    1985-03-01

    The anticipated lead phasedown in the USA and the growing demand for unleaded gasoline will require a higher gasoline pool octane number. One of the possibilities to achieve this increase of pool octane will be catalytic reforming of FCC naphtha. In this paper we evaluate the effects of FCC naphtha reforming on the reformer operation and gasoline pool volume for various lead phasedown scenarios. High-stability reforming catalysts, like TPR-8/CK-522 TRILOBE catalyst, will be required to maintain acceptable cycle lengths at the more severe reformer operating conditions. The properties and octane distribution of FCC naphtha are discussed, as well as its hydrotreating with high-active NiMo catalysts.

  20. Elastic-plastic and phase transition of zinc oxide single crystal under shock compression

    SciTech Connect

    Liu, Xun; Mashimo, Tsutomu Li, Wei; Zhou, Xianming; Sekine, Toshimori

    2015-03-07

    The Hugoniot data for zinc oxide (ZnO) single crystals were measured up to 80 GPa along both the 〈112{sup ¯}0〉 (a-axis) and 〈0001〉 (c-axis) directions using a velocity interferometer system for any reflector and inclined-mirror method combined with a powder gun and two-stage light gas gun. The Hugoniot-elastic limits of ZnO were determined to be 10.5 and 11.5 GPa along the a- and c-axes, respectively. The wurtzite (B4) to rocksalt (B1) phase transition pressures along the a- and c-axes are 12.3 and 14.4 GPa, respectively. Shock velocity (U{sub s}) versus particle velocity (U{sub p}) relation of the final phase is given by the following relationship: U{sub s} (km/s) = 2.76 + 1.51U{sub p} (km/s). Based on the Debye-Grüneisen model and Birch-Murnaghan equation of state (EOS), we discuss the EOS of the B1 phase ZnO. The bulk modulus (K{sub 0}) and its pressure derivative (K{sub 0}′) are estimated to be K{sub 0} = 174 GPa and K{sub 0}′ = 3.9, respectively.

  1. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression.

    PubMed

    Wang, Y Y; Peng, Xiang; Alharbi, M; Dutin, C Fourcade; Bradley, T D; Gérôme, F; Mielke, Michael; Booth, Timothy; Benabid, F

    2012-08-01

    We report on the recent design and fabrication of kagome-type hollow-core photonic crystal fibers for the purpose of high-power ultrashort pulse transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all kagome fibers) of 40 dB/km over a broadband transmission centered at 1500 nm. We show that the large core size, low attenuation, broadband transmission, single-mode guidance, and low dispersion make it an ideal host for high-power laser beam transportation. By filling the fiber with helium gas, a 74 μJ, 850 fs, and 40 kHz repetition rate ultrashort pulse at 1550 nm has been faithfully delivered at the fiber output with little propagation pulse distortion. Compression of a 105 μJ laser pulse from 850 fs down to 300 fs has been achieved by operating the fiber in ambient air. PMID:22859102

  2. A Microstructure-Based Model to Characterize Micromechanical Parameters Controlling Compressive and Tensile Failure in Crystallized Rock

    NASA Astrophysics Data System (ADS)

    Kazerani, T.; Zhao, J.

    2014-03-01

    A discrete element model is proposed to examine rock strength and failure. The model is implemented by UDEC which is developed for this purpose. The material is represented as a collection of irregular-sized deformable particles interacting at their cohesive boundaries. The interface between two adjacent particles is viewed as a flexible contact whose stress-displacement law is assumed to control the material fracture and fragmentation process. To reproduce rock anisotropy, an innovative orthotropic cohesive law is developed for contact which allows the interfacial shear and tensile behaviours to be different from each other. The model is applied to a crystallized igneous rock and the individual and interactional effects of the microstructural parameters on the material compressive and tensile failure response are examined. A new methodical calibration process is also established. It is shown that the model successfully reproduces the rock mechanical behaviour quantitatively and qualitatively. Ultimately, the model is used to understand how and under what circumstances micro-tensile and micro-shear cracking mechanisms control the material failure at different loading paths.

  3. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    SciTech Connect

    Winey, J. M.; Gupta, Y. M.

    2014-07-21

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101{sup ¯}2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals

  4. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    NASA Astrophysics Data System (ADS)

    Winey, J. M.; Gupta, Y. M.

    2014-07-01

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along { 10 1 ¯ 2 } planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More

  5. Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: Diffraction-induced splitting, selective compression, and focusing of pulses

    SciTech Connect

    Skorynin, A. A. Bushuev, V. A.; Mantsyzov, B. I.

    2012-07-15

    A theory for the dynamical Bragg diffraction of a spatially confined laser pulse in a linear photonic crystal with a significant modulation of the refractive index in the Laue geometry has been developed. The diffraction-induced splitting of a spatially confined pulse into the Borrmann and anti-Borrmann pulses localized in different regions of the photonic crystal and characterized by different dispersion laws is predicted. The selective compression or focusing of one of these pulses with the simultaneous broadening or defocusing of the other pulse is shown to be possible.

  6. Deeply etherify FCC light cracked Naphtha (LCN)

    SciTech Connect

    Trotta, R.

    1996-03-01

    Drastic changes in refinery operations and economics resulting from implementation of environmentally driven U.S. legislation such as the Complex Model in 1998, as well as possible changes beyond that will necessitate several changes. An effective method of adjusting to these process challenges is by deep etherification of the entire FCC light cracked naphtha (LCN) stream, which is the FCC product fraction containing C{sub 5}, C{sub 6} and C{sub 7} hydrocarbons having a typical 1 atm boiling range of 95{degrees}F to 212{degrees}F. Deep etherification technology (DET) can solve five or six problems at once. All U.S. refineries which have an FCC unit have an LCN stream (or possibly a separate LCN stream). Snaprogetti`s LCN DET technology is essentially an upgrade of an otherwise already finished product-which in today`s processing and operations environment, would be sent directly to the gasoline pool. The technology is simply an add-on and does not substantially change refinery operations. As the LCN DET does not require changes in the FCC and catalytic reformer, DET does not cause disturbances to the refinery`s operation.

  7. Crystal structure of hydrous wadsleyite with 2.8% H[subscript 2]O and compressibility to 60 GPa

    SciTech Connect

    Ye, Yu; Amyth, Joseph R.; Hushur, Anwar; Manghnani, Murli H.; lonappan, Dayana; Dera, Przemyslaw; Frost, Daniel J.

    2010-11-18

    Hydrous wadsleyite ({beta}-Mg{sub 2}SiO{sub 4}) with 2.8 wt% water content has been synthesized at 15 GPa and 1250 C in a multi-anvil press. The unit-cell parameters are: a = 5.6686(8), b = 11.569(1), c = 8.2449(9) {angstrom}, {beta} = 90.14(1){sup o}, and V = 540.7(1) {angstrom}{sup 3}, and the space group is I2/m. The structure was refined in space groups Imma and I2/m. The room-pressure structure differs from that of anhydrous wadsleyite principally in the increased cation distances around O1, the non-silicate oxygen. The compression of a single crystal of this wadsleyite was measured up to 61.3(7) GPa at room temperature in a diamond anvil cell with neon as pressure medium by X-ray diffraction at Sector 13 at the Advanced Photon Source, Argonne National Laboratory. The experimental pressure range was far beyond the wadsleyite-ringwoodite phase-transition pressure at 525 km depth (17.5 GPa), while a third-order Birch-Murnaghan equation of state (EoS) [V{sub 0} = 542.7(8) {angstrom}{sup 3}, K{sub T0} = 137(5) GPa, K{prime} = 4.6(3)] still fits the data well. In comparison, the second-order fit gives V{sub 0} = 542.7(8) {angstrom}{sup 3}, K{sub T} = 147(2) GPa. The relation between isothermal bulk modulus of hydrous wadsleyite K{sub T0} and water content C{sub H{sub 2}O} is: K{sub T0} = 171(1)-12(1) C{sub H{sub 2}O} (up to 2.8 wt% water). The axial-compressibility {beta}{sub c} is larger than both {beta}{sub a} and {beta}{sub b}, consistent with previous studies and analogous to the largest coefficient of thermal expansion along the c-axis.

  8. Inside the FCC: A Guide for Information Seekers.

    ERIC Educational Resources Information Center

    Le Duc, Don R., Ed.; Krasnow, Erwin G., Ed.

    1975-01-01

    To aid the public in obtaining information and documents from the files of the Federal Communications Commission (FCC) this guide, written with assistance from the FCC staff, explains which office to approach and in what form to make the request. Ways to obtain informaion by visiting the FCC are explained along with methods for obtaining…

  9. Formation of fivefold axes in the FCC-metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Myasnichenko, Vladimir S.; Starostenkov, Mikhail D.

    2012-11-01

    Formation of atomistic structures of metallic Cu, Au, Ag clusters and bimetallic Cu-Au clusters was studied with the help of molecular dynamics using the many-body tight-binding interatomic potential. The simulation of the crystallization process of clusters with the number of atoms ranging from 300 to 1092 was carried out. The most stable configurations of atoms in the system, corresponding to the minimum of potential energy, was found during super-fast cooling from 1000 K. Atoms corresponding to fcc, hcp, and Ih phases were identified by the method of common neighbor analysis. Incomplete icosahedral core can be discovered at the intersection of one of the Ih axes with the surface of monometallic cluster. The decahedron-shaped structure of bimetallic Cu-Au cluster with seven completed icosahedral cores was obtained. The principles of the construction of small bimetallic clusters with icosahedral symmetry and increased fractal dimensionality were offered.

  10. 78 FR 69415 - Proposed Changes to FCC Form 499-A, FCC Form 499-Q, and Accompanying Instructions.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ..., in FR Doc. 2013-26482, on page 66358 make the following corrections: 1. On page 66358, in the... COMMISSION Proposed Changes to FCC Form 499-A, FCC Form 499-Q, and Accompanying Instructions. AGENCY: Federal... quarterly Telecommunications Reporting Worksheet, FCC Form 499-Q (Form 499-Q) and accompanying...

  11. Regeneration of Hydrotreating and FCC Catalysts

    SciTech Connect

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare-earth exchanged

  12. Solidification and fcc- to metastable hcp- phase transition in krypton under modulating dynamic pressures

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Yoo, Choong-Shik; Kim, Minseob; Liermann, Hanns-Peter; Cynn, Hyunchae; Jenei, Zsolt; Evans, William

    2014-03-01

    We describe high-pressure kinetic studies of the solidification, melting and fcc-hcp transitions of Krypton under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved x-ray diffraction. The time-resolved diffraction patterns and dynamic pressure responses show compression-rate dependencies associated with both the decay and growth time constants of the liquid-solid and solid-liquid transitions. According to the Avrami equation, both the solidified and melting processes are spontaneous nucleation and a rod-like (1-D) growth. Furthermore, under dynamic loading conditions, Kr-hcp forms from fcc close to the melting line. The nucleation time of fcc and hcp are very fast, with little dependence of compression rates or shorter than the time resolutions. The threshold pressure for the formation of Kr-hcp is ~ 0.8 GPa at the dynamic loadings of 0.004-13 GPa/s. This work was carried out at DESY. This work was performed under the auspices of DOE by LLNL under contracts(W-7405-Eng-48 and DE-AC52-07NA27344) and funded by the LDRD(11-ERD-046). The work at WSU was funded by NSF-DMR(1203834), DTRA(HDTRA1-12-01-0020).

  13. FCC process options for reformulated gasoline

    SciTech Connect

    Chapin, L.E.; Letzsch, W.S.; Martin, T.W.

    1995-12-31

    In addition to certain process modifications, the main focus for RFG in the United States has been the addition of oxygenates, primarily MTBE, and to a lesser extent TAME and ETBE. As FCC-derived isobutylene is the primary feedstock source for MTBE, much interest has been shown in increasing its yield. At the same time, increasing the C3-C5 olefin yield is highly desirable as these olefins can be further processed into alkylate and/or oxygenates for gasoline blending. The incremental volumetric yield associated with these products will help offset the RFG pool volumetric loss due to distillation, benzene, aromatics and sulfur specifications. The paper discusses catalyst and process choices for the future. Three catalytic cracking technologies are described which can be applied to existing FCC units. These are DCC (deep catalytic cracking), MGG (more gasoline and gas), and MIO (maximum iso olefin).

  14. Computer simulation of FCC riser reactors.

    SciTech Connect

    Chang, S. L.; Golchert, B.; Lottes, S. A.; Petrick, M.; Zhou, C. Q.

    1999-04-20

    A three-dimensional computational fluid dynamics (CFD) code, ICRKFLO, was developed to simulate the multiphase reacting flow system in a fluid catalytic cracking (FCC) riser reactor. The code solve flow properties based on fundamental conservation laws of mass, momentum, and energy for gas, liquid, and solid phases. Useful phenomenological models were developed to represent the controlling FCC processes, including droplet dispersion and evaporation, particle-solid interactions, and interfacial heat transfer between gas, droplets, and particles. Techniques were also developed to facilitate numerical calculations. These techniques include a hybrid flow-kinetic treatment to include detailed kinetic calculations, a time-integral approach to overcome numerical stiffness problems of chemical reactions, and a sectional coupling and blocked-cell technique for handling complex geometry. The copyrighted ICRKFLO software has been validated with experimental data from pilot- and commercial-scale FCC units. The code can be used to evaluate the impacts of design and operating conditions on the production of gasoline and other oil products.

  15. Two-mode Ginzburg-Landau theory of crystalline anisotropy for fcc-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-An; Lin, Shang-Chun; Karma, Alain

    2016-02-01

    We develop a Ginzburg-Landau (GL) theory for fcc crystal-melt systems at equilibrium by employing two sets of order parameters that correspond to amplitudes of density waves of principal reciprocal lattice vectors and amplitudes of density waves of a second set of reciprocal lattice vectors. The choice of the second set of reciprocal lattice vectors is constrained by the condition that this set must form closed triangles with the principal reciprocal lattice vectors in reciprocal space to make the fcc-liquid transition first order. The capillary anisotropy of fcc-liquid interfaces is investigated by GL theory with amplitudes of <111 > and <200 > density waves. Furthermore, we explore the dependence of the anisotropy of the excess free energy of the solid-liquid interface on density waves of higher-order reciprocal lattice vectors such as <311 > by extending the two-mode GL theory with an additional mode. The anisotropy calculated using GL theory with input parameters from molecular dynamics (MD) simulations for fcc Ni is compared to that measured in MD simulations.

  16. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    SciTech Connect

    Aman, Amjad; Chen, Yan; Lugovy, Mykola; Orlovskaya, Nina; Reece, Michael John; Ma, Dong; Stoica, Alexandru Dan; An, Ke

    2014-01-01

    The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresis loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.

  17. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    NASA Astrophysics Data System (ADS)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  18. Computational study of dislocation based mechanisms in FCC materials

    NASA Astrophysics Data System (ADS)

    Yellakara, Ranga Nikhil

    Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 mum under uniaxial tension was simulated using an improvised model by integrating dislocation pile-up mechanism at grain boundaries has been performed. This study showed that for a same initial dislocation density, the Hall--Petch relationship holds well at small grain sizes (0.5--2 mum), beyond which the yield strength remains constant as the grain size increases. Various dislocation-particle interaction mechanisms have been introduced and investigations were made on their effect on the uniaxial tensile properties. These studies suggested that increase in particle volume fraction and decrease in particle

  19. Structural and elastic properties of fcc/fcc metallic multilayers: A molecular-dynamics study

    NASA Astrophysics Data System (ADS)

    Tȩcza, Grzegorz W.

    1992-12-01

    Interplanar and intraplanar spacings as well as the elastic constants of fcc/fcc metallic multilayers stacked along [001] were determined via variable-cell molecular-dynamics simulation in (HtN) and (EhN) ensembles at room temperature. Qualitative differences in the structural and elastic properties of the multilayers, simulated using various 12-6 Lennard-Jones potentials, were observed. The anomalous behavior of the elastic constants and the biaxial modulus was linked to the modulation wavelength dependence of various structural parameters. The importance of the fluctuation contributions for the calculation of the full elastic constants is demonstrated.

  20. Variation in electromagnetic radiation during plastic deformation under tension and compression of metals

    NASA Astrophysics Data System (ADS)

    Singh, Ranjana; Lal, S. P.; Misra, Ashok

    2014-06-01

    This paper presents some significant variations in the intermittent electromagnetic radiation (EMR) during plastic deformation under tension and compression of some metals with selected crystal structure, viz. zinc, hexagonal closed packed (hcp), copper, face-centred cubic (fcc: stacking fault energy 0.08 J/m2), aluminium (fcc: stacking fault energy 0.2 J/m2) and 0.18 % carbon steel, body-centred cubic (bcc). The intermittent EMR signals starting near yielding are either oscillatory or exponential under both modes of deformation except a very few intermediate signals, random in nature, in zinc under compression. The number and amplitude of EMR signals exhibit marked variations under tension and compression. The smooth correlation between elastic strain energy release rate and average EMR energy release rate suggests a novel technique to determine the fracture toughness of metals. The first EMR emission amplitude and EMR energy release rate occurring near the yield increase, but maximum EMR energy burst frequency decreases almost linearly with increase in Debye temperature of the metals under tension while all EMR parameters decrease nonlinearly under compression. These results can be developed into a new technique to evaluate dislocation velocity. The EMR amplitude and energy release rate of the first EMR emission vary parabolically showing a maxima with increase in electronic heat constant of the metals under tension while they first sharply decrease and then become asymptotic during compression. However, the variation in EMR maximum energy burst frequency is apparently similar under both modes of deformation. These results strongly suggest that the mechanism of EMR emission during plastic deformation of metals involves not only the interaction of conduction electrons with the lattice periodic potential as presented in the previous theoretical models but also the interaction of conduction electrons with phonons. However, during crack propagation and fracture

  1. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. 3: Tension-compression anisotropy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gaab, T. P.; Gayda, J.; Hemker, K. J.

    1985-01-01

    Single crystal superalloy specimens with various crystallographic directions along their axes were tested in compression at room temperature, 650, 760, 870, and 980 deg C. These results are compared with the tensile behavior studied previously. The alloy, Rene N4, was developed for gas turbine engine blades and has the nominal composition 3.7 Al, 4.2 Ti, 4 Ta, 0.5 Nb, 6 W, 1.5 Mo 9 Cr. 7.5 Co, balance Ni, in weight percent. Slip trace analysis showed that primary cube slip occurred even at room temperature for the 111 specimens. With increasing test temperature more orientations exhibited primary cube slip, until at 870 deg C only the 100 and 011 specimens exhibited normal octahedral slip. The yield strength for octahedral slip was numerically analysed using a model proposed by Lall, Chin, and Pope to explain deviations from Schmid's Law in the yielding behavior of a single phase Gamma prime alloy, Ni3(Al, Nb). The Schmid's Law deviations in Rene N4 were found to be largely due to a tension-compression anisotropy. A second effect, which increases trength for orientations away from 001, was found to be small in Rene N4. Analysis of recently published data on the single crystal superalloy PWA 1480 yielded the same result.

  2. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    NASA Astrophysics Data System (ADS)

    Aman, Amjad; Chen, Yan; Lugovy, Mykola; Orlovskaya, Nina; Reece, Michael J.; Ma, Dong; Stoica, Alexandru D.; An, Ke

    2014-07-01

    The dynamics of texture formation, changes in crystal structure, and stress accommodation mechanisms have been studied in perovskite-type R3¯c rhombohedral LaCoO3 during uniaxial compression using in-situ neutron diffraction. The in-situ neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in the LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However, in the second loading/unloading cycle, the hysteresis loop was closed and no further irrecoverable strain appeared after deformation. The significant texture formation is responsible for an increase in the Young's modulus of LaCoO3 at high compressive stresses, ranging from 76 GPa at the very beginning of the loading to 194 GPa at 900 MPa at the beginning of the unloading curve.

  3. In-situ neutron diffraction of LaCoO₃ perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    SciTech Connect

    Aman, Amjad; Orlovskaya, Nina; Chen, Yan; Lugovy, Mykola; Reece, Michael J.; Ma, Dong; Stoica, Alexandru D.; An, Ke

    2014-07-07

    The dynamics of texture formation, changes in crystal structure, and stress accommodation mechanisms have been studied in perovskite-type R3⁻c rhombohedral LaCoO₃ during uniaxial compression using in-situ neutron diffraction. The in-situ neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in the LaCoO₃ perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However, in the second loading/unloading cycle, the hysteresis loop was closed and no further irrecoverable strain appeared after deformation. The significant texture formation is responsible for an increase in the Young's modulus of LaCoO₃ at high compressive stresses, ranging from 76 GPa at the very beginning of the loading to 194 GPa at 900 MPa at the beginning of the unloading curve.

  4. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  5. 47 CFR 95.117 - Where to contact the FCC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Where to contact the FCC. 95.117 Section 95.117 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.117 Where to contact the FCC. Additional GMRS information may be obtained from any...

  6. 47 CFR 76.1714 - FCC rules and regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FCC rules and regulations. 76.1714 Section 76.1714 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC rules and regulations. (a) The operator of a...

  7. 47 CFR 76.1714 - FCC rules and regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FCC rules and regulations. 76.1714 Section 76.1714 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC rules and regulations. (a) The operator of a...

  8. 47 CFR 76.1714 - FCC rules and regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FCC rules and regulations. 76.1714 Section 76.1714 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC rules and regulations. (a) The operator of a...

  9. 47 CFR 76.1714 - FCC rules and regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FCC rules and regulations. 76.1714 Section 76.1714 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC rules and regulations. (a) The operator of a...

  10. 47 CFR 76.1714 - FCC rules and regulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FCC rules and regulations. 76.1714 Section 76.1714 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC rules and regulations. (a) The operator of a...

  11. Guide to Understanding Broadcast License Applications and Other FCC Forms.

    ERIC Educational Resources Information Center

    Jennings, Ralph M.

    In order to encourage more citizen action and public awareness in broadcasting, this guide enumerates the step-by-step procedures that citizens must take to deal with the Federal Communications Commission (FCC). The guide exhaustively reviews the policy areas where current FCC television and radio licenses are vulnerable to public scrutiny. It…

  12. Ab initio continuum model for the influence of local stress on cross-slip of screw dislocations in fcc metals

    NASA Astrophysics Data System (ADS)

    Ramírez, Benjamín R.; Ghoniem, Nasr; Po, Giacomo

    2012-09-01

    We develop a model of cross-slip in face-centered cubic (fcc) metals based on an extension of the Peierls-Nabarro representation of the dislocation core. The dissociated core is described by a group of parametric fractional Volterra dislocations, subject to their mutual elastic interaction and a lattice-restoring force. The elastic interaction between them is computed from a nonsingular expression, while the lattice force is derived from the γ surface obtained directly from ab initio calculations. Using a network-based formulation of dislocation dynamics, the dislocation core structure is not restricted to be planar, and the activation energy is determined for a path where the core has three-dimensional equilibrium configurations. We show that the activation energy for cross-slip in Cu is 1.9eV when the core is represented by only two Shockley partials, while this value converges to 1.43eV when the core is distributed over a bundle of 20 Volterra partial fractional dislocations. The results of the model compare favorably with the experimental value of 1.15±0.37eV [J. Bonneville and B. Escaig, Acta Metall.AMETAR0001-616010.1016/0001-6160(79)90170-6 27, 1477 (1979)]. We also show that the cross-slip activation energy decreases significantly when the core is in a particular local stress field. Results are given for a representative uniform “Escaig” stress and for the nonuniform stress field at the head of a dislocation pileup. A local homogeneous stress field is found to result in a significant reduction of the cross-slip energy. Additionally, for a nonhomogeneous stress field at the head of a five-dislocation pileup compressed against a Lomer-Cottrell junction, the cross-slip energy is found to decrease to 0.62eV. The relatively low values of the activation energy in local stress fields predicted by the proposed model suggest that cross-slip events are energetically more favorable in strained fcc crystals.

  13. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    SciTech Connect

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.

  14. 77 FR 74010 - Proposed Changes to FCC Form 499-A, FCC Form 499-Q, and Accompanying Instructions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... 2013 to report 2012 revenues, and the quarterly Telecommunications Reporting Worksheet, FCC Form 499-Q (Form 499-Q) and accompanying instructions (Form 499-Q Instructions) to be used in 2013 to report... 2013 to report 2012 revenues, and (2) the quarterly Telecommunications Reporting Worksheet, FCC...

  15. 78 FR 66357 - Proposed Changes to FCC Form 499-A, FCC Form 499-Q, and Accompanying Instructions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ...In this document the Federal Communications Commission's Wireline Competition Bureau (Bureau) seeks comment on proposed revisions to the annual Telecommunications Reporting Worksheet, FCC Form 499-A (Form 499-A) and accompanying instructions (Form 499-A Instructions) to be used in 2014 to report 2013 revenues, and the quarterly Telecommunications Reporting Worksheet, FCC Form 499-Q (Form......

  16. Crack Tip Dislocation Nucleation in FCC Solids

    NASA Astrophysics Data System (ADS)

    Knap, J.; Sieradzki, K.

    1999-02-01

    We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.

  17. Microstructure and mechanical properties of bulk highly faulted fcc/hcp nanostructured cobalt microstructures

    SciTech Connect

    Barry, Aliou Hamady; Dirras, Guy; Schoenstein, Frederic; Tétard, Florent; Jouini, Noureddine

    2014-05-01

    Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10{sup −3} s{sup −1}, yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing. - Highlights: • Co nanopowder (50 nm) was prepared by reduction in polyol medium. • SPS was used to process bulk nanostructured Co specimens. • Microstructures were made of intricate fcc/hcp, along with nanotwins and SFs. • High strengths and moderate compressive ductility were obtained. • Deformation mechanisms related to complex interplay of different length scales.

  18. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-07-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  19. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-05-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  20. Prediction of elastic and vibrational stability for Sc, Ti, Y, Zr, Tc, Ru, Hf, Re, and Os in the fcc structure

    NASA Astrophysics Data System (ADS)

    de Coss, Romeo; Cifuentes-Quintal, Eduardo; Aguayo, Aaron; Murrieta, Gabriel

    2014-03-01

    The discovery of a metastable phase for a given material is interesting because corresponds to a new bonding and new properties are expected. The calculation of the total-energy along the Bain path is frequently used as a method to find tetragonal metastable states. However, a local minimum in the tetragonal distortion is not a definitive proof of a metastable state, and the elastic and vibrational stability needs to be evaluated. In a previous work, using the elastic stability criteria for a cubic structure, we have shown that the transition metals with hcp ground state; Ti, Zr, and Hf have a fcc metastable phase. That result is interesting since the fcc crystal structure does not appear in the current pressure-temperature phase diagram of these metals, and support the experimental observations of fcc Ti and Zr in thin films. In the present work, we extend the stability study of the fcc structure to the non-magnetic transition metals with hcp ground state; Sc, Ti, Y, Zr, Tc, Ru, Hf, Re, and Os. We find that all the metals involved in this study have a metastable fcc structure, since the phonon band structure shows only positive frequencies. Finally, substrates on which the fcc structure of these metals could be growth epitaxially are predicted.

  1. Epitaxial growth of fcc Cr on Au(100)

    SciTech Connect

    Durbin, S.M.; Berman, L.E.; Batterman, B.W.; Brodsky, M.B.; Hamaker, H.C.

    1988-04-15

    Synchrotron x-ray diffraction and anomalous dispersion measurements of 25A Cr layers epitaxially grown on (100) Au surfaces indicate the presence of fcc Cr domains, while extended x-ray absorption fine-structure spectra are consistent with the usual bcc phase of Cr. Together these data suggest that the fcc phase is a major fraction of the larger epitaxial Cr domains, but that most Cr atoms are in a bcc environment with much smaller domain sizes. This unusual, epitaxially stabilized fcc Cr structure may be related to previously reported low-temperature resistance anomalies.

  2. Deformation twinning in small-sized face-centred cubic single crystals: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Liang, Z. Y.; Huang, M. X.

    2015-12-01

    Small-sized crystals generally show deformation behaviour distinct from their bulk counterparts. In addition to dislocation slip, deformation twinning in small-sized face-centred cubic (FCC) single crystals has been reported to follow a different mechanism which involves coherent emission of partial dislocations on successive { 111 } planes from free surface. The present work employed a twinning-induced plasticity (TWIP) steel with a low stacking fault energy to systematically investigate the twin evolution in small-sized FCC single crystals. Micrometre-sized single crystal pillars of TWIP steel were fabricated by focus ion beam and then strained to different levels by compression experiments. Detailed transmission electron microscopy characterization was carried out to obtain a quantitative evaluation of the deformation twins, which contribute to most of the plastic strain. Emissions of partial dislocations from free surface (surface sources) and pre-existing perfect dislocations inside the pillar (inner sources) are found as the essential processes for the formation of deformation twins. Accordingly, a physically-based model, which integrates source introduction methods and source activation criterions for partial dislocation emission, is developed to quantitatively predict the twin evolution. The model is able to reproduce the experimental twin evolution, in terms of the total twin formation, the twin morphology and the occurrence of twinning burst.

  3. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers

    NASA Astrophysics Data System (ADS)

    Lenz, Dominic A.; Mladek, Bianca M.; Likos, Christos N.; Blaak, Ronald

    2016-05-01

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, a transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed.

  4. Thermodynamic stability and structural properties of cluster crystals formed by amphiphilic dendrimers.

    PubMed

    Lenz, Dominic A; Mladek, Bianca M; Likos, Christos N; Blaak, Ronald

    2016-05-28

    We pursue the goal of finding real-world examples of macromolecular aggregates that form cluster crystals, which have been predicted on the basis of coarse-grained, ultrasoft pair potentials belonging to a particular mathematical class [B. M. Mladek et al., Phys. Rev. Lett. 46, 045701 (2006)]. For this purpose, we examine in detail the phase behavior and structural properties of model amphiphilic dendrimers of the second generation by means of monomer-resolved computer simulations. On augmenting the density of these systems, a fluid comprised of clusters that contain several overlapping and penetrating macromolecules is spontaneously formed. Upon further compression of the system, a transition to multi-occupancy crystals takes place, the thermodynamic stability of which is demonstrated by means of free-energy calculations, and where the FCC is preferred over the BCC-phase. Contrary to predictions for coarse-grained theoretical models in which the particles interact exclusively by effective pair potentials, the internal degrees of freedom of these molecules cause the lattice constant to be density-dependent. Furthermore, the mechanical stability of monodisperse BCC and FCC cluster crystals is restricted to a bounded region in the plane of cluster occupation number versus density. The structural properties of the dendrimers in the dense crystals, including their overall sizes and the distribution of monomers are also thoroughly analyzed. PMID:27250325

  5. High-pressure behavior of fcc phase FeHx

    NASA Astrophysics Data System (ADS)

    Thompson, E. C.; Chidester, B.; Fischer, R. A.; Prakapenka, V.; Bi, W.; Alp, E. E.; Campbell, A. J.

    2015-12-01

    Earth's core is composed of iron with the inclusion of light elements to compensate for the difference between seismically obtained densities and the density of pure Fe at relevant pressure and temperature conditions. As the most abundant and lightest element in the solar system, hydrogen is a plausible contributor to this core density deficit. Nearly stoichiometric iron hydride (FeHx) has been shown to result from the reaction of Fe and hydrous silicates, and is stable up to at least 80 GPa [1]. Iron hydride formation at Earth's surface is unlikely because the equilibrium hydrogen solubility in iron at atmospheric conditions is prohibitively low, yet as hydrogen solubility increases with pressure, so does the likelihood of FeHx formation within the Earth's interior [2]. Recent experimental and ab initio attempts disagree on the equation of state parameters needed to describe the compressional behavior of FeHx [3-5]. The work presented here combines synchrotron x-ray diffraction of laser-heated diamond anvil cell compressed samples with high-pressure, ambient temperature nuclear resonant inelastic scattering (NRIXS) and synchrotron Mössbauer spectroscopy (SMS) to better constrain the behavior of the fcc phase of FeHx at elevated pressures and temperatures. By pairing P-V-T data for iron hydride with the sound velocity information available through high-pressure NRIXS studies, we can better understand the degree to which hydrogen may contribute to the density deficit of Earth's iron core. [1] Antonov et al. (1998) J. Alloys Compd. 264, 214-222 [2] Fukai and Akimoto (1983) Proc. Japan Acad. 59, 158-162 [3] Pépin et al. (2014) Phys. Rev. Lett. 265504, 1-5 [4] Hirao (2004) Geophys. Res. Lett. 31, L06616 [5] Badding et al. (1991) Science. 253, 421-424

  6. Detection of the Impact of Ice Crystal Accretion in an Aircraft Engine Compression System During Dynamic Operation

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2014-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.

  7. Studies of dynamic properties of shock compressed single crystals by in situ dynamic x-ray diffraction and sample recovery

    SciTech Connect

    Meyers, Marc A.; Schneider, M. S.; Jarmakani, H.; Kad, B.; Remington, B. A.; Kalantar, D. H.; McNaney, J.; Cao, B.; Belak, J.; E Bringa, G. Collins; Paisley, D.; Holian, B.; Lomdahl, P.; Boehly, T. R; Wark, J.

    2007-05-05

    Laser compression provides pressures ranging from a few to hundreds of GPa at pulse durations of the order of nanoseconds or fractions thereof. The short duration ensures a rapid decay of the pulse and quenching of shocked sample in times that are orders of magnitude lower than in conventional explosively driven plate impact experiments. Systematic experiments carried out in specimens well suited for transmission electron microscopy characterization are revealing that laser compression, by virtue of a much more rapid cooling, enables the retention of a deformation structure closer to the one existing during shock. The smaller pulse length decreases the propensity for localization. Copper and copper aluminum (2 and 6 wt% Al) with orientations [001] and [ ] were subjected to high intensity laser pulses with energy levels of 70 to 300 J delivered in a pulse duration of approximately 3 ns. Systematic differences of the defect substructure were observed as a function of pressure and stacking fault energy. The changes in the mechanical properties for each condition were compared using micro- and nano-hardness measurements and correlated well with observations of the defect substructure. Three regimes of plastic deformation were identified and their transitions modeled: dislocation cells, stacking faults, and twins. An existing constitutive description of the slip to twinning transition, based on the critical shear stress, was expanded to incorporate the effect of stacking-fault energy. A new physically-based criterion accounting for stacking fault energy was developed that describes the transition from perfect loop to partial loop homogeneous nucleation, and consequently from cells to stacking faults. These calculations predict transitions that are in qualitative agreement with the effect of SFE.

  8. Reformulated gasoline will change FCC operations and catalysts

    SciTech Connect

    Stokes, G.M.; Wear, C.C.; Suarez, W.; Young, G.W. )

    1990-07-02

    Operation of fluid catalytic cracking units (FCCUs) will be significantly affected by new regulations that will in all probability require gasoline to be produced with lower aromatics and olefins contents, lower vapor pressure, and a minimum oxygen content. This paper reports on a study conducted to better define the basic relationship between operating variables, including catalyst and naphtha quality, in the context of reformulated gasoline. The study helped to define specific operating strategies, potential problem areas, and opportunities for improved FCC unit and catalyst technologies. FCC feedstock quality can have a significant influence on the composition of FCC naphtha. However, even extremely paraffinic or aromatic feeds can yield substantial levels of both olefins and aromatics in FCC naphtha, particularly when compared to the levels proposed in a reformulated gasoline pool.

  9. Cluster expansion of fcc Pd-V intermetallics

    SciTech Connect

    de Fontaine, D.; Wolverton, C.; Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-06-01

    A cluster expansion is used to compute fcc ground states from first principles for the Pd-V system. Intermetallic structures are not assumed but derived rigorously by minimizing the configurational energy subject to linear constraints. A large number of concentration-independent interactions are calculated by the method of direct configurational averaging. Agreement with the fcc-based portion of the experimentally-determined Pd-V phase diagram is quite satisfactory. 25 refs., 2 figs.

  10. Compressibility of molten “green glass” and crystal-liquid density crossovers in low-Ti lunar magma

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Agee, C. B.

    1997-05-01

    Density measurements of molten Apollo 15 "green glass" have been performed in the pressure range 0.5-3.5 GPa using the floating and sinking spheres technique in piston-cylinder and multi-anvil devices. A density crossover with equilibrium orthopyroxene is predicted for green glass at 3.5 GPa, or ˜800 km depth in the lunar interior. Equilibrium olivine should be neutrally buoyant in molten green glass at a pressure slightly greater (5 GPa) than the lunar core value of ˜4.7 GPa. At the olivine-orthopyroxene cotectic (˜2.0 GPa), molten green glass is less dense than both crystalline phases. Thus, the results are consistent with models that propose generation and buoyant rise of green glass magma from the depth of the olivine-orthopyroxene cotectic in the lunar interior. Molten green glass has a compression curve slope of 0.093 g/cc/GPa, along the liquids, in the pressure range investigated. The values of the Birch-Murnaghan isothermal bulk modulus ( K) and the pressure derivative of the bulk modulus ( K') at 1645°C are described by the relationship K (GPa) =19.5/(1 - (0.25-0.063 K')). Combining this relationship with a calculated isothermal bulk modulus value of 18 GPa, derived from 1-atm ultrasonic measurements, gives K' = 5.3 for molten green glass.

  11. Selection of the Space Station Freedom (SSF) Flat Collector Circuit (FCC) insulation material

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    1994-01-01

    The topics are presented in viewgraph form and include the following: function of the Space Station Freedom (SSF) Flat Collector Circuit (FCC); requirements of the FCC which affect the selection of the insulation material; data to support the selection of the FCC insulation material; development history; modified design; coverlay testing; effects on modified design on FCC; arc tracking tests performed on FCC; and arc tracking test results.

  12. Influence of the slip conditions on the stress corrosion cracking microprocesses in fcc materials

    SciTech Connect

    Chambreuil-Paret, A.; Chateau, J.P.; Magnin, T.

    1997-11-01

    The aim of the present paper is to carefully analyze the stress corrosion cracking (SCC) microprocesses of f.c.c. single crystals, not only for the influence of the tensile axis orientation but also for the influence of the cracking direction (imposed or not). 316L (in MgCl{sub 2}) and copper (in nitrites) single crystals of well defined tensile axis will be strained using the slow strain rate technique. The authors focus on the influence of the relative orientations of the cracking direction and the slip planes on the crystallography of fracture. The effect of slip conditions on the corrosion-deformation interactions leading to fracture are then emphasized, which gives major information relevant to the micromodelling of SCC.

  13. Evaluation of the effect of hot-compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance.

    PubMed

    Kumagai, Akio; Lee, Seung-Hwan; Endo, Takashi

    2016-07-01

    Hot-compressed water (HCW) treatment is known to not only improve enzymatic hydrolysis efficiency of lignocellulosic biomass but to also generate insoluble lignin droplets, which retard enzymatic hydrolysis. In this study, the inhibitory effect of the lignin droplets was evaluated by monitoring the initial enzyme adsorption and degradation of lignocellulosic nanofibrils (LCNFs) using a quartz crystal microbalance (QCM). Lignin content was adjusted by the sodium chlorite-acetic acid method and divided into samples with high (24.9 wt%) and low (5.6 wt%) lignin content, which were then subjected to HCW treatment at various temperatures. The changes in lignin content were small with increasing HCW temperature, whereas hemicellulose content decreased, regardless of the initial lignin content. The formation of lignin droplets and pseudo-lignin-like products was confirmed in both LCNFs by atomic force microscopy (AFM) and was predominant in LCNFs with high lignin content treated at 200°C. QCM data showed that the enzyme adsorption amount in both LCNFs after HCW treatment was increased and was greater in LCNFs with low lignin content. Initial enzymatic degradation was substantially slowed in LCNFs with high lignin content, particularly after HCW treatment at temperatures higher than 180°C. These QCM results suggest that the steric hindrance of the deposited lignin is the primary mechanism by which the initial enzymatic hydrolysis is delayed. Biotechnol. Bioeng. 2016;113: 1441-1447. © 2015 Wiley Periodicals, Inc. PMID:26694223

  14. Elastic compliances and stiffnesses of the fcc Lennard-Jones solid

    NASA Astrophysics Data System (ADS)

    Quesnel, D. J.; Rimai, D. S.; Demejo, L. P.

    1993-09-01

    The isothermal elastic compliances, stiffnesses, and bulk moduli of a Lennard-Jones solid organized into an fcc crystal structure (256 atoms in 43 unit cells) have been calculated as a function of testing temperature (expressed as the mean kinetic energy per atom). Tests conducted in pure shear were used to determine S44 and C44=G100, where 100 refers to crystallographic directions. Tests imposing axial elongation with fixed lateral dimensions established C11 and C12. Axial deformation with zero lateral pressure (a tension test) was used to determine S11, S12, E100 and ν100. This provided an independent set of results for comparison with the dilatational stiffnesses C11 and C12. The bulk modulus K was obtained by independent triaxial tension testing. The stiffnesses, compliances, and moduli were determined by regression analysis and digital filtering applied to combinations of the stress-tensor and strain-tensor data stored at each iteration during the constant-rate deformation experiments. While the cubic fcc Lennard-Jones solid expectedly obeys the Cauchy relations for central-force potentials, it is not isotropic, allowing ν to take on values other than 1/4 as originally proposed by Poisson. The present calculations show ν100=0.347 for the fcc Lennard-Jones solid with a Young's modulus of E100=61.1ɛ/σ3, an initial (as indicated by superscript 0) shear modulus of G0100=57.2ɛ/σ3, and an initial bulk modulus of K0=71.2ɛ/σ3 at zero temperature. The moduli all decreased with increasing temperature. Reuss, Voigt, and Hashin and Shtrikman [J. Mech. Phys. Solids 10, 335 (1962)] bounds on the isotropic elastic properties of polycrystalline aggregates of Lennard-Jones material were also determined. Computed values of the moduli are in reasonable agreement with experimental results for solid argon and crystalline polyethylene.

  15. Atomic structure of [110] tilt grain boundaries in FCC materials

    SciTech Connect

    Merkle, K.L.; Thompson, L.J.

    1997-04-01

    High-resolution electron microscopy (HREM) has been used to study the atomic-scale structure and localized relaxations at grain boundaries (GBs) in Au, Al, and MgO. The [110] tilt GBs play an important role in polycrystalline fcc metals since among all of the possible GB geometries this series of misorientations as a whole contains the lowest energies, including among others the two lowest energy GBs, the (111) and (113) twins. Therefore, studies of the atomic-scale structure of [110] tilt GBs in fcc metals and systematic investigations of their dependence on misorientation and GB plane is of considerable importance to materials science. [110] tilt GBs in ceramic oxides of the fcc structure are also of considerable interest, since in this misorientation range polar GBs exist, i.e. GBs in which crystallographic planes that are made up of complete layers of cations or anions can join to form a GB.

  16. Magnetic Properties of Diluted Fcc System Nickel

    NASA Astrophysics Data System (ADS)

    Feng, Zhen

    Starting from Ni and Mg nitrates, about 20 samples of Ni_{rm p}Mg _{rm 1-p}O (0.06 <=q p <=q 0.86) were prepared and X-ray diffraction studies showed the samples to have the NaCl structure with the lattice constant fitting the equation a(p) = 4.2115 - 0.0340p A. Temperature dependent dc magnetic susceptibility (chi ) studies of the samples were carried out between 1.8K and 600K using a SQUID magnetometer and the Neel temperature T_{rm N} were determined from the peak in partial(chiT)/ partialT. The variation of t = T _{rm N}(p)/T _{rm N}(1) versus p is compared with that in Co_{rm p}Mg _{rm 1-p}O. For both systems, the variations for p > 0.31 are found to fit the predicted values for a simple cubic Heisenberg antiferromagnet and a theoretical basis for this anomalous results is advanced. The experimental percolation threshold p_{rm c} = 0.15 +/- 0.01. For p_ {rm c} <=q p <=q 0.33, chi below T_{rm N} shows irreversible behavior for the zero-field-cooled and field -cooled cases, suggestive of spin-glass-like behavior, also observed in other diluted fcc antiferromagnets such as Co_{rm p}Mg _{rm 1-p}O and Eu _{rm p}Sr_ {rm 1-p}Te. It is suggested that the differences in the t vs p variations for p < 0.33 in Ni_{rm p} Mg_{rm 1-p}O, Co_{rm p}Mg _{rm 1-p}O and Eu _{rm p}Sr_ {rm 1-p}Te may be related to the differences in the ratio of the next-nearest-neighbor to nearest-neighbor exchange constants in these systems. A higher order correction to Curie-Weiss law was applied for sample with 0.19 <=q p <=q 0.59 which explains why 1/ chi curve versus T bends downward with decreasing temperatures. For the sample Ni_{0.33} Mg_{0.67}O, the magnetization M versus magnetic field H (0 to 0.2T) are measured with temperature ranging from 5.2K to 13.4K at intervals of 0.2K. The magnitude of the non-linear susceptibility, a_3, is determined from the M versus H data at different temperatures. The divergence of a _3 around 9.4 +/- 0.6K indicates spin-glass behavior in this system.

  17. Impact of magnetic fluctuations on lattice excitations in fcc nickel

    NASA Astrophysics Data System (ADS)

    Körmann, Fritz; Ma, Pui-Wai; Dudarev, Sergei L.; Neugebauer, Jörg

    2016-02-01

    The spin-space averaging formalism is applied to compute atomic forces and phonon spectra for magnetically excited states of fcc nickel. Transverse and longitudinal magnetic fluctuations are taken into account by a combination of magnetic special quasi random structures and constrained spin-density-functional theory. It turns out that for fcc Ni interatomic force constants and phonon spectra are almost unaffected by both kinds of spin fluctuations. Given the computational expense to simulate coupled magnetic and atomic fluctuations, this insight facilitates computational modeling of magnetic alloys such as Ni-based superalloys.

  18. Isentropic Compression of Argon

    SciTech Connect

    H. Oona; J.C. Solem; L.R. Veeser, C.A. Ekdahl; P.J. Rodriquez; S.M. Younger; W. Lewis; W.D. Turley

    1997-08-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal.

  19. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    SciTech Connect

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher

  20. A Guide to Federal Regulation; Understanding the FCC Rules.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    While it is apparent that the Federal Communications Commission (FCC) has given a great deal of thought to the regulation of cable systems, the basic success or failure of cable as a communications service will depend on local development. Relatively little guidance has been provided to local franchising authorities for selecting among applicants,…

  1. Statement on CATV from the FCC to the Senate Committee.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    In this statement to the Senate, the Federal Communications Commission (FCC) describes in detail their specific policies relevant to cable television (CATV) regulation under four general areas. The rules for the first of these, television broadcast signal carriage, are outlined in terms of three classifications which would divide all signals:…

  2. 47 CFR 73.1226 - Availability to FCC of station logs and records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Availability to FCC of station logs and records... Availability to FCC of station logs and records. The following shall be made available to any authorized representative of the FCC upon request: (a) Station records and logs shall be made available for inspection...

  3. 47 CFR 73.1226 - Availability to FCC of station logs and records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Availability to FCC of station logs and records... Availability to FCC of station logs and records. The following shall be made available to any authorized representative of the FCC upon request: (a) Station records and logs shall be made available for inspection...

  4. 47 CFR 73.1226 - Availability to FCC of station logs and records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Availability to FCC of station logs and records... Availability to FCC of station logs and records. The following shall be made available to any authorized representative of the FCC upon request: (a) Station records and logs shall be made available for inspection...

  5. 47 CFR 73.1226 - Availability to FCC of station logs and records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Availability to FCC of station logs and records... Availability to FCC of station logs and records. The following shall be made available to any authorized representative of the FCC upon request: (a) Station records and logs shall be made available for inspection...

  6. 47 CFR 73.1226 - Availability to FCC of station logs and records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Availability to FCC of station logs and records... Availability to FCC of station logs and records. The following shall be made available to any authorized representative of the FCC upon request: (a) Station records and logs shall be made available for inspection...

  7. Imaging phonons in a fcc Pu-Ga alloy by thermal diffuse x-ray scattering

    NASA Astrophysics Data System (ADS)

    Wong, Joe; Wall, M.; Schwartz, A. J.; Xu, R.; Holt, M.; Hong, Hawoong; Zschack, P.; Chiang, T.-C.

    2004-05-01

    X-ray thermal diffuse scattering intensity patterns from phonons in a fcc δ-Pu-Ga alloy have been recorded using an 18 keV undulator x-ray beam with a beam diameter of 25 μm. The results are consistent with patterns calculated using the Born-von Karman force constant model of lattice dynamics, and support the pronounced softening of the transverse acoustic branch along the [111] direction observed from inelastic x-ray scattering measurements. This work demonstrates the feasibility of using a "large-grain, small beam" approach to study lattice properties, such as phonon dispersion curves, of materials not readily available in the form of large single crystals.

  8. Microstructural Characterization of Dislocation Networks During Harper-Dorn Creep of fcc, bcc, and hcp Metals and Alloys

    SciTech Connect

    Przystupa, Marek A.

    2007-12-13

    temperatures, (2) time invariant and (3) identical to the distributions obtained previously for Harper-Dorn creep. This has never been shown before and confirms our theoretical expectations that evolution of the dislocation networks during annealing and H-D creep is governed by the same growth law. Obtained results were also used to predict H-D steady creep rates from annealing kinetics data using equations of the dislocation network theory. For the three considered stresses the theory predicts systematically smaller creep rates by the average factor of 4.5. Considering that the creep rates have been predicted from the annealing data alone and without any adjustable parameters, this results shout be considered as outstanding. In case of hcp zinc the samples were pre-deformed in compression at constant stress of 4 MPa at temperature of 573 K and subsequently annealed at the same temperature. During annealing samples readily recrystallized, but it was possible to obtain information on the link length distributions from several unrecrystallized grains. The results showed that the scaled link length distributions were time invariant and similar to those of the aluminum. The annealing studies on bcc tin were also curtailed by the concurrent recrystallization. It was only possible to obtain link length distribution for samples deformed in compression at constant load of 2 MPa at 423 K after unloading. The link length distribution was also in this case similar to that of the aluminum and zinc. These results suggest that the scaled link length distribution is universal and the same for the three considered crystal structures. This supports theoretical findings of these studies that appropriately scaled dislocation link length distribution should both universal and time invariant. We have also investigated the possibility of using alternative methods of estimating local dislocation densities from etch pits which could give more precise estimates of the dislocation link-lengths. The two

  9. Optical emission, shock-induced opacity, temperatures, and melting of Gd3Ga5O12 single crystals shock-compressed from 41 to 290 GPa

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Nellis, William J.; Li, Jiabo; Li, Jun; Zhao, Wanguang; Liu, Xun; Cao, Xiuxia; Liu, Qiancheng; Xue, Tao; Wu, Qiang; Mashimo, T.

    2015-08-01

    Strong oxides at high shock pressures have broad crossovers from elastic solids at ambient to failure by plastic deformation, to heterogeneous deformation to weak solids, to fluid-like solids that equilibrate thermally in a few ns, to melting and, at sufficiently high shock pressures and temperatures, to metallic fluid oxides. This sequence of crossovers in single-crystal cubic Gd3Ga5O12 (Gd-Ga Garnet-GGG) has been diagnosed by fast emission spectroscopy using a 16-channel optical pyrometer in the spectral range 400-800 nm with bandwidths per channel of 10 nm, a writing time of ˜1000 ns and time resolution of 3 ns. Spectra were measured at shock pressures from 40 to 290 GPa (100 GPa = 1 Mbar) with corresponding gray-body temperatures from 3000 to 8000 K. Experimental lifetimes were a few 100 ns. Below 130 GPa, emission is heterogeneous and measured temperatures are indicative of melting temperatures in grain boundary regions rather than bulk temperatures. At 130 GPa and 2200 K, GGG equilibrates thermally and homogeneously in a thin opaque shock front. This crossover has a characteristic spectral signature in going from partially transmitting shock-heated material behind the shock front to an opaque shock front. Opacity is caused by optical scattering and absorption of light generated by fast compression. GGG melts at ˜5000 K in a two-phase region at shock pressures in the range 200 GPa to 217 GPa. Hugoniot equation-of-state data were measured by a Doppler Pin SystemDPS with ps time resolution and are generally consistent with previous data. Extrapolation of previous electrical conductivity measurements indicates that GGG becomes a poor metal at a shock pressure above ˜400 GPa. Because the shock impedance of GGG is higher than that of Al2O3 used previously to make metallic fluid H (MFH), the use of GGG to make MFH will achieve higher pressures and lower temperatures than use of Al2O3. However, maximum dynamic pressures at which emission temperatures of fluid

  10. Influence of compressive stress and electric field on the stability of [ 011 ] poled and [ 0 1 xAF 1 ] oriented 31-mode PZN-0.055PT single crystals

    NASA Astrophysics Data System (ADS)

    Heitmann, Adam A.; Stace, Joseph A.; Lim, Leong-Chew; Amin, Ahmed H.

    2016-06-01

    The effect of compressive stress, in the presence of an electrical field along the [ 011 ] direction, on the phase transition stability of [ 0 1 ¯ 1 ] oriented and [ 011 ] poled relaxor (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) single crystals in the transverse length extensional 31-mode geometry is investigated. The thermal, electrical, and mechanical stability range for operation lacking elastic instabilities is identified and compared with conventional 33 and 32-mode geometries with the near morphotropic composition of x ˜ 0.055. It is found that the 31-mode geometry retains the stable, room temperature ferroelectric rhombohedral (R) symmetry up to and exceeding compressive stresses, along the [ 0 1 ¯ 1 ] direction, of 90 MPa under zero field conditions. Under zero stress conditions, a phase transformation from the stable rhombohedral symmetry to the low symmetry ferroelectric orthorhombic (O) phase occurs in the presence of an electric field of 0.85 MV/m. Stabilization of the R-O phase transformation against electric field drive occurs as a function of compressive prestress, similar to the 33-mode geometry. And, under sufficiently large compressive stress, an R-T (or R-MA-T) transformation is identified and discussed.

  11. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  12. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  13. Interaction of hydrogen with transition metal fcc(111) surfaces

    NASA Astrophysics Data System (ADS)

    Löautber, R.; Hennig, D.

    1997-02-01

    The interaction of atomic hydrogen with the fcc(111) surfaces of Pd and Rh was investigated theoretically with an ab initio method, to find out the differences and similiarities between these neighboring metals. At the Rh surface the hcp site of the threefold-coordinated adsorption sites is preferred, while at Pd almost no difference between the hcp and fcc sites was found. For Pd, the occupation of subsurface positions was calculated to be more stable than bulklike positions. The energy gain caused by hydrogen absorption in subsurface positions is only about 100 meV lower than for hydrogen adsorption at the surface. In contrast, for Rh, significant differences between adsorption and absorption were calculated. The diffusion barrier for hydrogen diffusion from surface to subsurface positions was calculated and compared to the diffusion barrier in bulk. The hydrogen-induced work-function changes for the considered 4d transition-metal surfaces were positive for coverage θ=1.

  14. Strategies for catalytic octane enhancement in an FCC unit

    SciTech Connect

    Creighton, J.E.; Edwards, G.C.; Rajagopalan, K.; Peters, A.W.; Young, G.W. )

    1987-08-01

    Gasoline quality is largely determined by motor and research octane numbers. There is good correlation between octane number and the structure of the C{sub 5} to C{sub 12} hydrocarbons typically present in gasoline. For paraffins, octane number decreases as molecular weight increases with degree of branching. The same is true of olefins. Catalytic strategies for making high octane gasolines include decreasing the amount of higher molecular weight, less branched paraffins, isomerizing paraffins to a more highly branched product, and producing more olefins or aromatics. A number of catalytic processes in current use make use of these strategies, including reforming, isomerization, dimerization, alkylation and fluid catalytic cracking (FCC). The subject of this paper is to discuss the catalytic strategies available to produce octane number in the FCC unit.

  15. Maximizing the FCC`s potential for RFG production

    SciTech Connect

    Chapin, L.E.

    1996-12-31

    The Fluidized Catalytic Cracking (FCC) unit has traditionally been the dominant conversion process in U.S. refineries. It has served as a major source of high octane naphtha for blending into the gasoline pool. With the passage of the Clean Air Act, U.S. refiners are reformulating their gasoline blends utilizing increasing volumes of {open_quotes}clean burning{close_quotes} alkylate and ethers. Both of these premium products use light olefins including propylene as feedstocks. Environmental trends in other major world markets will force much of the world FCC operating capacity to follow the same path. The intent of this paper is to quantify the impact of deep catalytic cracking on the gasoline pool and overall profitability of a refinery dedicated to producing reformulated gasoline.

  16. Magneto-optic constants of hcp and fcc Co films

    SciTech Connect

    Osgood, R.M. III,; Riggs, K.T.; Johnson, A.E.; Mattson, J.E.; Sowers, C.H.; Bader, S.D.

    1997-08-01

    We tabulate the wavelength dependence of the complex magneto-optic constants for epitaxial fcc (001) and hcp (1{bar 1}00) Co films with the magnetization along two different in-plane crystallographic directions. The magneto-optic constants of epitaxial hcp Co films are strongly dependent on crystallographic direction for the same sample, while those of epitaxial fcc Co films are not, as anticipated from the trends in the magnetic anisotropy due to the spin-orbit interaction. Our results for (i) the anisotropic magneto-optic constants, (ii) the magnetic anisotropy, and (iii) the indices of refraction, are compared to other studies of Co. {copyright} {ital 1997} {ital The American Physical Society}

  17. Dislocation dissociation in some f.c.c. metals

    NASA Technical Reports Server (NTRS)

    Esterling, D. M.

    1980-01-01

    The dissociation of a perfect screw dislocation into a stacking fault in an f.c.c. lattice is modeled by the modified lattice statics. The interatomic potentials are obtained from the work of Esterling and Swaroop and differ substantially from those empirical potentials usually employed in defect simulations. The calculated stacking fault widths for aluminum, copper, and silver are in good agreement with weak beam microscopy results.

  18. Effect of Compression on the Molecular Arrangement of Itraconazole-Soluplus Solid Dispersions: Induction of Liquid Crystals or Exacerbation of Phase Separation?

    PubMed

    Singh, Abhishek; Bharati, Avanish; Frederiks, Pauline; Verkinderen, Olivier; Goderis, Bart; Cardinaels, Ruth; Moldenaers, Paula; Van Humbeeck, Jan; Van den Mooter, Guy

    2016-06-01

    Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions. PMID:27092396

  19. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  20. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  1. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    SciTech Connect

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  2. Emerging technology for the reduction of sulfur in FCC fuels

    SciTech Connect

    Wormsbecher, R.F.; Weatherbee, G.D.; Kim, G.; Dougan, T.J. )

    1993-01-01

    Passage of the Clean Air Act of 1990 and new regulations issued in California will set new limits on the sulfur content of gasoline. Because most of the sulfur in the gasoline pool comes from FCC naphtha, there is a strong incentive to reduce the sulfur content of this stream in the most cost efficient manner. This work introduces emerging catalytic technology for the direct reduction of the sulfur content of FCC gasolines, called the GSR[trademark] (Gasoline Sulfur Reduction) technology. Studies of this new technology were carried out using the Davison Circulating Riser pilot unit. The GSR technology is shown to reduce the sulfur in FCC naphtha by 15%, with two feedstocks. It is shown that this technology is selective to sulfur species in the middle of the gasoline boiling range, and converts these species to H[sub 2]S, while preserving most of the base catalyst selectivities. Various other catalytic scenarios for minimizing the gasoline sulfur content are also given.

  3. (Al, B)-ZSM-11 FCC additive performance

    SciTech Connect

    Hsing, L.H.; O`Young, C.L.

    1996-10-01

    ZSM-5 additive has been used extensively in the petroleum refining industry to enhance the light olefins production from the FCCU operation. In this paper, an FCC additive, (Al, B)-ZSM-11 was evaluated for its performance on a circulated FCC pilot unit. This additive was prepared by partially replacing the frame-work aluminum with boron, which in turn, will alternate its acid characteristics and performance as an FCC additive in promoting light olefin production. The (Al, B)-ZSM-11 additive increased C3=, C4=, and C5= yields, but was less effective in increasing C3=, C4= yields, particularly I-C4= than ZSM-5 additive. The (Al, B)-ZSM-11 additive increased branched C5= and decreased linear C5= yields resulting from skeletal isomerization. C5= and FC naphtha yields with (Al, B)-ZSM-11 additive are higher than those obtained with ZSM-5 additive indicating lower cracking of FC naphtha and C%= to lower olefins with (Al, B)-ZSM-11 additive than ZSM-5. The product selectivity difference between ZSM-5 and (Al, B)-ZSM-11 additives can be correlated with their respective acidity.

  4. Formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters.

    PubMed

    Li, Guojian; Wang, Qiang; Sui, Xudong; Wang, Kai; Wu, Chun; He, Jicheng

    2015-09-01

    The formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters has been studied by molecular dynamics simulation using an embedded atom method. Structural evolution of the clusters, coalesced under varying temperature, Ni content and substrate conditions, was explored by interatomic energy, snapshots, pair distribution functions and bond order parameters. The results show that the formation of bcc and fcc is strongly related to Ni content, substrate and coalescence temperature. Free clusters coalesced at 1200 K form bcc at lower Ni contents with fcc forming at higher Ni concentrations and no observable coexistence of bcc and fcc. Differences in coalescence at 1000 K result from the coexistence of bcc and fcc within the Ni range of 50-70%. Free clusters supported on disordered Ni substrates were shown to transform from spherical morphology to islands of supported clusters with preferred epitaxial orientation. The Ni content required to form bcc and fcc coexistence on supported clusters at 1000 K decreased to 30-50% Ni. Free clusters possessing bcc and fcc generally stacked along the bcc (110) and fcc (111) facets, whereas supported clusters stacked along the (111) bcc and (100) fcc planes. Structural transformation was induced by clusters containing greater numbers of atoms. Spread over the substrate enhanced interatomic energy, order substrates affect the epitaxial growth direction and increase the melting points of the supported clusters. This study can be used to predict the nature of fcc and bcc formation in Fe-Ni films. PMID:26234423

  5. Compressive Holography

    NASA Astrophysics Data System (ADS)

    Lim, Se Hoon

    Compressive holography estimates images from incomplete data by using sparsity priors. Compressive holography combines digital holography and compressive sensing. Digital holography consists of computational image estimation from data captured by an electronic focal plane array. Compressive sensing enables accurate data reconstruction by prior knowledge on desired signal. Computational and optical co-design optimally supports compressive holography in the joint computational and optical domain. This dissertation explores two examples of compressive holography: estimation of 3D tomographic images from 2D data and estimation of images from under sampled apertures. Compressive holography achieves single shot holographic tomography using decompressive inference. In general, 3D image reconstruction suffers from underdetermined measurements with a 2D detector. Specifically, single shot holographic tomography shows the uniqueness problem in the axial direction because the inversion is ill-posed. Compressive sensing alleviates the ill-posed problem by enforcing some sparsity constraints. Holographic tomography is applied for video-rate microscopic imaging and diffuse object imaging. In diffuse object imaging, sparsity priors are not valid in coherent image basis due to speckle. So incoherent image estimation is designed to hold the sparsity in incoherent image basis by support of multiple speckle realizations. High pixel count holography achieves high resolution and wide field-of-view imaging. Coherent aperture synthesis can be one method to increase the aperture size of a detector. Scanning-based synthetic aperture confronts a multivariable global optimization problem due to time-space measurement errors. A hierarchical estimation strategy divides the global problem into multiple local problems with support of computational and optical co-design. Compressive sparse aperture holography can be another method. Compressive sparse sampling collects most of significant field

  6. Plastic crystal phases of simple water models.

    PubMed

    Aragones, J L; Vega, C

    2009-06-28

    We report the appearance of two plastic crystal phases of water at high pressure and temperature using computer simulations. In one of them the oxygen atoms form a body centered cubic structure (bcc) and in the other they form a face centered cubic structure (fcc). In both cases the water molecules were able to rotate almost freely. We have found that the bcc plastic crystal transformed into a fcc plastic crystal via a Martensitic phase transition when heated at constant pressure. We have performed the characterization and localization in the phase diagram of these plastic crystal phases for the SPC/E, TIP4P, and TIP4P/2005 water potential models. For TIP4P/2005 model free energy calculations were carried out for the bcc plastic crystal and fcc plastic crystal using a new method (which is a slight variation of the Einstein crystal method) proposed for these types of solid. The initial coexistence points for the SPC/E and TIP4P models were obtained using Hamiltonian Gibbs-Duhem integration. For all of these models these two plastic crystal phases appear in the high pressure and temperature region of the phase diagram. It would be of interest to study if such plastic crystal phases do indeed exist for real water. This would shed some light on the question of whether these models can describe satisfactorily the high pressure part of the phase diagram of water, and if not, where and why they fail. PMID:19566163

  7. A general kinetic-flow coupling model for FCC riser flow simulation.

    SciTech Connect

    Chang, S. L.

    1998-05-18

    A computational fluid dynamic (CFD) code has been developed for fluid catalytic cracking (FCC) riser flow simulation. Depending on the application of interest, a specific kinetic model is needed for the FCC flow simulation. This paper describes a method to determine a kinetic model based on limited pilot-scale test data. The kinetic model can then be used with the CFD code as a tool to investigate optimum operating condition ranges for a specific FCC unit.

  8. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Nishijima, Masahiko; Matsuura, Makoto; Takenaka, Kana; Takeuchi, Akira; Ofuchi, Hironori; Makino, Akihiro

    2014-05-01

    A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ˜12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe3(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, Tx1 = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔGfcc - bcc, which causes phase transition of the Cu clusters from fcc to bcc structure.

  9. Deformation twinning mechanisms in FCC and HCP metals

    SciTech Connect

    Wang, Jian; Tome, Carlos N; Beyerlein, Irene J; Misra, Amit; Mara, N

    2011-01-31

    We report the recent work on twinning and detwinning in fcc and hcp metals based on the in situ and ex situ TEM observations and molecular dynamics simulations. Three aspects are discussed in this paper. (1) Detwinning in single-phase Cu with respect to growth twins, (2) deformation twinning in Ag-Cu composites, and (3) deformation twinning mechanisms in hcp metals. The main conclusion is that atomic structures of interfaces (twin boundaries, two-phases interface, and grain boundaries) play a crucial role in nucleating and propagating of deformation twins.

  10. Polarization Issues in the $e\\pm$ FCC

    SciTech Connect

    Gianfelice-Wendt, E.

    2015-08-10

    After the Higgs boson discovery at LHC, the international physics community is considering the next energy frontier circular collider (FCC). A pp collider of 100 km with a center of mass energy of about 100 TeV is believed to have the necessary discovery potential. The same tunnel could host first a e+e- collider with beam energy ranging between 45 and 175 GeV. In this paper preliminary considerations on the possibility of self-polarization for the e± beams are presented.

  11. Moessbauer spectroscopy evidence of a spinodal mechanism for the thermal decomposition of fcc FeCu

    SciTech Connect

    Crespo, P. |; Barro, M.J.; Hernando, A.; Escorial, A.G.; Menendez, N.; Tornero, J.D.; Barandiaran, J.M.

    1998-07-24

    Moessbauer spectroscopy shows the existence of compositional fluctuations, where different Fe environments coexist, during decomposition upon heat treatment of metastable f.c.c. FeCu solid solution. The presence of isolated Fe atoms in the Cu matrix, f.c.c. Fe{sub rich}Cu, f.c.c. FeCu{sub rich} and b.c.c. Fe has been detected in early decomposition stages. At later decomposition stages, low temperature Moessbauer spectroscopy indicates the presence of a broad distribution of Curie temperatures, coexisting with isolated Fe atoms in the Cu matrix, f.c.c. Fe and b.c.c. Fe.

  12. Compressible halftoning

    NASA Astrophysics Data System (ADS)

    Anderson, Peter G.; Liu, Changmeng

    2003-01-01

    We present a technique for converting continuous gray-scale images to halftone (black and white) images that lend themselves to lossless data compression with compression factor of three or better. Our method involves using novel halftone mask structures which consist of non-repeated threshold values. We have versions of both dispersed-dot and clustered-dot masks, which produce acceptable images for a variety of printers. Using the masks as a sort key allows us to reversibly rearrange the image pixels and partition them into groups with a highly skewed distribution allowing Huffman compression coding techniques to be applied. This gives compression ratios in the range 3:1 to 10:1.

  13. The effect of feedstock additives on FCC catalyst deactivation

    SciTech Connect

    Hughes, R.; Koon, C.L.; McGhee, B.

    1995-12-31

    Fluid catalytic cracking is a major petroleum refining process and because of this the deactivation of FCC catalysts by coke deposition has been the subject of considerable investigation during the past 50 years. Nevertheless, a lack of understanding of the fundamental understanding of processes leading to coke formation still exists. Basic studies using Zeolites have usually involved excessively high levels of coke deposits compared to normal FCC operation. The present study addresses coke formation at realistic levels of 0.5 to 1.0% w/w using a standard MAT reactor in which concentrations of 1% and 10% of various additives were added to the n-hexadecane feedstock. These additives included, quinoline, phenanthrene, benzofuran, thianaphthene and indene. The coke formed was characterised by mass spectrometry and was significantly aliphatic in nature, the amount formed increasing in the order quinoline, phenanthrene, thianaphthene, benzofuran, indene. Quinoline acts primarily as a poison, whereas the other additives tend to promote coke formation in n-hexadecane cracking.

  14. The Impact of Public Affairs Programming Regulation: A Study of the FCC's Effectiveness.

    ERIC Educational Resources Information Center

    Chamberlin, Bill F.

    1979-01-01

    Explores the effectiveness of the Federal Communications Commission (FCC) public affairs program regulation through analysis of annual reports for 75 television stations, examining amount of time for public issues programing, amount of local affairs programing, total prime time programing, and whether FCC standards are met. (CWM)

  15. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false FCC modification of station license grant. 97.27 Section 97.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station...

  16. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false FCC modification of station license grant. 97.27 Section 97.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station...

  17. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false FCC modification of station license grant. 97.27 Section 97.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station...

  18. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false FCC modification of station license grant. 97.27 Section 97.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station...

  19. 47 CFR 97.27 - FCC modification of station license grant.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false FCC modification of station license grant. 97.27 Section 97.27 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE General Provisions § 97.27 FCC modification of station...

  20. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  1. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  2. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  3. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  4. 47 CFR Appendix A to Subpart A of... - Locations Where GMRS Is Regulated by the FCC

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Locations Where GMRS Is Regulated by the FCC A Appendix A to Subpart A of Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY.... A, App. A Appendix A to Subpart A of Part 95—Locations Where GMRS Is Regulated by the FCC In...

  5. 47 CFR 11.21 - State and Local Area plans and FCC Mapbook.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false State and Local Area plans and FCC Mapbook. 11.21 Section 11.21 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) General § 11.21 State and Local Area plans and FCC Mapbook. EAS plans contain guidelines...

  6. 47 CFR 11.21 - State and Local Area plans and FCC Mapbook.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false State and Local Area plans and FCC Mapbook. 11.21 Section 11.21 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM (EAS) General § 11.21 State and Local Area plans and FCC Mapbook. EAS plans contain guidelines...

  7. 47 CFR 0.409 - Commission policy on private printing of FCC forms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Commission policy on private printing of FCC forms. 0.409 Section 0.409 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION General Information General § 0.409 Commission policy on private printing of FCC forms. The Commission has established a policy regarding...

  8. On Campus Web-Monitoring Rules, Colleges and the FCC Have a Bad Connection

    ERIC Educational Resources Information Center

    Hartle, Terry W.

    2006-01-01

    A regulation issued by the US Federal Communications Commission (FCC) requires facilities-based Internet services providers who operate their own equipment, including colleges, to make their Internet systems compliant with a statute known as the Communications Assistance for Law Enforcement Act (Calea) by April 2007. However, the FCC does not…

  9. Diversity of Voice? The FCC's Bright-Line "Anti-Monopoly" Rule.

    ERIC Educational Resources Information Center

    Haddock, David D.; Polsby, Daniel D.

    The Federal Communications Commission (FCC) has long had rules that prohibit anyone from owning more than one television station in any given location. Two of the stated purposes behind the FCC's anti-monopoly rules are to foster diversity of programming for the sake of First Amendment interests, and to promote programming among media outlets in…

  10. 47 CFR 0.409 - Commission policy on private printing of FCC forms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Commission policy on private printing of FCC forms. 0.409 Section 0.409 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION General Information General § 0.409 Commission policy on private printing of FCC forms. The Commission has established a policy regarding...

  11. Video Compression

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Optivision developed two PC-compatible boards and associated software under a Goddard Space Flight Center Small Business Innovation Research grant for NASA applications in areas such as telerobotics, telesciences and spaceborne experimentation. From this technology, the company used its own funds to develop commercial products, the OPTIVideo MPEG Encoder and Decoder, which are used for realtime video compression and decompression. They are used in commercial applications including interactive video databases and video transmission. The encoder converts video source material to a compressed digital form that can be stored or transmitted, and the decoder decompresses bit streams to provide high quality playback.

  12. Highly uniform polyhedral colloids formed by colloidal crystal templating

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; McGinley, James; Crocker, John; Crocker Research Group Team

    2015-03-01

    We seek to create polyhedral solid particles by trapping oil droplets in a colloidal crystal, and polymerizing them in situ, resulting in polyhedral particles containing spherical dimples in an ordered arrangement. Specifically, highly monodisperse, micron-sized droplets of 3-methacryloxypropyl trimethoxysilane (TPM) were first prepared through a poly condensation reaction, following well established methods. The droplets were mixed with an excess of polystyrene(PS) particles (diameter in 2.58 μm), which formed close packed (FCC or HCP) colloidal crystals by natural sedimentation and compression under partial drying to an extent, with TPM oil droplets trapped into their tetrahedral and octahedral interstitial sites and wet PS particles. Depending on the initial particle volume fraction and extent of drying, a high yield of dimpled particles having different shapes including tetrahedra and cubes were obtained after oil initiated polymerization and dissolution of the host PS particles, as seen under SEM. The effects of TPM to PS particles size ratio, drying time, and other factors in relation to the yield of tetrahedral and cubic dimpled particles will be presented. Finally, fractionation techniques were used to obtain suspensions of uniform polyhedral particles of high purity.

  13. Defect structures in deformed F.C.C. metals

    SciTech Connect

    Dai, Y.; Victoria, M.

    1997-08-01

    A high density of small defect clusters, similar to those observed in irradiated or quenched metals, has been observed in the deformed f.c.c. metals Cu, Au and Ni. The preliminary results show that the defect clusters are predominantly stacking fault tetrahedral (SFT). The SFT number density, rather than the size distribution, is deformation dependent. The defect cluster density is greater in the vicinities of dislocation tangles and grain boundaries. Their size distribution is wider than that produced by irradiation with an important number of larger clusters being formed. It is argued that these deformation-produced clusters may play a role in determining the flow stress and work hardening at low deformations.

  14. Dislocation Interactions with Voids and Helium Bubbles in FCC Metals

    SciTech Connect

    Robertson, I; Robach, J; Wirth, B; Young, J

    2003-11-18

    The formation of a high number density of helium bubbles in FCC metals irradiated within the fusion energy environment is well established. Yet, the role of helium bubbles in radiation hardening and mechanical property degradation of these steels remains an outstanding issue. In this paper, we present the results of a combined molecular dynamics simulation and in-situ straining transmission electron microscopy study, which investigates the interaction mechanisms between glissile dislocations and nanometer-sized helium bubbles. The molecular dynamics simulations, which directly account for dislocation core effects through semi-empirical interatomic potentials, provide fundamental insight into the effect of helium bubble size and internal gas pressure on the dislocation/bubble interaction and bypass mechanisms. The combination of simulation and in-situ straining experiments provides a powerful approach to determine the atomic to microscopic mechanisms of dislocation-helium bubble interactions, which govern the mechanical response of metals irradiated within the fusion environment.

  15. Mechanism of aromatic hydrocarbon formation in FCC naphtha

    SciTech Connect

    Mota, C.J.A.; Rawet, R.

    1995-12-01

    A microactivity test study of the FCC naphtha composition at increasing conversions was carried out. At low conversions (ca. 10--20%), the naphtha is rich in olefinic and aromatic hydrocarbons. As the conversion increases, the composition changes dramatically. The olefins initially increase and then decrease sharply. The paraffins increase continually, and the aromatics initially decrease and then increase slightly. The naphthenics remain constant in the conversion range studied. These results indicate that, at low conversions, the aromatics in the gasoline are mainly formed by dealkylation of heavy aromatic molecules present in the feed. At higher conversions, however, the aromatics in the naphtha are mainly formed by cyclization followed by hydrogen transfer of the olefins formed during cracking. This reaction also increases the relative concentration of paraffinic hydrocarbons. The distribution of C9 aromatics showed that, as the conversion increases, there occurs an isomerization of the alkyl chain, to increase the branching of the ring.

  16. [Compression material].

    PubMed

    Perceau, Géraldine; Faure, Christine

    2012-01-01

    The compression of a venous ulcer is carried out with the use of bandages, and for less exudative ulcers, with socks, stockings or tights. The system of bandages is complex. Different forms of extension and therefore different types of models exist. PMID:22489428

  17. On the interaction between perfect interstitial clusters and a vacancy in BCC, FCC and HCP metals

    SciTech Connect

    Puigvi, Mary Angels; Serra, Anna; de Diego, Nieves; Osetskiy, Yury N; Bacon, David J

    2004-01-01

    Point defects and defect clusters have been observed in metals irradiated by high-energy particles. Interactions of these defects between themselves and with existing microstructure features cause microstructure evolution and lead to changes in mechanical and physical properties of the irradiated materials. Models for prediction of radiation-induced changes should include details of reactions involving defects, and so in this paper we present the results of atomic-scale computer modelling of interactions between a cluster of self-interstitial atoms (SIAs) and a single vacancy in models of bcc, fcc and hcp metals. The vacancy is taken to lie on or within the glide prism of the cluster. This type of reaction is considered to be one of the most frequent because formation of SIA clusters, particularly glissile clusters, is commonly observed in high-energy displacement cascades in all metals. The interaction depends strongly on the dislocation nature of the cluster and therefore these interactions are different in the three crystal structures. Vacancy-SIA recombination, in particular, is inhibited by dissociation of the SIA loop on its glide prism.

  18. Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals

    NASA Astrophysics Data System (ADS)

    Liu, Haiting; Shen, Yao; Ma, Jiawei; Zheng, Pengfei; Zhang, Lei

    2016-07-01

    We studied the dependence of uniform elongation on grain size in the range of submicron to millimeter for single-phase FCC/BCC metals by reviewing recent experimental results and applying crystal plasticity finite element method simulation. In the order of increasing grain size, uniform elongation can be divided into three stages, namely low elongation stage, nearly constant elongation stage, and decreased elongation with large scatters stage. Low elongation stage features a dramatic increase near the critical grain size at the end of the stage, which is primarily attributed to the emergence of dislocation cell size transition from ultrafine to mid-size grain. Other factors can be neglected due to their negligible influence on overall variation trend. In nearly constant elongation stage, uniform elongation remains unchanged at a high level in general. As grain size keeps growing, uniform elongation starts decreasing and becomes scattered upon a certain grain size, indicating the initiation of decreased elongation with large scatters stage. It is shown that the increase is not linear or smooth but rather sharp at the end of low elongation stage, leading to a wider range in nearly constant elongation stage. The grain size dependence of uniform elongation can serve as a guiding principle for designing small uniaxial tensile specimens for mechanical testing, where size effect matters in most cases.

  19. Interactions of multiphase hydrodynamics, droplet evaporation, and chemical kinetics in FCC riser reactors.

    SciTech Connect

    Chang, S. L.

    1998-02-17

    A computational fluid dynamics (CFD) computer code, ICRKFLO, has been developed for flow simulation of fluid catalytic cracking (FCC) riser reactors, which convert crude oil into gasoline and other valuable products. The FCC flow, especially in the entry region, is a three-phase reacting flow including hot catalyst particles, inert lift gas, and feed oil droplets. The impact of the hydrodynamics processes of heat transfer, droplet evaporation, and mixing on the chemical kinetics or riser performance can be significant. ICRKFLO was used to evaluate the impact of these processes on the performance of an advanced FCC unit. The code solves for major flow properties of all three phases in an FCC riser, with models governing the transport of catalyst particles and feed oil droplet, the vaporization of the feed oil droplets, the cracking of the oil vapor, and the formation and deposition of coke on particles. First, the code was validated against available test data of a pilot-scale FCC unit. Then, flow calculations for the FCC unit were performed. Computational results indicate that the heat transfer and droplet vaporization processes have a significant impact on the performance of a pilot-scale FCC unit. The impact is expected to be even greater on commercial scale units.

  20. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    SciTech Connect

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-07-15

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  1. Highly anisotropic exchange interactions of jeff=1/2 iridium moments on the fcc lattice in La2B IrO6 (B =Mg ,Zn )

    NASA Astrophysics Data System (ADS)

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; Calder, S.; Christianson, A. D.; Cao, G.-X.; Mandrus, D.; Kim, Yong-Baek; Paramekanti, A.

    2016-06-01

    We have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO6 and La2MgIrO6 , which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated jeff=1/2 Mott insulators provide clear evidence for gapped spin-wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in jeff=1/2 Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly directional Kitaev interaction is a type of exchange anisotropy which is symmetry allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order by disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry lowering due to lattice distortions can pin the order and enhance the magnon gap. Our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly directional exchange interactions rooted in strong spin-orbit coupling.

  2. Highly anisotropic exchange interactions of jeff=12 iridium moments on the fcc lattice in La2BIrO6 (B=Mg,Zn)

    DOE PAGESBeta

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; Calder, S.; Christianson, A. D.; Cao, G. -X.; Mandrus, D.; Kim, Yong-Baek; Paramekanti, A.

    2016-06-20

    Here we have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites Lamore » $_2$ZnIrO$_6$ and La$_2$MgIrO$_6$, which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated $$j_{\\rm eff}=1/2$$ Mott insulators provide clear evidence for gapped spin wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry-forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in $$j_{\\rm eff}=1/2$$ Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly-directional Kitaev interaction is a type of exchange anisotropy which is symmetry-allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order-by-disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry-lowering due to lattice distortions can pin the order and enhance the magnon gap. In conclusion, our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling.« less

  3. Compressed Genotyping

    PubMed Central

    Erlich, Yaniv; Gordon, Assaf; Brand, Michael; Hannon, Gregory J.; Mitra, Partha P.

    2011-01-01

    Over the past three decades we have steadily increased our knowledge on the genetic basis of many severe disorders. Nevertheless, there are still great challenges in applying this knowledge routinely in the clinic, mainly due to the relatively tedious and expensive process of genotyping. Since the genetic variations that underlie the disorders are relatively rare in the population, they can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group testing, we have developed a cost-effective genotyping protocol to detect carriers for severe genetic disorders. In particular, we have adapted our scheme to a recently developed class of high throughput DNA sequencing technologies. The mathematical framework presented here has some important distinctions from the ’traditional’ compressed sensing and group testing frameworks in order to address biological and technical constraints of our setting. PMID:21451737

  4. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  5. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  6. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe{sub 85.2}Si{sub 1}B{sub 9}P{sub 4}Cu{sub 0.8} soft magnetic alloy

    SciTech Connect

    Nishijima, Masahiko; Matsuura, Makoto; Takenaka, Kana; Takeuchi, Akira; Makino, Akihiro; Ofuchi, Hironori

    2014-05-15

    A role of Cu on the nanocrystallization of an Fe{sub 85.2}Si{sub 1}B{sub 9}P{sub 4}Cu{sub 0.8} alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ∼12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe{sub 3}(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, T{sub x1} = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔG{sub fcc} {sub −} {sub bcc}, which causes phase transition of the Cu clusters from fcc to bcc structure.

  7. In Situ X-ray Diffraction of Forsterite Under Shock Compression to 52 GPa: Time Resolved Observation of Changes in Crystal Structure and Phase

    NASA Astrophysics Data System (ADS)

    Akin, M. C.; Maddox, B.; Teruya, A.; Asimow, P. D.

    2015-12-01

    The Earth's mantle is composed primarily of ferromagnesian silicates, of which Forsterite (Fo) is the magnesium-rich end member of the dominant upper mantle phase, olivine. Fo is thought to undergo a chemical decomposition associated with a structural phase transition when dynamically loaded to 40-71 GPa, but previous inferences about such decomposition have been based only on pressure-density data with no direct phase identification. To obtain direct data on the phase evolution of shocked Fo, synthetic single crystal samples of Mg2SiO4 Fo were loaded to pressures of 52 GPa using a two stage light gas gun. X-ray diffraction (XRD) patterns were collected on the static and the loaded samples in situ using a single pulse Mo Kα anode to provide a 17 keV X-ray source. X-ray polycapillary optics were used to couple the source to the sample. Clear Laue spots were observed in the static images, while the dynamic images show the appearance of new spots at early times and powder-like rings at late times. The angles of the dynamically driven spots and rings overlap with each other and indicate the change in phase of forsterite under pressure through a process that begins with the formation of single crystals and ends with polycrystalline material. Efforts are underway to identify the high-pressure phases from among the library of dense magnesium silicates, and further experiments covering a larger pressure range will be completed shortly. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. In Situ Determination of BCC-, FCC- and HPC-Iron Textures at Simultaneous High- Pressure and -Temperature by Means of the Resistive Heated Radial Diffraction Diamond Anvil Cell (RH-RD-DAC): Implications for the iron core.

    NASA Astrophysics Data System (ADS)

    Liermann, H.; Merkel, S.; Miyagi, L.; Wenk, H.; Shen, G.; Cynn, H.; Evans, W. J.

    2008-12-01

    Radial diffraction in the diamond anvil cell (DAC) has long been used to determine the stress state of materials under non-hydrostatic compression. This technique is also a major tool to investigate textures and infer deformation mechanisms in the earth mantle and core. However, most of these experiments have been conducted at ambient temperatures and therefore the results of these measurements may be difficult to extrapolate to the deep Earth. Here, we present texture data collected at HPCAT sector 16 BMD of the Advanced Photon Source during the plastic deformation of BCC-, FCC- and HPC-iron at simultaneous high-pressure and temperature in the new Resistive Heated Radial Diffraction Diamond Anvil Cell (RH-RD-DAC). Initial results from Rietveld refinements in MAUD indicate that BCC- iron develops a mixed {100} and {111} texture that remains active during heating. Latter is compatible with previous observations on BCC-iron and interpreted as slip along {110}<111>. Texture obtained after formation of FCC-iron at simultaneous high- pressure and temperatures show a pronounced maximum at {110} with minima at {100} and {111}. This texture is typical for FCC metals in compression with slip on {111}<110>. Processing of the HCP-iron textures at high-pressure and -temperature are under way. We will discuss the implications that the experimental results have for the deformation mechanisms of iron at pressure temperature conditions of the inner core.

  9. Formation of Superlattices of Gold Nanoparticles Using Ostwald Ripening in Emulsions: Transition from fcc to bcc Structure.

    PubMed

    Schmitt, Julien; Hajiw, Stéphanie; Lecchi, Amélie; Degrouard, Jéril; Salonen, Anniina; Impéror-Clerc, Marianne; Pansu, Brigitte

    2016-06-30

    An efficient method to form 3D superlattices of gold nanoparticles inside oil emulsion droplets is presented. We demonstrate that this method relies on Ostwald ripening, a well-known phenomenon occurring during the aging of emulsions. The key point is that the nanoparticle concentration inside the smaller droplets is increasing very slowly with time, thus inducing the crystallization of the nanoparticles into superlattices. Using oil-in-water emulsions doped with hydrophobic gold nanoparticles, we demonstrate that this method is efficient for different types of oils (toluene, cyclohexane, dodecane, and hexadecane). 3D superlattices of the nanoparticles are obtained, with dimensions reaching a hundred nanometers. The kinetics of the crystallization depends on the solubility of the oil in water but also on the initial concentration of the gold nanoparticles in oil. This method also provides an innovative way to obtain the complete phase diagram of nanoparticle suspensions with concentration. Indeed, during this slow crystallization process, a transition from a disordered suspension to a fcc structure is observed, followed by a transition toward a bcc structure. This evolution with time provides key results to understand the role played by the ligands located at the surface of the nanoparticles in order to control the type of superlattices which are formed. PMID:27267312

  10. Scaling Laws and Critical Properties for fcc and hcp Metals.

    PubMed

    Desgranges, Caroline; Widhalm, Leanna; Delhommelle, Jerome

    2016-06-16

    The determination of the critical parameters of metals has remained particularly challenging both experimentally, because of the very large temperatures involved, and theoretically, because of the many-body interactions that take place in metals. Moreover, experiments have shown that these systems exhibit an unusually strong asymmetry of their binodal. Recent theoretical work has led to new similarity laws, based on the calculation of the Zeno line and of the underlying Boyle parameters, which provided results for the critical properties of atomic and molecular systems in excellent agreement with experiments. Using the recently developed expanded Wang-Landau (EWL) simulation method, we evaluate the grand-canonical partition function, over a wide range of conditions, for 11 fcc and hcp metals (Ag, Al, Au, Be, Cu, Ir, Ni, Pb, Pd, Pt, and Rh), modeled with a many-body interaction potential. This allows us to calculate the binodal, Zeno line, and Boyle parameters and, in turn, obtain the critical properties for these systems. We also propose two scaling laws for the enthalpy and entropy of vaporization, and identify critical exponents of 0.4 and 1.22 for these two laws, respectively. PMID:27228416

  11. Continuum modeling of plastic flow localization in irradiated fcc metals

    NASA Astrophysics Data System (ADS)

    Po, Giacomo; Ghoniem, Nasr

    2013-11-01

    Under mechanical loading, neutron or ion irradiated metals may develop a mechanical instability characterized by the localization of plastic flow in narrow channels that are cleared of irradiation-induced defects. The resulting highly heterogeneous deformation can play a significant role in crack nucleation, fracture propagation, and premature failure of structural components used in nuclear applications. In this work, we develop a two-dimensional continuum model of plastic flow localization based on the continuum theory of dislocations. This framework allows a mechanism-based description of deformation in which plastic distortion is directly calculated from the evolution of dislocation density tensor fields on each slip system. The dislocation densities mutually interact through the self-consistent stress field derived from the deformation gradient and through back and flow stress corrections. The interaction between dislocation fields and irradiation-induced defects (mainly stacking fault tetrahedra (SFTs) in fcc metals) is twofold. First, the flow stress depends locally on the SFT density. Second, and based on existing molecular dynamics (MD) simulation results, dislocation fluxes are included as sink terms in the evolution equation of the SFT density. The model is implemented numerically using the finite element method (FEM) and simulation results for simple shear loading are presented. It is demonstrated here that small spatial fluctuations in the density of SFTs, coupled with their destruction by dislocation interaction, leads to plastic flow localization.

  12. Improvements in FCC catalyst technology for light hydrocarbon production

    SciTech Connect

    Ritter, R.E.; Habib, E.T.; Peters, A.W.; Rheaume, L.; Thiel, P.G.; Wallace, D.N.; Wormsbecher, R.F.

    1985-03-01

    As the refining industry continues to undergo dramatic changes due to crude pricing, environmental demands, and product demand, cracking catalyst manufacturers continue to make significant strides in the understanding of the processes and products to meet the refiners' needs. This paper builds on information reported to the industry in previous articles, with the aim of keeping the industry informed of the many dramatic changes taking place in cracking catalyst technology. From our vantage point, the key refining industry concerns today are gasoline octane quality due to the lead phase-down, atmospheric emissions due to increasingly strict EPA and local limits on SOx emissions, and catalytic upgrading of resid feeds due to an expected long term price differential between high and low quality crudes. Hence, we focus here on the significant changes in cracking catalyst technology which will help the refiner handle these issues. In particular, we discuss the catalytic enhancement of gasoline octane with Davison's Octacat and GXO catalyst families, the reduction of FCC SOx emissions with Davison's Additive R SOx catalyst, and the passivation of vanadium with Davison's DVT, so that catalyst deactivation is minimized.

  13. Chevron process reduces FCC/coker corrosion and saves energy

    SciTech Connect

    Knowlton, H.E.; Coombs, J.W.; Allen, E.R.

    1980-01-01

    The Chevron Polysulfide process for controlling cyanide-induced corrosion was installed in seven fluid catalytic cracking (FCC) and coker fractionation systems at six Chevron refineries. Besides reducing corrosion, the process conserves energy that would otherwise be required for foul water stripping, and provides environmental benefits that include a reduction in effluent volume due to less-stripped foul water, less ammonia in effluent, low cyanide in the stripped foul-water, additional foul-water stripper capacity, and reduced foul-water stripper corrosion. In all units, the process was economically justified by the energy and additive savings associated with its use (no credits were taken for corrosion benefits). The mechanism by which cyanide induces corrosion and hydrogen blistering, i.e., removal of the protective iron sulfide film, in vapor lines, knockout drums, compressors, heat exchangers, and fractionation columns, and their elimination by the Chevron Polysulfide process, which involves the reaction of purchased ammonium polysulfide with cyanide to form thiocyanate, are discussed based on the above case histories.

  14. Orbitide Composition of the Flax Core Collection (FCC).

    PubMed

    Burnett, Peta-Gaye Gillian; Olivia, Clara Marisa; Okinyo-Owiti, Denis Paskal; Reaney, Martin John Tarsisius

    2016-06-29

    The flax (Linum usitatissimum L.) core collection (FCC) was regenerated in Saskatoon, Saskatchewan and Morden, Manitoba in 2009. Seed orbitide content and composition from successfully propagated plants of 391 accessions were analyzed using high-throughput analyses employing high-performance liquid chromatography (HPLC) with reverse-phase monolithic HPLC columns and diode array detection (HPLC-DAD). Seed from plants regenerated in Morden had comparatively higher orbitide content than those grown in Saskatoon. Concentrations of orbitides encoded by contig AFSQ01016651.1 (1, 3, and 8) were higher than those encoded by AFSQ01025165.1 (6, 13, and 17) for most accessions in both locations. The cultivar 'Primus' from Poland and an unnamed accession (CN 101580 of unknown origin) exhibited the highest ratio of sum of [1,3,8] to a sum of [6,13,17]. Conversely, the lowest orbitide concentrations and ratio of [1,3,8] to [6,13,17] were observed in cultivars 'Hollandia' and 'Z 11637', both from The Netherlands. Orbitide expression did not correlate with flax morphological and other chemical traits. PMID:27256931

  15. Properties of Helium Defects in BCC and FCC Metals Investigated with Density Functional Theory

    SciTech Connect

    Zu, Xiaotao T.; Yang, Li; Gao, Fei; Peng, SM; Heinisch, Howard L.; Long, XG; Kurtz, Richard J.

    2009-08-03

    The relative stability of single He defects in bcc and fcc metals is investigated using ab initio calculations based on density functional theory (DFT). The results indicate that the tetrahedral position is energetically more favorable for a He interstitial than the octahedral site in bcc metals, but the relative stability of He defects in fcc metals varies, depending on local environments. The He formation energies in bcc Fe and fcc Ni at the tetrahedral and octahedral positions with and without spin polarization are investigated. It is of interest to find that the magnetism of host atoms does not directly affect the relative stabilities of He in interstitial sites in bcc Fe and fcc Ni.

  16. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    NASA Astrophysics Data System (ADS)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  17. Faceting and commensurability in crystal structures of colloidal thin films.

    PubMed

    Ramiro-Manzano, F; Meseguer, F; Bonet, E; Rodriguez, I

    2006-07-14

    This Letter investigates the influence of finite size effects on the particle arrangement of thin film colloidal crystals. A rich variety of crystallographic faceting with large single domain microcrystallites is shown. Optical reflectance experiments together with scanning electron microscopy permit the identification of the crystal symmetry and the facet orientation, as well as the exact number of monolayers. When the cell thickness is not commensurable with a high symmetry layering, particles arrange themselves in a periodic distribution of (111)- and (100)-orientated face centered cubic (fcc) microcrystallites separated by planar defects. These structures can be described as a fcc ordering orientated along a vicinal surface, modified by a periodic distribution of fcc (111) stacking faults. PMID:16907485

  18. Compression and venous ulcers.

    PubMed

    Stücker, M; Link, K; Reich-Schupke, S; Altmeyer, P; Doerler, M

    2013-03-01

    Compression therapy is considered to be the most important conservative treatment of venous leg ulcers. Until a few years ago, compression bandages were regarded as first-line therapy of venous leg ulcers. However, to date medical compression stockings are the first choice of treatment. With respect to compression therapy of venous leg ulcers the following statements are widely accepted: 1. Compression improves the healing of ulcers when compared with no compression; 2. Multicomponent compression systems are more effective than single-component compression systems; 3. High compression is more effective than lower compression; 4. Medical compression stockings are more effective than compression with short stretch bandages. Healed venous leg ulcers show a high relapse rate without ongoing treatment. The use of medical stockings significantly reduces the amount of recurrent ulcers. Furthermore, the relapse rate of venous leg ulcers can be significantly reduced by a combination of compression therapy and surgery of varicose veins compared with compression therapy alone. PMID:23482538

  19. Crystal structures and compressibility of novel iron borides Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} synthesized at high pressure and high temperature

    SciTech Connect

    Bykova, E.; Gou, H.; Bykov, M.; Hanfland, M.; Dubrovinsky, L.; Dubrovinskaia, N.

    2015-10-15

    We present here a detailed description of the crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} with various iron content (x=1.01(1), 1.04(1), 1.32(1)), synthesized at high pressures and high temperatures. As revealed by high-pressure single-crystal X-ray diffraction, the structure of Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds, which make it as stiff as diamond in one crystallographic direction. The volume compressibility of Fe{sub 2}B{sub 7} (the bulk modulus K{sub 0}= 259(1.8) GPa, K{sub 0}′= 4 (fixed)) is even lower than that of FeB{sub 4} and comparable with that of MnB{sub 4}, known for high bulk moduli among 3d metal borides. Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B, in which Fe atoms occupy an interstitial position. Fe{sub x}B{sub 50} does not show considerable anisotropy in the elastic behavior. - Graphical abstract: Crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} (x=1.01(1), 1.04(1), 1.32(1)). - Highlights: • Novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50}, were synthesized under HPHT conditions. • Fe{sub 2}B{sub 7} has a unique orthorhombic structure (space group Pbam). • Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds that results in high bulk modulus. • Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B composed of B{sub 12} icosahedra. • In Fe{sub x}B{sub 50} intraicosahedral bonds are stiffer than intericosahedral ones.

  20. Compressive beamforming.

    PubMed

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2014-07-01

    Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex optimization. The DOA estimation problem is formulated in the CS framework and it is shown that CS has superior performance compared to traditional DOA estimation methods especially under challenging scenarios such as coherent arrivals and single-snapshot data. An offset and resolution analysis is performed to indicate the limitations of CS. It is shown that the limitations are related to the beampattern, thus can be predicted. The high-resolution capabilities and the robustness of CS are demonstrated on experimental array data from ocean acoustic measurements for source tracking with single-snapshot data. PMID:24993212

  1. Small scale mechanical testing techniques and application to evaluate a single crystal nickel superalloy

    NASA Astrophysics Data System (ADS)

    Shade, Paul A.

    Small scale mechanical testing affords the possibility of measuring constitutive materials properties and studying intrinsic size effects on mechanical behavior. Accordingly, Uchic and colleagues developed a microcompression testing technique about five years ago. Published studies employing this technique have clearly demonstrated that size-scale effects exist independently of other previously known size effects such as nucleation-controlled deformation (whiskers) or the presence of imposed strain gradients (nanoindentation). The overwhelming majority of these studies have focused on metals with the FCC crystal structure. In this study, the microcompression test methodology was employed to evaluate Rene N5, an engineering alloy with a heterogeneous microstructure containing features which vary over a range of length scales. Compression samples were tested using sample diameters in a range from 2.5 to 80 mum, while selectively testing samples from both dendrite core and interdendritic regions. A size-dependent flow response, consistent with exhaustion hardening, was observed. Region-specific properties were also observed, where samples tested from interdendritic regions had varied and on average decreased flow stress values compared to those tested from dendrite core regions. A representative sample diameter, where bulk properties would be matched, was extrapolated to be 400 mum. Additionally, a custom in-situ SEM testing device for performing uniaxial mechanical tests on micrometer-scale samples was employed. This device allows one to access both tensile and compressive test modes, and also directly observe the spatial and temporal distribution of deformation events through continuous recording of SEM images. Microcompression experiments with this device demonstrated that the degree of lateral constraint imposed by the compression platen affects many aspects of the observed response, such as the strain hardening rate, crystal rotations, elastic modulus

  2. The frustrated fcc antiferromagnet Ba2 YOsO6: Structural characterization, magnetic properties and neutron scattering studies

    DOE PAGESBeta

    Kermarrec, E.; Marjerrison, Casey A.; Thompson, C. M.; Maharaj, Dalini D.; Levin, K.; Kroeker, S.; Granroth, Garrett E.; Flacau, Roxana; Yamani, Zahra; Greedan, John E.; et al

    2015-02-26

    Here we report the crystal structure, magnetization, and neutron scattering measurements on the double perovskite Ba2 YOsO6. The Fmmore » $$\\bar{3}$$m space group is found both at 290 K and 3.5 K with cell constants a0=8.3541(4) Å and 8.3435(4) Å, respectively. Os5+ (5d3) ions occupy a nondistorted, geometrically frustrated face-centered-cubic (fcc) lattice. A Curie-Weiss temperature θ ~₋700 K suggests the presence of a large antiferromagnetic interaction and a high degree of magnetic frustration. A magnetic transition to long-range antiferromagnetic order, consistent with a type-I fcc state below TN~69 K, is revealed by magnetization, Fisher heat capacity, and elastic neutron scattering, with an ordered moment of 1.65(6) μB on Os5+. The ordered moment is much reduced from either the expected spin-only value of ~3 μB or the value appropriate to 4d3 Ru5+ in isostructural Ba2 YRuO6 of 2.2(1) μB, suggesting a role for spin-orbit coupling (SOC). Triple-axis neutron scattering measurements of the order parameter suggest an additional first-order transition at T=67.45 K, and the existence of a second-ordered state. We find time-of-flight inelastic neutron results reveal a large spin gap Δ~17 meV, unexpected for an orbitally quenched, d3 electronic configuration. In conclusion, we discuss this in the context of the ~5 meV spin gap observed in the related Ru5+,4d3 cubic double perovskite Ba2YRuO6, and attribute the ~3 times larger gap to stronger SOC present in this heavier, 5d, osmate system.« less

  3. CFD code development for performance evaluation of a pilot-scale FCC riser reactor

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Zhou, C.Q.; Golchert, B.; Petrick, M.

    1997-09-01

    Fluid Catalytic Cracking (FCC) is an important conversion process for the refining industry. The improvement of FCC technology could have a great impact on the public in general by lowering the cost of transportation fuel. A recent review of the FCC technology development by Bienstock et al. of Exxon indicated that the use of computational fluid dynamics (CFD) simulation can be very effective in the advancement of the technology. Theologos and Markatos used a commercial CFD code to model an FCC riser reactor. National Laboratories of the U.S. Department of Energy (DOE) have accumulated immense CFD expertise over the years for various engineering applications. A recent DOE survey showed that National Laboratories are using their CFD expertise to help the refinery industry improve the FCC technology under DOE`s Cooperative Research and Development Agreement (CRADA). Among them are Los Alamos National Laboratory with Exxon and Amoco and Argonne National Laboratory (ANL) with Chevron and UOP. This abstract briefly describes the current status of ANL`s work. The objectives of the ANL CRADA work are (1) to use a CFD code to simulate FCC riser reactor flow and (2) to evaluate the impacts of operating conditions and design parameters on the product yields. The CFD code used in this work was originally developed for spray combustion simulation in early 1980 at Argonne. It has been successfully applied to diagnosing a number of multi-phase reacting flow problems in a magneto-hydrodynamic power train. A new version of the CFD code developed for the simulation of the FCC riser flow is called Integral CRacKing FLOw (ICRKFLO). The CFD code solves conservation equations of general flow properties for three phases: gaseous species, liquid droplets, and solid particles. General conservation laws are used in conjunction with rate equations governing the mass, momentum, enthalpy, and species for a multi-phase flow with gas species, liquid droplets, and solid particles.

  4. Growth of coronene on (100)- and (111)-surfaces of fcc-crystals

    NASA Astrophysics Data System (ADS)

    Huempfner, Tobias; Sojka, Falko; Forker, Roman; Fritz, Torsten

    2015-09-01

    The growth of coronene thin films is studied via low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) comparing metal substrates with different lattice constants, different surface symmetry, and also with surface passivation, namely Cu(111), Ag(111), Ag(100), and (100)-terminated KCl/Ag(100). In particular, we investigate the evolution of the coronene lattice parameters upon coverage- and temperature-variation. On the pristine metal surfaces we observe disordered phases at low coverage. Further deposition leads to hexagonal arrangement of the molecules. With increasing coverage the lattice constant decreases continuously, whereas on Cu(111) the molecular unit cell additionally rotates w.r.t. the substrate lattice. We also discuss the interaction mechanisms that are responsible for this behavior. Due to the continuous change in the lattice dimensions we observe many incommensurate structures that were stable during our measurements, however the close-packed structures we found were always commensurate. The use of a passivation layer leads to the formation of a bulk-like structure consisting of molecules adsorbed in an upright standing manner which is stable at low temperatures only.

  5. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift

    NASA Astrophysics Data System (ADS)

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-01

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K.During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05512a

  6. Ultra-high strain rate behavior of FCC nanostructures

    NASA Astrophysics Data System (ADS)

    Crum, Ryan Scott

    This work addresses the influence of ultra-high strain rates loading observed in our world today via ballistics, explosions and astrophysical collisions on well-defined metal structures. There is a plentiful amount of research examining metals at a macroscopic level that are subjected to ballistics and explosions but observing the microstructure is difficult as those procedures are fairly destructive testing mechanisms. Therefore, to understand the true mechanisms that occur in these loading situations a more novel technique is necessary. Modifications were made to the Laser Spallation Technique in order to load structures under a single transient wave pulse. This study characterized FCC nanostructures shock loaded at extreme pressures, strain rates and temperatures. By utilizing nanostructures, extremely large values of stain could be produced within the structure. It was first observed that at lower laser fluence levels and subsequently low stress states that there was a chemical activation of the surface of Cu nanopillars. This occurred due to nanofacet formation on the surface of the nanopillars which left pristine Cu surfaces to recombine with the environment. Dislocation motion was also observed and clearly identified in Cu nanopillars, Cu nanobenches and Al nanopillars. Further studies analyzed Cu nanopillars subjected to higher laser fluence generated stress waves, which led to bending and axial shortening deformation. These deformations were observed at laser fluence values of 144 kJ/m2 for bending and 300 kJ/m 2 for bulging similar to that of Taylor Impact experiments. To explore an even more extreme loading environment, a specialized test setup was employed to cryogenically cool the copper nanopillars to a temperature of 83K in an attempt to elucidate brittle behavior. Under these loading conditions the nanopillars continued to deform in a ductile manner but with delayed onset of both bending deformation and bulging deformation compared to the room

  7. Molecular dynamics simulations of the mechanisms controlling the propagation of bcc/fcc semi-coherent interfaces in iron

    NASA Astrophysics Data System (ADS)

    Ou, X.; Sietsma, J.; Santofimia, M. J.

    2016-06-01

    Molecular dynamics simulations have been used to study the effects of different orientation relationships between fcc and bcc phases on the bcc/fcc interfacial propagation in pure iron systems at 300 K. Three semi-coherent bcc/fcc interfaces have been investigated. In all the cases, results show that growth of the bcc phase starts in the areas of low potential energy and progresses into the areas of high potential energy at the original bcc/fcc interfaces. The phase transformation in areas of low potential energy is of a martensitic nature while that in the high potential energy areas involves occasional diffusional jumps of atoms.

  8. Paramagnetic Meissner effect at high fields in YCaBaCuO single crystal

    NASA Astrophysics Data System (ADS)

    Dias, F. T.; Vieira, V. N.; Falck, A. L.; da Silva, D. L.; Pureur, P.; Schaf, J.

    2012-12-01

    We report on systematic magnetization experiments in an Y1-xCaxBa2Cu3O7-δ (x = 0.25 at%) single crystal. The magnetization experiments were made using a superconducting quantum interference device magnetometer (SQUID). Magnetic moments were measured as functions of the temperature according to the zero-field cooling (ZFC), field-cooled cooling (FCC), and field-cooled warming (FCW) prescriptions. The time-dependence of the FC magnetization at fixed magnetic fields was studied. Magnetic fields up to 50 kOe were applied and a paramagnetic response related to the superconducting state was observed when strong enough fields were applied parallel to the c axis. The magnitude of the high field paramagnetic moment (HFPME) increases when the field is augmented. The effect shows strong and anomalous time dependence, such that the paramagnetic moment increases as a function of the time. An YBa2Cu3O7-δ single crystal exhibiting the same effect was used for comparison. We discuss our results in terms of the flux compression scenario into the sample modulated by Ca concentration.

  9. Deformation of Single Crystal Molybdenum at High Pressure

    SciTech Connect

    Bonner, B P; Aracne, C; Farber, D L; Boro, C O; Lassila, D H

    2004-02-24

    Single crystal samples of micron dimensions oriented in the [001] direction were shortened 10 to 40% in uniaxial compression with superposed hydrostatic pressure to begin investigation of how the onset of yielding evolves with pressure. A testing machine based on opposed anvil geometry with precision pneumatic control of the applied force and capability to measure sub micron displacements was developed to produce shape changing deformation at pressure. The experiments extend observations of pressure dependent deformation to {approx}5Gpa at shortening rates of {approx}2*10{sup -4}. Samples have been recovered for post run characterization and analysis to determine if deformation mechanisms are altered by pressure. Experiments under hydrostatic pressure provide insight into the nature of materials under extreme conditions, and also provide a means for altering deformation behavior in a controlled fashion. The approach has a long history demonstrating that pressure enhances ductility in general, and produces enhanced hardening relative to that expected from normal cold work in the BCC metals Mo, Ta and Nb{sup 2}. The pressure hardening is in excess of that predicted from the measured increase in shear modulus at pressure, and therefore is likely due to a dislocation mechanism, such as suppression of kink pair formation or the interaction of forest dislocation cores, and not from lattice resistance. The effect has not been observed in FCC metals, suggesting a fundamental difference between deformation mechanisms at pressure for the two classes. The purpose of this letter is to investigate the origin of pressure hardening with new experiments that extend the pressure range beyond 3 GPa, the upper limit of conventional large sample (1cm{sup 3}) testing methods. Most previous high pressure deformation studies have been on poly crystals, relying on model dependent analysis to infer the maximum deviatoric stress that a deformed sample can support. In one experiment, a

  10. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift.

    PubMed

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-28

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K. PMID:26415716

  11. Compressive Hyperspectral Imaging With Side Information

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Tsai, Tsung-Han; Zhu, Ruoyu; Llull, Patrick; Brady, David; Carin, Lawrence

    2015-09-01

    A blind compressive sensing algorithm is proposed to reconstruct hyperspectral images from spectrally-compressed measurements.The wavelength-dependent data are coded and then superposed, mapping the three-dimensional hyperspectral datacube to a two-dimensional image. The inversion algorithm learns a dictionary {\\em in situ} from the measurements via global-local shrinkage priors. By using RGB images as side information of the compressive sensing system, the proposed approach is extended to learn a coupled dictionary from the joint dataset of the compressed measurements and the corresponding RGB images, to improve reconstruction quality. A prototype camera is built using a liquid-crystal-on-silicon modulator. Experimental reconstructions of hyperspectral datacubes from both simulated and real compressed measurements demonstrate the efficacy of the proposed inversion algorithm, the feasibility of the camera and the benefit of side information.

  12. Phase diagram of power law and Lennard-Jones systems: Crystal phases

    SciTech Connect

    Travesset, Alex

    2014-10-28

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed.

  13. Anisotropy of tensile strength and fracture mode of perfect face-centered-cubic crystals

    NASA Astrophysics Data System (ADS)

    Wang, R. F.; Xu, J.; Qu, R. T.; Liu, Z. Q.; Zhang, Z. F.

    2015-06-01

    This study presents an effective method to calculate the ideal tensile strength of six face-centered-cubic (fcc) crystals (Cu, Au, Ni, Pt, Al, and Ir) along an arbitrary tensile direction by considering the coupling effect of normal stress and shear stress on a given crystallographic plane. Meanwhile, the fracture modes of the six crystals can also be derived from the competition between shear and cleavage fracture along different crystallographic planes. The results show that both the intrinsic factors (the ideal shear strength and cleavage strength of low-index planes) and the orientation may affect the tensile strength and fracture modes of ideal fcc crystals, which may give the reliable strength limit of fcc metals and well interpret the observed high strength in nano-scale mechanical experiments.

  14. Cubic to tetragonal crystal lattice reconstruction during ordering or decomposition

    SciTech Connect

    Cheong, Byung-kl

    1992-09-01

    This thesis studied thermodynamic stability and morphology of product phases in diffusional phase transformations involving cubic-to-tetragonal crystal lattice reconstructions. Two different kinds of diffusional transformations were examined: L1{sub 0} ordering (fcc to fct lattice change) and decomposition of off-stoichiometric B2 ordering alloys accompanying bcc to fcc Bain transformation. In the first case, Fe-45 at.% Pd alloys were studied by TEM; in the second, the Bain strain relaxation during decomposition of hyper-eutectoid Cu-9.04 wt% Be alloy was studied. CuAu and InMg were also studied.

  15. Topology of the spin-polarized charge density in bcc and fcc iron.

    PubMed

    Jones, Travis E; Eberhart, Mark E; Clougherty, Dennis P

    2008-01-11

    We report the first investigation of the topology of spin-polarized charge density, specifically in bcc and fcc iron. While the total spin-density is found to possess the topology of the non-magnetic prototypical structures, the spin-polarized charge densities of bcc and high-spin fcc iron are atypical. In these cases, the two spin densities are correlated: the spin-minority electrons have directional bond paths and deep minima, while the spin-majority electrons fill these holes, reducing bond directionality. The presence of distinct spin topologies allows us to show that the two phase changes seen in fcc iron (paramagnetic to low-spin and low-spin to high-spin) are different. The former follows the Landau symmetry-breaking paradigm and proceeds without a topological transformation, while the latter involves a topological catastrophe. PMID:18232817

  16. Topology of the Spin-Polarized Charge Density in bcc and fcc Iron

    NASA Astrophysics Data System (ADS)

    Jones, Travis E.; Eberhart, Mark E.; Clougherty, Dennis P.

    2008-01-01

    We report the first investigation of the topology of spin-polarized charge density, specifically in bcc and fcc iron. While the total spin-density is found to possess the topology of the non-magnetic prototypical structures, the spin-polarized charge densities of bcc and high-spin fcc iron are atypical. In these cases, the two spin densities are correlated: the spin-minority electrons have directional bond paths and deep minima, while the spin-majority electrons fill these holes, reducing bond directionality. The presence of distinct spin topologies allows us to show that the two phase changes seen in fcc iron (paramagnetic to low-spin and low-spin to high-spin) are different. The former follows the Landau symmetry-breaking paradigm and proceeds without a topological transformation, while the latter involves a topological catastrophe.

  17. Kinetics of disorder-to-fcc phase transition via an intermediate bcc state

    SciTech Connect

    Liu Yongsheng; Nie Huifen; Bansil, Rama; Steinhart, Milos; Bang, Joona; Lodge, Timothy P.

    2006-06-15

    Time-resolved small-angle x-ray scattering measurements reveal that a long-lived intermediate bcc state forms when a poly(styrene-b-isoprene) diblock copolymer solution in an isoprene selective solvent is rapidly cooled from the disordered micellar fluid at high temperature to an equilibrium fcc state. The kinetics of the epitaxial growth of the [111] fcc peak from the [110] bcc peak was obtained by fitting the scattering data to a simple model of the transformation. The growth of the [111] fcc peak agrees with the Avrami model of nucleation and growth kinetics with an exponent n=1.4, as does the initial decay of the [110] bcc peak, with an exponent n=1.3. The data were also found to be in good agreement with the Cahn model of grain boundary nucleation and growth.

  18. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC.

    PubMed

    Liu, Jin-Xun; Su, Hai-Yan; Sun, Da-Peng; Zhang, Bing-Yan; Li, Wei-Xue

    2013-11-01

    Identifying the structure sensitivity of catalysts in reactions, such as Fischer-Tropsch synthesis from CO and H2 over cobalt catalysts, is an important yet challenging issue in heterogeneous catalysis. Based on a first-principles kinetic study, we find for the first time that CO activation on hexagonal close-packed (HCP) Co not only has much higher intrinsic activity than that of face centered-cubic (FCC) Co but also prefers a different reaction route, i.e., direct dissociation with HCP Co but H-assisted dissociation on the FCC Co. The origin is identified from the formation of various denser yet favorable active sites on HCP Co not available for FCC Co, due to their distinct crystallographic structure and morphology. The great dependence of the activity on the crystallographic structure and morphology of the catalysts revealed here may open a new avenue for better, stable catalysts with maximum mass-specific reactivity. PMID:24147726

  19. Diffusion-Controlled Anisotropic Growth of Stable and Metastable Crystal Polymorphs in the Phase-Field Crystal Model

    NASA Astrophysics Data System (ADS)

    Tegze, G.; Gránásy, L.; Tóth, G. I.; Podmaniczky, F.; Jaatinen, A.; Ala-Nissila, T.; Pusztai, T.

    2009-07-01

    We use a simple density functional approach on a diffusional time scale, to address freezing to the body-centered cubic (bcc), hexagonal close-packed (hcp), and face-centered cubic (fcc) structures. We observe faceted equilibrium shapes and diffusion-controlled layerwise crystal growth consistent with two-dimensional nucleation. The predicted growth anisotropies are discussed in relation with results from experiment and atomistic simulations. We also demonstrate that varying the lattice constant of a simple cubic substrate, one can tune the epitaxially growing body-centered tetragonal structure between bcc and fcc, and observe a Mullins-Sekerka-Asaro-Tiller-Grinfeld-type instability.

  20. Strain hardening of fcc metal surfaces induced by microploughing

    SciTech Connect

    Day, R.D.; Dickerson, R.M.; Russell, P.E.

    1998-12-01

    Microploughing experiments were used as a method for better understanding the ploughing mechanism in gold and iridium single crystals. The plough depths ranged from 20 nm in iridium to 1,600 nm in gold. Yield stress profiles and TEM analyses indicate that both materials strain harden even when very small volumes of material are involved. Strain hardening theory, as applied to bulk material, is useful in analyzing the results.

  1. Spent fluid catalytic cracking catalyst (FCC) applications in the preparation of hydraulic binders: Pozzolanic properties study

    NASA Astrophysics Data System (ADS)

    Velazquez Rodriguez, Sergio

    At the present work the replacement of Portland cement in pastes and mortars by spent fluid catalytic cracking catalyst (FCC) is studied. The study has been focused in four physicochemical characterization, hydrated lime/catalyst and cement/catalyst pastes and mortars studies, and environmental impact aspects. The FCC characterization establishes that it is a silicoaluminate, having a mainly amorphous structure, with a great specific surface, and that is necessary its mechanical activation (grinding) to obtain a pozzolanic behaviour material. The reactivity was studied by: thermogravimetry, X ray diffractometry, aqueous media electrical conductivity measurements, Fourier transform infrared spectroscopy, scanning electron microscopy, mechanical strength development evaluation and cementing effectiveness k-factor evaluation. The very high pozzolanic activity of the material has been demonstrated, besides that this reactivity has been superior to others similar products such as the metakaolin. The products formed in the hydration, pozzolanic and hydration catalysis of cement reactions have been studied, comparing the reactivity characteristics with others better known pozzolans. The nature of the reaction products between FCC and hydrated lime is similar to the ones formed by the metakaolin, being fundamentally calcium silicate hydrates and hydrated gehlenite, and their formation allow to obtain microstructures with higher mechanical strength. The possibility of preparation materials containing cement/FCC with improved mechanical strength and drying shrinkage has been demonstrated, compared to homologous materials without ground FCC. The optimal FCC dosage for the lime fixation maximization has been determined, showing a pozzolanic behaviour similar to metakaolin, nevertheless very superior to others studied pozzolans, behaviour that is improved with the aid of certain chemical activators, and with the increasing of the curing temperature. Measurements of electrical

  2. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  3. 76 FR 12733 - Shenzhen Tangreat Technology Co., Ltd., Grantee of Equipment Authorization FCC ID No. XRLTG-VIPJAMM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... COMMISSION Shenzhen Tangreat Technology Co., Ltd., Grantee of Equipment Authorization FCC ID No. XRLTG... hearing proceeding by directing Shenzhen Tangreat Technology Co., Ltd. (``Shenzhen''), Grantee of... Technology Co., Ltd. (``Shenzhen'') to show cause why the equipment authorization it holds under FCC ID...

  4. Complete basis set limit second-order Møller-Plesset calculations for the fcc lattices of neon, argon, krypton, and xenon.

    PubMed

    Hermann, Andreas; Schwerdtfeger, Peter

    2009-12-28

    Complete basis set (CBS) limit calculations using second-order Møller-Plesset (MP2) theory for electron correlation within a many-body expansion of the interaction potential up to third order are carried out for the fcc lattices of Ne, Ar, Kr, and Xe. Lattice constants and cohesive energies from recent localized MP2 solid-state calculations by Halo et al. [Chem. Phys. Lett. 467, 294 (2009)] are in reasonable agreement with our CBS limit results. A detailed analysis reveals that MP2 severely underestimates long-range three-body effects, thus the Axilrod-Teller term is incorrectly described causing bond contractions for all rare gas solids considered. Further, any deviations in the MP2 lattice constant, cohesive energy, and bulk modulus can be traced back to inaccuracies in the binding energy and equilibrium distance of the rare gas dimer. Without inclusion of phonon dispersion, MP2 prefers the hcp over the fcc crystal structure for all rare gas solids considered. PMID:20059080

  5. 75 FR 34450 - FCC to Hold Open Commission Meeting Thursday, June 17, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... COMMISSION FCC to Hold Open Commission Meeting Thursday, June 17, 2010 DATES: June 10, 2010. The Federal Communications Commission will hold an Open Meeting on the subject listed below on Thursday, June 17, 2010, which... consideration at the open meeting on June 17. BUREAU SUBJECT OFFICE OF THE TITLE: Framework GENERAL COUNSEL....

  6. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process.

    PubMed

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-01-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration. PMID:27270486

  7. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false (CB Rule 28) How do I contact the FCC? 95.428 Section 95.428 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other Things You Need to Know §...

  8. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false (CB Rule 28) How do I contact the FCC? 95.428 Section 95.428 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other Things You Need to Know §...

  9. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225 Section 95.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other Things You Need to Know §...

  10. 47 CFR 95.422 - (CB Rule 22) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false (CB Rule 22) How do I answer correspondence from the FCC? 95.422 Section 95.422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  11. 47 CFR 95.422 - (CB Rule 22) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false (CB Rule 22) How do I answer correspondence from the FCC? 95.422 Section 95.422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  12. 47 CFR 95.422 - (CB Rule 22) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (CB Rule 22) How do I answer correspondence from the FCC? 95.422 Section 95.422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  13. 47 CFR 95.422 - (CB Rule 22) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false (CB Rule 22) How do I answer correspondence from the FCC? 95.422 Section 95.422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  14. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225 Section 95.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other Things You Need to Know §...

  15. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225 Section 95.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other Things You Need to Know §...

  16. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (CB Rule 28) How do I contact the FCC? 95.428 Section 95.428 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other Things You Need to Know §...

  17. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225 Section 95.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other Things You Need to Know §...

  18. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false (CB Rule 28) How do I contact the FCC? 95.428 Section 95.428 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other Things You Need to Know §...

  19. 47 CFR 95.422 - (CB Rule 22) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false (CB Rule 22) How do I answer correspondence from the FCC? 95.422 Section 95.422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other...

  20. 47 CFR 95.225 - (R/C Rule 25) How do I contact the FCC?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (R/C Rule 25) How do I contact the FCC? 95.225 Section 95.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other Things You Need to Know §...

  1. 47 CFR 95.428 - (CB Rule 28) How do I contact the FCC?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false (CB Rule 28) How do I contact the FCC? 95.428 Section 95.428 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Citizens Band (CB) Radio Service Other Things You Need to Know §...

  2. Exchange coupled L10-FePt/fcc-FePt nanomagnets: Synthesis, characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Srivastava, Sachchidanand; Gajbhiye, Namdeo S.

    2016-03-01

    We report synthesis, characterization and magnetic properties of exchange-coupled L10-FePt/fcc-FePt nanomagnets. Structural and morphological characterization of exchange-coupled L10-FePt/fcc-FePt was carried out by powder X-ray diffraction, Mössbauer spectroscopy and transmission electron microscopy. Rietveld refinement of powder X-ray diffraction pattern has been used to quantify L10-FePt and fcc-FePt phases present in samples. Room temperature Mössbauer spectroscopy showed sextets of both L10-FePt and fcc-FePt phases with their respective hyperfine interaction parameters. Transmission electron microscopic (TEM and HRTEM) images confirmed nanocrystalline nature of exchange-coupled nanomagnets with particle size ranges from 15 nm to 50 nm after annealing for different time at 700 °C. Room temperature magnetic studies showed ferromagnetic nature of nanomagnets and maximum energy product (BH)max~10.92 MGOe was obtained for sample containing 89.0% volume fraction of L10-FePt phase.

  3. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    NASA Astrophysics Data System (ADS)

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-06-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  4. 76 FR 69738 - Revised 2011 Annual Telecommunications Reporting Worksheet (FCC Form 499-A) and Accompanying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ...-interconnected VoIP filers subject to TRS contribution obligations must submit the FCC Form 499-A to register... Relay Services Fund (TRS Fund). The revisions to the Form and accompanying instructions include the... for non-interconnected VoIP service providers with interstate end-user revenues subject to TRS...

  5. 47 CFR 11.21 - State and Local Area plans and FCC Mapbook.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false State and Local Area plans and FCC Mapbook. 11.21 Section 11.21 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM... emergency alert system is capable of initiating EAS messages formatted in the Common Alerting Protocol...

  6. 47 CFR 11.21 - State and Local Area plans and FCC Mapbook.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false State and Local Area plans and FCC Mapbook. 11.21 Section 11.21 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM... emergency alert system is capable of initiating EAS messages formatted in the Common Alerting Protocol...

  7. 47 CFR 11.21 - State and Local Area plans and FCC Mapbook.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false State and Local Area plans and FCC Mapbook. 11.21 Section 11.21 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EMERGENCY ALERT SYSTEM... emergency alert system is capable of initiating EAS messages formatted in the Common Alerting Protocol...

  8. Phonons transmission by thin films sandwiched between two similar fcc structures

    NASA Astrophysics Data System (ADS)

    Belkacemi, Ghania; Bourahla, Boualem

    2015-09-01

    An analytical and numerical formalism are developed to study the influence of the sandwiched atomic films on the vibration properties and phonon transmission modes in fcc waveguides. The model system consists of two identical semi-infinite fcc leads joined by ultrathin atomic films in between. The matching technique is applied to calculate the local Green's functions for the irreducible set of sites that constitute the inhomogeneous domain. Numerical results are presented for the reflection/transmission, total phonon transmittance and localized vibration states in considered fcc lattices. The results show that vibrational properties of the sandwich materials are strongly dependent on the scattering frequency, the thickness of the insured films, incidence angles and elastic boundary conditions. We note that some of the fluctuations, observed in the vibration spectra, are related to Fano resonances, they are due to the coherent coupling between travelling phonons and the localized vibration modes in the neighborhood of the nanojunction domains. The number of localized modes which interact with the propagating modes of the continuum is proportional to the number of the sandwiched Slabs in the interfacial zone. The results give also the effect of the sandwiched ultrathin films on elastic waves propagation by atomic interfaces in fcc lattices.

  9. Government Ownership Restrictions and Efficiency: The Case of the FCC's Dupoply Rule.

    ERIC Educational Resources Information Center

    Anderson, Keith B.; Woodbury, John R.

    Recently the Federal Communications Commission (FCC) has been considering modifications to its regulations governing local and national media ownership and has indicated more interest in the efficiency consequences of the regulations, including those that might arise from common ownership of multiple radio stations. This paper seeks to determine…

  10. The FCC's AM Stereo Experiment: Seven Years in the Uncharted Broadcast Marketplace.

    ERIC Educational Resources Information Center

    Huff, W. A. Kelly

    To examine the success of the Federal Communications Commission's (FCC) 1982 decision not to select a standard transmission system for AM stereophonic broadcasting (instead leaving it to the marketplace), this paper documents and analyzes the first 7 years of the AM stereo marketplace. Following an explanatory introduction, the paper's first…

  11. Letter of Complaint to the FCC Against the Columbia Broadcasting System.

    ERIC Educational Resources Information Center

    Council on Children, Media, and Merchandising, Washington, DC.

    The Council on Children, Media, and Merchandising, in a letter to the Federal Communication Commission (FCC), issued a formal complaint against the Columbia Broadcasting System (CBS). The Council charges that CBS has failed to meet its public interest obligations, as well as its obligations under the fairness doctrine, with respect to advertising…

  12. The Ignominious Death of FCC Docket 19142: Ending the Crusade for Children's Television.

    ERIC Educational Resources Information Center

    McGregor, Michael A.

    On December 22, 1983, the Federal Communications Commission formally ended its consideration of rule making for children's television programing. Opponents of government regulation view the FCC's decision as a victory for the First Amendment freedoms of speech and the press; proponents of mandatory children's programing guidelines feel that the…

  13. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    PubMed Central

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-01-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration. PMID:27270486

  14. Learning in compressed space.

    PubMed

    Fabisch, Alexander; Kassahun, Yohannes; Wöhrle, Hendrik; Kirchner, Frank

    2013-06-01

    We examine two methods which are used to deal with complex machine learning problems: compressed sensing and model compression. We discuss both methods in the context of feed-forward artificial neural networks and develop the backpropagation method in compressed parameter space. We further show that compressing the weights of a layer of a multilayer perceptron is equivalent to compressing the input of the layer. Based on this theoretical framework, we will use orthogonal functions and especially random projections for compression and perform experiments in supervised and reinforcement learning to demonstrate that the presented methods reduce training time significantly. PMID:23501172

  15. Chromium removal by zeolite-rich materials obtained from an exhausted FCC catalyst: Influence of chromium incorporation on the sorbent structure.

    PubMed

    Gonzalez, Maximiliano R; Pereyra, Andrea M; Torres Sánchez, Rosa M; Basaldella, Elena I

    2013-10-15

    A spent FCC catalyst was converted into a zeolitic mixture, and the product obtained was afterward used as trapping material for Cr(III) species frequently found in aqueous solutions. Eventual changes in the sorbent structure produced by Cr incorporation were studied by different characterization techniques such as point of zero charge determinations (PZC), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and infrared absorption (FTIR). The XRD and FTIR analyses indicated that chromium incorporation produces an amorphization of the material, and PZC measurements show no surface adsorption of charged chromium species. SEM and EDX analyses clearly show that after chromium sorption, the initial microspheroidal catalyst morphology was maintained, and the presence of chromium species was mainly detected in the outer microsphere surface, where the zeolite crystals were hydrothermally grown. PMID:23910499

  16. Tailoring of crystal phase and Néel temperature of cobalt monoxides nanocrystals with synthetic approach conditions

    NASA Astrophysics Data System (ADS)

    Ravindra, A. V.; Behera, B. C.; Padhan, P.; Lebedev, O. I.; Prellier, W.

    2014-07-01

    Cobalt monoxide (CoO) nanocrystals were synthesized by thermal decomposition of cobalt oleate precursor in a high boiling point organic solvent 1-octadecene. The X-ray diffraction pattern and transmission electron microscopy studies suggest that pure face-centered-cubic (fcc) phase of CoO can be synthesized in the temperature range of 569-575 K. Thermolysis product at higher synthesis temperature 585 K is a mixture of fcc and hexagonal-closed-packed (hcp) phases. These nanocrystals are single crystals of CoO and exhibit mixture of two types of morphologies; one is nearly spherical with 5-25 nm diameter, and other one is 5-10 nm thick flake. The pure fcc-CoO nanocrystals show enhanced, and mixture of fcc- and hcp-CoO nanocrystals show reduced antiferromagnetic ordering temperature. Such results provide new opportunities for optimizing and enhancing the properties and performance of cobalt oxide nanomaterials.

  17. Microbunching and RF Compression

    SciTech Connect

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  18. The interstitialcy diffusion in FCC copper: A molecular dynamics study

    SciTech Connect

    Bukkuru, S. Rao, A. D. P.; Warrier, M.

    2015-06-24

    Damage of materials due to neutron irradiation occurs via energetic cascades caused by energetic primary knock-on atoms (PKA) created by the energetic neutron as it passes through the material. These cascades result in creation of Frenkel Pairs (interstitials and vacancies). The interstitials and vacancies diffuse and recombine to (I) nullify the damage when an interstitial recombines with a vacancy, (II) form interstitial clusters when two or more interstitials recombine, and (III) form vacancy clusters when several vacancies come together. The latter two processes result in change of material properties. Interstitial diffusion has reported time-scales of microseconds and vacancy diffusion has diffusion time-scales of the order of seconds. We have carried out molecular dynamics (MD) simulations of interstitial diffusion in crystal Cu to study the mechanism of diffusion. It is found that interstitialcy diffusion – wherein an interstitial displaces a lattice atom thereby making the lattice atom an interstitial – has time-scales of a few tens of pico-seconds. Therefore we propose that the “interstitialcy diffusion” mechanism could play a major part in the diffusive-recombinations of the Frenkel Pairs created during the cascade.

  19. Compressed gas manifold

    DOEpatents

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  20. Compressible turbulent mixing: Effects of compressibility

    NASA Astrophysics Data System (ADS)

    Ni, Qionglin

    2016-04-01

    We studied by numerical simulations the effects of compressibility on passive scalar transport in stationary compressible turbulence. The turbulent Mach number varied from zero to unity. The difference in driven forcing was the magnitude ratio of compressive to solenoidal modes. In the inertial range, the scalar spectrum followed the k-5 /3 scaling and suffered negligible influence from the compressibility. The growth of the Mach number showed (1) a first reduction and second enhancement in the transfer of scalar flux; (2) an increase in the skewness and flatness of the scalar derivative and a decrease in the mixed skewness and flatness of the velocity-scalar derivatives; (3) a first stronger and second weaker intermittency of scalar relative to that of velocity; and (4) an increase in the intermittency parameter which measures the intermittency of scalar in the dissipative range. Furthermore, the growth of the compressive mode of forcing indicated (1) a decrease in the intermittency parameter and (2) less efficiency in enhancing scalar mixing. The visualization of scalar dissipation showed that, in the solenoidal-forced flow, the field was filled with the small-scale, highly convoluted structures, while in the compressive-forced flow, the field was exhibited as the regions dominated by the large-scale motions of rarefaction and compression.

  1. Melting and solidification point of fcc-metal nanoparticles with respect to particle size: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Suzuki, Toshio

    2010-10-01

    The phase transition between liquid droplets and solid nanoparticles of face-centered cubic (fcc) metals is investigated by the molecular dynamics simulation. Depression of both the melting and solidification points is negatively correlated with the inverse of particle radius. Polycrystalline nanoparticles are obtained by cooling and the polycrystalline structure causes a fluctuation in the trend of the melting point with respect to particle size. It was found that the Gibbs-Thomson coefficient is proportional to the melting point among various body-centered cubic (bcc) and fcc metals in the same matter, even though different interatomic potentials are employed between bcc and fcc metals.

  2. Negative linear compressibility in common materials

    SciTech Connect

    Miller, W.; Evans, K. E.; Marmier, A.

    2015-06-08

    Negative linear compressibility (NLC) is still considered an exotic property, only observed in a few obscure crystals. The vast majority of materials compress axially in all directions when loaded in hydrostatic compression. However, a few materials have been observed which expand in one or two directions under hydrostatic compression. At present, the list of materials demonstrating this unusual behaviour is confined to a small number of relatively rare crystal phases, biological materials, and designed structures, and the lack of widespread availability hinders promising technological applications. Using improved representations of elastic properties, this study revisits existing databases of elastic constants and identifies several crystals missed by previous reviews. More importantly, several common materials-drawn polymers, certain types of paper and wood, and carbon fibre laminates-are found to display NLC. We show that NLC in these materials originates from the misalignment of polymers/fibres. Using a beam model, we propose that maximum NLC is obtained for misalignment of 26°. The existence of such widely available materials increases significantly the prospects for applications of NLC.

  3. Compression of nanowires using a flat indenter: diametrical elasticity measurement.

    PubMed

    Wang, Zhao; Mook, William M; Niederberger, Christoph; Ghisleni, Rudy; Philippe, Laetitia; Michler, Johann

    2012-05-01

    A new experimental approach for the characterization of the diametrical elastic modulus of individual nanowires is proposed by implementing a micro/nanoscale diametrical compression test geometry, using a flat punch indenter. A 250 nm diameter single crystal silicon nanowire is compressed inside of a scanning electron microscope. Since silicon is highly anisotropic, the wire crystal orientation in the compression axis is determined by electron backscatter diffraction. In order to analyze the load-displacement compression data, a two-dimensional analytical closed-form solution based on a classical contact model is proposed. The results of the analytical model are compared with those of finite element simulations and to the experimental diametrical compression results and show good agreement. PMID:22432959

  4. Lossy Text Compression Techniques

    NASA Astrophysics Data System (ADS)

    Palaniappan, Venka; Latifi, Shahram

    Most text documents contain a large amount of redundancy. Data compression can be used to minimize this redundancy and increase transmission efficiency or save storage space. Several text compression algorithms have been introduced for lossless text compression used in critical application areas. For non-critical applications, we could use lossy text compression to improve compression efficiency. In this paper, we propose three different source models for character-based lossy text compression: Dropped Vowels (DOV), Letter Mapping (LMP), and Replacement of Characters (ROC). The working principles and transformation methods associated with these methods are presented. Compression ratios obtained are included and compared. Comparisons of performance with those of the Huffman Coding and Arithmetic Coding algorithm are also made. Finally, some ideas for further improving the performance already obtained are proposed.

  5. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  6. The electronic structure and bonding of hydrogen near a fcc Fe stacking fault

    NASA Astrophysics Data System (ADS)

    Moro, L.; Ferullo, R.; Brizuela, G.; Juan, A.

    2000-02-01

    The atom superposition and electron delocalization molecular orbital (ASED-MO) semiempirical method is used to analyse the atomic hydrogen-Fe interaction. The face centred cubic (fcc) Fe model contains a stacking fault and as a comparison the H-fcc Fe (normal) system is also studied. The solid is represented by a cluster of 180 metallic atoms distributed in five layers. The interstitial atoms localized in different geometric positions found an energetic minimum in a zone close to octahedral interstitial holes in the stacking fault. The electronic structure shows that the H-Fe bond involves mainly the Fe 4s and 4p orbitals and the 1s H orbital. The Fe-Fe bond near H is destabilized, to approximately 27% of its original value.

  7. Size dependence and phase transition during melting of fcc-Fe nanoparticles: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shen, Tong; Meng, Wenjian; Wu, Yongquan; Lu, Xionggang

    2013-07-01

    Continuous melting and cooling of isolated fcc-Fe nanoparticles with 59-9577 atoms are studied by Molecular Dynamics (MD) simulation with Sutton-Chen potential. An energy minimization process was employed to obtain the stable solid structure for simulation of melting. The energy-minimized nanoparticles show lower potential energy and radius compared with the counterparts without energy minimizing. The size dependence of melting point shows perfect linear variation with N-1/3 for particles above a limit of 113 atoms. The bulk melting temperature of 1833.3 K, which is close to the experimental data (1811 K for bcc and 1800.8 K for fcc), has been predicted by a linear relationship. Two different inner structures, including five-fold twinning and lamellar structures, have been found to be the initial stable configurations prior to melting, and both surface premelting and internal defects were verified as the origins for melting behavior.

  8. Atomic Mobilities and Interdiffusivities for fcc Ni-Cr-Nb Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Gaochi; Liu, Yajun; Kang, Zhitao

    2016-06-01

    The atomic mobilities and diffusion characteristics for fcc Ni-Cr-Nb alloys are explored by diffusion couples annealed at 1273 K (1000 °C) for 200 hours. The interdiffusion coefficients are extracted from intersection points of two diffusion paths, after which the atomic mobilities of Ni, Cr, and Nb in fcc Ni-Cr-Nb alloys are inversely obtained within the CALPHAD framework with the aid of related thermodynamic descriptions. In order to verify the quality of obtained kinetic parameters so that an accurate Ni-based atomic mobility database can be established, the composition profiles in diffusion couples and the diffusion paths superimposed upon Gibbs triangle are explored, where the experimentally measured and calculated values show good agreement.

  9. FCC reactor product-catalyst separation: Ten years of commercial experience with closed cyclones

    SciTech Connect

    Miller, R.B.; Johnson, T.E.; Santner, C.R.; Avidan, A.A.; Johnson, D.L.

    1995-09-01

    FCC reactor closed cyclones were first commercialized ten years ago and have now been installed in over 22 FCC units worldwide. Cumulative commercial experience has shown significant yield benefits, in some cases higher than first estimated, and excellent reliability. By nearly eliminating post-riser cracking, they reduce dry gas make and produce higher yields of desirable liquid products. Trouble-free operation with closed cyclones is attributed to proper design, instrumentation, and operating procedures. The Mobil-Kellogg Closed Cyclone technology is the only design offered for license which uses the positive-pressure riser cyclone system which has proven to be least sensitive to upsets. This paper traces the development and commercialization of closed cyclones, discusses differences between competing closed cyclone designs, and documents the benefits which have been observed for Mobil-Kellogg Closed Cyclones.

  10. Pressure Induced Metal-Nonmetal and FCC-BCC Transitions in Calcium*

    NASA Astrophysics Data System (ADS)

    Wang, G. M.; Blaisten-Barojas, E.; Papaconstantopoulos, D. A.

    2001-04-01

    The band structure of fcc and bcc calcium at different densities is obtained with the Augmented Plane Wave (APW) method using a soft-core approximation and Gaspar-Kohn-Sham potential. A tight-binding(TB) model is then built successfully to reproduce the first principles band structure and density of states. Properties examined within TB include bulk modulus, elastic constants, metal-nonmetal transition and fcc to bcc structural transition under pressure. Results are in an excellent agreement with experimental observations. Several dynamical properties of calcium under pressure are further explored with TB molecular dynamics at finite temperature. *Work supported in part by the Office of Naval Research grant N00014-98-1-0832

  11. The impact of the Family Communication Coordinator (FCC) Protocol on the role stress of hospital chaplains.

    PubMed

    Dodd-McCue, Diane; Tartaglia, Alexander

    2005-01-01

    The Family Communication Coordinator (FCC) Protocol was implemented to provide early family intervention and to facilitate effective communications during potential organ donation cases. Previous studies found the Protocol associated with improved donor outcome measures and with reduced role stress for ICU nurses caring for potential donors. The present study examines the impact of the Protocol on the perceived role stress of hospital chaplains serving as FCCs. All hospital chaplains serving as FCCs at an academic teaching hospital were surveyed. Their perceptions of job dimensions, role stress, job satisfaction, and commitment were measured; interviews and secondary data supplemented the surveys. The findings demonstrate that the FCC Protocol is associated with improved role stress, specifically role ambiguity and role conflict, among hospital chaplains serving as FCCs. Additionally, the findings suggest that satisfaction with the Protocol may be associated with experience with the Protocol. PMID:16392645

  12. Mesoscale Heterogeneity in the Plastic Deformation of a Copper Single Crystal

    SciTech Connect

    Magid, K R; Florando, J N; Lassila, D H; LeBlanc, M M; Tamura, N; Morris Jr., J W

    2007-02-21

    The work reported here is part of a 'multiscale characterization' study intended to clarify the deformation pattern in a Cu single crystal deformed in compression. A copper single crystal was oriented for single slip in the (111)[{bar 1}01] slip system and tested to {approx}10% strain in uniaxial compression, using a specifically designed '6 degree of freedom' compressive test device to achieve uniaxial strain. The macroscopic strain field was monitored during the test by optical 'image correlation' methods that mapped the strain field with a spatial resolution of about 100 {micro}m. The strain field was measured on orthogonal surfaces, one of which (the x-face) was oriented perpendicular to [1{bar 2}1] and contained the [{bar 1}01] direction of the preferred slip system. The macroscopic strain produced is an inhomogeneous pattern of broad, crossed shear bands in the x-face. One, the primary band, lay parallel to (111). The second, the 'conjugate' band, was oriented perpendicular to (111) and contains no common slip plane of the fcc crystal. The mesoscopic structure of the inhomogeneous macroscopic deformation pattern was explored with selected area diffraction, using a focused synchrotron radiation polychromatic beam with a resolution of 1-3 {micro}m. Areas within the primary, conjugate and primary + conjugate strain regions of the x-face were identified and mapped for their orientation, excess defect density and shear stress. The mesoscopic defect structure consisted of broad, somewhat irregular primary bands that lay nominally parallel to (111) in a almost periodic distribution with a period of about 30 {micro}m. These primary bands were dominant even in the region of conjugate strain. There were also broad conjugate defect bands, almost precisely perpendicular to the primary bands that tended to bridge primary bands and terminate at them. The residual shear stresses were large (ranging to well above 500 MPa) and strongly correlated with the primary shear bands

  13. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  14. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  15. Effect of uniaxial tensile stress on the isomer shift of 57Fe in fcc stainless steels

    NASA Astrophysics Data System (ADS)

    Ratner, E.; Ron, M.

    1982-05-01

    The electron wave-function response to uniaxial tensile stress in fcc steels (SS310 and SS316) was investigated through the isomer shift of the Mössbauer effect. Stresses up to 12 kbar (the ultimate tensile stress is approximately 14 kbar) were applied at room temperature. The isomer shift changes linearly in these circumstances. It is concluded that, as in the case of hydrostatic pressure, the paramount factor here is the volume strain of the wave functions of 4S electrons.

  16. Finite-temperature elasticity of fcc Al: Atomistic simulations and ultrasonic measurements

    NASA Astrophysics Data System (ADS)

    Pham, Hieu H.; Williams, Michael E.; Mahaffey, Patrick; Radovic, Miladin; Arroyave, Raymundo; Cagin, Tahir

    2011-08-01

    Though not very often, there are some cases in the literature where discrepancies exist in the temperature dependence of elastic constants of materials. A particular example of this case is the behavior of C12 coefficient of a simple metal, aluminum. In this paper we attempt to provide insight into various contributions to temperature dependence in elastic properties by investigating the thermoelastic properties of fcc aluminum as a function of temperature through the use of two computational techniques and experiments. First, ab initio calculations based on density functional theory (DFT) are used in combination with quasiharmonic theory to calculate the elastic constants at finite temperatures through a strain-free energy approach. Molecular dynamics (MD) calculations using tight-binding potentials are then used to extract the elastic constants through a fluctuation-based formalism. Through this dynamic approach, the different contributions (Born, kinetic, and stress fluctuations) to the elastic constants are isolated and the underlying physical basis for the observed thermally induced softening is elucidated. The two approaches are then used to shed light on the relatively large discrepancies in the reported temperature dependence of the elastic constants of fcc aluminum. Finally, the polycrystalline elastic constants (and their temperature dependence) of fcc aluminum are determined using resonant ultrasound spectroscopy (RUS) and compared to previously published data as well as the atomistic calculations performed in this work.

  17. FCC046: A CANDIDATE GASEOUS POLAR RING DWARF ELLIPTICAL GALAXY IN THE FORNAX CLUSTER

    SciTech Connect

    De Rijcke, S.; Buyle, P.; Koleva, M.

    2013-06-20

    FCC046 is a Fornax Cluster dwarf elliptical galaxy. Optical observations have shown that this galaxy, besides an old and metal-poor stellar population, also contains a very young centrally concentrated population and is actively forming stars, albeit at a very low level. Here, we report on 21 cm observations of FCC046 with the Australia Telescope Compact Array which we conducted in the course of a small survey of Fornax Cluster early-type dwarf galaxies. We have discovered a {approx}10{sup 7} M{sub Sun} H I cloud surrounding FCC046. We show that the presence of this significant gas reservoir offers a concise explanation for this galaxy's optical morphological and kinematical properties. Surprisingly, the H I gas, as evidenced by its morphology and its rotational motion around the galaxy's optical major axis, is kinematically decoupled from the galaxy's stellar body. This is the first time such a ring of gaseous material in minor-axis rotation is discovered around a dwarf galaxy.

  18. fcc-hcp phase transformation in Co nanoparticles induced by swift heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Sprouster, D. J.; Giulian, R.; Schnohr, C. S.; Araujo, L. L.; Kluth, P.; Byrne, A. P.; Foran, G. J.; Johannessen, B.; Ridgway, M. C.

    2009-09-01

    We demonstrate a face-centered cubic (fcc) to hexagonally close-packed (hcp) phase transformation in spherical Co nanoparticles achieved via swift heavy-ion irradiation. Co nanoparticles of mean diameter 13.2 nm and fcc phase were first formed in amorphous SiO2 by ion implantation and thermal annealing and then irradiated at room temperature with 9-185 MeV Au ions. The crystallographic phase was identified with x-ray absorption spectroscopy and electron diffraction and quantified, as functions of the irradiation energy and fluence, with the former. The transformation was complete at low fluence prior to any change in nanoparticle shape or size and was governed by electronic stopping. A direct-impact mechanism was identified with the transformation interaction cross-section correlated with that of a molten ion track in amorphous SiO2 . We suggest the shear stress resulting from the rapid thermal expansion about an ion track in amorphous SiO2 was sufficient to initiate the fcc-to-hcp phase transformation in the Co nanoparticles.

  19. Multiple Bragg diffraction at W point in the face centered cubic photonic crystals

    NASA Astrophysics Data System (ADS)

    Nair, Rajesh V.; Jagatap, Bhagawantrao N.

    2015-01-01

    We report the experimental observation of multiple Bragg diffraction that occurs when the tip of the incident wave vector lies on a line joining the L and W points in the Brillouin zone of a face-centered cubic (FCC) photonic crystal. The multiple Bragg diffraction is analyzed for photonic crystals with different lattice constants and refractive index contrasts. Angle-dependent reflectance spectroscopy indicates strong hybridization of diffraction resonances when the tip of the incident wave vector crosses the W point and the multiple Bragg diffraction is seen to be extended over an angular range of 8 deg around the W point. We also observe a new diffraction resonance in the short-wavelength region for wave vectors shifting toward the W point in the hexagonal facet of the FCC Brillouin zone. Each diffraction resonance is fitted using the Bragg's law for different planes in the FCC photonic crystal taking into account the internal angle between the planes. The diffraction resonances in the multiple Bragg diffraction regime are assigned to FCC crystal planes with Miller indices (111), (200), (1¯11), and (220). Our results have implications for diverse kinds of wave propagations in periodic structures and applications in light emission, sensing, and structural color pigments.

  20. Meteorites and thermodynamic equilibrium in f.c.c. iron-nickel alloys /25-50% Ni/

    NASA Astrophysics Data System (ADS)

    Albertsen, J. F.; Knudsen, J. M.; Roy-Poulsen, N. O.; Vistisen, L.

    Mossbauer spectroscopy and X-ray investigations show that taenite (fcc iron-nickel alloy) in meteorites generally has decomposed into an ordered phase FeNi with the L10 structure and a disordered fcc iron-nickel alloy containing less than 25% Ni. The two phases have the same bravais lattice, i.e., they form a pseudo monocrystal. The decomposition is discussed in terms of Fe-Ni phase diagram.

  1. Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages.

    PubMed

    Mak, K F; Seidel, M; Pronin, O; Frosz, M H; Abdolvand, A; Pervak, V; Apolonski, A; Krausz, F; Travers, J C; Russell, P St J

    2015-04-01

    Compression of 250-fs, 1-μJ pulses from a KLM Yb:YAG thin-disk oscillator down to 9.1 fs is demonstrated. A kagomé-PCF with a 36-μm core-diameter is used with a pressure gradient from 0 to 40 bar of krypton. Compression to 22 fs is achieved by 1200  fs2 group-delay-dispersion provided by chirped mirrors. By coupling the output into a second kagomé-PCF with a pressure gradient from 0 to 25 bar of argon, octave spanning spectral broadening via the soliton-effect is observed at 18-W average output power. Self-compression to 9.1 fs is measured, with compressibility to 5 fs predicted. Also observed is strong emission in the visible via dispersive wave generation, amounting to 4% of the total output power. PMID:25831302

  2. Topological and metrical property characterization of radical subunits for ternary hard sphere crystals

    NASA Astrophysics Data System (ADS)

    Wang, Lin; An, Xizhong; Wang, Defeng; Qian, Quan

    2016-01-01

    Quantitative characterization on the topological and metrical properties of radical subunits (polyhedra) for two new ternary hard sphere crystals was studied. These two ideal crystalline structures are numerically constructed by filling small and medium spheres into interstices (corresponding to regular tetrahedral and octahedral pores) of perfect face centered cubic (FCC) and hexagonal close packed (HCP) crystals formed by the packing of large spheres. Topological properties such as face number, edge number, vertex number of each radical polyhedron (RP), edge number of each RP face and metrical properties such as volume, surface area, total perimeter and pore volume of each RP, area and perimeter of each RP face were analyzed and compared. The results show that even though the overall packing densities for FCC and HCP ternary crystals are the same, different characteristics of radical polyhedra for corresponding spheres in these two crystals can be identified. That is, in the former structure RPs are more symmetric than those in the latter; the orientations of corresponding RP in the latter are twice as many as that in the former. Moreover, RP topological and metrical properties in the HCP ternary crystal are much more complicated than those in the FCC ternary crystal. These differences imply the structure and property differences of these two ternary crystals. Analyses of RPs provide intensive understanding of pores in the structure.

  3. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  4. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    SciTech Connect

    Wang, S.; Wang, M.P.; Chen, C.; Xiao, Z.; Jia, Y.L.; Li, Z.; Wang, Z.X.

    2014-05-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compression axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different.

  5. Ab initio study of high-pressure behavior of a low compressibility metal and a hard material: Osmium and diamond

    NASA Astrophysics Data System (ADS)

    Hebbache, M.; Zemzemi, M.

    2004-12-01

    We performed Density-Functional electronic structure calculations in order to investigate the high pressure behavior of Os beyond what is tractable experimentally with a diamond-anvil cell. In addition to the room-temperature and pressure structure hcp, two hypothetical structures of Os have been considered: fcc and ω (hexagonal phase with three atoms by unit cell). Phase transitions are suggested by these calculations. For calculating the bulk modulus, the reciprocal of the compressibility, of Os and that of diamond, the computed total energies vs volume curves were fit to three different equations of state. Several volume ranges have been considered during the fitting procedure. First, it is shown that the claim of Cynn and co-workers [Phys. Rev. Lett. 88, 135701 (2002)] is confirmed at weak compression. Osmium is less compressible than diamond which is known as the hardest and the least compressible material. However, with increasing pressure osmium becomes more compressible than diamond. At strong compression, osmium transforms to the ω phase. It is also shown that the reconstructive phase transition hcp→fcc could be induced by cooling in this low compressibility material.

  6. Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems

    NASA Astrophysics Data System (ADS)

    Rezaei Mianroodi, Jaber; Svendsen, Bob

    2015-04-01

    The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical

  7. Modelling of Surfaces. Part 1: Monatomic Metallic Surfaces Using Equivalent Crystal Theory

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Rodriguez, Agustin M.

    1994-01-01

    We present a detailed description of equivalent crystal theory focusing on its application to the study of surface structure. While the emphasis is in the structure of the algorithm and its computational aspects, we also present a comprehensive discussion on the calculation of surface energies of metallic systems with equivalent crystal theory and other approaches. Our results are compared to experiment and other semiempirical as well as first-principles calculations for a variety of fcc and bcc metals.

  8. Fractal image compression

    NASA Technical Reports Server (NTRS)

    Barnsley, Michael F.; Sloan, Alan D.

    1989-01-01

    Fractals are geometric or data structures which do not simplify under magnification. Fractal Image Compression is a technique which associates a fractal to an image. On the one hand, the fractal can be described in terms of a few succinct rules, while on the other, the fractal contains much or all of the image information. Since the rules are described with less bits of data than the image, compression results. Data compression with fractals is an approach to reach high compression ratios for large data streams related to images. The high compression ratios are attained at a cost of large amounts of computation. Both lossless and lossy modes are supported by the technique. The technique is stable in that small errors in codes lead to small errors in image data. Applications to the NASA mission are discussed.

  9. Optomechanics of two- and three-dimensional soft photonic crystals

    NASA Astrophysics Data System (ADS)

    Krishnan, Dwarak

    Soft photonic crystals are a class of periodic dielectric structures that undergo highly nonlinear deformation due to strain or other external stimulus such as temperature, pH etc. This can in turn dramatically affect optical properties such as light transmittance. Moreover certain classes of lithographically fabricated structures undergo some structural distortion due to the effects of processing, eventually affecting the optical properties of the final photonic crystal. In this work, we study the deformation mechanics of soft photonic crystal structures using realistic physics-based models and leverage that understanding to explain the optomechanics of actual 2-D and 3-D soft photonic crystals undergoing similar symmetry breaking nonlinear deformations. We first study the optomechanics of two classes of 3-D soft photonic crystals: (1) hydrogel and (2) elastomer based material systems. The hydrogel based inverse face-centered-cubic structure undergoes swelling with change in pH of the surrounding fluid. The inverse structure is a network of bulky domains with thin ligament-like connections, and it undergoes a pattern transformation from FCC to L11 as a result of swelling. A continuum scale poroelasticity based coupled fluid-diffusion FEM model is developed to accurately predict this mechanical behavior. Light transmittance simulation results qualitatively explain the experimentally observed trends in the optical behavior with pH change. The elastomer based, lithographically fabricated material experiences shrinkage induced distortion upon processing. This behavior is modeled using FEM with the material represented by a neo-Hookean constitutive law. The light transmittance calculations for normal incidence are carried out using the transfer matrix method and a good comparison is obtained for the positions of first and second order reflectance peaks. A unit cell based approach is taken to compute the photonic bandstructure to estimate light propagation through the

  10. FCC – An automated rule-based processing tool for life science data

    PubMed Central

    2013-01-01

    Background Data processing in the bioinformatics field often involves the handling of diverse software programs in one workflow. The field is lacking a set of standards for file formats so that files have to be processed in different ways in order to make them compatible to different analysis programs. The problem is that mass spectrometry vendors at most provide only closed-source Windows libraries to programmatically access their proprietary binary formats. This prohibits the creation of an efficient and unified tool that fits all processing needs of the users. Therefore, researchers are spending a significant amount of time using GUI-based conversion and processing programs. Besides the time needed for manual usage, such programs also can show long running times for processing, because most of them make use of only a single CPU. In particular, algorithms to enhance data quality, e.g. peak picking or deconvolution of spectra, add waiting time for the users. Results To automate these processing tasks and let them run continuously without user interaction, we developed the FGCZ Converter Control (FCC) at the Functional Genomics Center Zurich (FGCZ) core facility. The FCC is a rule-based system for automated file processing that reduces the operation of diverse programs to a single configuration task. Using filtering rules for raw data files, the parameters for all tasks can be custom-tailored to the needs of every single researcher and processing can run automatically and efficiently on any number of servers in parallel using all available CPU resources. Conclusions FCC has been used intensively at FGCZ for processing more than hundred thousand mass spectrometry raw files so far. Since we know that many other research facilities have similar problems, we would like to report on our tool and the accompanying ideas for an efficient set-up for potential reuse. PMID:23311610

  11. Proceedings, High-Precision $\\alpha_s$ Measurements from LHC to FCC-ee

    SciTech Connect

    d'Enterria, David; Skands, Peter Z.

    2015-01-01

    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $\\cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $\\tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $\\alpha_s(m_Z)$ = 0.1177 $\\pm$ 0.0013, is about 1\\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $\\alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.

  12. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study

    SciTech Connect

    Alfonso, Dominic R.; Tafen, De Nyago

    2015-04-28

    The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out for the purpose of understanding the predicted trends.

  13. Complex band structure with ultrasoft pseudopotentials: fcc Ni and Ni nanowire

    NASA Astrophysics Data System (ADS)

    Smogunov, Alexander; Dal Corso, Andrea; Tosatti, Erio

    2003-06-01

    We generalize to magnetic transition metals the approach proposed by Choi and Ihm for calculating the complex band structure of periodic systems, a key ingredient for future calculations of conductivity of an open quantum system within the Landauer-Buttiker theory. The method is implemented with ultrasoft pseudopotentials and plane wave basis set in a DFT-LSDA ab initio scheme. As a first example, we present the complex band structure of bulk fcc Ni (which constitutes the tips of a Ni nanocontact) and monatomic Ni wire (the junction between two tips). Based on our results, we anticipate some features of the spin-dependent conductance in a Ni nanocontact.

  14. Understanding Anharmonicity in fcc Materials: From its Origin to ab initio Strategies beyond the Quasiharmonic Approximation

    NASA Astrophysics Data System (ADS)

    Glensk, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.

    2015-05-01

    We derive the Gibbs energy including the anharmonic contribution due to phonon-phonon interactions for an extensive set of unary fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) by combining density-functional-theory (DFT) calculations with efficient statistical sampling approaches. We show that the anharmonicity of the macroscopic system can be traced back to the anharmonicity in local pairwise interactions. Using this insight, we derive and benchmark a highly efficient approach which allows the computation of anharmonic contributions using a few T =0 K DFT calculations only.

  15. Synthesis of 4H/fcc-Au@M (M = Ir, Os, IrOs) Core-Shell Nanoribbons For Electrocatalytic Oxygen Evolution Reaction.

    PubMed

    Fan, Zhanxi; Luo, Zhimin; Chen, Ye; Wang, Jie; Li, Bing; Zong, Yun; Zhang, Hua

    2016-08-01

    The high-yield synthesis of 4H/face-centered cubic (fcc)-Au@Ir core-shell nanoribbons (NRBs) is achieved via the direct growth of Ir on 4H Au NRBs under ambient conditions. Importantly, this method can be used to synthesize 4H/fcc-Au@Os and 4H/fcc-Au@IrOs core-shell NRBs. Significantly, the obtained 4H/fcc-Au@Ir core-shell NRBs demonstrate an exceptional electrocatalytic activity toward the oxygen evolution reaction under acidic condition, which is much higher than that of the commercial Ir/C catalyst. PMID:27345872

  16. A non-topological mechanism for negative linear compressibility.

    PubMed

    Binns, Jack; Kamenev, Konstantin V; Marriott, Katie E R; McIntyre, Garry J; Moggach, Stephen A; Murrie, Mark; Parsons, Simon

    2016-06-14

    Negative linear compressibility (NLC), the increase in a unit cell length with pressure, is a rare phenomenon in which hydrostatic compression of a structure promotes expansion along one dimension. It is usually a consequence of crystal structure topology. We show that the source of NLC in the Co(ii) citrate metal-organic framework UTSA-16 lies not in framework topology, but in the relative torsional flexibility of Co(ii)-centred tetrahedra compared to more rigid octahedra. PMID:27203683

  17. EEG data compression techniques.

    PubMed

    Antoniol, G; Tonella, P

    1997-02-01

    In this paper, electroencephalograph (EEG) and Holter EEG data compression techniques which allow perfect reconstruction of the recorded waveform from the compressed one are presented and discussed. Data compression permits one to achieve significant reduction in the space required to store signals and in transmission time. The Huffman coding technique in conjunction with derivative computation reaches high compression ratios (on average 49% on Holter and 58% on EEG signals) with low computational complexity. By exploiting this result a simple and fast encoder/decoder scheme capable of real-time performance on a PC was implemented. This simple technique is compared with other predictive transformations, vector quantization, discrete cosine transform (DCT), and repetition count compression methods. Finally, it is shown that the adoption of a collapsed Huffman tree for the encoding/decoding operations allows one to choose the maximum codeword length without significantly affecting the compression ratio. Therefore, low cost commercial microcontrollers and storage devices can be effectively used to store long Holter EEG's in a compressed format. PMID:9214790

  18. Weak crystallization theory of metallic alloys

    NASA Astrophysics Data System (ADS)

    Martin, Ivar; Gopalakrishnan, Sarang; Demler, Eugene A.

    2016-06-01

    Crystallization is one of the most familiar, but hardest to analyze, phase transitions. The principal reason is that crystallization typically occurs via a strongly first-order phase transition, and thus rigorous treatment would require comparing energies of an infinite number of possible crystalline states with the energy of liquid. A great simplification occurs when crystallization transition happens to be weakly first order. In this case, weak crystallization theory, based on unbiased Ginzburg-Landau expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative tool for understanding crystallization. In its standard form, however, weak crystallization theory cannot explain the existence of a majority of observed crystalline and quasicrystalline states. Here we extend the weak crystallization theory to the case of metallic alloys. We identify a singular effect of itinerant electrons on the form of weak crystallization free energy. It is geometric in nature, generating strong dependence of free energy on the angles between ordering wave vectors of ionic density. That leads to stabilization of fcc, rhombohedral, and icosahedral quasicrystalline (iQC) phases, which are absent in the generic theory with only local interactions. As an application, we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known empirically for the majority of stable iQC; namely, the length of the primary Bragg-peak wave vector is approximately equal to the diameter of the Fermi sphere.

  19. Three-wave mixing mediated femtosecond pulse compression in β-barium borate.

    PubMed

    Grün, A; Austin, Dane R; Cousin, Seth L; Biegert, J

    2015-10-15

    Nonlinear pulse compression mediated by three-wave mixing is demonstrated for ultrashort Ti:sapphire pulses in a type II phase-matched β-barium borate (BBO) crystal using noncollinear geometry. 170 μJ pulses at 800 nm with a pulse duration of 74 fs are compressed at their sum frequency to 32 fs with 55 μJ of pulse energy. Experiments and computer simulations demonstrate the potential of sum-frequency pulse compression to match the group velocities of the interacting waves to crystals that were initially not considered in the context of nonlinear pulse compression. PMID:26469593

  20. Boson core compressibility

    NASA Astrophysics Data System (ADS)

    Khorramzadeh, Y.; Lin, Fei; Scarola, V. W.

    2012-04-01

    Strongly interacting atoms trapped in optical lattices can be used to explore phase diagrams of Hubbard models. Spatial inhomogeneity due to trapping typically obscures distinguishing observables. We propose that measures using boson double occupancy avoid trapping effects to reveal two key correlation functions. We define a boson core compressibility and core superfluid stiffness in terms of double occupancy. We use quantum Monte Carlo on the Bose-Hubbard model to empirically show that these quantities intrinsically eliminate edge effects to reveal correlations near the trap center. The boson core compressibility offers a generally applicable tool that can be used to experimentally map out phase transitions between compressible and incompressible states.

  1. Modeling Compressed Turbulence

    SciTech Connect

    Israel, Daniel M.

    2012-07-13

    From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

  2. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary

    PubMed Central

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y.; Prassides, Kosmas; Rosseinsky, Matthew J.; Arčon, Denis

    2014-01-01

    The alkali fullerides, A3C60 (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs3C60 polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/kBTc = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/kBTc decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached. PMID:24584087

  3. Structural Relationship Between One-Dimensional Crystals of Guinier-Preston-Bagaryatsky Zones in Al-Cu-Mg Alloys

    SciTech Connect

    Kovarik, Libor; Mills, M. J.

    2011-06-01

    The crystal structure of GPB zones in Al-Cu-Mg alloys is very unique, consisting of agglomeration of 1D crystals. Current work identifies and fully describes a new type of 1D crystal of the GPB zone family based on high-resolution STEM observations. The observation enables to generalize the structural relationship between the possible 1D crystals. Ab-initio calculations show that the newly identified 1D-crystal has a formation energy that is comparable to the larger type, while much more favorable than FCC-based models.

  4. The compression pathway of quartz

    SciTech Connect

    Thompson, Richard M.; Downs, Robert T.; Dera, Przemyslaw

    2011-11-07

    The structure of quartz over the temperature domain (298 K, 1078 K) and pressure domain (0 GPa, 20.25 GPa) is compared to the following three hypothetical quartz crystals: (1) Ideal {alpha}-quartz with perfectly regular tetrahedra and the same volume and Si-O-Si angle as its observed equivalent (ideal {beta}-quartz has Si-O-Si angle fixed at 155.6{sup o}). (2) Model {alpha}-quartz with the same Si-O-Si angle and cell parameters as its observed equivalent, derived from ideal by altering the axial ratio. (3) BCC quartz with a perfectly body-centered cubic arrangement of oxygen anions and the same volume as its observed equivalent. Comparison of experimental data recorded in the literature for quartz with these hypothetical crystal structures shows that quartz becomes more ideal as temperature increases, more BCC as pressure increases, and that model quartz is a very good representation of observed quartz under all conditions. This is consistent with the hypothesis that quartz compresses through Si-O-Si angle-bending, which is resisted by anion-anion repulsion resulting in increasing distortion of the c/a axial ratio from ideal as temperature decreases and/or pressure increases.

  5. Systematic investigation of compression mechanisms of clinoenstatite

    NASA Astrophysics Data System (ADS)

    Lazarz, J. D.; Dera, P.; Bina, C. R.; Jacobsen, S. D.

    2015-12-01

    Pyroxenes are a major component of the Earth's upper mantle and believed to be stable to approximately 16 GPa, along the oceanic geotherm. However, under certain conditions such as subducting slabs, it is possible to carry pyroxenes to much greater depths within the mantle. Pyroxenes penetrating the mantle to such depths could potentially undergo further phase transitions which could impact subducting slab mineralogy and mantle dynamics. The compression behavior of clinopyroxenes has been well characterized up to approximately 25 GPa with much of the work being focused on Ca-rich cpx. Beyond 10 GPa previous studies have published equations of state but there is a general lack of structure determinations. Ca-rich clinopyroxenes crystallize in the C2/c space group while Ca-poor clinopyroxenes crystalize in P21/c. It has been shown that P21/c clinopyroxenes reversibly transform to C2/c upon increased pressure, temperature, and M2 site cation size. The critical pressure for this transition is exceedingly compositionally dependent at 6.5 GPa and 1.7 GPa for clinoenstatite and clinoferrosilite, respectively. The strong compositional dependence of phase transitions in pyroxenes is motivation for a more complete understanding of compression mechanisms within the broad pyroxene category. By using in situ x-ray diffraction and diamond anvil cells to compress single-crystal clinoenstatite up to 50 GPa this study aims to expand the understanding of Ca-poor clinopyroxene compression mechanisms and elasticity. Here we report a fully reversible high-pressure phase in the P21/c space group found at approximately 45 GPa.

  6. Modulating fcc and hcp Ruthenium on the Surface of Palladium-Copper Alloy through Tunable Lattice Mismatch.

    PubMed

    Yao, Yancai; He, Dong Sheng; Lin, Yue; Feng, Xiaoqian; Wang, Xin; Yin, Peiqun; Hong, Xun; Zhou, Gang; Wu, Yuen; Li, Yadong

    2016-04-25

    Herein, we report an epitaxial-growth-mediated method to grow face-centered cubic (fcc) Ru, which is thermodynamically unfavorable in the bulk form, on the surface of Pd-Cu alloy. Induced by the galvanic replacement between Ru and Pd-Cu alloy, a shape transformation from a Pd-Cu@Ru core-shell to a yolk-shell structure was observed during the epitaxial growth. The successful coating of the unconventional crystallographic structure is critically dependent on the moderate lattice mismatch between the fcc Ru overlayer and PdCu3 alloy substrate. Further, both fcc and hexagonal close packed (hcp) Ru can be selectively grown through varying the lattice spacing of the Pd-Cu substrate. The presented findings provide a new synthetic pathway to control the crystallographic structure of metal nanomaterials. PMID:27010243

  7. Electronic structure and vibrational entropies of fcc Au-Fe alloys

    SciTech Connect

    Munoz, Jorge A.; Lucas, Matthew; Mauger, L; Halevy, I; Horwath, J; Semiatin, S L; Xiao, Yuming; Stone, Matthew B; Abernathy, Douglas L; Fultz, B.

    2013-01-01

    Phonon density of states (DOS) curves were measured on alloys of face-centered-cubic (fcc) Au-Fe using nuclear resonant inelastic x-ray scattering (NRIXS) and inelastic neutron scattering (INS). The NRIXS and INS results were combined to obtain the total phonon DOS and the partial phonon DOS curves of Au and Fe atoms. The 57Fe partial phonon DOS of the dilute alloy Au0.97 57Fe0.03 shows a localized mode centered 4.3% above the cutoff energy of the phonons in pure Au. The Mannheim model for impurity modes accurately reproduced this partial phonon DOS using the fcc Au phonon DOS with a ratio of host-host to impurity-host force constants of 1.55. First-principles calculations validated the assumption of first-nearest-neighbor forces in the Mannheim model and gave a similar ratio of force constants. The high energy local mode broadens with increasing Fe composition, but this has a small effect on the composition dependence of the vibrational entropy. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon DOS with Fe concentration. This stiffening is attributed to two main effects: 1) an increase in electron density in the free-electron-like states, and 2) stronger sd-hybridization. These two effects are comparable in magnitude.

  8. Impact of local magnetism on stacking fault energies: A first-principles investigation for fcc iron

    NASA Astrophysics Data System (ADS)

    Bleskov, I.; Hickel, T.; Neugebauer, J.; Ruban, A.

    2016-06-01

    A systematic ab initio study of the influence of local magnetism on the generalized stacking fault energy (GSFE) surface in pure fcc iron at 0 K has been performed. In the calculations we considered ferro- and antiferro- (single- and double-layer) magnetic order of local moments as well as their complete disorder, corresponding to paramagnetic (PM) state. We have shown that local magnetism is one of the most important factors stabilizing austenitic structure in iron (with respect to more stable at 0 K hcp) and that the perturbation of magnetic structure by the formation of stacking fault is a short-range effect. Local magnetism also strongly influences the GSFE surface topology and, therefore, the material's plasticity by reducing the energetic barriers that need to be overcome to form the intrinsic stacking fault (ISF) or return from the ISF structure to fcc. The influence of atomic relaxations on such barriers is moderate and does not exceed 15%. In addition, a methodology to evaluate the PM ISF energy using a superposition of the ISF energies obtained for ordered magnetic structures is proposed to overcome computational impediments arising when dealing with disorder in the PM state. The complications of the proposed methodology together with the ways to overcome them are also discussed.

  9. FURTHER DISCUSSION OF ORIENTATION RELATIONSHIPS, SURFACE RELIEFS AND FCC-BCC TRANSFORMATIONS IN STEELS

    SciTech Connect

    Dahmen, U.

    1980-11-01

    In a recent communication, Bhadeshia gives an explanation of the tent-shaped surface relief effects observed in association with Widmanstatten ferrite and lower bainite. Based on his proposed explanation he concludes that the diffusional fcc{yields}bcc transformation tn steel takes place by a displacive mechanism. This conclusion is disputed by Aaronson in a letter following that of Bhadeshia by showing that the experimentally observed orientation relationships are different from the one ( Nishyama-Wassermann ( N-W) , necessary for Bhadeshia' s mechanism. He therefore holds that the transformation is purely diffusional and that "any attempts to understand diffusional phase transformations in terms of a shear mechanism are counterproductive." The purpose of the present note is (l) to show that Bhadeshia's mechanism seems to be based on a misinterpretation of the lattice symmetries resulting from the fcc {yields} bcc transformation and cannot explain a tent-shaped surface relief even if the N-W orientation relationship is followed, and (2) to suggest that attempts to formally understand diffusional phase transformations in terms of shear may not always be counterproductive.

  10. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

    PubMed Central

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-01

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029

  11. Adsorbate modification of the structural, electronic, and magnetic properties of ferromagnetic fcc {110} surfaces

    NASA Astrophysics Data System (ADS)

    Gunn, D. S. D.; Jenkins, Stephen J.

    2011-03-01

    We identify trends in structural, electronic, and magnetic modifications that occur on ferromagnetic {110} surfaces upon varying either the substrate material or the adsorbate species. First, we have modeled the adsorption of several first-row p-block elements on the surface of fcc Co{110} at two coverages [0.5 and 1.0 monolayer (ML)]. All adsorbates were found to expand the distance between the first and second substrate layers and to contract the distance between the second and third layers. The energetic location of a characteristic trough in the density-of-d-states difference plot correlates with the direction of the adsorbate magnetic coupling to the surface, and a trend of antiferromagnetic to ferromagnetic coupling to the surface was observed across the elements from boron to fluorine. A high fluorine adatom coverage (1.0 ML) was found to enhance the surface spin magnetic moment by 11%. Second, we also calculate and contrast adsorption of 0.5 and 1.0 ML of carbon, nitrogen, and oxygen adatoms on fcc iron, cobalt, and nickel {110} surfaces and compare the structural, electronic, and magnetic properties of these systems. Carbon and nitrogen are found to couple antiferromagnetically, and oxygen ferromagnetically, to all surfaces. It was found that antiferromagnetically coupled adsorbates retained their largest spin moment values on iron, whereas ferromagnetically coupled adsorbates possessed their lowest moments on this surface. The strongly localized influence of these adsorbates is clearly illustrated in partial density-of-states plots for the surface atoms.

  12. Molecular dynamics prediction of phonon-mediated thermal conductivity of f.c.c. Cu

    NASA Astrophysics Data System (ADS)

    Evteev, Alexander V.; Momenzadeh, Leila; Levchenko, Elena V.; Belova, Irina V.; Murch, Graeme E.

    2014-03-01

    The phonon-mediated thermal conductivity of f.c.c. Cu is investigated in detail in the temperature range 40-1300 K. The calculations are performed in the framework of equilibrium molecular dynamics making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials for Cu. It is found that the temporal decay of the heat current autocorrelation function (HCACF) of the Cu model at low and intermediate temperatures demonstrate a more complex behaviour than the two-stage decay observed previously for the f.c.c. Ar model. After the first stage of decay, it demonstrates a peak in the temperature range 40-800 K. A decomposition model of the HCACF is introduced. In the framework of that model we demonstrate that a classical description of the phonon thermal transport in the Cu model can be used down to around one quarter of the Debye temperature (about 90 K). Also, we find that above 300 K the thermal conductivity of the Cu model varies with temperature more rapidly than ?, following an exponent close to -1.4 in agreement with previous calculations on the Ar model. Phonon thermal conductivity of Cu is found to be about one order of magnitude higher than Ar. The phonon contribution to the total thermal conductivity of Cu can be estimated to be about 0.5% at 1300 K and about 10% at 90 K.

  13. Equilibrium phase boundary between hcp-cobalt and fcc-cobalt

    NASA Astrophysics Data System (ADS)

    Cynn, Hyunchae; Lipp, Magnus J.; Evans, William J.; Baer, Bruce J.

    In 2000 (Yoo et al., PRL), fcc-cobalt was reported as a new high pressure phase transforming from ambient hcp-cobalt starting at around 105 GPa and 300 K. Both cobalts coexist up to 150 GPa and thereafter only fcc-cobalt was found to be the only stable phase to 200 GPa. Our recent synchrotron x-ray diffraction data on cobalt are at odds with the previous interpretation. We will present our new finding and elaborate on our understanding in terms of the equilibrium phase boundary of cobalt. We will also compare our previous work on xenon (Cynn et al., 2001, PRL) with our new results on cobalt. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Portions of this work were performed at HPCAT (Sector 16), APS, Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DENA0001974 and DOE-BES under Award No. DE-FG02-99ER45775. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

  14. Magnetic instabilities in fcc FexNi1-x thin films

    NASA Astrophysics Data System (ADS)

    Foy, E.; Andrieu, S.; Finazzi, M.; Poinsot, R.; Teodorescu, C. M.; Chevrier, F.; Krill, G.

    2003-09-01

    We present the results obtained on FexNi1-x alloy films epitaxially grown on Cu(100). They are characterized by a fcc structure pseudomorphic to the substrate over a wide range of concentration and thickness. In particular, the martensitic transition which in bulk alloys occurs around the “Invar” concentration (x≈0.65) is suppressed. We report the concentration dependence at low temperature of the total magnetic moment and of its Fe-3d and Ni-3d projected components in such thin fcc FexNi1-x alloy films. Magnetic instabilities that might be associated with noncollinear spin alignments of Fe atoms are clearly observed for x>0.73, where the magnetic moment decreases with increasing Fe concentration. In this Fe-rich concentration range the layers are still ferromagnetic and a magnetic moment is still observed, even on Ni atoms and at room temperature, up to x=0.86. We also show how the variation of the magnetization in this region is correlated with a very small variation of the atomic volume (˜1%).

  15. Compressive Optical Image Encryption

    PubMed Central

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-01-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  16. Military Data Compression Standard

    NASA Astrophysics Data System (ADS)

    Winterbauer, C. E.

    1982-07-01

    A facsimile interoperability data compression standard is being adopted by the U.S. Department of Defense and other North Atlantic Treaty Organization (NATO) countries. This algorithm has been shown to perform quite well in a noisy communication channel.

  17. Compressive optical image encryption.

    PubMed

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-01-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  18. Focus on Compression Stockings

    MedlinePlus

    ... sion apparel is used to prevent or control edema The post-thrombotic syndrome (PTS) is a complication ( ... complication. abdomen. This swelling is referred to as edema. If you have edema, compression therapy may be ...

  19. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (ESTSC)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  20. Similarity by compression.

    PubMed

    Melville, James L; Riley, Jenna F; Hirst, Jonathan D

    2007-01-01

    We present a simple and effective method for similarity searching in virtual high-throughput screening, requiring only a string-based representation of the molecules (e.g., SMILES) and standard compression software, available on all modern desktop computers. This method utilizes the normalized compression distance, an approximation of the normalized information distance, based on the concept of Kolmogorov complexity. On representative data sets, we demonstrate that compression-based similarity searching can outperform standard similarity searching protocols, exemplified by the Tanimoto coefficient combined with a binary fingerprint representation and data fusion. Software to carry out compression-based similarity is available from our Web site at http://comp.chem.nottingham.ac.uk/download/zippity. PMID:17238245

  1. Monte Carlo simulations on the effect of substrate geometry on adsorption and compression.

    PubMed

    Wetzel, T E; Erickson, J S; Donohue, P S; Charniak, C L; Aranovich, G L; Donohue, M D

    2004-06-22

    Canonical Monte Carlo simulations were used to study the adsorption and compression of fluid layers on model substrates with cubic, (111) fcc, and graphite geometries. The effect of the relative size of the fluid and substrate molecules on adsorption was considered for strong molecule-surface interactions. In the case of monolayer formation, it was found that the surface geometry and the size of the adsorbate molecules had a significant effect on the structure of the adsorbed layer. These structures varied from well-ordered, commensurate layers to liquid-like structures. Lateral compression was observed for certain fluid to substrate molecule sizes. For the interactions studied in this work, it was found that maximum lateral compression occurred on the cubic surface when adsorbate molecules had a diameter approximately 15% larger than the substrate diameter. In the case of multilayer formation, it was found that second and higher adsorbed layers could compress into the adsorbed layers below them. For cubic substrates, the interlayer compression was predicted analytically with reasonable accuracy, with maximum interlayer compression found for fluid diameters approximately 90% the size of substrate molecule diameters. PMID:15268211

  2. Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd

    SciTech Connect

    McMahan, A K

    2005-03-30

    This paper reports calculations for compressed Ce (4f{sup 1}), Pr (4f{sup 2}), and Nd (4f{sup 3}) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure. These materials are seen to be strongly localized at ambient pressure and for compressions up through the experimentally observed fcc phases ({gamma} phase for Ce), in the sense of having fully formed Hund's rules moments and little 4f spectral weight at the Fermi level. Subsequent compression for all three lanthanides brings about significant deviation of the moments from their Hund's rules values, a growing Kondo resonance at the fermi level, an associated softening in the total energy, and quenching of the spin orbit since the Kondo resonance is of mixed spin-orbit character while the lower Hubbard band is predominantly j = 5/2. while the most dramatic changes for Ce occur within the two-phase region of the {gamma}-{alpha} volume collapse transition, as found in earlier work, those for Pr and Nd occur within the volume range of the experimentally observed distorted fcc (dfcc) phase, which is therefore seen here as transitional and not part of the localized trivalent lanthanide sequence. The experimentally observed collapse to the {alpha}-U structure in Pr occurs only on further compression, and no such collapse is found in Nd. These lanthanides start closer to the localized limit for increasing atomic number, and so the theoretical signatures noted above are also offset to smaller volume as well, which is possibly related to the measured systematics of the size of the volume collapse being 15%, 9%, and none for Ce, Pr, and Nd, respectively.

  3. Image compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  4. Image compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  5. Intelligent bandwith compression

    NASA Astrophysics Data System (ADS)

    Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.

    1980-02-01

    The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 band width-compressed images are presented. A video tape simulation of the Intelligent Bandwidth Compression system has been produced using a sequence of video input from the data base.

  6. Alternative Compression Garments

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  7. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    PubMed Central

    Zhou, Li-li; Liu, Rang-su; Tian, Ze-an; Liu, Hai-rong; Hou, Zhao-yang; Peng, Ping

    2016-01-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90–150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule. PMID:27526660

  8. Real time pre-detection dynamic range compression

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1992-01-01

    A real time, pre-detection optical dynamic range compression system uses a photorefractive crystal, such as BaTiO3 or LiNbO3, in which light induced scattering from crystal inhomogeneities of the optical input occurs as a nonlinear function of the input intensity. The greater the intensity, the faster random interference gratings are created to scatter the incident light. The unscattered portion of the optical signal is therefore reduced in dynamic range over time. The amount or range of dynamic range compression may be controlled by adjusting the time of application of the unscattered crystal output to the photodetector with regard to the time of application of the optical input to the crystal.

  9. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds. PMID:27544116

  10. The Evaluation of a Public Document: The Case of FCC's Marine Radio Rules for Recreational Boaters. Document Design Project, Technical Report No. 11.

    ERIC Educational Resources Information Center

    Felker, Daniel B.; Rose, Andrew M.

    In a collaborative effort, the Federal Communications Commission (FCC) and the Document Design Project conducted an evaluation of marine radio rules for recreational boaters that had been rewritten in plain English by FCC personnel. The revised rules were evaluated by 53 experienced boaters and 52 inexperienced boaters, who were given either the…

  11. Wavelet compression of medical imagery.

    PubMed

    Reiter, E

    1996-01-01

    Wavelet compression is a transform-based compression technique recently shown to provide diagnostic-quality images at compression ratios as great as 30:1. Based on a recently developed field of applied mathematics, wavelet compression has found success in compression applications from digital fingerprints to seismic data. The underlying strength of the method is attributable in large part to the efficient representation of image data by the wavelet transform. This efficient or sparse representation forms the basis for high-quality image compression by providing subsequent steps of the compression scheme with data likely to result in long runs of zero. These long runs of zero in turn compress very efficiently, allowing wavelet compression to deliver substantially better performance than existing Fourier-based methods. Although the lack of standardization has historically been an impediment to widespread adoption of wavelet compression, this situation may begin to change as the operational benefits of the technology become better known. PMID:10165355

  12. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30

    NASA Astrophysics Data System (ADS)

    Adidharma, Hertanto; Tan, Sugata P.

    2016-07-01

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T∗ ≤ 1.20) and high densities (0.96 ≤ ρ∗ ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.

  13. Transverse Compression of Tendons.

    PubMed

    Samuel Salisbury, S T; Paul Buckley, C; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon. PMID:26833218

  14. Intelligent bandwidth compression

    NASA Astrophysics Data System (ADS)

    Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.

    1980-02-01

    The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 bandwidth-compressed images are presented.

  15. From ELF to compressibility in solids.

    PubMed

    Contreras-García, Julia; Marqués, Miriam; Menéndez, José Manuel; Recio, José Manuel

    2015-01-01

    Understanding the electronic nature of materials' compressibility has always been a major issue behind tabulation and rationalization of bulk moduli. This is especially because this understanding is one of the main approaches to the design and proposal of new materials with a desired (e.g., ultralow) compressibility. It is well recognized that the softest part of the solid will be the one responsible for its compression at the first place. In chemical terms, this means that the valence will suffer the main consequences of pressurization.It is desirable to understand this response to pressure in terms of the valence properties(charge, volume, etc.). One of the possible approaches is to consider models of electronic separability, such as the bond charge model (BCM), which provides insight into the cohesion of covalent crystals in analogy with the classical ionic model. However, this model relies on empirical parametrization of bond and lone pair properties. In this contribution, we have coupled electron localization function (ELF) ab initio data with the bond charge model developed by Parr in order to analyze solid state compressibility from first principles and moreover, to derive general trends and shed light upon superhard behavior. PMID:25872139

  16. From ELF to Compressibility in Solids

    PubMed Central

    Contreras-García, Julia; Marqués, Miriam; Menéndez, José Manuel; Recio, José Manuel

    2015-01-01

    Understanding the electronic nature of materials’ compressibility has always been a major issue behind tabulation and rationalization of bulk moduli. This is especially because this understanding is one of the main approaches to the design and proposal of new materials with a desired (e.g., ultralow) compressibility. It is well recognized that the softest part of the solid will be the one responsible for its compression at the first place. In chemical terms, this means that the valence will suffer the main consequences of pressurization. It is desirable to understand this response to pressure in terms of the valence properties (charge, volume, etc.). One of the possible approaches is to consider models of electronic separability, such as the bond charge model (BCM), which provides insight into the cohesion of covalent crystals in analogy with the classical ionic model. However, this model relies on empirical parametrization of bond and lone pair properties. In this contribution, we have coupled electron localization function (ELF) ab initio data with the bond charge model developed by Parr in order to analyze solid state compressibility from first principles and moreover, to derive general trends and shed light upon superhard behavior. PMID:25872139

  17. Measurement of sodium chloride electrical conductivity under quasisentropic compression to 140 GPa

    SciTech Connect

    Postnov, V.I.; Dremin, A.N.; Nabatov, S.S.; Shunin, V.M.; Yakushev, V.V.

    1984-03-01

    In this paper the authors present the results of experiments on the measurement of resistivity of sodium chloride single crystals under quasiisentropic loading as compared with the data of Al'tshuler et al. obtained with shock compression.

  18. Compressive and classical hyperspectral systems: a fundamental comparison

    NASA Astrophysics Data System (ADS)

    Shay, Adi; August, Isaac Y.; Stern, Adrian

    2015-05-01

    Hyperspectral imagery involves capturing and processing a tremendous amount of data, which sets severe system resource requirements. This has motivated the application of compressive sensing for different spectroscopic and spectroscopic imager systems. Several new compressive hyperspectral architectures have been designed to stretch the common limitations of classical systems. However, the application of the compressive sensing framework involves design of system architectures that differ significantly from the conventional ones. Since compressive sensing differs essentially from conventional sensing, it cannot be implemented for hyperspectral imaging by simply modifying one of the components of a conventional hyperspectral system, rather it requires a complete new design. In this work we present a comparison between four compressive hyperspectral architectures to conventional architectures. The compressive hyperspectral sensing compared are: Coded Aperture Snapshot Spectral Imaging (CASSI), Compressive HS Imaging by Separable Spatial And Spectral Operators (CHISSS), (Liquid-crystal Compressive spectral Imager) LiCSI and (Spectral Single-Pixel) SSP systems. Those methods are compared to conventional spatial/spectral scanning hyperspectral such as pushbroom, whiskbroom and color filter techniques. A fundamental comparison between these architectures is presented in terms of optical system volume and radiometric efficiency.

  19. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  20. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    PubMed

    Cai, Weizhao; Katrusiak, Andrzej

    2014-01-01

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices. PMID:24993679

  1. Compressible Flow Toolbox

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.

  2. The compressible mixing layer

    NASA Technical Reports Server (NTRS)

    Vandromme, Dany; Haminh, Hieu

    1991-01-01

    The capability of turbulence modeling correctly to handle natural unsteadiness appearing in compressible turbulent flows is investigated. Physical aspects linked to the unsteadiness problem and the role of various flow parameters are analyzed. It is found that unsteady turbulent flows can be simulated by dividing these motions into an 'organized' part for which equations of motion are solved and a remaining 'incoherent' part represented by a turbulence model. Two-equation turbulence models and second-order turbulence models can yield reasonable results. For specific compressible unsteady turbulent flow, graphic presentations of different quantities may reveal complementary physical features. Strong compression zones are observed in rapid flow parts but shocklets do not yet occur.

  3. When Magnetic Catalyst Meets Magnetic Reactor: Etherification of FCC Light Gasoline as an Example

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Xie, Wenhua; Zong, Baoning; Sun, Bo; Qiao, Minghua

    2013-06-01

    The application of elaborately designed magnetic catalysts has long been limited to ease their separation from the products only. In this paper, we for the first time employed a magnetic sulphonated poly(styrene-divinylbenzene) resin catalyst on a magnetically stabilized-bed (MSB) reactor to enhance the etherification of fluidized catalytic cracking (FCC) light gasoline, one of the most important reactions in petroleum refining industry. We demonstrated that the catalytic performance of the magnetic acid resin catalyst on the magnetic reactor is substantially enhanced as compared to its performance on a conventional fixed-bed reactor under otherwise identical operation conditions. The magnetic catalyst has the potential to be loaded and unloaded continuously on the magnetic reactor, which will greatly simplify the current complex industrial etherification processes.

  4. When Magnetic Catalyst Meets Magnetic Reactor: Etherification of FCC Light Gasoline as an Example

    PubMed Central

    Cheng, Meng; Xie, Wenhua; Zong, Baoning; Sun, Bo; Qiao, Minghua

    2013-01-01

    The application of elaborately designed magnetic catalysts has long been limited to ease their separation from the products only. In this paper, we for the first time employed a magnetic sulphonated poly(styrene-divinylbenzene) resin catalyst on a magnetically stabilized-bed (MSB) reactor to enhance the etherification of fluidized catalytic cracking (FCC) light gasoline, one of the most important reactions in petroleum refining industry. We demonstrated that the catalytic performance of the magnetic acid resin catalyst on the magnetic reactor is substantially enhanced as compared to its performance on a conventional fixed-bed reactor under otherwise identical operation conditions. The magnetic catalyst has the potential to be loaded and unloaded continuously on the magnetic reactor, which will greatly simplify the current complex industrial etherification processes. PMID:23756855

  5. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study

    DOE PAGESBeta

    Alfonso, Dominic R.; Tafen, De Nyago

    2015-04-28

    The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out formore » the purpose of understanding the predicted trends.« less

  6. Effect of vacancy defects on generalized stacking fault energy of fcc metals.

    PubMed

    Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A

    2014-03-19

    Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF. PMID:24589571

  7. A dislocation dynamics model of the plastic flow of fcc polycrystals

    NASA Astrophysics Data System (ADS)

    Hunter, Abigail

    2015-06-01

    Describing material strength at very high strain rates is a key component for investigating and predicting material deformation and failure under shock loading. However, accurately describing deformation physics in this strain rate regime remains a challenge due to the break down of fundamental assumptions that apply to material strength at low strain rates. We present a dislocation dynamics model of the plastic flow of fcc polycrystals from quasi-static to very high strain rates (106 s-1 and above), pressures from ambient to 1000 GPa, and temperatures from zero to melt. The model is comprised of three coupled ordinary differential equations: a kinetic equation, which relates the strain rate to the stress, mobile and immobile dislocation densities, mass density, and temperature using a mean first passage time (MFPT) framework, and two equations describing the evolution of the mobile and immobile (network, forest) dislocation densities.

  8. Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films

    NASA Astrophysics Data System (ADS)

    Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.

    2016-08-01

    The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.

  9. Defect clusters formed from large collision cascades in fcc metals irradiated with spallation neutrons

    NASA Astrophysics Data System (ADS)

    Satoh, Y.; Matsuda, Y.; Yoshiie, T.; Kawai, M.; Matsumura, H.; Iwase, H.; Abe, H.; Kim, S. W.; Matsunaga, T.

    2013-11-01

    Fcc pure metals were irradiated with spallation neutrons (energies up to 500 MeV) at room temperature to a neutron fluence of 1 × 1018 n m-2 at KENS, High Energy Accelerator Research Organization (KEK). Defect clusters induced by large collision cascades were examined using transmission electron microscopy (TEM). In Au, large groups of defects included more than 10 clusters, and the damage zone extended over 50 nm, which was larger than that induced by fusion neutron irradiation (<20 nm). Although small stacking fault tetrahedra (SFT) are formed in subcascades by fission and fusion neutron irradiation, dislocation loops were also observed in the present experiments. Large dislocation loops (>10 nm) were identified as vacancy type by the conventional inside-outside contrast method. Because of the low neutron fluence, spatial overlapping of collision cascades was ignored. Large vacancy loops are formed through cooperative reactions among subcascades in a single collision cascade with large recoil energy.

  10. Deformation and erosion of f.c.c. metals and alloys under cavitation attack

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1984-01-01

    Experimental investigations have been conducted to determine the early stages of cavitation attack on 6061-T6 aluminum alloy, electrolytic tough pitch copper, brass, and bronze, all having polycrystalline fcc matrices. The surface profiles and scanning electron micrographs show that the pits are initially formed at the grain boundaries, while the grain surfaces are progressively roughened by multiple slip and twinning. The initial erosion is noted to have occurred from the material in the grain boundaries, as well as by fragmentation of part of the grains. Further erosion occurred by shearing and necking of the surface undulations caused by plastic deformation. The mean penetration depth, computed on the basis of mass loss, was lowest on the bronze and greatest on the copper. Attention is given to the relation of cavitation attack to grain size, glide stress and stacking fault energy.

  11. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.

    PubMed

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy. PMID:27586937

  12. A simple model for large-scale simulations of fcc metals with explicit treatment of electrons

    NASA Astrophysics Data System (ADS)

    Mason, D. R.; Foulkes, W. M. C.; Sutton, A. P.

    2010-01-01

    The continuing advance in computational power is beginning to make accurate electronic structure calculations routine. Yet, where physics emerges through the dynamics of tens of thousands of atoms in metals, simplifications must be made to the electronic Hamiltonian. We present the simplest extension to a single s-band model [A.P. Sutton, T.N. Todorov, M.J. Cawkwell and J. Hoekstra, Phil. Mag. A 81 (2001) p.1833.] of metallic bonding, namely, the addition of a second s-band. We show that this addition yields a reasonable description of the density of states at the Fermi level, the cohesive energy, formation energies of point defects and elastic constants of some face-centred cubic (fcc) metals.

  13. Conversion of pine sawdust bio-oil (raw and thermally processed) over equilibrium FCC catalysts.

    PubMed

    Bertero, Melisa; Sedran, Ulises

    2013-05-01

    A raw bio-oil from pine sawdust, the liquid product from its thermal conditioning and a synthetic bio-oil composed by eight model compounds representing the main chemical groups in bio-oils, were converted thermally and over a commercial equilibrium FCC catalyst. The experiments were performed in a fixed bed reactor at 500 °C. The highest hydrocarbon yield (53.5 wt.%) was obtained with the conditioned liquid. The coke yields were significant in all the cases, from 9 to 14 wt.%. The synthetic bio-oil produced lesser hydrocarbons and more oxygenated compounds and coke than the authentic feedstocks from biomass. The previous thermal treatment of the raw bio-oil had the positive effects of increasing 25% the yield of hydrocarbons, decreasing 55% the yield of oxygenated compounds and decreasing 20% the yield of coke, particularly the more condensed coke. PMID:23375765

  14. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    SciTech Connect

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; LeSar, Richard

    2015-05-15

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to 'low' and 'high' stacking fault energies.

  15. Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

    DOE PAGESBeta

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; LeSar, Richard

    2015-05-15

    Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. In addition, these potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into twomore » distinct regimes corresponding to 'low' and 'high' stacking fault energies.« less

  16. Chemical conversion of VRDS-FCC process for Gudao vacuum residue

    SciTech Connect

    Honghong Shan; Jianfang Zhang; Guohe Que

    1995-12-31

    The physical-chemical properties and catalytic cracking behaviors of Gudao VR and Gudao VRDS VR were studied. The properties are structural parameters show that the C/H, Mw, R{sub A}, f{sub A} values and nitrogen, sulfur, nickel, resin contents of the Gudao VRDS VR are obviously lower than those of Gudao VR, and that the content of saturates of Gudao VRDS VR are considerably higher than that of Gudao VR. The catalytic cracking experiments of Gudao VRDS VR in laboratory scale show that VRDS VR has good cracking behaviour. The research and industry scale results indicate that the VRDS process using Gudao VR as feedstock is a kind of high efficiency hydrotreating process, and that VRDS-FCC complex technology can realize the deep processing of the crude, increase the light oil yields and enhance the economical profit of the enterprise.

  17. Ab initio study of He point defects in fcc Au-Ag alloys

    SciTech Connect

    Zhu, Zi Qiang; Yang, Li; Nie, JL; Peng, SM; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-04-25

    The relative stabilities of He defects in two fcc Au-Ag alloys (Au3Ag2 and AuAg) are investigated using ab initio method based on density functional theory. The results show that the stabilities of He defects in the two alloys mainly depend on the atomic arrangements of the nearest neighboring host metals. A He interstitial prefers to stay at a site with more Ag neighboring atoms, while the favorable substitutional site has more Au neighboring atoms in Au-Ag alloys. Moreover, the substitutional He defects are the most stable configurations in both the alloys, and the octahedral He interstitials are energetically more favorable than the tetrahedral interstitials. It is of interest to note that the properties of He defects slightly depend on the mass-density of Au-Ag alloys. The results also demonstrate that the relative stabilities of He defects are primarily attributed to the hybridization between metals d states and He p states.

  18. Kinetics of segregation formation in the vicinity of edge dislocation in fcc metals

    NASA Astrophysics Data System (ADS)

    Nazarov, A. V.; Mikheev, A. A.; Ershova, I. V.; Zaluzhnyi, A. G.

    2016-04-01

    We use new equations for the interstitial impurity diffusion fluxes under strain to study impurity atom redistribution in the vicinity of dislocations taking into account the strain generated by mentioned defects. Two levels of simulation are applied. First one is evaluation of coefficients that determine the influence of strain tensor components on interstitial diffusion fluxes in fcc structures for different kinds of atom jumps. For this purpose we have developed a model into the framework of molecular static method taking into account an atom environment as near the interstitial site as for the saddle-point configuration. The second level is modeling of interstitial segregation formation based on nonlinear diffusion equations taking strains generated by defects. The results show, that the distributions of the interstitials near the dislocations have quite complicated characters and the vacancy distribution has qualitatively different character as compared with carbon distribution.

  19. Federal Communications Commission (FCC) Transponder Loading Data Conversion Software. User's guide and software maintenance manual, version 1.2

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.

    1993-01-01

    This volume contains the complete software system documentation for the Federal Communications Commission (FCC) Transponder Loading Data Conversion Software (FIX-FCC). This software was written to facilitate the formatting and conversion of FCC Transponder Occupancy (Loading) Data before it is loaded into the NASA Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS). The information that FCC supplies NASA is in report form and must be converted into a form readable by the database management software used in the GSOSTATS application. Both the User's Guide and Software Maintenance Manual are contained in this document. This volume of documentation passed an independent quality assurance review and certification by the Product Assurance and Security Office of the Planning Research Corporation (PRC). The manuals were reviewed for format, content, and readability. The Software Management and Assurance Program (SMAP) life cycle and documentation standards were used in the development of this document. Accordingly, these standards were used in the review. Refer to the System/Software Test/Product Assurance Report for the Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS) for additional information.

  20. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Places Where the Amateur Service is Regulated...) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Pt. 97, App. 1 Appendix 1 to Part 97—Places Where the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by...

  1. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Places Where the Amateur Service is Regulated...) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Pt. 97, App. 1 Appendix 1 to Part 97—Places Where the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by...

  2. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Places Where the Amateur Service is Regulated...) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Pt. 97, App. 1 Appendix 1 to Part 97—Places Where the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by...

  3. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Places Where the Amateur Service is Regulated...) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Pt. 97, App. 1 Appendix 1 to Part 97—Places Where the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by...

  4. 47 CFR 95.219 - (R/C Rule 19) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false (R/C Rule 19) How do I answer correspondence from the FCC? 95.219 Section 95.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other...

  5. 47 CFR 95.219 - (R/C Rule 19) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false (R/C Rule 19) How do I answer correspondence from the FCC? 95.219 Section 95.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other...

  6. 47 CFR 95.219 - (R/C Rule 19) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false (R/C Rule 19) How do I answer correspondence from the FCC? 95.219 Section 95.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other...

  7. 47 CFR 95.219 - (R/C Rule 19) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false (R/C Rule 19) How do I answer correspondence from the FCC? 95.219 Section 95.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other...

  8. 47 CFR 95.219 - (R/C Rule 19) How do I answer correspondence from the FCC?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false (R/C Rule 19) How do I answer correspondence from the FCC? 95.219 Section 95.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio Service Other...

  9. Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating

    NASA Astrophysics Data System (ADS)

    Pirota, K. R.; Béron, F.; Zanchet, D.; Rocha, T. C. R.; Navas, D.; Torrejón, J.; Vazquez, M.; Knobel, M.

    2011-04-01

    We report on the structural and magnetic properties of crystalline bi-phase Co nanowires, electrodeposited into the pores of anodized alumina membranes, as a function of their length. Co nanowires present two different coexistent crystalline structures (fcc and hcp) that can be controlled by the time of pulsed electrodeposition. The fcc crystalline phase grows at the early stage and is present at the bottom of all the nanowires, strongly influencing their magnetic behavior. Both structural and magnetic characterizations indicate that the length of the fcc phase is constant at around 260-270 nm. X-ray diffraction measurements revealed a strong preferential orientation (texture) in the (1 0-1 0) direction for the hcp phase, which increases the nanowire length as well as crystalline grain size, degree of orientation, and volume fraction of oriented material. The first-order reversal curve (FORC) method was used to infer both qualitatively and quantitatively the complex magnetization reversal of the nanowires. Under the application of a magnetic field parallel to the wires, the magnetization reversal of each region is clearly distinguishable; the fcc phase creates a high coercive contribution without an interaction field, while the hcp phase presents a smaller coercivity and undergoes a strong antiparallel interaction field from neighboring wires.

  10. 75 FR 42376 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ...; NTIA/FCC Web- based Frequency Coordination System AGENCY: National Telecommunications and Information... Telecommunications and Information Administration (NTIA) hosts a Web-based system that collects specific...-primary basis by federal and non-federal users. The Web-based system provides a means for...

  11. Monte Carlo Simulations of the Adsorption of Anisotropic Noninteracting Molecules on the (111) Surface of a FCC Crystal

    NASA Astrophysics Data System (ADS)

    Filimonov, S. N.; Hervieu, Yu. Yu.

    2016-04-01

    We present results of computer Monte Carlo simulations of the formation of adsorption layers composed of noninteracting molecules of benzene, anthracene, and pentacene on the Ag(111) surface. The dependences of the chemical potential of the molecules on the density of the molecular layer (surface coverage) are obtained. By means of the thermodynamic integration method the configurational entropy of the molecular layer is evaluated as a function of surface coverage. It is shown that the substitution of benzene by pentacene results in a more than twofold decrease of the maximum entropy of the molecular layer. The presence of steps on the substrate surface also leads to a decrease of the molecular layer entropy. If the distance between the steps is comparable to the linear size of the molecule, the molecules in dense adsorption layers orient preferentially parallel to the step edges.

  12. Orbiting dynamic compression laboratory

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Vreeland, T., Jr.; Kasiraj, P.; Frisch, B.

    1984-01-01

    In order to examine the feasibility of carrying out dynamic compression experiments on a space station, the possibility of using explosive gun launchers is studied. The question of whether powders of a refractory metal (molybdenum) and a metallic glass could be well considered by dynamic compression is examined. In both cases extremely good bonds are obtained between grains of metal and metallic glass at 180 and 80 kb, respectively. When the oxide surface is reduced and the dynamic consolidation is carried out in vacuum, in the case of molybdenum, tensile tests of the recovered samples demonstrated beneficial ultimate tensile strengths.

  13. Isentropic compression of argon

    SciTech Connect

    Veeser, L.R.; Ekdahl, C.A.; Oona, H.

    1997-06-01

    The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is being sought.

  14. Inline Transmitter/Receiver System Using Pb(Zn1/3Nb2/3)O3-PbTiO3 Single Crystal and Poly(vinylidene fluoride) for Harmonic Pulse Compression Imaging

    NASA Astrophysics Data System (ADS)

    Tanabe, Masayuki; Okubo, Kan; Tagawa, Norio; Moriya, Tadashi

    2008-05-01

    An inline transmitter/receiver system for intravascular ultrasound for realizing fine imaging with high resolution and high signal-to-noise ratio (SNR) is newly proposed. This system can be used for tissue harmonic imaging using pulse compression. In this system, a Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) layer is applied to the transmitter with consideration of efficient transmission, and a poly(vinylidene fluoride) (PVDF) film is used as the receiver because of its wide bandwidth, which is suitable for receiving harmonic components in echo signals. An inline structure, in which the beam axis of a transmitter coincides with that of a receiver, is required to regard the high directivity of the harmonic components as important. In this system, since coded pulses are transmitted from a PZN-PT layer through a PVDF film, which is placed on the transmission side of the PZN-PT layer, a transmitted pulse is mixed with the received echo signal. To avoid such mixing, another PVDF film is placed on the reverse side of the PZN-PT layer to cancel the transmitted pulse. Through experiments, we investigate the effectiveness of the proposed invention, and confirm the feasibility of the proposed system.

  15. Effect of the FCC to HCP Phase Transition on Trace Element Partitioning Between Metal and Sulfide Melt

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Thomas, R. B.; Fei, Y.

    2006-12-01

    Most of what we understand about the chemical behavior of iron alloys, even at high pressure, pertains to the fcc phase. However, it is widely thought that the relevant structure in the Earth's core is hcp, not fcc. In this study we aim to understand the effect of the fcc-hcp transition on siderophile element partitioning between metal and coexisting sulfide melt. This is important, for example, in evaluating models in which Re-Os-Pt isotope fractionations are attributed to partitioning between the Earth's inner and outer core. Experiments were doped with trace elements Ni, Re, Os, Ir, and Pt, which partitioned between Fe-Ru alloys and sulfide melt. Most experiments were performed at 1 bar in sealed silica tubes in a tube furnace, and some experiments were performed at 6 GPa in a multi-anvil press. The fcc-hcp transition was investigated by varying the Ru content of the experiments; the metal is fcc at Ru-poor compositions but hcp at higher Ru contents. The sulfur content of the melt varied with temperature and with bulk composition. The run products were characterized by electron microprobe, and abundances of the trace elements in both metal and melt were determined by laser ablation ICP-MS. The effect on partitioning of the phase transition can be distinguished from compositional effects because a range of Ru contents was studied. Our Ru-free dataare in good agreement with previously published data in the Fe-S system at 1 bar. However, our highest-Ru compositions show significant differences in their D values, attributable to the phase transition in the metal.

  16. The Compressed Video Experience.

    ERIC Educational Resources Information Center

    Weber, John

    In the fall semester 1995, Southern Arkansas University- Magnolia (SAU-M) began a two semester trial delivering college classes via a compressed video link between SAU-M and its sister school Southern Arkansas University Tech (SAU-T) in Camden. As soon as the University began broadcasting and receiving classes, it was discovered that using the…

  17. Compress Your Files

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2005-01-01

    File compression enables data to be squeezed together, greatly reducing file size. Why would someone want to do this? Reducing file size enables the sending and receiving of files over the Internet more quickly, the ability to store more files on the hard drive, and the ability pack many related files into one archive (for example, all files…

  18. Nonlinear Frequency Compression

    PubMed Central

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-01-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  19. Compression: Rent or own

    SciTech Connect

    Cahill, C.

    1997-07-01

    Historically, the decision to purchase or rent compression has been set as a corporate philosophy. As companies decentralize, there seems to be a shift away from corporate philosophy toward individual profit centers. This has led the decision to rent versus purchase to be looked at on a regional or project-by-project basis.

  20. Improved compression molding process

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1967-01-01

    Modified compression molding process produces plastic molding compounds that are strong, homogeneous, free of residual stresses, and have improved ablative characteristics. The conventional method is modified by applying a vacuum to the mold during the molding cycle, using a volatile sink, and exercising precise control of the mold closure limits.

  1. The frustrated fcc antiferromagnet Ba2 YOsO6: Structural characterization, magnetic properties and neutron scattering studies

    SciTech Connect

    Kermarrec, E.; Marjerrison, Casey A.; Thompson, C. M.; Maharaj, Dalini D.; Levin, K.; Kroeker, S.; Granroth, Garrett E.; Flacau, Roxana; Yamani, Zahra; Greedan, John E.; Gaulin, Bruce D.

    2015-02-26

    Here we report the crystal structure, magnetization, and neutron scattering measurements on the double perovskite Ba2 YOsO6. The Fm$\\bar{3}$m space group is found both at 290 K and 3.5 K with cell constants a0=8.3541(4) Å and 8.3435(4) Å, respectively. Os5+ (5d3) ions occupy a nondistorted, geometrically frustrated face-centered-cubic (fcc) lattice. A Curie-Weiss temperature θ ~₋700 K suggests the presence of a large antiferromagnetic interaction and a high degree of magnetic frustration. A magnetic transition to long-range antiferromagnetic order, consistent with a type-I fcc state below TN~69 K, is revealed by magnetization, Fisher heat capacity, and elastic neutron scattering, with an ordered moment of 1.65(6) μB on Os5+. The ordered moment is much reduced from either the expected spin-only value of ~3 μB or the value appropriate to 4d3 Ru5+ in isostructural Ba2 YRuO6 of 2.2(1) μB, suggesting a role for spin-orbit coupling (SOC). Triple-axis neutron scattering measurements of the order parameter suggest an additional first-order transition at T=67.45 K, and the existence of a second-ordered state. We find time-of-flight inelastic neutron results reveal a large spin gap Δ~17 meV, unexpected for an orbitally quenched, d3 electronic configuration. In conclusion, we discuss this in the context of the ~5 meV spin gap observed in the related Ru5+,4d3 cubic double perovskite Ba2YRuO6, and attribute the ~3 times larger gap to stronger SOC present in this heavier, 5d, osmate system.

  2. Formation of spatially patterned colloidal photonic crystals through the control of capillary forces and template recognition.

    PubMed

    Brozell, Adrian M; Muha, Michelle A; Parikh, Atul N

    2005-12-01

    We report the formation of microscopic patterns of substrate-supported, 3D planar colloidal crystals using physical confinement in conjunction with surfaces displaying predetermined binary patterns of hydropholicity. The formation process involves a primary self-assembly wherein nano- and microscale colloids order into a photonic fcc lattice via capillary interactions followed by a secondary template-induced crystal cleavage step. Following this method, arbitrary arrays of pattern elements, which preserve structural and orientational properties of the parent crystal, can be easily obtained. PMID:16316085

  3. Mosaic image compression

    NASA Astrophysics Data System (ADS)

    Chaudhari, Kapil A.; Reeves, Stanley J.

    2005-02-01

    Most consumer-level digital cameras use a color filter array to capture color mosaic data followed by demosaicking to obtain full-color images. However, many sophisticated demosaicking algorithms are too complex to implement on-board a camera. To use these algorithms, one must transfer the mosaic data from the camera to a computer without introducing compression losses that could generate artifacts in the demosaicked image. The memory required for losslessly stored mosaic images severely restricts the number of images that can be stored in the camera. Therefore, we need an algorithm to compress the original mosaic data losslessly so that it can later be transferred intact for demosaicking. We propose a new lossless compression technique for mosaic images in this paper. Ordinary image compression methods do not apply to mosaic images because of their non-canonical color sampling structure. Because standard compression methods such as JPEG, JPEG2000, etc. are already available in most digital cameras, we have chosen to build our algorithms using a standard method as a key part of the system. The algorithm begins by separating the mosaic image into 3 color (RGB) components. This is followed by an interpolation or down-sampling operation--depending on the particular variation of the algorithm--that makes all three components the same size. Using the three color components, we form a color image that is coded with JPEG. After appropriately reformatting the data, we calculate the residual between the original image and the coded image and then entropy-code the residual values corresponding to the mosaic data.

  4. Pharmacological evaluation of the histamine H1 and 5-HT blocking properties of 2-N-(carboxamidinonormianserin) (FCC5): in-vitro studies.

    PubMed

    Leitch, I M; Boura, A L; King, R G

    1992-04-01

    Some in-vitro pharmacological effects of a novel analogue of mianserin, 2-carboxamidino-1,2,3,4,10,14b-hexahydrodibenzo (c,f) pyrazino (1,2-alpha) azepine hydrochloride (FCC5) have been studied. FCC5 was a non-competitive antagonist of both histamine-induced contractions of the guinea-pig ileum and 5-HT-induced contractions of rat fundal strips with pD'2 values of 6.13 and 5.57, respectively. The insurmountable antihistaminic effect of FCC5, 100 nM, in the guinea-pig isolated ileum was not removed by washing. FCC5, 10-100 nM, had no effect on responses to acetylcholine or barium chloride of the guinea-pig isolated ileum. In guinea-pig isolated right atria, FCC5, 1-30 microM, had no effect on H2-receptor-mediated chronotropic responses to histamine. FCC5, 10-1000 nM, had no alpha 2-adrenoceptor antagonist activity, as assessed by lack of effect on the inhibitory responses to B-HT 920 in the electrically stimulated rat isolated vas deferens. FCC5 resembles mianserin by being a potent, non-competitive antagonist at histamine H1 and 5-HT receptors, but differs from mianserin in a number of respects including having much less effect at alpha 2-adrenoceptors. PMID:1355543

  5. Mechanical behavior of ultra-fine grained and nanocrystalline metals and single crystals: Experiments, modeling and simulations

    NASA Astrophysics Data System (ADS)

    Liu, Jian

    Ultra-fine grained (ufg, 100 nm < grain size < 1microm) and nanocrystalline materials (nc, grain size < 100 nm) have been the subject of widespread research over the past couple of decades. In this study, the mechanical behavior of ultra-fine grained and nanocrystalline metals were studied both experimentally and numerically. High quality bulk ultrafine-grained/nanocrystalline (ufg/nc) titanium samples were prepared through room temperature mechanical milling and conventional consolidation processes. The prepared bulk samples show high purity, very low porosity and high ductility under compression. The dependency of yield stress and post-yielding behavior on grain size, strain rate and temperature are comprehensively studied. The texture evolution of the ufg/nc samples under compression is measured by synchrotron X-Ray Diffraction (XRD). On the macroscopic scale, the viscoplastic phenomenological Khan--Liang--Farrokh (KLF) model is used to correlate the experimental results of the ufg/nc Ti. Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used for the purpose of incorporating strain rate and temperature effects into CPFEM. The classical and two newly developed single crystal plasticity models are used to simulate the deformation responses of single crystal aluminum. A constitutive model based on intragranular dislocation slip is shown to correlate closely to the stain rate effect and latent hardening behavior of single crystal Al. For ufg/nc face-centered cubic (FCC) material, we assume that dislocation slip is still the most important deformation mechanism while there is no interaction between dislocations within grains. We develop a constitutive model based on dislocation glide within ufg/nc grains and include all stages of dislocation activities especially their interactions with GB. An Arrhenius type rate is established based on the thermal activated depinning of dislocations from GB

  6. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  7. TEM Video Compressive Sensing

    SciTech Connect

    Stevens, Andrew J.; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.

    2015-08-02

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ TEM experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing methods [1, 2, 3, 4] to increase the framerate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical compressive sensing inversion. Our simulations show that it should be possible to increase the speed of any camera by at least an order of magnitude. Compressive Sensing (CS) combines sensing and compression in one operation, and thus provides an approach that could further improve the temporal resolution while correspondingly reducing the electron dose rate. Because the signal is measured in a compressive manner, fewer total measurements are required. When applied to TEM video capture, compressive imaging couled improve acquisition speed and reduce the electron dose rate. CS is a recent concept, and has come to the forefront due the seminal work of Candès [5]. Since the publication of Candès, there has been enormous growth in the application of CS and development of CS variants. For electron microscopy applications, the concept of CS has also been recently applied to electron tomography [6], and reduction of electron dose in scanning transmission electron microscopy (STEM) imaging [7]. To demonstrate the applicability of coded aperture CS video reconstruction for atomic level imaging, we simulate compressive sensing on observations of Pd nanoparticles and Ag nanoparticles during exposure to high temperatures and other environmental

  8. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  9. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  10. Data Compression for Helioseismology

    NASA Astrophysics Data System (ADS)

    Löptien, Björn

    2015-10-01

    Efficient data compression will play an important role for several upcoming and planned space missions involving helioseismology, such as Solar Orbiter. Solar Orbiter, to be launched in October 2018, will be the next space mission involving helioseismology. The main characteristic of Solar Orbiter lies in its orbit. The spacecraft will have an inclined solar orbit, reaching a solar latitude of up to 33 deg. This will allow, for the first time, probing the solar poles using local helioseismology. In addition, combined observations of Solar Orbiter and another helioseismic instrument will be used to study the deep interior of the Sun using stereoscopic helioseismology. The Doppler velocity and continuum intensity images of the Sun required for helioseismology will be provided by the Polarimetric and Helioseismic Imager (PHI). Major constraints for helioseismology with Solar Orbiter are the low telemetry and the (probably) short observing time. In addition, helioseismology of the solar poles requires observations close to the solar limb, even from the inclined orbit of Solar Orbiter. This gives rise to systematic errors. In this thesis, I derived a first estimate of the impact of lossy data compression on helioseismology. I put special emphasis on the Solar Orbiter mission, but my results are applicable to other planned missions as well. First, I studied the performance of PHI for helioseismology. Based on simulations of solar surface convection and a model of the PHI instrument, I generated a six-hour time-series of synthetic Doppler velocity images with the same properties as expected for PHI. Here, I focused on the impact of the point spread function, the spacecraft jitter, and of the photon noise level. The derived power spectra of solar oscillations suggest that PHI will be suitable for helioseismology. The low telemetry of Solar Orbiter requires extensive compression of the helioseismic data obtained by PHI. I evaluated the influence of data compression using

  11. Progressive compressive imager

    NASA Astrophysics Data System (ADS)

    Evladov, Sergei; Levi, Ofer; Stern, Adrian

    2012-06-01

    We have designed and built a working automatic progressive sampling imaging system based on the vector sensor concept, which utilizes a unique sampling scheme of Radon projections. This sampling scheme makes it possible to progressively add information resulting in tradeoff between compression and the quality of reconstruction. The uniqueness of our sampling is that in any moment of the acquisition process the reconstruction can produce a reasonable version of the image. The advantage of the gradual addition of the samples is seen when the sparsity rate of the object is unknown, and thus the number of needed measurements. We have developed the iterative algorithm OSO (Ordered Sets Optimization) which employs our sampling scheme for creation of nearly uniform distributed sets of samples, which allows the reconstruction of Mega-Pixel images. We present the good quality reconstruction from compressed data ratios of 1:20.

  12. Digital cinema video compression

    NASA Astrophysics Data System (ADS)

    Husak, Walter

    2003-05-01

    The Motion Picture Industry began a transition from film based distribution and projection to digital distribution and projection several years ago. Digital delivery and presentation offers the prospect to increase the quality of the theatrical experience for the audience, reduce distribution costs to the distributors, and create new business opportunities for the theater owners and the studios. Digital Cinema also presents an opportunity to provide increased flexibility and security of the movies for the content owners and the theater operators. Distribution of content via electronic means to theaters is unlike any of the traditional applications for video compression. The transition from film-based media to electronic media represents a paradigm shift in video compression techniques and applications that will be discussed in this paper.

  13. Compressibility of solids

    NASA Technical Reports Server (NTRS)

    Vinet, P.; Ferrante, J.; Rose, J. H.; Smith, J. R.

    1987-01-01

    A universal form is proposed for the equation of state (EOS) of solids. Good agreement is found for a variety of test data. The form of the EOS is used to suggest a method of data analysis, which is applied to materials of geophysical interest. The isothermal bulk modulus is discussed as a function of the volume and of the pressure. The isothermal compression curves for materials of geophysical interest are examined.

  14. Physico-mechanical and dissolution behaviours of ibuprofen crystals crystallized in the presence of various additives

    PubMed Central

    Nokhodchi, A.; Amire, O.; Jelvehgari, M.

    2010-01-01

    Background and the purpose of the study The success of any direct-tableting procedure is strongly affected by the quality of the crystals used in the process. Ibuprofen is a poorly compactible drug with a high tendency for capping. In order to use ibuprofen in direct compression formulations, physico-mechanical properties of ibuprofen should be improved considerably. The aim of the present investigation was to employ crystallization techniques in order to improve the physico- mechanical properties of ibuprofen for direct compression. Methods The experimental methods involved the preparation of ibuprofen crystals by solvent change technique. Ibuprofen was dissolved in ethanol and crystallized out with water in the absence or presence of various hydrophilic additives (PEG 6000, 8000, Brij 98P and polyvinyl alcohol 22000, PVA 22000) with different concentrations. The physico-mechanical properties of the ibuprofen crystals were studied in terms of flow, density, tensile strength and dissolution behaviour. Morphology of ibuprofen crystals was studied by scanning electron microscopic (SEM). Solid state of the recrystallized particles was also investigated using differential scanning calorimeter (DSC) and FT-IR. Results Ibuprofen samples crystallized in the presence of PEG 6000 and 8000 and PVA showed remarkable increase in the tensile strengths of the directly compressed tablets, while some other additives, i.e. Brij 98P did not produce improved ibuprofen crystals. Ibuprofen powders made from particles obtained in the presence of PVA and Brij 98P showed similar dissolution profiles to the commercial ibuprofen particles. DSC and FT-IR results ruled out any significant interaction between ibuprofen and additives except for the samples crystallized in the presence of PEG 8000. Conclusion The crystal habit of ibuprofen can be altered successfully by the crystallization technique which was developed in this study. The crystals developed in the presence of certain additives

  15. Compression of Cake

    NASA Astrophysics Data System (ADS)

    Nason, Sarah; Houghton, Brittany; Renfro, Timothy

    2012-03-01

    The fall university physics class, at McMurry University, created a compression modulus experiment that even high school students could do. The class came up with this idea after a Young's modulus experiment which involved stretching wire. A question was raised of what would happen if we compressed something else? We created our own Young's modulus experiment, but in a more entertaining way. The experiment involves measuring the height of a cake both before and after a weight has been applied to the cake. We worked to derive the compression modulus by applying weight to a cake. In the end, we had our experimental cake and, ate it too! To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2012.TSS.B1.1

  16. Defect accommodation in nanostructured soft crystals.

    PubMed

    Exner, Alexander; Rosenfeldt, Sabine; Fischer, Steffen; Lindner, Peter; Förster, Stephan

    2014-01-01

    A detailed analysis of the structure of lyotropic micellar FCC soft crystals was performed by scanning small-angle neutron scattering. Soft crystals have a large number of structural defects, leading to characteristic features in the scattering patterns such as secondary Bragg peaks, diffuse scattering lines, and paracrystalline distortions. We find that the presence of a large number of defects locally breaks the three-dimensional symmetry of the crystal, leading to weakly correlated assemblies of stacked {111} layers. Positional correlations of micelles in different layers are very short ranged, with correlation lengths corresponding to only a few layers. Within the layers, in-plane positional correlations are somewhat longer ranged, but still corresponding to only a few unit cells. Depending on the polydispersity, soft crystals accommodate defects to form mesocrystals of iso-oriented mosaic domains, or paracrystals. The soft layer structures already show characteristic features of two-dimensional systems, exhibiting short-range positional order and longer-ranged orientational order, with similarities to hexatic and recently observed soft quasicrystalline structures. The study shows that defects can be differently accommodated in soft crystals, thereby strongly affecting local and macroscopic positional and orientational order. PMID:24336833

  17. 1D X-ray Beam Compressing Monochromators

    SciTech Connect

    Korytar, D.; Dobrocka, E.; Konopka, P.; Zaprazny, Z.; Ferrari, C.; Mikulik, P.; Vagovic, P.; Ac, V.; Erko, A.; Abrosimov, N.

    2010-04-06

    A total beam compression of 5 and 10 corresponding to the asymmetry angles of 9 deg. and 12 deg. is achieved with V-5 and V-10 monochromators, respectively, in standard single crystal pure germanium (220) X-ray beam compressing (V-shaped) monochromators for CuKalpha{sub 1} radiation. A higher 1D compression of X-ray beam is possible using larger angles of asymmetry, however it is achieved at the expense of the total intensity, which is decreased due to the refraction effect. To increase the monochromator intensity, several ways are considered both theoretically and experimentally. Linearly graded germanium rich Ge{sub x}Si{sub (1-x)} single crystal was used to prepare a V-21 single crystal monochromator with 15 deg. asymmetry angles (compression factor of 21). Its temperature gradient version is discussed for CuKalpha{sub 1} radiation. X-ray diffraction measurements on the graded GeSi monochromator showed more than 3-times higher intensity at the output compared with that of a pure Ge monochromator.

  18. A comparative study of Burakovsky's and Jacobs's volume dependence Grüneisen parameter for fcc aluminum

    NASA Astrophysics Data System (ADS)

    Nie, Chuanhui; Zong, Baochun; Wang, Junping

    2015-07-01

    We compare two expressions for the volume dependence of the Grüneisen parameter γ for fcc Al presented by Burakovsky and Preston (2004) [3] and Jacobs and Schmid-Fetzer (2010) [4], respectively. It's found that both calculated results of the melting temperature Tm are in good agreement with experimental data. But the higher order Grüneisen parameters are different. We obtain the values of the third order Grüneisen parameter λ∞ and the pressure derivative of bulk modulus K‧∞ at extreme pressure, and the parameter f in the generalized free volume formula for the two models. The results show that the Jacobs's expression of Grüneisen parameter is more suitable for fcc Al.

  19. Spin dynamics and two-dimensional correlations in the fcc antiferromagnetic Sr2YRuO6

    NASA Astrophysics Data System (ADS)

    Disseler, S. M.; Lynn, J. W.; Jardim, R. F.; Torikachvili, M. S.; Granado, E.

    2016-04-01

    The face-centered-cubic (fcc) lattice of Ru5 + spins in the double perovskite Sr2YRuO6 shows a delicate, three-dimensional antiferromagnetic (AFM) ground state composed of stacked square AFM layers. Inelastic neutron scattering data taken on this state reveal a gapped low-energy excitation band emerging from [001] with spin excitations extending to 8 meV. These magnetic excitations are modeled by a simple J1-J2 interaction scheme allowing quantitative comparisons with similar materials. At higher temperatures, the low-energy excitation spectrum is dominated by a quasielastic component associated with size fluctuations of two-dimensional AFM clusters that exhibit asymmetric correlations even at low temperatures. Thus, the fcc lattice in general and the double-perovskite structure in particular emerge as hosts of both two-dimensional and three-dimensional dynamics resulting from frustration.

  20. The Microstructure of Near-Equiatomic B2/f.c.c. FeNiMnAl Alloys

    SciTech Connect

    Baker, Ian; Wu, H; Wu, Xiaolan; Miller, Michael K; Munroe, P R

    2011-01-01

    A microstructural analysis of two FeNiMnAl alloys, Fe{sub 30}Ni{sub 20}Mn{sub 30}Al{sub 20} and Fe{sub 25}Ni{sub 25}Mn{sub 30}Al{sub 20}, was performed by a combination of atom probe tomography and transmission electron microscopy techniques. Although the microstructures of both alloys, which consist of alternating platelets aligned along <100> of the B2-ordered phase, are similar to B2/b.c.c. two-phase alloys previously observed in the FeNiMnAl system, the two phases present in the current alloys are B2-ordered and f.c.c., with the latter phase being heavily twinned. Very fine ({approx} 5 nm) precipitates, whose chemistry was similar to that of the f.c.c. (Fe, Mn)-rich phase, were found within the B2 (Ni, Al)-rich phase in both alloys.

  1. Experimental investigations and DICTRA simulations on formation of diffusion-controlled fcc-rich surface layers on cemented carbides

    NASA Astrophysics Data System (ADS)

    Garcia, José; Prat, Orlando

    2011-08-01

    Wear resistant fcc-rich surface layers were produced on cemented carbides by nitridation of W-Ti-Ta-Nb-Co-C compositions at 1400 °C in nitrogen atmosphere. A 15 ± 3 μm thick (Ti,Ta,Nb,W)(C,N) top-layer formed on the surface of the cemented carbides. The driving force for formation of the fcc-rich layers was the difference in nitrogen activity between the sintering atmosphere and the cemented carbide bulk, which promoted in-diffusion of nitrogen and out-diffusion of Ti, Ta and Nb. The diffusion-controlled process was modeled by DICTRA considering that all diffusion occurred in the liquid binder phase of a dispersed system model with a labyrinth factor of λ( f) = f. Good agreement between experimental and simulations regarding layer thickness, phase fraction distribution and element profiles was obtained for the presented model.

  2. Correlation effects in fcc-FexNi1-x alloys investigated by means of the KKR-CPA

    NASA Astrophysics Data System (ADS)

    Minár, J.; Mankovsky, S.; Šipr, O.; Benea, D.; Ebert, H.

    2014-07-01

    The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study. This work is dedicated to the memory of Balazs Gyorffy.

  3. About the use of stoichiometric hydroxyapatite in compression - incidence of manufacturing process on compressibility.

    PubMed

    Pontier, C; Viana, M; Champion, E; Bernache-Assollant, D; Chulia, D

    2001-05-01

    Literature concerning calcium phosphates in pharmacy exhibits the chemical diversity of the compounds available. Some excipient manufacturers offer hydroxyapatite as a direct compression excipient, but the chemical analysis of this compound usually shows a variability of the composition: the so-called materials can be hydroxyapatite or other calcium phosphates, uncalcined (i.e. with a low crystallinity) or calcined and well-crystallized hydroxyapatite. This study points out the incidence of the crystallinity of one compound (i.e. hydroxyapatite) on the mechanical properties. Stoichiometric hydroxyapatite is synthesized and compounds differing in their crystallinity, manufacturing process and particle size are manufactured. X-Ray diffraction analysis is used to investigate the chemical nature of the compounds. The mechanical study (study of the compression, diametral compressive strength, Heckel plots) highlights the negative effect of calcination on the mechanical properties. Porosity and specific surface area measurements show the effect of calcination on compaction. Uncalcined materials show bulk and mechanical properties in accordance with their use as direct compression excipients. PMID:11343890

  4. Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression.

    PubMed

    Liu, Yuan; Tu, Haohua; Boppart, Stephen A

    2012-06-15

    Wave-breaking often occurs when a short intense optical pulse propagates in a long normally dispersive optical fiber. This effect has conventionally been avoided in fiber (super-)continuum-based pulse compression because the accumulated frequency chirp of the output pulse cannot be fully compensated by a standard prism (or grating) pair. Thus, the spectral extending capability of the wave-breaking has not been utilized to shorten the compressed pulse. We demonstrate that wave-breaking-free operation is not necessary if a 4f pulse shaper-based compressor is employed to remove both the linear and nonlinear chirp of the output pulse. By propagating a 180 fs (FWHM) input pulse in a nonlinear photonic crystal fiber beyond the wave-breaking limit, we compress the wave-breaking-extended supercontinuum output pulse to the bandwidth-limited duration of 6.4 fs (FWHM). The combination of high compression ratio (28×) and short pulse width represents a significant improvement over that attained in the wave-breaking-free regime. PMID:22739845

  5. Piston reciprocating compressed air engine

    SciTech Connect

    Cestero, L.G.

    1987-03-24

    A compressed air engine is described comprising: (a). a reservoir of compressed air, (b). two power cylinders each containing a reciprocating piston connected to a crankshaft and flywheel, (c). a transfer cylinder which communicates with each power cylinder and the reservoir, and contains a reciprocating piston connected to the crankshaft, (d). valve means controlled by rotation of the crankshaft for supplying compressed air from the reservoir to each power cylinder and for exhausting compressed air from each power cylinder to the transfer cylinder, (e). valve means controlled by rotation of the crankshaft for supplying from the transfer cylinder to the reservoir compressed air supplied to the transfer cylinder on the exhaust strokes of the pistons of the power cylinders, and (f). an externally powered fan for assisting the exhaust of compressed air from each power cylinder to the transfer cylinder and from there to the compressed air reservoir.

  6. Structural features of the system of cubic crystals Zn0.999Fe0.001S1 - x Se x ( x = 0, 0.2)

    NASA Astrophysics Data System (ADS)

    Maksimov, V. I.; Dubinin, S. F.; Surkova, T. P.; Parkhomenko, V. D.

    2012-09-01

    The structural state of cubic single crystals Zn0.999Fe0.001S1 - x Se x ( x = 0, 0.2) obtained by the chemical transport method has been investigated using thermal neutron diffraction for the first time. It has been found that the diffraction patterns of these crystals contain the previously unknown effects of diffuse scattering caused by local statistic atomic displacements in the metastable fcc lattice.

  7. Specific features of defect and mass transport in concentrated fcc alloys

    DOE PAGESBeta

    Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.

    2016-06-15

    We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less

  8. Core-level shifts in fcc random alloys: A first-principles approach

    NASA Astrophysics Data System (ADS)

    Olovsson, W.; Göransson, C.; Pourovskii, L. V.; Johansson, B.; Abrikosov, I. A.

    2005-08-01

    First-principles theoretical calculations of the core-level binding-energy shift (CLS) for eight binary face-centered-cubic (fcc) disordered alloys, CuPd, AgPd, CuNi, NiPd, CuAu, PdAu, CuPt, and NiPt, are carried out within density-functional theory (DFT) using the coherent potential approximation. The shifts of the Cu and Ni 2p3/2 , Ag and Pd 3d5/2 , and Pt and Au 4f7/2 core levels are calculated according to the complete screening picture, which includes both initial-state (core-electron energy eigenvalue) and final-state (core-hole screening) effects in the same scheme. The results are compared with available experimental data, and the agreement is shown to be good. The CLSs are analyzed in terms of initial- and final-state effects. We also compare the complete screening picture with the CLS obtained by the transition-state method, and find very good agreement between these two alternative approaches for the calculations within the DFT. In addition the sensitivity of the CLS to relativistic and magnetic effects is studied.

  9. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in FCC and BCC metals

    SciTech Connect

    Hirth, J P; Rhee, M; Zhib, H M; de la Rubia, T D

    1999-02-19

    A dislocation dynamics (DD) model for plastic deformation, connecting the macroscopic mechanical properties to basic physical laws governing dislocation mobility and related interaction mechanisms, has been under development. In this model there is a set of critical reactions that determine the overall results of the simulations, such as the stress-strain curve. These reactions are, annihilation, formation of jogs, junctions, and dipoles, and cross-slip. In this paper we discuss these reactions and the manner in which they influence the simulated stress- strain behavior in fcc and bcc metals. In particular, we examine the formation (zipping) and strength of dipoles and junctions, and effect of jogs, using the dislocation dynamics model. We show that the strengths (unzipping) of these reactions for various configurations can be determined by direct evaluation of the elastic interactions. Next, we investigate the phenomenon of hardening in metals subjected to cascade damage dislocations. The microstructure investigated consists of small dislocation loops decorating the mobile dislocations. Preliminary results reveal that these loops act as hardening agents, trapping the dislocations and resulting in increased hardening.

  10. [In situ FTIR and XPS study on selective hydrodesulfurization catalyst of FCC gasoline].

    PubMed

    Qiherima; Yuan, Hui; Zhang, Yun-hong; Li, Hui-feng; Xu, Guang-tong

    2011-07-01

    Improvement of the selectivity of hydrodesulfurization (HDS) for hydrogenation (HYD) of olefins is crucial to produce sulfur-free (S < 0.001%) gasoline from fluid catalytic-cracked (FCC) gasoline. A series of sulfided CoMo/Al2O3 catalysts with different metal loading were prepared by pore-filling impregnation. MoS2 and COMoS active phases on the surface of sulfided COMo/Al2O3 catalyst were identified and analyzed quantitatively by XPS and in-situ FTIR of adsorbed CO. The results reveal that the increase in COMoS phase on the catalyst surface improves the HDS activity and selectivity. And the HDS selectivity correlates linearly with the ratio of active site number of CoMoS and MoS2, the higher the ratio of active site number of CoMoS and MoS2, the better the HDS selectivity. In situ variable temperature FTIR analysis shows that CoMoS phase has stronger electron accepting ability than MoS2. The strong electron deficient property of CoMoS active sites is the main reason for its excellent HDS activity and selectivity. PMID:21942017

  11. Specific features of defect and mass transport in concentrated fcc alloys

    SciTech Connect

    Osetskiy, Yury N; Stoller, Roger E

    2016-01-01

    Diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients. The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. The percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.

  12. The invariant line and precipitate morphology in fcc-bcc systems

    SciTech Connect

    Weatherly, G.C.; Zhang, W.Z. . Dept. of Materials Science and Engineering)

    1994-09-01

    Second-phase precipitates in many face-centered cubic-body-centered cubic (fcc-bcc) systems (e.g., Ni-Cr, Cu-Cr, Fe-Cu, and [alpha]-[gamma] stainless steels) have a lath-shaped morphology, the long axis of the lath being an invariant line of the transformation. The invariant line direction and major (habit) facet plane of the product phase can be predicted by O-lattice (O-line) models. For N-W-, and K-S-oriented precipitates, the habit plane is shown to be an unrotated plane of the transformation. This contains a single set of dislocations lying parallel to the invariant line, with their Burgers vector in the habit plane. Structural ledge models for the habit-plane interface also are considered. For the range of lattice parameter ratios of interest in this study, structural ledge and O-line models can make almost identical predictions as to the optimum habit plane. A variety of elasticity calculations for the energy of fully constrained or fully relaxed precipitates is presented. These models are shown to have limited predictive capabilities. It is suggested that better atomic matching along or near to the invariant line direction might explain the preference for K-S-related precipitates in many systems.

  13. Characterisation of coke from FCC catalysts by solid state {sup 13}C NMR and mass spectrometry

    SciTech Connect

    Andresen, J.M.; McGhee, B.; Snape, C.E.

    1995-12-31

    Coke has been concentrated by demineralisation from deactivated FCC catalysts from both refinery operations with actual feeds and MAT tests using n-hexadecane to facilitate detailed characterisation by solid state {sup 13}C NMR and mass spectrometry. All the catalysts investigated contained about 1% w/w carbon. As for solid fuels, the use of a low-field spectrometer for solid state {sup 13}C NMR in conjunction with the single pulse excitation (SPE or Bloch decay) technique has enabled quantitative carbon skeletal parameters to be obtained for the cokes. Internal standard measurements demonstrated that most of the carbon was observed by SPE and, therefore, NMR-invisible graphitic layers are not thought to be major structural features of the cokes. Differences in feedstock composition were reflected in the structure of the refinery cokes with the aromatic nuclei from a residue feed (5% Conradson carbon) corresponding to 15-20 peri-condensed aromatic rings and being more highly condensed than those from a hydrotreated vacuum gas oil. Mass spectrometry (EI, CI and FIMS) has confirmed that the refinery cokes are highly condensed, but those obtained from n-hexadecane in the MAT tests displayed significant aliphatic character.

  14. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    SciTech Connect

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive for Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.

  15. First-principles study of atomic ordering in fcc Ni-Cr alloys

    NASA Astrophysics Data System (ADS)

    Rahaman, Moshiour; Johansson, B.; Ruban, A. V.

    2014-02-01

    We investigate atomic ordering in fcc Ni-rich Ni-Cr alloys using first-principles techniques and statistical mechanics simulations based on the Ising Hamiltonian with effective cluster interactions computed by the screened generalized perturbation method (SGPM) and projector augmented wave (PAW) method. We demonstrate that effective chemical interactions in this system are quite sensitive to alloy composition and in fact to the specific configurational state. The chemical interactions for the high-temperature random state produce the atomic short-range order (SRO) with intensity maximum close to the (2/32/30) point of the reciprocal space in agreement with the previous first-principles investigation. A consistent with diffuse neutron scattering data maximum at the (11/20) position is obtained only when we take into consideration relatively small strain-induced interactions, which solves a long-standing inconsistency between theory and experiment in this system. The calculated transition temperature of order-disorder transition of Ni2Cr alloy, 880 K, is in good agreement with the experimental value of 863 K.

  16. Benchmark of a modified iterated perturbation theory approach on the fcc lattice at strong coupling

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-François; Sémon, Patrick; Tremblay, A.-M. S.

    2012-08-01

    The dynamical mean-field theory approach to the Hubbard model requires a method to solve the problem of a quantum impurity in a bath of noninteracting electrons. Iterated perturbation theory (IPT) has proven its effectiveness as a solver in many cases of interest. Based on general principles and on comparisons with an essentially exact continuous-time quantum Monte Carlo (CTQMC) solver, here we show that the standard implementation of IPT fails away from half-filling when the interaction strength is much larger than the bandwidth. We propose a slight modification to the IPT algorithm that replaces one of the equations by the requirement that double occupancy calculated with IPT gives the correct value. We call this method IPT-D. We recover the Fermi liquid ground state away from half-filling. The Fermi liquid parameters, density of states, chemical potential, energy, and specific heat on the fcc lattice are calculated with both IPT-D and CTQMC as benchmark examples. We also calculated the resistivity and the optical conductivity within IPT-D. Particle-hole asymmetry persists even at coupling twice the bandwidth. A generalization to the multiorbital case is suggested. Several algorithms that speed up the calculations are described in appendixes.

  17. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE PAGESBeta

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  18. Self assembly of inorganic nanocrystals in 3D supra crystals: Intrinsic properties

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2009-06-01

    Here we describe how arrangements of nanocrystals can self-organize in 3D arrays called supra crystals. The 3D arrays can fall into the familiar categories of face centered cubic (fcc), hexagonal compact packing (hcp) crystals, and body centered (bcc) crystals. Intrinsic collective properties of these 3D arrangements are different from the properties of individual nanoparticles and from particles in bulk. We demonstrate by two various processes and with two types of nanocrystals (silver and cobalt) that when nanocrystals are self ordered in 3D superlattices, they exhibit a coherent breathing mode vibration of the supra crystal, analogous to a breathing mode vibration of atoms in a nanocrystal. Comparison between the approaches to saturation of the magnetic curve for supra crystals and disordered aggregates produced from the same batch of nanocrystals is similar to that observed with films or nanoparticles either highly crystallized or amorphous.

  19. Bulk modulus for polar covalent crystals

    PubMed Central

    Xu, Bo; Wang, Qianqian; Tian, Yongjun

    2013-01-01

    A microscopic empirical model of bulk modulus based on atomic-scale parameters is proposed. These parameters include the bond length, the effective bonded valence electron (EBVE) number, and the coordination number product of two bonded atoms, etc. The estimated bulk moduli from our model are in good agreement with experimental values for various polar covalent crystals including ionic crystals. Our current work sheds lights on the nature of bulk modulus, provides useful clues for design of crystals with low compressibility, and is applicable to complex crystals such as minerals of geophysical importance. PMID:24166098

  20. A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the Sutton-Chen potential

    NASA Astrophysics Data System (ADS)

    Shodja, H. M.; Tehranchi, A.

    2010-05-01

    The usual continuum theories are inadequate in predicting the mechanical behavior of solids in the presence of small defects and stress concentrators; it is well known that such continuum methods are unable to detect the change of the size of the inhomogeneities and defects. For these reasons various augmented continuum theories and strain gradient theories have been proposed in the literature. The major difficulty in implication of these theories lies in the lack of information about the additional material constants which appear in such theories. For fcc metals, for the calculation of the associated characteristic lengths which arise in first strain gradient theory, an atomistic approach based on the Sutton-Chen interatomic potential function is proposed. For the validity of the computed characteristic lengths, the phenomenon of the size effect pertinent to a nano-sized circular void within an fcc (111) plane is examined via both first strain gradient theory and lattice statics. Comparison of the results explains the physical ramifications of the characteristic lengths in improving the usual continuum results. Moreover, by reconsideration of the Kelvin problem it is shown that a commonly employed variant of the first strain gradient theory is only valid for a few fcc metals.