Science.gov

Sample records for compton diode detectors

  1. Diamond Detectors for Compton Polarimetry

    NASA Astrophysics Data System (ADS)

    Martin, J. W.; Dutta, D.; Narayan, A.; Wang, P.

    2009-12-01

    Parity-violating electron scattering experiments aim to test the standard model of particle physics through precise low-energy determinations of the weak mixing angle. These experiments require determination of the polarization of the incident electron beam to the 1% level or better. An example of this type of experiment is the Q-weak experiment, which will be conducted in Hall C at Jefferson Lab in 2010 and beyond. We are constructing a Compton polarimeter in Hall C to provide continuous monitoring of the polarization with the goal of 1% absolute polarization determination. In our Compton polarimeter, circularly polarized laser light will impinge upon the electron beam. Electrons scattered by the Compton process will be momentum-analyzed in a dipole magnet downstream of the interaction point. A diamond strip tracker will be placed further downstream of the dipole to sense the Compton-scattered electrons and determine their momenta. The design of the polarimeter, focusing on electron detection, and our progress in prototyping and constructing the diamond strip tracker, are discussed.

  2. Why compton-suppressed germanium detector arrays?

    SciTech Connect

    Diamond, R.M.

    1993-10-01

    Nuclear spectroscopic studies have provided a strong incentive to obtain {gamma}-ray detectors with increasingly better energy resolution, higher full-energy peak efficiencies, and greater sensitivity or resolving power. A major step was the introduction of Ge detectors in the early 60`s. But because of the low atomic number of Ge they have a poor response function; a majority of interacting gamma rays of moderate energy Compton scatter out of the detector leaving a large low-energy background. The remedy was to add a Compton-suppression shield made of NaI around the Ge crystal, and if interactions occurred simultaneously in the NaI scintillator and in the Ge detector to veto that event. Efficiencies also increased greatly when an English-Danish collaboration assembled five Ge detectors, each with a NaI suppressor, into the first array at the end of 1980. Obviously, a system of five such detectors gave much better statistics than the usual two bare detectors used for obtaining coincidence data (by a factor of 10). A few years later, another major improvement came with replacement of the NaI suppressors with shields made of the much denser bismuth germanate (BGO) as scintillator, as these could be thinner leading to arrays with of order 20 detectors. Use of such a large number of detectors led to the realization that for cascades of coincident gamma rays, as in going down a band, the improvement in the peak/background ratio observed and already appreciated in going from singles spectra to gated (double-) coincidence spectra continued when doubly-gated triple-coincidence data were compared for the first time to singly-gated double-coincidence ones. The higher-gated spectra were much cleaner and more selective, though with poorer statistics, and the advantages of higher folds and efficiencies led to the proposals for the larger 4{pi} arrays of today, Eurogam and GASP in Europe and Gammasphere in the U.S.

  3. Testing of the BGO Compton-suppression detectors for gammasphere

    SciTech Connect

    Carpenter, M.P.; Ahmad, I.; Annan, G.A.

    1995-08-01

    Gammasphere, the national {gamma}-ray facility, when completed will consist of 110 Compton-suppressed Ge detectors. The bismuth germanate (BGO) Compton-suppression detector system for each Ge detector consists of one tapered hexagonal BGO side shield and one slotted BGO back plug. Due to the geometry of the array, three types of annular shields are required. These types are referred to as B, C and D, and the array consists of 60, 30 and 20 of these units, respectively. Shield types B, C and D have a hexagonal geometry. They are divided into six optically separate sections, each with its own pair of photomultiplier tubes. Argonne assumed responsibility for the procurement and testing of the BGO Compton-suppression units. We received all detectors from the two vendors. In the past year, twenty-four of the B-type detectors were delivered to Stony Brook for evaluation tests. Since the number of crystals to test is quite large (six per detector), we involved undergraduate students working at ANL under the Department of Educational Programs (DEP) in this effort. The quality of students was excellent, and they played a major role in the performance testing of these detectors. Ninety-nine of the hexagonal side shields and 112 backplug detectors were shipped to LBL for use in Gammasphere. The remaining detectors did not meet the performance criteria when they were first delivered and tested and are either at the vendor being repaired or were returned to us for retesting. We anticipate that the remaining detectors will be ready for use in Gammasphere within the next few months.

  4. Compton-edge-based energy calibration of double-sided silicon strip detectors in Compton camera

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Park, Jin Hyung; Kim, Chan Hyeong; Lee, Ju Hahn; Lee, Chun Sik; Sung Lee, Jae

    2011-05-01

    Accurate energy calibration of double-sided silicon strip detectors (DSSDs) is very important, but challenging for high-energy photons. In the present study, the calibration was improved by considering the Compton edge additionally to the existing low-energy calibration points. The result, indeed, was very encouraging. The energy-calibration errors were dramatically reduced, from, on average, 15.5% and 16.9% to 0.47% and 0.31% for the 356 (133Ba) and 662 keV (137Cs) peaks, respectively. The imaging resolution of a double-scattering-type Compton camera using DSSDs as the scatterer detectors, for a 22Na point-like source, also was improved, by ˜9%.

  5. Transition-radiation-Compton-scattering detector for very relativistic nuclei

    NASA Technical Reports Server (NTRS)

    Osborne, W. Z.; Mack, J. E.

    1975-01-01

    The paper presents the design and predicted performance of a large acceptance (2 sq m sr) transition-radiation-Compton-scattering detector system which can be used to measure energy spectra up to several thousand Gev/nucleon for nuclei with Z between 6 and 28, as well as up to 40,000 GeV/nucleon for He. The following circumstances made such a detector system practicable: (1) transition radiation output is proportional to the square of particle charge; (2) output varies at least as rapidly as the square of Lorentz factor over the range from several hundred to several thousand.

  6. Measurement of Compton scattering in phantoms by germanium detectors

    SciTech Connect

    Zasadny, K.R.; Koral, K.F. . Medical Center); Floyd, C.E. Jr.; Jaszczak, R.J. . Dept. of Radiology)

    1990-04-01

    Quantitative Anger-camera tomography requires correction for Compton scattering. The Anger camera spectral-fitting technique can measure scatter fractions at designated positions in an image allowing for correction. To permit verification of those measurements for {sup 131}I, the authors have determined scatter fractions with a high-purity germanium (HPGe) detector and various phantom configurations. The scatter fraction values for {sup 99m}Tc were also measured and are compared to results from Monte Carlo simulation. The phantom consisted of a 22.2 cm diameter {times} 18.6 cm high cylinder filled with water and a 6 cm diameter water-filled sphere placed at various locations inside the cylinder. Radioisotope is added to either the sphere or the cylinder. The source is collimated by an Anger camera collimator and the active area of the HPGe detector is defined by a 0.6 cm diameter hole in a lead shielding mask. Corrections include accounting for the HPGe detector efficiency as a function of gamma-ray energy, the finite energy resolution of detector and the HPGe detector energy resolution compared to that for a NaI(Tl) Anger camera.

  7. Compton rejection for HPGe detectors via real-time pulse shape analysis

    SciTech Connect

    Beckedahl, D; Blair, J J; Friensehner, A; Kammeraad, J E; Kreek, S A; Payne, B; Schmid, G J

    1998-07-31

    A Lawrence Livermore National Laboratory-developed pulse shape analysis (PSA) technique which performs real-time Compton suppression in High Purity Germanium (HPGe) detectors without the use of anti-coincidence detectors is described. Some preliminary measurements of a variety of sources with a standard HPGe detector system and our prototype PSA algorithm have been made and indicate that a reduction in Compton continuum can be achieved via PSA. These measurements represent an initial assessment of the effectiveness of the prototype PSA system for the improvement of spectral quality and future improvements are expected. Additional work is progressing to optimize the effectiveness of the algorithm for Compton rejection in standard HPGe detectors. Work is also progressing to extend the methodology to segmented HPGe detectors which could potentially yield significantly better Compton rejection and gamma-ray ima

  8. Spectral line-diode registry effects with photodiode array detectors

    SciTech Connect

    Winge, R.K.; Fassel, V.A.; Eckels, D.E.

    1986-05-01

    A limitation of photodiode array detectors for spectroscopic intensity measurements relates to the spacing of the diodes and the errors generated when a spectral line is not in exact registry with the diode or diodes from which its intensity is being measured. These misregistry intensity errors, which may be as high as 25 to 30%, are documented for a range of spectral bandwidths and for single diode (pixel) intensities and multiple diode summations of intensities.

  9. X-Rays Compton Detectors For Biomedical Application

    SciTech Connect

    Rossi, Paolo; Fontana, Cristiano Lino; Moschini, Giuliano; Baldazzi, Giuseppe; Navarria, Francesco; Battistella, Andrea; Bello, Michele; Bollini, Dante; Bonvicini, Valter; Rashevsky, Alexander; Zampa, Gianluigi; Zampa, Nicola; Vacchi, Andrea; Gennaro, Gisella; Uzunov, Nikolay

    2011-06-01

    Collimators are usually needed to image sources emitting X-rays that cannot be focused. Alternately, one may employ a Compton Camera (CC) and measure the direction of the incident X-ray by letting it interact with a thin solid, liquid or gaseous material (Tracker) and determine the scattering angle. With respect to collimated cameras, CCs allow higher gamma-ray efficiency in spite of lighter geometry, and may feature comparable spatial resolution. CCs are better when the X-ray energy is high and small setups are required. We review current applications of CCs to Gamma Ray Astronomy and Biomedical systems stressing advantages and drawbacks. As an example, we focus on a particular CC we are developing, which is designed to image small animals administered with marked pharmaceuticals, and assess the bio-distribution and targeting capability of these latter. This camera has to address some requirements: relatively high activity of the imaged objects; detection of gamma-rays of different energies that may range from 140 keV (Tc99m) to 511 keV; presence of gamma and beta radiation with energies up to 2 MeV in case of 188Re. The camera consists of a thin position-sensitive Silicon Drift Detector as Tracker, and a further downstream position-sensitive system employing scintillating crystals and a multi-anode photo-multiplier (Calorimeter). The choice of crystal, pixel size, and detector geometry has been driven by measurements and simulations with the tracking code GEANT4. Spatial resolution, efficiency and scope are discussed.

  10. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate

  11. The determination of the efficiency of a Compton suppressed HPGe detector using Monte Carlo simulations.

    PubMed

    McNamara, A L; Heijnis, H; Fierro, D; Reinhard, M I

    2012-04-01

    A Compton suppressed high-purity germanium (HPGe) detector is well suited to the analysis of low levels of radioactivity in environmental samples. The difference in geometry, density and composition of environmental calibration standards (e.g. soil) can contribute to excessive experimental uncertainty to the measured efficiency curve. Furthermore multiple detectors, like those used in a Compton suppressed system, can add complexities to the calibration process. Monte Carlo simulations can be a powerful complement in calibrating these types of detector systems, provided enough physical information on the system is known. A full detector model using the Geant4 simulation toolkit is presented and the system is modelled in both the suppressed and unsuppressed mode of operation. The full energy peak efficiencies of radionuclides from a standard source sample is calculated and compared to experimental measurements. The experimental results agree relatively well with the simulated values (within ∼5 - 20%). The simulations show that coincidence losses in the Compton suppression system can cause radionuclide specific effects on the detector efficiency, especially in the Compton suppressed mode of the detector. Additionally since low energy photons are more sensitive to small inaccuracies in the computational detector model than high energy photons, large discrepancies may occur at energies lower than ∼100 keV. PMID:22304994

  12. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    NASA Astrophysics Data System (ADS)

    Bakhlanov, S. V.; Bazlov, N. V.; Derbin, A. V.; Drachnev, I. S.; Kayunov, A. S.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.

    2016-06-01

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  13. A Compton-Vetoed Germanium Detector with Increased Sensitivity at Low Energies

    SciTech Connect

    Friedrich, S; Bates, C; Drury, O B; Burks, M; DiPrete, D

    2012-03-29

    The difficulty to directly detect plutonium in spent nuclear fuel due to the high Compton background of the fission products motivates the design of a Gamma detector with improved sensitivity at low energies. We have built such a detector by operating a thin high-purity Ge detector with a large scintillator Compton veto directly behind it. The Ge detector is thin to absorb just the low-energy Pu radiation of interest while minimizing Compton scattering of high energy radiation from the fission products. The subsequent scintillator is large so that forward scattered photons from the Ge detector interact in it at least once to provide an anti-coincidence veto for the Ge detector. For highest sensitivity, additional material in the line-of-sight is minimized, the radioactive sample is kept thin, and its radiation is collimated. We will discuss the instrument design, and demonstrate the feasibility of the approach with a prototype that employs two large CsI scintillator vetoes. Initial spectra of a thin Cs-137 calibration source show a background suppression of a factor of {approx}2.5 at {approx}100 keV, limited by an unexpectedly thick 4 mm dead layer in the Ge detector.

  14. The performance of a single-crystal BGO annulus as a Compton- suppression detector

    SciTech Connect

    Ussery, L.E. ); Matthews, S.K. )

    1991-01-01

    We have tested a single-crystal bismuth-germanate annulus in conjunction with a high-purity germanium detector as a Compton-suppression spectrometer, and have measured gamma-ray energies of up to 6.13 MeV. 1 ref., 9 figs., 2 tabs.

  15. Directional gamma sensing from covariance processing of inter-detector Compton crosstalk energy asymmetries

    NASA Astrophysics Data System (ADS)

    Trainham, R.; Tinsley, J.

    2014-06-01

    Energy asymmetry of inter-detector crosstalk from Compton scattering can be exploited to infer the direction to a gamma source. A covariance approach extracts the correlated crosstalk from data streams to estimate matched signals from Compton gammas split over two detectors. On a covariance map the signal appears as an asymmetric cross diagonal band with axes intercepts at the full photo-peak energy of the original gamma. The asymmetry of the crosstalk band can be processed to determine the direction to the radiation source. The technique does not require detector shadowing, masking, or coded apertures, thus sensitivity is not sacrificed to obtain the directional information. An angular precision of better than 1° of arc is possible, and processing of data streams can be done in real time with very modest computing hardware.

  16. Directional gamma sensing from covariance processing of inter-detector Compton crosstalk energy asymmetries.

    PubMed

    Trainham, R; Tinsley, J

    2014-06-01

    Energy asymmetry of inter-detector crosstalk from Compton scattering can be exploited to infer the direction to a gamma source. A covariance approach extracts the correlated crosstalk from data streams to estimate matched signals from Compton gammas split over two detectors. On a covariance map the signal appears as an asymmetric cross diagonal band with axes intercepts at the full photo-peak energy of the original gamma. The asymmetry of the crosstalk band can be processed to determine the direction to the radiation source. The technique does not require detector shadowing, masking, or coded apertures, thus sensitivity is not sacrificed to obtain the directional information. An angular precision of better than 1° of arc is possible, and processing of data streams can be done in real time with very modest computing hardware. PMID:24985816

  17. High-Resolution Compton-Suppressed CZT Detector for Fission Products Identification

    SciTech Connect

    R. Aryaeinejd; J. K. Hartwell; Wade W. Scates

    2004-10-01

    Room temperature semiconductor CdZnTe (CZT) detectors are currently limited to total detector volumes of 1-2 cm3, which is dictated by the poor charge transport characteristics. Because of this size limitation one of the problems in accurately determining isotope identification is the enormous background from the Compton scattering events. Eliminating this background will not only increase the sensitivity and accuracy of measurements but also help us to resolve peaks buried under the background and peaks in close vicinity of others. We are currently developing a fission products detection system based on the Compton-suppressed CZT detector. In this application, the detection system is required to operate in high radiation fields. Therefore, a small 10x10x5 mm3 CZT detector is placed inside the center of a well-shielded 3" in diameter by 3" long Nal detector. So far we have been able to successfully reduce the Compton background by a factor of 5.4 for a 137Cs spectrum. This reduction of background will definitely enhance the quality of the gamma-ray spectrum in the information-rich energy range below 1 MeV, which consequently increases the detection sensitivity. In this work, we will discuss the performance of this detection system as well as its applications.

  18. Design and First Results of the CoDeX Liquid-Xenon Compton-Imaging Detector

    NASA Astrophysics Data System (ADS)

    Tennyson, Brian; Cahn, Sidney; Bernard, Ethan; Boulton, Elizabeth; Destefano, Nicholas; Edwards, Blair; Hackenburg, Ariana; Horn, Markus; Larsen, Nicole; Nikkel, James; Wahl, Christopher; Gai, Moshe; McKinsey, Daniel

    2016-03-01

    CoDeX (Compton-imaging Detector in Xenon) is an R&D Compton gamma-ray imaging detector that uses 30 kg of xenon in a two-phase time projection chamber. Time projection relative to the initial scintillation signal provides the vertical interaction positions, and either PMT-sensed gas electroluminescence or a charge-sensitive amplifier quantifies the drifted ionization signal. Detector features to enable Compton imaging are a pair of instrumented wire grids added to sense the horizontal position of clouds of drifted electrons that traverse the detector. Each wire is individually amplified in the cold xenon environment. Design choices addressing the thermodynamic and xenon purity constraints of this system will be discussed. We will also discuss the mechanical designs, engineering challenges, and performance of this Compton-imaging detector.

  19. Evaluation of detector material and radiation source position on Compton camera's ability for multitracer imaging.

    PubMed

    Uche, C Z; Round, W H; Cree, M J

    2012-09-01

    We present a study on the effects of detector material, radionuclide source and source position on the Compton camera aimed at realistic characterization of the camera's performance in multitracer imaging as it relates to brain imaging. The GEANT4 Monte Carlo simulation software was used to model the physics of radiation transport and interactions with matter. Silicon (Si) and germanium (Ge) detectors were evaluated for the scatterer, and cadmium zinc telluride (CZT) and cerium-doped lanthanum bromide (LaBr(3):Ce) were considered for the absorber. Image quality analyses suggest that the use of Si as the scatterer and CZT as the absorber would be preferred. Nevertheless, two simulated Compton camera models (Si/CZT and Si/LaBr(3):Ce Compton cameras) that are considered in this study demonstrated good capabilities for multitracer imaging in that four radiotracers within the nuclear medicine energy range are clearly visualized by the cameras. It is found however that beyond a range difference of about 2 cm for (113m)In and (18)F radiotracers in a brain phantom, there may be a need to rotate the Compton camera for efficient brain imaging. PMID:22829298

  20. The millimeter wave super-Schottky diode detector

    NASA Technical Reports Server (NTRS)

    Silver, A. H.; Pedersen, R. J.; Mccoll, M.; Dickman, R. L.; Wilson, W. J.

    1981-01-01

    The 31 and 92 GHz measurements of the superconductor-Schottky diode extended to millimeter wavelengths by a redesign of the semiconductor interface are reported. Diodes were fabricated by pulse electroplating Pb on 2 x 10 to the 19th/cu cm p-Ga-As etched with HCl; a thin Au overplate is deposited to protect the Pb film from degradation and to improve its lifetime. The noise performance was almost ideal at 31 and 92 GHz; it was concluded that this diode is a quantum-limited-detector at 31 GHz, with excessive parasitic losses at 92 GHz.

  1. A Germanium Detector with Optimized Compton Veto for High Sensitivity at Low Energy

    SciTech Connect

    Friedrich, S

    2011-11-30

    We have built a prototype germanium detector with a Compton veto that is optimized for high sensitivity in the low-energy range around {approx}100 keV. It is specifically designed to address the problem to directly detect plutonium gamma emissions in spent nuclear fuel by non-destructive assay. This is not possible with current detectors due to the large low-energy background of Compton-scattered high-energy radiation from the fission products, whose gamma flux is at least 6 to 7 orders of magnitude higher than the Pu signal. Our instrument is designed to assess the feasibility to selectively suppress the background in the low-energy region around {approx}100 keV with the strongest Pu X-ray and gamma emissions lines. It employs a thin Ge detector with a large Compton veto directly behind it to suppress the background from forward-scattered radiation by anti-coincidence vetoing. This report summarizes the design considerations and the performance of the instrument.

  2. Evaluation of Si(Li) detectors for use in Compton telescopes

    SciTech Connect

    Tindall, C.; Hau, I.D.; Luke, P.N.

    2002-05-01

    Si(Li) detectors are currently being developed for use in large Compton telescopes. A major advantage of silicon when compared with germanium is its ability to operate at significantly higher temperature. To determine the feasibility of using Si(Li) detectors in a Compton telescope, their performance as a function of temperature has been studied. We present leakage current, noise data and gamma-ray spectral performance at various temperatures for single 6-mm thick planar devices. It has been determined that for detectors without a guard ring, the noise began to rise significantly around 210K. Adding a guard ring improved the leakage current by about an order of magnitude and reduced the total noise (detector plus electronics) by about 25 percent. The noise of the detectors with {approx}130 mm2 area and a guard ring did not exceed our performance goal of 2 keV FWHM until the temperature was approximately 240K. For 122 keV gamma rays, no evidence of ballistic deficit was seen at 8 ms peaking time and bias voltages corresponding to an internal electric field of {approx}1150 V/cm. Some evidence of ballistic deficit was seen for 662 keV gamma rays at temperatures above 220K.

  3. Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.

    2003-01-01

    We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.

  4. Core-shell diodes for particle detectors

    NASA Astrophysics Data System (ADS)

    Jia, Guobin; Plentz, Jonathan; Höger, Ingmar; Dellith, Jan; Dellith, Andrea; Falk, Fritz

    2016-02-01

    High performance particle detectors are needed for fundamental research in high energy physics in the exploration of the Higgs boson, dark matter, anti-matter, gravitational waves and proof of the standard model, which will extend the understanding of our Universe. Future particle detectors should have ultrahigh radiation hardness, low power consumption, high spatial resolution and fast signal response. Unfortunately, some of these properties are counter-influencing for the conventional silicon drift detectors (SDDs), so that they cannot be optimized simultaneously. In this paper, the main issues of conventional SDDs have been analyzed, and a novel core-shell detector design based on micro- and nano-structures etched into Si-wafers is proposed. It is expected to simultaneously reach ultrahigh radiation hardness, low power consumption, fast signal response and high spatial resolution down to the sub-micrometer range, which will probably meet the requirements for the most powerful particle accelerators in the near future. A prototype core-shell detector was fabricated using modern silicon nanotechnology and the functionality was tested using electron-beam-induced current measurements. Such a high performance detector will open many new applications in extreme radiation environments such as high energy physics, astrophysics, high resolution (bio-) imaging and crystallography, which will push these fields beyond their current boundaries.

  5. Spectrometry and dosimetry of fast neutrons using pin diode detectors

    NASA Astrophysics Data System (ADS)

    Zaki Dizaji, H.; Kakavand, T.; Abbasi Davani, F.

    2014-03-01

    Elastic scattering of light nuclei, especially hydrogen, is widely used for detection of fast neutrons. Semiconductor devices based on silicon detectors are frequently used for different radiation detections. In this work, a neutron spectrometer consisting of a pin diode coupled with a polyethylene converter and aluminum degrader layers has been developed. Aluminum layers are used as discriminators of different neutron energies for detectors. The response of the converter-degrader-pin diode configuration, the optimum thickness of the converter and the degrader layers have been extracted using MCNP and SRIM simulation codes. The possibility of using this type of detector for fast neutron spectrometry and dosimetry has been investigated. A fairly good agreement was seen between neutron energy spectrum and dose obtained from our configurations and these specifications from an 241Am-Be neutron source.

  6. Application of AXUV diode detectors at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bernert, M.; Eich, T.; Burckhart, A.; Fuchs, J. C.; Giannone, L.; Kallenbach, A.; McDermott, R. M.; Sieglin, B.

    2014-03-01

    In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales.

  7. Application of AXUV diode detectors at ASDEX Upgrade.

    PubMed

    Bernert, M; Eich, T; Burckhart, A; Fuchs, J C; Giannone, L; Kallenbach, A; McDermott, R M; Sieglin, B

    2014-03-01

    In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5 μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales. PMID:24689581

  8. Application of AXUV diode detectors at ASDEX Upgrade

    SciTech Connect

    Bernert, M. Eich, T.; Burckhart, A.; Fuchs, J. C.; Giannone, L.; Kallenbach, A.; McDermott, R. M.; Sieglin, B.

    2014-03-15

    In the ASDEX Upgrade tokamak, a radiation measurement for a wide spectral range, based on semiconductor detectors, with 256 lines of sight and a time resolution of 5μs was recently installed. In combination with the foil based bolometry, it is now possible to estimate the absolutely calibrated radiated power of the plasma on fast timescales. This work introduces this diagnostic based on AXUV (Absolute eXtended UltraViolet) n-on-p diodes made by International Radiation Detectors, Inc. The measurement and the degradation of the diodes in a tokamak environment is shown. Even though the AXUV diodes are developed to have a constant sensitivity for all photon energies (1 eV-8 keV), degradation leads to a photon energy dependence of the sensitivity. The foil bolometry, which is restricted to a time resolution of less than 1 kHz, offers a basis for a time dependent calibration of the diodes. The measurements of the quasi-calibrated diodes are compared with the foil bolometry and found to be accurate on the kHz time scale. Therefore, it is assumed, that the corrected values are also valid for the highest time resolution (200 kHz). With this improved diagnostic setup, the radiation induced by edge localized modes is analyzed on fast timescales.

  9. Dead layer measurements on diode detectors

    NASA Astrophysics Data System (ADS)

    Danagoulian, Areg; Barron-Palos, Libertad; Klein, Andreas; Wilburn, Scott

    2007-10-01

    The goal of the abBA experiment involves coincidence measurements of protons and electrons from the neutron beta decay. While electron detection is rather straightforward, the detection of the protons is complicated due to their low energies. In order to understand the detector reponse and to determine the lower cut off value for the energy a technique for determining the thickness of the dead layer has been developed. A discussion of the measurement and of the results will be presented.

  10. Dual diode detector for homodyne EPR microwave bridges

    NASA Astrophysics Data System (ADS)

    Koscielniak, Janusz; Berliner, Lawrence J.

    1994-07-01

    After low noise FET amplifiers found widespread use in both X-band and low-frequency systems, it became possible to use multidiode mixers for signal detection. Here, a novel dual diode mixer is described for use in homodyne microwave bridges for both cw and pulsed electron paramagnetic resonance spectrometers. The structure is composed of a 90° hybrid coupler and separate detectors in two arms. The device provides common mode rejection of noise-like regular balanced mixers but, by making diode dc currents accessible, offers big advantages for tuning of the bridge when low Q sample probes are used. Although the use of this detector does not affect sensitivity directly, tuning precision and increased long-term stability leads to unexpected improvements.

  11. DSSD detectors development PACT, a new space Compton telescope at the horizon 2025

    NASA Astrophysics Data System (ADS)

    Laurent, P.; Khalil, M.; Dolgorouki, Y.; Bertoli, W.; Oger, R.; Bréelle, E.

    2015-07-01

    PACT is a Pair and Compton telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV . It will be devoted to the detection of radioactivity lines from present and past supernova explosions, the observation of thousands of new blazars, and the study of polarized radiations from gamma-ray bursts, pulsars and accreting black holes. It will reach a sensitivity of one to two orders of magnitude lower than COMPTEL/CGRO (e.g. about 50 times lower for the broad-band, survey sensitivity at 1 MeV after 5 years). The PACT telescope is based upon three main components: a silicon-based gamma-ray tracker, a crystal-based calorimeter (e.g. CeBr3), and an anticoincidence detector made of plastic scintillator panels. Prototypes of the Silicon detector planes have been optimized and are currently tested in the APC laboratory.

  12. Development of an anti-Compton veto for HPGe detectors operated in liquid argon using silicon photo-multipliers

    NASA Astrophysics Data System (ADS)

    Janicskó Csáthy, J.; Aghaei Khozani, H.; Caldwell, A.; Liu, X.; Majorovits, B.

    2011-10-01

    A proof of concept detector is presented for scintillation light detection in liquid argon using silicon photo-multipliers. The aim of the work is to build an anti-Compton veto for germanium detectors operated directly in liquid argon as in the GERDA experiment. Wavelength shifting fibers are used to collect the scintillation light and to guide it to Multi-Pixel Photon Counters (MPPC). Sufficient light yield was achieved to realize an effective anti-Compton veto. Properties of the MPPC were studied at cryogenic temperatures and are additionally reported.

  13. Monte-Carlo optimisation of a Compton suppression system for use with a broad-energy HPGe detector

    NASA Astrophysics Data System (ADS)

    Britton, R.; Burnett, J. L.; Davies, A. V.; Regan, P. H.

    2014-10-01

    Monte-Carlo simulations are used to evaluate and optimise multiple components of a Compton Suppression System based upon a Broad-energy HPGe primary detector. Several materials for the secondary crystal are evaluated, including NaI(Tl), BGO and LaBr3(Ce). BGO was found to be the most effective across the required energy range, with the sizes of the proposed veto detector then optimised to extract the maximum performance for a given volume of material. Suppression factors are calculated for a range of nuclides (both single and cascade emitters) with improvements of 2 for the Compton Suppression Factors, and 10 for the continuum reduction when compared to the Compton suppression system currently in use. This equates to a reduction in the continuum by up to a factor of ~240 for radionuclides such as 60Co, which is crucial for the detection of low-energy, low-activity γ emitters typically swamped by such a continuum.

  14. Iterative Monte Carlo simulation with the Compton kinematics-based GEB in a plastic scintillation detector

    NASA Astrophysics Data System (ADS)

    Kim, Chankyu; Kim, Yewon; Moon, Myungkook; Cho, Gyuseong

    2015-09-01

    Plastic scintillators have been used for gamma ray detection in the fields of dosimetry and homeland security because of their desired characteristics such as a fast decay time, a low production cost, availability in a large-scale, and a tissue-equivalence. Gaussian energy broadening (GEB) in MCNP simulation is an effective treatment for tallies to calculate the broadened response function of a detector similarly to measured spectra. The full width at half maximum (FWHM) of a photopeak has been generally used to compute input parameters required for the GEB treatment. However, it is hard to find the photopeak in measured gamma spectra with plastic scintillators so that computation of the input parameters for the GEB has to be taken with another way. In this study, an iterative method for the GEB treated MCNP simulation to calculate the response function of a plastic scintillator is suggested. Instead of the photopeak, Compton maximum and Compton edge were used to estimate energy broadening in the measured spectra and to determine the GEB parameters. In a demonstration with a CsI(Tl) scintillator, the proposed iterative simulation showed the similar gamma spectra to the existing method using photopeaks. The proposed method was then applied to a polystyrene scintillator, and the simulation result were in agreement with the measured spectra with only a little iteration.

  15. Compton polarimeter as a focal plane detector for hard X-ray telescope

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.

    X-ray polarimetry is expected to provide unique opportunity to study the behavior of matter and radiation under extreme magnetic fields and extreme gravitational fields. However sensitivity of the X-ray polarimeters has always been an issue for the last three decades; there is almost no progress in this field whereas there is a significant advance in the fields of X-ray spectroscopy, imaging and timing. Recently significant improvement in the sensitivity is expected in polarimetric measurements using GEM-based photoelectron tracking polarimeters coupled to soft X-ray telescopes. However they are sensitive in the soft X-ray regime. On the other hand mostly for the X-ray sources higher degree of polarisation at hard X-rays is expected because of the dominance of nonthermal X-ray emission mechanisms over the thermal counterpart. So polarisation measurement in hard X-ray can yield significant insights into such processes. Of late with the advent of high energy focussing telescopes (e.g. Nu STAR, ASTRO-H), sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array of scintillator detectors. We have carried out detailed Geant4 simulations to estimate the modulation factor for 100% polarized beam as well as polarimetric efficiency of this configuration. Polarimetric sensitivity of the instrument critically depends on low energy threshold in central plastic scatterer. We estimated the sensitivity for a range of plastic threshold energy. We also discuss the methodology to measure the threshold energy in plastic scatterer. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics and the experimental results for threshold measurements in plastic.

  16. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    PubMed

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18) F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8. PMID:24932209

  17. New uncooled thermal IR detector using silicon-diode-micromachined isolated silicon diode for IR detection (MISIR)

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Kwan; Han, Chul-Hi

    2000-12-01

    A new thermal infrared detector using temperature characteristics of a diode has been developed. This micromachined isolated silicon diode for IR detection (MISIR) utilizes an electrochemical etching technique to achieve the thermal isolation of the diode. Experimental dependence of the diode current on the junction temperature enables a high responsivity of the MISIR and the electrochemical etch stop provides an effective isolation at simple and low-cost. The fabricated MISIR has demonstrated a detectivity of 1.2x1010(cm(DOT)HzHLF/W) at room temperature in air ambient.

  18. Photo-detectors integrated with resonant tunneling diodes.

    PubMed

    Romeira, Bruno; Pessoa, Luis M; Salgado, Henrique M; Ironside, Charles N; Figueiredo, José M L

    2013-01-01

    We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD's NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems. PMID:23881142

  19. Photo-Detectors Integrated with Resonant Tunneling Diodes

    PubMed Central

    Romeira, Bruno; Pessoa, Luis M.; Salgado, Henrique M.; Ironside, Charles N.; Figueiredo, José M. L.

    2013-01-01

    We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD's NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems. PMID:23881142

  20. The detector response matrices of the burst and transient source experiment (BATSE) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Horack, John M.; Lestrade, John Patrick

    1995-01-01

    The detector response matrices for the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) are described, including their creation and operation in data analysis. These response matrices are a detailed abstract representation of the gamma-ray detectors' operating characteristics that are needed for data analysis. They are constructed from an extensive set of calibration data coupled with a complex geometry electromagnetic cascade Monte Carlo simulation code. The calibration tests and simulation algorithm optimization are described. The characteristics of the BATSE detectors in the spacecraft environment are also described.

  1. Flat-response x-ray-diode-detector development

    SciTech Connect

    Tirsell, G.

    1982-10-01

    In this report we discuss the design of an improved sub-nanosecond flat response x-ray diode detector needed for ICF diagnostics. This device consists of a high Z cathode and a complex filter tailored to flatten the response so that the total x-ray energy below 1.5 keV can be measured using a single detector. Three major problems have become evident as a result of our work with the original LLNL design including deviation from flatness due to a peak in the response below 200 eV, saturation at relatively low x-ray fluences, and long term gold cathode instability. We are investigating grazing incidence reflection to reduce the response below 200 eV, new high Z cathode materials for long term stability, and a new complex filter for improved flatness. Better saturation performance will require a modified XRD detector under development with reduced anode to cathode spacing and increased anode bias voltage.

  2. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    NASA Astrophysics Data System (ADS)

    Narayan, Amrendra

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (~1GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  3. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    SciTech Connect

    Narayan, Amrendra

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  4. Microwave detectors based on the spin-torque diode effect

    NASA Astrophysics Data System (ADS)

    Prokopenko, O. V.; Slavin, A. N.

    2015-05-01

    The spin-transfer torque (STT) effect provides a new method of manipulation of magnetization in nanoscale objects. The STT effect manifests itself as a transfer of spin angular momentum between the parallel magnetic layers separated by a nonmagnetic spacer and traversed by a dc electric current. The transfer of the spin angular momentum from one layer to another could result in the excitation of the microwave-frequency magnetization dynamics in one of the magnetic layers. On the other hand, when a magnetization dynamics is excited in a magnetic layered structure by an external microwave signal both the structure electrical resistance and current through the structure will acquire microwave components resulting in the appearance of a rectified dc voltage on the magnetic structure. This "spin-torque diode effect" can be used for the development of ultra-sensitive spin-torque microwave detectors (STMD). Below we present a brief review of our recent work on the general properties of STMDs, analyze the performance of the "resonance-type" and "threshold-type STMD" and consider the possible applications for such microwave detectors.

  5. Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields

    SciTech Connect

    Eklund, Karin; Ahnesjoe, Anders

    2010-11-15

    Purpose: Silicon diodes are widely used as detectors for relative dose measurements in radiotherapy. The common manufacturing practice is to encapsulate the diodes in plastic for protection and to facilitate mounting in scanning devices. Diodes intended for use in photon fields commonly also have a shield of a high atomic number material (usually tungsten) integrated into the encapsulation to selectively absorb low-energy photons to which silicon diodes would otherwise over-response. However, new response models based on cavity theories and spectra calculations have been proposed for direct correction of the readout from unshielded (e.g., ''electron'') diodes used in photon fields. This raises the question whether it is correct to assume that the spectrum in a water phantom at the location of the detector cavity is not perturbed by the detector encapsulation materials. The aim of this work is to investigate the spectral effects of typical encapsulations, including shielding, used for clinical diodes. Methods: The effects of detector encapsulation of an unshielded and a shielded commercial diode on the spectra at the detector cavity location are studied through Monte Carlo simulations with PENELOPE-2005. Variance reduction based on correlated sampling is applied to reduce the CPU time needed for the simulations. Results: The use of correlated sampling is found to be efficient and to not introduce any significant bias to the results. Compared to reference spectra calculated in water, the encapsulation for an unshielded diode is demonstrated to not perturb the spectrum, while a tungsten shielded diode caused not only the desired decrease in low-energy scattered photons but also a large increase of the primary electron fluence. Measurements with a shielded diode in a 6 MV photon beam proved that the shielding does not completely remove the field-size dependence of the detector response caused by the over-response from low-energy photons. Response factors of a properly

  6. Optimizing diode thickness for thin-film solid state thermal neutron detectors

    SciTech Connect

    Murphy, John W.; Mejia, Israel; Quevedo-Lopez, Manuel A.; Gnade, Bruce; Kunnen, George R.; Allee, David

    2012-10-01

    In this work, we investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. We evaluate several diode materials, Si, CdTe, GaAs, C (diamond), and ZnO, and two neutron converter materials, {sup 10}B and {sup 6}LiF. Investigating a coplanar diode/converter geometry, we determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

  7. Development of Gamma-Ray Compton Imager Using Room-Temperature 3-D Position Sensitive Semiconductor Detectors

    SciTech Connect

    Zhong He; David Whe; Glenn Knoll

    2003-05-14

    During the three years of this project, two 3-dimensional position sensitive CdZnTe spectrometers were upgraded in collaboration with Johns Hopkins University Applied Physics Laboratory. A prototype Compton-scattering gamma-ray imager was assembled using the two upgraded CdZnTe detectors. The performance of both gamma-ray spectrometers were individually tested. The angular resolution and detection sensitivity of the imaging system were measured using both a point and a line-shaped 137 Cs radiation source. The measurement results are consistent with that obtained from Monte-Carlo simulations performed during the early phase of the project.

  8. EVALUATION OF SILICON DIODES AS IN-SITU CRYOGENIC FIELD EMISSION DETECTORS FOR SRF CAVITY DEVELOPMENT

    SciTech Connect

    Ari Palczewski, Rongli Geng

    2012-07-01

    We performed in-situ cryogenic testing of four silicon diodes as possible candidates for field emission (FE) monitors of superconducting radio frequency (SRF) cavities during qualification testing and in accelerator cryo-modules. We evaluated diodes from 2 companies - from Hamamatsu corporation model S1223-01; and from OSI Optoelectronics models OSD35-LR-A, XUV-50C, and FIL-UV20. The measurements were done by placing the diodes in superfluid liquid helium near the top of a field emitting 9-cell cavity during its vertical test. For each diode, we will discuss their viability as a 2K cryogenic detector for FE mapping of SRF cavities and the directionality of S1223-01 in such environments. We will also present calibration curves between the diodes and JLab's standard radiation detector placed above the Dewar's top plate.

  9. Measuring multimegavolt pulsed voltages using Compton-generated electrons

    NASA Astrophysics Data System (ADS)

    Swanekamp, S. B.; Weber, B. V.; Pereira, N. R.; Hinshelwood, D. D.; Stephanakis, S. J.; Young, F. C.

    2004-01-01

    The "Compton-Hall" voltmeter is a radiation-based voltage diagnostic that has been developed to measure voltages on high-power (TW) pulsed generators. The instrument collimates photons generated from bremsstrahlung produced in the diode onto an aluminum target to generate Compton-generated electrons. Permanent magnets bend the Compton electron orbits that escape the target toward a silicon pin diode detector. A GaAs photoconductive detector (PCD) detects photons that pass through the Compton target. The diode voltage is determined from the ratio of the electron dose in the pin detector to the x-ray dose in the PCD. The Integrated Tiger Series of electron-photon transport codes is used to determine the relationship between the measured dose ratio and the diode voltage. Variations in the electron beam's angle of incidence on the bremsstrahlung target produce changes in the shape of the photon spectrum that lead to large variations in the voltage inferred from the voltmeter. The voltage uncertainty is minimized when the voltmeter is fielded at an angle of 45° with respect to the bremsstrahlung target. In this position, the photon spectra for different angles of incidence all converge onto a single spectrum reducing the uncertainty in the voltage to less than 10% for voltages below 4 MV. Higher and lower voltages than the range considered in this article can be measured by adjusting the strength of the applied magnetic field or the position of the electron detector relative to the Compton target. The instrument was fielded on the Gamble II pulsed-power generator configured with a plasma opening switch. Measurements produced a time-dependent voltage with a peak (3.7 MV) that agrees with nuclear activation measurements and a pulse shape that is consistent with the measured radiation pulse shape.

  10. Low energy gamma ray observations with the MPI-Compton telescope. [balloon-borne detectors

    NASA Technical Reports Server (NTRS)

    Graml, F.; Penningsfeld, F. P.; Schoenfelder, V.

    1978-01-01

    Although the evaluation of data from the first balloon-flight of a large area Compton telescope is incomplete, two preliminary results are discussed. From the measured background spectrum at float altitude, the sensitivity of the telescope for the detection of cosmic gamma ray lines is estimated. The energy spectra is determined for an enhanced gamma ray flux observed from the direction of the Seyfert galaxy NGC 4151. A schematic drawing of the telescope is presented and discussed.

  11. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  12. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Villa, E.; Aja, B.; de la Fuente, L.; Artal, E.

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  13. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    PubMed

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature. PMID:26827340

  14. Detection of nitrite by flow injection analysis using a novel paired emitter-detector diode (PEDD) as a photometric detector

    NASA Astrophysics Data System (ADS)

    O'Toole, Martina; Shepherd, Roderick; Lau, King-Tong; Diamond, Dermot

    2007-09-01

    An inexpensive flow injection analysis system for determining low concentration levels of nitrite employing the Griess reagent spectrophotometric method is reported. The novel photometric detector applied within this manifold is a highly sensitive, low cost, miniaturized light emitting diode (LED) based flow detector. This colorimetric detector employs two LEDs, operating one as a light source and the other as a light detector. The emitter LED is forward biased and the detector reverse biased. The emitter and detector LED had a λmax of 530 nm and 623 nm respectively. The emission spectrum of the emitter LED efficiently overlapped with the absorbance spectrum of 9 µM NO2 and Griess reagent complex. A simple timer circuit measures the time taken for the photocurrent generated by the emitter LED to discharge the detector LED from 5 V (logic 1) to 1.7 V (logic 0). The Griess reagent method employed for nitrite determination is based on the formation of an azo dye, the intensity of which is directly related to nitrite concentration. The linear range, reproducibility and limit of detection were investigated. Detection limits in the nanomolar range were achieved using the Paired Emitter-Detector Diode (PEDD) flow analysis device. For a comparative study the linear range and limit of detection were also investigated using a platewell reader. Higher sensitivity and improved precision were obtained from the PEDD compared to the commercially available plate well reader.

  15. The Light-Emitting Diode as a Light Detector

    ERIC Educational Resources Information Center

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  16. Submicron nickel-oxide-gold tunnel diode detectors for rectennas

    NASA Technical Reports Server (NTRS)

    Hoofring, A. B.; Kapoor, V. J.; Krawczonek, W.

    1989-01-01

    The characteristics of a metal-oxide-metal (MOM) tunnel diode made of nickel, nickel-oxide, and gold, designed and fabricated by standard integrated circuit technology for use in FIR rectennas, are presented. The MOM tunnel diode was formed by overlapping a 0.8-micron-wide layer of 1000-A of nickel, which was oxidized to form a thin layer of nickel oxide, with a 1500 A-thick layer of gold. The dc current-voltage characteristics of the MOM diode showed that the current dependence on voltage was linear about zero bias up to a bias of about 70 mV. The maximum detection of a low-level signal (10-mV ac) was determined to be at a dc voltage of 70 mV across the MOM diode. The rectified output signal due to a chopped 10.6-micron CO2 laser incident upon the rectenna device was found to increase with dc bias, with a maximum value of 1000 nV for a junction bias of 100 mV at room temperature.

  17. Compton polarimeter as a focal plane detector for hard X-ray telescope: sensitivity estimation with Geant4 simulations

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Pendharkar, J.

    2013-04-01

    X-ray polarimetry can be an important tool for investigating various physical processes as well as their geometries at the celestial X-ray sources. However, X-ray polarimetry has not progressed much compared to the spectroscopy, timing and imaging mainly due to the extremely photon-hungry nature of X-ray polarimetry leading to severely limited sensitivity of X-ray polarimeters. The great improvement in sensitivity in spectroscopy and imaging was possible due to focusing X-ray optics which is effective only at the soft X-ray energy range. Similar improvement in sensitivity of polarisation measurement at soft X-ray range is expected in near future with the advent of GEM based photoelectric polarimeters. However, at energies >10 keV, even spectroscopic and imaging sensitivities of X-ray detector are limited due to lack of focusing optics. Thus hard X-ray polarimetry so far has been largely unexplored area. On the other hand, typically the polarisation degree is expected to increase at higher energies as the radiation from non-thermal processes is dominant fraction. So polarisation measurement in hard X-ray can yield significant insights into such processes. With the recent availability of hard X-ray optics (e.g. with upcoming NuSTAR, Astro-H missions) which can focus X-rays from 5 KeV to 80 KeV, sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array scintillator detectors. We have carried out detailed Geant4 simulation to estimate the modulation factor for 100 % polarized beam as well as polarimetric efficiency of this configuration. We have also validated these results with a semi-analytical approach. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X

  18. A Multiyear Light Curve of Scorpius X-1 Based on Compton Gamma Ray Observatory BATSE Spectroscopy Detector Observations

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Harrison, T. E.; Mason, P. A.; Templeton, M.; Heikkila, C. W.; Buckley, T.; Galvan, E.; Silva, A.; Harmon, B. A.

    1998-06-01

    A multiyear light curve of the low mass X-ray binary, Scorpius X-1, is constructed based on the Compton Gamma Ray Observatory Burst and Transient Source Experiment (BATSE) Spectroscopy Detector (SD) data in the nominal energy range of 10-20 keV. A detailed discussion is given of the reduction process of the BATSE/SD data. Corrections to the SD measurements are made for off-axis pointings, spectral and bandpass changes, and differences in the eight SD sensitivities. The resulting 4.4 yr Sco X-1 SD light curve is characterized in terms of the timescales over which various types of emission changes occur. This light curve is then compared with Sco X-1 light curves obtained by Ariel 5, the BATSE Large Area Detectors (LADs), and the RXTE all-sky monitor (ASM). Coincident temporal coverage by the BATSE/SD and RXTE/ASM allows a direct comparison of the behavior of Sco X-1 over a range of high energies to be made. These ASM light curves are then used to discuss model constraints on the Sco X-1 system.

  19. Extraction of depth-dependent perturbation factors for silicon diodes using a plastic scintillation detector

    SciTech Connect

    Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Gingras, Luc; Beaulieu, Luc

    2011-10-15

    Purpose: This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. Results: The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.

  20. X-ray detectors based on GaN Schottky diodes

    SciTech Connect

    Duboz, Jean-Yves; Frayssinet, Eric; Chenot, Sebastien; Reverchon, Jean-Luc; Idir, Mourad

    2010-10-18

    GaN Schottky diodes have been fabricated and tested as x-ray detectors in the range from 6 to 21 keV. The spectral response has been measured and is compared to its theoretical value. The study of the response and its temporal dynamics as a function of the bias allows to identify a photovoltaic behavior at low bias and a photoconductive one at larger reverse biases. The GaN diode turned out to be linear as a function of the incident power. The noise and detectivity are given and discussed.

  1. Design and Preliminary Monte Carlo Calculations of an Active Compton Suppressed LaBr3(Ce) Detector System for TRU Assay in Remote-Handled Wastes

    SciTech Connect

    J. Kulisek; J. K. Hartwell; M. E. McIlwain; R. P. Gardner

    2006-09-01

    Recent studies indicate LaBr3(Ce) scintillation detectors have desirable attributes, such as room temperature operability, which may make them viable alternatives as primary detectors (PD) in a Compton suppression spectrometer (CSS) used for remote-handled transuranic (RH-TRU) waste assay. A CSS with a LaBr3(Ce) PD has been designed and its expected performance evaluated using Monte Carlo analysis. The unique design of this unit minimizes the amount of "dead" material between the PD and the secondary guard detector. The analysis results indicate that this detector will have a relatively high Compton-suppression capability, with greater suppression ability for large angle-scattered photons in the PD. J. K. Hartwell1, M. E. McIlwain1, R. P. Gardner2, J. Kulisek3 1) Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-2114 USA 2) North Carolina State University, Dept of Nuclear Eng., PO Box 7909, Raleigh, NC 27695 USA 3) Ohio State University, Columbus, Ohio 43210 The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes. The RH-TRU waste stream is composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The expected detector performance has been modeled using MCNP-X [1] and CEARCPG [2], and incorporates certain design features modeled as important to active Compton suppression systems in previously-published work [3]. The unique detector system is sketched in Fig. 1. The ~25 mm diameter by 75 mm long LaBr3(Ce

  2. Characteristics of a CsI(Tl) Compton-suppressed clover detector

    NASA Astrophysics Data System (ADS)

    Zhang, N. T.; Lei, X. G.; Guo, Y. X.; Zhou, X. H.; Zhang, Y. H.; Ma, F.; Li, S. C.; Liu, M. L.; Zheng, Y.; Fang, Y. D.; Hua, W.; Guo, S.; Qiang, Y. H.; Wang, J. G.; Gao, B. S.; Xu, S. W.; Chen, S. Z.

    2013-03-01

    The performance of a four fold segmented clover detector coupled to a CsI-suppressed shield has been tested using several standard radioactive sources. The summing characteristics, hit patterns and absolute efficiency were measured in both crystal and clover modes. Peak-to-total ratios of 57.3% and 45.6% in suppressed clover mode have been determined for 137Cs and 60Co sources, respectively. A Geant4 simulation of the suppressed clover detector, including the segmentation of the germanium crystals, has been created, and the simulation results agreed very well with the experimental data.

  3. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras

    SciTech Connect

    Mackin, Dennis; Polf, Jerimy; Peterson, Steve; Beddar, Sam

    2013-01-15

    Purpose: The authors investigated how the characteristics of the detectors used in a three-stage Compton camera (CC) affect the CC's ability to accurately measure the emission distribution and energy spectrum of prompt gammas (PG) emitted by nuclear de-excitations during proton therapy. The detector characteristics they studied included the material (high-purity germanium [HPGe] and cadmium zinc telluride [CZT]), Doppler broadening (DB), and resolution (lateral, depth, and energy). Methods: The authors simulated three-stage HPGe and CZT CCs of various configurations, detecting gammas from point sources with energies ranging from 0.511 to 7.12 MeV. They also simulated a proton pencil beam irradiating a tissue target to study how the detector characteristics affect the PG data measured by CCs in a clinical proton therapy setting. They used three figures of merit: the distance of closest approach (DCA) and the point of closest approach (PCA) between the measured and actual position of the PG emission origin, and the calculated energy resolution. Results: For CCs with HPGe detectors, DB caused the DCA to be greater than 3 mm for 14% of the 6.13 MeV gammas and 20% of the 0.511 MeV gammas. For CCs with CZT detectors, DB caused the DCA to be greater than 3 mm for 18% of the 6.13 MeV gammas and 25% of the 0.511 MeV gammas. The full width at half maximum (FWHM) of the PCA in the z-caret direction for HPGe and CZT detectors ranged from 1.3 to 0.4 mm for gammas with incident energy ranging from 0.511 to 7.12 MeV. For CCs composed of HPGe detectors, the resolution of incident gamma energy calculated by the CC ranged from 6% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For CCs composed of CZT detectors, the resolution of gamma energy calculated by the CC ranged from 10% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For HPGe and CZT CCs in which all detector effect were included, the DCA was less than 3 mm for 75% and 68% of the

  4. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras

    PubMed Central

    Mackin, Dennis; Polf, Jerimy; Peterson, Steve; Beddar, Sam

    2013-01-01

    Purpose: The authors investigated how the characteristics of the detectors used in a three-stage Compton camera (CC) affect the CC's ability to accurately measure the emission distribution and energy spectrum of prompt gammas (PG) emitted by nuclear de-excitations during proton therapy. The detector characteristics they studied included the material (high-purity germanium [HPGe] and cadmium zinc telluride [CZT]), Doppler broadening (DB), and resolution (lateral, depth, and energy). Methods: The authors simulated three-stage HPGe and CZT CCs of various configurations, detecting gammas from point sources with energies ranging from 0.511 to 7.12 MeV. They also simulated a proton pencil beam irradiating a tissue target to study how the detector characteristics affect the PG data measured by CCs in a clinical proton therapy setting. They used three figures of merit: the distance of closest approach (DCA) and the point of closest approach (PCA) between the measured and actual position of the PG emission origin, and the calculated energy resolution. Results: For CCs with HPGe detectors, DB caused the DCA to be greater than 3 mm for 14% of the 6.13 MeV gammas and 20% of the 0.511 MeV gammas. For CCs with CZT detectors, DB caused the DCA to be greater than 3 mm for 18% of the 6.13 MeV gammas and 25% of the 0.511 MeV gammas. The full width at half maximum (FWHM) of the PCA in the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\hat z\\end{equation*} \\end{document}z^ direction for HPGe and CZT detectors ranged from 1.3 to 0.4 mm for gammas with incident energy ranging from 0.511 to 7.12 MeV. For CCs composed of HPGe detectors, the resolution of incident gamma energy calculated by the CC ranged from 6% to 1% for gammas with true incident energies from 0.511 to 7.12 Me

  5. Inverse Compton for Compton

    NASA Astrophysics Data System (ADS)

    Suortti, Pekka

    2016-04-01

    A novel concept for a high resolution Compton spectrometer is introduced. 88 keV radiation from an Inverse Compton Compact Source is focused using crossed cylindrically bent Laue-type Si perfect crystals, and dispersed on the sample with a constant energy gradient. Dispersion is compensated exactly at a Ge crystal analyzer, so that the same wavelength shift is observed for all wavelengths of the incident beam. The ThomX source is used as a concrete example. Detailed dimensions and flux estimates at successive locations of the spectrometer are given, and the performance is compared with the dispersion compensating spectrometer at ID15 of the ESRF. The momentum resolution is better than 0.1 atomic units in both cases. The intensity of scattering with the compact source is an order of magnitude smaller, but still adequate for high resolution Compton profile measurements.

  6. Performance of a Low Noise Front-end ASIC for Si/CdTe Detectors in Compton Gamma-ray Telescope

    SciTech Connect

    Tajima, H

    2004-03-29

    Compton telescopes based on semiconductor technologies are being developed to explore the gamma-ray universe in an energy band 0.1-20 MeV, which is not well covered by the present or near-future gamma-ray telescopes. The key feature of such Compton telescopes is the high energy resolution that is crucial for high angular resolution and high background rejection capability. The energy resolution around 1 keV is required to approach physical limit of the angular resolution due to Doppler broadening. We have developed a low noise front-end ASIC (Application-Specific Integrated Circuit), VA32TA, to realize this goal for the readout of Double-sided Silicon Strip Detector (DSSD) and Cadmium Telluride (CdTe) pixel detector which are essential elements of the semiconductor Compton telescope. We report on the design and test results of the VA32TA. We have reached an energy resolution of 1.3 keV (FWHM) for 60 keV and 122 keV at 0 C with a DSSD and 1.7 keV (FWHM) with a CdTe detector.

  7. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 μm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppm m, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.

  8. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy.

    PubMed

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 microm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppmm, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min. PMID:16563854

  9. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes

    SciTech Connect

    Bolton, P.R.

    1987-06-01

    A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration.

  10. Large-area CdTe diode detector for space application

    NASA Astrophysics Data System (ADS)

    Nakazawa, K.; Takahashi, T.; Watanabe, S.; Sato, G.; Kouda, M.; Okada, Y.; Mitani, T.; Kobayashi, Y.; Kuroda, Y.; Onishi, M.; Ohno, R.; Kitajima, H.

    2003-10-01

    The current status of Schottky CdTe diode detectors, especially in view of their space application for hard X-ray and gamma-ray astronomy, are reported. For practical use in space science, a large-area CdTe diode with a size of 21.5×21.5mm2 and a thickness of 0.5mm was developed. A good energy resolution, 2.8keV (FWHM) at -20°C, and high homogeneity to within 0.2% over the detector were achieved for the spectral performance. This device has successfully passed a series of tests required for its use in space, in view of utilizing Japanese M-V rockets. The tests include the mechanical environment test, vacuum test, long run for weeks and proton-beam radiation. Initial results from a 2×2 segmented electrode large-area device with a guard-ring are also presented.

  11. Tests of a multichannel photometer based on silicon diode detectors

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Allen, L. E.; Taylor, S. W.; Torbet, E. B.; Schaefer, A. R.; Fowler, J.

    1988-01-01

    A breadboard photometer was constructed that demonstrates a precision of 2 times 10 to the 4th power in the laboratory and scintillation-limited performance when used with an 0.5 m aperture telescope. Because the detectors and preamps are not cooled, only stars with m sub v approx. less than 4 are bright enough to allow the photometer to attain a precision of 1 times 10 to the 3rd power for three minute observations with an 0.5 m aperature telescope. Cooling the telescope should allow much fainter stars to be observed. Increasing the aperture of the telescope will allow higher precision and the observation of fainter stars.

  12. Characterization of zero-bias microwave diode power detectors at cryogenic temperature.

    PubMed

    Giordano, Vincent; Fluhr, Christophe; Dubois, Benoît; Rubiola, Enrico

    2016-08-01

    We present the characterization of commercial tunnel diode low-level microwave power detectors at room and cryogenic temperatures. The sensitivity as well as the output voltage noise of the tunnel diodes is measured as functions of the applied microwave power. We highlight strong variations of the diode characteristics when the applied microwave power is higher than a few microwatts. For a diode operating at 4 K, the differential gain increases from 1000 V/W to about 4500 V/W when the power passes from -30 dBm to -20 dBm. The diode white noise floor is equivalent to a Noise Equivalent Power of 0.8 pW/Hz and 8 pW/Hz at 4 K and 300 K, respectively. Its flicker noise is equivalent to a relative amplitude noise power spectral density Sα(1 Hz) = - 120 dB/Hz at 4 K. Flicker noise is 10 dB higher at room temperature. PMID:27587142

  13. A car-borne highly sensitive near-IR diode-laser methane detector

    SciTech Connect

    Berezin, A G; Ershov, Oleg V; Shapovalov, Yu P

    2003-08-31

    A highly sensitive automated car-borne detector for measuring methane concentration in real time is designed, developed and tested under laboratory and field conditions. Measurements were made with the help of an uncooled tunable near-IR 1.65-{mu}m laser diode. The detector consists of a multipass optical cell with a 45-m long optical path and a base length of 0.5 m. The car-borne detector is intended for monitoring the methane concentration in air from the moving car to reveal the leakage of domestic gas. The sensitivity limit (standard deviation) under field conditions is 1 ppm (20 ppb under laboratory conditions) for a measuring time of 0.4 s. The measuring technique based on the detection of a single methane line ensured a high selectivity of methane detector relative to other gases. The methane detector can be easily modified for measuring other simple-molecule gases (e.g., CO, CO{sub 2}, HF, NO{sub 2}, H{sub 2}O) by replacing the diode laser and varying the parameters of the control program. (special issue devoted to the memory of academician a m prokhorov)

  14. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    PubMed Central

    Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J.

    2013-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm – 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms. PMID:24058378

  15. 640 x 480 pixel uncooled infrared FPA with SOI diode detectors

    NASA Astrophysics Data System (ADS)

    Ueno, Masashi; Kosasayama, Yasuhiro; Sugino, Takaki; Nakaki, Yoshiyuki; Fujii, Yoshio; Inoue, Hiromoto; Kama, Keisuke; Seto, Toshiki; Takeda, Munehisa; Kimata, Masafumi

    2005-05-01

    This paper describes the structure and performance of a 25-micron pitch 640 x 480 pixel uncooled infrared focal plane array (IR FPA) with silicon-on-insulator (SOI) diode detectors. The uncooled IR FPA is a thermal type FPA that has a temperature sensor of single crystal PN junction diodes formed in an SOI layer. In the conventional pixel structure, the temperature sensor and two support legs for thermal isolation are made in the lower level of the pixel, and an IR absorbing structure is made in the upper pixel level to cover almost the entire pixel area. The IR absorption utilizes IR reflections from the lower level. Since the reflection from the support leg portions is not perfect due to the slits in the metal reflector, the reflection becomes smaller as the support leg section increases in reduced pixel pitches. In order to achieve high thermal isolation and high IR absorption simultaneously, we have developed a new pixel structure that has an independent IR reflector between the lower and upper levels. The structure assures perfect IR reflection and thus improves IR absorption. The FPA shows a noise equivalent temperature difference (NETD) of 40 mK (f/1.0) and a responsivity non-uniformity of less than 0.9%. The good uniformity is due to the high uniformity of the electrical characteristics of SOI diodes made of single crystal silicon (Si). We have confirmed that the SOI diodes architecture is suitable for large format uncooled IR FPAs.

  16. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors.

    PubMed

    Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste

    2013-09-01

    We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics. PMID:24103966

  17. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    PubMed Central

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald

    2015-01-01

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  18. SU-F-18C-05: Characterization of a Silicon Strip Photon-Counting Detector in the Presence of Compton Scatter: A Simulation Study

    SciTech Connect

    Ziemer, B; Ding, H; Cho, H

    2014-06-15

    Purpose: To investigate the effect of Compton scatter on detection efficiency and charge-sharing for a Si strip photon-counting detector as a function of pixel pitch, slice thickness and total pixel length. Methods: A CT imaging system employing a silicon photon-counting detector was implemented using the GATE Monte Carlo package. A focal spot size of 300 µm, magnification of 1.33, and pixel pitches of 0.1 and 0.5mm were initially investigated. A 60 kVp spectrum with 3 mm Al filter was used and energy spectral degradation based on a prototype detector was simulated. To study charge-sharing, a single pixel was illuminated, and the detector response in neighboring pixels was investigated. A longitudinally semiinfinite detector was simulated to optimize the quantum detection efficiency of the imaging system as a function of pixel pitch, slice thickness and depth of interaction. A 2.5 mm thick tungsten plate with a 0.01 mm by 1.5 mm slit was implemented to calculate the modulation transfer function (MTF) from projection-based images. A threshold of 15 keV was implemented in the detector simulation. The preliminary charge sharing investigation results considered only scattering effects and the detector electronics related factors were neglected. Results: Using a 15 keV threshold, 1% of the pixel charge migrated into neighboring pixels with a pixel size of 0.1×0.1 mm{sup 2}. The quantum detection efficiency was 77%, 84%, 87% and 89% for 15 mm, 22.5 mm, 30 mm, and 45 mm length silicon detector pixels, respectively. For a pixel pitch of 0.1 mm, the spatial frequency at 10% of the maximum MTF was found to be 5.2 lp/mm. This agreed with an experimental MTF measurement of 5.3 lp/mm with a similar detector configuration. Conclusion: Using optimized design parameters, Si strip photon-counting detectors can offer high detection efficiency and spatial resolution even in the presence of Compton scatter.

  19. Absorbance detector based on a deep UV light emitting diode for narrow-column HPLC.

    PubMed

    Bui, Duy Anh; Bomastyk, Benjamin; Hauser, Peter C

    2013-10-01

    A detector for miniaturized HPLC based on deep UV emitting diodes and UV photodiodes was constructed. The measurement is accomplished by the transverse passage of the radiation from the light-emitting diode (LED) through fused-silica tubing with an internal diameter of 250 μm. The optical cell allows flexible alignment of the LED, tubing, and photodiode for optimization of the light throughput and has an aperture to block stray light. A beam splitter was employed to direct part of the emitted light to a reference photodiode and the Lambert-Beer law was emulated with a log-ratio amplifier circuitry. The detector was tested with two LEDs with emission bands at 280 and 255 nm and showed noise levels as low as 0.25 and 0.22 mAU, respectively. The photometric device was employed successfully in separations using a column of 1 mm inner diameter in isocratic as well as gradient elution. Good linearities over three orders of magnitude in concentration were achieved, and the precision of the measurements was better than 1% in all cases. Detection down to the low micromolar range was possible. PMID:23893947

  20. A laser diode based system for calibration of fast time-of-flight detectors

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300–1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20–30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50–100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  1. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner.

    PubMed

    Han, Sang-Pil; Ko, Hyunsung; Park, Jeong-Woo; Kim, Namje; Yoon, Young-Jong; Shin, Jun-Hwan; Kim, Dae Yong; Lee, Dong Hun; Park, Kyung Hyun

    2013-11-01

    We present a terahertz (THz) broadband antenna-integrated 1 × 20 InGaAs Schottky barrier diode (SBD) array detector with an average responsivity of 98.5 V/W at a frequency of 250 GHz, which is measured without attaching external amplifiers and Si lenses, and an average noise equivalent power (NEP) of 106.6 pW/√Hz. The 3-dB bandwidth of the SBD detector is also investigated at approximately 180 GHz. For implementing an array-type SBD detector by a simple fabrication process to achieve a high yield, a structure comprising an SiN(x) layer instead of an air bridge between the anode and the cathode is designed. THz line beam imaging using a Gunn diode emitter with a center frequency of 250 GHz and a 1 × 20 SBD array detector is successfully demonstrated. PMID:24216813

  2. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector

    ERIC Educational Resources Information Center

    Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard

    2014-01-01

    This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.

  3. Ge-diode detector combined with crystal-diffraction spectrometer permits high-resolution gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Namenson, A. I.; Smither, R. K.

    1969-01-01

    Crystal-diffraction spectrometer, combined with a lithium-drifted Ge-diode detector, performs high-resolution gamma ray spectroscopy on the complicated neutron-capture gamma ray spectra. The system is most useful in the 1-3 MeV energy range and improves the signal to background ratio.

  4. Beam related response of in vivo diode detectors for external radiotherapy

    NASA Astrophysics Data System (ADS)

    Baci, Syrja; Telhaj, Ervis; Malkaj, Partizan

    2016-03-01

    In Vivo Dosimetry (IVD) is a set of methods used in cancer treatment clinics to determine the real dose of radiation absorbed by target volume in a patient's body. IVD has been widely implemented in radiotherapy treatment centers and is now recommended part of Quality Assurance program by many International health and radiation organizations. Because of cost and lack of specialized personnel, IVD has not been practiced as yet, in Albanian radiotherapy clinics. At Hygeia Hospital Tirana, patients are irradiated with high energy photons generated by Elekta Synergy Accelerators. We have recently started experimenting with the purpose of establishing an IVD practice at this hospital. The first set of experiments was aimed at calibration of diodes that are going to be used for IVD. PMMA, phantoms by PTW were used to calibrate p - type Si, semiconductor diode dosimeters, made by PTW Freiburg for entrance dose. Response of the detectors is affected by energy of the beam, accumulated radiation dose, dose rate, temperature, angle against the beam axis, etc. Here we present the work done for calculating calibration factor and correction factors of source to surface distance, field size, and beam incidence for the entrance dose for both 6 MV photon beam and 18 MV photon beam. Dependence of dosimeter response was found to be more pronounced with source to surface distance as compared to other variables investigated.

  5. Spin-torque diode radio-frequency detector with voltage tuned resonance

    NASA Astrophysics Data System (ADS)

    Skowroński, Witold; Frankowski, Marek; Wrona, Jerzy; Stobiecki, Tomasz; Ogrodnik, Piotr; Barnaś, Józef

    2014-08-01

    We report on a voltage-tunable radio-frequency (RF) detector based on a magnetic tunnel junction (MTJ). The spin-torque diode effect is used to excite and/or detect RF oscillations in the magnetic free layer of the MTJ. In order to reduce the overall in-plane magnetic anisotropy of the free layer, we take advantage of the perpendicular magnetic anisotropy at the interface between ferromagnetic and insulating layers. The applied bias voltage is shown to have a significant influence on the magnetic anisotropy, and thus on the resonance frequency of the device. This influence also depends on the voltage polarity. The obtained results are accounted for in terms of the interplay of spin-transfer-torque and voltage-controlled magnetic anisotropy effects.

  6. Spin-torque diode radio-frequency detector with voltage tuned resonance

    SciTech Connect

    Skowroński, Witold Frankowski, Marek; Stobiecki, Tomasz; Wrona, Jerzy; Ogrodnik, Piotr; Barnaś, Józef

    2014-08-18

    We report on a voltage-tunable radio-frequency (RF) detector based on a magnetic tunnel junction (MTJ). The spin-torque diode effect is used to excite and/or detect RF oscillations in the magnetic free layer of the MTJ. In order to reduce the overall in-plane magnetic anisotropy of the free layer, we take advantage of the perpendicular magnetic anisotropy at the interface between ferromagnetic and insulating layers. The applied bias voltage is shown to have a significant influence on the magnetic anisotropy, and thus on the resonance frequency of the device. This influence also depends on the voltage polarity. The obtained results are accounted for in terms of the interplay of spin-transfer-torque and voltage-controlled magnetic anisotropy effects.

  7. Semiconductor diodes as neutron detectors for position-sensitive measurements and for application in personal neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Balzhaeuser, Michael; Dehoff, A.; Engels, R.; Hoengesberg, F.; Lauter, J.; Luth, Hans; Reetz, M.; Reinartz, Richard; Richter, H.; Schelten, Jim; Schmitz, Th.; Steffen, A.; Vockenberg, Th.

    1997-02-01

    A new design for a position-sensitive detector system for thermal neutrons is introduced. The detection principle with a thin 6LiF converter on the surface of a semiconductor diode is described. In experiments with thermal neutrons, a spatial resolution of 1.25 mm was obtained. The detector is insensitive to (gamma) -rays with energies up to 1.5 MeV. The design of a detector with an improvement of the detection efficiency for thermal neutrons from 2.5 percent up to 35 percent is also proposed and the present state of the process development for its fabrication is described.

  8. Dead layer on silicon p-i-n diode charged-particle detectors

    SciTech Connect

    Wall, B. L.; Amsbaugh, John F.; Beglarian, A.; Bergmann, T.; Bichsel, H. C.; Bodine, L. I.; Boyd, N. M.; Burritt, Tom H.; Chaoui, Z.; Corona, T. J.; Doe, Peter J.; Enomoto, S.; Harms, F.; Harper, Gregory; Howe, M. A.; Martin, E. L.; Parno, D. S.; Peterson, David; Petzold, Linda; Renschler, R.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Van Wechel, T. D.; VanDevender, Brent A.; Wustling, S.; Wierman, K. J.; Wilkerson, J. F.

    2014-04-21

    Abstract Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by discussion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.

  9. Proximity detector circuits: an attractive alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic fields

    SciTech Connect

    Altarawneh, Moaz M; Mielke, Charles H

    2009-01-01

    A new radio frequency oscillator circuit based on a proximity detector integrated circuit is described as an alternative for the traditional tunnel diode oscillator used for pulsed magnetic field measurements at low temperatures. The new circuit has been successfully applied to measure the superconducting upper critical field in Ba{sub 0.55}K{sub 0.45}Fe{sub 2}As{sub 2} single crystfl.ls up to 60 T. The new circuit design avoids many of the problems associated with tunnel diode circuits while keeping the advantages of contact less measurements in pulsed magnets.

  10. The studies of Schottky-diode based co-plane detector for surface plasmon resonance sensing

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Wen, Tsun-Yu; Wang, Da-Shin; Lin, Chii-Wann

    2010-08-01

    The Surface Plasmon Resonance (SPR) is a label-free, highly sensitive and real time sensing technique and has been extensively applied to biosensing and assay for decades. In a conventional SPR biosensor, a prism is used to create the total reflection in which the evanescent wave can excite the surface plasmon mode at the metal-dielectric interface at certain angle, at which condition the reflectivity of incident TM-polarized vanished as measured by a far-field photodetector. This is the optical detection of surface plasmon resonance. In this research, zinc oxide (ZnO) was used as the dielectric thin-film material above the gold surface on the glass substrate to form a co-plane Schottky diode; this structure is designed to be an alternative way to detect SPR. The strength of plasmonic field is possible to be monitored by measuring the photocurrent under the reverse bias. According to our experimental results, the measured photocurrents with TM-polarized illumination (representing the SPR case), TE-polarized illumination (non-SPR case) and no illumination conditions under DC -1.5V bias are -76.158mA (2.5μA), -76.085mA (3.6μA) and -76.089mA (3.4μA), respectively. Based on the results, we have demonstrated this Schottky diode based co-plane device has the potential to be used as the SPR detector and provides a possible solution for the need of a low-cost, miniaturized, electronically integrated, and portable SPR biosensor in the near future.

  11. Characterization of a novel two dimensional diode array the ''magic plate'' as a radiation detector for radiation therapy treatment

    SciTech Connect

    Wong, J. H. D.; Fuduli, I.; Carolan, M.; Petasecca, M.; Lerch, M. L. F.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2012-05-15

    Purpose: Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the ''magic plate'' (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. Methods: The prototype MP is an 11 x 11 detector array based on thin (50 {mu}m) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary ''drop-in'' technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Results: Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180 deg. Angular dependence was within 3.5% for the gantry angles {+-} 75 deg. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In

  12. Standoff gas leak detectors based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Wainner, R. T.; Green, B. D.; Laderer, M. C.; Allen, M. G.

    2005-11-01

    Trace gas sensing and analysis by Tunable Diode Laser Absorption Spectroscopy (TDLAS) has become a robust and reliable technology accepted for industrial process monitoring and control, quality assurance, environmental sensing, plant safety, and infrastructure security. Sensors incorporating well-packaged wavelength-stabilized near-infrared (1.2 to 2.0 μm) laser sources sense over a dozen toxic or industrially-important gases. A large emerging application for TDLAS is standoff sensing of gas leaks, e.g. from natural gas pipelines. The Remote Methane Leak Detector (RMLD), a handheld standoff TDLAS leak survey tool that we developed, is replacing traditional leak detection tools that must be physically immersed within a leak to detect it. Employing a 10 mW 1.6 micron DFB laser, the RMLD illuminates a non-cooperative topographic surface, up to 30 m distant, and analyzes returned scattered light to deduce the presence of excess methane. The eye-safe, battery-powered, 6-pound handheld RMLD enhances walking pipeline survey rates by more than 30%. When combined with a spinning or rastering mirror, the RMLD serves as a platform for mobile leak mapping systems. Also, to enable high-altitude surveying and provide aerial disaster response, we are extending the standoff range to 3000 m by adding an EDFA to the laser transmitter.

  13. Background rejection capabilities of a Compton imaging telescope setup with a DSSD Ge planar detector and AGATA

    NASA Astrophysics Data System (ADS)

    Doncel, M.; Quintana, B.; Gadea, A.; Recchia, F.; Farnea, E.

    2011-08-01

    In this work, we show the first Monte Carlo results about the performance of the Ge array which we propose for the DESPEC experiment at FAIR, when the background algorithm developed for AGATA is applied. The main objective of our study is to characterize the capabilities of the γ-spectroscopy system, made up of AGATA detectors in a semi-spherical distribution covering a 1π solid angle and a set of planar Ge detectors in a daisy configuration, to discriminate between γ sources placed at different locations.

  14. The effect of detector size and energy resolution on image quality in multi-projection Compton scatter tomography.

    PubMed

    Chighvinadze, Tamar; Pistorius, Stephen

    2014-01-01

    The reconstructed electron density image quality is sensitive to the detector size and energy resolution, which contribute to the blurring and noise in the image. This work evaluates optimal values of the detector parameters for a realistic system through analytical simulations of the transverse slice of the dedicated breast CT system geometry. This study introduces a spectroscopic x-ray tomography technique which uses multiple projections to reconstruct electron density images by backprojecting scattered photons over isogonic curves. The reconstruction can be obtained using a single projection yet its quality degrades as the acquisition conditions i.e. detector size and energy resolution deviate from the ideal. The reconstruction quality becomes inconsistent throughout the image due to the data under sampling caused by the finite resolution of the detector. The extension to the multi-projection mode effectively fills-in the missing data space and improves the ability to reconstruct an object. This work demonstrates the possibility to obtain images in the presence of noise. PMID:24463390

  15. Design and testing of a unique active Compton-suppressed LaBr3(Ce) detector system for improved sensitivity assays of TRU in remote-handled TRU wastes

    SciTech Connect

    J. K. Hartwell; M. E. McIlwain; J. A. Kulisek

    2007-10-01

    The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The LaBr3(Ce) primary detector is a cylindrical unit ~25 mm in diameter by 76 mm long viewed by a 38 mm diameter photomultiplier. The NaI(Tl) suppression mantle (secondary detector) is 175 mm by 175 mm with a center well that accommodates the primary detector. An important feature of this arrangement is the lack of any “can” between the primary and secondary detectors. These primary and secondary detectors are optically isolated by a thin layer (.003") of aluminized kapton, but the hermetic seal and thus the aluminum can surrounds the outer boundary of the detector system envelope. The hermetic seal at the primary detector PMT is at the PMT wall. This arrangement virtually eliminates the “dead” material between the primary and secondary detectors, a feature that preliminary modeling indicated would substantially improve the Compton suppression capability of this device. This paper presents both the expected performance of this unit determined from modeling with MCNPX, and the performance measured in our laboratory with radioactive sources.

  16. A Self-Synchronized Optoelectronic Oscillator based on an RTD Photo-Detector and a Laser Diode.

    PubMed

    Romeira, Bruno; Seunarine, Kris; Ironside, Charles N; Kelly, Anthony E; Figueiredo, José M L

    2011-08-15

    We propose and demonstrate a simple and stable low-phase noise optoelectronic oscillator (OEO) that uses a laser diode, an optical fiber delay line and a resonant tunneling diode (RTD) free-running oscillator that is monolithic integrated with a waveguide photo-detector. The RTD-OEO exhibits single-side band phase noise power below -100 dBc/Hz with more than 30 dB noise suppression at 10 kHz from the center free-running frequency for fiber loop lengths around 1.2 km. The oscillator power consumption is below 0.55 W, and can be controlled either by the injected optical power or the fiber delay line. The RTD-OEO stability is achieved without using other high-speed optical/optoelectronic components and amplification. PMID:23814452

  17. A Self-Synchronized Optoelectronic Oscillator based on an RTD Photo-Detector and a Laser Diode

    PubMed Central

    Romeira, Bruno; Seunarine, Kris; Ironside, Charles N.; Kelly, Anthony E.; Figueiredo, José M. L.

    2013-01-01

    We propose and demonstrate a simple and stable low-phase noise optoelectronic oscillator (OEO) that uses a laser diode, an optical fiber delay line and a resonant tunneling diode (RTD) free-running oscillator that is monolithic integrated with a waveguide photo-detector. The RTD-OEO exhibits single-side band phase noise power below −100 dBc/Hz with more than 30 dB noise suppression at 10 kHz from the center free-running frequency for fiber loop lengths around 1.2 km. The oscillator power consumption is below 0.55 W, and can be controlled either by the injected optical power or the fiber delay line. The RTD-OEO stability is achieved without using other high-speed optical/optoelectronic components and amplification. PMID:23814452

  18. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    SciTech Connect

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs.

  19. Polarization Measurements with Compton Telescopes

    NASA Astrophysics Data System (ADS)

    Akyuz, A.; O'Neill, T. J.; Bhattacharya, D.; Dixon, D. D.; Tumer, T. O.; White, R. S.; Zych, A. D.

    1994-12-01

    The response of the Tracking and Imaging Gamma-Ray Experiment (TIGRE) instrument to polarized celestial gamma rays above 300 keV is presented. TIGRE uses multilayers of silicon strip detectors both as a gamma-ray converter and to track Compton recoil electrons and positron-electron pairs up to 100 MeV. For Compton events, the direction and energy of the Compton scattered gamma ray are measured with arrays of small CsI(Tl)-photodiode detectors. A small balloon prototype instrument is being constructed that has a high absolute detection efficiency of 10% and a sensitivity of 100 milliCrabs for an exposure of 12 hours. The prototype's sensitivity to polarized gamma radiation has been calculated with the MCNP detector simulation code which was modified to include the polarization dependence of the Klein-Nishina formula. Polarized events and unpolarized source events with background are combined to simulate an observation of the Crab Nebula and pulsar. TIGRE's polarization modulation factor varies from 0.17 to 0.42 depending on the energy and Compton scatter angle cuts that are used. With 12 hours of observation on the Crab, polarized gamma radiation can be detected down to the level of about 10%. Potential celestial sources of polarized gamma-ray emission will be discussed.

  20. Development of the large-area silicon PIN diode with 2 millimeter-thick depletion layer for hard x-ray detector (HXD) on board ASTRO-E

    NASA Astrophysics Data System (ADS)

    Sugizaki, Mutsumi; Kubo, S.; Murakami, Toshio; Ota, Naomi; Ozawa, Hideki; Takahashi, Tadayuki; Kaneda, Hidehiro; Iyomoto, Naoko; Kamae, Tuneyoshi; Kokubun, Motohide; Kubota, Aya; Makishima, Kazuo; Tamura, Takayuki; Tashiro, Makoto

    1997-07-01

    ASTRO-E is the next Japanese x-ray satellite to be launched in the year 2000. It carries three high-energy astrophysical experiments, including the hard x-ray detector (HXD) which is unique in covering the wide energy band from 10 keV to 700 keV with an extremely low background. The HXD is a compound-eye detector, employing 16 GSO/BGO well-type phoswich scintillation counters together with 64 silicon PIN detectors. The scintillation counters cover an energy range of 40 - 700 keV, while the PIN diodes fill the intermediate energy range from 10 keV to 70 keV with an energy resolution about 3 keV. In this paper, we report on the developments of the large area, thick silicon PIN diodes. In order to achieve a high quantum efficiency up to 70 keV with a high energy resolution, we utilize a double stack of silicon PIN diodes, each 20 by 20 mm(superscript 2) in size and 2 mm thick. Signals from the two diodes are summed into a single output. Four of these stacks (or eight diodes) are placed inside the deep BGO active-shield well of a phoswich counter, to achieve an extremely low background environment. Thus, the HXD utilizes 64 stacked silicon PIN detectors, achieving a total geometrical collecting area of 256 cm(superscript 2). We have developed the 2 mm thick silicon PIN diodes which have low leakage current, a low capacitance, and a high breakdown voltage to meet the requirements of our goal. Through various trials in fabricating PIN diodes with different structures, we have found optimal design parameters, such as mask design of the surface p(superscript +) layer and the implantation process.

  1. RESPONSE LINEARIZATION OF A DIODE DETECTOR TYPE RADIO FREQUENCY ELECTRIC FIELD PROBE

    EPA Science Inventory

    An EPROM-based linearization circuit with a resolution of 0.1 percent of full scale has been designed to linearize the response of an orthogonal dipole electric field probe terminated with diodes. Design approach, performance, and probe characteristics are discussed. The nonlinea...

  2. A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Xiang, Ping; Xie, Xiaopeng; Huang, Yang

    2016-06-01

    This paper presents a new modeling and simulation method to predict the important statistical performance of single photon avalanche diode (SPAD) detectors, including photon detection efficiency (PDE), dark count rate (DCR) and afterpulsing probability (AP). Three local electric field models are derived for the PDE, DCR and AP calculations, which show analytical dependence of key parameters such as avalanche triggering probability, impact ionization rate and electric field distributions that can be directly obtained from Geiger mode Technology Computer Aided Design (TCAD) simulation. The model calculation results are proven to be in good agreement with the reported experimental data in the open literature, suggesting that the proposed modeling and simulation method is very suitable for the prediction of SPAD statistical performance.

  3. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency. PMID:26832039

  4. Absorbance detector for capillary electrophoresis based on light-emitting diodes and photodiodes for the deep-ultraviolet range.

    PubMed

    Bui, Duy Anh; Hauser, Peter C

    2015-11-20

    A new absorbance detector for capillary electrophoresis featuring relatively high intensity light-emitting diodes as radiation sources and photodiodes for the deep-UV range was developed. The direct relationship of absorbance values and concentrations was obtained by emulating Lambert-Beer's law with the application of a beam splitter to obtain a reference signal and a log-ratio amplifier circuitry. The performance of the cell was investigated at 255 nm with the detection of sulfanilic, 4-nitrobenzoic, 4-hydroxybenzoic and 4-aminobenzoic acid and the indirect detection of acetate, propionate, butyrate and caproate using benzoate as the displacement dye molecule. Vanillic acid, L-tyrosine and DL-tryptophan as well as the sulfonamides sulfamerazine, sulfathiazole and sulfamethazine were determined at 280 nm. Good linearities over 3 orders of magnitude were obtained. The noise level recorded was as low as 50 μAU and the drift typically <200 μAU/5 min. PMID:26091783

  5. SPEIR: A Ge Compton Camera

    SciTech Connect

    Mihailescu, L; Vetter, K M; Burks, M T; Hull, E L; Craig, W W

    2004-02-11

    The SPEctroscopic Imager for {gamma}-Rays (SPEIR) is a new concept of a compact {gamma}-ray imaging system of high efficiency and spectroscopic resolution with a 4-{pi} field-of-view. The system behind this concept employs double-sided segmented planar Ge detectors accompanied by the use of list-mode photon reconstruction methods to create a sensitive, compact Compton scatter camera.

  6. Optimization and small-signal modeling of zero-bias InAs self-switching diode detectors

    NASA Astrophysics Data System (ADS)

    Westlund, A.; Sangaré, P.; Ducournau, G.; Iñiguez-de-la-Torre, I.; Nilsson, P.-Å.; Gaquière, C.; Desplanque, L.; Wallart, X.; Millithaler, J. F.; González, T.; Mateos, J.; Grahn, J.

    2015-02-01

    Design optimization of the InAs self-switching diode (SSD) intended for direct zero-bias THz detection is presented. The SSD, which consists of nanometer-sized channels in parallel, was described using an equivalent small-signal circuit. Expressions for voltage responsivity and noise equivalent power (NEP) were derived in terms of geometrical design parameters of the SSD, i.e. the channel length and the number of channels. Modeled design dependencies were confirmed by RF and DC measurements on InAs SSDs. In terms of NEP, an optimum number of channels were found with the detector driven by a 50 Ω source. With a matched source, the model predicted a responsivity of 1900 V/W and NEP of 7.7 pW/Hz½ for a single-channel InAs SSD with 35 nm channel width. Monte Carlo device simulations supported observed design dependencies. The proposed small-signal model can be used to optimize SSDs of any material system for low-noise and high-frequency operation as zero-bias detectors. In large signal measurements, the responsivity of the InAs SSDs exhibited a 1 dB deviation from linear responsivity at an input power of -3 dBm from a 50 Ω source.

  7. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    SciTech Connect

    Windl, Wolfgang; Blue, Thomas

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  8. A facile light-emitting-diode induced fluorescence detector coupled to an integrated microfluidic device for microchip electrophoresis.

    PubMed

    Yang, Fan; Li, Xin-chun; Zhang, Wen; Pan, Jian-bin; Chen, Zuan-guang

    2011-05-30

    In this paper, a compact and inexpensive light emitting diode induced fluorescence (LED-IF) detector with simplified optical configuration was developed and assembled in an integrated microfluidic device for microscale electrophoresis. The facile detector mainly consisted of an LED, a focusing pinhole, an emission filter and a photodiode, and was encapsulated in the upper layer of an aluminum alloy device with two layers. At the bottom layer, integrated circuit (IC) was assembled to manipulate the voltage for sample injection and separation, LED emission and signal amplifying. A high-power LED with fan-shaped heat sink was used as excitation source. The excitation light was focused by a 1.1mm diameter pinhole fabricated in a thin piece of silver foil, and the obtained sensitivity was about 3 times as high as that using electrode plate. Other important parameters including LED driven current, fluorescence collection angle and detection distance have also been investigated. Under optimal conditions, considerable high-response of 0.09 fmol and 0.18 fmol mass detection limits at 0.37 nL injection volume for sodium fluorescein (SF) and FITC was achieved, respectively. This device has been successfully employed to separate penicillamine (PA) enantiomers. Due to such significant features as low-cost, integration, miniaturization, and ease of commercialization, the presented microfluidic device may hold great promise for clinical diagnostics and bioanalytical applications. PMID:21530784

  9. Compton coincidence volumetric imaging: a new x-ray volumetric imaging modality based on Compton scattering

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochao

    2014-03-01

    Compton scattering is a dominant interaction during radiography and computed tomography x-ray imaging. However, the scattered photons are not used for extracting imaging information, but seriously degrade image quality. Here we introduce a new scheme that overcomes most of the problems associated with existing Compton scattering imaging schemes and allows Compton scattered photons to be effectively used for imaging. In our scheme, referred as Compton coincidence volumetric imaging (CCVI), a collimated monoenergetic x-ray beam is directed onto a thin semiconductor detector. A small portion of the photons is Compton scattered by the detector and their energy loss is detected. Some of the scattered photons intersect the imaging object, where they are Compton scattered a second time. The finally scattered photons are recorded by an areal energy resolving detector panel around the object. The two detectors work in coincidence mode. CCVI images the spatial electron density distribution in the imaging object. Similar to PET imaging, the event location can be located within a curve; therefore the imaging reconstruction algorithms are also similar to those of PET. Two statistical iterative imaging reconstruction algorithms are tested. Our study verifies the feasibility of CCVI in imaging acquisition and reconstruction. Various aspects of CCVI are discussed. If successfully implemented, it will offer a great potential for imaging dose reduction compared with x-ray CT. Furthermore, a CCVI modality will have no moving parts, which potentially offers cost reduction and faster imaging speed.

  10. Response corrections for solid-state detectors in megavoltage photon dosimetry

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Hugtenburg, R. P.; Beddoe, A. H.

    2004-08-01

    Solid-state detectors offer high sensitivity, stability and resolution and are frequently the dosimeter of choice for on-line dosimetry and small field therapies such as stereotactic radiosurgery. The departure from tissue equivalence of many solid-state devices, including diodes and MOSFETs, has to be carefully considered at lower energies and for Compton scattered radiation where the strongly Z-dependent photoelectric effect is significant. A modification of Burlin cavity theory is proposed that treats primary and scatter photon spectra separately and this has been applied to determine the correction factors for diode detector measurements of 6 and 15 MV linear accelerator beams. Uncorrected, an unshielded diode overestimates the dose at depth by as much as 15% for the 6 MV beam. The model predicts the effect to within 1% for both energies offering a basis for the correction of diodes for use in routine dosimetry.

  11. Liquid Chromatography-diode Array Detector-electrospray Mass Spectrometry and Principal Components Analyses of Raw and Processed Moutan Cortex

    PubMed Central

    Deng, Xian-Mei; Yu, Jiang-Yong; Ding, Meng-Jin; Zhao, Ming; Xue, Xing-Yang; Che, Chun-Tao; Wang, Shu-Mei; Zhao, Bin; Meng, Jiang

    2016-01-01

    Background: Raw Moutan Cortex (RMC), derived from the root bark of Paeonia suffruticosa, and Processed Moutan Cortex (PMC) is obtained from RMC by undergoing a stir-frying process. Both of them are indicated for different pharmacodynamic action in traditional Chinese medicine, and they have been used in China and other Asian countries for thousands of years. Objective: To establish a method to study the RMC and PMC, revealing their different chemical composition by fingerprint, qualitative, and quantitative ways. Materials and Methods: High-performance liquid chromatography coupled with diode array detector and electrospray mass spectrometry (HPLC-DAD-ESIMS) were used for the analysis. Therefore, the analytes were separated on an Ultimate TM XB-C18 analytical column (250 mm × 4.6 mm, 5.0 μm) with a gradient elution program by a mobile phase consisting of acetonitrile and 0.1% (v/v) formic acid water solution. The flow rate, injection volume, detection wavelength, and column temperature were set at 1.0 mL/min, 10 μL, 254 nm, and 30°C, respectively. Besides, principal components analysis and the test of significance were applied in data analysis. Results: The results clearly showed a significant difference among RMC and PMC, indicating the significant changes in their chemical compositions before and after the stir-frying process. Conclusion: The HPLC-DAD-ESIMS coupled with chemometrics analysis could be used for comprehensive quality evaluation of raw and processed Moutan Cortex. SUMMARY The experiment study the RMC and PMC by HPLC-DAD-ESIMS couple with chemometrics analysis. The results of their fingerprints, qualitative, and quantitative all clearly showed significant changes in their chemical compositions before and after stir-frying processed. Abbreviation used: HPLC-DAD-ESIMS: High-performance Liquid Chromatography-Diode Array Detector-Electrospray Mass Spectrometry, RMC: Raw moutan cortex, PMC: Processed moutan cortex, TCM: Traditional Chinese medicine

  12. Quantification of lycopene in the processed tomato-based products by means of the light-emitting diode (LED) and compact photoacoustic (PA) detector

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Skenderović, H.; Marković, K.; Dóka, O.; Pichler, L.; Pichler, G.; Luterotti, S.

    2010-03-01

    The combined use of a high power light emitting diode (LED) and the compact photoacoustic (PA) detector offers the possibility for a rapid (no extraction needed), accurate (precision 1.5%) and inexpensive quantification of lycopene in different products derived from the thermally processed tomatoes. The concentration of lycopene in selected products ranges from a few mg to several tens mg per 100 g fresh weight. The HPLC was used as the well established reference method.

  13. Concentration of uncompensated impurities as a key parameter of CdTe and CdZnTe crystals for Schottky diode x\\ssty{/}γ-ray detectors

    NASA Astrophysics Data System (ADS)

    Kosyachenko, L. A.; Lambropoulos, C. P.; Aoki, T.; Dieguez, E.; Fiederle, M.; Loukas, D.; Sklyarchuk, O. V.; Maslyanchuk, O. L.; Grushko, E. V.; Sklyarchuk, V. M.; Crocco, J.; Bensalah, H.

    2012-01-01

    In this paper we report on the strong impact of the concentration of uncompensated impurities on the detection efficiency of CdTe and Cd0.9Zn0.1Te Schottky diodes. The results of our study explain the observed poor detection properties of some Cd0.9Zn0.1Te detectors with resistivity and lifetime of carriers comparable to those of good CdTe detectors. We show that the concentration of uncompensated impurities in a highly efficient CdTe Schottky diode detector is several orders of magnitude higher than that of a CdZnTe, which does not register the gamma spectra of commonly used isotopes (59-662 keV) by using photoelectric measurements. The significant difference of the concentration of uncompensated impurities between CdTe and Cd0.9Zn0.1Te crystals is confirmed by our study of the temperature change of the resistivity and of the Fermi level energy. The degree of compensation of the donor complex, responsible for the electrical conductivity of the material, is much lower in the CdTe crystal compared to that in the Cd0.9Zn0.1Te crystal. The calculations of the detection efficiency of x/γ-radiation by a Schottky diode result in a dependence on the concentration of uncompensated impurities described by a curve with a pronounced maximum. The position of this maximum occurs at a concentration of uncompensated impurities which ranges from 3 × 1010 to 3 × 1012 cm-3 depending on the registered photon energy of x/γ-rays and on the lifetime of the charge carriers. Our measurements and calculations lead to the conclusion that the concentration of uncompensated impurities in this range is a necessary condition for the effective operation of x- and γ-ray Schottky diode detectors based on CdTe and Cd1-xZnxTe crystals.

  14. Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector

    SciTech Connect

    Kuehl, M. ); Joergensen, B.B. )

    1992-12-01

    A diode array detector system for microscale light measurements with fiber-optic microprobes was developed; it measures intensities of 400-900-nm light over >6 orders of magnitude with a spectral resolution of 2-5 nm. Fiber-optic microprobes to measure field radiance or scalar irradiance were coupled to the detector system and used for spectral light measurements in hypersaline microbial mats and in laminated phototrophic communities of coastal sediments. The vertical distribution of major photopigments of microalgae, cyanobacteria, and anoxygenic phototrophic bacteria could be identified from extinction maxima in measured radiance spectra at 430-550 nm (Chl a and carotenoids), 620-625 nm (phycocyanin), 675 nm (Chl a), 745-750 nm (BChl c), 800-810 nm, and 860-880 nm (BChl a). Scalar irradiance spectra exhibited a different spectral composition and a higher light intensity at the sediment surface as compared to incident light. IR light thus reached 200% of incident at the sediment surface. Maximal light penetration was found for IR light, whereas visible light was strongly attenuated in the upper 0-2 mm of the sediment. Measurements of photon scalar irradiance (400-700 nm) were combined with microelectrode measurements of oxygenic photosynthesis in the coastal sediment. With an incident light intensity of 200 [mu]Einst m[sup [minus]2]s[sup [minus]1], photon scalar irradiance reached a maximum of 283 [mu]Einst m[sup [minus]2]s[sup [minus]1] at the sediment surface. The lower boundary of the euphotic zone was 2.2 mm below the surface at a light intensity of 12 [mu]Einst m[sup [minus]2]s[sup [minus]1]. 20 refs., 6 figs.

  15. Analysis of factors affecting the light collection efficiency in CT detector: CWO+PIN diode

    NASA Astrophysics Data System (ADS)

    Kwak, Sung W.; Kim, Kwang Hyun; Kim, Ho K.; Cho, Gyuseong; Ahn, Seong Kyu; Goh, Sung Min; Lee, Yoon; Park, Jung Byung

    2002-05-01

    The solid-state detector(SSD) for X-CT consists of photodiode coupled to CdWO4$(CWO. It is important to maximize the light collection in respect of a patient's dose, radiation effect and X-ray efficiency. The factors affecting the light collection efficiency are analyzed and optimized by using experimental data and appropriate simulation code. Quantum nomogram is used to investigate the signal propagation characteristics of optimally designed solid-state detector and to ensure at which stage quantum sink occurs. This paper shows that the part of SSD, the CWO of treatment with ground top/ground side yields higher quanta than that of ground top/polish side, which is different from the result of previous studies. We also shows that optimum thickness of SiN passivation and p-layer is 0.12mm and 0.1mm, respectively. From the quantum nomogram calculated for optimal design, it is predicted that the most serious signal degradation occurs at the photodiode.

  16. A Compton scatter attenuation gamma ray spectrometer

    NASA Technical Reports Server (NTRS)

    Austin, W. E.

    1972-01-01

    A Compton scatter attenuation gamma ray spectrometer conceptual design is discussed for performing gamma spectral measurements in monodirectional gamma fields from 100 R per hour to 1,000,000 R per hour. Selectable Compton targets are used to scatter gamma photons onto an otherwise heavily shielded detector with changeable scattering efficiencies such that the count rate is maintained between 500 and 10,000 per second. Use of two sum-Compton coincident detectors, one for energies up to 1.5 MeV and the other for 600 keV to 10 MeV, will allow good peak to tail pulse height ratios to be obtained over the entire spectrum and reduces the neutron recoil background rate.

  17. Simultaneous determination of four neuroprotective compounds of Tilia amurensis by high performance liquid chromatography coupled with diode array detector

    PubMed Central

    Lee, Bohyung; Weon, Jin Bae; Yun, Bo-Ra; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2014-01-01

    Background: Tilia amurensis consists of various compounds, such as flavonoids and terpenoids. Objective: A simple and reliable high performance liquid chromatography (HPLC) coupled with the diode array detector (DAD) method has been established for simultaneous determination of epicatechin, nudiposide, lyoniside, and scopoletin isolated from Tilia amurensis. Materials and Methods: Optimum separations were obtained with a SHISEIDO C18 column by gradient eluton, with 0.1% Trifluoroacetic acid (TFA) water-methanol as the mobile phase. The gradient elution system was completed within 40 minutes. The flow rate and detection wavelength were 1 mL/minute, 205 nm, 250 nm, and 280 nm, respectively. Results: Validation of the analytical method was evaluated by linearity, precision, and the accuracy test. The calibration curve was linear over the established range with R2 > 0.997. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.01-15.20 μg/mL and 0.03-46.06 μg/mL. The method exhibited an intraday and interday precision range of 96.25-105.66% and 93.52-109.92%, respectively (RSD <2.80%). The recoveries and relative standard deviation (RSD) of the four compounds in Tilia amurensis were in the range of 90.42-104.84% and 0.2-2.58%. Conclusion: This developed method was accurate and reliable for the quality evaluation of the four compounds isolated from Tilia amurensis. PMID:25210303

  18. Study of Generalized Parton Distributions and Deeply Virtual Compton Scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory

    SciTech Connect

    Guegan, Baptiste

    2012-11-01

    The exclusive leptoproduction of a real photon is considered to be the "cleanest" way to access the Generalized Parton Distribution (GPD). This process is called Deeply Virtual Compton Scattering (DVCS) lN {yields} lN{gamma} , and is sensitive to all the four GPDs. Measuring the DVCS cross section is one of the main goals of this thesis. In this thesis, we present the work performed to extract on a wide phase-space the DVCS cross-section from the JLab data at a beam energy of 6 GeV.

  19. Compton scattering with low intensity radioactive sources

    NASA Astrophysics Data System (ADS)

    Quarles, Carroll

    2012-03-01

    Compton scattering experiments with gamma rays typically require a ``hot'' source (˜5mCi of Cs137) to observe the scattering as a function of angle. (See Ortec AN34 Experiment #10 Compton Scattering) Here a way is described to investigate Compton scattering with micro Curie level radioactive sources that are more commonly available in the undergraduate laboratory. A vertical-looking 2 inch coaxial hpGe detector, collimated with a 2 inch thick lead shield, was used. Cylindrical Al targets of various thicknesses were placed over the collimator and several available sources were placed around the target so that the average Compton scattering angle into the collimator was 90 deg. A peak could be observed at the expected energy for 90 deg. Compton scattering by doing 24 hour target-in minus target-out runs. The peak was broadened by the spread in the scattering angle due to the variation in the angle of the incoming gamma ray and the angular acceptance of the collimator. A rough analysis can be done by modeling the angular spread due to the geometry and correcting for the gamma ray absorption from the target center. Various target materials and sources can be used and some variation in average Compton scattering angle can be obtained by adjusting the geometry of the source and target.

  20. Compton tomography system

    DOEpatents

    Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz

    2016-02-02

    A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.

  1. Study of Compton vs. Photoelectric Interactions

    SciTech Connect

    Gronberg, J B; Johnson, S C; Lange, D J; Wright, D M; Beiersdorfer, P

    2004-07-09

    We have studied how often incoming photons interact via a Compton interaction and/or a photoelectric interaction as a function of energy and detector material Results are using a 1m{sup 3} detector, and discrete energy photons from 0.1 MeV up to 10 MeV. Essentially all of the lower energy photons interact at least once in a detector of this size. This is not the case at higher energies. Each detector, photon energy combination was simulated with 2000 photons.

  2. Competition between the barrier and injection mechanisms of nonlinearity of the current-voltage characteristic in Mott-barrier detector diodes

    NASA Astrophysics Data System (ADS)

    Shashkin, V. I.; Vostokov, N. V.

    2009-08-01

    We obtain an analytical solution to the problem of transverse injection current in an undoped semiconductor i layer of arbitrary thickness with account of self-consistent boundary conditions. Charge transfer in the semiconductor bulk is described in the drift-diffusion approximation. Current transfer through the boundaries of an undoped layer is described in terms of the thermoelectron emission theory. Thus, the generalized thermoemission-diffusion approach applies for semiconductors with both low and high mobilities of charge carriers. On the basis of the obtained solution, we analyze the characteristics of the current nonlinearity of the Mott-barrier diodes. The generalized approach is used for describing current transfer in low-barrier diodes based on Mott contacts with near-surface δ-doping. Characteristics of detection of low-barrier diodes are analyzed. Limiting values of the volt-watt and threshold sensitivities of the detectors based on these diodes in the subterahertz frequency range (up to 1 THz) are determined.

  3. Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector.

    PubMed

    Han, Sang-Pil; Ko, Hyunsung; Kim, Namje; Lee, Won-Hui; Moon, Kiwon; Lee, Il-Min; Lee, Eui Su; Lee, Dong Hun; Lee, Wangjoo; Han, Seong-Tae; Choi, Sung-Wook; Park, Kyung Hyun

    2014-11-17

    We demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm². Foreign substances, such as a paper clip with a spatial resolution of approximately 1 mm that is hidden under a cracker, are clearly detected by this THz line-scanning system. The system consists of the SBD array detector, a 200-GHz gyrotron source, a conveyor system, and several optical components such as a high-density polyethylene cylindrical lens, metal cylindrical mirror, and THz wire-grid polarizer. Using the THz polarizer, the signal-to-noise ratio of the SBD array detector improves because the quality of the source beam is enhanced. PMID:25402136

  4. Quantification of maltol in Korean ginseng (Panax ginseng) products by high-performance liquid chromatography-diode array detector

    PubMed Central

    Jeong, Hyun Cheol; Hong, Hee-Do; Kim, Young-Chan; Rhee, Young Kyoung; Choi, Sang Yoon; Kim, Kyung-Tack; Kim, Sung Soo; Lee, Young-Chul; Cho, Chang-Won

    2015-01-01

    Background: Maltol, as a type of phenolic compounds, is produced by the browning reaction during the high-temperature treatment of ginseng. Thus, maltol can be used as a marker for the quality control of various ginseng products manufactured by high-temperature treatment including red ginseng. For the quantification of maltol in Korean ginseng products, an effective high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed. Materials and Methods: The HPLC-DAD method for maltol quantification coupled with a liquid-liquid extraction (LLE) method was developed and validated in terms of linearity, precision, and accuracy. An HPLC separation was performed on a C18 column. Results: The LLE methods and HPLC running conditions for maltol quantification were optimized. The calibration curve of the maltol exhibited good linearity (R2 = 1.00). The limit of detection value of maltol was 0.26 μg/mL, and the limit of quantification value was 0.79 μg/mL. The relative standard deviations (RSDs) of the data of the intra- and inter-day experiments were <1.27% and 0.61%, respectively. The results of the recovery test were 101.35–101.75% with an RSD value of 0.21–1.65%. The developed method was applied successfully to quantify the maltol in three ginseng products manufactured by different methods. Conclusion: The results of validation demonstrated that the proposed HPLC-DAD method was useful for the quantification of maltol in various ginseng products. PMID:26246746

  5. A novel liquid chromatography method using diode-array detector for the determination of oleuropein in dietary supplements.

    PubMed

    Bertolini, Tiziana; Vicentini, Lorenza; Boschetti, Silvia; Andreatta, Paolo; Gatti, Rita

    2016-09-10

    A simple and fast chromatographic method using ultraviolet diode-array detector (UV-DAD) was developed for the automatic high performance liquid chromatography (HPLC) determination of the title of oleuropein in a new dietary supplements in form of effervescent granules. The chromatographic separations were performed on a C18 core-shell column with detection at λ=232nm. The mobile phase consisted of deionized water with 0.1% TFA and acetonitrile under gradient conditions at a flow-rate of 0.8mL/min. Oleuropein and oleuroside present in the raw material were characterized by high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The validation of the analytical procedure has been performed determining the following parameters: specificity, linearity, repeatability, reproducibility, accuracy, limit of quantification (LOQ), stability of the standard and sample solutions. Linear response was observed in fortified placebo solutions (determination coefficient: 0.9998). Intra-day precision (relative standard deviation, RSD) was ≤5.0% for peak area and for retention times (tR) without significant differences between intra- and inter-day data. The limits of quantitation (LOQ) was about 5μg/mL and 9pmol/inject. Oleuropein recovery studies gave good results (99.9%) with a R.S.D. of 0.5%. The speed of analysis and the stability of the solutions with a fluctuation Δ (%) ≤2.0 at room temperature means an undoubted advantage of the method allowing the simultaneous preparation of many samples and consecutive chromatographic analyses by using an autosampler. The developed method is suitable for the quality control of oleuropein in raw material and industrial products. The method can be applied in any analytical laboratory not requiring a sophisticated instrumentation. PMID:27429369

  6. Design of a Compton scatter based radiation tracking system

    NASA Astrophysics Data System (ADS)

    Healy, Heather

    Gamma spectroscopy is one of the most common techniques used for the detection of radiologic materials. This technology is deployed in a variety of scenarios such as emergency response, monitoring, and the recovery of lost, stolen, or otherwise unaccounted radiologic material. In most practical scenarios, it is useful to know the location of a source in relation to a detector, in addition to the classic output from gamma spectrometers such as decay rate and energy peak information. In collaboration with the Remote Sensing Laboratory (RSL) at Andrews Air Force Base, a novel detector design by RSL, which utilizes a 360° detectable range in order to increase the probability of remote detection, was investigated for the possibility to recreate source location information from Compton scattering events within the detector. A recreation of this novel detector is simulated using Geant4 to determine the optimal dimensions of sodium iodide detectors that produce the most single Compton scattering events in order to facilitate source location through the back-projection of Compton scattering angles. The optimal detector dimensions are determined by maximizing the number of single Compton scatter events and minimizing the percentage of Compton events that undergo multiple successive scatters in detectors of varying thicknesses and lengths. The optimal detector thickness was chosen to be 1.88 in, and the optimal detector length was chosen to be 4 to 4.5 in. In future projects, these optimized detectors can be used to apply suggested back-projection algorithms in order to determine the feasibility and functionality of this detector design for the purpose of radiologic source location.

  7. Photo-detector diode based on thermally oxidized TiO2 nanostructures/p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Hosseini, Z. S.; Shasti, M.; Ramezani Sani, S.; Mortezaali, A.

    2016-01-01

    Titanium oxide (TiO2)-based photodetectors were fabricated using a thermal oxidation technique. The effect of two different annealing temperatures on morphology, structure, and I-V characteristics has been investigated. TiO2/Si heterostructure exhibited diode-like rectifying I-V behavior both in dark and under illumination. Dependence in photoresponse on annealing temperature was observed that was related to effective surface area of quasi-one-dimensional TiO2 nanostructures. Fabricated TiO2/Si diodes in 850 °C as the lower annealing temperature showed higher responsivity and sensitivity compared with grown ones in 950 °C (R850 °C/R950 °C ˜ 5 and S850 °C/S950 °C ˜ 1.6). Rather good photoresponse and simple fabrication process make the 850 °C-TiO2/Si diode a promising candidate for practical applications.

  8. Hard X-ray and gamma-ray detector for ASTRO-H based on Si and CdTe imaging sensors

    NASA Astrophysics Data System (ADS)

    Hxi/Sgd Team; Kokubun, M.; Watanabe, S.; Nakazawa, K.; Tajima, H.; Fukazawa, Y.; Takahashi, T.; Kataoka, J.; Kamae, T.; Katagiri, H.; Madejski, G. M.; Makishima, K.; Mizuno, T.; Ohno, M.; Sato, R.; Takahashi, H.; Tanaka, T.; Tashiro, M.; Terada, Y.; Yamaoka, K.; HXI/SGD Team

    2010-11-01

    We have been developing a hard X-ray imager and soft gamma-ray detector as on board instruments of the ASTRO-H mission. The Hard X-ray Imager (HXI) is one of the three focal plane detectors of ASTRO-H, which is aimed to realize the focusing imaging of hard X-ray photons in combination with hard X-ray telescopes. By use of the hybrid structure composed of double-sided silicon strip detectors and a cadmium telluride strip detector, it fully covers the energy range up to 80 keV with a high quantum efficiency. High spatial resolutions of 250μm pitch and energy resolutions of 1-2 keV (FWMH) are at the same time achieved with low noise front-end ASICs. The Soft Gamma-ray Detector (SGD) is a novel and unique detector which is characterized by semiconductor Compton cameras surrounded by narrow field-of-view active shields, and covers a higher energy range (30-600 keV) than that of HXI. It consists of four Compton Cameras constructed with many layers of Silicon and CdTe pad detectors. With its multi-layer structure and Compton reconstruction capability, in addition to the BGO active shields read by Avalanche photo-diodes, this detector will achieve an extremely high background rejection efficiency in the orbit. We report the current status of hardware development including the design requirement, expected performance, and technical readinesses of key technologies.

  9. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S.; Oldaker, Mark E.

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  10. Deeply Virtual Compton Scattering with CLAS

    SciTech Connect

    F.X. Girod

    2007-12-17

    The beam spin asymmetries of the reaction ep -> epg in the Bjorken regime were measured over a wide kinematical domain using the CLAS detector and a new lead-tungstate calorimeter. Through the interference of the Bethe-Heitler process with Deeply Virtual Compton Scattering, those asymmetries provide constraints for the nucleon Generalized Parton Distributions models. The observed shapes are in agreement with twist-2 dominance predictions.

  11. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  12. Silicon diode detectors used in radiological physics measurements. Part II: Measurement of dosimetry data for high-energy photons.

    PubMed

    Wright, A E; Gager, L D

    1977-01-01

    Initial calibration of a linear accelerator requires physics instruments to measure accurately central axis depth-dose and off-axis data, both in and out of the beam. These data for an 8- MeV unit were first measured using film, a Farmer 0.6-cm3 ion chamber, a 0.3-cm3 ion chamber, and a 0.1-cm3 silicon diode. Both small probes and film gave a high response compared to the Farmer probe, which has a uniform energy response. Measurements with the diode interfaced to an X-Y recorder required only a fraction of the time required with the chambers, minimizing error due to change in machine output, and permitted resolution of isodose lines in the penumbra. However, corrections required at points in depth due to nonuniform energy response of the unshielded diode were laborious. Construction of a partially shielded diode which duplicates the response of the Farmer probe eliminated the necessity for corrections, permitting rapid accumulation of a wide range of depth-dose and off-axis data. PMID:927387

  13. Diode Structure for Microwave and Infrared Applications

    NASA Technical Reports Server (NTRS)

    Alcorn, George; Leinteran, Charles; Chiang, Bing

    1987-01-01

    Microwave signals switched or modulated optically. Planar diode with transparent cathode made in BaAs, Si, and InSb versions. Depending on specific configuration and material, such diode used for optical modulation of microwave signal or as infrared detector. Transparent cathode fabricated on GaAs diode so diode illuminates to generate and control short-circuit current.

  14. The development of a Compton lung densitometer

    SciTech Connect

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs.

  15. The Compton generator revisited

    NASA Astrophysics Data System (ADS)

    Siboni, S.

    2014-09-01

    The Compton generator, introduced in 1913 by the US physicist A H Compton as a relatively simple device to detect the Earth's rotation with respect to the distant stars, is analyzed and discussed in a general perspective. The paper introduces a generalized definition of the generator, emphasizing the special features of the original apparatus, and provides a suggestive interpretation of the way the device works. To this end, an intriguing electromagnetic analogy is developed, which turns out to be particularly useful in simplifying the calculations. Besides the more extensive description of the Compton generator in itself, the combined use of concepts and methods coming from different fields of physics, such as particle dynamics in moving references frames, continuum mechanics and electromagnetism, may be of interest to both teachers and graduate students.

  16. Timelike Compton Scattering

    SciTech Connect

    T. Horn, Y. Illieva, F. J. Klein, P. Nadel‐Turonski, R. Paremuzyan, S. Stepanyan

    2011-10-01

    Generalized Parton Distributions (GPDs) have become a key concept in our studies of hadron structure in QCD. The measurement of suitable experimental observables and the extraction of GPDs from these data is one of the high priority 12 GeV programs at Jefferson Lab. Deeply Virtual Compton Scattering (DVCS) is generally thought of as the most promising channel for probing GPDs in the valence quark region. However, the inverse process, Timelike Compton Scattering (TCS) can provide an important complementary measurement, in particular of the real part of the Compton amplitude and power corrections at intermediate values of Q2. The first studies of TCS using real tagged and quasi-real untagged photons were performed in Hall B at Jefferson Lab.

  17. Fluorometric flow-immunoassay for alkylphenol polyethoxylates on a microchip containing a fluorescence detector comprised of an organic light emitting diode and an organic photodiode.

    PubMed

    Liu, Rong; Ishimatsu, Ryoichi; Yahiro, Masayuki; Adachi, Chihaya; Nakano, Koji; Imato, Toshihiko

    2015-03-01

    A compact fluorescence detector was constructed on a microchip from an organic light emitting diode (OLED) as the light source and an organic photodiode (OPD) as the photo-detector and was used in an immunoassay for alkylphenol polyethoxylates (APE). The OLED based on a terbium complex emitted a sharp light at the main wavelength of 546 nm with a full width at half maximum of 9 nm. The incident photo-to-current conversion efficiency (IPCE) of the OPD fabricated with Fullerene 70 (C70) and tris[4-(5-phenylthiopen-2-yl)phenyl]-amine (TPTPA) was approximately 44% for light at a wavelength of 586 nm. The performance of the fluorescence detector was evaluated for the determination of resorufin (λ(em)=586 nm) and the photocurrent of the OPD due to the fluorescence of resorufin was proportional to the concentration of resorufin in the range from 0 to 18 µM with a detection limit (S/N=3) of 0.6 µM. The fluorescence detector was successfully utilized in a competitive enzyme-linked immunosorbent assay for APE, where an anti-APE antibody was immobilized on the surface of the channel of the Polydimethylsiloxane (PDMS) microchip or on the surface of magnetic microbeads. After an immunoreaction with a sample solution of APE containing a horse radish peroxidase (HRP)-labeled APE, the fluorescence of resorufin generated just after introduction of a mixed solution of Amplex Red and H2O2 was measured using the fluorescence detector. The calibration curve for the photocurrent signals of the OPD due to the fluorescence of resorufin against the logarithmic concentration of APE was sigmoidal in shape. The detection limits defined as IC80 were ca. 1 ppb and ca. 2 ppb, respectively, for the methods using the anti-APE antibody immobilized on the surface of the microchannel and in the case where the antibody was immobilized on the surface of magnetic microbeads. PMID:25618638

  18. Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors based on metalorganic vapor-phase epitaxy-grown epilayers

    SciTech Connect

    Niraula, M.; Yasuda, K.; Wajima, Y.; Yamashita, H.; Tsukamoto, Y.; Suzuki, Y.; Matsumoto, M.; Takai, N.; Tsukamoto, Y.; Agata, Y.

    2013-10-28

    Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors, fabricated by growing p-and n-type CdTe epilayers on (211) n{sup +}-Si substrates using metalorganic vapor-phase epitaxy (MOVPE), were studied by analyzing current-voltage characteristics measured at various temperatures. The diode fabricated shows good rectification properties, however, both forward and reverse biased currents deviate from their ideal behavior. The forward current exhibits typical feature of multi-step tunneling at lower biases; however, becomes space charge limited type when the bias is increased. On the other hand, the reverse current exhibits thermally activated tunneling-type current. It was found that trapping centers at the p-CdTe/n-CdTe junction, which were formed due to the growth induced defects, determine the currents of this diode, and hence limit the performance of the nuclear radiation detectors developed.

  19. SU-E-T-446: Evaluation of the Dosimetric Properties of a Diode Detector to Proton Radiosurgery

    SciTech Connect

    Teran, A; McAuley, G; Slater, J M; Slater, J D; Wroe, A

    2014-06-01

    Purpose: To test the PTW PR60020 proton dosimetry diode in radiation fields relevant to proton radiosurgery applications and evaluate its suitability as a high resolution, real time dosimetry device. Methods: Data was collected using our standard nominal radiosurgery energies of 126 MeV and 155 MeV through a single stage scattering system, corresponding to a range of 9.7 and 15 cm in water respectively. Various beam modulations were tested as part of this study. Depth dose and beam profile measurements were completed with the PTW PR60020 dosimetry diode with comparative measurements using a PTW Markus ionization chamber and EBT2 Gafchromic film. Monte Carlo simulations were also completed for comparison. Results: The single 1 mm{sup 2} by 20 μm thick sensitive volume allowed for high spatial resolution measurements while maintaining sufficient sensitive volume to ensure that measurements could be completed without excessive beam delivery. Depth dose profiles exhibited negligible LET dependence which typically impacts film and other solid state dosimetry devices, while beam ranges measured with the PTW diode were within 1 mm of ion chamber data. In an edge on arrangement beam profiles were also measured within 0.5 mm full-width at half-maximum at various depths as compared to film and simulation data. Conclusion: The PTW PR60020 proved to be a very useful radiation metrology apparatus for proton radiosurgery applications. Its waterproof and rugged construction allowed for easy deployment in phantoms or water tanks that are commonly used in proton radiosurgery QA. Dosimetrically, the diode exhibited negligible LET dependence as a function of depth, while in edge on arrangement to the incident proton beam it facilitated the measurement of beam profiles with a spatial resolution comparable to both Monte Carlo and film measurements. This project was sponsored in part by funding from the Department of Defense (DOD# W81XWH-BAA-10-1)

  20. Hard modeling methods for the curve resolution of data from liquid chromatography with a diode array detector and on-flow liquid chromatography with nuclear magnetic resonance spectroscopy.

    PubMed

    Wasim, Mohammad; Brereton, Richard G

    2006-01-01

    Hard modeling methods have been performed on data from high-performance liquid chromatography with a diode array detector (LC-DAD) and on-flow liquid chromatography with 1H nuclear magnetic spectroscopy (LC-NMR). Four methods have been used to optimize parameters to model concentration profiles, three of which belong to classical optimization methods (the simplex method of Nelder-Mead, sequential quadratic programming approach, and Levenberg-Marquardt method), and the fourth is the application of genetic algorithms using real-value encoding. Only classical methods worked well for LC-DAD data, while all of the methods produced good results when LC-NMR data were divided into small spectral windows of peak clusters and parameters were optimized over each window. PMID:16711734

  1. Imaging Performance of the Si/Ge Hybrid Compton Imager

    SciTech Connect

    Burks, M; Chivers, D; Cork, C; Cunningham, M; Fabris, L; Gunter, D; Hull, E; Lange, D; Manini, H; Mihailescu, L; Nelson, K; Niedermayr, T; Valentine, J; Vetter, K; Wright, D

    2005-11-10

    The point spread function (PSF) of a fully-instrumented silicon/germanium Compton telescope has been measured as a function of energy and angle. Overall, the resolution ranged from 3{sup o} to 4{sup o} FWHM over most of the energy range and field of view. The various contributions to the resolution have been quantified. These contributions include the energy uncertainty and position uncertainty of the detector; source energy; Doppler broadening; and the 1/r broadening characteristic of Compton back-projection. Furthermore, a distortion of the PSF is observed for sources imaged off-axis from the detector. These contributions are discussed and compared to theory and simulations.

  2. Nucleon Compton Scattering

    SciTech Connect

    Bogdan Wojtsekhowski

    2006-06-04

    Review of Nucleon Compton Scattering in wide angle regime is presented. JLab experimental data strongly support dominance of handbag mechanism in the RCS process. The approved ALLRCS experiment with polarized target and future plans with 12 GeV beam are discussed.

  3. Deeply virtual Compton scattering

    NASA Astrophysics Data System (ADS)

    Marukyan, Hrachya

    2015-11-01

    This paper reviews the experimental measurements in the field of deeply virtual Compton scattering and related theoretical efforts aimed for the extraction of generalized parton distributions, objects, describing the three-dimensional structure of nucleons and nuclei. The future experiments and theoretical expectations are also considered.

  4. Compton scattering overview

    SciTech Connect

    Hartemann, F V

    2008-12-01

    An overview of linear and nonlinear Compton scattering is presented, along with a comparison with Thomson scattering. Two distinct processes play important roles in the nonlinear regime: multi-photon interactions, leading to the generation of harmonics, and radiation pressure, yielding a downshift of the radiated spectral features. These mechanisms, their influence on the source brightness, and different modeling strategies are also briefly discussed.

  5. Virtual Compton Scattering

    SciTech Connect

    Helene Fonvieille

    2003-05-01

    Virtual Compton Scattering off the proton: {gamma}^+p --> {gamma}p is a new field of investigation of nucleon structure. Several dedicated experiments have been performed at low c.m. energy and various momentum transfers, yielding specific information on the proton. This talk reviews the concept of nucleon Generalized Polarizabilities and the present experimental status.

  6. Hybrid Compton camera/coded aperture imaging system

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2012-04-10

    A system in one embodiment includes an array of radiation detectors; and an array of imagers positioned behind the array of detectors relative to an expected trajectory of incoming radiation. A method in another embodiment includes detecting incoming radiation with an array of radiation detectors; detecting the incoming radiation with an array of imagers positioned behind the array of detectors relative to a trajectory of the incoming radiation; and performing at least one of Compton imaging using at least the imagers and coded aperture imaging using at least the imagers. A method in yet another embodiment includes detecting incoming radiation with an array of imagers positioned behind an array of detectors relative to a trajectory of the incoming radiation; and performing Compton imaging using at least the imagers.

  7. A sensitive and versatile detector for atmospheric NO2 and NOx based on blue diode laser cavity ring-down spectroscopy.

    PubMed

    Fuchs, Hendrik; Dubé, William P; Lerner, Brian M; Wagner, Nicholas L; Williams, Eric J; Brown, Steven S

    2009-10-15

    A sensitive, small detector was developed for atmospheric NO2 and NOx concentration measurements. NO2 is directly detected by laser diode based cavity ring-down spectroscopy (CRDS) at 404 nm. The sum of NO and NO2 (=NOx) is simultaneously measured in a second cavity by quantitative conversion of ambient NO to NO2 in excess ozone. Interferences due to absorption by other trace gases at 404 nm, such as ozone and water vapor, are either negligible or small and are easily quantified. The limit of detection is 22 pptv (2sigma precision) for NO2 at 1 s time resolution. The conversion efficiency of NO to NO2 is 99% in excess O3. The accuracy of the NO2 measurement is mainly limited by the NO2 absorption cross section to +/-3%. Because of the formation of undetectable higher nitrogen oxides in subsequent reactions of NO2 with ozone in the NOx channel, the (1sigma) accuracy of the NOx measurement is increased to approximately +/-5% depending on the level of NOx. The new instrument was designed to be easily deployed in the field with respect to size, weight and consumables. Measurements were validated against a photolysis/chemiluminescence detector during six days of sampling ambient air with colocated inlets. The data sets for NO2, NO and NOx exhibit high correlation and good agreement within the combined accuracies of both methods. Linear fits for all three species give similar slopes of 0.99 in ambient air. PMID:19921901

  8. Energy and coincidence time resolution measurements of CdTe detectors for PET

    PubMed Central

    Ariño, G.; Chmeissani, M.; De Lorenzo, G.; Puigdengoles, C.; Cabruja, E.; Calderón, Y.; Kolstein, M.; Macias-Montero, J.G.; Martinez, R.; Mikhaylova, E.; Uzun, D.

    2013-01-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at −8°C with an applied bias voltage of −1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration. PMID:23750177

  9. Determination of analytes in medical herbs extracts by SPE coupled with two-dimensional planar chromatography in combination with diode array scanning densitometry and HPLC-diode array detector.

    PubMed

    Tuzimski, Tomasz

    2011-01-01

    The purpose of this study is to demonstrate an application of 2-D high-performance planar chromatography-diode array detector (DAD) and HPLC-DAD after solid-phase extraction (SPE) for identification and quantitative analysis of pesticides (isoproturon, aziprotryne, hexazinone, flufenoxuron, methabenzthiazuron, procymidone, and α-cypermethrin) in Melissa officinalis L. (Labiatae) samples. The procedure described for the determination of compounds is inexpensive and can be applied to routine analysis of analytes in medical herbs' samples after preliminary cleanup and concentration by SPE. Average recoveries on C18 SPE cartridges of pesticides eluted with 5 mL tetrahydrofuran by the proposed HPLC-DAD method, before and after 2-D-high-performance planar chromatography separation of analytes from M. officinalis L. samples spiked with pesticide at a concentration level of 10 μg/g in plant material are presented. Method validation parameters for the quantification of pesticides by the proposed HPLC-DAD after SPE method are also presented. PMID:21171173

  10. Geometrical optimization of an annulus Compton suppression system using Monte Carlo simulation.

    PubMed

    Han, Jubong; Lee, K B; Park, T S; Lee, J M; Lee, S H

    2013-11-01

    We are planning to construct a Compton-suppression system permitting accurate and precise determinations of radioactivity of low-level environmental samples. An annulus guard detector (NaI) and a plug-in detector (NaI) are being used as suppression detectors with an HPGe primary detector. The geometry of the Compton suppression spectrometer was optimized by simulation with PENELOPE for obtaining the highest suppression factor (SF) for a point source. The results of the simulations show that the ultimate value of the suppression factor is 7.87 ± 0.18, obtained when the source is located at 57% of an annuls guard detector. PMID:23583087

  11. A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors

    PubMed Central

    Ratcliff, Erin L.; Veneman, P. Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel

    2010-01-01

    We present a simple chip-based refractometer with a central organic light emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence emission from an Alq3/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) and light detection with planar heterojunction pentacene/C60 OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin film OLEDs that is coupled into guided modes in the IRE instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions, a “sample” and “reference” channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) which might influence sensor response. The dual beam configuration permits significantly enhanced sensitivity to refractive index changes relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (ΔR.I.) between 10−2 and 10−3 R.I. units could be detected for single channel operation, with sensitivity increased to ΔR.I. ≈ 10−4 units when the dual beam configuration is employed. PMID:20218580

  12. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.

    PubMed

    Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo

    2016-01-01

    In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the

  13. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.

    PubMed

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Cochrane, Corey J; Rossman, George R

    2016-02-01

    We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability. PMID:26836075

  14. A packaged Schottky diode as detector, harmonic mixer, and harmonic generator in the 25 500 GHz range

    NASA Astrophysics Data System (ADS)

    Goy, P.

    1982-03-01

    This paper describes experimental results obtained with a packaged GaAs Schottky barrier diode in contact with a coaxial connector and placed across waveguides for bands Ka, V, E, W or F. Among the microwave sources used for calibration were 9 carcinotrons in the frequency interval 51 490 GHz. As soon as the frequency F is above the waveguide cut-off frequency, the different characteristics do not depend critically on the waveguide size for V, E, W and F bands. The video detection sensitivity, of several 100 mV/mW at 50 GHz and below, decreases as F-4 in the range 51 500 GHz. Coupling an X-band centimeter frequency via the coaxial connector and a millimeter frequency via the waveguide permits harmonic mixing in the diode. Between 36 and 490 GHz, the harmonic mixing number varies from 3 up to the very large value 40 with conversion losses from 18 to 88 dB. The minimum detectable signal in the 100 kHz band can be as low as -90 dBm at 80 GHz. A noticeable millimeter power is available at the waveguide output from injected centimeter power by harmonic generation. Starting for instance with 100 mW around 11.5 GHz, we have measured 0.1 mW at 80 GHz and 0.1 μW at 230 GHz. To illustrate the possibility of creating usable millimeter and submillimeter wave without heavy equipment (such as carcinotrons or millimeter klystron) we report spectroscopic experiments in Rydberg atoms. Resonances have been observed up to 340 GHz by harmonic generation (28th harmonic) from an X-band klystron).

  15. The GSFC Advanced Compton Telescope (ACT)

    NASA Astrophysics Data System (ADS)

    Hartman, R.; Fichtel, C.; Kniffen, D.; Trombka, J.; Stacy, G.

    1983-08-01

    A new telescope is being developed at GSFC for the study of point sources of gamma rays in the energy range 1-30 MeV. Using the detection principle of a Compton scatter in a 2.5 cm thick NaI(Tl) detector followed by absorption in a 15 cm thick NaI(Tl) detector, the telescope uses a rocking collimator for field-of-view reduction and background subtraction. Background reduction techniques include lead-plastic scintillator shielding, pulse shape discrimination and Anger camera operation to both NaI detectors, as well as a time-of-flight measurement between them. The instrument configuration and status is described.

  16. Development of a Compton camera for safeguards applications in a pyroprocessing facility

    NASA Astrophysics Data System (ADS)

    Park, Jin Hyung; Kim, Young Su; Kim, Chan Hyeong; Seo, Hee; Park, Se-Hwan; Kim, Ho-Dong

    2014-11-01

    The Compton camera has a potential to be used for localizing nuclear materials in a large pyroprocessing facility due to its unique Compton kinematics-based electronic collimation method. Our R&D group, KAERI, and Hanyang University have made an effort to develop a scintillation-detector-based large-area Compton camera for safeguards applications. In the present study, a series of Monte Carlo simulations was performed with Geant4 in order to examine the effect of the detector parameters and the feasibility of using a Compton camera to obtain an image of the nuclear material distribution. Based on the simulation study, experimental studies were performed to assess the possibility of Compton imaging in accordance with the type of the crystal. Two different types of Compton cameras were fabricated and tested with a pixelated type of LYSO (Ce) and a monolithic type of NaI(Tl). The conclusions of this study as a design rule for a large-area Compton camera can be summarized as follows: 1) The energy resolution, rather than position resolution, of the component detector was the limiting factor for the imaging resolution, 2) the Compton imaging system needs to be placed as close as possible to the source location, and 3) both pixelated and monolithic types of crystals can be utilized; however, the monolithic types, require a stochastic-method-based position-estimating algorithm for improving the position resolution.

  17. Results of a Si/Cdte Compton Telescope

    SciTech Connect

    Oonuki, Kousuke; Tanaka, Takaaki; Watanabe, Shin; Takeda, Shin'ichiro; Nakazawa, Kazuhiro; Mitani, Takefumi; Takahashi, Tadayuki; Tajima, Hiroyasu; Fukazawa, Yasushi; Nomachi, Masaharu; /Sagamihara, Inst. Space Astron. Sci. /Tokyo U. /SLAC /Hiroshima U. /Osaka U.

    2005-09-23

    We have been developing a semiconductor Compton telescope to explore the universe in the energy band from several tens of keV to a few MeV. We use a Si strip and CdTe pixel detector for the Compton telescope to cover an energy range from 60 keV. For energies above several hundred keV, the higher efficiency of CdTe semiconductor in comparison with Si is expected to play an important role as an absorber and a scatterer. In order to demonstrate the spectral and imaging capability of a CdTe-based Compton Telescope, we have developed a Compton telescope consisting of a stack of CdTe pixel detectors as a small scale prototype. With this prototype, we succeeded in reconstructing images and spectra by solving the Compton equation from 122 keV to 662 keV. The energy resolution (FWHM) of reconstructed spectra is 7.3 keV at 511 keV and 3.1 keV at 122 keV, respectively. The angular resolution obtained at 511 keV is measured to be 12.2{sup o}(FWHM).

  18. Reverse Phase-ultra Flow Liquid Chromatography-diode Array Detector Quantification of Anticancerous and Antidiabetic Drug Mangiferin from 11 Species of Swertia from India

    PubMed Central

    Kshirsagar, Parthraj R.; Gaikwad, Nikhil B.; Panda, Subhasis; Hegde, Harsha V.; Pai, Sandeep R.

    2016-01-01

    Background: Genus Swertia is valued for its great medicinal potential, mainly Swertia chirayita (Roxb. ex Fleming) H. Karst. is used in traditional medicine for a wide range of diseases. Mangiferin one of xanthoids is referred with enormous pharmacological potentials. Objective: The aim of the study was to quantify and compare the anticancerous and antidiabetic drug mangiferin from 11 Swertia species from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. Materials and Methods: The reverse phase-ultra flow liquid chromatography-diode array detector analyses was performed and chromatographic separation was achieved on a Lichrospher 100, C18e (5 μm) column (250–4.6 mm). Mobile phase consisting of 0.2% triethylamine (pH-4 with O-phosphoric acid) and acetonitrile (85:15) was used for separation with injection volume 20 μL and detection wave length at 257 nm. Results: Results indicated that concentration of mangiferin has been found to vary largely between Swertia species collected from different regions. Content of mangiferin was found to be highest in Swertia minor compared to other Swertia species studied herein from the Western Ghats and Himalayan region also. The same was also evident in the multivariate analysis, wherein S. chirayita, S. minor and Swertia paniculata made a separate clade. Conclusion: Conclusively, the work herein provides insights of mangiferin content from 11 Swertia species of India and also presents their hierarchical relationships. To best of the knowledge this is the first report of higher content of mangiferin from any Swertia species. SUMMARY The present study quantifies and compares mangiferin in 11 species of Swertia from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. The mangiferin content was highest in S. minor compared to the studied Swertia species. To the

  19. Simultaneous Determination of 11 Components in Yinzhihuang Preparations and Their Constituent Herbs by High-Performance Liquid Chromatography with Diode Array Detector.

    PubMed

    Du, Yan; Han, Jie; Sun, Shi-An; Li, Zheng; Yang, Fang-Xiu; Dong, Lu-Lu; Yang, Dong-Zhi; Tang, Dao-Quan

    2016-04-01

    A simple and sensitive liquid chromatography method with diode array detector was established for simultaneous determination of 11 components (geniposidic acid, chlorogenic acid, caffeic acid, geniposide, luteoloside, isochlorogenic acid C, baicalin, luteolin, wogonoside, baicalein and wogonin) in various commercial Yinzhihuang preparations and their herbs by optimizing the extraction, separation and analytical conditions. Eleven components were identified on the basis of their retention times and mass spectra. Chromatographic separation was performed on a C18 analytical column with a gradient elution of acetonitrile and 0.1% formic acid water solution at a flow rate of 1.0 mL/min. The linearity, precision and accuracy of the data obtained were acceptable. The method was used to analyze four Yinzhihuang preparations (powder, capsule, oral liquid and injection) and related herbs (Radix Scutellariae, Flos Lonicerae, Herba Artemisiae Scopariae and Fructus gardeniae). Results suggested that the optimized method could be considered as a good approach to control the quality of Yinzhihuang preparations and their herbs. PMID:26809640

  20. Qualitative and quantitative analysis of an alkaloid fraction from Piper longum L. using ultra-high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry.

    PubMed

    Li, Kuiyong; Fan, Yunpeng; Wang, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2015-05-10

    In a previous research, an alkaloid fraction and 18 alkaloid compounds were prepared from Piper longum L. by series of purification process. In this paper, a qualitative and quantitative analysis method using ultra-high performance liquid chromatography-diode array detector-mass spectrometry (UHPLC-DAD-MS) was developed to evaluate the alkaloid fraction. Qualitative analysis of the alkaloid fraction was firstly completed by UHPLC-DAD method and 18 amide alkaloid compounds were identified. A further qualitative analysis of the alkaloid fraction was accomplished by UHPLC-MS/MS method. Another 25 amide alkaloids were identified according to their characteristic ions and neutral losses. At last, a quantitative method for the alkaloid fraction was established using four marker compounds including piperine, pipernonatine, guineensine and N-isobutyl-2E,4E-octadecadienamide. After the validation of this method, the contents of above four marker compounds in the alkaloid fraction were 57.5mg/g, 65.6mg/g, 17.7mg/g and 23.9mg/g, respectively. Moreover, the relative response factors of other three compounds to piperine were calculated. A comparative study between external standard quantification and relative response factor quantification proved no remarkable difference. UHPLC-DAD-MS method was demonstrated to be a powerful tool for the characterization of the alkaloid fraction from P. longum L. and the result proved that the quality of alkaloid fraction was efficiently improved after appropriate purification. PMID:25746504

  1. Simultaneous determination three phytosterol compounds, campesterol, stigmasterol and daucosterol in Artemisia apiacea by high performance liquid chromatography-diode array ultraviolet/visible detector

    PubMed Central

    Lee, Jiwoo; Weon, Jin Bae; Yun, Bo-Ra; Eom, Min Rye; Ma, Choong Je

    2015-01-01

    Background: Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia, including China, Korea, and Japan. Objective: An accurate and sensitive analysis method using high performance liquid chromatography-diode array ultraviolet/visible detector and liquid chromatography–mass spectrometry for the simultaneous determination of three phytosterol compounds, campesterol, stigmasterol and daucosterol in A. apiacea was established. Materials and Methods: The analytes were separated on a Shiseido C18 column (5 μm, 4.6 mm I.D. ×250 mm) with gradient elution of 0.1% trifluoroacetic acid and acetonitrile. The flow rate was 1 mL/min and detection wavelengths were set at 205 and 254 nm. Results: Validation of the method was performed to demonstrate its linearity, precision and accuracy. The calibration curves showed good linearity (R2 > 0.9994). The limits of detection and limits of quantification were within the ranges 0.55–7.07 μg/mL and 1.67–21.44 μg/mL, respectively. And, the relative standard deviations of intra- and inter-day precision were <2.93%. The recoveries were found to be in the range of 90.03–104.91%. Conclusion: The developed method has been successfully applied to the analysis for quality control of campesterol, stigmasterol and daucosterol in A. apiacea. PMID:25829768

  2. The scanning Compton polarimeter for the SLD experiment

    SciTech Connect

    Woods, M.; SLD Collaboration

    1996-10-01

    For the 1994/95 run of the SLD experiment at SLAC, a Compton polarimeter measured the luminosity-weighted electron beam polarization to be (77.2 {+-} 0.5)%. This excellent accuracy is achieved by measuring the rate asymmetry of Compton-scattered electrons near the kinematic endpoint. The polarimeter takes data continuously while the electron and positron beams are in collision and achieves a statistical precision of better than 1% in a three minute run. To calibrate the polarimeter and demonstrate its accuracy, many scans are frequently done. These include scans of the laser polarization, the detector position with respect to the kinematic edge, and the laser power.

  3. Low-level gamma spectrometry using beta coincidence and Compton suppression.

    PubMed

    Grigorescu, E L; De Felice, P; Razdolescu, Anamaria-Cristina; Luca, A

    2004-01-01

    A low-level gamma-ray spectrometry system was developed using a Ge(Li) detector with 6% relative efficiency coupled to a 2pi beta plastic detector for coincidence selection and a massive NaI(Tl) detector for Compton suppression. The integral background count rate for (50-1500)keV was 0.5 s(-1)kg(-1) (Ge), using only beta coincidences. With Compton suppression, a value of 0.25 s(-1)kg(-1) (Ge) was obtained. Spectra with and without Compton suppression were studied for 60Co, 137Cs and 152Eu point sources. Considerations are made concerning the Compton suppression advantages in different situations. PMID:15177343

  4. Analytical reconstruction formula for one-dimensional Compton camera

    SciTech Connect

    Basko, R.; Zeng, G.L.; Gullberg, G.T.

    1996-12-31

    The Compton camera has been proposed as an alternative to the Anger camera in SPECT. The advantage of the Compton camera is its high geometric efficiency due to electronic collimation. The Compton camera collects projections that are integrals over cone surfaces. Although some progress has been made toward image reconstruction from cone projections, at present no filtered backprojection algorithm exists. This paper investigates a simpler 2D version of the imaging problem. An analytical formula is developed for 2D reconstruction from data acquired by a 1D Compton camera that consists of two linear detectors, one behind the other. Coincidence photon detection allows the localization of the 2D source distribution to two lines in the shape of a {open_quotes}V{close_quotes} with the vertex on the front detector. A set of {open_quotes}V{close_quotes} projection data can be divided into subsets whose elements can be viewed as line-integrals of the original image added with its mirrored shear transformation. If the detector has infinite extent, reconstruction of the original image is possible using data from only one such subset. Computer simulations were performed to verify the newly developed algorithm.

  5. Recent Results From a Si/CdTe Semiconductor Compton Telescope

    SciTech Connect

    Tanaka, T.; Watanabe, S.; Takeda, S.; Oonuki, K.; Mitani, T.; Nakazawa, K.; Takashima, T.; Takahashi, T.; Tajima, H.; Sawamoto, N.; Fukazawa, Y.; Nomachi, M.; /JAXA, Sagamihara /Tokyo U. /SLAC /Hiroshima U. /Osaka U.

    2007-01-23

    We are developing a Compton telescope based on high resolution Si and CdTe detectors for astrophysical observations in sub-MeV/MeV gamma-ray region. Recently, we constructed a prototype Compton telescope which consists of six layers of double-sided Si strip detectors and CdTe pixel detectors to demonstrate the basic performance of this new technology. By irradiating the detector with gamma-rays from radio isotope sources, we have succeeded in Compton reconstruction of images and spectra. The obtained angular resolution is 3.9{sup o} (FWHM) at 511 keV, and the energy resolution is 14 keV (FWHM) at the same energy. In addition to the conventional Compton reconstruction, i.e., drawing cones in the sky, we also demonstrated a full reconstruction by tracking Compton recoil electrons using the signals detected in successive Si layers. By irradiating {sup 137}Cs source, we successfully obtained an image and a spectrum of 662 keV line emission with this method. As a next step, development of larger double-sided Si strip detectors with a size of 4 cm x 4 cm is underway to improve the effective area of the Compton telescope. We are also developing a new low-noise analog ASIC to handle the increasing number of channels. Initial results from these two new technologies are presented in this paper as well.

  6. Design and fabrication of endoscope-type Compton camera

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Shimazoe, K.; Takahashi, H.

    2013-12-01

    We are constructing an endoscope coupled with a Compton camera to intra-operatively inspect early stage cancer and metastatic lymph node (5 mm-10 mm). The radiation imaging system is composed of pixelated semiconductor detectors, which are Si array and CdTe array, whose sizes are less than 10 mm×10 mm, and a digital signal-processing unit with ASIC and FPGA and reconstruction algorithm using spherical harmonics that can compute in real time. In this paper, we show some simulation results on the performance of the proposed prototype detector using EGS5, Monte Carlo simulation code. The FWHM of 1 mm spatial resolution for an object located 10 mm away from the detector surface and the intrinsic efficiency of 0.05% were observed. Imaging and data acquisition time to take fine images are just 1 min. It therefore can be considered that the endoscopic Compton camera is useful for intra-operative inspection.

  7. Simplified slow anti-coincidence circuit for Compton suppression systems.

    PubMed

    Al-Azmi, Darwish

    2008-08-01

    Slow coincidence circuits for the anti-coincidence measurements have been considered for use in Compton suppression technique. The simplified version of the slow circuit has been found to be fast enough, satisfactory and allows an easy system setup, particularly with the advantage of the automatic threshold setting of the low-level discrimination. A well-type NaI detector as the main detector surrounded by plastic guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The system has been tested to observe the improvement in the energy spectra for medium to high-energy gamma-ray photons from terrestrial and environmental samples. PMID:18222698

  8. Deeply Virtual Compton Scattering off 4He

    NASA Astrophysics Data System (ADS)

    Joosten, Sylvester; CLAS Collaboration

    2015-10-01

    The European Muon Collaboration (EMC) observed the first signs of a modification of the partonic structure of the nucleon when present in a nuclear medium. The precise nature of these effects, as well as their underlying cause, is yet to be determined. The generalized parton distribution (GPD) framework provides a powerful tool to study the partonic structure of nucleons inside a nucleus. Hard exclusive leptoproduction of a real photon off a nucleon, deeply virtual Compton scattering (DVCS), is presently considered the cleanest experimental access to the GPDs, through the Compton form factors (CFFs). This is especially the case for scattering off the spin-zero helium nucleus, where only a single CFF contributes to the process. The real and imaginary parts of this CFF can be constrained through the beam-spin asymmetry (BSA). We will present the first measurements of the DVCS process off 4He using the CEBAF 6 GeV polarized electron beam and the CLAS detector at JLab. The CLAS detector was supplemented with an inner electromagnetic calorimeter for photons produced at small angles, as well as a radial time projection chamber (RTPC) to detect low-energy recoil nuclei. This setup allowed for a clean measurement of the BSA in both the coherent and incoherent channels.

  9. An energy-subtraction Compton scatter camera design for in vivo medical imaging of radiopharmaceuticals

    SciTech Connect

    Rohe, R.C.; Valentine, J.D.

    1996-12-01

    A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction ({Delta}E = E{sub 0} {minus} E{sub SC}, where E{sub 0}, {Delta}E, and E{sub SC} are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented.

  10. A Compton camera application for the GAMOS GEANT4-based framework

    NASA Astrophysics Data System (ADS)

    Harkness, L. J.; Arce, P.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Dormand, J.; Jones, M.; Nolan, P. J.; Sampson, J. A.; Scraggs, D. P.; Sweeney, A.; Lazarus, I.; Simpson, J.

    2012-04-01

    Compton camera systems can be used to image sources of gamma radiation in a variety of applications such as nuclear medicine, homeland security and nuclear decommissioning. To locate gamma-ray sources, a Compton camera employs electronic collimation, utilising Compton kinematics to reconstruct the paths of gamma rays which interact within the detectors. The main benefit of this technique is the ability to accurately identify and locate sources of gamma radiation within a wide field of view, vastly improving the efficiency and specificity over existing devices. Potential advantages of this imaging technique, along with advances in detector technology, have brought about a rapidly expanding area of research into the optimisation of Compton camera systems, which relies on significant input from Monte-Carlo simulations. In this paper, the functionality of a Compton camera application that has been integrated into GAMOS, the GEANT4-based Architecture for Medicine-Oriented Simulations, is described. The application simplifies the use of GEANT4 for Monte-Carlo investigations by employing a script based language and plug-in technology. To demonstrate the use of the Compton camera application, simulated data have been generated using the GAMOS application and acquired through experiment for a preliminary validation, using a Compton camera configured with double sided high purity germanium strip detectors. Energy spectra and reconstructed images for the data sets are presented.

  11. Compton Scattering from Bulk and Surface of Water

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Kuzmenko, Ivan; Vaknin, David

    2014-03-01

    Elastic and Compton scattering at grazing angle X-ray incidence from water show distinct behaviors below and above the critical angle for total reflections suggesting surface restructuring of the water surface. Using X-ray synchrotron radiation in reflectivity mode, we collect the Thomson and Compton scattering signals with energy dispersive detector at various angles near the normal to surface as a function of the angle of incidence. Analysis of the ratio between the Thomson and Compton intensity above the critical angle (which mainly probes bulk water) is a constant as expected from incoherent scattering from single water molecule, whereas the signal from the surface shows strong angular dependence on the incident angle. Although we do not fully understand the phenomena, we attribute the observation to more organized water at the interface. Ames Laboratory, DOE under contract No. DE-AC02-07CH11358 and Advanced Photon Source, DOE under contract No. DE-AC02-06CH11357.

  12. Compton suppressed LaBr3 detection system for use in nondestructive spent fuel assay

    NASA Astrophysics Data System (ADS)

    Bender, S.; Heidrich, B.; Ünlü, K.

    2015-06-01

    Current methods for safeguarding and accounting for spent nuclear fuel in reprocessing facilities are extremely resource and time intensive. The incorporation of autonomous passive gamma-ray detectors into the procedure could make the process significantly less burdensome. In measured gamma-ray spectra from spent nuclear fuel, the Compton continuum from dominant fission product photopeaks obscure the lower energy lines from other isotopes. The application of Compton suppression to gamma-ray measurements of spent fuel may reduce this effect and allow other less intense, lower energy peaks to be detected, potentially improving the accuracy of multivariate analysis algorithms. Compton suppressed spectroscopic measurements of spent nuclear fuel using HPGe, LaBr3, and NaI(Tl) primary detectors were performed. Irradiated fuel was measured in two configurations: as intact fuel elements viewed through a collimator and as feed solutions in a laboratory to simulate the measurement of a dissolved process stream. These two configurations allowed the direct assessment and quantification of the differences in measured gamma-ray spectra from the application of Compton suppression. In the first configuration, several irradiated fuel elements of varying cooling times from the Penn State Breazeale Reactor spent fuel inventory were measured using the three collimated Compton suppression systems. In the second geometry, Compton suppressed measurements of two samples of Approved Test Material commercial fuel elements were recorded inside the guard detector annulus to simulate the siphoning of small quantities from the main process stream for long dwell measurement periods. Compton suppression was found to improve measured gamma-ray spectra of spent fuel for multivariate analysis by notably lowering the Compton continuum from dominant photopeaks such as 137Cs and 140La, due to scattered interactions in the detector, which allowed more spectral features to be resolved. There was a

  13. Compton polarimetry revisited

    NASA Astrophysics Data System (ADS)

    Bernard, D.

    2015-11-01

    We compute the average polarisation asymmetry from the Klein-Nishina differential cross-section on free electrons at rest. As expected from the expression for the asymmetry, the average asymmetry is found to decrease like the inverse of the incident photon energy asymptotically at high energy. We then compute a simple estimator of the polarisation fraction that makes optimal use of all the kinematic information present in an event final state, by the use of "moments" method, and we compare its statistical power to that of a simple fit of the azimuthal distribution. In contrast to polarimetry with pair creation, for which we obtained an improvement by a factor of larger than two in a previous work, here for Compton scattering the improvement is only of 10-20%.

  14. A Compton profile representation for some second period elements

    NASA Astrophysics Data System (ADS)

    Harding, Geoffrey; Olesinski, Stephan

    2011-09-01

    Compton profiles for the elements C, N and O, which are important both in medical science and security screening, are represented here as weighted sums of three Gaussians. Simple scaling relationships describe the dependence on atomic number ( Z) of the amplitudes and standard deviations of the component Gaussians, which are identified with the Compton profiles of the 1s, 2s and 2p orbitals. This representation of the Compton profile agrees with tabulated values for C, N and O to a rms deviation of the order of 1% of the mean profile amplitude over the momentum range 0≤ q≤4, where q is expressed in units of the hydrogen ground state momentum. This representation allows a "mean atomic number" for mixtures and compounds dominated by second period elements to be assigned on the basis of experimental measurements of the Doppler broadening of back-scattered X-ray K characteristic lines. Processed spectra of water and ethanol from a Compton spectrometer equipped with a room-temperature semiconductor detector are compared with the Compton profiles synthesized as suggested here, and a satisfactory agreement between the measured and theoretical mean atomic numbers and the profile shapes is found.

  15. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  16. Magnetic ligand fishing combination with high-performance liquid chromatography-diode array detector-mass spectrometry to screen and characterize cyclooxygenase-2 inhibitors from green tea.

    PubMed

    Deng, Xu; Shi, Shuyun; Li, Simin; Yang, Tianlun

    2014-10-22

    Cyclooxygenase-2 (COX-2) inhibitors may be used to efficiently treat inflammation or cancer diseases. In the present study, we established a new screening assay based on magnetic Fe3O4@SiO2-COX-2 ligand fishing combination with high-performance liquid chromatography-diode array detector-mass spectrometry (HPLC-DAD-MS(n)) to screen and identify COX-2 inhibitors from green tea. Optimized conditions (pH at 7.4, temperature at 30°C, and incubation time for 30min) for fishing out COX-2 inhibitors were achieved by testing positive control, celecoxib, with active and inactive COX-2. Notably, immobilized COX-2 showed high stability (remained 94.7% after ten consecutive cycles), reproducibility (RSD<10% for batch-to-batch evaluation). Finally, eight catechins with COX-2 binding activity were screened in green tea, and their structures were characterized by ultraviolet (UV), accurate molecular weight, diagnostic fragment ions and nuclear magnetic resonance (NMR). Particularly, the COX-2 inhibitory activities of two rare catechins, [(-)-epigallocatechin-3-(3″-O-methyl)-gallate (3″-O-methyl-EGCG, IC50=0.17±0.03μM 0.16±0.01), (-)-epicatechin-3-(3″-O-methyl)-gallate (3″-O-methyl-ECG, IC50=0.16±0.02μM)], were reported for the first time. The results indicated that the proposed method was a simple, robust and reproducible approach for the discovery of COX-2 inhibitors from complex matrix. PMID:25464095

  17. Determination of low levels of polycyclic aromatic hydrocarbons in soil by high performance liquid chromatography with tandem fluorescence and diode-array detectors.

    PubMed

    Huang, Yujuan; Wei, Jing; Song, Jing; Chen, Mengfang; Luo, Yongming

    2013-08-01

    Risk assessment of polycyclic aromatic hydrocarbons (PAHs) contaminated soil and source apportionment require accurate analysis of the concentration of each PAH congener in the soil. However, determination of low level PAH congeners in soil is difficult because of similarity in the chemical properties of 16 PAHs and severe matrix interferences due to complex composition of soils. It is therefore imperative to develop a sensitive and accurate method for determination of low level PAHs in soil. In this work, high performance liquid chromatography equipped with fluorescence and diode-array detectors (HPLC-FLD-DAD) was used to determine the concentration of 16 PAHs in soil. The separation of the 16 PAHs was achieved by optimization of the mobile phase gradient elution program and FLD wavelength switching program. Qualitative analysis of the 16 PAHs was based on the retention time (RT) and each PAH specific spectrum obtained from DAD. In contrast, the quantitative analysis of individual PAH congeners was based on the peak areas at the specific wavelength with DAD and FLD. Under optimal conditions the detection limit was in the range 1.0-9.5 μg L(-1) for 16 PAHs with DAD and 0.01-0.1 μg L(-1) for 15 PAHs with FLD, and the RSD of PAHs was less than 5% with DAD and 3% with FLD. The spiked recoveries were in the range 61-96%, with the exception of NaP (<40%). The results show that HPLC-FLD-DAD can provide more accurate and reliable analysis of low level PAH congeners in soil samples. PMID:23659963

  18. Development of a rapid resolution liquid chromatography-diode array detector method for the determination of three compounds in Ziziphora clinopodioides Lam from different origins of Xinjiang

    PubMed Central

    Tian, Shuge; Yu, Qian; Wang, Dongdong; Upur, Halmuart

    2012-01-01

    Context: As a traditional Uygur medicinal plant, Z. clinopodioides Lam has various uses in Xinjiang. Aims: A reversed-phase rapid resolution liquid chromatography (RP-RRLC) method with diode array detector (DAD) was developed for simultaneous determination of diosmin, linarin, and pulegone from Ziziphora clinopodioides Lam, a widely used in traditional Uygur medicine for treating heart disease, high blood pressure, and other diseases. Settings and Design: Compounds were separated on a XDB-C18 reversed-phase analytical column (50 mm × 4.6 mm, 1.8 μm) with gradient elution using methanol and 1% aqueous acetic acid (v/v) at 0.9 mL/min. he detection wavelength was set at 270 nm. Materials and Methods: Ziziphora clinopodioides Lam. were collected from ten different origins in Xinjiang, including the Ban fang ditch, Tuoli, the Altay mountains, Terks, Xiata Road, Zhaosu Highway, Guozigou, Fukang, Jimsar, Wulabo. Statistical Analysis Used: The intra-day and inter-day precisions of all three compounds were less than 0.89% and the average recoveries ranged from 97.4 to 104.1%. There were highly significant linear correlations between component concentrations and specific chromatographic peak areas (R2 > 0.999). Results: The proposed method was successfully applied to determine the levels of three active components in Z. clinopodioides Lam. samples from different locations in Xinjiang. Conclusions: The proposed method is simple, consistent, accurate, and could be utilized as a quality control method for Z. clinopodioides Lam. PMID:24082631

  19. Development and validation of an high-performance liquid chromatography-diode array detector method for the simultaneous determination of six phenolic compounds in abnormal savda munziq decoction

    PubMed Central

    Tian, Shuge; Liu, Wenxian; Liu, Feng; Zhang, Xuejia; Upur, Halmuart

    2015-01-01

    Aims: Given the high-effectiveness and low-toxicity of abnormal savda munziq (ASMQ), its herbal formulation has long been used in traditional Uyghur medicine to treat complex diseases, such as cancer, diabetes, and cardiovascular diseases. Settings and Design: ASMQ decoction by reversed-phase high-performance liquid chromatography coupled with a diode array detector was successfully developed for the simultaneous quality assessment of gallic acid, protocatechuic acid, caffeic acid, rutin, rosmarinic acid, and luteolin. The six phenolic compounds were separated on an Agilent TC-C18 reversed-phase analytical column (4.6 × 250 mm, 5 μm) by gradient elution using 0.3% aqueous formic acid (v/v) and 0.3% methanol formic acid (v/v) at 1.0 mL/min. Materials and Methods: The plant material was separately ground and mixed at the following ratios (10): Cordia dichotoma (10.6), Anchusa italic (10.6), Euphorbia humifusa (4.9), Adiantum capillus-veneris (4.9), Ziziphus jujube (4.9), Glycyrrhiza uralensis (7.1), Foeniculum vulgare (4.9), Lavandula angustifolia (4.9), Dracocephalum moldavica L. (4.9), and Alhagi pseudoalhagi (42.3). Statistical Analysis Used: The precisions of all six compounds were <0.60%, and the average recoveries ranged from 99.39% to 104.85%. Highly significant linear correlations were found between component concentrations and specific chromatographic peak areas (R2 > 0.999). Results: The proposed method was successfully applied to determine the levels of six active components in ASMQ. Conclusions: Given the simplicity, precision, specificity, and sensitivity of the method, it can be utilized as a quality control approach to simultaneously determining the six phenolic compounds in AMSQ. PMID:25709227

  20. Weak Deeply Virtual Compton Scattering

    SciTech Connect

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2007-03-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities.

  1. A calibration system for Compton polarimetry at e+e- linear colliders

    NASA Astrophysics Data System (ADS)

    Vormwald, B.; List, J.; Vauth, A.

    2016-01-01

    Polarimetry with permille-level precision is essential for future electron-positron linear colliders. Compton polarimeters can reach negligible statistical uncertainties within seconds of measurement time. The dominating systematic uncertainties originate from the response and alignment of the detector which records the Compton scattered electrons. The robust baseline technology for the Compton polarimeters foreseen at future linear colliders is based on an array of gas Cherenkov detectors read out by photomultipliers. In this paper, we will present a calibration method which promises to monitor nonlinearities in the response of such a detector at the level of a few permille. This method has been implemented in an LED-based calibration system which matches the existing prototype detector. The performance of this calibration system is sufficient to control the corresponding contribution to the total uncertainty on the extracted polarisation to better than 0.1%.

  2. Image Artifacts Resulting from Gamma-Ray Tracking Algorithms Used with Compton Imagers

    SciTech Connect

    Seifert, Carolyn E.; He, Zhong

    2005-10-01

    For Compton imaging it is necessary to determine the sequence of gamma-ray interactions in a single detector or array of detectors. This can be done by time-of-flight measurements if the interactions are sufficiently far apart. However, in small detectors the time between interactions can be too small to measure, and other means of gamma-ray sequencing must be used. In this work, several popular sequencing algorithms are reviewed for sequences with two observed events and three or more observed events in the detector. These algorithms can result in poor imaging resolution and introduce artifacts in the backprojection images. The effects of gamma-ray tracking algorithms on Compton imaging are explored in the context of the 4π Compton imager built by the University of Michigan.

  3. Prototype TIGRE Compton γ-ray balloon-borne telescope

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; O'Neill, T. J.; Akyüz, A.; Samimi, J.; Zych, A. D.

    2004-02-01

    A prototype balloon-borne telescope is being constructed for γ-ray observations in the MeV energy range. The Tracking and Imaging Gamma-Ray Experiment (TIGRE) uses multi-layers of thin silicon detectors to track and measure the energy losses of Compton recoil electrons. When combined with the direction and energy of the Compton scattered γ-ray a unique incident direction for each photon event is determined. This facilitates background rejection, improved sensitivity and image reconstruction. The converter/tracker also serves as an electron-positron pair detector for γ-rays up to 100 MeV. The initial continental US flight will be used to determine the sub-orbital atmospheric backgrounds and search for polarized γ-emission for the Crab pulsar. Longer southern hemisphere flights with an enhanced instrument will map out the 26Al emissions from the galactic center region.

  4. The electromagnetic calorimeter in JLab Real Compton Scattering Experiment

    SciTech Connect

    Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski

    2007-04-16

    A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.

  5. Method and apparatus for measuring lung density by Compton backscattering

    DOEpatents

    Loo, Billy W.; Goulding, Frederick S.

    1991-01-01

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons Compton backscattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to monimize systematic errors due to the presence of the chestwall and multiple scattering.

  6. Method and apparatus for measuring lung density by Compton backscattering

    DOEpatents

    Loo, B.W.; Goulding, F.S.

    1988-03-11

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons compton back-scattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to minimize systematic errors due to the presence of the chestwall and multiple scattering. 11 figs., 1 tab.

  7. Measurement and simulation of a Compton suppression system for safeguards application

    NASA Astrophysics Data System (ADS)

    Lee, Seung Kyu; Seo, Hee; Won, Byung-Hee; Lee, Chaehun; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Park, Geun-Il; Park, Se-Hwan

    2015-11-01

    Plutonium (Pu) contents in spent nuclear fuels, recovered uranium (U) or uranium/transuranium (U/TRU) products must be measured in order to secure the safeguardability of a pyroprocessing facility. Self-induced X-Ray fluorescence (XRF) and gamma-ray spectroscopy are useful techniques for determining Pu-to-U ratios and Pu isotope ratios of spent fuel. Photon measurements of spent nuclear fuel by using high-resolution spectrometers such as high-purity germanium (HPGe) detectors show a large continuum background in the low-energy region, which is due in large part to Compton scattering of energetic gamma rays. This paper proposes a Compton suppression system for reducing of the Compton continuum background. In the present study, the system was configured by using an HPGe main detector and a BGO (bismuth germanate: Bi4Ge3O12) guard detector. The system performances for gamma-ray measurement and XRF were evaluated by means of Monte Carlo simulations and measurements of the radiation source. The Monte Carlo N-Particle eXtended (MCNPX) simulations were performed using the same geometry as for the experiments, and considered, for exact results, the production of secondary electrons and photons. As a performance test of the Compton suppression system, the peak-to-Compton ratio, which is a figure of merit to evaluate the gamma-ray detection, was enhanced by a factor of three or more when the Compton suppression system was used.

  8. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  9. A Compton imaging device for radioactive material detection

    NASA Astrophysics Data System (ADS)

    Hoover, Andrew S.; Baird, William; Kippen, R. Marc; Rawool-Sullivan, Mohini W.; Sullivan, John P.

    2004-10-01

    The most serious terrorist threat we face today may come from radiological dispersion devices and unsecured nuclear weapons. It is imperative for national security that we develop and implement radiation detection technology capable of locating and tracking nuclear material moving across and within our borders. Many radionuclides emit gamma rays in the 0.2 -- 3 MeV range. Unfortunately, current gamma ray detection technology is inadequate for providing precise and efficient measurements of localized radioactive sources. Common detectors available today suffer from large background rates and have only minimal ability to localize the position of the source without the use of mechanical collimators, which reduces efficiency. Imaging detectors using the Compton scattering process have the potential to provide greatly improved sensitivity through their ability to reject off-source background. We are developing a prototype device to demonstrate the Compton imaging technology. The detector consists of several layers of pixelated silicon detectors followed by an array of CsI crystals coupled to photodiodes. Here we present the concept of our detector design and results from Monte Carlo simulations of our prototype detector.

  10. The performance determination of a Compton-suppression spectrometer and the measurement of the low level radioactive samples.

    PubMed

    Fan, Yuan-Qing; Wang, Shi-Lian; Li, Qi; Zhao, Yun-Gang; Zhang, Xin-Jun; Jia, Huai-Mao

    2013-11-01

    The performance of a new Compton-suppression spectrometer consisting of one HPGe detector and three NaI(Tl) detectors was studied. The peak-to-Compton ratio for a (137)Cs source is 1150 and the integral background count rate is 0.3 5s(-1) over the energy interval 20-3000 keV. The spectrometer was used to acquire both Compton-suppressed and non-suppressed spectra of aerosol samples collected in Beijing following the Fukushima nuclear accident. PMID:23587699

  11. A new cryogenic diode thermometer

    NASA Astrophysics Data System (ADS)

    Courts, S. S.; Swinehart, P. R.; Yeager, C. J.

    2002-05-01

    While the introduction of yet another cryogenic diode thermometer is not earth shattering, a new diode thermometer, the DT-600 series, recently introduced by Lake Shore Cryotronics, possesses three features that make it unique among commercial diode thermometers. First, these diodes have been probed at the chip level, allowing for the availability of a bare chip thermometer matching a standard curve-an important feature in situations where real estate is at a premium (IR detectors), or where in-situ calibration is difficult. Second, the thermometry industry has assumed that interchangeability should be best at low temperatures. Thus, good interchangeability at room temperatures implies a very good interchangeability at cryogenic temperature, resulting in a premium priced sensor. The DT-600 series diode thermometer is available in an interchangeability band comparable to platinum RTDs with the added advantage of interchangeability to 2 K. Third, and most important, the DT-600 series diode does not exhibit an instability in the I-V characteristic in the 8 K to 20 K temperature range that is observed in other commercial diode thermometer devices [1]. This paper presents performance characteristics for the DT-600 series diode thermometer along with a comparison of I-V curves for this device and other commercial diode thermometers exhibiting an I-V instability.

  12. The Compton Effect Red Shift

    NASA Astrophysics Data System (ADS)

    Kierein, John

    2004-05-01

    In 1923 (Phil Mag. 46, 897.) A. H. Compton noted that the Compton effect produces a red shift for all wavelengths when the scattered electron is free and not bound to an atom or molecule. He suggested that the red shift in the visible spectrum at the limb of the sun is larger than that at the center due to the Compton effect from the greater number of free electrons in the sun's atmosphere along the line of sight. Kierein and Sharp (1968, Solar Physics 3, 450) quantified this and showed a good correlation of red shift observations with the variation in the number of these electrons along the line of sight from center to limb and suggested that the quasar red shift and cosmological red shift could be similarly explained. Grote Reber mapped and measured the background hectometric radiation and found it to be unexpectedly bright. In 1968 (J. Franklin Inst. 285,1), while describing these measurements and maps he explained this brightness as being due to the Compton effect causing the cosmological red shift and accelerating intergalactic electrons. The resulting universe is static. The predicted red shift from the Compton effect deviates from Hubble's law only at large red shifts.

  13. Materials characterization in petroleum pipeline using Compton Scattering technique

    NASA Astrophysics Data System (ADS)

    Gouveia, M. A. G.; Lopes, R. T.; de Jesus, E. F. O.; Camerini, C. S.

    2003-06-01

    In this paper Compton Scattering technique is analyzed as a possible tool for the characterization of materials inside draining petroleum pipelines. The study was accomplished in laboratory scale, so the results should be analyzed to conclude if the system could be used in the field. The system used was composed of two detectors aligned by a Ce-137 source forming an angle of 90° with the detectors line (662 keV—direct beam, and 288 keV—scattered beam). The results obtained show the capability of the system for the characterization of materials like sand, paraffin and water inside pipelines.

  14. Compton scattering and generalized polarizabilities

    SciTech Connect

    Scherer, S.

    2005-05-06

    In recent years, real and virtual Compton scattering off the nucleon have attracted considerable interest from both the experimental and theoretical sides. Real Compton scattering gives access to the so-called electromagnetic polarizabilities containing the structure information beyond the global properties of the nucleon such as its charge, mass, and magnetic moment. These polarizabilities have an intuitive interpretation in terms of induced dipole moments and thus characterize the response of the constituents of the nucleon to a soft external stimulus. The virtual Compton scattering reaction e- p {yields} e- p{gamma} allows one to map out the local response to external fields and can be described in terms of generalized electromagnetic polarizabilities. A simple classical interpretation in terms of the induced electric and magnetic polarization densities is proposed. We will discuss experimental results for the polarizabilities of the proton and compare them with theoretical predictions.

  15. The Compton Observatory Science Workshop

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R. (Editor); Gehrels, Neil (Editor); Dennis, Brian (Editor)

    1992-01-01

    The Compton Observatory Science Workshop was held in Annapolis, Maryland on September 23-25, 1991. The primary purpose of the workshop was to provide a forum for the exchange of ideas and information among scientists with interests in various areas of high energy astrophysics, with emphasis on the scientific capabilities of the Compton Observatory. Early scientific results, as well as reports on in-flight instrument performance and calibrations are presented. Guest investigator data products, analysis techniques, and associated software were discussed. Scientific topics covered included active galaxies, cosmic gamma ray bursts, solar physics, pulsars, novae, supernovae, galactic binary sources, and diffuse galactic and extragalactic emission.

  16. First-Generation Hybrid Compact Compton Imager

    SciTech Connect

    Cunningham, M; Burks, M; Chivers, D; Cork, C; Fabris, L; Gunter, D; Krings, T; Lange, D; Hull, E; Mihailescu, L; Nelson, K; Niedermayr, T; Protic, D; Valentine, J; Vetter, K; Wright, D

    2005-11-07

    At Lawrence Livermore National Laboratory, we are pursuing the development of a gamma-ray imaging system using the Compton effect. We have built our first generation hybrid Compton imaging system, and we have conducted initial calibration and image measurements using this system. In this paper, we present the details of the hybrid Compton imaging system and initial calibration and image measurements.

  17. Study of Compton suppression for use in spent nuclear fuel assay

    NASA Astrophysics Data System (ADS)

    Bender, Sarah

    The focus of this study has been to assess Compton suppressed gamma-ray detection systems for the multivariate analysis of spent nuclear fuel. This objective has been achieved using direct measurement of samples of irradiated fuel elements in two geometrical configurations with Compton suppression systems. In order to address the objective to quantify the number of additionally resolvable photopeaks, direct Compton suppressed spectroscopic measurements of spent nuclear fuel in two configurations were performed: as intact fuel elements and as dissolved feed solutions. These measurements directly assessed and quantified the differences in measured gamma-ray spectrum from the application of Compton suppression. Several irradiated fuel elements of varying cooling time from the Penn State Breazeale Reactor spent fuel inventory were measured using three Compton suppression systems that utilized different primary detectors: HPGe, LaBr3, and NaI(Tl). The application of Compton suppression using a LaBr3 primary detector to the measurement of the current core fuel element, which presented the highest count rate, allowed four additional spectral features to be resolved. In comparison, the HPGe-CSS was able to resolve eight additional photopeaks as compared to the standalone HPGe measurement. Measurements with the NaI(Tl) primary detector were unable to resolve any additional peaks, due to its relatively low resolution. Samples of Approved Test Material (ATM) commercial fuel elements were obtained from Pacific Northwest National Laboratory. The samples had been processed using the beginning stages of the PUREX method and represented the unseparated feed solution from a reprocessing facility. Compton suppressed measurements of the ATM fuel samples were recorded inside the guard detector annulus, to simulate the siphoning of small quantities from the main process stream for long dwell measurement periods. Photopeak losses were observed in the measurements of the dissolved ATM

  18. Adaptation of filtered back-projection to compton imaging with non-uniform azimuthal geometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyounggun; Lee, Taewoong; Lee, Wonho

    2016-05-01

    For Compton image reconstruction, analytic reconstruction methods such as filtered backprojection have been used for real-time imaging. The conventional filtered back-projection method assumes a uniformly distributed azimuthal response in the detector system. In this study, we applied filtered back-projection to the experimental data from detector systems with limited azimuthal angle coverage ranges and estimated the limitations of the analytic reconstruction methods when applied to these systems. For the system with a uniform azimuthal response, the images reconstructed by using filtered back-projection showed better angular resolutions than the images obtained by using simple back-projection did. However, when filtered back-projection was applied to reconstruct Compton images based on measurements performed by using Compton cameras with limited response geometries, the reconstructed images exhibited artifacts caused by the geometrical limitations. Our proposed method employs the Compton camera's rotation to overcome the angular response limitations; when the rotation method was applied in this study, the artifacts in the reconstructed images caused by angular response limitations were minimized. With this method, filtered back-projection can be applied to reconstruct real-time Compton images even when the radiation measurements are performed by using Compton cameras with non-uniform azimuthal response geometries.

  19. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams.

    PubMed

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E; Lacasta, Carlos; Oliver, Josep F; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-21

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing (22)Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy. PMID:27352107

  20. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing 22Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3–5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  1. SU-E-I-15: Quantitative Evaluation of Dose Distributions From Axial, Helical and Cone-Beam CT Imaging by Measurement Using a Two-Dimensional Diode-Array Detector

    SciTech Connect

    Chacko, M; Aldoohan, S; Sonnad, J; Ahmad, S; Ali, I

    2015-06-15

    Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: The dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.

  2. Compton imaging with the PorGamRays spectrometer

    NASA Astrophysics Data System (ADS)

    Judson, D. S.; Boston, A. J.; Coleman-Smith, P. J.; Cullen, D. M.; Hardie, A.; Harkness, L. J.; Jones, L. L.; Jones, M.; Lazarus, I.; Nolan, P. J.; Pucknell, V.; Rigby, S. V.; Seller, P.; Scraggs, D. P.; Simpson, J.; Slee, M.; Sweeney, A.; PorGamRays Collaboration

    2011-10-01

    The PorGamRays project aims to develop a portable gamma-ray detection system with both spectroscopic and imaging capabilities. The system is designed around a stack of thin Cadmium Zinc Telluride (CZT) detectors. The imaging capability utilises the Compton camera principle. Each detector is segmented into 100 pixels which are read out through custom designed Application Specific Integrated Circuits (ASICs). This device has potential applications in the security, decommissioning and medical fields. This work focuses on the near-field imaging performance of a lab-based demonstrator consisting of two pixelated CZT detectors, each of which is bonded to a NUCAM II ASIC. Measurements have been made with point 133Ba and 57Co sources located ˜35 mm from the surface of the scattering detector. Position resolution of ˜20 mm FWHM in the x and y planes is demonstrated.

  3. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-06-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  4. The Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chipman, E.; Kniffen, D.

    1994-01-01

    The Arthur Holly Compton Gamma Ray Observatory Compton) is the second in NASA's series of great Observatories. Launched on 1991 April 5, Compton represents a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made. We describe the capabilities of the four scientific instruments, and the observing program of the first 2 years of the mission. Examples of early discoveries by Compton are enumerated, including the discovery that gamma-ray bursts are isotropic but spatially inhomogeneous in their distribution; the discovery of a new class of high-energy extragalacatic gamma-ray sources, the gamma-ray AGNs; the discovery of emission from SN 1987A in the nuclear line of Co-57; and the mapping of emission from Al-26 in the interstellar medium (ISM) near the Galactic center. Future observations will include deep surveys of selected regions of the sky, long-tem studies of individual objects, correlative studies of objects at gamma-ray and other energies, a Galactic plane survey at intermediate gamma-ray energies, and improved statistics on gamma-ray bursts to search for small anisotropies. After completion of the all-sky survey, a Guest Investigator program is in progress with guest observers' time share increasing from 30% upward for the late mission phases.

  5. "Stereo Compton cameras" for the 3-D localization of radioisotopes

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Kishimoto, A.; Ohsuka, S.; Nakamura, S.; Adachi, S.; Hirayanagi, M.; Uchiyama, T.; Ishikawa, Y.; Kato, T.

    2014-11-01

    The Compton camera is a viable and convenient tool used to visualize the distribution of radioactive isotopes that emit gamma rays. After the nuclear disaster in Fukushima in 2011, there is a particularly urgent need to develop "gamma cameras", which can visualize the distribution of such radioisotopes. In response, we propose a portable Compton camera, which comprises 3-D position-sensitive GAGG scintillators coupled with thin monolithic MPPC arrays. The pulse-height ratio of two MPPC-arrays allocated at both ends of the scintillator block determines the depth of interaction (DOI), which dramatically improves the position resolution of the scintillation detectors. We report on the detailed optimization of the detector design, based on Geant4 simulation. The results indicate that detection efficiency reaches up to 0.54%, or more than 10 times that of other cameras being tested in Fukushima, along with a moderate angular resolution of 8.1° (FWHM). By applying the triangular surveying method, we also propose a new concept for the stereo measurement of gamma rays by using two Compton cameras, thus enabling the 3-D positional measurement of radioactive isotopes for the first time. From one point source simulation data, we ensured that the source position and the distance to the same could be determined typically to within 2 meters' accuracy and we also confirmed that more than two sources are clearly separated by the event selection from two point sources of simulation data.

  6. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  7. Precise polarization measurements via detection of compton scattered electrons

    SciTech Connect

    Tvaskis, Vladas; Dutta, Dipangkar; Gaskell, David J.; Narayan, Amrendra

    2014-01-01

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q{sup 2} of a longitudinally polarized electron beam off a proton target. One of the dominant experimental systematic uncertainties in Qweak will result from determining the beam polarization. A new Compton polarimeter was installed in the fall of 2010 to provide a non-invasive and continuous monitoring of the electron beam polarization in Hall C at Jefferson Lab. The Compton-scattered electrons are detected in four planes of diamond micro-strip detectors. We have achieved the design goals of <1% statistical uncertainty per hour and expect to achieve <1% systematic uncertainty.

  8. New Compton densitometer for measuring pulmonary edema

    SciTech Connect

    Loo, B.W.; Goulding, F.S.; Simon, D.S.

    1985-10-01

    Pulmonary edema is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical evaluation of pulmonary edema. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray. The ability to make safe, frequent lung density measurements could be very helpful for monitoring the course of P.E. at the hospital bedside or outpatient clinics, and for evaluating the efficacy of therapy in clinical research. 6 refs., 5 figs.

  9. A new telescope for wide-band gamma-ray astronomy: The Silicon Compton Recoil Telescope (SCRT)

    NASA Astrophysics Data System (ADS)

    Tuemer, O. Tuemay; Ait-Ouamer, Farid; Blair, Scott C.; Case, Gary L.; O'Neill, Brendan P.; O'Neill, Terrence J.; White, R. Stephen; Zych, Allen D.

    1994-06-01

    A new prototype gamma-ray telescope is described which is sensitive from 0.3 to 30 MeV as a Compton telescope and to 100 MeV as a pair detector. The Silicon Compton Recoil Telescope (SCRT) uses multilayers of silicon strip detectors as a Compton gamma-ray converter. Recoil electrons are tracked with the silicon strip detectors, and their energy losses and directions are measured. The direction and energy of the Compton-scattered gamma rays are measured with CsI(Tl)-photodiode detectors. Thus unique directions and energies are found for each incident gamma ray for the first time and without the background of overlapping rings. SCRT is the first Compton telescope to image the gamma-ray sky directly. It can also detect electron-positron pairs from gamma rays above 5 MeV, extending SCRT's sensitivity to above 100 MeV. Typical resolutions are 3% (FWHM) in energy at 2 MeV and 0.5 deg (1 sigma) in angle. The proposed prototype SCRT instrument has a sensitive area of 650 sq cm, a detection efficiency of 3%, a size reduction by about an order of magnitude, and a sensitivity of 15 millicrab for a typical Compton Observatory exposure. SCRT can also measure the polarization of the incident gamma rays, especially at low energies and large scattered angles. Simulation calculations and a discussion of results with a laboratory model are presented.

  10. Noise evaluation of Compton camera imaging for proton therapy.

    PubMed

    Ortega, P G; Torres-Espallardo, I; Cerutti, F; Ferrari, A; Gillam, J E; Lacasta, C; Llosá, G; Oliver, J F; Sala, P R; Solevi, P; Rafecas, M

    2015-03-01

    Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming γ energy is considered as a variable in the reconstruction inverse problem. Jointly with prompt gamma, secondary neutrons and scattered photons, not strongly correlated with the dose map, can also reach the imaging detector and produce false events. These events deteriorate the image quality. Also, high intensity beams can produce particle accumulation in the camera, which lead to an increase of random coincidences, meaning events which gather measurements from different incoming particles. The noise scenario is expected to be different if double or triple events are used, and consequently, the reconstructed images can be affected differently by spurious data. The aim of the present work is to study the effect of false events in the reconstructed image, evaluating their impact in the determination of the beam particle ranges. A simulation study that includes misidentified events (neutrons and random coincidences) in the final image of a Compton Telescope for PT monitoring is presented. The complete chain of

  11. Noise evaluation of Compton camera imaging for proton therapy

    NASA Astrophysics Data System (ADS)

    Ortega, P. G.; Torres-Espallardo, I.; Cerutti, F.; Ferrari, A.; Gillam, J. E.; Lacasta, C.; Llosá, G.; Oliver, J. F.; Sala, P. R.; Solevi, P.; Rafecas, M.

    2015-02-01

    Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming γ energy is considered as a variable in the reconstruction inverse problem. Jointly with prompt gamma, secondary neutrons and scattered photons, not strongly correlated with the dose map, can also reach the imaging detector and produce false events. These events deteriorate the image quality. Also, high intensity beams can produce particle accumulation in the camera, which lead to an increase of random coincidences, meaning events which gather measurements from different incoming particles. The noise scenario is expected to be different if double or triple events are used, and consequently, the reconstructed images can be affected differently by spurious data. The aim of the present work is to study the effect of false events in the reconstructed image, evaluating their impact in the determination of the beam particle ranges. A simulation study that includes misidentified events (neutrons and random coincidences) in the final image of a Compton Telescope for PT monitoring is presented. The complete chain of

  12. Compton polarimeter for 10-30 keV x rays.

    PubMed

    Weber, S; Beilmann, C; Shah, C; Tashenov, S

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results. PMID:26429432

  13. Compton polarimeter for 10–30 keV x rays

    SciTech Connect

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-15

    We present a simple and versatile polarimeter for x rays in the energy range of 10–30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  14. A Compton-suppression detection system for use in manganese bath measurements

    NASA Astrophysics Data System (ADS)

    Ghal-Eh, N.; Doostizadeh, H.; Hazami, Z.; Doust-Mohammadi, V.

    2015-07-01

    The manganese sulfate bath technique is a standard tool for neutron source strength measurement (Park et al., 2005). However, the dominate Compton continuum of most sodium iodide scintillators used in manganese bath systems (MBSs) does not allow the precise identification of induced gamma rays required for such measurements. In this research, to resolve this problem, a Compton-suppression system has been proposed which consists of a 2 in. by 2 in. NaI(Tl) right cylindrical scintillator as the main and a set of eight rectangular NE102 plastic scintillators of 12×12×15 cm3 dimensions as suppression detectors. Both detectors operate in anti-coincidence circuit to suppress the Compton continuum. The proposed system has been simulated with the MCNPX code with two different approaches and the corresponding measurements with 137Cs gamma-ray source and neutron-activated MnSO4 solution have been undertaken that give rise to a promising agreement.

  15. Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation

    SciTech Connect

    Roy, S.; Midya, K.; Duttagupta, S. P.; Ramakrishnan, D.

    2014-09-28

    The fabrication of nano-scale NiSi/n-Si Schottky barrier diode by rapid thermal annealing process is reported. The characterization of the nano-scale NiSi film was performed using Micro-Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The thickness of the film (27 nm) has been measured by cross-sectional Secondary Electron Microscopy and XPS based depth profile method. Current–voltage (I–V) characteristics show an excellent rectification ratio (I{sub ON}/I{sub OFF} = 10⁵) at a bias voltage of ±1 V. The diode ideality factor is 1.28. The barrier height was also determined independently based on I–V (0.62 eV) and high frequency capacitance–voltage technique (0.76 eV), and the correlation between them has explained. The diode photo-response was measured in the range of 1.35–2.5 μm under different reverse bias conditions (0.0–1.0 V). The response is observed to increase with increasing reverse bias. From the photo-responsivity study, the zero bias barrier height was determined to be 0.54 eV.

  16. Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation

    NASA Astrophysics Data System (ADS)

    Roy, S.; Midya, K.; Duttagupta, S. P.; Ramakrishnan, D.

    2014-09-01

    The fabrication of nano-scale NiSi/n-Si Schottky barrier diode by rapid thermal annealing process is reported. The characterization of the nano-scale NiSi film was performed using Micro-Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The thickness of the film (27 nm) has been measured by cross-sectional Secondary Electron Microscopy and XPS based depth profile method. Current-voltage (I-V) characteristics show an excellent rectification ratio (ION/IOFF = 105) at a bias voltage of ±1 V. The diode ideality factor is 1.28. The barrier height was also determined independently based on I-V (0.62 eV) and high frequency capacitance-voltage technique (0.76 eV), and the correlation between them has explained. The diode photo-response was measured in the range of 1.35-2.5 μm under different reverse bias conditions (0.0-1.0 V). The response is observed to increase with increasing reverse bias. From the photo-responsivity study, the zero bias barrier height was determined to be 0.54 eV.

  17. The Compton polarimeter for SLC

    SciTech Connect

    Fero, M.J.; The SLD Collaboration

    1992-12-01

    We report on the use of a Compton scattering based polarimeter to measure beam polarization near the e{sup +}e{sub -} interaction point at the SLAC Linear Collider (SLC). Measurement of the beam polarization to a statistical precision of {delta}P/P={plus_minus}3% requires approximately three minutes under normal conditions. An average beam polarization of 22.4{plus_minus}0.7%(syst.) was measured over the course of the 1992 polarized beam run.

  18. The Compton polarimeter for SLC

    SciTech Connect

    Fero, M.J. )

    1992-12-01

    We report on the use of a Compton scattering based polarimeter to measure beam polarization near the e[sup +]e[sub -] interaction point at the SLAC Linear Collider (SLC). Measurement of the beam polarization to a statistical precision of [delta]P/P=[plus minus]3% requires approximately three minutes under normal conditions. An average beam polarization of 22.4[plus minus]0.7%(syst.) was measured over the course of the 1992 polarized beam run.

  19. Compton Sources of Electromagnetic Radiation

    SciTech Connect

    Geoffrey Krafft,Gerd Priebe

    2011-01-01

    When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.

  20. Verification of Compton Collision and Klein-Nishina Formulas--An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Singhal, R. P.; Burns, A. J.

    1978-01-01

    Describes an experiment to verify the Compton collision formula and the angular dependance of the Klein-Nishina formula. Equipment used is a 1-mCi(137)Cs source, 2x2 in. NaI detector and a multichannel analyzer. Suitable for honor undergraduates. (Author/GA)

  1. Development of an optimized Compton suppression gamma-ray spectrometric system using Monte Carlo simulation.

    PubMed

    Choi, Y; Lee, K B; Kim, K J; Han, J; Yi, E S

    2016-03-01

    We have chosen to establish the Compton Suppression Spectrometer (CSS) for low activity environmental samples with a high purity germanium (HPGe) primary detector and a removable plug-in detector (NaI(Tl)) surrounded with a cylindrical annulus guard detector (NaI(Tl)). Monte Carlo simulation with PENELOPE (PENetration and Energy LOss of Positrons and Electrons) is used to determine the optimal geometry of the CSS. To verify a correlation between experiment and simulation, the energy distribution of (137)Cs and (60)Co point sources is measured and simulated for each condition. The CSS parameters are studied to determine optimal detector geometry and Compton Suppression Factor (CSF). The timing resolution of the CSS was found to be 44ns (FWHM), which is an outstanding result in the semiconductor-based gamma-ray spectrometry. All measured values of CSF agree within 5% with the values obtained from the simulation. The optimum geometry and CSF values are discussed. PMID:26778448

  2. DETECTION AND IMAGING OF THE CRAB NEBULA WITH THE NUCLEAR COMPTON TELESCOPE

    SciTech Connect

    Bandstra, M. S.; Bellm, E. C.; Boggs, S. E.; Perez-Becker, D.; Zoglauer, A.; Chang, H.-K.; Chiu, J.-L.; Liang, J.-S.; Chang, Y.-H.; Liu, Z.-K.; Hung, W.-C.; Huang, M.-H. A.; Chiang, S. J.; Run, R.-S.; Lin, C.-H.; Amman, M.; Luke, P. N.; Jean, P.; Von Ballmoos, P.; Wunderer, C. B.

    2011-09-01

    The Nuclear Compton Telescope (NCT) is a balloon-borne Compton telescope designed for the study of astrophysical sources in the soft gamma-ray regime (200 keV-20 MeV). NCT's 10 high-purity germanium crossed-strip detectors measure the deposited energies and three-dimensional positions of gamma-ray interactions in the sensitive volume, and this information is used to restrict the initial photon to a circle on the sky using the Compton scatter technique. Thus NCT is able to perform spectroscopy, imaging, and polarization analysis on soft gamma-ray sources. NCT is one of the next generation of Compton telescopes-the so-called compact Compton telescopes (CCTs)-which can achieve effective areas comparable to the Imaging Compton Telescope's with an instrument that is a fraction of the size. The Crab Nebula was the primary target for the second flight of the NCT instrument, which occurred on 2009 May 17 and 18 in Fort Sumner, New Mexico. Analysis of 29.3 ks of data from the flight reveals an image of the Crab at a significance of 4{sigma}. This is the first reported detection of an astrophysical source by a CCT.

  3. The role of Compton scattering in scinti-mammography

    SciTech Connect

    Pani, R.; Scopinaro, F.; Pergola, A.

    1996-12-31

    Functional breast imaging using {sup 99m}Tc MIBI is showing that this technique is able to detect cancer with more than 90% specificity. Using a dedicated gamma camera, with the breast under compression, i.e. in similar conditions of mammography, the detection of sub-centimeter cancers can be improved. A number of factors affects the detection of small cancers as: thickness of the breast, distance between tumor and collimator, cardiac activity. Radioactivity emitted from the body can obscure the breast activity mainly due to the large difference on radioactivity concentration. In this work we analyze the intensity and the energy distribution of Compton scattering coming from the breast by a Germanium detector and by a dedicated imager with a small FOV placed in a geometrical condition similar to mammography. In vivo measurements were performed in patients with a breast cancer ranging between 8 mm and 15 mm. Intensity of Compton scattering from 4 to 10 times greater than full energy peak events resulted. Measurements were compared with ones obtained by a phantom simulating the breast without chest activity demonstrating how large is the Compton contribution from the chest.

  4. Experimental Study of a Si/CdTe Semiconductor Compton Camera for the Next Generation of Gamma-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Takeda, Shinichiro

    A Compton camera is the most promising detector for gamma-ray astronomy in the energy band from a few tens of keV to MeV. Its detection method, based on Compton scattering kinematics, allows us to determine the direction of incident gamma-rays and significantly reduce background events caused by cosmic charged particle or detector activation in orbit. In this thesis, we describe a new Compton camera, named the Si/CdTe semiconductor Compton camera, which consists of many layers of position-sensitive Silicon and CdTe detectors. In order to verify the performance and to understand the detector response, we construct prototype Si/CdTe Compton cameras. The spectral response is studied by taking charge sharing, charge collection efficiency and thermal diffusion inside the Si and CdTe semiconductor devices used in the detectors. The imaging capability with various kinds of gamma-ray targets, such as a point source, arranged point sources and extended sources, is examined. Utilizing the maximum-likelihood iteration algorithm, the extended source and adjacent sources were successfully deconvolved with its internal structure. The ability of polarization measurements, which is one of key features of the Compton camera, are demonstrated through the experiment at synchrotron beam facility. The direction of the polarization vector is determined to within an accuracy of 1o. For the 92.5 % polarized 170 keV gamma-rays, the modulation factor of 0.82 is obtained. Based on the Monte Carlo simulator verified by the results from various experiments in this thesis, in-orbit performances for all-sky survey is studied. We confirmed that the Si/CdTe Compton camera can achieve one order of magnitude higher sensitivity in comparison with the COMPTEL onboard CGRO in the energy band from 500 keV to a few MeV

  5. Spectral properties of Compton inverse radiation: Application of Compton beams

    NASA Astrophysics Data System (ADS)

    Bulyak, Eugene; Urakawa, Junji

    2014-05-01

    Compton inverse radiation emitted due to backscattering of laser pulses off the relativistic electrons possesses high spectral density and high energy of photons - in hard x-ray up to gamma-ray energies - because of short wavelength of laser radiation as compared with the classical electromagnetic devices such as undulators. In this report, the possibility of such radiation to monochromatization by means of collimation is studied. Two approaches have been considered for the description of the spectral-angular density of Compton radiation based on the classical field theory and on the quantum electrodynamics. As is shown, both descriptions produce similar total spectra. On the contrary, angular distribution of the radiation is different: the classical approach predicted a more narrow radiation cone. Also proposed and estimated is a method of the 'electronic' monochromatization based on the electronic subtraction of the two images produced by the electron beams with slightly different energies. A 'proof-of-principle' experiment of this method is proposed for the LUXC facility of KEK (Japan).

  6. Data Diode

    SciTech Connect

    2014-11-07

    The Data Diode is a data security technology that can be deployed within an organization's defense-in-depth computer network strategy for information assurance. For internal security, the software creates an environment within the network where an organization's approved users can work freely inside an enclave of protected data, but file transfers out of the enclave is restricted. For external security, once a network intruder has penetrated the network, the intruder is able to "see" the protected data, but is unable to download the actual data. During the time it takes for the intruder to search for a way around the obstacle created by the Data Diode, the network's intrusion detection technologies can locate and thwart the malicious intent of the intruder. Development of the Data Diode technology was made possible by funding from the Intelligence Advanced Research Projects Activity (IARPA).

  7. Data Diode

    Energy Science and Technology Software Center (ESTSC)

    2014-11-07

    The Data Diode is a data security technology that can be deployed within an organization's defense-in-depth computer network strategy for information assurance. For internal security, the software creates an environment within the network where an organization's approved users can work freely inside an enclave of protected data, but file transfers out of the enclave is restricted. For external security, once a network intruder has penetrated the network, the intruder is able to "see" the protectedmore » data, but is unable to download the actual data. During the time it takes for the intruder to search for a way around the obstacle created by the Data Diode, the network's intrusion detection technologies can locate and thwart the malicious intent of the intruder. Development of the Data Diode technology was made possible by funding from the Intelligence Advanced Research Projects Activity (IARPA).« less

  8. The HERMES Recoil Detector

    SciTech Connect

    Kaiser, R.

    2006-07-11

    The HERMES Collaboration is installing a new Recoil Detector to upgrade the spectrometer for measurements of hard exclusive electron/positron scattering reactions, in particular deeply virtual Compton scattering. These measurements will provide access to generalised parton distributions and hence to the localisation of quarks inside hadrons and to their orbital angular momentum. The HERMES Recoil Detector consists of three active components: a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fibre tracker and a photon detector consisting of three layers of tungsten/scintillator. All three detectors are located inside a solenoidal magnetic field of 1 Tesla. The Recoil Detector was extensively tested with cosmic muons over the summer of 2005 and is being installed in the winter of 2005/6 for data taking until summer 2007.

  9. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  10. A Compton camera for spectroscopic imaging from 100 keV to 1 MeV

    SciTech Connect

    Earnhart, J.R.D.

    1998-12-31

    A review of spectroscopic imaging issues, applications, and technology is presented. Compton cameras based on solid state semiconductor detectors stands out as the best system for the nondestructive assay of special nuclear materials. A camera for this application has been designed based on an efficient specific purpose Monte Carlo code developed for this project. Preliminary experiments have been performed which demonstrate the validity of the Compton camera concept and the accuracy of the code. Based on these results, a portable prototype system is in development. Proposed future work is addressed.

  11. Compton Dry-Cask Imaging System

    ScienceCinema

    None

    2013-05-28

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  12. Spin Degrees of Freedom in Compton Scattering

    NASA Astrophysics Data System (ADS)

    Miskimen, R.

    2016-02-01

    The next generation of Compton scattering experiments is underway at Mainz and other laboratories, where the goal is precision measurements of the scalar and vector polarizabilities of the nucleon using polarized photons and polarized targets. Results are presented for the first double polarized Compton scattering experiment utilizing a polarized proton target. Preliminary results are presented for the four spin polarizabilities of the proton.

  13. Compton Dry-Cask Imaging System

    SciTech Connect

    2011-01-01

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  14. GRAPE: A Compton Polarimetry Experiment

    NASA Astrophysics Data System (ADS)

    Connor, Taylor; Bloser, Peter; Legere, Jason; McConnell, Mark; Ryan, James

    2009-10-01

    We review the design, calibration and data analysis of the Gamma Ray Polarimetry Experiment (GRAPE), a Compton polarimeter device for measuring the polarization of photons in the 50-500 keV energy range. In Compton scattering, X-ray and gamma-ray photons tend to scatter at right angles with respect to their polarization vector. We exploit this fact to measure the polarization of the incident radiation by looking at the azimuthal distribution of the scattered photons. This distribution gives us a measure of both the level of polarization and the orientation of the polarization vector. These measurements will allow us to probe the particle acceleration regions of astronomical sources. GRAPE will be flown in the fall of 2011 on as a high altitude balloon payload. The primary target of that flight will be the Crab Nebula, with the Sun (solar flares) and Cygnus X-1 as secondary targets. Our observations of the Crab will be compared to the findings of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), which provided constraints on the location of the particle acceleration region within the Crab Nenbula. Following the initial flight in 2011, we hope to fly GRAPE on a long duration balloon flight from Antarctica to study gamma-ray bursts.

  15. Inspection of reinforced concrete samples by Compton backscattering technique

    NASA Astrophysics Data System (ADS)

    Boldo, E. M.; Appoloni, C. R.

    2014-02-01

    Reinforced concrete structures require frequent monitoring to ensure the concrete quality during its service life and for evaluation of in situ existing conditions. Compton backscattering of gamma rays is a nondestructive technique used for material characterization and detection of defects and inclusions in materials and can be employed on reinforced concrete. The methodology allows one-sided inspection of large structures, is relatively inexpensive and can be portable. The concept is based on detection of backscattered radiation produced from a collimated beam aimed at the sample. By measuring the spectrum of these scattered gamma rays it is possible to determine local density perturbations. In this work we used the Compton backscattering technique to locate and measure steel, defects and crushed stone inside concrete. The samples were irradiated with gamma rays from a Ø2 mm diameter collimated 241Am (100 mCi) source and the inelastically scattered photons were recorded at an angle of 135° by a high resolution CdTe semiconductor detector. Scanning was achieved by lateral movement of the sample blocks across the source and detector field of view in steps of 1 mm. A previous optimization of the experimental setup was performed with Monte Carlo simulation. The results showed that it was possible to locate inclusions and defects with Ø8 mm positioned at a depth of 20 mm below the surface of the sample. It was observed that aggregates such as crushed stone could mask defects at specific points due to high attenuation of the incident and scattered beam.

  16. A Monte Carlo evaluation of three Compton camera absorbers.

    PubMed

    Uche, C Z; Round, W H; Cree, M J

    2011-09-01

    We present a quantitative study on the performance of cadmium zinc telluride (CZT), thallium-doped sodium iodide (NaI(Tl)) and germanium (Ge) detectors as potential Compton camera absorbers. The GEANT4 toolkit was used to model the performance of these materials over the nuclear medicine energy range. CZT and Ge demonstrate the highest and lowest efficiencies respectively. Although the best spatial resolution was attained for Ge, its lowest ratio of single photoelectric to multiple interactions suggests that it is most prone to inter-pixel cross-talk. In contrast, CZT, which demonstrates the least positioning error due to multiple interactions, has a comparable spatial resolution with Ge. Therefore, we modelled a Compton camera system based on silicon (Si) and CZT as the scatterer and absorber respectively. The effects of the detector parameters of our proposed system on image resolution were evaluated and our results show good agreement with previous studies. Interestingly, spatial resolution which accounted for the least image degradation at 140.5 keV became the dominant degrading factor at 511 keV, indicating that the absorber parameters play some key roles at higher energies. The results of this study have validated the predictions by An et al. which state that the use of a higher energy gamma source together with reduction of the absorber segmentation to sub-millimetre could achieve the image resolution of 5 mm required in medical imaging. PMID:21710232

  17. Compton scatter with polychromatic sources for lung densitometry.

    PubMed

    Hanson, J A; Moore, W E; Figley, M M; Duke, P R

    1984-01-01

    A mobile lung densitometer using conventional x-ray tubes, NaI detectors, and principles of two-source, two-detector Compton scattered densitometry, is described. The device is capable of one to two per second density measurements from a 45-cm3 volume with a precision of 5%. The expected in vivo accuracy (2%-3%) is determined by using an anthropomorphic phantom with replaceable lung inserts. The unintentional detection of multiple-scattered x rays results in a small density-dependent error. This error is predictable and relatively insensitive to differences in surrounding absorbers such as the chest wall. With this device, dynamic in vivo densitometry of the lung in the clinical laboratory and intensive care unit will be possible. PMID:6503878

  18. A Compton camera prototype for prompt gamma medical imaging

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Aldawood, S.; Böhmer, M.; Bortfeldt, J.; Castelhano, I.; Dedes, G.; Fiedler, F.; Gernhäuser, R.; Golnik, C.; Helmbrecht, S.; Hueso-González, F.; Kolff, H. v. d.; Kormoll, T.; Lang, C.; Liprandi, S.; Lutter, R.; Marinšek, T.; Maier, L.; Pausch, G.; Petzoldt, J.; Römer, K.; Schaart, D.; Parodi, K.

    2016-05-01

    Compton camera prototype for a position-sensitive detection of prompt γ rays from proton-induced nuclear reactions is being developed in Garching. The detector system allows to track the Comptonscattered electrons. The camera consists of a monolithic LaBr3:Ce scintillation absorber crystal, read out by a multi-anode PMT, preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The LaBr3:Ce crystal has been characterized with radioactive sources. Online commissioning measurements were performed with a pulsed deuteron beam at the Garching Tandem accelerator and with a clinical proton beam at the OncoRay facility in Dresden. The determination of the interaction point of the photons in the monolithic crystal was investigated.

  19. Installation and performance testing of an XtRa-NaI(Tl) Compton Suppression System at the NED-NTUA.

    PubMed

    Savva, M I; Karfopoulos, K L; Karangelos, D J; Anagnostakis, M J; Simopoulos, S E

    2014-05-01

    This paper presents the Compton Suppression System, recently installed at the Nuclear Engineering Department of NTUA. The system consists of an XtRa Ge detector coupled with a NaI(Tl) guard detector. The electronic set-up allows for the simultaneous collection of both the suppressed and the unsuppressed spectra. System performance is investigated using certified point and volume sources. Parameters such as Peak Suppression Factors, peak-to-Compton ratios and minimum detectable activity for specific radionuclides are determined. PMID:24315283

  20. Accurate, low-energy Compton polarimetry for Hall C at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Jones, Donald

    2012-03-01

    A new Compton polarimeter has recently been commissioned in Hall C at Jefferson Lab in Newport News, VA, to provide a non-invasive, continuous measurement of electron beam polarization. The new Compton polarimeter is currently measuring electron beam polarization for Qweak, an experiment with a strict error budget allowing a combined statistical and systematic error of only ±1% for beam polarization. Using well-established techniques we are able to determine electron beam polarization by measuring the scattering asymmetry of both the backscattered photons and the scattered electrons. Although the photon and electron detectors provide somewhat independent measurements they share the common systematic of the laser polarization. I discuss the optical setup for the photon target used in the Compton polarimeter and recent efforts in reducing systematic error in determination of laser polarization.

  1. Improving the effectiveness of a low-energy Compton suppression system

    NASA Astrophysics Data System (ADS)

    Britton, R.; Burnett, J. L.; Davies, A. V.; Regan, P. H.

    2013-11-01

    A novel method for collecting and processing coincidence data from a Compton Suppressed Low Energy Photon Spectrometer (LEPS) is presented, greatly simplifying the current setup and extending the suppression abilities of the system. Offline analysis is used, eliminating the need to discard coincidence data when vetoing coincident events with fast-timing electronics. Additional coincident events are identified that are usually missed, and which represent interactions in the active NaI(Tl) shield prior to an interaction in the LEPS detector. By suppressing these events, the Compton Suppression factor was improved by 144% for the 661.66 keV decay line in a 137Cs source. The geometry used for this particular Compton suppression system is highly sensitive to these effects, however similar event profiles are expected in all coincidence systems.

  2. A Compton scattering technique to determine wood density and locating defects in it

    SciTech Connect

    Tondon, Akash Sandhu, B. S.; Singh, Bhajan; Singh, Mohinder

    2015-08-28

    A Compton scattering technique is presented to determine density and void location in the given wooden samples. The technique uses a well collimated gamma ray beam from {sup 137}Cs along with the NaI(Tl) scintillation detector. First, a linear relationship is established between Compton scattered intensity and known density of chemical compounds, and then density of the wood is determined from this linear relation. In another experiment, the ability of penetration of gamma rays is explored to detect voids in wooden (low Z) sample. The sudden reduction in the Compton scattered intensities agrees well with the position and size of voids in the wooden sample. It is concluded that wood density and the voids of size ∼ 4 mm and more can be detected easily by this method.

  3. Quantitative Analysis and Comparison of Four Major Flavonol Glycosides in the Leaves of Toona sinensis (A. Juss.) Roemer (Chinese Toon) from Various Origins by High-Performance Liquid Chromatography-Diode Array Detector and Hierarchical Clustering Analysis

    PubMed Central

    Sun, Xiaoxiang; Zhang, Liting; Cao, Yaqi; Gu, Qinying; Yang, Huan; Tam, James P.

    2016-01-01

    Background: Toona sinensis (A. Juss.) Roemer is an endemic species of Toona genus native to Asian area. Its dried leaves are applied in the treatment of many diseases; however, few investigations have been reported for the quantitative analysis and comparison of major bioactive flavonol glycosides in the leaves harvested from various origins. Objective: To quantitatively analyze four major flavonol glycosides including rutinoside, quercetin-3-O-β-D-glucoside, quercetin-3-O-α-L-rhamnoside, and kaempferol-3-O-α-L-rhamnoside in the leaves from different production sites and classify them according to the content of these glycosides. Materials and Methods: A high-performance liquid chromatography-diode array detector (HPLC-DAD) method for their simultaneous determination was developed and validated for linearity, precision, accuracy, stability, and repeatability. Moreover, the method established was then employed to explore the difference in the content of these four glycosides in raw materials. Finally, a hierarchical clustering analysis was performed to classify 11 voucher specimens. Results: The separation was performed on a Waters XBridge Shield RP18 column (150 mm × 4.6 mm, 3.5 μm) kept at 35°C, and acetonitrile and H2O containing 0.30% trifluoroacetic acid as mobile phase was driven at 1.0 mL/min during the analysis. Ten microliters of solution were injected and 254 nm was selected to monitor the separation. A strong linear relationship between the peak area and concentration of four analytes was observed. And, the method was also validated to be repeatable, stable, precise, and accurate. Conclusion: An efficient and reliable HPLC-DAD method was established and applied in the assays for the samples from 11 origins successfully. Moreover, the content of those flavonol glycosides varied much among different batches, and the flavonoids could be considered as biomarkers to control the quality of Chinese Toon. SUMMARY Four major flavonol glycosides in the leaves

  4. Bulk Comptonization by turbulence in accretion discs

    NASA Astrophysics Data System (ADS)

    Kaufman, J.; Blaes, O. M.

    2016-06-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.

  5. Bayesian Event Reconstruction for Advanced Compton Telescopes

    NASA Astrophysics Data System (ADS)

    Zoglauer, A.; ACT

    2004-12-01

    Measuring gamma rays via Compton scattering in a space environment is a challenging task: weak source signals have to be extracted from dominating background, which mainly originates from cosmic rays (prompt interactions as well as delayed decays) and earth albedo photons. The approach of Advanced Compton Telescopes (ACT) to overcome this problem is to measure more parameters of the events (several Compton interactions, the recoil electron direction, etc.) with a higher accuracy than previous Compton telescopes like COMPTEL. Still, this leaves the event reconstruction with three main tasks: Find the correct sequence of interactions, identify background and suppress incompletely absorbed events. The most promising approach to accomplish those tasks is based on Bayesian statistics: The Compton interactions are parameterized in an eight-dimensional data space, which contains the interaction information of the Compton sequence. For each data space cell the probability that the corresponding interaction sequence is those of a correctly ordered, completely absorbed source photon can be determined by detailed simulations. The result is an absolute quality factor for each event, based on which source events can be distinguished from background and incompletely absorbed photons. We will report on the performance of the algorithm for a typical advanced Compton telescope design.

  6. The Compton Gamma Ray Observatory

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    1993-01-01

    The Arthur Holly Compton Gamma Ray Observatory (Compton) was launched by the Space Shuttle Atlantis on 5 April 1991. The spacecraft and instruments are in good health and returning exciting results. The mission provides nearly six orders of magnitude in spectral coverage, from 30 keV to 30 GeV, with sensitivity over the entire range an order of magnitude better than that of previous observations. The 16,000 kilogram observatory contains four instruments on a stabilized platform. The mission began normal operations on 16 May 1991 and is now over half-way through a full-sky survey. The mission duration is expected to be from six to ten years. A Science Support Center has been established at Goddard Space Flight Center for the purpose of supporting a vigorous Guest Investigator Program. New scientific results to date include: (1) the establishment of the isotropy, combined with spatial inhomogeneity, of the distribution of gamma-ray bursts in the sky; (2) the discovery of intense high energy (100 MeV) gamma-ray emission from 3C 279 and other quasars and BL Lac objects, making these the most distant and luminous gamma-ray sources ever detected; (3) one of the first images of a gamma-ray burst; (4) the observation of intense nuclear and position-annihilation gamma-ray lines and neutrons from several large solar flares; and (5) the detection of a third gamma-ray pulsar, plus several other transient and pulsing hard X-ray sources.

  7. Second-order capillary electrophoresis diode array detector data modeled with the Tucker3 algorithm: A novel strategy for Argentinean white wine discrimination respect to grape variety.

    PubMed

    Azcarate, Silvana M; de Araújo Gomes, Adriano; Vera-Candioti, Luciana; Cesar Ugulino de Araújo, Mário; Camiña, José M; Goicoechea, Héctor C

    2016-07-01

    Data obtained by capillary electrophoresis with diode array detection (CE-DAD) were modeled with the purpose to discriminate Argentinean white wines samples produced from three grape varieties (Torrontés, Chardonnay, and Sauvignon blanc). Thirty-eight samples of commercial white wine from four wine-producing provinces of Argentina (Mendoza, San Juan, Salta, and Rio Negro) were analyzed. CE-DAD matrices with dimensions of 421 elution times (from 1.17 to 7.39 minutes) × 71 wavelengths (from 227 to 367 nm) were joined in a three way data array and decomposed by Tucker3 method under non-negativity constraint, employing 18, 18 and six factors in the modes 1, 2 and 3, respectively. Using the scores of Tucker model, it was possible to discriminate samples of Argentinean white wine by linear discriminant analysis and Kernel linear discriminant analysis. Core element analysis of the Tucker3 model allows identifying the loading profiles in spectral mode related to Argentinean white wine samples. PMID:27028847

  8. Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga.

    PubMed

    Mendiola, Jose A; Marín, Francisco R; Hernández, S Francisco; Arredondo, Bertha O; Señoráns, F Javier; Ibañez, Elena; Reglero, Guillermo

    2005-06-01

    Spirulina platensis microalga has been extracted on a pilot scale plant using supercritical fluid extraction (SFE) under various extraction conditions. The extraction yield and the antioxidant activity of the extracts were evaluated in order to select those extracts with both the highest antioxidant capacity and a good extraction yield. These extracts were characterized using LC coupled to diode array detection (DAD) and LC coupled to mass spectrometry (MS) with two different interfaces, atmospheric pressure chemical ionization (APCI) and electrospray (ESI) which allowed us to perform tandem MS by using an ion trap analyzer. The best extraction conditions were as follows: CO2 with 10% of modifier (ethanol) as extraction solvent, 55 degrees C (extraction temperature) and 220 bar (extraction pressure). Fractionation was achieved by cascade depressurization providing two extracts with different activity and chemical composition. Several compounds have been identified in the extracts, corresponding to different carotenoids previously identified in Spirulina platensis microalga along with chlorophyll a and some degradation products. Also, the structure of some phenolic compounds could be tentatively identified. The antioxidant activity of the extracts could be attributed to some of the above mentioned compounds. PMID:16013830

  9. Real Compton scattering via color dipoles

    SciTech Connect

    Kopeliovich, B. Z.; Schmidt, Ivan; Siddikov, M.

    2009-09-01

    We study the photoabsorption reaction and real Compton scattering within the color dipole model. We rely on a photon wave function derived in the instanton-vacuum model and on the energy-dependent phenomenological elastic dipole amplitude. Data for the photoabsorption cross section at high energies agree with our parameter-free calculations. We also provide predictions for the differential real Compton scattering cross section. Although no data for small angle Compton scattering are available so far, this process can be measured in ultraperipheral hadronic and nuclear collisions at the LHC.

  10. Performance measurements of hybrid PIN diode arrays

    SciTech Connect

    Shapiro, S.L. ); Arens, J.F.; Jernigan, J.G. . Space Sciences Lab.); Kramer, G. ); Collins, T.; Worley, S. ); Wilburn, C.D. ); Skubic, P. )

    1990-10-01

    We report the successful development of hybrid PIN diode arrays and a series of room-temperature measurements in a high-energy pion beam at FNAL. A PMOS VLSI 256 {times} 256 readout array having 30 {mu}m square pixels was indium-bump bonded to a mating PIN diode detector array. Preliminary measurements on the resulting hybrid show excellent signal-to-noise at room temperature. 3 refs., 5 figs.

  11. White LEDs as broad spectrum light sources for spectrophotometry: demonstration in the visible spectrum range in a diode-array spectrophotometric detector.

    PubMed

    Piasecki, Tomasz; Breadmore, Michael C; Macka, Mirek

    2010-11-01

    Although traditional lamps, such as deuterium lamps, are suitable for bench-top instrumentation, their compatibility with the requirements of modern miniaturized instrumentation is limited. This study investigates the option of utilizing solid-state light source technology, namely white LEDs, as a broad band spectrum source for spectrophotometry. Several white light LEDs of both RGB and white phosphorus have been characterized in terms of their emission spectra and energy output and a white phosphorus Luxeon LED was then chosen for demonstration as a light source for visible-spectrum spectrophotometry conducted in CE. The Luxeon LED was fixed onto the base of a dismounted deuterium (D(2) ) lamp so that the light-emitting spot was geometrically positioned exactly where the light-emitting spot of the original D(2) lamp is placed. In this manner, the detector of a commercial CE instrument equipped with a DAD was not modified in any way. As the detector hardware and electronics remained the same, the change of the deuterium lamp for the Luxeon white LED allowed a direct comparison of their performances. Several anionic dyes as model analytes with absorption maxima between 450 and 600 nm were separated by CE in an electrolyte of 0.01 mol/L sodium tetraborate. The absorbance baseline noise as the key parameter was 5 × lower for the white LED lamp, showing clearly superior performance to the deuterium lamp in the available, i.e. visible part of the spectrum. PMID:21077241

  12. Simultaneous Extraction Optimization and Analysis of Flavonoids from the Flowers of Tabernaemontana heyneana by High Performance Liquid Chromatography Coupled to Diode Array Detector and Electron Spray Ionization/Mass Spectrometry

    PubMed Central

    Sathishkumar, Thiyagarajan; Baskar, Ramakrishnan; Aravind, Mohan; Tilak, Suryanarayanan; Deepthi, Sri; Bharathikumar, Vellalore Maruthachalam

    2013-01-01

    Flavonoids are exploited as antioxidants, antimicrobial, antithrombogenic, antiviral, and antihypercholesterolemic agents. Normally, conventional extraction techniques like soxhlet or shake flask methods provide low yield of flavonoids with structural loss, and thereby, these techniques may be considered as inefficient. In this regard, an attempt was made to optimize the flavonoid extraction using orthogonal design of experiment and subsequent structural elucidation by high-performance liquid chromatography-diode array detector-electron spray ionization/mass spectrometry (HPLC-DAD-ESI/MS) techniques. The shake flask method of flavonoid extraction was observed to provide a yield of 1.2 ± 0.13 (mg/g tissue). With the two different solvents, namely, ethanol and ethyl acetate, tried for the extraction optimization of flavonoid, ethanol (80.1 mg/g tissue) has been proved better than ethyl acetate (20.5 mg/g tissue). The optimal conditions of the extraction of flavonoid were found to be 85°C, 3 hours with a material ratio of 1 : 20, 75% ethanol, and 1 cycle of extraction. About seven different phenolics like robinin, quercetin, rutin, sinapoyl-hexoside, dicaffeic acid, and two unknown compounds were identified for the first time in the flowers of T. heyneana. The study has also concluded that L16 orthogonal design of experiment is an effective method for the extraction of flavonoid than the shake flask method. PMID:25969771

  13. Whole column fluorescence imaging on a microchip by using a programmed organic light emitting diode array as a spatial-scanning light source and a single photomultiplier tube as detector.

    PubMed

    Ren, Kangning; Liang, Qionglin; Yao, Bo; Luo, Guoan; Wang, Liduo; Gao, Yudi; Wang, Yiming; Qiu, Yong

    2007-11-01

    A novel miniaturized, integrated whole-column imaging detection (WCID) system on a microchip is presented. In this system, a program controlled organic light emitting diode (OLED) array was used as a spatial-scanning light source, to achieve imaging by the time sequence of the excited fluorescence. By this mechanism, a photomultiplier tube (PMT) instead of a charge coupled detector (CCD) can be applied to the imaging. Unlike conventional systems, no lenses, fibers or any mechanical components are required either. The novel flat light source provides uniform excitation light without size limitations and outputs a stronger power by pulse driving. The scanning mode greatly reduced the power consumption of the light source, which is valuable for a portable system. Meanwhile, this novel simplified system has a broader linear range, higher sensitivity and higher efficiency in data collection. Isoelectric focusing of R-phycoerythrin (PE) and monitoring of the overall process with WCID were performed on this system. The limit of detection (LOD) was 38 ng mL(-1) or 3.2 pg at 85 nL per column injection of PE. The system provides a technique for WCID capillary isoelectric focusing (cIEF) on chip and can be used for throughput analysis. PMID:17960288

  14. Small-angle Compton Scattering to Determine the Depth of a Radioactive Source in Matter

    SciTech Connect

    Oberer, R. B.; Gunn, C. A.; Chiang, L. G.; Valiga, R. E.; Cantrell, J. A.

    2011-04-01

    A gamma-ray peak in a spectrum is often accompanied by a discontinuity in the Compton continuum at the peak. The Compton continuum results from Compton scattering in the detector. The discontinuity at a peak results from small-angle Compton scattering by the gamma rays in matter situated directly between the gamma-ray source and the detector. The magnitude of this discontinuity with respect to the gamma-ray peak is therefore an indicator of the amount of material or shielding between the gamma-ray source and the detector. This small-angle scattering was used to determine the depth of highly-enriched uranium (HEU) solution standards in a concrete floor mockup. The empirical results of the use of this small-angle scattering discontinuity in a concrete floor experiment will be described. A Monte Carlo calculation of the experiment will also be described. In addition, the depth determined from small-angle scattering was used in conjunction with differential attenuation to more accurately measure the uranium content of the mockup. Following these empirical results, the theory of small-angle scattering will be discussed. The magnitude of the discontinuity compared to the peak count rate is directly related to the depth of the gamma-ray source in matter. This relation can be described by relatively simple mathematical expressions. This is the first instance that we are aware of in which the small-angle Compton scattering has been used to determine the depth of a radioactive source. Furthermore this is the first development of the theoretical expressions for the magnitude of the small-angle scattering discontinuity.

  15. Using triple gamma coincidences with a pixelated semiconductor Compton-PET scanner: a simulation study

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) Pathfinder project presents a novel design using pixelated semiconductor detectors for nuclear medicine applications to achieve the intrinsic image quality limits set by physics. The conceptual design can be extended to a Compton gamma camera. The use of a pixelated CdTe detector with voxel sizes of 1 × 1 × 2 mm3 guarantees optimal energy and spatial resolution. However, the limited time resolution of semiconductor detectors makes it impossible to use Time Of Flight (TOF) with VIP PET. TOF is used in order to improve the signal to noise ratio (SNR) by using only the most probable portion of the Line-Of-Response (LOR) instead of its entire length. To overcome the limitation of CdTe time resolution, we present in this article a simulation study using β+-γ emitting isotopes with a Compton-PET scanner. When the β+ annihilates with an electron it produces two gammas which produce a LOR in the PET scanner, while the additional gamma, when scattered in the scatter detector, provides a Compton cone that intersects with the aforementioned LOR. The intersection indicates, within a few mm of uncertainty along the LOR, the origin of the beta-gamma decay. Hence, one can limit the part of the LOR used by the image reconstruction algorithm.

  16. The KEDR detector

    NASA Astrophysics Data System (ADS)

    Anashin, V. V.; Aulchenko, V. M.; Baldin, E. M.; Barladyan, A. K.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Baru, S. E.; Basok, I. Yu.; Bedny, I. V.; Beloborodova, O. L.; Blinov, A. E.; Blinov, V. E.; Bobrov, A. V.; Bobrovnikov, V. S.; Bondar, A. E.; Buzykaev, A. R.; Vorobiov, A. I.; Gulevich, V. V.; Dneprovsky, L. V.; Zhilich, V. N.; Zhulanov, V. V.; Karpov, G. V.; Karpov, S. V.; Kononov, S. A.; Kotov, K. Yu.; Kravchenko, E. A.; Kudryavtsev, V. N.; Kuzmin, A. S.; Kulikov, V. F.; Kuper, E. A.; Levichev, E. B.; Maksimov, D. A.; Malyshev, V. M.; Maslennikov, A. L.; Medvedko, A. S.; Muchnoi, N. Yu.; Nikitin, S. A.; Nikolaev, I. B.; Onuchin, A. P.; Oreshkin, S. B.; Orlov, I. O.; Osipov, A. A.; Peleganchuk, S. V.; Pivovarov, S. G.; Poluektov, A. O.; Pospelov, G. E.; Prisekin, V. G.; Rodyakin, V. A.; Ruban, A. A.; Savinov, G. A.; Skovpen, Yu. I.; Skrinsky, A. N.; Smalyuk, V. V.; Snopkov, R. G.; Sokolov, A. V.; Sukharev, A. M.; Talyshev, A. A.; Tayursky, V. A.; Telnov, V. I.; Tikhonov, Yu. A.; Todyshev, K. Yu.; Usov, Yu. V.; Kharlamova, T. A.; Shamov, A. G.; Shwartz, B. A.; Shekhtman, L. I.; Shusharo, A. I.; Yushkov, A. N.

    2013-07-01

    The KEDR detector is a universal magnetic detector designed for studying the c- and b-quarks and two-photon physics, and is employed at the VEPP-4M e + e - collider. A specific feature of the experiment is the measurement of absolute beam energy using two methods: the resonant depolarization and the faster but less precise Compton backscattering of laser photons. This allowed a large series of measurements to be performed, in which the accuracy of determination of such fundamental parameters of particles as mass and total and leptonic widths was improved.

  17. Neutron Compton scattering from selectively deuterated acetanilide

    NASA Astrophysics Data System (ADS)

    Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.

    With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.

  18. Hidden baryons: The physics of Compton composites

    NASA Astrophysics Data System (ADS)

    Mayer, Frederick J.

    2016-06-01

    A large fraction of the mass-energy of the Universe appears to be composed of Compton composites. How is it then that these composites are not frequently observed in experiments? This paper addresses this question, and others, by reviewing recent publications that: 1) introduced Compton composites, 2) showed how and where they are formed and 3) explained how they interact with other systems. Though ubiquitous in many physical situations, Compton composites are almost completely hidden in experiments due to their unique interaction characteristics. Still, their presence has been indirectly observed, though not interpreted as such until recently. Looking to the future, direct-detection experiments are proposed that could verify the composites' components. It is with deep sadness that I dedicate this paper to my mentor, collaborator, and friend, Dr. John R. Reitz, who passed away within days of the publication of our paper “Compton Composites Late in the Early Universe”.

  19. RELATIVISTIC ACCRETION MEDIATED BY TURBULENT COMPTONIZATION

    SciTech Connect

    Socrates, Aristotle E-mail: socrates@astro.princeton.ed

    2010-08-10

    Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in the limit where the turbulence is trans-sonic and the accretion power approaches the Eddington limit. In this regime, the turbulent Compton y-parameter approaches unity and the turbulent Compton temperature is a significant fraction of the electron rest mass energy, in agreement with the observed phenomena.

  20. Optimization Studies of a Compton Suppression Spectrometer Using Experimentally Validated Monte Carlo Simulations

    SciTech Connect

    W. Scates; W. Scates; M. E. Mc Ilwain; R. Aryaeinejad

    2005-10-01

    Recent developments associated with room temperature semiconductor detectors and inorganic scintillators suggest that these detectors may be viable alternatives for the primary detector in a Compton Suppression Spectrometer (CSS). The room temperature operation of these detectors allows removal of a substantial amount of material from between primary and secondary detector and if properly designed and should afford substantially better suppression factors than can be achieved by germanium-based spectrometers. We have chosen to study the optimum properties of a CSS with a LaX3:Ce scintillator (where X is chloride or bromide) as the primary gamma ray detector. A Monte Carlo photon transport model is used to determine the optimum geometric properties of this spectrometer. To validate the assumptions and basic design of the Monte Carlo simulations, the energy distribution of a 137Cs point source is measured and simulated for two experimental systems. Comparison of the suppression factors for the measured and simulated data validates the model accuracy. A range of CSS physical parameters are studied to determine optimal detector geometry and to maximize the Compton suppression factor. These physical parameters and their optimum values are discussed.

  1. Optimization studies of a Compton suppression spectrometer using experimentally validated Monte Carlo Simulations

    SciTech Connect

    Michael E. McIlwain; W. Scate; J. K. Hartwell; R. Aryaeinejad

    2006-01-01

    Recent developments associated with room temperature semiconductor detectors and inorganic scintillators suggest that these detectors may be viable alternatives for the primary detector in a Compton Suppression Spectrometer (CSS). The room temperature operation of these detectors allows removal of a substantial amount of material from between primary and secondary detector, if properly designed and should afford substantially better suppression factors than can be achieved by germanium-based spectrometers. We have chosen to study the optimum properties of a CSS with a LaX3:Ce scintillator (where X is chloride or bromide) as the primary gamma ray detector. A Monte Carlo photon transport model is used to determine the optimum geometric properties of this spectrometer. To validate the assumptions and basic design of the Monte Carlo simulations, the energy distribution of a 137Cs point source is measured and simulated for two experimental systems. Comparison of the suppression factors for the measured and simulated data validates the model accuracy. A range of CSS physical parameters are studied to determine optimal detector geometry and to maximize the Compton suppression factor. These physical parameters and their optimum values are discussed.

  2. Analysis of a proposed Compton backscatter imaging technique

    NASA Astrophysics Data System (ADS)

    Hall, J.; Jacoby, B.

    1992-12-01

    Imaging techniques which require access to only one side of the object being viewed are potentially useful in situations where conventional projection radiography and tomography cannot be applied, such as looking for voids in a large container where access to the back of the object is inconvenient or even impossible. One-sided imaging techniques are currently being used in nondestructive evaluation of surfaces and shallow subsurface structures. In this work we present both analytical calculations and detailed Monte Carlo simulations aimed at assessing the capability of a proposed Compton backscatter imaging technique designed to detect and characterize voids located several centimeters below the surface of a solid. The proposed technique, based on a scheme suggested by Farmer and Collins, encodes the spatial position and structure of voids in a solid in the energy spectrum of the Compton-scattered photons as recorded by a high resolution detector. Our calculations model a Cs-137 source projecting a 1 sq mm pencil beam of 662 keV gammas into a target slab at an incident angle of 45 degrees and a collimated detector (also oriented at 45 degrees with respect to the surface) which views the beam path at a central angle of 90 degrees. The detector collimator is modeled here as a triangular slit viewing a 2.54 cm (1.000 inch) segment of the beam path at a depth of 2 cm below the surface of the slab. Our results suggest that the proposed technique should be capable of an absolute position resolution of approximately 0.25 mm (approximately equal to 0.010 inches) for isolated voids and an overall object resolution of approximately 1 Ip/mm (approximately 0.040 inches). The predicted signal contrast for voids packed with various contraband materials will be discussed as well as multiple scattering contributions to the predicted yields.

  3. Analysis of a proposed Compton backscatter imaging technique

    SciTech Connect

    Hall, J.; Jacoby, B.

    1992-12-01

    Imaging techniques which require access to only one side of the object being viewed are potentially useful in situations where conventional projection radiography and tomography cannot be applied, such as looking for voids in a large container where access to the back of the object is inconvenient or even impossible. One-sided imaging techniques are currently being used in nondestructive evaluation of surfaces and shallow subsurface structures. In this work we present both analytical calculations and detailed Monte Carlo simulations aimed at assessing the capability of a proposed Compton backscatter imaging technique designed to detect and characterize voids located several centimeters below the surface of a solid. The proposed technique, based on a scheme suggested by Farmer and Collins, encodes the spatial position and structure of voids in a solid in the energy spectrum of the Compton-scattered photons as recorded by a high resolution detector. Our calculations model a {sup 137}Cs source projecting a 1 mm{sup 2} pencil beam of 662 keV gammas into a target slab at an incident angle of 45{degrees} and a collimated detector (also oriented at 45{degrees} with respect to the surface) which views the beam path at a central angle of 90{degrees}. The detector collimator is modeled here as a triangular slit viewing a 2.54 cm (1.000``) segment of the beam path at a depth of 2 cm below the surface of the slab. Our results suggest that the proposed technique should be capable of an absolute position resolution of {approx} 0.25 mm ({approx} 0.010``) for isolated voids and an overall object resolution of {approx} 1.00 Ip/mm ({approx} 0.04``). The predicted signal contrast for voids packed with various contraband materials will be discussed as well as multiple scattering contributions to the predicted yields.

  4. A photon calorimeter using lead tungstate crystals for the CEBAF HAll A Compton polarimeter

    SciTech Connect

    D. Neyret; T. Pussieux; T. Auger; M. Baylac; E. Burtin; C. Cavata; R. Chipaux; S. Escoffier; N. Falletto; J. Jardillier; S. Kerhoas; D. Lhuillier; F. Marie; C. Veyssiere; J. Ahrens; R. Beck; M. Lang

    2000-05-01

    A new Compton polarimeter is built on the CEBAF Hall A electron beam line. Performances of 10% resolution and 1% calibration are required for the photon calorimeter of this polarimeter. This calorimeter is built with lead tungstate scintillators coming from the CMS electromagnetic calorimeter R&D. Beam tests of this detector have been made using the tagged photon beam line at MAMI, Mainz, and a resolution of 1.76%+2.75%/v+0.41%/E has been measured.

  5. Design Considerations Of A Compton Camera For Low Energy Medical Imaging

    SciTech Connect

    Harkness, L. J.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Judson, D. S.; Nolan, P. J.; Oxley, D. C.; Lazarus, I.; Simpson, J.

    2009-12-02

    Development of a Compton camera for low energy medical imaging applications is underway. The ProSPECTus project aims to utilize position sensitive detectors to generate high quality images using electronic collimation. This method has the potential to significantly increase the imaging efficiency compared with mechanically collimated SPECT systems, a highly desirable improvement on clinical systems. Design considerations encompass the geometrical optimisation and evaluation of image quality from the system which is to be built and assessed.

  6. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  7. Coincidence corrected efficiency calibration of Compton-suppressed HPGe detectors

    SciTech Connect

    Aucott, T.

    2015-04-20

    The authors present a reliable method to calibrate the full-energy efficiency and the coincidence correction factors using a commonly-available mixed source gamma standard. This is accomplished by measuring the peak areas from both summing and non-summing decay schemes and simultaneously fitting both the full-energy efficiency, as well as the total efficiency, as functions of energy. By using known decay schemes, these functions can then be used to provide correction factors for other nuclides not included in the calibration standard.

  8. Image restoration techniques using Compton backscatter imaging for the detection of buried land mines

    NASA Astrophysics Data System (ADS)

    Wehlburg, Joseph C.; Keshavmurthy, Shyam P.; Watanabe, Yoichi; Dugan, Edward T.; Jacobs, Alan M.

    1995-06-01

    Earlier landmine imaging systems used two collimated detectors to image objects. These systems had difficulty in distinguishing between surface features and buried features. Using a combination of collimated and uncollimated detectors in a Compton backscatter imaging (CBI) system, allows the identification of surface and buried features. Images created from the collimated detectors contain information about the surface and the buried features, while the uncollimated detectors respond (approximately 80%) to features on the surface. The analysis of surface features are performed first, then these features can be removed and the buried features can be identified. Separation of the surface and buried features permits the use of a globbing algorithm to define regions of interest that can then be quantified [area, Y dimension, X dimension, and center location (xo, yo)]. Mine composition analysis is also possible because of the properties of the four detector system. Distinguishing between a pothole and a mine, that was previously very difficult, can now be easily accomplished.

  9. Gamma-ray momentum reconstruction from Compton electron trajectories by filtered back-projection

    NASA Astrophysics Data System (ADS)

    Haefner, A.; Gunter, D.; Plimley, B.; Pavlovsky, R.; Vetter, K.

    2014-11-01

    Gamma-ray imaging utilizing Compton scattering has traditionally relied on measuring coincident gamma-ray interactions to map directional information of the source distribution. This coincidence requirement makes it an inherently inefficient process. We present an approach to gamma-ray reconstruction from Compton scattering that requires only a single electron tracking detector, thus removing the coincidence requirement. From the Compton scattered electron momentum distribution, our algorithm analytically computes the incident photon's correlated direction and energy distributions. Because this method maps the source energy and location, it is useful in applications, where prior information about the source distribution is unknown. We demonstrate this method with electron tracks measured in a scientific Si charge coupled device. While this method was demonstrated with electron tracks in a Si-based detector, it is applicable to any detector that can measure electron direction and energy, or equivalently the electron momentum. For example, it can increase the sensitivity to obtain energy and direction in gas-based systems that suffer from limited efficiency.

  10. Gamma-ray momentum reconstruction from Compton electron trajectories by filtered back-projection

    DOE PAGESBeta

    Haefner, A.; Gunter, D.; Plimley, B.; Pavlovsky, R.; Vetter, K.

    2014-11-03

    Gamma-ray imaging utilizing Compton scattering has traditionally relied on measuring coincident gamma-ray interactions to map directional information of the source distribution. This coincidence requirement makes it an inherently inefficient process. We present an approach to gamma-ray reconstruction from Compton scattering that requires only a single electron tracking detector, thus removing the coincidence requirement. From the Compton scattered electron momentum distribution, our algorithm analytically computes the incident photon's correlated direction and energy distributions. Because this method maps the source energy and location, it is useful in applications, where prior information about the source distribution is unknown. We demonstrate this method withmore » electron tracks measured in a scientific Si charge coupled device. While this method was demonstrated with electron tracks in a Si-based detector, it is applicable to any detector that can measure electron direction and energy, or equivalently the electron momentum. For example, it can increase the sensitivity to obtain energy and direction in gas-based systems that suffer from limited efficiency.« less

  11. Gamma-ray momentum reconstruction from Compton electron trajectories by filtered back-projection

    SciTech Connect

    Haefner, A.; Gunter, D.; Plimley, B.; Pavlovsky, R.; Vetter, K.

    2014-11-03

    Gamma-ray imaging utilizing Compton scattering has traditionally relied on measuring coincident gamma-ray interactions to map directional information of the source distribution. This coincidence requirement makes it an inherently inefficient process. We present an approach to gamma-ray reconstruction from Compton scattering that requires only a single electron tracking detector, thus removing the coincidence requirement. From the Compton scattered electron momentum distribution, our algorithm analytically computes the incident photon's correlated direction and energy distributions. Because this method maps the source energy and location, it is useful in applications, where prior information about the source distribution is unknown. We demonstrate this method with electron tracks measured in a scientific Si charge coupled device. While this method was demonstrated with electron tracks in a Si-based detector, it is applicable to any detector that can measure electron direction and energy, or equivalently the electron momentum. For example, it can increase the sensitivity to obtain energy and direction in gas-based systems that suffer from limited efficiency.

  12. Compton suppression and event triggering in a commercial data acquisition system

    NASA Astrophysics Data System (ADS)

    Tabor, Samuel; Caussyn, D. D.; Tripathi, Vandana; Vonmoss, J.; Liddick, S. N.

    2012-10-01

    A number of groups are starting to use flash digitizer systems to directly convert the preamplifier signals of high-resolution Ge detectors to a stream of digital data. Some digitizers are also equipped with software constant fraction discriminator algorithms capable of operating on the resulting digital data stream to provide timing information. Because of the dropping cost per channel of these systems, it should now be possible to also connect outputs of the Bismuth Germanate (BGO) scintillators used for Compton suppression to other digitizer inputs so that BGO logic signals can also be available in the same system. This provides the possibility to perform all the Compton suppression and multiplicity trigger logic within the digital system, thus eliminating the need for separate timing filter amplifiers (TFA), constant fraction discriminators (CFD), logic units, and lots of cables. This talk will describe the performance of such a system based on Pixie16 modules from XIA LLC with custom field programmable gate array (FPGA) programming for an array of Compton suppressed single Ge crystal and 4-crystal ``Clover'' detector array along with optional particle detectors. Initial tests of the system have produced results comparable with the current traditional system of individual electronics and peak sensing analog to digital converters. The advantages of the all digital system will be discussed.

  13. Terahertz sources and detectors

    NASA Astrophysics Data System (ADS)

    Crowe, Thomas W.; Porterfield, David W.; Hesler, Jeffrey L.; Bishop, William L.; Kurtz, David S.; Hui, Kai

    2005-05-01

    Through the support of the US Army Research Office we are developing terahertz sources and detectors suitable for use in the spectroscopy of chemical and biological materials as well as for use in imaging systems to detect concealed weapons. Our technology relies on nonlinear diodes to translate the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks that have been developed for this application include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These components rely on planar Schottky diodes and integrated diode circuits and are therefore easy to assemble and robust. They require no mechanical tuners to achieve high efficiency and broad bandwidth. This paper will review the range of performance that has been achieved with these terahertz components and briefly discuss preliminary results achieved with a spectroscopy system and the development of sources for imaging systems.

  14. Compton backscattering for the calibration of KEDR tagging system

    NASA Astrophysics Data System (ADS)

    Kaminskiy, V. V.; Muchnoi, N. Yu; Zhilich, V. N.

    2014-08-01

    KEDR detector has the tagging system (TS) to study the gamma-gamma processes. To determine the two-photon invariant mass, the energies of the scattered at small angles electrons and positrons are measured by the magnetic spectrometer embedded into the lattice of the VEPP-4M collider. The energy resolution (scattered electron/positron energy resolution divided by the beam energy) of this spectrometer varies from 0.6% to 0.03% depending on the electron/positron energy. The Compton backscattering of laser radiation on the electron/positron beam is used for the accurate energy scale and resolution calibration of the tagging system. The report covers the design, recent results and current status of the KEDR TS calibration system.

  15. Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in Dionaea muscipula.

    PubMed

    Babula, Petr; Mikelova, Radka; Adam, Vojtech; Kizek, Rene; Havel, Ladislav; Sladky, Zdenek

    2006-09-14

    The interest of many investigators in naphthoquinones is due to their broad-range of biological actions from phytotoxic to fungicidal. The main aim of this work was to investigate the influence of different pH values of cultivation medium on naphthoquinone content in Dionaea muscipula. For this purpose, we optimized the simultaneous analysis of the most commonly occurring naphthoquinones (1,4-naphthoquinone, lawsone, juglone and plumbagin) by high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The most suitable chromatographic conditions were as follows: mobile phase: 0.1 mol l-1 acetic acid:methanol in ratio of 33:67 (%, v/v), flow rate: 0.75 ml min-1 and temperature: 42 degrees C. Moreover, we looked for the most suitable technique for preparation of plant samples (D. muscipula, Juglans regia, Paulownia tomentosa, Impatience glandulifera, Impatience parviflora, Drosera rotundifolia, Drosera spathulata and Drosera capensis) due to their consequent analysis by HPLC-DAD. It clearly follows from the results obtained that sonication were the most suitable technique for preparation of J. regia plants. We also checked the recoveries of the determined naphthoquinones, which were from 96 to 104%. Finally, we investigated the changes in content of plumbagin in D. muscipula plants according to different pH of cultivation medium. The content increased with increasing pH up to 5 and, then, changed gradually. The lower content of plumbagin at lower pH values was of interest to us. Therefore, we determined the content of this naphthoquinone in the cultivation medium, what has not been studied before. We discovered that the lower tissue content of plumbagin was due to secretion of this naphthoquinone into the cultivation medium. PMID:16765109

  16. Compton suppression through rise-time analysis.

    PubMed

    Selvi, S; Celiktas, C

    2007-11-01

    We studied Compton suppression for 60Co and 137Cs radioisotopes using a signal selection criterion based on contrasting the fall time of the signals composing the photo peak with those composing the Compton continuum. The fall time criterion is employed by using the pulse shape analysis observing the change in the fall times of the gamma-ray pulses. This change is determined by measuring the changes in the rise times related to the fall time of the scintillator and the timing signals related to the fall time of the input signals. We showed that Compton continuum suppression is achieved best via the precise timing adjustment of an analog rise-time analyzer connected to a NaI(Tl) scintillation spectrometer. PMID:17703943

  17. The Compton Gamma Ray Observatory: mission status.

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Chipman, E.; Kniffen, D. A.

    The Arthur Holly Compton Gamma Ray Observatory (Compton) is the second in NASA's series of Great Observatories. Compton has now been operating for over two and a half years, and has given a dramatic increase in capability over previous gamma-ray missions. The spacecraft and scientific instruments are all in good health, and many significant discoveries have already been made and continue to be made. The authors describe the capabilities of the four scientific instruments and the observing programs for the first three years of the mission. During Phases 2 and 3 of the mission a Guest Investigator program has been in progress with the Guest Observers' time share increasing from 30% to over 50% for the later mission phases.

  18. Measurement of the proton structure function F2 at low Q2 in QED Compton scattering at HERA

    NASA Astrophysics Data System (ADS)

    Aktas, A.; Andreev, V.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J. C.; Böhme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Bröker, H.-B.; Brown, D. P.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J. G.; Coppens, Y. R.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E. A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y. H.; Flucke, G.; Flügge, G.; Fomenko, A.; Foresti, I.; Formánek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, S.; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grässler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K. H.; Höting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kückens, J.; Kuhr, T.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laycock, P.; Lebedev, A.; Leißner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Pöschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlák, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L. N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, M.; Usik, A.; Utkin, D.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.; H1 Collaboration

    2004-09-01

    The proton structure function F2 (x,Q2) is measured in inelastic QED Compton scattering using data collected with the H1 detector at HERA. QED Compton events are used to access the kinematic range of very low virtualities of the exchanged photon, Q2, down to 0.5 GeV2, and Bjorken x up to ∼0.06, a region which has not been covered previously by inclusive measurements at HERA. The results are in agreement with the measurements from fixed target lepton-nucleon scattering experiments.

  19. Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays

    SciTech Connect

    Cipiccia, S.; Wiggins, S. M.; Brunetti, E.; Vieux, G.; Yang, X.; Welsh, G. H.; Anania, M.; Islam, M. R.; Ersfeld, B.; Jaroszynski, D. A.; Maneuski, D.; Montgomery, R.; Smith, G.; Hoek, M.; Hamilton, D. J.; Shea, V. O.; Issac, R. C.; Lemos, N. R. C.; Dias, J. M.; and others

    2013-11-15

    Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.

  20. The nuclear compton telescope: A balloon-borne soft γ-ray spectrometer, polarimeter, and imager

    NASA Astrophysics Data System (ADS)

    Boggs, S. E.; Jean, P.; Lin, R. P.; Smith, D. M.; von Ballmoos, P.; Madden, N. W.; Luke, P. N.; Amman, M.; Burks, M. T.; Hull, E. L.; Craig, W.; Ziock, K.

    2001-10-01

    Our collaboration has begun the design and development of a prototype high resolution Compton telescope utilizing 3-D imaging germanium detectors. The Nuclear Compton Telescope (NCT) is a balloon-borne soft gamma-ray (0.2-15 MeV) telescope designed to study astrophysical sources of nuclear line emission and polarization. NCT is a prototype design for the Advanced Compton Telescope, to study gamma-ray radiation with very high spectral resolution, moderate angular resolution, and high sensitivity. The instrument has a novel, ultra-compact design optimized for studying nuclear line emission in the critical 0.5-2 MeV range, and polarization in the 0.2-0.5 MeV range. We have proposed to develop and fly NCT on a conventional US balloon flight in Summer of 2004. This first flight will perform gamma-ray polarization measurements the Crab nebula, Crab pulsar, and Cyg X-1, and 26Al emission from the Cygnus Region. This flight will critically test the novel instrument technologies and analysis techniques we have developed for high resolution Compton telescopes, and qualify the payload to begin a series of ~10-day long duration ballon flights from Alice Springs, Australia starting in Spring 2005. .

  1. Compton Gamma Ray Observatory Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1997-01-01

    This paper presents a final report for the Compton Gamma Ray Observatory Guest Investigator Program from 06/01/91-07/31/97. The topics include: 1) Solar Flare Neutron Spectra and Accelerated Ions; 2) Gamma Ray Lines From The Orion Complex; 3) Implications of Nuclear Line Emission From The Orion Complex; 4) Possible Sites of Nuclear Line Emission From Massive OB Associations; 5) Gamma-Ray Burst Repitition and BATSE Position Uncertainties; 6) Effects of Compton Scattering on BATSE Gamma-Ray Burst Spectra; and 7) Selection Biases on the Spectral and Temporal Distribution of Gamma Ray Bursts.

  2. Timelike Compton Scattering - A First Look (CLAS)

    SciTech Connect

    Pawel Nadel-Turonski

    2009-12-01

    A major goal of the 12 GeV upgrade at Jefferson Lab is to map out the Generalized Parton Distributions (GPDs) in the valence region. This is primarily done through Deeply Virtual Compton Scattering (DVCS), which provides the simplest and cleanest way of accessing the GPDs. However, the “inverse” process, Timelike Compton Scattering (TCS), can provide an important complement, in particular formeasuring the real part of the amplitude and understanding corrections at finite Q2. The first measurements of TCS have recently been carried out in Hall B at Jefferson Lab, using both tagged and untagged photon beams.

  3. Timelike Compton Scattering—A First Look

    NASA Astrophysics Data System (ADS)

    Nadel-Turonski, P.; Horn, T.; Ilieva, Y.; Klein, F. J.; Paremuzyan, R.; Stepanyan, S.

    2009-12-01

    A major goal of the 12 GeV upgrade at Jefferson Lab is to map out the Generalized Parton Distributions (GPDs) in the valence region. This is primarily done through Deeply Virtual Compton Scattering (DVCS), which provides the simplest and cleanest way of accessing the GPDs. However, the "inverse" process, Timelike Compton Scattering (TCS), can provide an important complement, in particular for measuring the real part of the amplitude and understanding corrections at finite Q2. The first measurements of TCS have recently been carried out in Hall B at Jefferson Lab, using both tagged and untagged photon beams.

  4. Pocket-size microwave radiation hazard detector

    NASA Technical Reports Server (NTRS)

    Kolbly, R. B.

    1974-01-01

    Inexpensive lightweight unit is easily carried in coat pocket or attached to belt, detector sounds alarm in presence of dangerous microwave radiation levels. Unit consists of antenna, detector, level sensor, keyed oscillator, and speaker. Antenna may be single equiangular spiral or set of orthogonal slot dipoles. Signal detector is simple diode in small package.

  5. An on-line high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-deoxyribonucleic acid-4',6-diamidino-2-phenylindole-fluorescence detector system for screening the DNA-binding active compounds in Fufang Banbianlian Injection.

    PubMed

    Li, Sensen; Jiang, Haixiu; Lin, Zongtao; Deng, Shanshan; Guan, Yanqing; Wang, Hong; Chen, Shizhong

    2015-12-11

    Fufang Banbianlian Injection (FBI), a well-known traditional Chinese medicine formula, has been recently approved and extensively used as a newly anti-inflammatory and anti-tumor drug. This prescription comprises an equal ratio of three traditional Chinese herbs, Lobelia chinensis Lour, Scutellaria barbata D. Don and Hedyotis diffusa Willd. The relationships between its chemical compositions and activities have not been understood well yet. To investigate the ingredients and their DNA-binding activities in FBI, an on-line high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-deoxyribonucleic acid-4',6-diamidino-2-phenylindole-fluorescence detector (HPLC-DAD-MS(n)-DNA-DAPI-FLD) system was developed using a combination of chromatographic, mass spectrometric and fluorescent detection techniques. 4',6-Diamidino-2-phenylindole (DAPI) specifically binds to three ATT base pairs on the DNA minor groove, and thus can be used as a fluorescent probe for screening active compounds that compete ATT sequences with DAPI. Using this system, 21 of 58 identified or tentatively characterized compounds in FBI showed DNA-binding activities, with most of the active compounds being flavone glycosides. In addition, the structure-activity relationships of these active compounds suggested that conjugated planar structures are favorable for DNA-binding activities, and adjacent hydroxyl groups in flavonoids can significantly improve their activities. This is, to the best of our knowledge, the first application of DAPI as a fluorescent probe for the screening of DNA-binding active compounds in complex samples. PMID:26592560

  6. Giant spin-torque diode sensitivity in the absence of bias magnetic field

    NASA Astrophysics Data System (ADS)

    Fang, Bin; Carpentieri, Mario; Hao, Xiaojie; Jiang, Hongwen; Katine, Jordan A.; Krivorotov, Ilya N.; Ocker, Berthold; Langer, Juergen; Wang, Kang L.; Zhang, Baoshun; Azzerboni, Bruno; Amiri, Pedram Khalili; Finocchio, Giovanni; Zeng, Zhongming

    2016-04-01

    Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW-1 at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors.

  7. Giant spin-torque diode sensitivity in the absence of bias magnetic field

    PubMed Central

    Fang, Bin; Carpentieri, Mario; Hao, Xiaojie; Jiang, Hongwen; Katine, Jordan A.; Krivorotov, Ilya N.; Ocker, Berthold; Langer, Juergen; Wang, Kang L.; Zhang, Baoshun; Azzerboni, Bruno; Amiri, Pedram Khalili; Finocchio, Giovanni; Zeng, Zhongming

    2016-01-01

    Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW−1 at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors. PMID:27052973

  8. Giant spin-torque diode sensitivity in the absence of bias magnetic field.

    PubMed

    Fang, Bin; Carpentieri, Mario; Hao, Xiaojie; Jiang, Hongwen; Katine, Jordan A; Krivorotov, Ilya N; Ocker, Berthold; Langer, Juergen; Wang, Kang L; Zhang, Baoshun; Azzerboni, Bruno; Amiri, Pedram Khalili; Finocchio, Giovanni; Zeng, Zhongming

    2016-01-01

    Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW(-1) at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors. PMID:27052973

  9. Simulation of background reduction and Compton suppression in a low-background HPGe spectrometer at a surface laboratory

    NASA Astrophysics Data System (ADS)

    Niu, Shun-Li; Cai, Xiao; Wu, Zhen-Zhong; Liu, Yi; Xie, Yu-Guang; Yu, Bo-Xiang; Wang, Zhi-Gang; Fang, Jian; Sun, Xi-Lei; Sun, Li-Jun; Liu, Ying-Biao; Gao, Long; Zhang, Xuan; Zhao, Hang; Zhou, Li; Lü, Jun-Guang; Hu, Tao

    2015-08-01

    High-purity germanium (HPGe) detectors are well suited to analyse the radioactivity of samples. In order to reduce the environmental background for an ultra-low background HPGe spectrometer, low-activity lead and oxygen free copper are installed outside the probe to shield from gamma radiation, with an outer plastic scintillator to veto cosmic rays, and an anti-Compton detector to improve the peak-to-Compton ratio. Using Geant4 tools and taking into account a detailed description of the detector, we optimize the sizes of these detectors to reach the design requirements. A set of experimental data from an existing HPGe spectrometer was used to compare with the simulation. For the future low-background HPGe detector simulation, considering different thicknesses of BGO crystals and anti-coincidence efficiency, the simulation results show that the optimal BGO thickness is 5.5 cm, and the peak-to-Compton ratio of 40K is raised to 1000 when the anti-coincidence efficiency is 0.85. In the background simulation, 15 cm oxygen-free copper plus 10 cm lead can reduce the environmental gamma rays to 0.0024 cps/100 cm3 Ge (50 keV-2.8 MeV), which is about 10-5 of the environmental background.

  10. Investigating the Compton Effect with a Spreadsheet.

    ERIC Educational Resources Information Center

    Kinderman, Jesusa Valdez

    1992-01-01

    Describes a computer simulation of the Compton effect designed to lead students to discover (1) the relationship of the electron's final kinetic energy to its angle of scattering and (2) the relationship between the scattering angles of the outgoing electron and photon. (MDH)

  11. Compton Community College Information Notebook, Fall 1995.

    ERIC Educational Resources Information Center

    Camacho, Julian S.

    This notebook serves the purpose of informing the Compton Community College District about the student body population, faculty and classified employees in reference to gender, race/ethnicity and age. Findings from an analysis of the period from fall 1991 to fall 1995 included the following: (1) over the period, the enrollment of Black students…

  12. Compton Community College Information Notebook, Fall 1994.

    ERIC Educational Resources Information Center

    Camacho, Julian S.

    Each year, Compton Community College (CCC), in California, collects statistical information on current trends related to the gender, race/ethnicity, and age of the college's student body, faculty, and classified employees. Findings from an analysis of the period from fall 1991 to fall 1994 included the following: (1) the vast majority of CCC…

  13. The Compton effect: Transition to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stuewer, R. H.

    2000-11-01

    The discovery of the Compton effect at the end of 1922 was a decisive event in the transition to the new quantum mechanics of 1925-1926 because it stimulated physicists to examine anew the fundamental problem of the interaction between radiation and matter. I first discuss Albert Einstein's light-quantum hypothesis of 1905 and why physicists greeted it with extreme skepticism, despite Robert A. Millikan's confirmation of Einstein's equation of the photoelectric effect in 1915. I then follow in some detail the experimental and theoretical research program that Arthur Holly Compton pursued between 1916 and 1922 at the University of Minnesota, the Westinghouse Lamp Company, the Cavendish Laboratory, and Washington University that culminated in his discovery of the Compton effect. Surprisingly, Compton was not influenced directly by Einstein's light-quantum hypothesis, in contrast to Peter Debye and H.A. Kramers, who discovered the quantum theory of scattering independently. I close by discussing the most significant response to that discovery, the Bohr-Kramers-Slater theory of 1924, its experimental refutation, and its influence on the emerging new quantum mechanics.

  14. Shadowing in Compton scattering on nuclei

    SciTech Connect

    Kopeliovich, B. Z.; Schmidt, Ivan; Siddikov, M.

    2010-05-01

    We evaluate the shadowing effect in deeply virtual and real Compton scattering on nuclei in the framework of the color dipole model. We rely on the soft photon wave function derived in the instanton vacuum model and employ the impact parameter dependent phenomenological elastic dipole amplitude. Both the effects of quark and the gluon shadowing are taken into account.

  15. The HERMES recoil detector

    NASA Astrophysics Data System (ADS)

    Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

    2013-05-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  16. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    PubMed

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition. PMID:25430200

  17. Demonstration of three-dimensional imaging based on handheld Compton camera

    NASA Astrophysics Data System (ADS)

    Kishimoto, A.; Kataoka, J.; Nishiyama, T.; Taya, T.; Kabuki, S.

    2015-11-01

    Compton cameras are potential detectors that are capable of performing measurements across a wide energy range for medical imaging applications, such as in nuclear medicine and ion beam therapy. In previous work, we developed a handheld Compton camera to identify environmental radiation hotspots. This camera consists of a 3D position-sensitive scintillator array and multi-pixel photon counter arrays. In this work, we reconstructed the 3D image of a source via list-mode maximum likelihood expectation maximization and demonstrated the imaging performance of the handheld Compton camera. Based on both the simulation and the experiments, we confirmed that multi-angle data acquisition of the imaging region significantly improved the spatial resolution of the reconstructed image in the direction vertical to the detector. The experimental spatial resolutions in the X, Y, and Z directions at the center of the imaging region were 6.81 mm ± 0.13 mm, 6.52 mm ± 0.07 mm and 6.71 mm ± 0.11 mm (FWHM), respectively. Results of multi-angle data acquisition show the potential of reconstructing 3D source images.

  18. A double photomultiplier Compton camera and its readout system for mice imaging

    NASA Astrophysics Data System (ADS)

    Fontana, Cristiano Lino; Atroshchenko, Kostiantyn; Baldazzi, Giuseppe; Bello, Michele; Uzunov, Nikolay; Di Domenico, Giovanni Di

    2013-04-01

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the "electronic collimation", i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a "cone" of possible incident directions are obtained (event with "incomplete geometry"). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  19. A double photomultiplier Compton camera and its readout system for mice imaging

    SciTech Connect

    Fontana, Cristiano Lino; Atroshchenko, Kostiantyn; Baldazzi, Giuseppe; Uzunov, Nikolay; Di Domenico, Giovanni

    2013-04-19

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the 'electronic collimation', i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a 'cone' of possible incident directions are obtained (event with 'incomplete geometry'). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  20. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    SciTech Connect

    Hall, G. N. Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L.

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  1. Moderate temperature detector development

    NASA Technical Reports Server (NTRS)

    Marciniec, J. W.; Briggs, R. J.; Sood, A. K.

    1981-01-01

    P-side backside reflecting constant, photodiode characterization, and photodiode diffusion and G-R currents were investigated in an effort to develop an 8 m to 12 m infrared quantum detector using mercury cadmium telluride. Anodization, phosphorus implantation, and the graded band gap concept were approaches considered for backside formation. Variable thickness diodes were fabricated with a back surface anodic oxide to investigate the effect of this surface preparation on the diffusion limited zero bias impedance. A modeling technique was refined to thoroughly model diode characteristics. Values for the surface recombination velocity in the depletion region were obtained. These values were improved by implementing better surface damage removal techniques.

  2. A novel automated hydrophilic interaction liquid chromatography method using diode-array detector/electrospray ionization tandem mass spectrometry for analysis of sodium risedronate and related degradation products in pharmaceuticals.

    PubMed

    Bertolini, Tiziana; Vicentini, Lorenza; Boschetti, Silvia; Andreatta, Paolo; Gatti, Rita

    2014-10-24

    A simple, sensitive and fast hydrophilic interaction liquid chromatography (HILIC) method using ultraviolet diode-array detector (UV-DAD)/electrospray ionization tandem mass spectrometry was developed for the automated high performance liquid chromatography (HPLC) determination of sodium risedronate (SR) and its degradation products in new pharmaceuticals. The chromatographic separations were performed on Ascentis Express HILIC 2.7μm (150mm×2.1mm, i.d.) stainless steel column (fused core). The mobile phase consisted of formate buffer solution (pH 3.4; 0.03M)/acetonitrile 42:58 and 45:55 (v/v) for granules for oral solution and effervescent tablet analysis, respectively, at a flow-rate of 0.2mL/min, setting the wavelength at 262nm. Stability characteristics of SR were evaluated by performing stress test studies. The main degradation product formed under oxidation conditions corresponding to sodium hydrogen (1-hydroxy-2-(1-oxidopyridin-3-yl)-1-phosphonoethyl)phosphonate was characterized by high performance liquid chromatography-electrospray ionization-mass tandem mass spectrometry (HPLC-ESI-MS/MS). The validation parameters such as linearity, sensitivity, accuracy, precision and selectivity were found to be highly satisfactory. Linear responses were observed in standard and in fortified placebo solutions. Intra-day precision (relative standard deviation, RSD) was ≤1.1% for peak area and ≤0.2% for retention times (tR) without significant differences between intra- and inter-day data. Recovery studies showed good results for all the examined compounds (from 98.7 to 101.0%) with RSD ranging from 0.6 to 0.7%. The limits of detection (LOD) and quantitation (LOQ) were 1 and 3ng/mL, respectively. The high stability of standard and sample solutions at room temperature means an undoubted advantage of the method allowing the simultaneous preparation of many samples and consecutive chromatographic analyses by using an autosampler. The developed stability indicating

  3. Silicon PIN diode array hybrids for charged particle detection

    SciTech Connect

    Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.; Gaalema, S.

    1988-09-01

    We report on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included. 8 refs., 7 figs., 1 tab.

  4. First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK

    SciTech Connect

    Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu; Araki, Sakae; Fukuda, Masafumi; Terunuma, Nobuhiro; Urakawa, Junji

    2012-07-31

    Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that the LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.

  5. Realistic simulation of the Space-borne Compton Polarimeter POLAR

    NASA Astrophysics Data System (ADS)

    Xiao, Hualin

    2016-07-01

    POLAR is a compact wide field space-borne detector dedicated for precise measurements of the linear polarization of hard x-rays emitted by transient sources. Its energy range sensitivity is optimized for the detection of the prompt emission of Gamma-ray bursts (GRBs). POLAR is developed by an international collaboration of China, Switzerland and Poland. It is planned to be launched into space in 2016 onboard the Chinese space laboratory TG2. The energy range of POLAR spans between 50 keV and 500 keV. POLAR detects gamma rays with an array of 1600 plastic scintillator bars read out by 25 muti-anode PMTs (MAPMTs). Polarization measurements use Compton scattering process and are based on detection of energy depositions in the scintillator bars. Reconstruction of the polarization degree and polarization angle of GRBs requires comparison of experimental modulation curves with realistic simulations of the full instrument response. In this paper we present a method to model and parameterize the detector response including efficiency of the light collection, contributions from crosstalk and non-uniformity of MAPMTs as well as dependency on low energy detection thresholds and noise from readout electronics. The performance of POLAR for determination of polarization is predicted with such realistic simulations and carefully cross-checked with dedicated laboratory tests.

  6. Diode and Diode Circuits, a Programmed Text.

    ERIC Educational Resources Information Center

    Balabanian, Norman; Kirwin, Gerald J.

    This programed text on diode and diode circuits was developed under contract with the United States Office of Education as Number 4 in a series of materials for use in an electrical engineering sequence. It is intended as a supplement to a regular text and other instructional material. (DH)

  7. Radiation damage effects on solid state detectors

    NASA Technical Reports Server (NTRS)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  8. SOI diode uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kimata, Masafumi; Ueno, Masashi; Takeda, Munehisa; Seto, Toshiki

    2006-02-01

    An uncooled infrared focal plane array (IR FPA) is a MEMS device that integrates an array of tiny thermal infrared detector pixels. An SOI diode uncooled IR FPA is a type that uses freestanding single-crystal diodes as temperature sensors and has various advantages over the other MEMS-based uncooled IR FPAs. Since the first demonstration of an SOI diode uncooled IR FPA in 1999, the pixel structure has been improved by developing sophisticated MEMS processes. The most advanced pixel has a three-level structure that has an independent metal reflector for interference infrared absorption between the temperature sensor (bottom level) and the infrared-absorbing thin metal film (top level). This structure makes it possible to design pixels with lower thermal conductance by allocating more area for thermal isolation without reducing infrared absorption. The new MEMS process for the three-level structure includes a XeF II dry bulk silicon etching process and a double organic sacrificial layer surface micromachining process. Employing advanced MEMS technology, we have developed a 640 x 480-element SOI diode uncooled IR FPA with 25-μm square pixels. The noise equivalent temperature difference of the FPA is 40 mK with f/1.0 optics. This result clearly demonstrates the great potential of the SOI diode uncooled IR FPA for high-end applications. In this paper, we explain the advances and state-of-the-art technology of the SOI diode uncooled IR FPA.

  9. The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"

    NASA Astrophysics Data System (ADS)

    Ichinohe, Yuto; Uchida, Yuusuke; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin`ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki

    2016-01-01

    The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm2 meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.

  10. Compton-Pair Production Space Telescope: Extending Fermi-LAT Discoveries into MeV Gamma-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Caputo, Regina; ComPair Team

    2016-01-01

    The gamma-ray energy range from several hundred keV to a hundred MeV has remained largely unexplored, since the observations by instruments on the Compton Gamma-Ray Observatory (1991- 2000) and on INTEGRAL (since 2002). Accurate measurements in this energy range are critical for answering a broad range of astrophysical questions, but they are particularly challenging because this range encompasses the Compton scattering/pairproduction transition zone (~10 MeV) where the interaction cross section is minimized. These interaction processes require different optimizations in both detection and event reconstruction. We are developing a MIDEX-scale wide-aperture discovery mission, Compton-Pair Production Space Telescope (ComPair), to investigate the energy range from 200 keV to >500 MeV with high energy and angular resolution and with sensitivity approaching a factor of 20-50 better than COMPTEL. This instrument will be capable of measuring both Compton-scattering events at lower energy and pair-production events at higher energy. ComPair will build on the heritage of successful space missions including Fermi-LAT, CGRO, INTEGRAL, AGILE, AMS and PAMELA, and will utilize well-developed space-qualified detector technologies including Si-strip and CdZnTe-strip detectors, heavy inorganic scintillators, and plastic scintillators.

  11. Design and performance tests of the calorimetric tract of a Compton Camera for small-animals imaging

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Baldazzi, G.; Battistella, A.; Bello, M.; Bollini, D.; Bonvicini, V.; Fontana, C. L.; Gennaro, G.; Moschini, G.; Navarria, F.; Rashevsky, A.; Uzunov, N.; Zampa, G.; Zampa, N.; Vacchi, A.

    2011-02-01

    The bio-distribution and targeting capability of pharmaceuticals may be assessed in small animals by imaging gamma-rays emitted from radio-isotope markers. Detectors that exploit the Compton concept allow higher gamma-ray efficiency compared to conventional Anger cameras employing collimators, and feature sub-millimeter spatial resolution and compact geometry. We are developing a Compton Camera that has to address several requirements: the high rates typical of the Compton concept; detection of gamma-rays of different energies that may range from 140 keV ( 99 mTc) to 511 keV ( β+ emitters); presence of gamma and beta radiation with energies up to 2 MeV in case of 188Re. The camera consists of a thin position-sensitive Tracker that scatters the gamma ray, and a second position-sensitive detection system to totally absorb the energy of the scattered photons (Calorimeter). In this paper we present the design and discuss the realization of the calorimetric tract, including the choice of scintillator crystal, pixel size, and detector geometry. Simulations of the gamma-ray trajectories from source to detectors have helped to assess the accuracy of the system and decide on camera design. Crystals of different materials, such as LaBr 3 GSO and YAP, and of different size, in continuous or segmented geometry, have been optically coupled to a multi-anode Hamamatsu H8500 detector, allowing measurements of spatial resolution and efficiency.

  12. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  13. Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays

    NASA Astrophysics Data System (ADS)

    Plimley, Brian Christopher

    Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron

  14. Compton scattering in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1986-01-01

    The relativistic cross section for Compton scattering by electrons in strong magnetic fields is derived. The results confirm and extend earlier work which has treated only transitions to the lowest or first excited Landau levels. For the teragauss field strengths expected in neutron star magnetospheres, the relative rates for excited state transitions are found to be significant, especially for incident photon energies several times the cyclotron frequency. Since these transitions must result in the rapid emission of one or more cyclotron photons as well as the Compton-scattered photon, the scattering process actually becomes a photon 'splitting' mechanism which acts to soften hard photon spectra, and also provides a specific mechanism for populating higher Landau levels in the electron distribution function. The results should be significant for models of gamma-ray bursters and pulsating X-ray sources.

  15. Unitarity constraints on deeply virtual Compton scattering

    NASA Astrophysics Data System (ADS)

    Laget, J. M.

    2007-11-01

    At moderately low momentum transfer (-t up to 1 GeV2) the coupling to the vector meson production channels gives the dominant contribution to real Compton and deeply virtual Compton scattering (DVCS). Starting from a Regge pole approach that successfully describes vector meson production, the singular part of the corresponding box diagrams (where the intermediate vector meson-baryon pair propagates on-shell) is evaluated without any further assumptions (unitarity). Such a treatment explains not only the unexpectedly large DVCS unpolarized cross section that has been recently measured at Jefferson Laboratory (JLab), but also all the beam spin and charge asymmetries that have been measured at JLab and Hermes, without explicit need of Generalized Parton Distributions (GPD). The issue of the relationship between the two approaches is addressed.

  16. Unitary constraints on Deeply Virtual Compton Scattering

    SciTech Connect

    J.M. Laget

    2007-11-01

    At moderately low momentum transfer ($-t$ up to 1 GeV$^2$) the coupling to the vector meson production channels gives the dominant contribution to real Compton and deeply virtual Compton scattering (DVCS). Starting from a Regge Pole approach that successfully describes vector meson production, the singular part of the corresponding box diagrams (where the intermediate vector meson-baryon pair propagates on-shell) is evaluated without any further assumptions (unitarity). Such a treatment explains not only the unexpectedly large DVCS unpolarized cross section that has been recently measured at Jefferson Laboratory (JLab), but also all the beam spin and charge asymmetries that has been measured at JLab and Hermes, without explicit need of Generalized Parton Distributions (GPD). The issue of the relationship between the two approaches is addressed.

  17. Laser diode protection circuit

    SciTech Connect

    Burgyan, L.; Hand, W.L.

    1990-05-08

    This patent describes a method for protecting a laser diode included within an electro-optical circuit. It comprises: the laser diode, a DC bias supply for supplying forward conduction current to the laser diode to cause it to emit light energy at a predetermined quiescent operating point, and an RF amplifier means for supplying an RF amplitude of an analog modulating signal to the laser diode for modulating the intensity of the emitted light energy about the quiescent operating point thereof, the method including providing a very high impedance to the laser diode during its nominal operating conditions about the quiescent point and, sensing an instantaneous amplitude of the RF amplitude modulating signal to detect amplitude surges therein, and responding to the sensing means by removing forward conduction current from the laser diode during the sense amplitude surges int he RF amplitude of the analog modulating signal, thereby causing the laser diode to reduce emission of light energy to a safe level.

  18. Resonant Compton Physics for Magnetar Astrophysics

    NASA Astrophysics Data System (ADS)

    Ickes, Jesse; Gonthier, Peter L.; Eiles, Matthew; Baring, Matthew G.

    2016-01-01

    Various telescopes including RXTE, INTEGRAL, Suzaku, and Fermi have detected steady non-thermal X-ray emission in the 10 - 200 keV band from strongly magnetic neutron stars known as magnetars. Magnetic inverse Compton scattering is believed to be the leading candidate for the production of this intense X-ray radiation. Scattering at ultra-relativistic energies leads to attractive simplifications in the analytics of the magnetic Compton cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths acquired through the implementation of Sokolov & Ternov basis states, focusing specifically on ground-state-ground-state scattering. Compton scattering in magnetar magnetospheres can cool electrons down to mildly relativistic energies. Moreover, soft gamma-ray flaring in magnetars may involve strong Comptonization in expanding clouds of mildly relativistic pairs. Such environs necessitate the development of more general magnetic scattering cross sections, in which the incoming photons acquire substantial incident angles relative to the field in the rest frame of the electron leading to arbitrary Landau excitations of the intermediate and final states. Due to the rapid transitions of the excited-state to the ground-state, the initial electron is still assumed to be in the ground state. The cross sections treat the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Polarization and spin dependence of the cross section for the four scattering modes is compared to the cross section obtained with spin-averaged widths. We present numerical results to show the comparisons to highlight the role of the spin-dependent widths of the resonances. The findings presented here will have applications to various neutron star problems, including computation of Eddington luminosities and polarization mode-switching rates in transient magnetar fireballs.

  19. Virtual Compton Scattering: Results from Jefferson Lab

    SciTech Connect

    L. Van Hoorebeke

    2003-05-01

    Virtual Compton Scattering o013 the proton has been studied at Q 2 -values of 1:0 and 1:9 (GeV=c) 2 in Hall A at the Thomas Je013erson National Accelerator Facility (JLab). Data were taken below and above the pion production threshold as well as in the resonance region. Results obtained below pion threshold at Q 2 = 1:0 (GeV=c) 2 are presented in this paper.

  20. Nonlinear Brightness Optimization in Compton Scattering

    DOE PAGESBeta

    Hartemann, Fred V.; Wu, Sheldon S. Q.

    2013-07-26

    In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. We discuss these effects, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.

  1. Nonlinear brightness optimization in compton scattering.

    PubMed

    Hartemann, Fred V; Wu, Sheldon S Q

    2013-07-26

    In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. These effects are discussed, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force. PMID:23931374

  2. Coded-aperture Compton camera for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Farber, Aaron M.

    This dissertation describes the development of a novel gamma-ray imaging system concept and presents results from Monte Carlo simulations of the new design. Current designs for large field-of-view gamma cameras suitable for homeland security applications implement either a coded aperture or a Compton scattering geometry to image a gamma-ray source. Both of these systems require large, expensive position-sensitive detectors in order to work effectively. By combining characteristics of both of these systems, a new design can be implemented that does not require such expensive detectors and that can be scaled down to a portable size. This new system has significant promise in homeland security, astronomy, botany and other fields, while future iterations may prove useful in medical imaging, other biological sciences and other areas, such as non-destructive testing. A proof-of-principle study of the new gamma-ray imaging system has been performed by Monte Carlo simulation. Various reconstruction methods have been explored and compared. General-Purpose Graphics-Processor-Unit (GPGPU) computation has also been incorporated. The resulting code is a primary design tool for exploring variables such as detector spacing, material selection and thickness and pixel geometry. The advancement of the system from a simple 1-dimensional simulation to a full 3-dimensional model is described. Methods of image reconstruction are discussed and results of simulations consisting of both a 4 x 4 and a 16 x 16 object space mesh have been presented. A discussion of the limitations and potential areas of further study is also presented.

  3. Universal EUV in-band intensity detector

    DOEpatents

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  4. Helium Compton Form Factor Measurements at CLAS

    SciTech Connect

    Voutier, Eric J.-M.

    2013-07-01

    The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($\\vec {\\mathrm e}$,e$' \\gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by the experiment.

  5. Compton Scattering Experiments with Polychromatic Radiation

    NASA Astrophysics Data System (ADS)

    Schütz, Wolfgang; Waldeck, Beate; Flösch, Dietmar; Weyrich, Wolf

    1993-02-01

    We show an iterative algorithm that allows to obtain accurate Compton profiles J(q) from Compton scattering spectra I2 (ω2), if the excitation radiation is not strictly monochromatic. It requires knowledge of the spectral distribution of the primary radiation I1(ω1), validity of the impulse approximation and dominance of a monochromatic part in I1(ω1) over the polychromatic rest. Conversely, the primary spectrum is often experimentally not directly accessible. In such a situation it is possible to evaluate the primary spectrum I1(ω1) from the spectrum of scattered photons, I2(ω2), with a similar iterative algorithm. We use a scattering target of high atomic number in order to ensure that the elastically scattered photons dominate the inelastically scattered ones. From the scattered spectrum we get a model for the Compton profile that allows us to separate the inelastic part of the scattered spectrum from the elastic part, which, in turn, is proportional to the spectral distribution of the primary radiation.

  6. A flying spot x-ray system for Compton backscatter imaging

    SciTech Connect

    Herr, M.D.; McInerney, J.J.; Copenhaver, G.L. ); Lamser, D.G. )

    1994-09-01

    A Compton x-ray backscatter imaging (CBI) system using a single detector and a mechanically rastered flying spot'' x-ray beam has been designed, built, and tested. While retaining the essential noninvasive imaging capability of previous multiple detector CBI devices, this single detector system incorporates several advances over earlier CBI devices: more efficient detection of scattered x-rays, reduced x-ray exposure, and a simplified scan protocol more suitable for use with humans. This new CBI system also has specific design features to permit automating data acquisition from multiple two-dimensional image planes for integration into a 3-D dynamic surface image. A simulated multislice scan study of a human thorax phantom provided x-ray dosimetry data verifying a very low x-ray dose delivered by this imaging device. Validation experiments with mechanical models show that surface displacement of typical heart beam frequencies can be measured to the nearest 0.1 mm (SD).

  7. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  8. Compton-Pair Production Space Telescope: Extending Fermi-LAT Discoveries into MeV Gamma-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Smith, Andrew; ComPair Team

    2016-03-01

    The keV-MeV gamma-ray energy range has remained largely unexplored over the last decade despite offering an exciting window into many astrophysical questions. This energy range is particularly challenging because it is firmly in the Compton-dominated regime where the interaction cross section is minimized. We are developing a MIDEX-scale wide-aperture discovery mission, Compton-Pair Production Space Telescope (ComPair), to investigate the energy range from 200 keV to >500 MeV with good energy and angular resolution and with sensitivity approaching a factor of 20-50 better than previous instruments. ComPair will build on the heritage of successful space missions including Fermi-LAT, AGILE, AMS and PAMELA, and will use well-developed space-qualified detector technologies including Si-strip and CdZnTe-strip detectors, heavy inorganic scintillators, and plastic scintillators. on behalf of the ComPair Team.

  9. Neutron radiation effects in GaAs planar doped barrier diodes

    SciTech Connect

    Kearney, M.J.; Couch, N.R. ); Edwards, M. ); Dale, I. )

    1993-04-01

    The planar doped barrier (PDB) diode has recently been shown to be a very attractive alternative to the Schottky diode for many microwave and millimeter-wave mixer and detector applications. The authors have studied the degradation of GaAs planar doped barrier diodes subject to neutron irradiation. For fluences as high as 10[sup 15] cm[sup [minus]2] the diode characteristics are very well preserved, which strengthens the rationale for using these devices in place of Schottky diodes in harsh working environments such as nuclear instrumentation and space.

  10. Spin momentum density of Nd using Compton spectroscopy

    SciTech Connect

    Sahariya, Jagrati; Dashora, Alpa; Mund, H. S.; Ahuja, B. L.; Tiwari, Shailja; Itou, M.; Sakurai, Y.

    2013-02-05

    Spin momentum density of Nd has been measured at 6K temperature using magnetic Compton scattering. The individual contribution of different electronic states, in the formation of total spin moment, is deduced from the analysis of magnetic Compton profile. The electron-specific spin moments deduced from the experimental Compton data are compared with the theoretical results obtained from full potential linearized augmented plane wave method and are found to be in good agreement.

  11. A Compact Liquid Xenon Compton Telescope with High Energy Resolution and Time-of-Flight

    NASA Astrophysics Data System (ADS)

    Oberlack, Uwe; Gomez, R.; Olsen, C.; Shagin, P.; Aprile, E.; Giboni, K.; Plante, G.; Santorelli, R.

    2006-09-01

    Two recent developments have led us to propose a new type of Compton telescope in compact geometry with time-of-flight, for gamma-ray astronomy in the energy regime of 0.2 - 10 MeV. First, the technology of vacuum ultraviolet photosensors for efficient and fast readout of liquid xenon (LXe) scintillation light has improved dramatically over the last few years, and new developments are underway. A LXe Advanced Compton Telescope would consist of two detector arrays of LXe time projection chambers in compact geometry, with time-of-flight (ToF) between detector modules at a resolution of order 100 ps. Second, the previously achieved moderate energy resolution in LXe, a significant draw-back for gamma-ray line spectroscopy, has been found to be largely due to a strong anti-correlation of ionization and scintillation in LXe. Efficient measurement of both charge and light enables us to improve energy resolution greatly. A factor of three improvement over a previous prototype, LXeGRIT, has already been achieved, and the measured underlying physics indicate the possibility of achievng energy resolution below 1% FWHM at 1 MeV. We are vigorously working on improving light and charge readout to realize this potential in a practical detector. We report on the status and prospects of our current research and development program. This work is supported by NASA grant NNG05WC24G.

  12. The use of Compton scattering in detecting anomaly in soil-possible use in pyromaterial detection

    NASA Astrophysics Data System (ADS)

    Abedin, Ahmad Firdaus Zainal; Ibrahim, Noorddin; Zabidi, Noriza Ahmad; Demon, Siti Zulaikha Ngah

    2016-01-01

    The Compton scattering is able to determine the signature of land mine detection based on dependency of density anomaly and energy change of scattered photons. In this study, 4.43 MeV gamma of the Am-Be source was used to perform Compton scattering. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of thallium-doped sodium iodide NaI(TI) was used for detecting gamma ray. There are 9 anomalies used in this simulation. The physical of anomaly is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measured 80 cm radius and 53.5 cm height. Monte Carlo methods indicated the scattering of photons is directly proportional to density of anomalies. The difference between detector response with anomaly and without anomaly namely contrast ratio values are in a linear relationship with density of anomalies. Anomalies of air, wood and water give positive contrast ratio values whereas explosive, sand, concrete, graphite, limestone and polyethylene give negative contrast ratio values. Overall, the contrast ratio values are greater than 2 % for all anomalies. The strong contrast ratios result a good detection capability and distinction between anomalies.

  13. A novel Compton camera design featuring a rear-panel shield for substantial noise reduction in gamma-ray images

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.

    2014-12-01

    After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.

  14. HERMES impact for the access of Compton form factors

    NASA Astrophysics Data System (ADS)

    Kumerički, K.; Müller, D.; Murray, M.

    2014-07-01

    We utilize the DVCS asymmetry measurements of the HERMES collaboration for access to Compton form factors in the deeply virtual regime and to generalized parton distributions. In particular, the (almost) complete measurement of DVCS observables allows us to map various asymmetries into the space of Compton form factors, where we still rely in this analysis on dominance of twist-two associated Compton form factors. We compare this one-to-one map with local Compton form factor fits and a model dependent global fit.

  15. Characterization of resonant tunneling diodes for microwave and millimeter-wave detection

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; East, J. R.; Haddad, G. I.

    1991-01-01

    The authors report on the direct detection capabilities of resonant tunneling diodes in the 10-100 GHz range. An open circuit voltage sensitivity of 1750 mV/mW (in Ka-band) was measured. This is higher than the sensitivity of comparatively based commercially available solid-state detectors. The detector properties are a strong function of diode bias and the measured tangential signal sensitivity (-32 dBm at Ka-band with 1-MHz bandwidth) and the dynamic range (25 dB) of the diode are smaller compared to other solid-state detectors.

  16. Infrared photoemitting diode having reduced work function

    DOEpatents

    Hirschfeld, T.B.

    1982-05-06

    In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid meidum of the formula NR/sub 3/ and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

  17. Infrared photoemitting diode having reduced work function

    DOEpatents

    Hirschfeld, Tomas B.

    1984-01-01

    In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid medium of the formula NR.sub.3 and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

  18. Relative density measurements in a simple lung phantom by Compton backscatter.

    PubMed

    Wolf, E A; Munro, T R

    1985-02-01

    Compton backscatter of 60 keV gamma radiation from a simple lung phantom has been used to measure changes in "lung" density. It was shown how introduction of a small volume of air can increase as well as decrease the count. Radiation scattered from the "chest wall" was prevented from entering the detector by careful choice of geometry. The remaining count increased linearly with "lung" density. The relative increase of count rate with density was entirely independent of "chest wall" thickness. With our apparatus a change of 0.01 kg/L in "lung" density produced a change in count rate of 2.2%. PMID:3980122

  19. A novel method for non-destructive Compton scatter imaging based on the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ashrafi, Saleh; Jahanbakhsh, Okhtay; Alizadeh, Davood; Salehpour, Behrooz

    2013-05-01

    Compton scattering tomography is widely used in numerous applications such as biomedical imaging, nondestructive industrial testing and environmental survey, etc. This paper proposes the use of the genetic algorithm (GA), which utilizes bio-inspired mathematical models, to construct an image of the insides of a test object via the scattered photons, from a voxel within the object. A NaI(Tl) scintillation detector and a 185 MBq 137Cs gamma ray source were used in the experimental measurements. The obtained results show that the proposed GA based method performs well in constructing images of objects.

  20. High Precision Electron Beam Polarization Measurement with Compton Polarimetry at Jefferson Laboratory

    SciTech Connect

    Marie, Frederic; Burtin, Etienne; Cavata, Christian; Escoffier, Stephanie; Lhuillier, David; Neyret, Damian; Pussieux, Thierry; Bertin, Pierre

    2003-07-01

    Since 1999, a Compton polarimeter based on a Fabry-Perot cavity to amplify the laser light is operational in the hall A of the Jefferson Laboratory. In 2000, the beam polarization has been continuously measured during N â Delta and Gep experiment providing a relative total uncertainty of 1.4% in 40 mn at 4.5 GeV. These unprecedented results have been obtained thanks to a scattered electron detector which has allowed to determine the response function of the photon calorimeter.

  1. Balloon flight test of a Compton telescope based on scintillators with silicon photomultiplier readouts

    NASA Astrophysics Data System (ADS)

    Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Ryan, J. M.; McConnell, M. L.

    2016-03-01

    We present the results of the first high-altitude balloon flight test of a concept for an advanced Compton telescope making use of modern scintillator materials with silicon photomultiplier (SiPM) readouts. There is a need in the fields of high-energy astronomy and solar physics for new medium-energy gamma-ray (~0.4-10 MeV) detectors capable of making sensitive observations of both line and continuum sources over a wide dynamic range. A fast scintillator-based Compton telescope with SiPM readouts is a promising solution to this instrumentation challenge, since the fast response of the scintillators permits both the rejection of background via time-of-flight (ToF) discrimination and the ability to operate at high count rates. The Solar Compton Telescope (SolCompT) prototype presented here was designed to demonstrate stable performance of this technology under balloon-flight conditions. The SolCompT instrument was a simple two-element Compton telescope, consisting of an approximately one-inch cylindrical stilbene crystal for a scattering detector and a one-inch cubic LaBr3:Ce crystal for a calorimeter detector. Both scintillator detectors were read out by 2×2 arrays of Hamamatsu S11828-3344 MPPC devices. Custom front-end electronics provided optimum signal rise time and linearity, and custom power supplies automatically adjusted the SiPM bias voltage to compensate for temperature-induced gain variations. A tagged calibration source, consisting of ~240 nCi of 60Co embedded in plastic scintillator, was placed in the field of view and provided a known source of gamma rays to measure in flight. The SolCompT balloon payload was launched on 24 August 2014 from Fort Sumner, NM, and spent ~3.75 h at a float altitude of ~123,000 ft. The instrument performed well throughout the flight. After correcting for small (~10%) residual gain variations, we measured an in-flight ToF resolution of ~760 ps (FWHM). Advanced scintillators with SiPM readouts continue to show great promise

  2. Bypass diode integration

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    Protective bypass diodes and mounting configurations which are applicable for use with photovoltaic modules having power dissipation requirements in the 5 to 50 watt range were investigated. Using PN silicon and Schottky diode characterization data on packaged diodes and diode chips, typical diodes were selected as representative for each range of current carrying capacity, an appropriate heat dissipating mounting concept along with its environmental enclosure was defined, and a thermal analysis relating junction temperature as a function of power dissipation was performed. In addition, the heat dissipating mounting device dimensions were varied to determine the effect on junction temperature. The results of the analysis are presented as a set of curves indicating junction temperature as a function of power dissipation for each diode package.

  3. Detection and dosimetry studies on the response of silicon diodes to an 241Am-Be source

    NASA Astrophysics Data System (ADS)

    Lotfi, Y.; Zaki Dizaji, H.; Abbasi Davani, F.

    2014-06-01

    Silicon diode detectors show potential for the development of an active personal dosimeter for neutron and photon radiation. Photons interact with the constituents of the diode detector and produce electrons. Fast neutrons interact with the constituents of the diode detector and converter, producing recoil nuclei and causing (n,α) and (n,p) reactions. These photon- and neutron-induced charged particles contribute to the response of diode detectors. In this work, a silicon pin diode was used as a detector to produce pulses created by photon and neutron. A polyethylene fast neutron converter was used as a recoil proton source in front of the detector. The total registered photon and neutron efficiency and the partial contributions of the efficiency, due to interactions with the diode and converter, were calculated. The results show that the efficiency of the converter-diode is a function of the incident photon and neutron energy. The optimized thicknesses of the converter for neutron detection and neutron dosimetry were found to be 1 mm and 0.1 mm respectively. The neutron records caused by the (n,α) and (n,p) reactions were negligible. The photon records were strongly dependent upon the energy and the depletion layer of the diode. The photons and neutrons efficiency of the diode-based dosimeter was calculated by the MCNPX code, and the results were in good agreement with experimental results for photons and neutrons from an 241Am-Be source.

  4. Coaxial foilless diode

    SciTech Connect

    Kong, Long; Liu, QingXiang; Li, XiangQiang; Wang, ShaoMeng

    2014-05-15

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  5. Depth Dependent Background Measurements with the Nuclear Compton Telescope (NCT)

    NASA Astrophysics Data System (ADS)

    Chiu, Jeng-Lun; Chang, H.; Boggs, S. E.; NCT Collaboration

    2012-05-01

    The Nuclear Compton Telescope (NCT) is a balloon-borne soft gamma ray (0.2-10 MeV) telescope designed to study astrophysical sources of nuclear line emission and polarization. The heart of NCT is a compact array of 12 cross-strip germanium detectors (GeDs), providing high spectral resolution ( 0.3-0.9% FWHM at 662 keV for most channels) and capability of tracking each photon interaction with full 3D position resolution to 2 mm3. NCT has flown successfully on two conventional balloon flights to date, and the Crab Nebula was detected at a significance of 4σ in the second flight, which occurred on 2009 May 17 and 18 in Fort Sumner, New Mexico. Here approximately 38 ks of background measurements in the second flight is studied from ground altitude to average float altitude (1.2-40 km). We discuss the expected contributions to the background component through detailed Monte Carlo simulations. Complete depth dependent environmental inputs are introduced, considering cosmic and atmospheric photon distributions, primary cosmic rays (protons), cosmic ray secondaries (protons and neutrons), and activation induced components. Imaging of the 511 keV annihilation line from the background is also attempted.

  6. Gamma ray polarimetry. [compton scattering and pair production

    NASA Technical Reports Server (NTRS)

    Long, K. S.; Novick, R.

    1978-01-01

    Spectroscopic instruments currently being proposed may possess polarimetric capabilities which sould be nurtured and enhanced to permit characterization of basic emission mechanisms which are impossible using other techniques. Compton scattering and pair production detected the polarization of high energy (E is greater than 50 keV) protons in laboratory experiments. The polarization properties of a detection system consisting of 19 germanium crystals in a closed packed array are examined and the advantages of such a detector over Thompson scattering are discussed. The possiblity of using pair production to detect polarization of high energy gamma rays, and the associated modulation factors are discussed. The central difficulty involved in using pair production polarimeters in astrophysical applications is that the typical opening of the electron or positron direction with respect to the incident photon aircitron is small, of order E/sq mc. Multiple scattering in the material used to convert the photons to an electron positron pair causes deviations in the direction of the electron and positron.

  7. FRONT-END ASIC FOR A SILICON COMPTON TELESCOPE.

    SciTech Connect

    DE GERONIMO,G.; FRIED, J.; FROST, E.; PHLIPS, B.; VERNON, E.; WULF, E.A.

    2007-10-27

    We describe a front-end application specific integrated circuit (ASIC) developed for a silicon Compton telescope. Composed of 32 channels, it reads out signals in both polarities from each side of a Silicon strip sensor, 2 mm thick 27 cm long, characterized by a strip capacitance of 30 pF. Each front-end channel provides low-noise charge amplification, shaping with a stabilized baseline, discrimination, and peak detection with an analog memory. The channels can process events simultaneously, and the read out is sparsified. The charge amplifier makes uses a dual-cascode configuration and dual-polarity adaptive reset, The low-hysteresis discriminator and the multi-phase peak detector process signals with a dynamic range in excess of four hundred. An equivalent noise charge (ENC) below 200 electrons was measured at 30 pF, with a slope of about 4.5 electrons/pF at a peaking time of 4 {micro}s. With a total dissipated power of 5 mW the channel covers an energy range up to 3.2 MeV.

  8. Deeply Virtual Compton Scattering at eRHIC

    NASA Astrophysics Data System (ADS)

    Fazio, Salvatore; Mueller, Dieter

    2012-03-01

    The feasibility for a measurement of the exclusive production of a real photon, a process although known as Deeply Virtual Compton Scattering (DVCS), using the future eRHIC machine at BNL has been explored. eRHIC is a machine designed to collide an electron beam with energies ranging from 5 GeV up to 30 GeV with the RHIC hadron beams (protons (100 -250 GeV) and nuclei (<= 100 GeV)) at varying center-of-mass energies. DVCS is universally believed to be a golden measurement toward the determination of the Generalized Parton Distribution (GPDs) functions. The high luminosity of the machine, expected in the order of 10^34cm-2s-1 at the highest center-of-mass energies, together with the large rapidity acceptance of a newly designed dedicated detector, will open the opportunity for very high precision measurements of DVCS, providing an important tool toward a 2+1 dimensional picture of the internal structure of the proton. The huge impact such measurements would have on the determination of GPDs will be discussed.

  9. Deeply virtual Compton Scattering cross section measured with CLAS

    SciTech Connect

    Guegan, Baptistse

    2014-09-01

    The Generalized Parton Distributions (GPDs) provide a new description of nucleon structure in terms of its elementary constituents, the quarks and the gluons. Including and extending the information provided by the form factors and the parton distribution functions, they describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark in the nucleon eN --> e'N'g, is the exclusive process most directly interpretable in terms of GPDs. A dedicated experiment to study DVCS with the CLAS detector at Jefferson Lab has been carried out using a 5.9-GeV polarized electron beam and an unpolarized hydrogen target, allowing us to collect DVCS events in the widest kinematic range ever explored in the valence region : 1.0 < Q2 < 4.6 GeV2, 0.1 < xB < 0.58 and 0.09 < -t < 2.0 GeV2. In this paper, we show preliminary results of unpolarized cross sections and of polarized cross section differences for the DVCS channel.

  10. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    NASA Astrophysics Data System (ADS)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  11. A Compton camera for low energy gamma ray imaging in nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Leblanc, James Walter

    C-SPRINT is a prototype electronically-collimated imaging system that has been built using pixellated, low-noise, position-sensitive silicon as the first detector, and a sodium iodide scintillation detector ring as the second detector. The camera was intended to characterize potential performance gains of Compton cameras in nuclear medicine applications. The system consists of a single 4.5 x 1.5 x 0.03 cm3 silicon pad detector module with 2 keV energy resolution centered at the front face of a 50 cm diameter, 12 cm long NaI detector annulus. Calculations of the Uniform Cramer-Rao lower bound show that a "design Compton camera" based on our prototype can challenge existing mechanically-collimated systems at low to medium energies (˜140.5 - 400 keV) despite the deleterious effects of Doppler broadening. Measurements with our current system have yielded system sensitivity and spatial resolution estimates using 99mTc and 131I isotopes. Results showed an absolute efficiency of 1.8 x 10 -7 for 99mTc and 1.2 x 10-6 for 131I. The 99mTc value is an order of magnitude lower than predicted because of a combination of worse than expected silicon detector triggering performance, timing resolution issues, and system dead time effects. After correcting for these, efficiency predictions based on Monte Carlo analysis fall within 10% of the measured values. Spatial resolution estimates are also within 10% of analytical predictions. Measured resolution for the 99mTc point source was 15 min FWHM while in the 131I case, resolution improved to 8 mm FWHM. Extended source imaging was performed to characterize system performance under more challenging conditions. Images obtained were compared with measurements using a clinically-available mechanically collimated Anger camera. A resolution-variance study was also conducted for both isotopes. The results showed that the C-SPRINT camera performance on a per-detected photon basis was worse than the Anger camera for 99mTc but was similar for

  12. Deeply Virtual Compton Scattering off the Neutron

    SciTech Connect

    Mazouz, M.; Guillon, B.; Real, J.-S.; Voutier, E.

    2007-12-14

    The present experiment exploits the interference between the deeply virtual Compton scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e-vector,e{sup '}{gamma})X cross section measured at Q{sup 2}=1.9 GeV{sup 2} and x{sub B}=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to E{sub q}, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  13. Biophysical applications of neutron Compton scattering

    NASA Astrophysics Data System (ADS)

    Wanderlingh, U. N.; Albergamo, F.; Hayward, R. L.; Middendorf, H. D.

    Neutron Compton scattering (NCS) can be applied to measuring nuclear momentum distributions and potential parameters in molecules of biophysical interest. We discuss the analysis of NCS spectra from peptide models, focusing on the characterisation of the amide proton dynamics in terms of the width of the H-bond potential well, its Laplacian, and the mean kinetic energy of the proton. The Sears expansion is used to quantify deviations from the high-Q limit (impulse approximation), and line-shape asymmetry parameters are evaluated in terms of Hermite polynomials. Results on NCS from selectively deuterated acetanilide are used to illustrate this approach.

  14. Deeply virtual Compton scattering and nucleon structure

    SciTech Connect

    M. Garcon

    2006-11-01

    Deeply Virtual Compton Scattering (DVCS) is the tool of choice to study Generalized Parton Distributions (GPD) in the nucleon. After a general introduction to the subject, a review of experimental results from various facilities is given. Following the first encouraging results, new generation dedicated experiments now allow unprecedented precision and kinematical coverage. Several new results were presented during the conference, showing significant progress in this relatively new field. Prospects for future experiments are presented. The path for the experimental determination of GPDs appears now open.

  15. Proton spin polarizabilities from polarized Compton scattering

    SciTech Connect

    B. Pasquini; D. Drechsel; M. Vanderhaeghen

    2007-07-01

    Polarized Compton scattering off the proton is studied within the framework of subtracted dispersion relations for photon energies up to 300 MeV. As a guideline for forthcoming experiments, we focus the attention on the role of the proton's spin polarizabilities and investigate the most favorable conditions to extract them with a minimum of model dependence. We conclude that a complete separation of the four spin polarizabilities is possible, at photon energies between threshold and the $\\Delta(1232)$ region, provided one can achieve polarization measurements with an accuracy of a few percent.

  16. Deeply virtual compton scattering off the neutron.

    PubMed

    Mazouz, M; Camsonne, A; Camacho, C Muñoz; Ferdi, C; Gavalian, G; Kuchina, E; Amarian, M; Aniol, K A; Beaumel, M; Benaoum, H; Bertin, P; Brossard, M; Chen, J-P; Chudakov, E; Craver, B; Cusanno, F; de Jager, C W; Deur, A; Feuerbach, R; Fieschi, J-M; Frullani, S; Garçon, M; Garibaldi, F; Gayou, O; Gilman, R; Gomez, J; Gueye, P; Guichon, P A M; Guillon, B; Hansen, O; Hayes, D; Higinbotham, D; Holmstrom, T; Hyde, C E; Ibrahim, H; Igarashi, R; Jiang, X; Jo, H S; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Laveissiere, G; Lerose, J J; Lindgren, R; Liyanage, N; Lu, H-J; Margaziotis, D J; Meziani, Z-E; McCormick, K; Michaels, R; Michel, B; Moffit, B; Monaghan, P; Nanda, S; Nelyubin, V; Potokar, M; Qiang, Y; Ransome, R D; Réal, J-S; Reitz, B; Roblin, Y; Roche, J; Sabatié, F; Saha, A; Sirca, S; Slifer, K; Solvignon, P; Subedi, R; Sulkosky, V; Ulmer, P E; Voutier, E; Wang, K; Weinstein, L B; Wojtsekhowski, B; Zheng, X; Zhu, L

    2007-12-14

    The present experiment exploits the interference between the deeply virtual Compton scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e,e'gamma)X cross section measured at Q2=1.9 GeV2 and xB=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to E_{q}, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced. PMID:18233443

  17. Deeply Virtual Compton Scattering off the neutron

    SciTech Connect

    M. Mazouz; A. Camsonne; C. Munoz Camacho; C. Ferdi; G. Gavalian; E. Kuchina; M. Amarian; K. A. Aniol; M. Beaumel; H. Benaoum; P. Bertin; M. Brossard; J.-P. Chen; E. Chudakov; B. Craver; F. Cusanno; C.W. de Jager; A. Deur; R. Feuerbach; J.-M. Fieschi; S. Frullani; M. Garcon; F. Garibaldi; O. Gayou; R. Gilman; J. Gomez; P. Gueye; P.A.M. Guichon; B. Guillon; O. Hansen; D. Hayes; D. Higinbotham; T. Holmstrom; C.E. Hyde; H. Ibrahim; R. Igarashi; X. Jiang; H.S. Jo; L.J. Kaufman; A. Kelleher; A. Kolarkar; G. Kumbartzki; G. Laveissiere; J.J. LeRose; R. Lindgren; N. Liyanage; H.-J. Lu; D.J. Margaziotis; Z.-E. Meziani; K. McCormick; R. Michaels; B. Michel; B. Moffit; P. Monaghan; S. Nanda; V. Nelyubin; M. Potokar; Y. Qiang; R.D. Ransome; J.-S. Real; B. Reitz; Y. Roblin; J. Roche; F. Sabatie; A. Saha; S. Sirca; K. Slifer; P. Solvignon; R. Subedi; V. Sulkosky; P.E. Ulmer; E. Voutier; K. Wang; L.B. Weinstein; B. Wojtsekhowski; X. Zheng; L. Zhu

    2007-12-01

    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\\vec e},e'\\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  18. Experimental confirmation of neoclassical Compton scattering theory

    SciTech Connect

    Aristov, V. V.; Yakunin, S. N.; Despotuli, A. A.

    2013-12-15

    Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.

  19. A new Compton densitometer for measuring pulmonary edema

    SciTech Connect

    Loo, B.W.; Goulding, F.S.; Simon, S.

    1986-02-01

    Pulmonary edema (PE) is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. The chest x-ray, the standard method for validating the presence of PE, is neither quantitative nor sensitive. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical use. To deal with the problem of attenuation along the beam paths, previous gamma-ray techniques require simultaneous measurement of transmitted and scattered beams. Since multiple scattering is a strong function of the density of the scattering medium and the mass distribution within the detection geometry, there will be inherent uncertainties in the system calibration unless it is performed on a body structure closely matched to that of each individual patient. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density, measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray.

  20. GRAVITY detector systems

    NASA Astrophysics Data System (ADS)

    Mehrgan, Leander H.; Finger, Gert; Accardo, Matteo; Lizon, Jean-Louis; Stegmeier, Joerg; Eisenhauer, Frank

    2014-07-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. It will combine the AO corrected beams of the four VLT telescopes. The GRAVITY instrument uses a total of five eAPD detectors, four of which are for wavefront sensing and one for the Fringe tracker. In addition two Hawaii2RG are used, one for the acquisition camera and one for the spectrometer. A compact bath cryostat is used for each WFS unit, one for each of the VLT Unit Telescopes. Both Hawaii2RG detectors have a cutoff wavelength of 2.5 microns. A new and unique element of GRAVITY is the use of infrared wavefront sensors. For this reason SELEX-Galileo has developed a new high speed avalanche photo diode detector for ESO. The SAPHIRA detector, which stands for Selex Avalanche Photodiodes for Highspeed Infra Red Applications, has been already evaluated by ESO. At a frame rate of 1 KHz, a read noise of less than one electron can be demonstrated. A more detailed presentation about the performance of the SPAHIRA detector will be given at this conference 1. Each SAPHIRA detector is installed in an LN2 bath cryostat. The detector stage, filter wheel and optics are mounted on the cold plate of the LN2 vessel and enclosed by a radiation shield. All seven detector systems are controlled and read out by the standard ESO NGC controller. The NGC is a controller platform which can be adapted and customized for all infrared and optical detectors. This paper will discuss specific controller modifications implemented to meet the special requirements of the GRAVITY detector systems and give an overview of the GRAVITY detector systems and their performance.

  1. The Latino Experience: New Implications for Compton Community College.

    ERIC Educational Resources Information Center

    Camacho, Julian S.

    Census data from 1990 reveal that Latinos (n=133,009) comprised 47% of California's Compton Community College District, a higher percentage than Blacks (n=91,574) who made up 32% and Whites, Asians, and others (n=60,417) who comprised 21%. This is reflected in Compton Community College's (CCC's) student population. Between fall 1994 and spring…

  2. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  3. Diodes stabilize LED output

    NASA Technical Reports Server (NTRS)

    Deters, R. A.

    1977-01-01

    Small-signal diodes are placed in series with light-emitting diodes (LED's) to stabilize LED output against temperature fluctuations. Simple inexpensive method compensates for thermal fluctuations over a broad temperature range. Requiring few components, technique is particularly useful where circuit-board space is limited.

  4. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  5. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  6. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  7. Compton effect thermally activated depolarization dosimeter

    DOEpatents

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  8. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  9. Detection of Defects in Acrylic and Steel Inclusions in Gypsum Using Compton Backscattered Gamma Rays

    NASA Astrophysics Data System (ADS)

    Boldo, Emerson M.; Appoloni, Carlos R.

    2011-08-01

    Compton scattering of gamma radiation is a nondestructive technique used for the detection of defects and inclusions in materials. The methodology allows one-side inspection of large structures, is relatively inexpensive and can be portable. The number of photons inelastically scattered within a well-defined volume element is linearly proportional to the electron density of the material. Targeting a sample with a collimated beam of gamma rays, the energy spectrum of backscattered photons can be used to determine local density perturbations. In this work we used the Compton backscattering technique to detection of small collinear defects in acrylic blocks and steel rods inclusions in gypsum blocks samples. The samples were irradiated with gamma rays from a O/2 mm collimated 241Am (100 mCi) source and the inelastically scattered photons were collected at an angle of 135° by a CdTe detector with a O/7 mm×30 mm collimation. Scanning was achieved by lateral movement of the sample blocks across the source and detector field of view in steps of 1 mm. The results showed that defects in the acrylic samples as small as 3 mm in size were visible in the intensity versus energy spectrum. The tests on gypsum blocks with steel rods inclusions suggest that, for a low energy and activity source, the effects of beam attenuation are more decisive to the scattered intensity than increasing of material density. An analysis of the density contrast is also presented.

  10. Data acquisition and analysis for the energy-subtraction Compton scatter camera for medical imaging

    NASA Astrophysics Data System (ADS)

    Khamzin, Murat Kamilevich

    In response to the shortcomings of the Anger camera currently being used in conventional SPECT, particularly the trade-off between sensitivity and spatial resolution, a novel energy-subtraction Compton scatter camera, or the ESCSC, has been proposed. A successful clinical implementation of the ESCSC could revolutionize the field of SPECT. Features of this camera include utilization of silicon and CdZnTe detectors in primary and secondary detector systems, list-mode time stamping data acquisition, modular architecture, and post-acquisition data analysis. Previous ESCSC studies were based on Monte Carlo modeling. The objective of this work is to test the theoretical framework developed in previous studies by developing the data acquisition and analysis techniques necessary to implement the ESCSC. The camera model working in list-mode with time stamping was successfully built and tested thus confirming potential of the ESCSC that was predicted in previous simulation studies. The obtained data were processed during the post-acquisition data analysis based on preferred event selection criteria. Along with the construction of a camera model and proving the approach, the post-acquisition data analysis was further extended to include preferred event weighting based on the likelihood of a preferred event to be a true preferred event. While formulated to show ESCSC capabilities, the results of this study are important for any Compton scatter camera implementation as well as for coincidence data acquisition systems in general.

  11. Deeply virtual compton scattering from the neutron with CLAS and CLAS12

    SciTech Connect

    Sokhan, Daria

    2014-01-01

    Generalised Parton Distributions (GPDs) offer an insight into the three-dimensional structure of the nucleon and its internal dynamics, relating the longitudinal momentum of quarks to their transverse position. A very effective means of accessing GPDs is via measurements of cross-sections and polarisation-asymmetries in Deeply Virtual Compton Scattering (DVCS). In particular, the beam-spin asymmetry (BSA) in DVCS from the neutron is especially sensitive to angular momentum of the up- and down-quarks, and its measurement therefore has potential to shed important light on the puzzle of nucleon spin. We present a preliminary extraction of BSA from a recent experiment using a 6 GeV electron beam and the CLAS detector at Jefferson Laboratory and introduce the Central Neutron Detector to be integrated with CLAS12 for the exclusive measurement of neutron DVCS at 11 GeV, made possible by the Jefferson Lab upgrade.

  12. Computational methods for shape restoration of buried objects in Compton backscatter imaging

    SciTech Connect

    Watanabe, Yoichi; Monroe, J.; Keshavmurthy, S.; Jacobs, A.M.; Dugan, E.T.

    1996-01-01

    Image restoration techniques are studied for Compton backscatter imaging as applied to identification of a land mine buried in soil. Mathematical methods are developed to restore images, which include artifacts due to photon noise, soil surface irregularity, and vertical motion of the imaging system. The image restoration is formulated as an inverse photon transport problem. The forward photon transport is modeled by using a two-collision response function. The inverse problem then is solved by applying an iterative minimization algorithm, resulting in an estimation of characteristic parameters of objects. Mathematical relations among detector responses are derived by experimentally analyzing the detector response characteristics when there are soil surface irregularity and vertical motion of the imaging system. These are used to remove the artifacts from the images. The method successfully restores the geometrical feature of the object under simulated battlefield imaging conditions.

  13. Compton-Pair Production Space Telescope (ComPair) for MeV Gamma-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexander

    2016-04-01

    The gamma-ray energy range from a few hundred keV to a few hundred MeV has remained largely unexplored, mainly due to the challenging nature of the measurements, since the pioneering, but limited, observations by COMPTEL on the Compton Gamma-Ray Observatory (1991- 2000). This energy range is a transition region between thermal and nonthermal processes, and accurate measurements are critical for answering a broad range of astrophysical questions. We are developing a MIDEX-scale wide-aperture discovery mission, ComPair (Compton-Pair Production Space Telescope), to investigate the energy range from 200 keV to > 500 MeV with high energy and angular resolution and with sensitivity approaching a factor of 100 better than COMPTEL. This instrument will be equally capable to detect both Compton-scattering events at lower energy and pair-production events at higher energy. ComPair will build on the heritage of successful space missions including Fermi LAT, AGILE, AMS and PAMELA, and will utilize well-developed space-qualified detector technologies including Si-strip and CdZnTe-strip detectors, heavy inorganic scintillators, and plastic scintillators.

  14. Applications and Imaging Techniques of a Si/CdTe Compton Gamma-Ray Camera

    NASA Astrophysics Data System (ADS)

    Takeda, Shin'ichiro; Ichinohe, Yuto; Hagino, Kouichi; Odaka, Hirokazu; Yuasa, Takayuki; Ishikawa, Shin-nosuke; Fukuyama, Taro; Saito, Shinya; Sato, Tamotsu; Sato, Goro; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Yamaguchi, Mitsutaka; Tajima, Hiroyasu; Tanaka, Takaaki; Nakazawa, Kazuhiro; Fukazawa, Yasushi; Nakano, Takashi

    By using a new Compton camera consisting of a silicon double-sided strip detector (Si-DSD) and a CdTe doublesided strip detector (CdTe-DSD), originally developed for the ASTRO-H satellite mission, an experiment involving imaging radioisotopes was conducted to study their feasibility for hotspot monitoring. In addition to the hotspot imaging already provided by commercial imaging systems, identification of various radioisotopes is possible thanks to the good energy resolution obtained by the semiconductor detectors. Three radioisotopes of 133Ba (356 keV), 22Na (511 keV) and 137Cs (662 keV) were individually imaged by applying event selection in the energy window and the gamma-ray images were correctly overlapped by an optical picture. Detection efficiency of 1.68 ×10-4 (effective area: 1.7×10-3 cm2) and angular resolution of 3.8 degrees were obtained by stacking five detector modules for a 662 keV gamma ray. The higher detection efficiency required in specific use can be achieved by stacking more detector modules.

  15. X-ray generation by inverse Compton scattering at the superconducting RF test facility

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirotaka; Akemoto, Mitsuo; Arai, Yasuo; Araki, Sakae; Aryshev, Alexander; Fukuda, Masafumi; Fukuda, Shigeki; Haba, Junji; Hara, Kazufumi; Hayano, Hitoshi; Higashi, Yasuo; Honda, Yosuke; Honma, Teruya; Kako, Eiji; Kojima, Yuji; Kondo, Yoshinari; Lekomtsev, Konstantin; Matsumoto, Toshihiro; Michizono, Shinichiro; Miyoshi, Toshinobu; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakanishi, Kota; Noguchi, Shuichi; Okugi, Toshiyuki; Sato, Masato; Shevelev, Mikhail; Shishido, Toshio; Takenaka, Tateru; Tsuchiya, Kiyosumi; Urakawa, Junji; Watanabe, Ken; Yamaguchi, Seiya; Yamamoto, Akira; Yamamoto, Yasuchika; Sakaue, Kazuyuki; Hosoda, Seiichi; Iijima, Hokuto; Kuriki, Masao; Tanaka, Ryuta; Kuramoto, Ayaka; Omet, Mathieu; Takeda, Ayaki

    2015-02-01

    Quasi-monochromatic X-rays with high brightness have a broad range of applications in fields such as life sciences, bio-, medical applications, and microlithography. One method for generating such X-rays is via inverse Compton scattering (ICS). X-ray generation experiments using ICS were carried out at the superconducting RF test facility (STF) accelerator at KEK. A new beam line, newly developed four-mirror optical cavity system, and new X-ray detector system were prepared for experiments downstream section of the STF electron accelerator. Amplified pulsed photons were accumulated into a four-mirror optical cavity and collided with an incoming 40 MeV electron beam. The generated X-rays were detected using a microchannel plate (MCP) detector for X-ray yield measurements and a new silicon-on-insulator (SOI) detector system for energy measurements. The detected X-ray yield by the MCP detector was 1756.8±272.2 photons/(244 electron bunches). To extrapolate this result to 1 ms train length under 5 Hz operations, 4.60×105 photons/1%-bandwidth were obtained. The peak X-ray energy, which was confirmed by the SOI detector, was 29 keV, and this is consistent with ICS X-rays.

  16. Compton Radiation for Nuclear Waste Management and Transmutation

    NASA Astrophysics Data System (ADS)

    Bulyak, E.; Urakawa, J.

    2015-10-01

    Compton inverse radiation is emitted in the process of backscattering of the laser pulses off the relativistic electrons. This radiation possesses high spectral density and high energy of photons--in hard x-ray up to gammaray energy range--with moderate electron energies (hundreds of MeV up to 1 GeV) due to short wavelength of the laser radiation. The Compton radiation is well collimated: emitting within a narrow cone along the electron beam. A distinct property of the Compton inverse radiation is a steep high-energy cutoff of the spectrum and the maximal intensity just below the cutoff. The Compton sources can attain: spectral density up to 1014 gammas/(s 0.1%bandwidth) in MeV range of energies, and spectral brightness up to 1020 gammas/(smm2mr2 0.1% bw). Applicability of Compton sources for nuclear waste management and detection of radioisotopes and fissionable nuclides are discussed in the report. Also application limits of Compton gamma sources for transmutation of radioactive isotopes are estimated. A recently proposed subtracting method, in which two sets of data obtained by irradiating the object by the Compton beams with slightly different maximal energies are compared, will enhance resolution of detection radioactive elements at the 'atomic' (hundreds of keV) and the 'nuclear' (a few MeV) photon energies.

  17. Nucleon Compton scattering in the Dyson-Schwinger approach

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Fischer, Christian S.

    2013-02-01

    We analyze the nucleon’s Compton scattering amplitude in the Dyson-Schwinger/Faddeev approach. We calculate a subset of diagrams that implements the nonperturbative handbag contribution as well as all t-channel resonances. At the quark level, these ingredients are represented by the quark Compton vertex whose analytic properties we study in detail. We derive a general form for a fermion two-photon vertex that is consistent with its Ward-Takahashi identities and free of kinematic singularities, and we relate its transverse part to the on-shell nucleon Compton amplitude. We solve an inhomogeneous Bethe-Salpeter equation for the quark Compton vertex in rainbow-ladder truncation and implement it in the nucleon Compton scattering amplitude. The remaining ingredients are the dressed quark propagator and the nucleon’s bound-state amplitude which are consistently solved from Dyson-Schwinger and covariant Faddeev equations. We verify numerically that the resulting quark Compton vertex and nucleon Compton amplitude both reproduce the πγγ transition form factor when the pion pole in the t channel is approached.

  18. The dose from Compton backscatter screening.

    PubMed

    Rez, Peter; Metzger, Robert L; Mossman, Kenneth L

    2011-04-01

    Systems based on the detection of Compton backscattered X rays have been deployed for screening personnel for weapons and explosives. Similar principles are used for screening vehicles at border-crossing points. Based on well-established scattering cross sections and absorption coefficients in conjunction with reasonable estimates of the image contrast and resolution, the entrance skin dose and the dose at a depth of 1 cm can be calculated. The effective dose can be estimated using the same conversion coefficients as used to convert exposure measurements to the effective dose. It is shown that the effective dose is highly dependent on image resolution (i.e. pixel size).The effective doses for personnel screening systems are unlikely to be in compliance with the American National Standards Institute standard NS 43.17 unless the pixel sizes are >4 mm. Nevertheless, calculated effective doses are well below doses associated with health effects. PMID:21068018

  19. The Compton Mirror in NGC 4151

    NASA Technical Reports Server (NTRS)

    Poutanen, Juri; Sikora, Marek; Begelman, Mitchell C.; Magdziarz, Pawel

    1996-01-01

    We show that the sharp cutoff in the hard X-ray spectrum of NGC 4151, unusual for Seyfert 1 galaxies, can be reconciled with the average Seyfert 1 spectrum if we assume that the central source is completely hidden from our line of sight by the thick part of the accretion disk or by the broad emission-line clouds. The observed X-ray radiation is produced by scattering of the Seyfert 1 type spectrum in the higher, cooler parts of the accretion disk corona, or in a wind. A sharp cutoff appears as a result of the Compton recoil effect. This model naturally explains a discrepancy regarding the inclination of the central source, inferred to be low (face-on) from observations of the iron K-alpha emission line, but inferred to be high on the basis of optical and UV observations.

  20. Deeply Virtual Compton Scattering on the Proton

    NASA Astrophysics Data System (ADS)

    Hirlinger Saylor, Nicholas; JLab, CLAS Collaboration

    2013-10-01

    DVCS on the proton was measured at Jefferson Lab with CLAS at Hall B with a polarized 5.88 GeV electron beam on an unpolarized hydrogen target. A preliminary measurement of unpolarized and polarized cross sections was made over wide kinematics, from 1GeV2 Compton form factor HIm , which is proportional to H, was extracted. In addition, we have made a comparison of measured cross sections with predictions from several different handbag based models. This measurement allows for further constraints to be placed on the various models, especially on H. Preliminary results for the extraction of the GPD H will be presented and discussed.

  1. Compton scattering vertex for massive scalar QED

    SciTech Connect

    Bashir, A.; Concha-Sanchez, Y.; Delbourgo, R.; Tejeda-Yeomans, M. E.

    2009-08-15

    We investigate the Compton scattering vertex of charged scalars and photons in scalar quantum electrodynamics (SQED). We carry out its nonperturbative construction consistent with Ward-Fradkin-Green-Takahashi identity which relates 3-point vertices to the 4-point ones. There is an undetermined part which is transverse to one or both the external photons, and needs to be evaluated through perturbation theory. We present in detail how the transverse part at the 1-loop order can be evaluated for completely general kinematics of momenta involved in covariant gauges and dimensions. This involves the calculation of genuine 4-point functions with three massive propagators, the most nontrivial integrals reported in this paper. We also discuss possible applications of our results.

  2. Resonant tunneling diode photodetector with nonconstant responsivity

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Wang, Guanglong; Ni, Haiqiao; Chen, Jianhui; Gao, Fengqi; Li, Baochen; Pei, Kangming; Niu, Zhichuan

    2015-11-01

    Resonant tunneling diode with an In0.53Ga0.47As absorption layer is designed for light detection at 1550 nm. The responsivity of the detector is simulated by solving the Tsu-Esaki equation. The simulation results show that the responsivity of the detector is nonconstant. It decreases with the increment of the power density of the incident light. Samples of the detector are fabricated by molecular beam epitaxy. The experimental results show that the responsivity increases while the power density of the incident light decreases which agree with the simulation results. The responsivity reaches 4.8×108 A/(W/μm2) at room temperature and 5.0×109 A/(W/μm2) at 77 K when the power density of the incident light is 1×10-13 W/μm2.

  3. Performance measurements of hybrid PIN diode arrays

    SciTech Connect

    Jernigan, J.G.; Arens, J.F. . Space Sciences Lab.); Kramer, G. ); Collins, T.; Herring, J. ); Shapiro, S.L. ); Wilburn, C.D. )

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 {times} 64 pixels, each 120 {mu}m square, and the other format having 256 {times} 256 pixels, each 30 {mu}m square. In both cases, the thickness of the PIN diode layer is 300 {mu}m. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs.

  4. Some Issues in Deeply-Virtual Compton Scattering

    NASA Astrophysics Data System (ADS)

    Bakker, B. L. G.; Ji, C.-R.

    2010-04-01

    Compton scattering provides a unique tool for studying hadron structure. In contrast to elastic electron scattering, which provides information about the hadron's structure in terms of form factors, Compton scattering is more versatile, as the basic process is the coupling of two electro-magnetic currents. Therefore, the hadronic structure can be described at high momentum transfer in the language of generalized parton distributions (GPDs), which code information about the light-front wave functions of the probed hadrons. In this paper we discuss some issues involved in the application of the GPD idea, in particular the effectivity of Compton scattering as a filter of the hadron structure.

  5. Rapid screening of transferrin-binders in the flowers of Bauhinia blakeana Dunn by on-line high-performance liquid chromatography-diode-array detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry-transferrin-fluorescence detection system.

    PubMed

    Liu, Meixian; Dong, Jing; Lin, Zongtao; Niu, Yanyan; Zhang, Xiaotian; Jiang, Haixiu; Guo, Ning; Li, Wei; Wang, Hong; Chen, Shizhong

    2016-06-10

    Transferrin (Transferrin, TRF, TF) has drawn increasing attention in cancer therapy due to its potential applications in drug delivery. TF receptor, highly expressed in tumor cells, recognizes and transports Fe(3+)-TF into cells to release iron into cytoplasm. Thus, discovering TF-binding compounds has become an active research area and is of great importance for target therapy. In this study, an on-line analysis method was established for screening TF-binding compounds from the flowers of Bauhinia blakeana Dunn using a high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-transferrin-fluorescence detector (HPLC-DAD-MS(n)-TF-FLD) method. As a result, 33 of 80 identified or tentatively characterized compounds in the sample were TF-binding active. Twenty-five flavonol glycosides and eight phenolic acids were identified as TF-binders. Twelve of these active compounds together with six standard compounds were used to study the dose-response effects and structure-activity relationships of flavonoids and phenolic acids. The method was validated by vitexin with a good linearity in the range of concentrations used in the study. The limit of detection for vitexin was 0.1596 nmol. Our study indicated that the established method is simple, rapid and sensitive for screening TF-binding active compounds in the extract of Bauhinia blakeana Dunn, and therefore is important for discovering potential anti-cancer ingredients from complex samples for TF related drug delivery. PMID:27178150

  6. Propulsion of nanowire diodes.

    PubMed

    Calvo-Marzal, Percy; Sattayasamitsathit, Sirilak; Balasubramanian, Shankar; Windmiller, Joshua R; Dao, Cuong; Wang, Joseph

    2010-03-14

    The propulsion of semiconductor diode nanowires under external AC electric field is described. Such fuel-free electric field-induced nanowire propulsion offers considerable promise for diverse technological applications. PMID:20177595

  7. Inelastic tunnel diodes

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Power is extracted from plasmons, photons, or other guided electromagnetic waves at infrared to midultraviolet frequencies by inelastic tunneling in metal-insulator-semiconductor-metal diodes. Inelastic tunneling produces power by absorbing plasmons to pump electrons to higher potential. Specifically, an electron from a semiconductor layer absorbs a plasmon and simultaneously tunnels across an insulator into metal layer which is at higher potential. The diode voltage determines the fraction of energy extracted from the plasmons; any excess is lost to heat.

  8. Vortex diode jet

    SciTech Connect

    Houck, E.D.

    1994-05-17

    A fluid transfer system is described that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other. 10 figures.

  9. Observations of GRB 990123 by the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Briggs, M. S.; Band, D. L.; Kippen, R. M.; Preece, R. D.; Kouveliotou, C.; vanParadijs, J.; Share, G. H.; Murphy, R. J.; Matz, S. M.; Connors, A.

    1999-01-01

    GRB 990123 was the first burst from which simultaneous optical, X-ray, and gamma-ray emission was detected; its afterglow has been followed by an extensive set of radio, optical, and X-ray observations. We have studied the gamma-ray burst itself as observed by the Compton Gamma Ray Observatory detectors. We find that gamma-ray fluxes are not correlated with the simultaneous optical observations and that the gamma-ray spectra cannot be extrapolated simply to the optical fluxes. The burst is well fitted by the standard four-parameter GRB function, with the exception that excess emission compared with this function is observed below approx. 15 keV during some time intervals. The burst is characterized by the typical hard-to-soft and hardness-intensity correlation spectral evolution patterns. The energy of the peak of the vf (sub v), spectrum, E (sub p), reaches an unusually high value during the first intensity spike, 1470 plus or minus 110 keV, and then falls to approx. 300 keV during the tail of the burst. The high-energy spectrum above approx. 1 MeV is consistent with a power law with a photon index of about -3. By fluence, GRB 990123 is brighter than all but 0.4% of the GRBs observed with BATSE (Burst and Transient Source Experiment), clearly placing it on the -3/2 power-law portion of the intensity distribution. However, the redshift measured for the afterglow is inconsistent with the Euclidean interpretation of the -3/2 power law. Using the redshift value of greater than or equal to 1.61 and assuming isotropic emission, the gamma-ray energy exceeds 10 (exp 54) ergs.

  10. The COMPTON Observatory: Reflections on its origins and history

    NASA Astrophysics Data System (ADS)

    Kniffen, D. A.; Gehrels, N.

    1997-05-01

    The Gamma Ray Observatory (GRO) was planned as a mission to make the first comprehensive study of the gamma-ray sky over the full gamma-ray spectrum. It followed on the heels of two successful small astronomy satellites with high energy gamma-ray telescopes, SAS-2 and COS-B, and the High Energy Astronomical Observatory (HEAO) with low-energy gamma-ray detectors. The guideline was to cover the spectrum from the high energy limit of the x-ray domain to the highest energies for which a detectable flux might be reasonably observed. The objective was to include transients as well as persistent sources. The efforts to get such a mission approved stands as a model for developing a consensus of the scientific community for a mission involving a relatively small community of observers. A broad and vigorous guest investigator program was a key element in this effort. The results of the guest investigator program are testimony to the wisdom of this plan. The great success of GRO (now the Compton Observatory) was a result of the dedicated efforts of a few individuals and a project management team that understood how to work with scientists. In spite of increasing budgetary pressure and long delays beyond their control, the project management brought GRO to its successful launch with a minimum of cost growth resulting from the delays. This development period set the stage for what has been one of the most successful scientific programs in NASA's history. The very exciting results presented at this conference by a very broad community of scientists is a testimony to the dedicated efforts of a small group of visionaries with the foresight to see the potential of such a mission.

  11. Light-emitting Diodes

    PubMed Central

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  12. Experimental measurement of noise-removal techniques for Compton backscatter imaging systems as applied to the detection of landmines

    NASA Astrophysics Data System (ADS)

    Wehlburg, Joseph C.; Keshavmurthy, Shyam P.; Dugan, Edward T.; Jacobs, Alan M.

    1996-05-01

    The measurement and removal of noise from images created using lateral migration backscatter radiography (LMBR) a form of Compton backscatter imaging (CBI) is applied to the detection and identification of landmines. The photons that interact with the landmine produce the signal component of interest. The signal is corrupted by both quantum and structured noise. The structured noise is due to photon interaction with non-mine material. Due to the strong response of all detectors to soil surface features and other buried objects, image enhancement methods are essential for landmine identification. A four detector system is used to generate the LMBR/CB images. The inner two detectors are uncollimated and positioned to optimally detect first scattered photons. The outer detectors are collimated to detect photons that have had two or more scatterings. The difference between the collimated and uncollimated detector responses to the different types of landmine image masking phenomena, form the basis of the image enhancement and landmine identification procedures. The surface feature information is obtained by the uncollimated detectors. The collimated detector signal contains information about the surface features as well as the buried objects. Using images from these two sets of detectors the surface objects can be analyzed for possible landmines and then removed. The buried objects can then be resolved. The measurements and image enhancements demonstrate that it is possible to detect 12' plastic landmines at a buried of 3' under simulated battlefield conditions.

  13. Compton scattering profile for in vivo XRF techniques.

    PubMed

    Tartari, A; Baraldi, C; Felsteiner, J; Casnati, E

    1991-05-01

    The contribution from single Compton scattered photons to the background in in vivo x-ray fluorescence analysis is evaluated by taking into account the energy broadening of the scattered photons which reflects the momentum distribution of the target electrons. A general-purpose Monte Carlo evaluation of multiple scattering components, as well as accurate experimental verifications with 59.54 keV photons impinging on various targets of interest for real-life irradiation, confirm that the single Compton scattering profiles of the elements composing the biological matrix dominate the trend and amplitude of the background in the region of interest with near-backscatter configurations. Step features are likewise explained in terms of single Compton phenomenology. Other probable sources of background, such as photoelectron Bremsstrahlung and pile-up distribution, are studied both theoretically and experimentally in order to compare their amplitude and features with those of single Compton scattered photon profiles. PMID:2068224

  14. Double deeply virtual Compton scattering on nucleons and nuclei

    SciTech Connect

    Kopeliovich, B. Z.; Schmidt, Ivan; Siddikov, M.

    2010-07-01

    In this paper we evaluate the double deeply virtual Compton scattering on nucleons and nuclei in the framework of the color dipole model. Both the effects of quark and the gluon shadowing are taken into account.

  15. Compton Profile Study of Intermetallic Ti{sub 3}Al

    SciTech Connect

    Vyas, V.; Sharma, G.; Mishra, M. C.; Sharma, B. K.; Joshi, K. B.

    2011-10-20

    The Compton scattering measurement on intermetallic alloy Ti{sub 3}Al is reported in this work. The measurement is made using 59.54 keV gamma-rays from Am{sup 241} source. Theoretical calculation of Compton profile is also performed employing CRYSTAL code within the framework of density functional theory to compare with the measurement. The theoretical profile of the alloy is also synthesized following the superposition model taking the published Compton profiles of elemental solids from the APW method. The experimental study of charge transfer in the alloys has also been done by performing the experimental Compton profile measurements on Ti and Al following the superposition model and charge transfer from Al to Ti is clearly seen on the alloy formation.

  16. Efficient scalable solid-state neutron detector

    SciTech Connect

    Moses, Daniel

    2015-06-15

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a {sup 6}Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m{sup 2}, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.

  17. Efficient scalable solid-state neutron detector

    NASA Astrophysics Data System (ADS)

    Moses, Daniel

    2015-06-01

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a 6Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m2, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.

  18. Efficient scalable solid-state neutron detector.

    PubMed

    Moses, Daniel

    2015-06-01

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a (6)Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m(2), is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security. PMID:26133869

  19. Adjoint calculations for multiple scattering of Compton and Rayleigh effects

    NASA Astrophysics Data System (ADS)

    Fernández, J. E.; Sumini, M.

    1992-08-01

    As is well known, the experimental determination of the Compton profile requires a particular geometry with a scattering angle close to π. That situation involves a narrow multiple-scattering spectrum that overlaps the Compton peak, making it difficult to analyze the different contributions to the profile. We show how the solution of the adjoint problem can help in devising more useful experimental configurations, giving, through its classical "importance" meaning, a formally clear picture of the whole problem.

  20. Integrating IR detector imaging systems

    NASA Technical Reports Server (NTRS)

    Bailey, G. C. (Inventor)

    1984-01-01

    An integrating IR detector array for imaging is provided in a hybrid circuit with InSb mesa diodes in a linear array, a single J-FET preamplifier for readout, and a silicon integrated circuit multiplexer. Thin film conductors in a fan out pattern deposited on an Al2O3 substrate connect the diodes to the multiplexer, and thick film conductors also connect the reset switch and preamplifier to the multiplexer. Two phase clock pulses are applied with a logic return signal to the multiplexer through triax comprised of three thin film conductors deposited between layers. A lens focuses a scanned image onto the diode array for horizontal read out while a scanning mirror provides vertical scan.

  1. Tests of by-pass diodes at cryogenic temperatures for the KATRIN magnets

    SciTech Connect

    Gil, W.; Bolz, H.; Jansen, A.; Müller, K.; Steidl, M.; Hagedorn, D.

    2014-01-27

    The Karlsruhe Tritium Neutrino experiment (KATRIN) requires a series of superconducting solenoid magnets for guiding beta-electrons from the source to the detector. By-pass diodes will operate at liquid helium temperatures to protect the superconducting magnets and bus bars in case of quenches. The operation conditions of the by-pass diodes depend on the different magnet systems of KATRIN. Therefore, different diode stacks are designed with adequate copper heat sinks assuming adiabatic conditions. The by-pass diode stacks have been submitted to cold tests both at liquid nitrogen and liquid helium temperatures for checking operation conditions. This report presents the test set up and first results of the diode characteristics at 300 K and 77 K, as well as of endurance tests of the diode stacks at constant current load at 77 K and 4.2 K.

  2. High resistivity silicon radiation detectors

    NASA Astrophysics Data System (ADS)

    Segal, Julie Diane

    This work addresses the use of silicon detectors both for charged particles in a high energy physics application, and for electromagnetic radiation, specifically x-ray and γ-ray detectors. The second generation of a PIN diode array pixel detector integrated with full twin well CMOS was developed for high energy particle physics. A new vertical high voltage diode termination structure was developed and compared to other diode termination structures through simulations. The new structure reduced the process complexity and improved the yield and robustness to mechanical damage to the backside, allowing us to build a much larger detector with denser frontside patterning, implementing a new sparse-field read-out design. Radiation measurements from this pixel detector are presented, which represent the first integrated sparse-field read-out results ever reported. A prototype 1mm thick PIN diode array x-ray detector with a depletion voltage of 800V was simulated, designed and fabricated for protein crystallography. Using 2D simulations, an optimized 5 floating ring high voltage structure was designed and implemented. Preliminary measurements indicate that the detector can be operated successfully up to 1000V. A new cylindrical drift detector was developed for x-ray absorbtion spectroscopy. To minimize the drift time, an analytic expression for drift field and 2D simulations were used to optimize the applied surface potential for a uniform drift field. Three novel integrated transistors for first stage amplification were designed and fabricated, which show promise of working with fairly straightforward optimization. A new technique for controlling dark current due to surface generation was introduced and implemented successfully. Instead of collecting the surface current at a guard anode, surface generation is suppressed by putting n+ diffusion rings between the p+ rings, dramatically reducing the depleted oxide interface area which is the site for surface generation

  3. Statistical simulation of multiple Compton backscattering process

    NASA Astrophysics Data System (ADS)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.

    2014-09-01

    A number of laboratories are currently developing monochromatic sources of X-rays and gamma quanta based on the Compton backscattering (CBS) of laser photons by relativistic electrons. Modern technologies are capable of providing a concentration of electrons and photons in the interaction point such that each primary electron can emit several hard photons. In contrast to the well-known nonlinear CBS process, in which an initial electron "absorbs" a few laser photons and emits a single hard one, the above-mentioned process can be called a multiple CBS process and is characterized by a mean number of emitted photons. The present paper is devoted to simulating the parameters of a beam of back scattered quanta based on the Monte Carlo technique. It is shown that, even in the case of strong collimation of a resulting photon beam, the radiation monochromaticity may deteriorate because of the contribution coming from the multiple photon emission, which is something that must be considered while designing new CBS sources.

  4. Radiation therapy at compact Compton sources.

    PubMed

    Jacquet, Marie; Suortti, Pekka

    2015-09-01

    The principle of the compact Compton source is presented briefly. In collision with an ultrarelativistic electron bunch a laser pulse is back-scattered as hard X-rays. The radiation cone has an opening of a few mrad, and the energy bandwidth is a few percent. The electrons that have an energy of the order of a few tens of MeV either circulate in storage ring, or are injected to a linac at a frequency of 10-100 MHz. At the interaction point the electron bunch collides with the laser pulse that has been amplified in a Fabry-Perot resonator. There are several machines in design or construction phase, and projected fluxes are 10(12) to 10(14) photons/s. The flux available at 80 keV from the ThomX machine is compared with that used in the Stereotactic Synchrotron Radiation Therapy clinical trials. It is concluded that ThomX has the potential of serving as the radiation source in future radiation therapy programs, and that ThomX can be integrated in hospital environment. PMID:25752735

  5. Anomalous nonlinear X-ray Compton scattering

    NASA Astrophysics Data System (ADS)

    Fuchs, Matthias; Trigo, Mariano; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, Philip H.; Feng, Yiping; Herrmann, Sven; Carini, Gabriella A.; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Moeller, Stefan; Hastings, Jerome B.; Reis, David A.

    2015-11-01

    X-ray scattering is typically used as a weak linear atomic-scale probe of matter. At high intensities, such as produced at free-electron lasers, nonlinearities can become important, and the probe may no longer be considered weak. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions: the concerted nonlinear Compton scattering of two identical hard X-ray photons producing a single higher-energy photon. The X-ray intensity reached 4 × 1020 W cm-2, corresponding to an electric field well above the atomic unit of strength and within almost four orders of magnitude of the quantum-electrodynamic critical field. We measure a signal from solid beryllium that scales quadratically in intensity, consistent with simultaneous non-resonant two-photon scattering from nearly-free electrons. The high-energy photons show an anomalously large redshift that is incompatible with a free-electron approximation for the ground-state electron distribution, suggesting an enhanced nonlinearity for scattering at large momentum transfer.

  6. Fabrication of detectors and transistors on high-resistivity silicon

    SciTech Connect

    Holland, S.

    1988-06-01

    A new process for the fabrication of silicon p-i-n diode radiation detectors is described. The utilization of backside gettering in the fabrication process results in the actual physical removal of detrimental impurities from critical device regions. This reduces the sensitivity of detector properties to processing variables while yielding low diode reverse-leakage currents. In addition, gettering permits the use of processing temperatures compatible with integrated-circuit fabrication. P-channel MOSFETs and silicon p-i-n diodes have been fabricated simultaneously on 10 k..cap omega../center dot/cm<100> silicon using conventional integrated-circuit processing techniques. 25 refs., 5 figs.

  7. Innovative uses for conventional radiation detectors via pulse shape analysis

    SciTech Connect

    Beckedahl, D; Blair, J; Friensehner, A; Kammeraad, J E; Schmid, G

    1999-03-03

    In this report we have discussed two applications for digital pulse shape analysis in Ge detectors: Compton suppression and {gamma}-ray imaging. The Compton suppression aspect has been thoroughly studied during the past few years, and a real-time, laboratory-prototype system has been fielded. A summary of results from that set up have been discussed here. The {gamma}-ray imaging aspect, while not yet developed experimentally, looks very promising theoretically as the simulations presented here have shown. Experimental work currently underway at Berkeley (as discussed in section 4.3) should help further guide us towards the proper developmental path.

  8. In vivo dosimetry with silicon diodes in total body irradiation

    NASA Astrophysics Data System (ADS)

    Oliveira, F. F.; Amaral, L. L.; Costa, A. M.; Netto, T. G.

    2014-02-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments.

  9. Submillimeter wave detection with superconducting tunnel diodes

    NASA Technical Reports Server (NTRS)

    Wengler, Michael J.

    1992-01-01

    Superconductor-Insulator-Superconductor (SIS) diodes are the detector elements in the most sensitive heterodyne receivers available from 100 to 500 GHz. SIS mixers are the front end of radio astronomical systems around the world. SIS mixer technology is being extended to 1 THz and higher frequencies for eventual use on spaceborne astronomical experiments. Here is a short review of submillimeter SIS mixers. The role of impedance matching in the proper design of an SIS mixer is described. A variety of methods for achieving good impedance match at submillimeter frequencies are presented. The experimental state of the submillimeter SIS mixer art is described and summarized.

  10. Development of Electron Tracking Compton Camera using micro pixel gas chamber for medical imaging

    NASA Astrophysics Data System (ADS)

    Kabuki, Shigeto; Hattori, Kaori; Kohara, Ryota; Kunieda, Etsuo; Kubo, Atsushi; Kubo, Hidetoshi; Miuchi, Kentaro; Nakahara, Tadaki; Nagayoshi, Tsutomu; Nishimura, Hironobu; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Shirahata, Takashi; Takada, Atsushi; Tanimori, Toru; Ueno, Kazuki

    2007-10-01

    We have developed the Electron Tracking Compton Camera (ETCC) with reconstructing the 3-D tracks of the scattered electron in Compton process for both sub-MeV and MeV gamma rays. By measuring both the directions and energies of not only the recoil gamma ray but also the scattered electron, the direction of the incident gamma ray is determined for each individual photon. Furthermore, a residual measured angle between the recoil electron and scattered gamma ray is quite powerful for the kinematical background rejection. For the 3-D tracking of the electrons, the Micro Time Projection Chamber (μ-TPC) was developed using a new type of the micro pattern gas detector. The ETCC consists of this μ-TPC (10×10×8 cm 3) and the 6×6×13 mm 3 GSO crystal pixel arrays with a flat panel photo-multiplier surrounding the μ-TPC for detecting recoil gamma rays. The ETCC provided the angular resolution of 6.6° (FWHM) at 364 keV of 131I. A mobile ETCC for medical imaging, which is fabricated in a 1 m cubic box, has been operated since October 2005. Here, we present the imaging results for the line sources and the phantom of human thyroid gland using 364 keV gamma rays of 131I.

  11. First measurement of Z/γ* production in compton scattering of quasi-real photons

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Abbiendi, G.; Ackerstaff, K.; Alexander, G.; Allison, J.; Altekamp, N.; Anderson, K. J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S. F.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S. D.; Blobel, V.; Bloodworth, I. J.; Bobinski, M.; Bock, P.; Böhme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, R. M.; Burckhart, H. J.; Burgard, C.; Bürgin, R.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrisman, D.; Ciocca, C.; Clarke, P. E. L.; Clay, E.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Couyoumtzelis, C.; Coxe, R. L.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davis, R.; de Jong, S.; del Pozo, L. A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M. S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Eatough, D.; Estabrooks, P. G.; Etzion, E.; Evans, H. G.; Fabbri, F.; Fanti, M.; Faust, A. A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Fürtjes, A.; Futyan, D. I.; Gagnon, P.; Gary, J. W.; Gascon, J.; Gascon-Shotkin, S. M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W. R.; Gingrich, D. M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwé, M.; Hanson, G. G.; Hansroul, M.; Hapke, M.; Harder, K.; Hargrove, C. K.; Hartmann, C.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Herndon, M.; Herten, G.; Heuer, R. D.; Hildreth, M. D.; Hill, J. C.; Hillier, S. J.; Hobson, P. R.; Hocker, A.; Homer, R. J.; Honma, A. K.; Horváth, D.; Hossain, K. R.; Howard, R.; Hüntemeyer, P.; Igo-Kemenes, P.; Imrie, D. C.; Ishii, K.; Jacob, F. R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C. R.; Jovanovic, P.; Junk, T. R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P. I.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Kolrep, M.; Komamiya, S.; Kowalewski, R. V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G. D.; Lanske, D.; Lauber, J.; Lautenschlager, S. R.; Lawson, I.; Layter, J. G.; Lazic, D.; Lee, A. M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A. W.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Losty, M. J.; Ludwig, J.; Liu, D.; Macchiolo, A.; MacPherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A. J.; Martin, J. P.; Martinez, G.; Mashimo, T.; Mättig, P.; McDonald, W. J.; McKenna, J.; McKigney, E. A.; McMahon, T. J.; McPherson, R. A.; Meijers, F.; Menke, S.; Merritt, F. S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H. A.; Nellen, B.; Nisius, R.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oreglia, M. J.; Orito, S.; Pálinkás, J.; Pásztor, G.; Pater, J. R.; Patrick, G. N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Polok, J.; Przybycień , M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S. A.; Rodning, N.; Roney, J. M.; Roscoe, K.; Rossi, A. M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D. R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W. M.; Sarkisyan, E. K. G.; Sbarra, C.; Schaile, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schöning, A.; Schröder, M.; Schumacher, M.; Schwick, C.; Scott, W. G.; Seiler, T.; Seuster, R.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Sittler, A.; Skuja, A.; Smith, A. M.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, D.; Ströhmer, R.; Surrow, B.; Talbot, S. D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M. A.; von Törne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turcot, A. S.; Turner-Watson, M. F.; van Kooten, R.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wäckerle, F.; Wagner, A.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wermes, N.; White, J. S.; Wilson, G. W.; Wilson, J. A.; Wyatt, T. R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-10-01

    We report the first observation of Z/γ* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e--->e+e- Z/γ*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/γ* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/γ* branching ratio to hadrons to be (0.9+/-0.3+/-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)eγ* production, this product is found to be (4.1+/-1.6+/-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.

  12. X-ray Compton backscattering techniques for process tomography: imaging and characterization of materials

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Duvauchelle, P.; Peix, G.; Babot, D.

    1996-03-01

    Non-destructive evaluation by Compton scattering using an industrial x-ray tube allows three-dimensional (3D) imaging of materials. The x-ray tube and the detector are set on the same side of the object. Thus, non-destructive evaluation of the wall of a tank, even when it is full, is possible without the requirement for the x-ray beam to cross the whole object. Several applications were tried in our laboratory. Besides 3D imaging, a method allowing thickness measurement of a wall was developed, which was especially suitable for multilayer compounds. The accuracy is 0957-0233/7/3/008/img1 mm. Compton scattering techniques also allow point-by-point density measurements in the near-surface zone of any component (even dense and bulky ones). An accuracy of 1% was achieved for light composite materials and also for dense components (0957-0233/7/3/008/img2) provided by powder metallurgy. A new application allows us to perform 3D imaging using a linear accelerator (6 MeV) as the photon source. Thus, testing can be performed inside a tank, even through a thick and dense wall (8 mm of steel).

  13. Towards direct reconstruction from a gamma camera based on compton scattering

    SciTech Connect

    Cree, M.J.; Bones, P.J. . Dept. of Electrical and Electronic Engineering)

    1994-06-01

    The Compton scattering camera (sometimes called the electronically collimated camera) has been shown by others to have the potential to better the photon counting statistics and the energy resolution of the Anger camera for imaging in SPECT. By using coincident detection of Compton scattering events on two detecting planes, a photon can be localized to having been sourced on the surface of a cone. New algorithms are needed to achieve fully three-dimensional reconstruction of the source distribution from such a camera. If a complete set of cone-surface projections are collected over an infinitely extending plane, it is shown that the reconstruction problem is not only analytically solvable, but also overspecified in the absence of measurement uncertainties. Two approaches to direct reconstruction are proposed, both based on the photons which travel perpendicularly between the detector planes. Results of computer simulations are presented which demonstrate the ability of the algorithms to achieve useful reconstructions in the absence of measurement uncertainties (other than those caused by quantization). The modifications likely to be required in the presence of realistic measurement uncertainties are discussed.

  14. Development of a low-cost-high-sensitivity Compton camera using CsI (Tl) scintillators (γI)

    NASA Astrophysics Data System (ADS)

    Kagaya, M.; Katagiri, H.; Enomoto, R.; Hanafusa, R.; Hosokawa, M.; Itoh, Y.; Muraishi, H.; Nakayama, K.; Satoh, K.; Takeda, T.; Tanaka, M. M.; Uchida, T.; Watanabe, T.; Yanagita, S.; Yoshida, T.; Umehara, K.

    2015-12-01

    We have developed a novel low-cost gamma-ray imaging Compton camera γI that has a high detection efficiency. Our motivation for the development of this detector was to measure the arrival directions of gamma rays produced by radioactive nuclides that were released by the Fukushima Daiichi nuclear power plant accident in 2011. The detector comprises two arrays of inorganic scintillation detectors, which act as a scatterer and an absorber. Each array has eight scintillation detectors, each comprising a large CsI (Tl) scintillator cube of side 3.5 cm, which is inexpensive and has a good energy resolution. Energies deposited by the Compton scattered electrons and subsequent photoelectric absorption, measured by each scintillation counter, are used for image reconstruction. The angular resolution was found to be 3.5° after using an image-sharpening technique. With this angular resolution, we can resolve a 1 m2 radiation hot spot that is located at a distance of 10 m from the detector with a wide field of view of 1 sr. Moreover, the detection efficiency 0.68 cps/MBq at 1 m for 662 keV (7.6 cps/μSv/h) is sufficient for measuring low-level contamination (i.e., less than 1 μSv/h) corresponding to typical values in large areas of eastern Japan. In addition to the laboratory tests, the imaging capability of our detector was verified in various regions with dose rates less than 1 μSv/h (e.g., Fukushima city).

  15. Photovoltaic module bypass diode encapsulation

    NASA Technical Reports Server (NTRS)

    Shepard, N. J., Jr.

    1983-01-01

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  16. Pyrolyzed carbon film diodes.

    PubMed

    Morton, Kirstin C; Tokuhisa, Hideo; Baker, Lane A

    2013-11-13

    We have previously reported pyrolyzed parylene C (PPC) as a conductive carbon electrode material for use with micropipets, atomic force microscopy probes, and planar electrodes. Advantages of carbon electrode fabrication from PPC include conformal coating of high-aspect ratio micro/nanoscale features and the benefits afforded by chemical vapor deposition of carbon polymers. In this work, we demonstrate chemical surface doping of PPC through the use of previously reported methods. Chemically treated PPC films are characterized by multiple spectroscopic and electronic measurements. Pyrolyzed parylene C and doped PPC are used to construct diodes that are examined as both p-n heterojunction and Schottky barrier diodes. Half-wave rectification is achieved with PPC diodes and demonstrates the applicability of PPC as a conductive and semiconductive material in device fabrication. PMID:24090451

  17. Coaxial diode and vircator

    NASA Astrophysics Data System (ADS)

    Liu, Guozhi; Qiu, Shi; Wang, Hongjun; Huang, Wenhua; Wang, Feng

    1997-10-01

    The experimental and theoretical results of coaxial diode and the theoretical results of coaxial vircator are presented in this paper. The cathode is a cold, field- emitting graphite ring and needle-shaped copper applied to a grounded cylinder. The anode is a semi-transparent cylinder located inside of, and concentric to the cathode cylinder. The anode cylinder is pulsed positive. The coaxial vircator generates microwave by injecting a radial electron beam into cylinder such that the space-charge limited current is exceeded. A virtual cathode forms and oscillates in radial position and amplitude, generating microwaves which are extracted by an attached waveguide with a circular cross- section. Analytic and PIC simulations were used to study coaxial diode and vircator, with aid of the two dimensional PIC code, KARAT. The comparisons between the theoretical and the experimental results for a coaxial diode are presented.

  18. Blanket integrated blocking diodes

    NASA Astrophysics Data System (ADS)

    Uebele, P.; Kasper, C.; Rasch, K.-D.

    1986-11-01

    Two types of large area protection diodes for integration in solar arrays were developed in planar technology. For application in a bus voltage concept of V sub bus = 80 V a p-doped blanket integrated blocking diode (p-IBD) was developed with V sub rev = 120 V, whereas for the high voltage concept of V sub bus = 160 V a n-IBD with V sub rev = 250 V was developed. Application as blanket integrated shunt diodes is recommended. The optimized rearside diffusion provides a low forward voltage drop in the temperature range of minus 100 to plus 150 C. As a consequence of planar technology metallized coverglasses have to be used to minimize the photocurrent.

  19. Cryogenic thermal diodes

    NASA Astrophysics Data System (ADS)

    Paulsen, Brandon R.; Batty, J. C.; Agren, John

    2000-01-01

    Space based cryogenic thermal management systems for advanced infrared sensor platforms are a critical failure mode to the spacecraft missions they are supporting. Recent advances in cryocooler technologies have increased the achievable cooling capacities and decreased the operating temperatures of these systems, but there is still a fundamental need for redundancy in these systems. Cryogenic thermal diodes act as thermal switches, allowing heat to flow through them when in a conduction mode and restricting the flow of heat when in an isolation mode. These diodes will allow multiple cryocoolers to cool a single infrared focal plane array. The Space Dynamics Laboratory has undertaken an internal research and development effort to develop this innovative technology. This paper briefly describes the design parameters of several prototype thermal diodes that were developed and tested. .

  20. Electron density of Rhizophora spp. wood using Compton scattering technique at 15.77, 17.48 and 22.16 keV XRF energies

    NASA Astrophysics Data System (ADS)

    Shakhreet, B. Z.; Bauk, S.; Shukri, A.

    2015-02-01

    Compton (incoherently) scattered photons which are directly proportional to the electron density of the scatterer, have been employed in characterizing Rhizophora spp. as breast tissue equivalent. X-ray fluorescent scattered incoherently from Rhizophora spp. sample was measured using Si-PIN detector and three XRF energy values 15.77, 17.48 and 22.16 keV. This study is aimed at providing electron density information in support of the introduction of new tissue substitute materials for mammography phantoms.

  1. Measurement of Low Energy Detection Efficiency of a Plastic Scintillator: Implications on the Lower Energy Limit and Sensitivity of a Hard X-Ray Focal Plane Compton Polarimeter

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Shanmugam, M.; Goyal, S. K.

    2014-05-01

    The polarization measurements in X-rays offer a unique opportunity for the study of physical processes under the extreme conditions prevalent at compact X-ray sources, including gravitation, magnetic field, and temperature. Unfortunately, there has been no real progress in observational X-ray polarimetry thus far. Although photoelectron tracking-based X-ray polarimeters provide realistic prospects of polarimetric observations, they are effective in the soft X-rays only. With the advent of hard X-ray optics, it has become possible to design sensitive X-ray polarimeters in hard X-rays based on Compton scattering. An important point that should be carefully considered for the Compton polarimeters is the lower energy threshold of the active scatterer, which typically consists of a plastic scintillator due to its lowest effective atomic number. Therefore, an accurate understanding of the plastic scintillators energy threshold is essential to make a realistic estimate of the energy range and sensitivity of any Compton polarimeter. In this context, we set up an experiment to investigate the plastic scintillators behavior for very low energy deposition events. The experiment involves the detection of Compton scattered photons from a long, thin, plastic scintillator (a similar configuration as the eventual Compton polarimeter) by a high resolution CdTe detector at different scattering angles. We find that it is possible to detect energy deposition well below 1 keV, though with decreasing efficiency. We present detailed semianalytical modeling of our experimental setup and discuss the results in the context of the energy range and sensitivity of the Compton polarimeter involving plastic scintillators.

  2. Spectra of clinical CT scanners using a portable Compton spectrometer

    SciTech Connect

    Duisterwinkel, H. A.; Abbema, J. K. van; Kawachimaru, R.; Paganini, L.; Graaf, E. R. van der; Brandenburg, S.; Goethem, M. J. van

    2015-04-15

    Purpose: Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. Methods: In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. Results: The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. Conclusions: A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  3. Heat pipes - Thermal diodes

    NASA Astrophysics Data System (ADS)

    Aptekar, B. F.; Baum, J. M.; Ivanovskii, M. N.; Kolgotin, F. F.; Serbin, V. I.

    The performance concept and peculiarities of the new type of thermal diode with the trap and with the wick breakage are dealt with in the report. The experimental data were obtained and analysed for the working fluid mass and the volume of the liquid in the wick on the forward-mode limiting heat transfer. The flow rate pulsation of the working fluid in the wick was observed visually on the setup with the transparent wall. The quantitative difference on the data on the investigated thermal diode and on the identical heat pipes without the wick breakage is found experimentally concerning the forward-mode limiting heat transfer.

  4. High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions.

    PubMed

    Wang, Hong-Ping; Zhang, You-Bo; Yang, Xiu-Wei; Yang, Xin-Bao; Xu, Wei; Xu, Feng; Cai, Shao-Qing; Wang, Ying-Ping; Xu, Yong-Hua; Zhang, Lian-Xue

    2016-01-01

    Ginseng, Panax ginseng C. A. Meyer, is an industrial crop in China and Korea. The functional components in ginseng roots and rhizomes are characteristic ginsenosides. This work developed a new high-performance liquid chromatography coupled with electrospray ionization ion trap time-of-flight multistage mass spectrometry (LC-ESI-IT-TOF-MS(n)) method to identify the triterpenoids. Sixty compounds (1-60) including 58 triterpenoids were identified from the ginseng cultivated in China. Substances 1, 2, 7, 15-20, 35, 39, 45-47, 49, 55-57, 59, and 60 were identified for the first time. To evaluate the quality of ginseng cultivated in Northeast China, this paper developed a practical liquid chromatography-diode array detection (LC-DAD) method to simultaneously quantify 14 interesting ginsenosides in ginseng collected from 66 different producing areas for the first time. The results showed the quality of ginseng roots and rhizomes from different sources was different due to growing environment, cultivation technology, and so on. The developed LC-ESI-IT-TOF-MS(n) method can be used to identify many more ginsenosides and the LC-DAD method can be used not only to assess the quality of ginseng, but also to optimize the cultivation conditions for the production of ginsenosides. PMID:27171066

  5. Dual function conducting polymer diodes

    DOEpatents

    Heeger, Alan J.; Yu, Gang

    1996-01-01

    Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.

  6. Performance of a TiN-coated monolithic silicon pin-diode array under mechanical stress

    NASA Astrophysics Data System (ADS)

    VanDevender, B. A.; Bodine, L. I.; Myers, A. W.; Amsbaugh, J. F.; Howe, M. A.; Leber, M. L.; Robertson, R. G. H.; Tolich, K.; Van Wechel, T. D.; Wall, B. L.

    2012-05-01

    The Karlsruhe Tritium Neutrino Experiment (KATRIN) will detect tritium β-decay electrons that pass through its electromagnetic spectrometer with a highly segmented monolithic silicon pin-diode focal-plane detector (FPD). This pin-diode array will be on a single piece of 500-μm-thick silicon, with contact between titanium nitride (TiN)-coated detector pixels and front-end electronics made by spring-loaded pogo pins. The pogo pins will exert a total force of up to 50 N on the detector, deforming it and resulting in mechanical stress up to 50 MPa in the silicon bulk. We have evaluated a prototype pin-diode array with a pogo-pin connection scheme similar to the KATRIN FPD. We find that pogo pins make good electrical contact to TiN and observe no effects on detector resolution or reverse-bias leakage current which can be attributed to mechanical stress.

  7. Experimentally validated Monte Carlo simulation of an XtRa-NaI(Tl) Compton Suppression System response.

    PubMed

    Savva, Marilia; Anagnostakis, Marios

    2016-03-01

    In this work the response of an XtRa-NaI(Tl) Compton Suppression System is simulated using the Monte Carlo code PENELOPE. The main program PENMAIN is properly modified in order to couple two energy deposition detectors and simulate the coincidence gating. The modified main program takes into account both the active shielding and the True Coincidence phenomenon. The program is evaluated by comparing simulation results with experimental data for both non-cascade and cascade emitters and concluding that no statistically significant biases are observed. PMID:26656618

  8. Millimeter-wave detection using resonant tunnelling diodes

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; Kidner, C.; East, J. R.; Haddad, G. I.

    1990-01-01

    A lattice-matched InGaAs/InAlAs resonant tunnelling diode is studied as a video detector in the millimeter-wave range. Tangential signal sensitivity and video resistance measurements are made as a function of bias and frequency. A tangential signal sensitivity of -37 dBm (1 MHz amplifier bandwidth) with a corresponding video resistance of 350 ohms at 40 GHz has been measured. These results appear to be the first millimeter-wave tangential signal sensitivity and video resistance results for a resonant tunnelling diode.

  9. A portable lidar using a diode-pumped YAG laser

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Okumura, H.; Sugita, T.; Matsumoto, H.; Yamaguchi, S.

    1992-01-01

    A Mie lidar system is technically established and is used for monitoring air pollution, stratospheric and boundary layer aerosol distribution, plume dispersion, visibility, and the study of atmospheric structure and cloud physics. However, a lidar system is not widely used because of its cumbersome handling and unwieldy portability. Although the author developed a laser diode lidar system based on RM-CW technique, it has a limit of measurement distance. Here we report the development of an all solid Mie lidar system using a diode-pumped Nd:YAG laser and a Si-APD detector. This was constructed as a prototype of a handy lidar system.

  10. Light polarization experiments with a diode laser pointer

    NASA Astrophysics Data System (ADS)

    Benenson, Raymond E.

    2000-01-01

    Polarized light has many uses: glare reduction, stress analysis, microscope image enhancement, thin-film characterization, astronomy, saccharimetry, and atomic spectroscopy. Here we discuss introductory polarized light measurements in which a diode laser pointer replaces the more frequently used polarized He-Ne laser. A diode laser has been used in introductory optics experiments, and in a more advanced polarization-reflection experiment. Its strong collimated beam is completely polarized and, being free of infrared radiation, it permits Polaroid sheets to be used successfully with semiconductor detectors.

  11. Inverse Compton Scattering in Mildly Relativistic Plasma

    NASA Technical Reports Server (NTRS)

    Molnar, S. M.; Birkinshaw, M.

    1998-01-01

    We investigated the effect of inverse Compton scattering in mildly relativistic static and moving plasmas with low optical depth using Monte Carlo simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our semi-analytic method is based on a separation of photon diffusion in frequency and real space. We use Monte Carlo simulation to derive the intensity and frequency of the scattered photons for a monochromatic incoming radiation. The outgoing spectrum is determined by integrating over the spectrum of the incoming radiation using the intensity to determine the correct weight. This method makes it possible to study the emerging radiation as a function of frequency and direction. As a first application we have studied the effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and discuss the parameter range in which the Boltzmann equation and its expansions can be used. For high temperature clusters (k(sub B)T(sub e) greater than or approximately equal to 15 keV) relativistic corrections based on a fifth order expansion of the extended Kompaneets equation seriously underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution from plasma infall is less important for reasonable velocities. We give a convenient analytical expression for the dependence of the cross-over frequency on temperature, optical depth, and gas infall speed. Optical depth effects are often more important than relativistic corrections, and should be taken into account for high-precision work, but are smaller than the typical kinematic effect from cluster radial velocities.

  12. Compton Thick AGN in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Lanzuisi, Giorgio; Cosmos Collaboration

    2015-09-01

    I will present the results we published in a couple of recent papers (Lanzuisi et al. 2015, A&A 573A 137, Lanzuisi et al. 2015, arXiv 1505.01153) on the properties of X-ray selected Compton Thick (CT, NH>10^24 cm^-2) AGN, in the COSMOS survey. We exploited the rich multi-wavelength dataset available in this field, to show that CT AGN tend to harbor smaller, rapidly growing SMBH with respect to unobscured AGN, and have a higher chance of being hosted by star-forming, merging and post-merger systems.We also demonstrated the detectability of even more heavily obscured AGN (NH>10^25 cm^-2), thanks to a truly multi-wavelength approach in the same field. The extreme source detected in this way shows strong evidences of ongoing powerful AGN feedback, detected as blue-shifted wings of high ionization optical emission lines such as [NeV] and [FeVII], as well as of the [OIII] emission line.The results obtained from these works point toward a scenario in which highly obscured AGN occupy a peculiar place in the galaxy-AGN co-evolution process, in which both the host and the SMBH rapidly evolve toward the local relations.We will also present estimates on the detectability of such extreme sources up to redshift ~6-7 with Athena. Combining the most up to date models for the Luminosity Function of CT AGN at high z, aggressive data analysis techniques on faint sources, and the current Athena survey design, we demonstrate that we will detect, and recognize as such, a small (few to ten) but incredibly valuable sample of CT AGN at such high redshift.

  13. Light-Emitting Diodes for Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K.

    2014-06-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  14. Compton back scatter imaging for mild steel rebar detection and depth characterization embedded in concrete

    NASA Astrophysics Data System (ADS)

    Margret, M.; Menaka, M.; Venkatraman, B.; Chandrasekaran, S.

    2015-01-01

    A novel non-destructive Compton scattering technique is described to ensure the feasibility, reliability and applicability of detecting the reinforcing steel bar in concrete. The indigenously developed prototype system presented in this paper is capable of detecting the reinforcement of varied diameters embedded in the concrete and as well as up to 60 mm depth, with the aid of Caesium-137(137Cs) radioactive source and a high resolution HPGe detector. The technique could also detect the inhomogeneities present in the test specimen by interpreting the material density variation caused due to the count rate. The experimental results are correlated using established techniques such as radiography and rebar locators. The results obtained from its application to locate the rebars are quite promising and also been successfully used for reinforcement mapping. This method can be applied, especially when the intrusion is located underneath the cover of the concrete or considerably at larger depths and where two sided access is restricted.

  15. An algorithm and program for data processing from a Compton scattering imaging device

    NASA Astrophysics Data System (ADS)

    Vasiliev, V. N.; Zaytseva, K. V.

    2005-07-01

    The VolumeScope, a prototype 3D X-ray scanner based on Compton backscatter detection, was designed for examination of a human body electron density distribution. An algorithm and computer program for 3D image reconstruction from the VolumeScope measured data are presented. The reconstruction includes corrections for photon attenuation and multiple scatter in surrounding tissues and postprocessing digital filtering. Properties of multiple scattered photons inside the object of examination were studied by Monte Carlo technique and a geometrical efficiency of the multiple scatter detection was calculated on the base of the collimator design. The contribution of multiple scattered photons in semi-infinite water medium was from 15 to 23% of maximum detector response. The VolumeScope program is described to perform data processing and display the electron density distribution of the object as 2D grayscale images and 3D surfaces of internal structures.

  16. Diffusion Compton profondement virtuelle dans le Hall A au Jefferson Laboratory

    SciTech Connect

    Camacho, Carlos Munoz

    2005-12-01

    Generalized Parton Distributions (GPDs), introduced in the late 90s, provide a universal description of hadrons in terms of the underlying degrees of freedom of Quantum Chromodynamics: quarks and gluons. GPDs appear in a wide variety of hard exclusive reactions and the advent of high luminosity accelerator facilities has made the study of GPDs accessible to experiment. Deeply Virtual Compton Scattering (DVCS) is the golden process involving GPDs. The first dedicated DVCS experiment ran in the Hall A of Jefferson Lab in Fall 2004. An electromagnetic calorimeter and a plastic scintillator detector were constructed for this experiment, together with specific electronics and acquisition system. The experiment preparation, data taking and analysis are described in this document. Results on the absolute cross section difference for opposite beam helicities provide the first measurement of a linear combination of GPDs as a function of the momentum transfer to the nucleon.

  17. A prototype compton camera for in-vivo dosimetry of ion beam cancer irradiation

    SciTech Connect

    Kormoll, T.; Fiedler, F.; Golnik, C.; Heidel, K.; Kempe, M.; Schoene, S.; Sobiella, M.; Zuber, K.; Enghardt, W.

    2011-07-01

    Three-dimensional in-vivo dose monitoring of ion beam cancer irradiation can improve the quality of treatment. For this purpose we investigate the feasibility of imaging the single photon emissions due to nuclear reactions of projectiles with target nuclei (in-beam SPECT). A suitable imaging technique in the energy range of the emitted gamma rays is the Compton camera. A prototype based on prior simulations is currently under construction. Te system comprises two CdZnTe cross-strip detectors with steering grid and depth-of-interaction capability and one segmented LSO scintillator crystal with modified Anger light readout. We present the concept of the system including the front-end and DAQ electronics as well as first measurements. (authors)

  18. Attenuation studies near K-absorption edges using Compton scattered 241 Am gamma rays

    NASA Astrophysics Data System (ADS)

    Abdullah, K. K.; Ramachandran, N.; Karunakaran Nair, K.; Babu, B. R. S.; Joseph, Antony; Thomas, Rajive; Varier, K. M.

    2008-04-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from ^{241}Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package.

  19. Comparison between a silicon PIN diode and a CsI(Tl) coupled to a silicon PIN diode for dosimetric purpose in radiology

    NASA Astrophysics Data System (ADS)

    Andreani, Lucia; Bontempi, Marco; Rossi, Pier Luca; Rignanese, Luigi Pio; Zuffa, Mirco; Baldazzi, Giuseppe

    2014-10-01

    The use of amorphous Si-PIN diodes showed interesting applications in detector research. Due to their properties and cost effective value, these devices can be used as small dosimeters for fast and real time dose evaluation. The responses of two different detectors to the measurement of X-ray total air KERMA are compared and presented, with the goal to get a dosimetric parameter directly during the X-ray patients exposure. A bare Si-PIN diode and a Si-PIN diode+CsI(Tl) scintillator were tested and compared to radiologic dosimeters. Both detector outputs were calibrated using a secondary reference standard (CAPINTEC PM 30 dosimeter), in order to analyze and discuss the dose and the energy dependence of the detectors in the range of radiologic interest (tube voltage: 40-140 kVp and additional filtration: 0 mm Al to 4 mm Al). The bare Si-PIN diode shows a very coherent response independently from the X-ray beam quality and from the additional filtration. The Si-PIN+CsI(Tl) detector, on the other hand, shows a high spread of the calibration curves as a function of the tube high voltage and the additional filtration. The presented results could be used to calibrate an image detector in dose.

  20. Compton scattering: From deeply virtual to quasi-real

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.; Müller, D.; Ji, Y.

    2014-01-01

    We address the question of interpolation of the virtual Compton scattering process off a polarized nucleon target between the deeply virtual regime for the initial-state photon and its near on-shell kinematics making use of the photon helicity-dependent Compton Form Factors (CFFs) as a main ingredient of the formalism. The five-fold differential cross section for the reaction with all possible polarization options for the lepton and nucleon spins is evaluated in terms of CFFs in the rest reference frame of the initial-state nucleon. We suggest a rather simple parametrization of the Compton hadronic tensor in terms of CFFs which are free from kinematical singularities and are directly related, at large photon virtualities, to generalized parton distributions. We also provide a relation of our basis spanned by a minimal number of Dirac bilinears to the one introduced by Tarrach for the parametrization of the virtual Compton tensor and utilize the former to establish a set of equalities among our CFFs and generalized polarizabilities. As a complementary result, we express Compton scattering in the Born approximation in terms of CFFs as well.

  1. A photon thermal diode.

    PubMed

    Chen, Zhen; Wong, Carlaton; Lubner, Sean; Yee, Shannon; Miller, John; Jang, Wanyoung; Hardin, Corey; Fong, Anthony; Garay, Javier E; Dames, Chris

    2014-01-01

    A thermal diode is a two-terminal nonlinear device that rectifies energy carriers (for example, photons, phonons and electrons) in the thermal domain, the heat transfer analogue to the familiar electrical diode. Effective thermal rectifiers could have an impact on diverse applications ranging from heat engines to refrigeration, thermal regulation of buildings and thermal logic. However, experimental demonstrations have lagged far behind theoretical proposals. Here we present the first experimental results for a photon thermal diode. The device is based on asymmetric scattering of ballistic energy carriers by pyramidal reflectors. Recent theoretical work has predicted that this ballistic mechanism also requires a nonlinearity in order to yield asymmetric thermal transport, a requirement of all thermal diodes arising from the second Law of Thermodynamics, and realized here using an 'inelastic thermal collimator' element. Experiments confirm both effects: with pyramids and collimator the thermal rectification is 10.9 ± 0.8%, while without the collimator no rectification is detectable (<0.3%). PMID:25399761

  2. Data Types, Reduction Techniques, and Analysis Tools for the Compton Observatory OSSE Instrument.

    NASA Astrophysics Data System (ADS)

    Messina, D. C.; Cameron, R. A.; Johnson, W. N.; Kroeger, R. A.; Kurfess, J. D.; Strickman, M. S.; Starr, C. H.; Grabelsky, D. A.; Matz, S. M.; Purcell, W. R.; Ulmer, M. P.

    1992-12-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) is one of four instruments on board NASA's Arthur Holly Compton Observatory. The OSSE instrument, developed at the Naval Research Laboratory, consists of 4 large, actively-shielded NaI(Tl)--CsI(Na) phoswich detectors each capable of independent orientations. Each detector has a 3.8deg times 11.4deg (FWHM) field of view defined by a passive tungsten collimator. OSSE measures gamma-ray line and continuum spectra in the 0.05 -- 10 MeV energy range, with timing resolution of up to 125 mu sec for variable sources. A summary of the various OSSE data acquisition modes and data product types will be presented. Data analysis techniques will be described, together with examples of such techniques using data reduction and analysis tools in the IGORE (Interactive GRO/OSSE Reduction Environment) software package that have been developed for the processing and analysis of OSSE data. IGORE runs on a VAX/VMS system in an IDL environment. Viewing support and observation planning tools will also be described as well as related instrument and spacecraft observation constraints. OSSE data products and the IGORE analysis software package will be archived at the Compton Observatory Science Support Center (COSSC) at NASA's Goddard Space Flight Center in Greenbelt, MD. The availability of data products and procedures for their access at the COSSC and NRL will be presented. The COSSC facilities can be utilized locally at GSFC or remotely over the Internet and SPAN/DECnet computer networks.

  3. Graphene-based ultrafast diode

    NASA Astrophysics Data System (ADS)

    Dragoman, D.; Dragoman, M.; Plana, R.

    2010-10-01

    We present a graphene-based ballistic diode, which is able to rectify an incident signal due to an oblique gate positioned between the two terminals of the device. The operating point of the diode can be controlled by the applied gate voltage, whereas the current-voltage dependence of the device can be changed by varying the inclination angle of the gate. In particular, the ideality factor of the graphene-based diode can take values higher or lower than 1 by modifying this inclination angle. The rectifying properties of the graphene diode are thus tunable, in deep contrast with semiconductor-based diodes.

  4. An HPLC method with diode array detector for the simultaneous quantification of chloroquine and desethylchloroquine in plasma and whole blood samples from Plasmodium vivax patients in Vietnam, using quinine as an internal standard.

    PubMed

    Van Pham, Toi; Pham Nguyen, Phuong; Nguyen Duc Khanh, Tho; Nguyen Thanh Thuy, Nhien; Nguyen Thuy Nha, Ca; Pouplin, Thomas; Farrar, Jeremy; Thwaites, Guy E; Tran Tinh, Hien

    2016-07-01

    A sensitive, simple method for quantification of chloroquine (CQ) and desethylchloroquine (MCQ) in whole blood and plasma from Plasmodium vivax patients has been developed using HPLC with diode array detection (DAD). Solid-phase extraction on Isolute-96-CBA was employed to process 100 μL of plasma/whole blood samples. CQ, MCQ and quinine were separated using a mobile phase of phosphate buffer 25 mm, pH 2.60-acetonitrile (88:12, v/v) with 2 mm sodium perchlorate on a Zorbax SB-CN 150 × 4.6 mm, 5 μm column at a flow rate of 1.2 mL/min, at ambient temperature in 10 min, with the DAD wavelength of 343 nm. The method was linear over the range of 10-5000 ng/mL for both CQ and MCQ in plasma and whole blood. The limit of detection was 4 ng/mL and limit of quantification was 10 ng/mL in both plasma and blood for CQ and MCQ. The intra-, inter- and total assay precision were <10% for CQ and MCQ in plasma and whole blood. In plasma, the accuracies varied between 101 and 103%, whereas in whole blood, the accuracies ranged from 97.0 to 102% for CQ and MCQ. The method is an ideal technique with simple facilities and instruments, bringing about good separation in comparison with previous methods. © 2016 The Authors Biomedical Chromatography Published by John Wiley & Sons Ltd. PMID:26578224

  5. An HPLC method with diode array detector for the simultaneous quantification of chloroquine and desethylchloroquine in plasma and whole blood samples from Plasmodium vivax patients in Vietnam, using quinine as an internal standard

    PubMed Central

    Pham Nguyen, Phuong; Nguyen Duc Khanh, Tho; Nguyen Thanh Thuy, Nhien; Nguyen Thuy Nha, Ca; Pouplin, Thomas; Farrar, Jeremy; Thwaites, Guy E.; Tran Tinh, Hien

    2016-01-01

    Abstract A sensitive, simple method for quantification of chloroquine (CQ) and desethylchloroquine (MCQ) in whole blood and plasma from Plasmodium vivax patients has been developed using HPLC with diode array detection (DAD). Solid‐phase extraction on Isolute‐96‐CBA was employed to process 100 μL of plasma/whole blood samples. CQ, MCQ and quinine were separated using a mobile phase of phosphate buffer 25 mm, pH 2.60–acetonitrile (88:12, v/v) with 2 mm sodium perchlorate on a Zorbax SB‐CN 150 × 4.6 mm, 5 μm column at a flow rate of 1.2 mL/min, at ambient temperature in 10 min, with the DAD wavelength of 343 nm. The method was linear over the range of 10–5000 ng/mL for both CQ and MCQ in plasma and whole blood. The limit of detection was 4 ng/mL and limit of quantification was 10 ng/mL in both plasma and blood for CQ and MCQ. The intra‐, inter‐ and total assay precision were <10% for CQ and MCQ in plasma and whole blood. In plasma, the accuracies varied between 101 and 103%, whereas in whole blood, the accuracies ranged from 97.0 to 102% for CQ and MCQ. The method is an ideal technique with simple facilities and instruments, bringing about good separation in comparison with previous methods. © 2016 The Authors Biomedical Chromatography Published by John Wiley & Sons Ltd PMID:26578224

  6. Comparison of modeled and measured performance of a GSO crystal as gamma detector

    NASA Astrophysics Data System (ADS)

    Parno, D. S.; Friend, M.; Mamyan, V.; Benmokhtar, F.; Camsonne, A.; Franklin, G. B.; Paschke, K.; Quinn, B.

    2013-11-01

    We have modeled, tested, and installed a large, cerium-activated Gd2SiO5 crystal scintillator for use as a detector of gamma rays. We present the measured detector response to two types of incident photons: nearly monochromatic photons up to 40 MeV, and photons from a continuous Compton backscattering spectrum up to 200 MeV. Our GEANT4 simulations, developed to determine the analyzing power of the Compton polarimeter in Hall A of Jefferson Lab, reproduce the measured spectra well.

  7. Compton scatter axial tomography with x-rays: SCAT-CAT.

    PubMed

    Brateman, L; Jacobs, A M; Fitzgerald, L T

    1984-11-01

    A method of extracting information from the backscattered field produced in parallel beam x-ray computed tomography (CT) is presented. A calculational model to predict the backscattered field based on Compton scattering is described, and the model is verified by measurements of simple phantoms. The phantoms tested--cylinders of polymethylmethacrylate (PMM) with air gaps and aluminium rods placed internally--are irradiated on a scanning assembly, built to simulate a first generation CT scanner with a transmission and a scatter detector (the SCAT-CAT). Data from the transmission detector are reconstructed by traditional CT methods to provide a transmission image; it is the data from the backscatter detector which are analysed in this study. After verification of the model for the scattered field calculations, a method of extracting information from the scattered field is developed, based on ratios of scatter signals from non-uniform to uniform phantoms. This method is demonstrated for predicted data of a simulated phantom and for measured data of the same and two additional phantoms. The method is very sensitive to air gaps in the phantoms because of the relative electron density of air with respect to PMM; it is not as sensitive to aluminium rods for the same reason. Various methods of applying the scattered field information to produce an image representing a simulated phantom are considered, and a preferred method is chosen to reconstruct scattered field data into an image for the three phantoms studied. PMID:6505017

  8. A flying spot X-ray system for Compton backscatter imaging.

    PubMed

    Herr, M D; McInerney, J J; Lamser, D G; Copenhaver, G L

    1994-01-01

    A Compton X-ray backscatter imaging (CBI) system using a single detector and a mechanically rastered "flying spot" X-ray beam has been designed, built, and tested. While retaining the essential noninvasive imaging capability of previous multiple detector CBI devices, this single detector system incorporates several advances over earlier CBI devices: more efficient detection of scattered X-rays, reduced X-ray exposure, and a simplified scan protocol more suitable for use with humans. This new CBI system also has specific design features to permit automating data acquisition from multiple two-dimensional image planes for integration into a 3D dynamic surface image. A simulated multislice scan study of a human thorax phantom provided X-ray dosimetry data verifying a very low X-ray dose (~50 mrem) delivered by this imaging device. Validation experiments with mechanical models show that surface displacement at typical heart beat frequencies can be measured to the nearest 0.1 mm (SD). PMID:18218521

  9. Application of spherical diodes for megavoltage photon beams dosimetry

    SciTech Connect

    Barbés, Benigno; Azcona, Juan D.; Burguete, Javier; Martí-Climent, Josep M.

    2014-01-15

    Purpose: External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to performin vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. Methods: The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm{sup 2} and 20 × 20 cm{sup 2}) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. Results: The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (±0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. Conclusions: The measurements of relative dose

  10. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  11. Thermal Comptonization and Disk Thermal Reprocessing in NGC3516

    NASA Technical Reports Server (NTRS)

    Chiang, James; Blaes, Omer; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present an application of the thermal Comptonization/disk reprocessing model recently proposed by Zdziarski, Lubiniski, and Smith. We show that the absence of strong optical variations in the presence of strong concurrent X-ray variations, similar to those found by Hubble Space Telescope (HST)/Rossi X-Ray Timing Explorer (RXTE) monitoring observations of NGC 3516, can be explained by changing the geometry of the Comptonizing plasma rather than the accretion disk itself. The total X-ray luminosity of the Comptonizing plasma must decrease as its spatial extent increases. In contrast, the disk inner radius must be roughly fixed in order not to produce optical/ultraviolet color variations stronger than observed. By including emission due to internal viscous dissipation in the disk, we can roughly match the optical and X-ray flux levels and variability amplitudes seen from NGC 3516 during the HST/RXTE campaign.

  12. G. E. M. Jauncey and the Compton Effect

    NASA Astrophysics Data System (ADS)

    Jenkin, John

    In late 1922 Arthur Holly Compton (1892-1962) discovered that an X-ray quantum of radiation undergoes a discrete change in wavelength when it experiences a billiard-ball collision with a single atomic electron, a phenomenon that became known as the Compton effect and for which he shared the Nobel Prize in Physics for 1927. But for more than five years before he made his discovery, Compton had analyzed X-ray scattering in terms of classical electrodynamics. I suggest that his colleague at Washington University in St. Louis, G. E. M. Jauncey (1888-1947), helped materially to persuade him to embrace the quantum interpretation of his X-ray scattering experiments.

  13. Inclusive and Exclusive Compton Processes in Quantum Chromodynamics

    SciTech Connect

    Ales Psaker

    2005-12-31

    In our work, we describe two types of Compton processes. As an example of an inclusive process, we consider the high-energy photoproduction of massive muon pairs off the nucleon. We analyze the process in the framework of the QCD parton model, in which the usual parton distributions emerge as a tool to describe the nucleon in terms of quark and gluonic degrees of freedom. To study its exclusive version, a new class of phenomenological functions is required, namely, generalized parton distributions. They can be considered as a generalization of the usual parton distributions measured in deeply inelastic lepton-nucleon scattering. Generalized parton distributions (GPDs) may be observed in hard exclusive reactions such as deeply virtual Compton scattering. We develop an extension of this particular process into the weak interaction sector. We also investigate a possible application of the GPD formalism to wide-angle real Compton scattering.

  14. Electronic structure of lanthanum sesquioxide: A Compton scattering study

    NASA Astrophysics Data System (ADS)

    Sharma, Sonu; Sahariya, Jagrati; Arora, Gunjan; Ahuja, B. L.

    2014-10-01

    We present the first-ever experimental and theoretical momentum densities of La2O3. The Compton line shape is measured using a 20 Ci 137Cs Compton spectrometer at an intermediate resolution with full width at half maximum of 0.34 a.u. The experimental Compton profile is compared with the theoretical electron momentum densities computed using linear combination of atomic orbitals (LCAO) method with density functional theory (DFT). It is seen that the generalized gradient approximation (GGA) within DFT reconciles better with the experiment than other DFT based approximations, validating the GGA approximation for rare-earth sesquioxides. The energy bands and density of states computed using LCAO calculations show its wide band gap nature which is in tune with the available reflectivity and photo-absorption data. In addition, Mulliken's population and charge density are also computed and discussed.

  15. Non-thermal shielding effects on the Compton scattering power in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Soo; Jung, Young-Dae

    2015-10-01

    The non-thermal shielding effects on the inverse Compton scattering are investigated in astrophysical non-thermal Lorentzian plasmas. The inverse Compton power is obtained by the modified Compton scattering cross section in Lorentzian plasmas with the blackbody photon distribution. The total Compton power is also obtained by the Lorentzan distribution of plasmas. It is found that the influence of non-thermal character of the plasma suppresses the inverse Compton power in astrophysical Lorentzian plasmas. It is also found that the non-thermal effect on the inverse Compton power decreases with an increase of the temperature. In addition, the non-thermal effect on the total Compton power with Lorentzan plasmas increases in low-temperature photons and, however, decreases in intermediate-temperature photons with increasing Debye length. The variation of the total Compton power is also discussed.

  16. The SORDS trimodal imager detector arrays

    NASA Astrophysics Data System (ADS)

    Wakeford, Daniel; Andrews, H. R.; Clifford, E. T. H.; Li, Liqian; Bray, Nick; Locklin, Darren; Hynes, Michael V.; Toolin, Maurice; Harris, Bernard; McElroy, John; Wallace, Mark; Lanza, Richard

    2009-05-01

    The Raytheon Trimodal Imager (TMI) uses coded aperture and Compton imaging technologies as well as the nonimaging shadow technology to locate an SNM or radiological threat in the presence of background. The heart of the TMI is two arrays of NaI crystals. The front array serves as both a coded aperture and the first scatterer for Compton imaging. It is made of 35 5x5x2" crystals with specially designed low profile PMTs. The back array is made of 30 2.5x3x24" position-sensitive crystals which are read out at both ends. These crystals are specially treated to provide the required position resolution at the best possible energy resolution. Both arrays of detectors are supported by aluminum superstructures. These have been efficiently designed to allow a wide field of view and to provide adequate support to the crystals to permit use of the TMI as a vehicle-mounted, field-deployable system. Each PMT has a locally mounted high-voltage supply that is remotely controlled. Each detector is connected to a dedicated FPGA which performs automated gain alignment and energy calibration, event timing and diagnostic health checking. Data are streamed, eventby- event, from each of the 65 detector FPGAs to one master FPGA. The master FPGA acts both as a synchronization clock, and as an event sorting unit. Event sorting involves stamping events as singles or as coincidences, based on the approximately instantaneous detector hit pattern. Coincidence determination by the master FPGA provides a pre-sorting for the events that will ultimately be used in the Compton imaging and coded aperture imaging algorithms. All data acquisition electronics have been custom designed for the TMI.

  17. Relativistic dynamics of the Compton diffusion on a bound electron

    NASA Astrophysics Data System (ADS)

    Al Saleh, Salwa

    2016-05-01

    A covariant relativistic formalism for the electron-photon and nuclear dynamics is summarised making more accurate predictions in agreement with experiments for Compton scattering in shells with large electron binding energy. An exact solution for the Dirac equation for an electron in the nuclear Coulomb field is obtained, in order to write the relativistic dynamics for this QED process. This is a preparation for the calculation of the relativistic cross-section for Compton scattering on bound electrons, as a precision test for QED.

  18. A nonlinear plasma retroreflector for single pulse Compton backscattering

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Kaganovich, D.; Gordon, D.; Hafizi, B.; Penano, J.; Helle, M.; Ting, A.

    2014-10-01

    A long laser pulse focused onto the edge of a gas jet nozzle launches a shock wave. The shock wave and gas jet flow collide forming a density spike. The leading edge of an incident ultrashort laser pulse ionizes the gas, while the bulk undergoes a nonlinear Poynting flux reversal from the ionized spike. The resulting counterpropagating field can Compton backscatter from electrons accelerated in the ultrashort pulse's wakefield, upshifting the frequency. We examine the reversal mechanism and properties of the counterpropagating field to optimize the Compton scattered radiation.

  19. Spin and orbital magnetization loops obtained using magnetic Compton scattering

    SciTech Connect

    Itou, M.; Sakurai, Y.; Koizumi, A.

    2013-02-25

    We present an application of magnetic Compton scattering (MCS) to decompose a total magnetization loop into spin and orbital magnetization contributions. A spin magnetization loop of SmAl{sub 2} was measured by recording the intensity of magnetic Compton scattering as a function of applied magnetic field. Comparing the spin magnetization loop with the total magnetization one measured by a vibrating sample magnetometer, the orbital magnetization loop was obtained. The data display an anti-coupled behavior between the spin and orbital magnetizations and confirm that the orbital part dominates the magnetization.

  20. Compton scattering by a pion and off-shell effects

    SciTech Connect

    Scherer, S.; Fearing, H.W. )

    1995-01-01

    We consider Compton scattering by a pion in the framework of chiral perturbation theory. We investigate off-shell effects in the [ital s]- and [ital u]-channel pole diagrams. For that purpose we perform a field transformation which, in comparison with the standard Gasser and Leutwyler Lagrangian, generates additional terms at order [ital p][sup 4] proportional to the lowest-order equation of motion. As a result of the equivalence theorem the two Lagrangians predict the same Compton scattering [ital S]-matrix even though they generate different off-shell form factors. We conclude that off-shell effects are not only model dependent but also representation dependent.

  1. Generalized parton distributions from deep virtual compton scattering at CLAS

    SciTech Connect

    Guidal, M.

    2010-04-24

    Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factors $H_{Im}$ and $\\tilde{H}_{Im}$ with uncertainties, in average, of the order of 30%.

  2. Generalized parton distributions from deep virtual compton scattering at CLAS

    DOE PAGESBeta

    Guidal, M.

    2010-04-24

    Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factorsmore » $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.« less

  3. Compton profile study of ZrB2

    NASA Astrophysics Data System (ADS)

    Vyas, V.; Kumar, R.; Sharma, G.; Sharma, B. K.

    2013-06-01

    In this paper, we investigate the Compton profile of ZrB2. The theoretical Compton profile of ZrB2 is computed within the framework of density functional theory (DFT) based on linear combination of atomic orbitals (LCAO). To compare the spherically averaged theoretical values, the measurement on polycrystalline ZrB2 is performed using 59.54 keV gamma-rays emanating from an 241Am radioisotope. To estimate the charge transfer in ZrB2, ionic model based calculations have also been performed which suggest transfer of electron from Zr to B atoms.

  4. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  5. Negative feedback avalanche diode

    NASA Technical Reports Server (NTRS)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  6. Proton therapy monitoring by Compton imaging: influence of the large energy spectrum of the prompt-γ radiation.

    PubMed

    Hilaire, Estelle; Sarrut, David; Peyrin, Françoise; Maxim, Voichiţa

    2016-04-21

    In proton therapy, the prompt-γ (PG) radiation produced by the interactions between protons and matter is related to the range of the beam in the patient. Tomographic Compton imaging is currently studied to establish a PG image and verify the treatment. However the quality of the reconstructed images depends on a number of factors such as the volume attenuation, the spatial and energy resolutions of the detectors, incomplete absorptions of high energy photons and noise from other particles reaching the camera. The impact of all these factors was not assessed in details. In this paper we investigate the influence of the PG energy spectrum on the reconstructed images. To this aim, we describe the process from the Monte Carlo simulation of the proton irradiation, through the Compton imaging of the PG distribution, up to the image reconstruction with a statistical MLEM method. We identify specific PG energy windows that are more relevant to detect discrepancies with the treatment plan. We find that for the simulated Compton device, the incomplete absorption of the photons with energy above about 2 MeV prevents the observation of the PG distributions at specific energies. It also leads to blurred images and smooths the distal slope of the 1D PG profiles obtained as projections on the central beam axis. We show that a selection of the events produced by γ photons having deposited almost all their energy in the camera allows to largely improve the images, a result that emphasizes the importance of the choice of the detector. However, this initial-energy-based selection is not accessible in practice. We then propose a method to estimate the range of the PG profile both for specific deposited-energy windows and for the full spectrum emission. The method relies on two parameters. We use a learning approach for their estimation and we show that it allows to detect few millimeter shifts of the PG profiles. PMID:27008459

  7. Proton therapy monitoring by Compton imaging: influence of the large energy spectrum of the prompt-γ radiation

    NASA Astrophysics Data System (ADS)

    Hilaire, Estelle; Sarrut, David; Peyrin, Françoise; Maxim, Voichiţa

    2016-04-01

    In proton therapy, the prompt-γ (PG) radiation produced by the interactions between protons and matter is related to the range of the beam in the patient. Tomographic Compton imaging is currently studied to establish a PG image and verify the treatment. However the quality of the reconstructed images depends on a number of factors such as the volume attenuation, the spatial and energy resolutions of the detectors, incomplete absorptions of high energy photons and noise from other particles reaching the camera. The impact of all these factors was not assessed in details. In this paper we investigate the influence of the PG energy spectrum on the reconstructed images. To this aim, we describe the process from the Monte Carlo simulation of the proton irradiation, through the Compton imaging of the PG distribution, up to the image reconstruction with a statistical MLEM method. We identify specific PG energy windows that are more relevant to detect discrepancies with the treatment plan. We find that for the simulated Compton device, the incomplete absorption of the photons with energy above about 2 MeV prevents the observation of the PG distributions at specific energies. It also leads to blurred images and smooths the distal slope of the 1D PG profiles obtained as projections on the central beam axis. We show that a selection of the events produced by γ photons having deposited almost all their energy in the camera allows to largely improve the images, a result that emphasizes the importance of the choice of the detector. However, this initial-energy-based selection is not accessible in practice. We then propose a method to estimate the range of the PG profile both for specific deposited-energy windows and for the full spectrum emission. The method relies on two parameters. We use a learning approach for their estimation and we show that it allows to detect few millimeter shifts of the PG profiles.

  8. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  9. Spin-Wave Diode

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Wu, Ruqian; Xiao, Jiang

    2015-10-01

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  10. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  11. Validation of a prototype DiodeAir for small field dosimetry.

    PubMed

    Underwood, T S A; Thompson, J; Bird, L; Scott, A J D; Patmore, P; Winter, H C; Hill, M A; Fenwick, J D

    2015-04-01

    Standard commercial diode detectors over-respond within small radiation fields, an effect largely attributable to the relatively high mass-density of silicon. However, Monte Carlo studies can be used to optimise dosimeter designs and have demonstrated that 'mass-density compensation'-for example, introducing a low-density air-gap upstream of a diode's high-density silicon volume-can substantially improve instrument response. In this work we used egs_chamber Monte Carlo simulations to predict the ideal air-gap thickness for a PTW 60017 unshielded diode detector. We then developed a prototype instrument incorporating that air-gap and, for a 6 MV linac, tested it experimentally against EBT3 film. We also tested a further three prototypes with different air-gap thicknesses. Our results demonstrate that for a 10 × 10 cm(2) reference field the DiodeAir, a PTW 60017 diode with a built-in air-gap of 1 mm, has on-axis correction factors near unity. Laterally the DiodeAir performs very well off-axis and reports FWHM and penumbra values consistent with those measured using EBT3. For PDD measurement, the performance of the DiodeAir matches that of the original PTW 60017. The experimental focus of this work was 6 MV but we also simulated the on-axis response of the DiodeAir within 15 MV beams and found that our modification proved robust to this substantial increase in beam energy. However, the original diode 60017 does exhibit low energy scatter dependencies and may over-respond to high linac dose-rates such that applying the mass-density compensation method to an alternative instrument (particularly a diamond detector) could ultimately take us even closer to the small-field ideal. PMID:25789823

  12. Gamma-Ray Flashes of Atmospheric Origin. The Compton Gamma-Ray Observatory Guest Investigator Program: Cycle 7

    NASA Technical Reports Server (NTRS)

    Mallozzi, Robert S.; Fishman, G. J.; Pendleton, G. N.; Inan, U. S.

    2000-01-01

    The BATSE detectors on the Compton Gamma-Ray Observatory have recorded the first observations of an unexplained terrestrial phenomenon: brief, intense flashes of MeV photons. These events, known as terrestrial gamma-ray flashes, must originate at altitudes above 30 km to be observed by the orbiting detectors. More than 70 of these events have been observed in nine years of observations. The most likely origin of these high-energy photons is bremsstrahlung from relativistic electrons from high altitude electrical discharges above thunderstorm regions. We proposed to analyze observations of temporal and spectral properties of these events, and to produce a catalog of event characteristics. Temporal correlations with radio observations made at Palmer Station, Antarctica and spatial correlations with satellite images of thunderstorm regions near GRO during these events were investigated, aiding in verification and testing of proposed theoretical models of the atmospheric processes believed to be responsible for these unique observations.

  13. Whiskerless Schottky diode

    NASA Technical Reports Server (NTRS)

    Bishop, William L. (Inventor); Mcleod, Kathleen A. (Inventor); Mattauch, Robert J. (Inventor)

    1991-01-01

    A Schottky diode for millimeter and submillimeter wave applications is comprised of a multi-layered structure including active layers of gallium arsenide on a semi-insulating gallium arsenide substrate with first and second insulating layers of silicon dioxide on the active layers of gallium arsenide. An ohmic contact pad lays on the silicon dioxide layers. An anode is formed in a window which is in and through the silicon dioxide layers. An elongated contact finger extends from the pad to the anode and a trench, preferably a transverse channel or trench of predetermined width, is formed in the active layers of the diode structure under the contact finger. The channel extends through the active layers to or substantially to the interface of the semi-insulating gallium arsenide substrate and the adjacent gallium arsenide layer which constitutes a buffer layer. Such a structure minimizes the effect of the major source of shunt capacitance by interrupting the current path between the conductive layers beneath the anode contact pad and the ohmic contact. Other embodiments of the diode may substitute various insulating or semi-insulating materials for the silicon dioxide, various semi-conductors for the active layers of gallium arsenide, and other materials for the substrate, which may be insulating or semi-insulating.

  14. Compton-thick AGN in the 3XMM spectral survey

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Corral, A.; Watson, M.; Rosen, S.

    2014-07-01

    In the framework of an ESA Prodex project, we have derived X-ray spectral fits for a large number (120,000) of 3XMM sources. We focus our study on the 120 square degrees that overlap with the SDSS survey. For about 1,100 AGN there are spectroscopic redsifts available. We automatically select candidate Compton-thick sources using simple spectral models. Various selection criteria are applied including a) a high equivalent width FeK line b) a flat spectrum with a photon index of 1.4 or lower at the 90% confidence level or at higher redshift an absorption turnover consistent with a column density of logNh=24. We find 30 candidate Compton-thick sources. More detailed spectral models are applied trying to secure the Compton-thick nature of these sources. We compare our findings with X-ray background synthesis models as well as with Compton-thick surveys in the COSMOS and XMM/CDFS areas.

  15. Compton scatter imaging: A tool for historical exploration.

    PubMed

    Harding, G; Harding, E

    2010-06-01

    This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed. PMID:20138773

  16. Analysis of a proposed Compton backscatter imaging technique

    NASA Astrophysics Data System (ADS)

    Hall, James M.; Jacoby, Barry A.

    1994-03-01

    One-sided imaging techniques are currently being used in nondestructive evaluation of surfaces and shallow subsurface structures. In this work we present both analytical calculations and detailed Monte Carlo simulations aimed at assessing the capability of a proposed Compton backscattering imaging technique designed to detect and characterize voids located several centimeters below the surface of a solid.

  17. Enhancement of Compton scattering by an effective coupling constant

    SciTech Connect

    Barbiellini, Bernardo; Nicolini, Piero

    2011-08-15

    A robust thermodynamic argument shows that a small reduction of the effective coupling constant {alpha} of QED greatly enhances the low-energy Compton-scattering cross section and that the Thomson scattering length is connected to a fundamental scale {lambda}. A discussion provides a possible quantum interpretation of this enormous sensitivity to changes in the effective coupling constant {alpha}.

  18. Measurement of Deeply Virtual Compton Scattering at HERMES

    SciTech Connect

    Kopytin, M.

    2005-10-06

    The measurement of azimuthal cross section asymmetries from deeply virtual Compton scattering on the proton and deuteron at HERMES is discussed. In particular results on the longitudinal target spin asymmetry as a function of the azimuthal angle and the Mandelstam t are given. The t-dependence of the asymmetry is compared with calculations based on generalized parton distribution models.

  19. New JLab/Hall A Deeply Virtual Compton Scattering results

    SciTech Connect

    Defurne, Maxime

    2015-08-01

    New data points for unpolarized Deeply Virtual Compton Scattering cross sections have been extracted from the E00-110 experiment at Q2=1.9 GeV2 effectively doubling the statistics available in the valence region. A careful study of systematic uncertainties has been performed.

  20. Models of unsaturated Compton disks around supermassive black holes

    NASA Technical Reports Server (NTRS)

    Liang, E. P. T.; Thompson, K. A.

    1979-01-01

    Two inverse-Compton disk models for the hard X-ray spectra of quasi-stellar objects and active galactic nuclei are studied and compared. One is a slightly generalized version of the Shapiro, Lightman and Eardley optically thin disk model, and the other is a conduction-stabilized Corona model. Observational distinctions between the two models are discussed.

  1. A Non-Relativistic Look at the Compton Effect

    ERIC Educational Resources Information Center

    Feller, Steve; Giri, Sandeep; Zakrasek, Nicholas; Affatigato, Mario

    2014-01-01

    In a usual modern physics class the Compton effect is used as the pedagogical model for introducing relativity into quantum effects. The shift in photon wavelengths is usually introduced and derived using special relativity. Indeed, this works well for explaining the effect. However, in the senior author's class one of the student coauthors…

  2. Enhanced x-ray detection sensitivity in semiconducting polymer diodes containing metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mills, Christopher A.; Al-Otaibi, Hulayel; Intaniwet, Akarin; Shkunov, Maxim; Pani, Silvia; Keddie, Joseph L.; Sellin, Paul J.

    2013-07-01

    Semiconducting polymer X-radiation detectors are a completely new family of low-cost radiation detectors with potential application as beam monitors or dosimeters. These detectors are easy to process, mechanically flexible, relatively inexpensive, and able to cover large areas. However, their x-ray photocurrents are typically low as, being composed of elements of low atomic number (Z), they attenuate x-rays weakly. Here, the addition of high-Z nanoparticles is used to increase the x-ray attenuation without sacrificing the attractive properties of the host polymer. Two types of nanoparticles (NPs) are compared: metallic tantalum and electrically insulating bismuth oxide. The detection sensitivity of 5 µm thick semiconducting poly([9,9-dioctylfluorenyl-2,7-diyl]-co-bithiophene) diodes containing tantalum NPs is four times greater than that for the analogous NP-free devices; it is approximately double that of diodes containing an equal volume of bismuth oxide NPs. The x-ray induced photocurrent output of the diodes increases with an increased concentration of NPs. However, contrary to the results of theoretical x-ray attenuation calculations, the experimental current output is higher for the lower-Z tantalum diodes than the bismuth oxide diodes, at the same concentration of NP loading. This result is likely due to the higher tantalum NP electrical conductivity, which increases charge transport through the semiconducting polymer, leading to increased diode conductivity.

  3. Limitations of silicon diodes for clinical electron dosimetry.

    PubMed

    Song, Haijun; Ahmad, Munir; Deng, Jun; Chen, Zhe; Yue, Ning J; Nath, Ravinder

    2006-01-01

    This work investigates the relevance of several factors affecting the response of silicon diode dosemeters in depth-dose scans of electron beams. These factors are electron energy, instantaneous dose rate, dose per pulse, photon/electron dose ratio and electron scattering angle (directional response). Data from the literature and our own experiments indicate that the impact of these factors may be up to +/-15%. Thus, the different factors would have to cancel out perfectly at all depths in order to produce true depth-dose curves. There are reports of good agreement between depth-doses measured with diodes and ionisation chambers. However, our measurements with a Scantronix electron field detector (EFD) diode and with a plane-parallel ionisation chamber show discrepancies both in the build-up and in the low-dose regions, with a ratio up to 1.4. Moreover, the absolute sensitivity of two diodes of the same EFD model was found to differ by a factor of 3, and this ratio was not constant but changed with depth between 5 and 15% in the low-dose regions of some clinical electron beams. Owing to these inhomogeneities among diodes even of the same model, corrections for each factor would have to be diode-specific and beam-specific. All these corrections would have to be determined using parallel plane chambers, as recommended by AAPM TG-25, which would be unrealistic in clinical practice. Our conclusion is that in general diodes are not reliable in the measurement of depth-dose curves of clinical electron beams. PMID:16772305

  4. Self-Aligned Guard Rings For Schottky-Barrier Diodes

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1990-01-01

    Proposed self-aligned guard ring increases active area of Schottky-barrier infrared detector. Concept developed for silicide Schottky-barrier diodes in which platinum silicide or iridium silicide Schottky-contacts provide cutoff wavelengths of about 6 or 10 micrometers. Grid of silicon dioxide doped with phosphorus etched on silicon wafer, and phosphorus from grid diffused into substrate, creating n-type guard rings. Silicide layers formed in open areas of grid. Overlap of guard rings and silicide layers small.

  5. Volume CT (VCT) enabled by a novel diode technology

    NASA Astrophysics Data System (ADS)

    Ikhlef, Aziz; Zeman, Greg; Hoffman, David; Li, Wen; Possin, George

    2005-04-01

    One of the results of the latest developments in x-ray tube and detector technology, is the enabling of computed tomography (CT) as a strong non-invasive imaging modality for a new set of clinical applications including cardiac and brain imaging. A common theme among the applications is an ability to have wide anatomical coverage in a single rotation. Large coverage in CT is expected to bring significant diagnostic value in clinical field, especially in cardiac, trauma, pediatric, neuro, angiography, Stroke WorkUp and pulmonary applications. This demand, in turn, creates a need for tile-able and scalable detector design. In this paper, we introduce the design of a new diode, a crucial part of the detector, discuss how it enables wide coverage, its performance in terms of cross-talk, light output response, maximized geometric efficiency, and other CT requirements, and compare it to the traditional design which is front-illuminated diode. We ran extensive simulation and measurement experiments to study the geometric efficiency and assess the cross talk and all other performance parameters Critical To Quality (CTQs) with both designs. We modeled x-ray scattering in the scintillator, light scattering through the septa and optical coupler, and electrical cross talk. We tested the design with phantoms and clinical experiments on a scanner (LightSpeed VCT, GE Healthcare Technologies, Waukesha, WI, USA). Our preliminary results indicate that the new diode design performs as well as the traditional in terms of cross talk and other CTQs. It, also, yields better geometric efficiency and enables tile-able detector design, which is crucial for the VCT. We introduced a new diode design, which is an essential enabler for VCT. We demonstrated the new design is superior to the traditional design for the clinically relevant performance measures.

  6. Modern halogen leak detectors /Review/

    NASA Astrophysics Data System (ADS)

    Evlampiev, A. I.; Karpov, V. I.; Levina, L. E.

    1981-04-01

    The halogen method is one of the basic techniques of leak detection for monitoring airtightness in such objects as refrigeration equipment and aerosol containers. Sensitivity has been improved by heated platinum emitters which stabilize background currents. Methods for protecting the region in which the gas is selected include placing the sensitive element in a new flow gauge and keeping the chamber at a certain distance from the tested surface. Chromatograph separating columns both increase sensitivity and distinguish test materials on a background of extraneous halogen-containing materials. Solid-state platinum diodes have been used as the sensitive elements of halogen leak detectors. Leak detectors based on electron-capture practically eliminate the effect of contamination of the surrounding atmosphere on leak detector sensitivity. A technique of vacuum testing is based on the high affinity of halogen-containing materials for electrons.

  7. Modern halogen leak detectors /Review/

    NASA Astrophysics Data System (ADS)

    Evlampiev, A. I.; Karpov, V. I.; Levina, L. E.

    1980-09-01

    The halogen method is one of the basic techniques of leak detection for monitoring airtightness in such objects as refrigeration equipment and aerosol containers. Sensitivity has been improved by heated platinum emitters which stabilize background currents. Methods for protecting the region in which the gas is selected include placing the sensitive element in a new flow gauge and keeping the chamber at a certain distance from the tested surface. Chromatograph separating columns both increase sensitivity and distinguish test materials on a background of extraneous halogen-containing materials. Solid-state platinum diodes have been used as the sensitive elements of halogen leak detectors. Leak detectors based on electron-capture practically eliminate the effect of contamination of the surrounding atmosphere on leak detector sensitivity. A technique of vacuum testing is based on the high affinity of halogen-containing materials for electrons.

  8. A Practical Review of the Kompaneets Equation and its Application to Compton Scattering

    SciTech Connect

    D.G. Shirk

    2006-05-15

    In this study, we explore both inverse Compton and Compton scattering processes using the Chang and Cooper scheme to form a deterministic solution of the Kompaneets equation. We examine the individual terms of the Kompaneets equation and illustrate their effect on the equilibrium solution. We use two examples (a Gaussian line profile and a Planck profile) to illustrate the advective and diffusive properties of the Kompaneets operator. We also explore both inverse Compton scattering and Compton scattering, and discuss and illustrate the Bose-Einstein condensation feature of the Compton scattering spectrum.

  9. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  10. BIN Diode For Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Maserjian, J.

    1989-01-01

    Diode formed by selective doping during epitaxial growth, starting with semi-insulating substrate. Use of high-mobility semiconductors like GaAs extends cutoff frequency. Either molecular-beam epitaxy (MBE) or organometallic chemical-vapor deposition used to form layers of diode. Planar growth process permits subsequent fabrication of arrays of diodes by standard photolithographic techniques, to achieve quasi-optical coupling of submillimeter radiation. Useful for generation of harmonics or heterodyne mixing in receivers for atmospheric and space spectroscopy operating at millimeter and submillimeter wavelengths. Used as frequency doublers or triplers, diodes of new type extend frequency range of present solid-state oscillators.

  11. Monte Carlo-based diode design for correction-less small field dosimetry

    NASA Astrophysics Data System (ADS)

    Charles, P. H.; Crowe, S. B.; Kairn, T.; Knight, R. T.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.

    2013-07-01

    Due to their small collecting volume, diodes are commonly used in small field dosimetry. However, the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore, this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm. The metric \\frac{{D_{w,Q} }}{{D_{Det,Q} }} used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting \\frac{{D_{w,Q} }}{{D_{Det,Q} }} as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which \\frac{{D_{w,Q} }}{{D_{Det,Q} }} was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3, 1.15 and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip, respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k_{Q_{clin} ,Q_{msr} }^{f_{clin} ,f_{msr} } was equal to unity to within statistical uncertainty (0.5%) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The

  12. Resonant tunneling diode with a multiplication region for light detection

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Wang, Guanglong; Ni, Haiqiao; Chen, Jianhui; Gao, Fengqi; Qiao, Zhongtao; Niu, Zhichuan

    2014-11-01

    A resonant tunneling diode (RTD) with a multiplication region is designed for light detection in this paper. Via adding a n+-i-p+ multiplication region, we focus on promoting the photocurrent and light sensitivity of the detector. Through the calculation of the multiplication factor, the thickness of the multiplication region is determined. The influence factors of the electric field and potential distribution of the detector are investigated, thereby the thickness and doping concentration of the doped layers besides the double-barrier structure (DBS) are decided. Detectors with and without a multiplication region are fabricated from semiconductor heterostructures grown by molecular beam epitaxy. The current-voltage (I-V) and light sensitivity tests show that the detector with a multiplication region has better performance in peak photocurrent and light sensitivity.

  13. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2015-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  14. Recent advances in processing and characterization of edgeless detectors

    NASA Astrophysics Data System (ADS)

    Wu, X.; Kalliopuska, J.; Eränen, S.; Virolainen, T.

    2012-02-01

    During past five years VTT has actively developed edgeless detector fabrication process. The straightforward and high yield process relies on ion-implantation to activate the edges of the detector. A recent fabrication process was performed at VTT to provide p-on-n edgeless detectors. The layout contained DC- and AC-coupled strip detector and pixel detectors for Medipix/Timepix readouts. The fabricated detector thicknesses were 50, 100 and 150 μm. Electrical characterization was done for 5 × 5 mm2 edgeless diodes on wafer level. All measured electrical parameters showed a dramatic dependence on the diode thickness. Leakage current was measured below 10 nA/cm2 at full depletion. Calculation using a theoretical approximation indicates the diode surface generation current of less than 300 pA. The breakdown voltages were measured to be above 140 V and increased as a function of diode thickness. Reverse bias of 10 V is enough to fully deplete designed edgeless diodes. Leakage current dependence of temperature was investigated for both p-on-n and previous n-on-n edgeless detectors and results show that the leakage current doubles for every 8.5 degree Celsius rise in temperature. TCAD device simulations reveal that breakdown occurs at the lateral p-n junction where the electric field reaches its highest value. Thick edgeless diodes have wider bulk space that allows electric potential to drop and causes smaller curvature of the equipotential lines. This releases the accumulation of electric field at the corner of anode and increases the breakdown voltage. A good match of the simulated and the measured capacitance-voltage curves enables identification of proper parameters used in the simulation.

  15. Small-angle Compton scattering used to determine the depth of a radioactive source in material and to estimate gamma-ray attenuation

    NASA Astrophysics Data System (ADS)

    Oberer, R. B.; Gunn, C. A.; Chiang, L. G.

    2013-09-01

    Small-angle Compton scattering produces a familiar discontinuity in the background continuum at each gamma-ray peak in a spectrum. This discontinuity was previously considered a degradation of the spectrum that needed to be removed in order to determine the net peak count rate. This discontinuity actually contains valuable information about the amount of material between the gamma ray source and the detector. This information is useful in determining the amount of attenuation that the gamma rays undergo. Furthermore, the magnitude of the discontinuity is described by simple mathematical formulas. The use of small-angle Compton scattering was discovered while analyzing the amount of highly enriched uranium (HEU) absorbed in a concrete floor. An experiment using an HEU source and concrete tiles is presented demonstrating the agreement with theoretical predictions.

  16. Scintillation response of Xe gas studied by gamma-ray absorption and Compton electrons

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Chandra, R.; Curioni, A.; Davatz, G.; Friederich, H.; Gendotti, A.; Gendotti, U.; Goeltl, L.; Iwanowska-Hanke, J.; Moszyński, M.; Murer, D.; Resnati, F.; Rubbia, A.; Szawlowski, M.

    2015-07-01

    In this study we report on the scintillation response of Xe gas under irradiation of gamma-rays in the energy range between 50 keV and 1.5 MeV. Xe gas was pressurized to 50 bar and tested as a detector for gamma spectroscopy. The gas was confined in a titanium vessel of 200 mm length and 101 mm diameter with 2.5 mm thick walls. The vessel was sealed with two 3 inch diameter UV transparent windows. The inner surface of the vessel was covered with a reflecting wavelength shifter. Two photomultipliers coupled to both windows at the end of the vessel allowed for registration of 3700 photoelectrons/MeV, which resulted in 7.0% energy resolution registered for 662 keV γ-rays from a 137Cs source. The non-proportionality of the photoelectron yield and intrinsic resolution was studied with gamma photoabsorption peaks. Due to the thickness of the detector vessel, the response of the Xe gas as a scintillator in the low energy range was performed by means of a Compton Coincidence Technique and compared with the gamma absorption results. The shape of the non-proportionality characteristics of Xe gaseous scintillator was compared to the results obtained for NaI:Tl, LaBr3:Ce and LYSO:Ce. A correlation between non-proportionality and intrinsic resolution of Xe gaseous scintillator was pointed out.

  17. Elastic Compton Scattering from the Deuteron Near 100 MeV

    NASA Astrophysics Data System (ADS)

    Kovash, Michael; Shoniyozov, Khayrullo; Compton@MAX-lab Collaboration

    2015-10-01

    Differential cross sections for elastic Compton scattering from targets of carbon and deuterium have been measured from 86 to 113 MeV using a tagged bremsstrahlung beam at the MAX 1 electron storage ring in Lund, Sweden. Photon spectra were collected in 2009 and 2010 at scattering angles of 60, 120 and 150 degrees using three very large, high efficiency NaI spectrometers, each with a FWHM resolution of approximately 2 MeV. The deuterium target consisted of a cryogenic liquid cell of 17 cm length. Improvements made to the running conditions of previous MAX-lab data sets include the use of multi-hit time digitizers, and reduced instantaneous counting rates in both the tagging and the NaI detectors. GEANT4 simulations have been used to determine the photon detector response and efficiency, as well as the photon losses in the targets. The overall accuracy of this procedure is verified by comparing the current carbon results with previous data. The new deuterium cross sections will be presented and compared with the earlier results from this collaboration. The combined data set will be compared with recent Chiral Effective Field Theory calculations to determine the values of the neutron polarizabilities, αn and βn.

  18. On the output factor measurements of the CyberKnife iris collimator small fields: Experimental determination of the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for microchamber and diode detectors

    SciTech Connect

    Pantelis, E.; Moutsatsos, A.; Zourari, K.; Petrokokkinos, L.; Sakelliou, L.; Kilby, W.; Antypas, C.; Papagiannis, P.; Karaiskos, P.; Georgiou, E.; Seimenis, I.

    2012-08-15

    Purpose: To measure the output factors (OFs) of the small fields formed by the variable aperture collimator system (iris) of a CyberKnife (CK) robotic radiosurgery system, and determine the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for a microchamber and four diode detectors. Methods: OF measurements were performed using a PTW PinPoint 31014 microchamber, four diode detectors (PTW-60017, -60012, -60008, and the SunNuclear EDGE detector), TLD-100 microcubes, alanine dosimeters, EBT films, and polymer gels for the 5 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm iris collimators at 650 mm, 800 mm, and 1000 mm source to detector distance (SDD). The alanine OF measurements were corrected for volume averaging effects using the 3D dose distributions registered in polymer gel dosimeters. k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors for the PinPoint microchamber and the diode dosimeters were calculated through comparison against corresponding polymer gel, EBT, alanine, and TLD results. Results: Experimental OF results are presented for the array of dosimetric systems used. The PinPoint microchamber was found to underestimate small field OFs, and a k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factor ranging from 1.127 {+-} 0.022 (for the 5 mm iris collimator) to 1.004 {+-} 0.010 (for the 15 mm iris collimator) was determined at the reference SDD of 800 mm. The PinPoint k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factor was also found to increase with decreasing SDD; k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values equal to 1.220 {+-} 0.028 and 1.077 {+-} 0

  19. THE VERY HIGH ENERGY EMISSION FROM PULSARS: A CASE FOR INVERSE COMPTON SCATTERING

    SciTech Connect

    Lyutikov, Maxim; Otte, Nepomuk; McCann, Andrew

    2012-07-20

    The observations of gamma-ray emission from pulsars with the Fermi-LAT detector and the detection of the Crab pulsar with the VERITAS array of Cherenkov telescopes at energies above 100 GeV make it unlikely that curvature radiation is the main source of photons above GeV energies in the Crab and many other pulsars. We outline a model in which the broad UV-X-ray component and the very high energy {gamma}-ray emission of pulsars are explained within the synchrotron self-Compton framework. We argue that the bulk of the observed radiation is generated by the secondary plasma, which is produced in cascades in the outer gaps of the magnetosphere. We find that the inverse Compton (IC) scattering occurs in the Klein-Nishina regime, which favors synchrotron photons in the UV band as target field for the scattering process. The primary beam is accelerated in a modest electric field, with a field strength that is of the order of a few percent of the magnetic field near the light cylinder. Overall, for IC scattering occurring in the Klein-Nishina regime, the particle distribution in the gap does not evolve toward a stationary distribution and thus is intrinsically time-dependent. We point out that in a radiation reaction-limited regime of particle acceleration the gamma-ray luminosity L{sub {gamma}} scales linearly with the pulsar spin-down power E-dot , L{sub {gamma}}{proportional_to} E-dot , and not proportional to {radical}( E-dot ) as expected from potential-limited acceleration.

  20. NDE of spacecraft materials using 3D Compton backscatter x-ray imaging

    NASA Astrophysics Data System (ADS)

    Burke, E. R.; Grubsky, V.; Romanov, V.; Shoemaker, K.

    2016-02-01

    We present the results of testing of the NDE performance of a Compton Imaging Tomography (CIT) system for single-sided, penetrating 3D inspection. The system was recently developed by Physical Optics Corporation (POC) and delivered to NASA for testing and evaluation. The CIT technology is based on 3D structure mapping by collecting the information on density profiles in multiple object cross sections through hard x-ray Compton backscatter imaging. The individual cross sections are processed and fused together in software, generating a 3D map of the density profile of the object which can then be analyzed slice-by-slice in x, y, or z directions. The developed CIT scanner is based on a 200-kV x-ray source, flat-panel x-ray detector (FPD), and apodized x-ray imaging optics. The CIT technology is particularly well suited to the NDE of lightweight aerospace materials, such as the thermal protection system (TPS) ceramic and composite materials, micrometeoroid and orbital debris (MMOD) shielding, spacecraft pressure walls, inflatable habitat structures, composite overwrapped pressure vessels (COPVs), and aluminum honeycomb materials. The current system provides 3D localization of defects and features with field of view 20x12x8 cm3 and spatial resolution ˜2 mm. In this paper, we review several aerospace NDE applications of the CIT technology, with particular emphasis on TPS. Based on the analysis of the testing results, we provide recommendations for continued development on TPS applications that can benefit the most from the unique capabilities of this new NDE technology.