Science.gov

Sample records for computed tomography rekurrensparesen

  1. Computed Tomography

    NASA Astrophysics Data System (ADS)

    Castellano, Isabel; Geleijns, Jacob

    After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.

  2. Computed Tomography (CT) - Spine

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is a diagnostic imaging ... Spine? What is CT Scanning of the Spine? Computed tomography, more commonly known as a CT or CAT ...

  3. Computed Tomography Status

    DOE R&D Accomplishments Database

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  4. Computed tomography status

    SciTech Connect

    Hansche, B.D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  5. Computed tomography of electronics

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Kruse, Robert J.; Knutson, Benjamin W.

    1989-12-01

    The application of Computed Tomography (CT) and laminography was tested on a variety of electronic components. The effort was performed as a preliminary testing task assignment in the Advanced Development of X ray Computed Tomography Application program. A key area for testing was printed circuit boards for the inspection of solder bonds and in particular for leadless chip carrier devices. During the course of the task assignment several other categories of electronic devices were examined including transformers, connectors, switches from solution and contrast sensitivity phantoms developed for the programs were used to establish quantitative measures of capability used to generate images. This preliminary testing of electronics lead to the conclusion that higher resolution CT scanning is needed to resolve details of interest. CT testing on commercially available system could resolve high contrast details in the range of 2 to 4 lp/mm; however, in many electronic components finer resolution is needed to detect microcracking, voiding and other features. Further testing on high resolution system is recommended. Two areas of immediate potential economic payback for electronics inspection were identified; the inspection of high volume printed circuit board production using high speed laminography and nondestructive failure analysis studies components using high-resolution CT.

  6. Stored luminescence computed tomography.

    PubMed

    Cong, Wenxiang; Wang, Chao; Wang, Ge

    2014-09-01

    Phosphor nanoparticles made of doped semiconductors and pre-excited by x-ray radiation were recently reported for their luminescence emission in the range of 650-770 nm upon near-infrared (NIR) light stimulation. These nanophosphors can be functionalized as optical probes for molecular imaging. In this paper, we present stored luminescence computed tomography to reconstruct a nanophosphor distribution in an object. The propagation of x rays in a biological object allows significantly better localization and deeper penetration. Moreover, the nanophosphors, which are pre-excited with collimated x-ray beams or focused x-ray waves, can be successively stimulated for stored luminescence emissions by variable NIR stimulation patterns. The sequentially detected luminescence signals provide more information of a nanophosphor spatial distribution for more accurate image reconstruction and higher image resolution. A realistic numerical study is performed to demonstrate the feasibility and merits of the proposed approach. PMID:25321362

  7. Computed Tomography Measuring Inside Machines

    NASA Technical Reports Server (NTRS)

    Wozniak, James F.; Scudder, Henry J.; Anders, Jeffrey E.

    1995-01-01

    Computed tomography applied to obtain approximate measurements of radial distances from centerline of turbopump to leading edges of diffuser vanes in turbopump. Use of computed tomography has significance beyond turbopump application: example of general concept of measuring internal dimensions of assembly of parts without having to perform time-consuming task of taking assembly apart and measuring internal parts on coordinate-measuring machine.

  8. Computed tomography of the body

    SciTech Connect

    Lee, J.K.T.; Stanley, R.J.

    1982-01-01

    By the end of the fourth year of clinical use, the number of articles dealing with computed body tomography (CT) had increased exponentially. Over 100 articles were published during this review period. This chapter examines new application of CT in the neck, musculoskeletal system and the breast. The chapter begins with an examination of the technical aspects of the operation and performance of CT scanners during this review period. The anatomy of various regions of the body, such as neck, chest, liver and biliary system, genitourinary tract, and pelvis are examined. Brief discussions of pediatric computed tomography, computed tomography-guided biopsy, and radiation therapy are presented. (KRM)

  9. Neuroanatomy of cranial computed tomography

    SciTech Connect

    Kretschmann, H.J.; Weinrich, W.

    1985-01-01

    Based on the fundamental structures visualized by means of computed tomography, the authors present the functional systems which are relevant in neurology by means of axial cross-sections. All drawings were prepared from original preparations by means of a new technique which is similar to the grey values of X-ray CT and nuclear magnetic resonance tomography. A detailed description is given of the topics of neurofunctional lesions.

  10. Coded aperture computed tomography

    NASA Astrophysics Data System (ADS)

    Choi, Kerkil; Brady, David J.

    2009-08-01

    Diverse physical measurements can be modeled by X-ray transforms. While X-ray tomography is the canonical example, reference structure tomography (RST) and coded aperture snapshot spectral imaging (CASSI) are examples of physically unrelated but mathematically equivalent sensor systems. Historically, most x-ray transform based systems sample continuous distributions and apply analytical inversion processes. On the other hand, RST and CASSI generate discrete multiplexed measurements implemented with coded apertures. This multiplexing of coded measurements allows for compression of measurements from a compressed sensing perspective. Compressed sensing (CS) is a revelation that if the object has a sparse representation in some basis, then a certain number, but typically much less than what is prescribed by Shannon's sampling rate, of random projections captures enough information for a highly accurate reconstruction of the object. This paper investigates the role of coded apertures in x-ray transform measurement systems (XTMs) in terms of data efficiency and reconstruction fidelity from a CS perspective. To conduct this, we construct a unified analysis using RST and CASSI measurement models. Also, we propose a novel compressive x-ray tomography measurement scheme which also exploits coding and multiplexing, and hence shares the analysis of the other two XTMs. Using this analysis, we perform a qualitative study on how coded apertures can be exploited to implement physical random projections by "regularizing" the measurement systems. Numerical studies and simulation results demonstrate several examples of the impact of coding.

  11. Computed tomography:the details.

    SciTech Connect

    Doerry, Armin Walter

    2007-07-01

    Computed Tomography (CT) is a well established technique, particularly in medical imaging, but also applied in Synthetic Aperture Radar (SAR) imaging. Basic CT imaging via back-projection is treated in many texts, but often with insufficient detail to appreciate subtleties such as the role of non-uniform sampling densities. Herein are given some details often neglected in many texts.

  12. Atlas of Computed Tomography Variants

    SciTech Connect

    Kuhns, L.R.; Seeger, J.

    1983-01-01

    Atlas of Computed Tomography Variants is unique in that, while others of its kind may include plain film, roentgen variants, it concentrates solely on CT images of variants which may simulate disease. Organized into four regions, it presents dicussions covering CT variants of the skull, neck and spine; thorax; abdomen; and extremities-featuring a section on the head.

  13. X-ray Computed Tomography.

    ERIC Educational Resources Information Center

    Michael, Greg

    2001-01-01

    Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)

  14. Computed tomography of intramuscular myxoma

    SciTech Connect

    Ekelund, L.; Herrlin, K.; Rydholm, A.

    1982-11-01

    Computed tomography (CT) was performed in seven patients with intramuscular myxoma. All lesions were well demarcated, of homogeneous appearance and attenuation values ranging from 10 to 60 (HU). The tumor size, as estimated at CT, correlated well with the size of the surgical specimen, which is in contrast to the findings in some high grade malignant sarcomas.

  15. Viewing Welds By Computer Tomography

    NASA Technical Reports Server (NTRS)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  16. Cardiac Computed Tomography (Multidetector CT, or MDCT)

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Cardiac Computed Tomography (Multidetector CT, or MDCT) Updated:Sep 3,2015 ... facts MDCT is a very fast type of computed tomography (CT) scan. MDCT creates pictures of the healthy ...

  17. Positron emission tomography/computed tomography.

    PubMed

    Townsend, David W

    2008-05-01

    Accurate anatomical localization of functional abnormalities obtained with the use of positron emission tomography (PET) is known to be problematic. Although tracers such as (18)F-fluorodeoxyglucose ((18)F-FDG) visualize certain normal anatomical structures, the spatial resolution is generally inadequate for accurate anatomic localization of pathology. Combining PET with a high-resolution anatomical imaging modality such as computed tomography (CT) can resolve the localization issue as long as the images from the two modalities are accurately coregistered. However, software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. Acquiring both CT and PET images in the same scanner obviates the need for software registration and routinely provides accurately aligned images of anatomy and function in a single scan. A CT scanner positioned in line with a PET scanner and with a common patient couch and operating console has provided a practical solution to anatomical and functional image registration. Axial translation of the couch between the 2 modalities enables both CT and PET data to be acquired during a single imaging session. In addition, the CT images can be used to generate essentially noiseless attenuation correction factors for the PET emission data. By minimizing patient movement between the CT and PET scans and accounting for the axial separation of the two modalities, accurately registered anatomical and functional images can be obtained. Since the introduction of the first PET/CT prototype more than 6 years ago, numerous patients with cancer have been scanned on commercial PET/CT devices worldwide. The commercial designs feature multidetector spiral CT and high-performance PET components. Experience has demonstrated an increased level of accuracy and confidence in the

  18. Cranial computed tomography and MRI

    SciTech Connect

    Lee, S.H.; Rao, K.C.V.G.

    1987-01-01

    This book appears to be a hybrid between an atlas and a text. The second edition attempts to depict the current status of both computed tomography (CT) and magnetic resonance (MR) imaging in neuroradiology. Although only the final chapter of the book is completely devoted to cranial MR imaging, MR images are scattered throughout various other chapters. There is coverage of the major anatomic and pathophysiologic entities. There are 17 chapters with images, tables, and diagrams.

  19. Computed tomography of gynecologic diseases

    SciTech Connect

    Gross, B.H.; Moss, A.A.; Mihara, K.; Goldberg, H.I.; Glazer, G.M.

    1983-10-01

    Although computed tomography (CT) provides superb images of all areas of the body, sonography, because of its lack of ionizing radiation and its real-time and multiplanar capacities, has become the preferred initial method of evaluating the female pelvis. This has resulted in a relative paucity of information in the literature concerning CT features of benign pelvic disorders in particular and prompted the authors to review our experience with third-generation CT scanning of the uterus and ovaries.

  20. Hermaphroditism demonstrated by computed tomography

    SciTech Connect

    Gale, M.E.

    1983-07-01

    The categorization of disorders of gender differentiation is based on chromosome analysis, physical examination, gonadal histology, and endocrine evaluation. In most cases of hermaphroditism, radiologic studies have been limited to assessment of associated urinary tract anomalies before surgical revconstruction. Noninvasive evaluation with computed tomography (CT) or sonography is potentially useful for investigation of internal pelvic anatomy in these cases. A case report of a 65-year-old man is reported. (KRM)

  1. Computed Tomography software and standards

    SciTech Connect

    Azevedo, S.G.; Martz, H.E.; Skeate, M.F.; Schneberk, D.J.; Roberson, G.P.

    1990-02-20

    This document establishes the software design, nomenclature, and conventions for industrial Computed Tomography (CT) used in the Nondestructive Evaluation Section at Lawrence Livermore National Laboratory. It is mainly a users guide to the technical use of the CT computer codes, but also presents a proposed standard for describing CT experiments and reconstructions. Each part of this document specifies different aspects of the CT software organization. A set of tables at the end describes the CT parameters of interest in our project. 4 refs., 6 figs., 1 tab.

  2. Computed tomography of facial fractures.

    PubMed

    Furlow, Bryant

    2014-01-01

    Facial skeletal fractures are common, potentially serious, and frequently associated with other life-threatening conditions, such as traumatic brain injuries. Facial fractures can be simple or complex and sometimes involve serious complications. Computed tomography has revolutionized the rapid and precise assessment of craniofacial and neck fractures in patients with severe facial trauma. This article introduces readers to the epidemiology, skeletal anatomy and biomechanics, complications, and diagnostic imaging of facial fractures. In addition, this article describes efforts to develop and validate a quantitative scoring system for facial fracture severity and reviews treatment strategies for facial skeletal fractures. PMID:24806070

  3. Computed tomography of parosteal osteosarcoma

    SciTech Connect

    Hudson, T.M.; Springfield, D.S.; Benjamin, M.; Bertoni, F.; Present, D.A.

    1985-05-01

    Twelve patients with parosteal osteosarcomas were evaluated by computed tomography (CT). CT accurately defined the extent of the tumors for purposes of surgical planning, although tumor bone often could not be distinguished from thickened host bone. Nine tumors invaded the medullary cavity, a feature that implies a poorer prognosis when the tumor also contains high-grade areas. Six CT studies accurately detected the medullary invasion, but three did not. Lucent areas within dense tumors contained either benign tissue or high- or low-grade tumor; CT did not differentiate among these different tissues. CT also did not reveal small satellite nodules of tumor beyond the main tumor mass.

  4. Computed Tomography Imaging in Oncology.

    PubMed

    Forrest, Lisa J

    2016-05-01

    Computed tomography (CT) imaging has become the mainstay of oncology, providing accurate tumor staging and follow-up imaging to monitor treatment response. Presurgical evaluation of tumors is becoming commonplace and guides surgeons as to the extent and whether complete tumor resection is possible. CT imaging plays a crucial role in radiotherapy treatment planning. CT imaging in oncology has become ubiquitous in veterinary medicine because of increased availability of this imaging modality. This article focuses on CT cancer staging in veterinary oncology, CT imaging for surgical planning, and advances in CT simulation for radiation therapy planning. PMID:26851976

  5. Computed tomography of calcaneal fractures

    SciTech Connect

    Heger, L.; Wulff, K.; Seddiqi, M.S.A.

    1985-07-01

    Computed tomography (CT) of 25 fractured calcanei was performed to investigate the potential of CT in evaluating the pattern and biomechanics of these fractures. The characteristic findings of typical fractures are presented, including the number and type of principal fragments, size and dislocation of the sustentacular fragment, and involvement of the anterior and posterior facets of the subtalar joint. In 17 cases, the calcaneus consisted of four or more fragments. Furthermore, in 17 cases the sustentacular fragment included all or part of the posterior facet joint. In 18 of the 25 cases, the sustentacular fragment was displaced. It is concluded that well performed CT is an invaluable adjunct in understanding the fracture mechanism and in detecting pain-provoking impingement between the fibular malleolus and the tuberosity fragment.

  6. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  7. Computed tomography of splenic trauma

    SciTech Connect

    Jeffrey, R.B.; Laing, F.C.; Federle, M.P.; Goodman, P.C.

    1981-12-01

    Fifty patients with abdominal trauma and possible splenic injury were evaluated by computed tomography (CT). CT correctly diagnosed 21 of 22 surgically proved traumatic sesions of the spleen (96%). Twenty-seven patients had no evidence of splenic injury. This was confirmed at operation in 1 patient and clinical follow-up in 26. There were one false negative and one false positive. In 5 patients (10%), CT demonstrated other clinically significant lesions, including hepatic or renal lacerations in 3 and large retroperitoneal hematomas in 2. In adolescents and adults, CT is an accurate, noninvasive method of rapidly diagnosing splenic trauma and associated injuries. Further experience is needed to assess its usefulness in evaluating splenic injuries in infants and small children.

  8. Computed tomography of cryogenic cells

    SciTech Connect

    Schneider, Gerd; Anderson, E.; Vogt, S.; Knochel, C.; Weiss, D.; LeGros, M.; Larabell, C.

    2001-08-30

    Due to the short wavelengths of X-rays and low numerical aperture of the Fresnel zone plates used as X-ray objectives, the depth of field is several microns. Within the focal depth, imaging a thick specimen is to a good approximation equivalent to projecting the specimen absorption. Therefore, computed tomography based on a tilt series of X-ray microscopic images can be used to reconstruct the local linear absorption coefficient and image the three-dimensional specimen structure. To preserve the structural integrity of biological objects during image acquisition, microscopy is performed at cryogenic temperatures. Tomography based on X-ray microscopic images was applied to study the distribution of male specific lethal 1 (MSL-1), a nuclear protein involved in dosage compensation in Drosophila melanogaster, which ensures that males with single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. Tomographic reconstructions of X-ray microscopic images were used to compute the local three-dimensional linear absorption coefficient revealing the arrangement of internal structures of Drosophila melanogaster cells. Combined with labelling techniques, nanotomography is a new technique to study the 3D distribution of selected proteins inside whole cells. We want to improve this technique with respect to resolution and specimen preparation. The resolution in the reconstruction can be significantly improved by reducing the angular step size to collect more viewing angles, which requires an automated data acquisition. In addition, fast-freezing with liquid ethane instead of cryogenic He gas will be applied to improve the vitrification of the hydrated samples. We also plan to apply cryo X-ray nanotomography in order to study different types of cells and their nuclear protein distributions.

  9. [Computed tomography and cranial paleoanthropology].

    PubMed

    Cabanis, Emmanuel Alain; Badawi-Fayad, Jackie; Iba-Zizen, Marie-Thérèse; Istoc, Adrian; de Lumley, Henry; de Lumley, Marie-Antoinette; Coppens, Yves

    2007-06-01

    Since its invention in 1972, computed tomography (C.T.) has significantly evolved. With the advent of multi-slice detectors (500 times more sensitive than conventional radiography) and high-powered computer programs, medical applications have also improved. CT is now contributing to paleoanthropological research. Its non-destructive nature is the biggest advantage for studying fossil skulls. The second advantage is the possibility of image analysis, storage, and transmission. Potential disadvantages include the possible loss of files and the need to keep up with rapid technological advances. Our experience since the late 1970s, and a recent PhD thesis, led us to describe routine applications of this method. The main contributions of CT to cranial paleoanthropology are five-fold: --Numerical anatomy with rapid acquisition and high spatial resolution (helicoidal and multidetector CT) offering digital storage and stereolithography (3D printing). --Numerical biometry (2D and 3D) can be used to create "normograms" such as the 3D craniofacial reference model used in maxillofacial surgery. --Numerical analysis offers thorough characterization of the specimen and its state of conservation and/or restoration. --From "surrealism" to virtual imaging, anatomical structures can be reconstructed, providing access to hidden or dangerous zones. --The time dimension (4D imaging) confers movement and the possibility for endoscopic simulation and internal navigation (see Iconography). New technical developments will focus on data processing and networking. It remains our duty to deal respectfully with human fossils. PMID:18402165

  10. Radiological protection in computed tomography and cone beam computed tomography.

    PubMed

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. PMID:25816279

  11. Quantitative computed tomography of bone.

    PubMed

    Rüegsegger, P; Stebler, B; Dambacher, M

    1982-07-01

    Computed tomography (CT) is well accepted as an imaging procedure, but comparatively little effort has been made to utilize the potential capability of CT to quantify tissue densities and composition. There are two reasons for this. First, precision and accuracy of quantification are limited by nonlinear effects. These effects are nonlocal and are object and scanner dependent. Second, intraindividual and interindividual variations of tissue compositions are considerable. Single energy measurements require restrictive assumptions on tissue compositions. The diagnosis and treatment monitoring of osteopenic bone diseases with low-dose CT is given as an example of a successful application of quantitative CT. With a special-purpose CT system and an analytic procedure for the quantification of bone at peripheral measuring sites, longitudinal examinations were performed. Low-dose quantitative CT permitted quantification, on an individual basis, of the bone loss of immobilization osteoporosis on a week-by-week basis. Changes due to postmenopausal osteoporosis are less drastic, and so measurement at intervals of months is adequate. In women after menopause, 3-month intervals were used in evaluating the natural course of osteoporosis and in quantifying the effects of sodium fluoride treatment on trabecular bone. Low-dose quantitative CT has proved to be a sensitive and highly reproducible procedure for the noninvasive evaluation of bone loss or bone accretion. During a disease or therapy, each patient can be evaluated individually. PMID:7121079

  12. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  13. Nondestructive computed tomography for pit inspections

    SciTech Connect

    Martz, H.; Logan, C.; Haskins, J.; Johansson, E.; Perkins, D.; Hernandez, J.M.; Schneberk, D.; Dolan, K.

    1997-02-07

    Objective is to develop new approaches to electronically capture digital radiography and computed tomography images at high x-ray energies to satisfy spatial and contrast requirements for inspection of high-density weapons components.

  14. Single Photon Emission Computed Tomography (SPECT)

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Single Photon Emission Computed Tomography (SPECT) Updated:Sep 11,2015 ... Persantine) or dobutamine. The tests may take between 2 and 2 1/2 hours. What happens after ...

  15. Computed tomography of the central nervous system

    SciTech Connect

    Bentson, J.R.

    1982-01-01

    The objective of this chapter is to review the most pertinent articles published during the past year on the subject of computed tomography of the central nervous system. The chapter contains sections on pediatric computed tomography, and on the diagnostic use of CT in white matter disease, in infectious disease, for intracranial aneurysms, trauma, and intracranial tumors. Metrizamide flow studies and contrast enhancement are also examined. (KRM)

  16. Computed Tomography of Pancreatitis and Pancreatic Cancer.

    PubMed

    Furlow, Bryant

    2015-01-01

    Pancreatic disease often is asymptomatic until tissue damage and complications occur or until malignancies have reached advanced stages and have metastasized. Contrast-enhanced multidetector computed tomography plays a central role in diagnosing, staging, and treatment planning for pancreatitis and pancreatic cancer. This article introduces the functional anatomy of the pancreas and common bile duct and the epidemiology, pathobiology, and computed tomography imaging of pancreatitis, calculi, and pancreatic cancer. PMID:26199449

  17. Computed Tomography For Internal Inspection Of Castings

    NASA Technical Reports Server (NTRS)

    Hanna, Timothy L.

    1995-01-01

    Computed tomography used to detect internal flaws in metal castings before machining and otherwise processing them into finished parts. Saves time and money otherwise wasted on machining and other processing of castings eventually rejected because of internal defects. Knowledge of internal defects gained by use of computed tomography also provides guidance for changes in foundry techniques, procedures, and equipment to minimize defects and reduce costs.

  18. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  19. Panoramic cone beam computed tomography

    SciTech Connect

    Chang Jenghwa; Zhou Lili; Wang Song; Clifford Chao, K. S.

    2012-05-15

    Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{sub cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and

  20. Computed tomography in the evaluation of trauma

    SciTech Connect

    Federle, M.P.; Brant-Zawadzki, M.

    1982-01-01

    This book is intended to be the current standard for computed tomography in the evaluation of trauma. It summarizes two years of experience at San Francisco General Hospital. The book is organized into seven chapters, covering head, maxillofacial, laryngeal, spinal, chest, abdominal, acetabular, and pelvic trauma. Extremity trauma is not discussed.

  1. Neutron computed tomography of rat lungs.

    PubMed

    Metzke, R W; Runck, H; Stahl, C A; Schillinger, B; Calzada, E; Mühlbauer, M; Schulz, M; Schneider, M; Priebe, H-J; Wall, W A; Guttmann, J

    2011-01-01

    Using conventional methods, three-dimensional imaging of the lung is challenging because of the low contrast between air and tissue and the large differences in dimensions between various pulmonary structures. The small distal airway structures and the high air-to-tissue ratio of lung tissue require an imaging technique which reliably discriminates between air and water. The objective of this study was to assess whether neutron computed tomography would satisfy such a requirement. This method utilizes the unique characteristic of neutrons of directly interacting with the atomic nucleus rather than being scattered by the atomic shell. Neutron computed tomography was tested in rats and allowed differentiation of larger lung structures (e.g., lobes) and distal airways. Airways could be identified reliably down to the sixth bronchial generation, in some cases even down to the tenth generation. The lung could be stabilized for sufficiently long exposure times to achieve an image resolution of 50-60 µm, which is the current physical resolution limit of the neutron computed tomography facility. Neutron computed tomography allowed excellent lung imaging without the need for additional tissue preparation or contrast media. The enhanced structural resolution obtained by applying this new research technique may improve understanding of lung physiology and respiratory therapy. PMID:21119223

  2. Computed tomography in trauma: An atlas approach

    SciTech Connect

    Toombs, B.D.; Sandler, C.

    1986-01-01

    This book discussed computed tomography in trauma. The text is organized according to mechanism of injury and site of injury. In addition to CT, some correlation with other imaging modalities is included. Blunt trauma, penetrating trauma, complications and sequelae of trauma, and use of other modalities are covered.

  3. Cerebral computed tomography, 3rd Edition

    SciTech Connect

    Weisberg, L.; Nice, C.

    1988-01-01

    This book is an introduction to the utilization of computed tomography in evaluating patients with intracranial and orbital disorders. It features clinical correlations and provides an overview of general principles, performance, and normal anatomy of CT. It covers evaluation of specific neurologic signs and symptoms, including stroke, metastatic disease, increased intracranial pressure, head injury, pediatric conditions, and more.

  4. Computed tomography demonstration of cholecystogastric fistula.

    PubMed

    Chou, Chung Kuao

    2016-06-01

    Cholecystogastric fistula is a rare complication of chronic cholecystitis or long-standing cholelithiasis. It results from the gradual erosion of the approximated, chronically inflamed wall of the gall bladder and stomach with fistulous tract formation. The present case describes the direct visualization of a cholecystogastric fistula by computed tomography in a patient without prior biliary system complaints. PMID:27257453

  5. Computed Tomography For Inspection Of Thermistors

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.

    1991-01-01

    Computed tomography (CT) enables identification of cracked thermistors without disassembly of equipment containing them. CT unit used to scan equipment and locate thermistors. Further scans made in various radial orientations perpendicular to plane of devices to find cracks. Cracks invisible in conventional x-radiographs seen.

  6. Computed Tomography Angiography of the Neurovascular Circulation.

    PubMed

    Mohan, Suyash; Agarwal, Mohit; Pukenas, Bryan

    2016-01-01

    Computed tomography angiography of the head and neck is a powerful tool for imaging and diagnosis of a plethora of disorders of the cervicocerebral vasculature. This article reviews the technique, indications, and interpretation of many of these disorders. A standard report checklist is also presented. PMID:26654397

  7. Computed Tomography Analysis of NASA BSTRA Balls

    SciTech Connect

    Perry, R L; Schneberk, D J; Thompson, R R

    2004-10-12

    Fifteen 1.25 inch BSTRA balls were scanned with the high energy computed tomography system at LLNL. This system has a resolution limit of approximately 210 microns. A threshold of 238 microns (two voxels) was used, and no anomalies at or greater than this were observed.

  8. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  9. Computed tomography of the spine

    SciTech Connect

    Haughton, V.M.; Williams, A.L.

    1982-01-01

    The book describes the computed tomographic (CT) techniques for imaging the different elements comprising the spinal column and canal. The use of intravenous and intrathecal contrast enhancement and of xenon enhancement is briefly mentioned. Reconstruction techniques and special problems regarding CT of the spine are presented. CT of the spinal cord, meninges and subarachnoid space, epidural space, intervertebral discs, facet joints, and vertebrae present normal anatomy, and several common pathologic conditions. (KRM)

  10. Real-time computed optical interferometric tomography

    NASA Astrophysics Data System (ADS)

    Shemonski, Nathan D.; Liu, Yuan-Zhi; Ahmad, Adeel; Adie, Steven G.; Carney, P. Scott; Boppart, Stephen A.

    2014-03-01

    High-resolution tomography is of great importance to many areas of biomedical imaging, but with it comes several apparent tradeoffs such as a narrowing depth-of-field and increasing optical aberrations. Overcoming these challenges has attracted many hardware and computational solutions. Hardware solutions, though, can become bulky or expensive and computational approaches can require high computing power or large processing times. This study demonstrates memory efficient implementations of interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) - two computational approaches for overcoming the depthof- field limitation and the effect of optical aberrations in optical coherence tomography (OCT). Traditionally requiring lengthy post processing, here we report implementations of ISAM and CAO on a single GPU for real-time in vivo imaging. Real-time, camera-limited ISAM processing enabled reliable acquisition of stable data for in vivo imaging, and CAO processing on the same GPU is shown to quickly correct static aberrations. These algorithmic advances hold the promise for high-resolution volumetric imaging in time-sensitive situations as well as enabling aberrationfree cellular-level volumetric tomography.

  11. Computed tomography of the medulla

    SciTech Connect

    Daniels, D.L.; Williams, A.L.; Haughton, V.M.

    1982-10-01

    The medulla was studied in cadavers and in 100 patients both with and without the intrathecal administration of contrast material. The computed tomographic (CT) anatomy was correlated with the appearance on anatomic dissections. The pyramids, olives, and inferior cerebellar peduncles produced characteristic contours on cross sections of the medulla. The hypoglossal nerve by its location and course in the medullary cistern could be distinguished from the glossopharyngeal, vagal, and spinal accessory nerves. For optimal evaluation of the medulla, intrathecal administration of metrizamide and 5- and/or 1.5-mm-thick axial and coronal sections are recommended.

  12. Computed tomography of Tietze syndrome.

    PubMed

    Edelstein, G; Levitt, R G; Slaker, D P; Murphy, W A

    1984-02-01

    Six patients with clinical features suggestive of Tietze syndrome had a thoracic computed tomographic (CT) examination following a normal plain film or tomographic examination (or both) of the affected costochondral junction. A chest wall mass was excluded in all six patients. The CT findings included enlargement of the costal cartilage at the site of complaint (two patients), ventral angulation of the involved costal cartilage (two patients), and normal anatomy of the costochondral junction (two patients). Exclusion of a chest wall mass by CT may obviate the need for operative intervention. PMID:6690519

  13. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  14. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed tomography system. (a) Identification. An emission computed tomography system is a device intended to detect...

  15. X ray computed tomography for failure analysis

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Crews, Alan R.; Georgeson, Gary E.

    1992-08-01

    Under a preliminary testing task assignment of the Advanced Development of X-Ray Computed Tomography Application program, computed tomography (CT) has been studied for its potential as a tool to assist in failure analysis investigations. CT provides three-dimensional spatial distribution of material that can be used to assess internal configurations and material conditions nondestructively. This capability has been used in failure analysis studies to determine the position of internal components and their operation. CT is particularly advantageous on complex systems, composite failure studies, and testing under operational or environmental conditions. CT plays an important role in reducing the time and effort of a failure analysis investigation. Aircraft manufacturing or logistical facilities perform failure analysis operations routinely and could be expected to reduce schedules, reduce costs and/or improve evaluation on about 10 to 30 percent of the problems they investigate by using CT.

  16. Computed tomography of ancient Egyptian mummies.

    PubMed

    Harwood-Nash, D C

    1979-12-01

    This first report of the application of computed tomography (CT) to the study of ancient mummies, the desiccated brain of a boy and the body of a young woman within her cartonnage, shows that CT is uniquely suitable for the study of such antiquities, a study that does not necessitate destruction of the mummy or its cartonnage. Exquisite images result that are of great paleoanatomical, paleopathological, and archeological significance. PMID:389964

  17. Computed tomography of the calcaneus: normal anatomy

    SciTech Connect

    Heger, L.; Wulff, K.

    1985-07-01

    The normal sectional anatomy of the calcaneus was studied as the background for interpretation of computed tomography (CT) of fractures. Multiplanar CT examination of the normal calcaneus was obtained, and sections were matched with a simplified anatomic model. Sectional anatomy in the four most important planes is described. This facilitates three-dimensional understanding of the calcaneus from sections and interpretation of CT sections obtained in any atypical plane.

  18. Single photon emission computed tomography and other selected computer topics

    SciTech Connect

    Price, R.R.; Gilday, D.L.; Croft, B.Y.

    1980-01-01

    This volume includes an overview of single photon emission computed tomography and numerous papers that describe and evaluate specific systems and techniques. Papers cover such topics as Auger cameras; seven-pinhole and slant-hole collimators; brain; cardiac; and gated blood-pool studies; and the BICLET and SPECT systems.

  19. Single photon emission computed tomography-guided Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie

    2012-07-01

    Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.

  20. Computed tomography to quantify tooth abrasion

    NASA Astrophysics Data System (ADS)

    Kofmehl, Lukas; Schulz, Georg; Deyhle, Hans; Filippi, Andreas; Hotz, Gerhard; Berndt-Dagassan, Dorothea; Kramis, Simon; Beckmann, Felix; Müller, Bert

    2010-09-01

    Cone-beam computed tomography, also termed digital volume tomography, has become a standard technique in dentistry, allowing for fast 3D jaw imaging including denture at moderate spatial resolution. More detailed X-ray images of restricted volumes for post-mortem studies in dental anthropology are obtained by means of micro computed tomography. The present study evaluates the impact of the pipe smoking wear on teeth morphology comparing the abraded tooth with its contra-lateral counterpart. A set of 60 teeth, loose or anchored in the jaw, from 12 dentitions have been analyzed. After the two contra-lateral teeth were scanned, one dataset has been mirrored before the two datasets were registered using affine and rigid registration algorithms. Rigid registration provides three translational and three rotational parameters to maximize the overlap of two rigid bodies. For the affine registration, three scaling factors are incorporated. Within the present investigation, affine and rigid registrations yield comparable values. The restriction to the six parameters of the rigid registration is not a limitation. The differences in size and shape between the tooth and its contra-lateral counterpart generally exhibit only a few percent in the non-abraded volume, validating that the contralateral tooth is a reasonable approximation to quantify, for example, the volume loss as the result of long-term clay pipe smoking. Therefore, this approach allows quantifying the impact of the pipe abrasion on the internal tooth morphology including root canal, dentin, and enamel volumes.

  1. Computer tomography imaging of fast plasmachemical processes

    SciTech Connect

    Denisova, N. V.; Katsnelson, S. S.; Pozdnyakov, G. A.

    2007-11-15

    Results are presented from experimental studies of the interaction of a high-enthalpy methane plasma bunch with gaseous methane in a plasmachemical reactor. The interaction of the plasma flow with the rest gas was visualized by using streak imaging and computer tomography. Tomography was applied for the first time to reconstruct the spatial structure and dynamics of the reagent zones in the microsecond range by the maximum entropy method. The reagent zones were identified from the emission of atomic hydrogen (the H{sub {alpha}} line) and molecular carbon (the Swan bands). The spatiotemporal behavior of the reagent zones was determined, and their relation to the shock-wave structure of the plasma flow was examined.

  2. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  3. Positron computed tomography: current state, clinical results and future trends

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  4. Emerging clinical applications of computed tomography

    PubMed Central

    Liguori, Carlo; Frauenfelder, Giulia; Massaroni, Carlo; Saccomandi, Paola; Giurazza, Francesco; Pitocco, Francesca; Marano, Riccardo; Schena, Emiliano

    2015-01-01

    X-ray computed tomography (CT) has recently been experiencing remarkable growth as a result of technological advances and new clinical applications. This paper reviews the essential physics of X-ray CT and its major components. Also reviewed are recent promising applications of CT, ie, CT-guided procedures, CT-based thermometry, photon-counting technology, hybrid PET-CT, use of ultrafast-high pitch scanners, and potential use of dual-energy CT for material differentiations. These promising solutions and a better knowledge of their potentialities should allow CT to be used in a safe and effective manner in several clinical applications. PMID:26089707

  5. Computed tomography of infantile hepatic hemangioendothelioma

    SciTech Connect

    Lucaya, J.; Enriquez, G.; Amat, L.; Gonzalez-Rivero, M.A.

    1985-04-01

    Computed tomography (CT) was performed on five infants with hepatic hemangioendothelioma. Precontrast scans showed solitary or multiple, homogeneous, circumscribed areas with reduced attenuation values. Tiny tumoral calcifications were identified in two patients. Serial scans, after injection of a bolus of contrast material, showed early massive enhancement, which was either diffuse or peripheral. On delayed scans, multinocular tumors became isodense with surrounding liver, while all solitary ones showed varied degrees of centripetal enhancement and persistent central cleftlike unenhanced areas. The authors believe that these CT features are characteristic and obviate arteriographic confirmation.

  6. Computed tomography of cardiac pseudotumors and neoplasms.

    PubMed

    Anavekar, Nandan S; Bonnichsen, Crystal R; Foley, Thomas A; Morris, Michael F; Martinez, Matthew W; Williamson, Eric E; Glockner, James F; Miller, Dylan V; Breen, Jerome F; Araoz, Philip A

    2010-07-01

    Important features of cardiac masses can be clearly delineated on cardiac computed tomography (CT) imaging. This modality is useful in identifying the presence of a mass, its relationship with cardiac and extracardiac structures, and the features that distinguish one type of mass from another. A multimodality approach to the evaluation of cardiac tumors is advocated, with the use of echocardiography, CT imaging and magnetic resonance imaging as appropriately indicated. In this article, various cardiac masses are described, including pseudotumors and true cardiac neoplasms, and the CT imaging findings that may be useful in distinguishing these rare entities are presented. PMID:20705174

  7. Emerging clinical applications of computed tomography.

    PubMed

    Liguori, Carlo; Frauenfelder, Giulia; Massaroni, Carlo; Saccomandi, Paola; Giurazza, Francesco; Pitocco, Francesca; Marano, Riccardo; Schena, Emiliano

    2015-01-01

    X-ray computed tomography (CT) has recently been experiencing remarkable growth as a result of technological advances and new clinical applications. This paper reviews the essential physics of X-ray CT and its major components. Also reviewed are recent promising applications of CT, ie, CT-guided procedures, CT-based thermometry, photon-counting technology, hybrid PET-CT, use of ultrafast-high pitch scanners, and potential use of dual-energy CT for material differentiations. These promising solutions and a better knowledge of their potentialities should allow CT to be used in a safe and effective manner in several clinical applications. PMID:26089707

  8. Calcium Scoring and Cardiac Computed Tomography.

    PubMed

    Parikh, Swapnesh; Budoff, Matthew J

    2016-01-01

    Although recent advances in noninvasive imaging technologies have potentially improved diagnostic efficiency and clinical outcomes of patients with acute chest pain, controversy remains regarding much of the accumulated evidence. This article reviews the role of coronary computed tomography (CT) angiography in the assessment of coronary risk, and its usefulness in the emergency department in facilitating appropriate disposition decisions. Also discussed is coronary artery calcification incidentally found on CT scans when done for indications such as evaluation of pulmonary embolism or lung cancer. The evidence base and clinical applications for both techniques are described, together with cost-effectiveness and radiation exposure considerations. PMID:26567977

  9. Cone Beam Computed Tomography - Know its Secrets

    PubMed Central

    Kumar, Mohan; Shanavas, Muhammad; Sidappa, Ashwin; Kiran, Madhu

    2015-01-01

    Cone-beam computed tomography (CBCT) is an advanced imaging modality that has high clinical applications in the field of dentistry. CBCT proved to be a successful investigative modality that has been used for dental and maxillofacial imaging. Radiation exposure dose from CBCT is 10 times less than from conventional CT scans during maxillofacial exposure. Furthermore, CBCT is highly accurate and can provide a three-dimensional volumetric data in axial, sagittal and coronal planes. This article describes the basic technique, difference in CBCT from CT and main clinical applications of CBCT. PMID:25859112

  10. Space shuttle main engine computed tomography applications

    NASA Technical Reports Server (NTRS)

    Sporny, Richard F.

    1990-01-01

    For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.

  11. Coronary Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Kantor, Birgit; Nagel, Eike; Schoenhagen, Paul; Barkhausen, Jörg; Gerber, Thomas C.

    2009-01-01

    Cardiac computed tomography and magnetic resonance are relatively new imaging modalities that can exceed the ability of established imaging modalities to detect present pathology or predict patient outcomes. Coronary calcium scoring may be useful in asymptomatic patients at intermediate risk. Computed tomographic coronary angiography is a first-line indication to evaluate congenitally abnormal coronary arteries and, along with stress magnetic resonance myocardial perfusion imaging, is useful in symptomatic patients with nondiagnostic conventional stress tests. Cardiac magnetic resonance is indicated for visualizing cardiac structure and function, and delayed enhancement magnetic resonance is a first-line indication for assessing myocardial viability. Imaging plaque and molecular mechanisms related to plaque rupture holds great promise for the presymptomatic detection of patients at risk for coronary events but is not yet suitable for routine clinical use. PMID:19269527

  12. Comparison of computed tomography dose reporting software.

    PubMed

    Abdullah, A; Sun, Z; Pongnapang, N; Ng, K-H

    2012-08-01

    Computed tomography (CT) dose reporting software facilitates the estimation of doses to patients undergoing CT examinations. In this study, comparison of three software packages, i.e. CT-Expo (version 1.5, Medizinische Hochschule, Hannover, Germany), ImPACT CT Patients Dosimetry Calculator (version 0.99×, Imaging Performance Assessment on Computed Tomography, www.impactscan.org) and WinDose (version 2.1a, Wellhofer Dosimetry, Schwarzenbruck, Germany), has been made in terms of their calculation algorithm and the results of calculated doses. Estimations were performed for head, chest, abdominal and pelvic examinations based on the protocols recommended by European guidelines using single-slice CT (SSCT) (Siemens Somatom Plus 4, Erlangen, Germany) and multi-slice CT (MSCT) (Siemens Sensation 16, Erlangen, Germany) for software-based female and male phantoms. The results showed that there are some differences in final dose reporting provided by these software packages. There are deviations of effective doses produced by these software packages. Percentages of coefficient of variance range from 3.3 to 23.4 % in SSCT and from 10.6 to 43.8 % in MSCT. It is important that researchers state the name of the software that is used to estimate the various CT dose quantities. Users must also understand the equivalent terminologies between the information obtained from the CT console and the software packages in order to use the software correctly. PMID:22155753

  13. Microscopic x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Dianwen; Zhang, Kun; Li, Changqing

    2015-03-01

    X-ray luminescence computed tomography (XLCT) was emerged as a new hybrid imaging modality, in which the x-rays are used to excite phosphors emitting optical photons to be measured for imaging. In this paper, we reported a microscopic x-ray luminescence computed tomography (microXLCT) with a spatial resolution up to hundreds of micrometers for deep targets. We use a superfine x-ray pencil beam to scan the phosphor targets. The superfine x-ray pencil beam is generated by a small collimator mounted in front of a powerful x-ray tube (93212, Oxford Instrument). A CT detector is used to image the x-ray beam. We have generated an x-ray beam with a diameter of 192 micrometers with a collimator of 100 micrometers in diameter. The emitted optical photons on the top surface of phantom are reflected by a mirror and acquired by an electron multiplier charge-coupled device (EMCCD) camera (C9100-13, Hamamatsu Photonics). The microXLCT imaging system is built inside an x-ray shielding and light tight cabinet. The EMCCD camera is placed in a lead box. All the imaging components are controlled by a VC++ program. The optical photon propagation is modeled with the diffusion equation solved by the finite element method. We have applied different regularization methods including L2 and L1 in the microXLCT reconstruction algorithms. Numerical simulations and phantom experiments are used to validate the microXLCT imaging system.

  14. Computed Tomography Technology: Development and Applications for Defence

    NASA Astrophysics Data System (ADS)

    Baheti, G. L.; Saxena, Nisheet; Tripathi, D. K.; Songara, K. C.; Meghwal, L. R.; Meena, V. L.

    2008-09-01

    Computed Tomography(CT) has revolutionized the field of Non-Destructive Testing and Evaluation (NDT&E). Tomography for industrial applications warrants design and development of customized solutions catering to specific visualization requirements. Present paper highlights Tomography Technology Solutions implemented at Defence Laboratory, Jodhpur (DLJ). Details on the technological developments carried out and their utilization for various Defence applications has been covered.

  15. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  16. System Matrix Analysis for Computed Tomography Imaging

    PubMed Central

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  17. System Matrix Analysis for Computed Tomography Imaging.

    PubMed

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  18. Clinically applicable gated cardiac computed tomography

    SciTech Connect

    Cipriano, P.R.; Nassi, M.; Brody, W.R.

    1983-03-01

    Several attempts have been made to improve cardiac images obtained with x-ray transmission computed tomography (CT) by stopping cardiac motion through electrocardiographic gating. These methods reconstruct images that correspond to time intervals of the cardiac cycle identified by electrocardiography using either a pulsed x-ray beam at a selected time in the cardiac cycle or selected measurements in retrospect from regularly pulsed measurements made over several cardiac cycles. Missing CT angles of view (line integrals) have been a major problem contributing to degradation of such gated cardiac CT images. A new method for CT reconstruction from an incomplete set of projection data is presented that can be used clinically with a standard fan-beam reconstruction algorithm to improve gated cardiac CT images.

  19. Arterioportal shunts on dynamic computed tomography

    SciTech Connect

    Nakayama, T.; Hiyama, Y.; Ohnishi, K.; Tsuchiya, S.; Kohno, K.; Nakajima, Y.; Okuda, K.

    1983-05-01

    Thirty-two patients, 20 with hepatocelluar carcinoma and 12 with liver cirrhosis, were examined by dynamic computed tomography (CT) using intravenous bolus injection of contrast medium and by celiac angiography. Dynamic CT disclosed arterioportal shunting in four cases of hepatocellular carcinoma and in one of cirrhosis. In three of the former, the arterioportal shunt was adjacent to a mass lesion on CT, suggesting tumor invasion into the portal branch. In one with hepatocellular carcinoma, the shunt was remote from the mass. In the case with cirrhosis, there was no mass. In these last two cases, the shunt might have been caused by prior percutaneous needle puncture. In another case of hepatocellular carcinoma, celiac angiography but not CT demonstrated an arterioportal shunt. Thus, dynamic CT was diagnostic in five of six cases of arteriographically demonstrated arterioportal shunts.

  20. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  1. Computed tomography of radioactive objects and materials

    NASA Astrophysics Data System (ADS)

    Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.

    1990-12-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.

  2. Computed tomography of osteosarcoma after intraarterial chemotherapy

    SciTech Connect

    Shirkhoda, A.; Jaffe, N.; Wallace, S.; Ayala, A.; Lindell, M.M.; Zornoza, J.

    1985-01-01

    The response to intraarterial cis-diamminedichloroplatinum II (CDP) chemotherapy was evaluated by computed tomography (CT) in 33 patients with pathologically proved osteosarcoma of the long or flat bones. Twenty-one of the 33 patients had a CT scan before chemotherapy was started. In the other 12 patients, a CT scan was obtained after at least two courses of treatment, and additional studies were performed during the course of therapy. In those patients responding to treatment, the posttherapy scan revealed a remarkable decrease or complete disappearance of the associated soft-tissue mass and clear reestablishment of the fat planes between the muscle bundles that had been obscured. There was sharp definition of the peripheral margins of the calcified healing neoplasm, and the calcification in the healing tumor could be differentiated easily from that of the original bone neoplasm. CT was more accurate than conventional studies in detecting healing process and diagnosis of remission.

  3. Myocardial hypoperfusion on conventional contrast computed tomography.

    PubMed

    Ching, Shing; Chung, Tak Shun

    2015-10-01

    Non–electrocardiogram (ECG)–gated contrast computed tomography (CT) is commonly performed to exclude aortic dissection in chest pain patients. Besides evaluating the aorta for dissection flap, attention should be paid to the myocardium for areas of hypoenhancement that may suggest ischemia. Current models of multidetector CT enable assessment of myocardial perfusion with minimal motion artifact even without ECG gating. Transmural hypoenhancement with preserved wall thickness in a coronary distribution is highly specific for acute myocardial infarction. We report 2 cases of acute chest pain with initial nondiagnostic studies that underwent CT aortogram to exclude dissection. Instead, the CT showed myocardial hypoenhancement in left anterior descending artery territory. Myocardial hypoenhancement occurred before ST-segment elevation on ECG, suggesting that recognition of this important finding may lead to earlier revascularization decisions. PMID:26321167

  4. Computed tomography in intracranial supratentorial osteochondroma

    SciTech Connect

    Matz, S.; Israeli, Y.; Shalit, M.N.; Cohen, M.L.

    1981-02-01

    A case of a huge intracranial frontoparietal osteochondroma in a 20-year-old man is reported. The presenting symptoms were headache, vomiting, and blurred vision. Apart from papilledema, no other abnormal neurological signs were present. A specific preoperative diagnosis could not be reached from the information provided by plain skull films, angiography, and radionuclide scan. The findings on computed tomography were those of a high density mass interspersed with small foci of lower densities, producing a honeycomb appearance, and surrounded by deposits of nodular calcification. The postcontrast scan showed a moderate degree of enhancement with preservation of the precontrast honeycomb pattern. These particular features may enable a correct preoperative histological diagnosis to be offered with a high degree of probability.

  5. Computed tomography of the abnormal thymus

    SciTech Connect

    Baron, R.L.; Lee, J.K.T.; Sagel, S.S.; Levitt, R.G.

    1982-01-01

    Computed tomography (CT) should be the imaging method of choice following plain chest radiographs when a suspected thymic abnormality requires further evaluation. Based upon a six-year experience, including the evaluation of 25 patients with thymic pathology, CT was found useful in suggesting or excluding a diagnosis of thymoma and in distinguishing thymic hyperplasis from thymoma in patients with myasthenia gravis. The thickness of the thymic lobes determined by CT was found to be a more accurate indicator of infiltrative disease (thymic hyperplasia and lymphoma) than the width. CT was helpful in differentiating benign thymic cysts from solid tumors, and in defining the extent of a thymic neoplasms. On occasion, CT may suggest the specific histologic nature of a thymic lesion.

  6. Quality assessment of clinical computed tomography

    NASA Astrophysics Data System (ADS)

    Berndt, Dorothea; Luckow, Marlen; Lambrecht, J. Thomas; Beckmann, Felix; Müller, Bert

    2008-08-01

    Three-dimensional images are vital for the diagnosis in dentistry and cranio-maxillofacial surgery. Artifacts caused by highly absorbing components such as metallic implants, however, limit the value of the tomograms. The dominant artifacts observed are blowout and streaks. Investigating the artifacts generated by metallic implants in a pig jaw, the data acquisition for the patients in dentistry should be optimized in a quantitative manner. A freshly explanted pig jaw including related soft-tissues served as a model system. Images were recorded varying the accelerating voltage and the beam current. The comparison with multi-slice and micro computed tomography (CT) helps to validate the approach with the dental CT system (3D-Accuitomo, Morita, Japan). The data are rigidly registered to comparatively quantify their quality. The micro CT data provide a reasonable standard for quantitative data assessment of clinical CT.

  7. Method and device for computed tomography

    SciTech Connect

    Lux, P.W.; Op De Beek, J.C.A.; Van Leiden, H.F.

    1983-09-06

    A computer tomography device in which the detectors are asymmetrically arranged with respect to the connecting line between the X-ray source, the center of rotation of the source, and the detectors is disclosed. The detector device produces an incomplete profile of measuring values which are supplemented with ''zeros'' during processing in order to form a number of measuring values of a complete profile. In order to avoid artefacts which are produced by the acute transients between measuring values and ''zeros'', a number of measuring values adjoining the acute transients are projected around the center of rotation and multipled by a factor so that from the zeros a smoothly increasing series of adapted measuring values is obtained.

  8. Computed tomography on small explosive parts

    SciTech Connect

    Ryon, R.W.

    1994-05-01

    We have investigated three small explosive parts for the Pantex Plant in Amarillo, Texas using computed tomography (CT). A medium resolution, fan beam system was used to test imaging capabilities for small holes drilled into one of the parts, and to identify any inhomogeneities, cracks, voids, and inclusions if present in the other two parts. This system provides volumetric imaging. Its information is qualitative in that is allows us to see interior features but it cannot provide quantitative attenuation data. A second part of the investigation was to perform effective atomic number computed tomography on the parts using energy dispersive spectroscopy methods. We wanted to experimentally identify the {open_quotes}average{close_quotes} chemical composition of the materials in the explosive and its shell and to detect any possible inhomogeneities in composition. A single beam, nuclear spectroscopy based system was used for this work. The radiation source was a silver anode x-ray tube. By measuring x-ray attenuation at specific energies (characteristic lines and narrow bands of continuum) we are able to quantitatively determine linear attenuation coefficients. By using ratios of such measurements, density cancels out and we effectively have ratios of mass attenuation coefficients. Through a look-up scheme of mass attenuation coefficients for different elements, we can determine the weighted average chemical composition, as averaged by x-ray attenuation. We call this averaged composition the effective atomic number ({open_quotes}Z{sub eff}{close_quotes}). We thereby obtain cross sectional images of a parameter related to the averaged chemistry of the object. Such images and the underlying data can reveal, for instance, segregation of explosive and binder.

  9. Depiction of ventriculoperitoneal shunt obstruction with single-photon emission computed tomography/computed tomography

    PubMed Central

    Aksoy, Sabire Yılmaz; Vatankulu, Betül; Uslu, Lebriz; Halac, Metin

    2016-01-01

    An 83-year-old male patient with ventriculoperitoneal shunt underwent radionuclide shunt study using single-photon emission computed tomography/computed tomography (SPECT/CT) to evaluate the shunt patency. The planar images showed activity at the cranial region and spinal canal but no significant activity at the peritoneal cavity. However, SPECT/CT images clearly demonstrated accumulation of activity at the superior part of bifurcation level with no activity at the distal end of shunt as well as no spilling of radiotracer into the peritoneal cavity indicating shunt obstruction. SPECT/CT makes the interpretation of radionuclide shunt study more accurate and easier as compared with traditional planar images. PMID:27385906

  10. Computed tomography and magnetic resonance findings in lipoid pneumonia.

    PubMed Central

    Bréchot, J M; Buy, J N; Laaban, J P; Rochemaure, J

    1991-01-01

    A case of exogenous lipoid pneumonia was documented by computed tomography and magnetic resonance imaging. Although strongly suggesting the presence of fat on T1 weighted images, magnetic resonance does not produce images specific for this condition. Computed tomography is the best imaging modality for its diagnosis. Images PMID:1750024

  11. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed tomography system. (a) Identification. An...

  12. 21 CFR 1020.33 - Computed tomography (CT) equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computed tomography (CT) equipment. 1020.33 Section 1020.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.33 Computed tomography (CT) equipment....

  13. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  14. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  15. Computed Tomography in Diagnosis of Admantinoma

    PubMed Central

    Misra, Akansha; Misra, Deepankar; Rai, Shalu; Panjwani, Sapna; Ranjan, Vikash; Prabhat, Mukul; Bhalla, Kanika; Bhatnagar, Puneet

    2015-01-01

    Context: Admantinoma is second most common benign odontogenic tumor which clinically appears as an aggressive odontogenic tumor, often asymptomatic and slow growing, associated with symptoms such as swelling, dental malocclusion, pain, and paresthesia of the affected area. The radiographic appearance may vary from unilocular to multilocular radiolucencies, imparting a characteristic honey comb, soap bubble appearance or may resemble a caricature of spider. Case Report: This report highlights the importance of conventional and advanced imaging in the diagnosis of large and invasive lesions. Patient reported with complaint of swelling in jaw, which progressively increased; and was found to be bony hard, both intra- and extraorally. Radiographs revealed large multilocular radiolucency on left body and ramus of mandible with soap bubble pattern and knife edged root resorption. Computed tomographic examination evaluated the extent of the lesion, internal structure, and relation to adjacent structures; further a reconstructed image was obtained to evaluate extent of destruction in three dimensions. Conclusion: Computed tomography has an important role in the diagnosis and treatment planning is imperative as it is superior in revealing the cortical destruction and extension into the neighboring soft tissues than conventional radiography. PMID:26110136

  16. Beam Hardening Corrections in Quantitative Computed Tomography

    SciTech Connect

    Vedula, Venumadhav; Venugopal, Manoharan; Raghu, C.; Pandey, Pramod

    2007-03-21

    Volumetric computed tomography (VCT) is the emerging 3D NDE inspection technique that gives highest throughput and better image quality. Industrial components in general demands higher x-ray energy for inspection for which polychromatic x-ray sources are used in common. Polychromatic nature of the x-rays gives rise to non-linear effects in the VCT projection data measurements called to be the beam hardening (BH) effects. BH produces prominent artifacts in the reconstructed images thereby deteriorating the image quality. Quantitative analysis such as density quantification, dimensional analysis etc., becomes difficult with the presence of these artifacts. This paper describes the BH correction using preprocessing technique for the homogeneous materials. Selection of effective energy at which the monoenergetic linear attenuation coefficient of a particular material equals to that of the polyenergetic beam is critical for BH correction. Various methods to determine the effective energy and their consequence in the quantitative measurements have been investigated in the present study. In this paper, BH corrections for heterogeneous materials have also been explored.

  17. Three energy computed tomography with synchrotron radiation

    SciTech Connect

    Menk, R.H.; Thomlinson, W.; Zhong, Z.; Charvet, A.M.; Arfelli, F. |; Chapman, L.

    1997-09-01

    Preliminary experiments for digital subtraction computed tomography (CT) at the K-edge of iodine (33.1 keV) were carried out at SMERF (Synchrotron Medical Research Facility X17B2) at the National Synchrotron Light Source, Brookhaven National Laboratory. The major goal was to evaluate the availability of this kind of imaging for in vivo neurological studies. Using the transvenous coronary angiography system, CT images of various samples and phantoms were taken simultaneously at two slightly different energies bracketing the K-absorption edge of iodine. The logarithmic subtraction of the two images resulted in the contrast enhancement of iodine filled structures. An additional CT image was taken at 99.57 keV (second harmonic of the fundamental wave). The third energy allowed the calculation of absolute iodine, tissue and bone images by means of a matrix inversion. A spatial resolution of 0.8 LP/mm was measured in single energy images and iodine concentrations down to 0.082 mg/ml in a 1/4 diameter detail were visible in the reconstructed subtraction image.

  18. A Detector for Proton Computed Tomography

    SciTech Connect

    Blazey, G.; et al.,

    2013-12-06

    Radiation therapy is a widely recognized treatment for cancer. Energetic protons have distinct features that set them apart from photons and make them desirable for cancer therapy as well as medical imaging. The clinical interest in heavy ion therapy is due to the fact that ions deposit almost all of their energy in a sharp peak – the Bragg peak- at the very end of their path. Proton beams can be used to precisely localize a tumor and deliver an exact dose to the tumor with small doses to the surrounding tissue. Proton computed tomography (pCT) provides direct information on the location on the target tumor, and avoids position uncertainty caused by treatment planning based on imaging with X-ray CT. The pCT project goal is to measure and reconstruct the proton relative stopping power distribution directly in situ. To ensure the full advantage of cancer treatment with 200 MeV proton beams, pCT must be realized.

  19. Dedicated breast computed tomography: Basic aspects

    SciTech Connect

    Sarno, Antonio; Mettivier, Giovanni Russo, Paolo

    2015-06-15

    X-ray mammography of the compressed breast is well recognized as the “gold standard” for early detection of breast cancer, but its performance is not ideal. One limitation of screening mammography is tissue superposition, particularly for dense breasts. Since 2001, several research groups in the USA and in the European Union have developed computed tomography (CT) systems with digital detector technology dedicated to x-ray imaging of the uncompressed breast (breast CT or BCT) for breast cancer screening and diagnosis. This CT technology—tracing back to initial studies in the 1970s—allows some of the limitations of mammography to be overcome, keeping the levels of radiation dose to the radiosensitive breast glandular tissue similar to that of two-view mammography for the same breast size and composition. This paper presents an evaluation of the research efforts carried out in the invention, development, and improvement of BCT with dedicated scanners with state-of-the-art technology, including initial steps toward commercialization, after more than a decade of R and D in the laboratory and/or in the clinic. The intended focus here is on the technological/engineering aspects of BCT and on outlining advantages and limitations as reported in the related literature. Prospects for future research in this field are discussed.

  20. Intraperitoneal tuberculous abscess: Computed tomography features

    PubMed Central

    Dong, Peng; Chen, Jing-Jing; Wang, Xi-Zhen; Wang, Ya-Qin

    2015-01-01

    AIM: To evaluate the computed tomography (CT) features of intraperitoneal tuberculous abscess (IPTA). METHODS: Eight patients with IPTA confirmed by pathology were analyzed retrospectively. The clinical symptoms, medical images, and surgical findings were evaluated. Involvement of the intestine, peritoneum, viscera, and lymph nodes was also assessed. RESULTS: All 8 patients had a history of abdominal discomfort for 1 to 6 mo. Physical examination revealed a palpable abdominal mass in 6 patients. Three patients had no evidence of pulmonary tuberculosis (TB). All IPTAs (11 abscesses) were seen as a multiseptated, peripherally enhanced, hypodense mass with enlarged, rim-enhanced lymph nodes. The largest abscess diameter ranged from 4.5 cm to 12.2 cm. CT showed 2 types of IPTA: Lymph node fusion and encapsulation. Of the 8 patients, one had liver tuberculosis and one had splenic and ovarian tuberculosis. Two cases showed involvement of the terminal ileum and ileocecal junction. Ascites were found in 4 cases. Three patients had peritonitis and mesenteritis. Three patients showed involvement of the omentum. Three patients had histological evidence of caseating granuloma, and 5 had histological evidence of acid-fast bacilli. CONCLUSION: CT is crucial in the detection and characterization of IPTA. Certain CT findings are necessary for correct diagnosis. PMID:26435779

  1. Portable Digital Radiography and Computed Tomography Manual

    SciTech Connect

    Not Available

    2007-11-01

    This user manual describes the function and use of the portable digital radiography and computed tomography (DRCT) scanner. The manual gives a general overview of x-ray imaging systems along with a description of the DRCT system. An inventory of the all the system components, organized by shipping container, is also included. In addition, detailed, step-by-step procedures are provided for all of the exercises necessary for a novice user to successfully collect digital radiographs and tomographic images of an object, including instructions on system assembly and detector calibration and system alignment. There is also a short section covering the limited system care and maintenance needs. Descriptions of the included software packages, the DRCT Digital Imager used for system operation, and the DRCT Image Processing Interface used for image viewing and tomographic data reconstruction are given in the appendixes. The appendixes also include a cheat sheet for more experienced users, a listing of known system problems and how to mitigate them, and an inventory check-off sheet suitable for copying and including with the machine for shipment purposes.

  2. Shape threat detection via adaptive computed tomography

    NASA Astrophysics Data System (ADS)

    Masoudi, Ahmad; Thamvichai, Ratchaneekorn; Neifeld, Mark A.

    2016-05-01

    X-ray Computed Tomography (CT) is used widely for screening purposes. Conventional x-ray threat detection systems employ image reconstruction and segmentation algorithms prior to making threat/no-threat decisions. We find that in many cases these pre-processing steps can degrade detection performance. Therefore in this work we will investigate methods that operate directly on the CT measurements. We analyze a fixed-gantry system containing 25 x-ray sources and 2200 photon counting detectors. We present a new method for improving threat detection performance. This new method is a so-called greedy adaptive algorithm which at each time step uses information from previous measurements to design the next measurement. We utilize sequential hypothesis testing (SHT) in order to derive both the optimal "next measurement" and the stopping criterion to insure a target probability of error Pe. We find that selecting the next x-ray source according to such a greedy adaptive algorithm, we can reduce Pe by a factor of 42.4× relative to the conventional measurement sequence employing all 25 sources in sequence.

  3. Modelling the penumbra in Computed Tomography1

    PubMed Central

    Kueh, Audrey; Warnett, Jason M.; Gibbons, Gregory J.; Brettschneider, Julia; Nichols, Thomas E.; Williams, Mark A.; Kendall, Wilfrid S.

    2016-01-01

    BACKGROUND: In computed tomography (CT), the spot geometry is one of the main sources of error in CT images. Since X-rays do not arise from a point source, artefacts are produced. In particular there is a penumbra effect, leading to poorly defined edges within a reconstructed volume. Penumbra models can be simulated given a fixed spot geometry and the known experimental setup. OBJECTIVE: This paper proposes to use a penumbra model, derived from Beer’s law, both to confirm spot geometry from penumbra data, and to quantify blurring in the image. METHODS: Two models for the spot geometry are considered; one consists of a single Gaussian spot, the other is a mixture model consisting of a Gaussian spot together with a larger uniform spot. RESULTS: The model consisting of a single Gaussian spot has a poor fit at the boundary. The mixture model (which adds a larger uniform spot) exhibits a much improved fit. The parameters corresponding to the uniform spot are similar across all powers, and further experiments suggest that the uniform spot produces only soft X-rays of relatively low-energy. CONCLUSIONS: Thus, the precision of radiographs can be estimated from the penumbra effect in the image. The use of a thin copper filter reduces the size of the effective penumbra. PMID:27232198

  4. Computed tomography experiments of Pantex high explosives

    NASA Astrophysics Data System (ADS)

    Perkins, D. E.; Martz, H. E.; Hester, L. O.; Sobczak, G.; Pratt, C. L.

    1992-04-01

    X-ray computed tomography is an advanced imaging technique which provide three-dimensional nondestructive characterization of materials, components and assemblies. The CT Project group at Lawrence Livermore National Laboratory (LLNL) and the Pantex Plant are cooperating to examine the use of CT technology to inspect and characterize high-explosives pressings (e.g., PBX-9502, LX-10-2). High-explosives pressings manufactured by Pantex must be characterized prior to assembling into weapons systems; a nondestructive examination of all assembly parts would be preferable to the current sampling and destructive testing. The earlier in the processing cycle this can be done the more cost effective it will be. We have performed experiments that show that this characterization can be performed at the pressed billet stage using CT. We have detected 2-mm inclusions in a 15-cm diameter billet and 3.5-mm voids in a 20-cm diameter billet. Based on these results we show calculations that can be used to design production CT systems for characterization of high-explosives.

  5. Perfusion computed tomography in renal cell carcinoma.

    PubMed

    Das, Chandan J; Thingujam, Usha; Panda, Ananya; Sharma, Sanjay; Gupta, Arun Kumar

    2015-07-28

    Various imaging modalities are available for the diagnosis, staging and response evaluation of patients with renal cell carcinoma (RCC). While contrast enhanced computed tomography (CT) is used as the standard of imaging for size, morphological evaluation and response assessment in RCC, a new functional imaging technique like perfusion CT (pCT), goes down to the molecular level and provides new perspectives in imaging of RCC. pCT depicts regional tumor perfusion and vascular permeability which are indirect parameters of tumor angiogenesis and thereby provides vital information regarding tumor microenvironment. Also response evaluation using pCT may predate the size criteria used in Response Evaluation Criteria in Solid Tumors, as changes in the perfusion occurs earlier following tissue kinase inhibitors before any actual change in size. This may potentially help in predicting prognosis, better selection of therapy and more accurate and better response evaluation in patients with RCC. This article describes the techniques and role of pCT in staging and response assessment in patients with RCCs. PMID:26217456

  6. Electrode Models for Electric Current Computed Tomography

    PubMed Central

    CHENG, KUO-SHENG; ISAACSON, DAVID; NEWELL, J. C.; GISSER, DAVID G.

    2016-01-01

    This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 Ω · cm were studied. Values of “effective” contact impedance z used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 Ω · cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an “effective” contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field. PMID:2777280

  7. Industrial computed tomography image size measurement

    NASA Astrophysics Data System (ADS)

    Ping, Chen; Jin-Xiao, Pan; Bin, Liu

    2009-09-01

    As one of the most useful modern detection technologies, Industrial Computed Tomography (ICT) image size measurement can correctly non-destructively measure the size of workpieces' inner construction, and it is considered as the standard for quality assurance and reverse engineering. In view of the advantages and disadvantages compared to conventional methods, this paper improves the precision of image size measurement with a new algorithm that uses an approximate function to describe edge degradation. First, this algorithm constructs the approximate function and determines the optimal point of edge detection, based on image intensity and inflexions. Then, in order to accurately extract the image edge, this algorithm is used to revise the primary image, completing construction of the CT image. Excellent results are obtained from simulations and experiments. The experimental results indicate that the relative error is 2% for the CT image when the step evolution of the image edge is pooled. The relative error of this method is decreased by as much as 1.5% compared to wavelet transformation and ridgelet transformation. Therefore, this new algorithm demonstrates increased effectiveness in extracting an accurate measurement of the CT image edge.

  8. Cosine fitting radiography and computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Pan-Yun; Zhang, Kai; Huang, Wan-Xia; Yuan, Qing-Xi; Wang, Yan; Ju, Zai-Qiang; Wu, Zi-Yu; Zhu, Pei-Ping

    2015-06-01

    A new method in diffraction-enhanced imaging computed tomography (DEI-CT) that follows the idea developed by Chapman et al. [Chapman D, Thomlinson W, Johnston R E, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfelli F and Sayers D 1997 Phys. Med. Biol. 42 2015] in 1997 is proposed in this paper. Merged with a “reverse projections” algorithm, only two sets of projection datasets at two defined orientations of the analyzer crystal are needed to reconstruct the linear absorption coefficient, the decrement of the real part of the refractive index and the linear scattering coefficient of the sample. Not only does this method reduce the delivered dose to the sample without degrading the image quality, but, compared with the existing DEI-CT approaches, it simplifies data-acquisition procedures. Experimental results confirm the reliability of this new method for DEI-CT applications. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the National Natural Science Foundation of China (Grant Nos. 11205189, 11375225, and U1332109), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42, Y4545320Y2, and 542014IHEPZZBS50659).

  9. Computed tomography imaging and angiography - principles.

    PubMed

    Kamalian, Shervin; Lev, Michael H; Gupta, Rajiv

    2016-01-01

    The evaluation of patients with diverse neurologic disorders was forever changed in the summer of 1973, when the first commercial computed tomography (CT) scanners were introduced. Until then, the detection and characterization of intracranial or spinal lesions could only be inferred by limited spatial resolution radioisotope scans, or by the patterns of tissue and vascular displacement on invasive pneumoencaphalography and direct carotid puncture catheter arteriography. Even the earliest-generation CT scanners - which required tens of minutes for the acquisition and reconstruction of low-resolution images (128×128 matrix) - could, based on density, noninvasively distinguish infarct, hemorrhage, and other mass lesions with unprecedented accuracy. Iodinated, intravenous contrast added further sensitivity and specificity in regions of blood-brain barrier breakdown. The advent of rapid multidetector row CT scanning in the early 1990s created renewed enthusiasm for CT, with CT angiography largely replacing direct catheter angiography. More recently, iterative reconstruction postprocessing techniques have made possible high spatial resolution, reduced noise, very low radiation dose CT scanning. The speed, spatial resolution, contrast resolution, and low radiation dose capability of present-day scanners have also facilitated dual-energy imaging which, like magnetic resonance imaging, for the first time, has allowed tissue-specific CT imaging characterization of intracranial pathology. PMID:27432657

  10. Quantitative investigations of megavoltage computed tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Myron; Kerr, Andrew; Salomons, Greg; Schreiner, L. John

    2005-04-01

    Megavoltage computed tomography (MVCT) has been an active area of research and development in image guided radiation therapy. We have been investigating a particular implementation of MVCT in conjunction with studies of the potential for tomotherapy with a Cobalt-60 radiation source. In this paper, we present results comparing MVCT using a Co-60 source and a 4 MV linear accelerator to conventional kVCT imaging. The Co-60 and linac MVCT measurements were obtained with a first generation benchtop CT imager; the KVCT measurements were obtained using a Philips AcQSim CT Simulator). Phantoms containing various inserts ranging in density from air, through lung, soft tissue and bone equivalent materials and extending to high atomic number metals were imaged with the three modalities. The results enable characterization of image artifacts, CT number linearity and beam hardening. The MVCT images have sufficient contrast that soft tissue regions with 2.8% difference in electron density can be visualized. In MVCT, a linear relationship between CT numbers and electron densities extends to materials with Z ~ 60. In the 4MV CT imaging there is a position dependence of the CT numbers within a uniform water phantom, which is absent in Co-60 CT images, indicating the presence of beam hardening artifacts in the linac MVCT images. The differences between kVCT and MVCT will be discussed considering the variation of the photon interactions dominating the images. Our investigations indicate that MVCT has properties that may potentially extend its utility beyond radiation therapy.

  11. Important Advances in Technology and Unique Applications to Cardiovascular Computed Tomography

    PubMed Central

    Chaikriangkrai, Kongkiat; Choi, Su Yeon; Nabi, Faisal; Chang, Su Min

    2014-01-01

    For the past decade, multidetector cardiac computed tomography and its main application, coronary computed tomography angiography, have been established as a noninvasive technique for anatomical assessment of coronary arteries. This new era of coronary artery evaluation by coronary computed tomography angiography has arisen from the rapid advancement in computed tomography technology, which has led to massive diagnostic and prognostic clinical studies in various patient populations. This article gives a brief overview of current multidetector cardiac computed tomography systems, developing cardiac computed tomography technologies in both hardware and software fields, innovative radiation exposure reduction measures, multidetector cardiac computed tomography functional studies, and their newer clinical applications beyond coronary computed tomography angiography. PMID:25574342

  12. Important advances in technology and unique applications to cardiovascular computed tomography.

    PubMed

    Chaikriangkrai, Kongkiat; Choi, Su Yeon; Nabi, Faisal; Chang, Su Min

    2014-01-01

    For the past decade, multidetector cardiac computed tomography and its main application, coronary computed tomography angiography, have been established as a noninvasive technique for anatomical assessment of coronary arteries. This new era of coronary artery evaluation by coronary computed tomography angiography has arisen from the rapid advancement in computed tomography technology, which has led to massive diagnostic and prognostic clinical studies in various patient populations. This article gives a brief overview of current multidetector cardiac computed tomography systems, developing cardiac computed tomography technologies in both hardware and software fields, innovative radiation exposure reduction measures, multidetector cardiac computed tomography functional studies, and their newer clinical applications beyond coronary computed tomography angiography. PMID:25574342

  13. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results. PMID:27625897

  14. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography.

    PubMed

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results. PMID:27625897

  15. Diagnosis of sacral perineural cysts by computed tomography.

    PubMed

    Tabas, J H; Deeb, Z L

    1986-07-01

    Three cases of sacral perineural cysts associated with chronic low-back pain are described with their myelography, computed tomography, and plain film findings. Significant findings include multiple cystic dilatations of lumbosacral nerve root sheaths, enlargement of the sacral foramina by masses isodense with cerebrospinal fluid, and asymmetric epidural fat distribution. Recognition of these findings on unenhanced computed tomography scans should preclude further evaluation by myelography and intrathecal metrizamide (Amipaque) computed tomography. These cysts are usually not the primary cause of back and leg pain. PMID:2942338

  16. Abdominal alterations in disseminated paracoccidioidomycosis: computed tomography findings*

    PubMed Central

    Vermelho, Marli Batista Fernandes; Correia, Ademir Silva; Michailowsky, Tânia Cibele de Almeida; Suzart, Elizete Kazumi Kuniyoshi; Ibanês, Aline Santos; Almeida, Lanamar Aparecida; Khoury, Zarifa; Barba, Mário Flores

    2015-01-01

    Objective To evaluate the incidence and spectrum of abdominal computed tomography imaging findings in patients with paracoccidioidomycosis. Materials and Methods Retrospective analysis of abdominal computed tomography images of 26 patients with disseminated paracoccidioidomycosis. Results Abnormal abdominal tomographic findings were observed in 18 patients (69.2%), while no significant finding was observed in the other 8 (30.8%) patients. Conclusion Computed tomography has demonstrated to play a relevant role in the screening and detection of abdominal abnormalities in patients with disseminated paracoccidioidomycosis. PMID:25987748

  17. Non-uniform projection angle processing in computed tomography

    NASA Astrophysics Data System (ADS)

    Simo, Yanic; Tayag, Tristan J.

    In this paper, we present a novel approach for the collection of computed tomography data. Non-uniform increments in projection angle may be used to reduce data acquisition time with minimal reduction in the accuracy of the reconstructed profile. The key is to exploit those projection angles which correspond to regions where the object contains few high spatial frequency components. This technique is applicable to optical phase computed tomography, as well as X-ray computed tomography. We present simulation results on intraocular lenses used in cataract surgery.

  18. Dose in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kalender, Willi A.

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  19. Predicting cancer risks from dental computed tomography.

    PubMed

    Wu, T-H; Lin, W-C; Chen, W-K; Chang, Y-C; Hwang, J-J

    2015-01-01

    Dental computed tomography (CT) has become a common tool when carrying out dental implants, yet there is little information available on its associated cancer risk. The objective of this study was to estimate the lifetime-attributable risk (LAR) of cancer incidence that is associated with the radiation dose from dental CT scans and to evaluate the effect of scan position, sex, and age on the cancer risk. This retrospective cohort study involved 505 participants who underwent CT scans. The mean effective doses for male and female patients in the maxilla group were 408 and 389 µSv (P = 0.055), respectively, whereas the mean effective doses for male and female patients in the mandible groups were 475 and 450 µSv (P < 0.001), respectively. The LAR for cancer incidence after mandible CT scanning varied from 1 in 16,196 for a 30-y-old woman to 1 in 114,680 for a 70-y-old man. The organ-specific cancer risks for thyroid cancer, other cancers, leukemia, and lung cancer account for 99% of the LAR. Among patients of all ages, the estimated LAR of a mandible scan was higher than that of a maxilla scan. Furthermore, the LAR for female thyroid cancer had a peak before age 45 y. The risk for a woman aged 30 y is roughly 8 times higher than that of a woman aged 50 y. After undergoing a dental CT scan, the possible cancer risks related to sex and age across various different anatomical regions are not similar. The greatest risk due to a dental CT scan is for a mandible scan when the woman is younger than 45 y. Given the limits of the sample size, machine parameters, and the retrospective nature of this study, the results need to be interpreted within the context of this patient population. Future studies will be of value to corroborate these findings. PMID:25359782

  20. Dose in x-ray computed tomography.

    PubMed

    Kalender, Willi A

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment. PMID:24434792

  1. Computed Tomography Staging of Middle Ear Cholesteatoma

    PubMed Central

    Razek, Ahmed Abdel Khalek Abdel; Ghonim, Mohamed Rashad; Ashraf, Bassem

    2015-01-01

    Summary Background To establish computed tomography (CT) staging of middle ear cholesteatoma and assess its impact on the selection of the surgical procedure. Material/Methods Prospective study was conducted on 61 consecutive patients (mean age 26.8 years) with middle ear cholesteatoma. CT scan of the temporal bone and surgery were performed in all patients. CT staging classified cholesteatoma according to its location in the tympanic cavity (T); extension into the mastoid (M); and associated complications (C). Cholesteatoma was staged as stage I (T1, T2), stage II (T3, M1, M2, C1), and stage III (C2). Results The overall sensitivity of CT staging of cholesteatoma compared to surgery was 88% with excellent agreement and correlation between CT findings and intra-operative findings (K=0.863, r=0.86, P=0.001). There was excellent agreement and correlation of CT staging with surgical findings for T location (K=0.811, r=0.89, P=0.001), good for M extension (K=0.734, r=0.88, P=0.001), and excellent for associated C complications (K=1.00, r=1.0, P=0.001). Atticotympanotomy was carried out in stage I (n=14), intact canal wall surgery was performed in stage II (n=38), and canal wall down surgery was done in stage III (n=5) and stage II (n=4). Conclusions We established CT staging of middle ear cholesteatoma that helps surgeons to select an appropriate surgery. PMID:26171086

  2. Signal transport in Computed Tomography detectors

    NASA Astrophysics Data System (ADS)

    Heismann, B. J.; Bätz, L.; Pham-Gia, K.; Metzger, W.; Niederlöhner, D.; Wirth, S.

    2008-06-01

    In Computed Tomography (CT) X-ray intensities are measured by large-scale solid-state detectors. The standard set-up comprises a scintillator pixel array attached to a matrix of photo sensors, which in turn is read out by analog-to-digital conversion electronics. We have developed and validated a three-dimensional system model describing the cascaded system process. The first step comprises a Monte-Carlo (MC) tracking of the primary X-ray quanta energy deposition, taking into account the relevant fluorescence and scattering processes. The second step models the transport of optical photons in the scintillator pixels formed by a solid-state bulk with surrounding back-scattering TiO 2 walls. In a third step the individual events are integrated to a read-out signal and analyzed for their statistical properties. The system model is verified by a comparison to optical measurements. A scintillator array is excited by a needle beam X-ray source. The emitted light field is read out by a high-resolution CCD sensor. A good agreement between simulation and experiments is found, with a typical deviation in the range of 5%. The detector response function D( E, E') is used to quantify the spectral behavior. It yields the probability to measure an energy E' for an incoming quantum energy E. We calculate the expected energy < E'( E)> and link the deviations from proportionality in E to properties of the signal transport. Finally the impact of the signal transport statistics on the output signal-to-noise ratio is analyzed.

  3. Helical x-ray differential phase contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Qi, Zhihua; Thériault-Lauzier, Pascal; Bevins, Nicholas; Zambelli, Joseph; Li, Ke; Chen, Guang-Hong

    2011-03-01

    Helical computed tomography revolutionized the field of x-ray computed tomography two decades ago. The simultaneous translation of an image object with a standard computed tomography acquisition allows for fast volumetric scan for long image objects. X-ray phase sensitive imaging methods have been studied over the past few decades to provide new contrast mechanisms for imaging an object. A Talbot-Lau grating interferometer based differential phase contrast imaging method has recently demonstrated its potential for implementation in clinical and industrial applications. In this work, the principles of helical computed tomography are extended to differential phase contrast imaging to produce volumetric reconstructions based on fan-beam data. The method demonstrates the potential for helical differential phase contrast CT to scan long objects with relatively small detector coverage in the axial direction.

  4. Computed tomography of the liver in von Gierke's disease.

    PubMed

    Biondetti, P R; Fiore, D; Muzzio, P C

    1980-10-01

    The computed tomography findings in the liver of a patient with von Gierke's disease are presented. Precontrast scans demonstrated diffuse decreased density throughout the liver. In the postcontrast scans, a focal right sided hyperdense area was visualized. PMID:6931833

  5. Use of computed tomography in nondestructive testing of polymeric materials

    SciTech Connect

    Persson, S.; Oestman, E.

    1985-12-01

    Computed tomography has been used to detect imperfections and to measure cross-link density gradients in polymeric products, such as airplane tires, rubber shock absorbers, and filament-wound high-pressure tanks.

  6. Computer aided stress analysis of long bones utilizing computer tomography

    SciTech Connect

    Marom, S.A.

    1986-01-01

    A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generates a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.

  7. Cone beam computed tomography in Endodontics - a review.

    PubMed

    Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics. PMID:24697513

  8. Multiple Energy Computer Tomography (MECT) at the NSLS: Status report

    SciTech Connect

    Dilmanian, F.A.; Wu, X.Y.; Chen, Z.; Ren, B.; Slatkin, D.N.; Chapman, D.; Schleifer, M.; Staicu, F.A.; Thomlinson, W.

    1994-09-01

    Status of the synchrotron-based computed tomography (CT) system Multiple Energy Computed Tomography (MECT) system is described. MECT, that uses monochromatic beams from the X17 superconducting wiggler beam line at the National Synchrotron Light Source (NSLS), will be used for imaging the human head and neck. An earlier prototype MECT produced images of phantoms and living rodents. This report summarizes the studies with the prototype, and describes the design, construction, and test results of the Clinical MECT system components.

  9. Image analysis of particle field by means of computed tomography

    NASA Technical Reports Server (NTRS)

    Nakayama, Mitsushige

    1987-01-01

    In order to visualize and investigate spray structures, computed tomography technique is applied to analyze droplet information. From the transmitted light intensity through the spray and/or the data of particle size distribution obtained from a Fraunhofer diffraction principle, the quantitative volume of spray droplet or local particle size was calculated and the reconstruction of spray structures was made. The background of computed tomography is described along with some experimental results of the structure of intermittent spray such as diesel spray.

  10. [Value of positron emission tomography and computer tomography (PET/CT) for urologic malignancies].

    PubMed

    Boujelbene, N; Prior, J O; Boubaker, A; Azria, D; Schaffer, M; Gez, E; Jichlinski, P; Meuwly, J-Y; Mirimanoff, R O; Ozsahin, M; Zouhair, A

    2011-07-01

    Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning. PMID:21507695

  11. Skeletal dosimetry in cone beam computed tomography.

    PubMed

    Walters, B R B; Ding, G X; Kramer, R; Kawrakow, I

    2009-07-01

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12 x 0.12 x 0.12 cm3, with 17 x 17 x 17 microm3 microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/ MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens (approximately 8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only approximately 50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment. PMID:19673190

  12. Application of Computer Tomography for Life Detection

    NASA Technical Reports Server (NTRS)

    Tsapin, A.; Nealson, K.

    2001-01-01

    Perhaps one of the most fundamentally difficult challenges facing those who would search for life is that of scale determination. Spatial scales of life on Earth range over more than 15 orders of magnitude in mass and volume, and more than 8 orders of magnitude in 2 dimensional space. If the distribution of life is sparse in comparison to the background on which it is found, then the choice of the right scale is critical to finding that life. But how does one identify the proper scale? To put this in other words, how does one recognize the "haystacks" in which the needles (biosignatures and evidence of life) might be most profitably searched for? The problem is further exacerbated when conditions get extreme because much of the life moves from the clement surface environment into the pores and more clement environments inside of rocks, minerals and soils. Once encased in their lithic homes, these microbes become nearly impossible to study by standard techniques because of the opacity of the rocks. It is this problem that we propose to address in the work proposed here. Computer Tomography (CT) has been a very valuable tool in medicine, where the best resolution available has typically been of the order of about 0.5 mm. However, to adapt the approach for life detection of microbial endoliths, the resolution needs to be moved to the micrometer and even submicrometer levels. Thus for the studies proposed here, we begin with a commercially available instrument that can yield resolution of approximately 10 micrometers. The rational for this is twofold: first, this is the "state of the art" in laboratory instruments; and second, that while the usual size of a microbial cell is about 1 micron, microorganisms tend to live in communities that usually exceed the 10 micrometer size range. The resolution also depends on the sample size itself, so having a small lab instrument into which small samples can be placed will be beneficial to the resolution. We have now used several

  13. Skeletal dosimetry in cone beam computed tomography

    SciTech Connect

    Walters, B. R. B.; Ding, G. X.; Kramer, R.; Kawrakow, I.

    2009-07-15

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12x0.12x0.12 cm{sup 3}, with 17x17x17 {mu}m{sup 3} microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens ({approx}8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only {approx}50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment.

  14. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  15. Computed tomography in penetrating injury to the eye.

    PubMed

    Bhimani, S; Virapongse, C; Sarwar, M; Twist, J F

    1984-05-01

    We used computed tomography to detect and localize foreign bodies in two unusual cases of penetrating injury to the eyes. In one case, a large broken twig appeared to have penetrated the globe and the inferior rectus muscle; in the other, the globe was ruptured by many glass shards . In the first case surgery showed the computed tomographic impression to be incorrect. The globe and the inferior rectus muscle were intact and vision and motility were normal postoperatively. In the second case, swelling made direct visualization impossible, and computed tomography was used to locate the foreign bodies. PMID:6720836

  16. Computed tomography in the evaluation of Crohn disease

    SciTech Connect

    Goldberg, H.I.; Gore, R.M.; Margulis, A.R.; Moss, A.A.; Baker, E.L.

    1983-02-01

    The abdominal and pelvic computed tomographic examinations in 28 patients with Crohn disease were analyzed and correlated with conventional barium studies, sinograms, and surgical findings. Mucosal abnormalities such as aphthous lesions, pseudopolyps, and ulcerations were only imaged by conventional techniques. Computed tomography proved superior in demonstrating the mural, serosal, and mesenteric abnormalities such as bowel wall thickening (82%), fibrofatty proliferation of mesenteric fat (39%), mesenteric abscess (25%), inflammatory reaction of the mesentery (14%), and mesenteric lymphadenopathy (18%). Computed tomography was most useful clinically in defining the nature of mass effects, separation, or displacement of small bowel segments seen on small bowel series. Although conventional barium studies remain the initial diagnostic procedure in evaluating Crohn disease, computed tomography can be a useful adjunct in resolving difficult clinical and radiologic diagnostic problems.

  17. Development of a proton Computed Tomography detector system

    NASA Astrophysics Data System (ADS)

    Naimuddin, Md.; Coutrakon, G.; Blazey, G.; Boi, S.; Dyshkant, A.; Erdelyi, B.; Hedin, D.; Johnson, E.; Krider, J.; Rukalin, V.; Uzunyan, S. A.; Zutshi, V.; Fordt, R.; Sellberg, G.; Rauch, J. E.; Roman, M.; Rubinov, P.; Wilson, P.

    2016-02-01

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  18. Domain identification in impedance computed tomography by spline collocation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1990-01-01

    A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.

  19. Evaluating iterative reconstruction performance in computed tomography

    SciTech Connect

    Chen, Baiyu Solomon, Justin; Ramirez Giraldo, Juan Carlos; Samei, Ehsan

    2014-12-15

    Purpose: Iterative reconstruction (IR) offers notable advantages in computed tomography (CT). However, its performance characterization is complicated by its potentially nonlinear behavior, impacting performance in terms of specific tasks. This study aimed to evaluate the performance of IR with both task-specific and task-generic strategies. Methods: The performance of IR in CT was mathematically assessed with an observer model that predicted the detection accuracy in terms of the detectability index (d′). d′ was calculated based on the properties of the image noise and resolution, the observer, and the detection task. The characterizations of image noise and resolution were extended to accommodate the nonlinearity of IR. A library of tasks was mathematically modeled at a range of sizes (radius 1–4 mm), contrast levels (10–100 HU), and edge profiles (sharp and soft). Unique d′ values were calculated for each task with respect to five radiation exposure levels (volume CT dose index, CTDI{sub vol}: 3.4–64.8 mGy) and four reconstruction algorithms (filtered backprojection reconstruction, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 3 and 5, SAFIRE3 and SAFIRE5; all provided by Siemens Healthcare, Forchheim, Germany). The d′ values were translated into the areas under the receiver operating characteristic curve (AUC) to represent human observer performance. For each task and reconstruction algorithm, a threshold dose was derived as the minimum dose required to achieve a threshold AUC of 0.9. A task-specific dose reduction potential of IR was calculated as the difference between the threshold doses for IR and FBP. A task-generic comparison was further made between IR and FBP in terms of the percent of all tasks yielding an AUC higher than the threshold. Results: IR required less dose than FBP to achieve the threshold AUC. In general, SAFIRE5 showed the most significant dose reduction

  20. Synchrotron Radiation Computed Tomography (SRCT) of Ruled Laser Targets

    SciTech Connect

    Kinney, J H; Haupt, D L

    2002-03-15

    High spatial resolution tomography benefits from a high brightness source (photons/(mr{sup 2} x source area)). A synchrotron radiation source provides extremely high continuous brightness with spectral characteristics suited to a wide variety of imaging needs. Therefore, during the initial testing of the new synchrotron radiation computed tomography (SRCT) system at Stanford Synchrotron Radiation Laboratory, it was suggested that we image a ruled target designed for NIF experiments. This is a detailed report of that imaging effort.

  1. Pigmented villonodular synovitis mimics metastases on fluorine 18 fluorodeoxyglucose position emission tomography-computed tomography

    PubMed Central

    Elumogo, Comfort O.; Kochenderfer, James N.; Civelek, A. Cahid

    2016-01-01

    Pigmented villonodular synovitis (PVNS) is a benign joint disease best characterized on magnetic resonance imaging (MRI). The role of fluorine 18 fluorodeoxyglucose (18F-FDG) position emission tomography-computed tomography (PET-CT) in the diagnosis or characterization remains unclear. PVNS displays as a focal FDG avid lesion, which can masquerade as a metastatic lesion, on PET-CET. We present a case of PVNS found on surveillance imaging of a lymphoma patient. PMID:27190776

  2. Single-photon emission computed tomography/computed tomography in lung cancer and malignant lymphoma.

    PubMed

    Schillaci, Orazio

    2006-10-01

    In nuclear oncology, despite the fast-growing diffusion of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET), single-photon emission computed tomography (SPECT) studies can still play an useful clinical role in several applications. The main limitation of SPECT imaging with tumor-seeking agents is the lack of the structural delineation of the pathologic processes they detect; this drawback sometimes renders SPECT interpretation difficult and can diminish its diagnostic accuracy. Fusion with morphological studies can overcome this limitation by giving an anatomical map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT images proved to be time-consuming and impractical for routine use. The recent development of dual-modality integrated imaging systems that provide functional (SPECT) and anatomical (CT) images in the same scanning session, with the acquired images coregistered by means of the hardware, has opened a new era in this field. The first reports indicate that SPECT/CT is very useful in cancer imaging because it is able to provide further information of clinical value in several cases. In SPECT, studies of lung cancer and malignant lymphomas using different radiopharmaceutical, hybrid images are of value in providing the correct localization of tumor sites, with a precise detection of the involved organs, and the definition of their functional status, and in allowing the exclusion of disease in sites of physiologic tracer uptake. Therefore, in lung cancer and lymphomas, hybrid SPECT/CT can play a role in the diagnosis of the primary tumor, in the staging of the disease, in the follow-up, in the monitoring of therapy, in the detection of recurrence, and in dosimetric estimations for target radionuclide therapy. PMID:16950145

  3. Tissue Characterization Using Energy-Selective Computed Tomography

    NASA Astrophysics Data System (ADS)

    Alvarez, Robert E.; Marshall, William H.; Lewis, Roger

    1981-07-01

    Energy-selective computed tomography has several important properties useful for in-vivo tissue characterization. Most importantly, it produces more information than conventional computed tomography. This information can be considered to be an added dimension which can be used to eliminate the ambiguities in conventional CT data. The noise in energy-selective computed tomography is also two dimensional and an un-correlated coordinate system can be defined which is needed for studying the capabilities of the technique for characterizing tissues. By using the calibration material basis set, the information from energy-selective CT can be extracted with extreme accuracy. Our preliminary experiments indicate that the technique is accurate enough to characterize the difference between gray and white matter. Most conventional systems have difficulty in distinguishing these materials, much less characterizing the reason for their differing attenuation. Thus energy-selective CT has the promise of providing extremely accurate tissue characterization based on its physical properties.

  4. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  5. C-Arm Computed Tomography Compared With Positron Emission Tomography/Computed Tomography for Treatment Planning Before Radioembolization

    SciTech Connect

    Becker, Christoph Waggershauser, Tobias; Tiling, Reinhold; Weckbach, Sabine; Johnson, Thorsten; Meissner, Oliver; Klingenbeck-Regn, Klaus; Reiser, Maximilian; Hoffmann, Ralf Thorsten

    2011-06-15

    The purpose of this study was to determine whether rotational C-arm computed tomography (CT) allows visualization of liver metastases and adds relevant information for radioembolization (RE) treatment planning. Technetium angiography, together with C-arm CT, was performed in 47 patients to determine the feasibility for RE. C-arm CT images were compared with positron emission tomography (PET)/CT images for the detection of liver tumors. The images were also rated according one of the following three categories: (1) images that provide no additional information compared with DSA alone; (2) images that do provide additional information compared with DSA; and (2) images that had an impact on eligibility determination for and planning of the RE procedure. In all patients, 283 FDG-positive liver lesions were detected by PET. In venous contrast-phase CT, 221 (78.1%) and 15 (5.3%) of these lesions were either hypodense or hyperdense, respectively. In C-arm CT, 103 (36.4%) liver lesions were not detectable because they were outside of either the field of view or the contrast-enhanced liver segment. Another 25 (8.8%) and 98 (34.6%) of the liver lesions were either hyperdense or presented primarily as hypodense lesions with a rim enhancement, respectively. With PET/CT as the standard of reference, venous CT and C-arm CT failed to detect 47 (16.6%) and 57 (20.1%) of all liver lesions, respectively. For RE planning, C-arm CT provided no further information, provide some additional information, or had an impact on the procedure in 20 (42.5%), 15 (31.9%) and 12 (25.6%) of patients, respectively. We conclude that C-arm CT may add decisive information in patients scheduled for RE.

  6. Direct sagital computed tomography of the temporomandibular joint

    SciTech Connect

    Manzione, J.V.; Seltzer, S.E.; Katzberg, R.W.; Hammerschlag, S.B.; Chiango, B.F.

    1983-01-01

    Temporomandibular joint dysfunction is a common clinical problem that has been reported to affect 4%-28% of adults. Temporomandibular joint arthrography has shown that many of these patients have intraarticular abnormalities involving the meniscus. A noninvasive test that could demonstrate the meniscus as well as bony abnormalities of the joint would be an important advance. In an attempt to develop such a noninvasive test, we have performed direct sagittal computed tomography (CT) on cadaver temporomandibular joints and have correlated the images with anatomic sections. We are currently applying this technique clinically and report one representative example in which direct sagittal computed tomography of the temporomandibular joint accurately demonstrated an anteriorly displaced meniscus.

  7. Computed Tomography Angiography of the Small Bowel and Mesentery.

    PubMed

    Raman, Siva P; Fishman, Elliot K

    2016-01-01

    Multidetector computed tomography (MDCT) has largely supplanted other available radiologic modalities in the evaluation of a wide variety of different vascular and inflammatory abnormalities of the small bowel, with computed tomography angiography (CTA) playing a major role in the diagnostic efficacy of MDCT for these diseases. Improvements in CTA imaging have proved particularly valuable in the evaluation of small bowel vascular and inflammatory disorders, diagnoses in which arterial phase images might be able to offer greater information than standard venous phase imaging. This article details the MDCT imaging findings of several small bowel vascular and inflammatory disorders. PMID:26654393

  8. Real-time in vivo computed optical interferometric tomography.

    PubMed

    Ahmad, Adeel; Shemonski, Nathan D; Adie, Steven G; Kim, Hee-Seok; Hwu, Wen-Mei W; Carney, P Scott; Boppart, Stephen A

    2013-06-01

    High-resolution real-time tomography of scattering tissues is important for many areas of medicine and biology(1-6). However, the compromise between transverse resolution and depth-of-field in addition to low sensitivity deep in tissue continue to impede progress towards cellular-level volumetric tomography. Computed imaging has the potential to solve these long-standing limitations. Interferometric synthetic aperture microscopy (ISAM)(7-9) is a computed imaging technique enabling high-resolution volumetric tomography with spatially invariant resolution. However, its potential for clinical diagnostics remains largely untapped since full volume reconstructions required lengthy postprocessing, and the phase-stability requirements have been difficult to satisfy in vivo. Here we demonstrate how 3-D Fourier-domain resampling, in combination with high-speed optical coherence tomography (OCT), can achieve high-resolution in vivo tomography. Enhanced depth sensitivity was achieved over a depth-of-field extended in real time by more than an order of magnitude. This work lays the foundation for high-speed volumetric cellular-level tomography. PMID:23956790

  9. Spectrum of single photon emission computed tomography/computed tomography findings in patients with parathyroid adenomas

    PubMed Central

    Chakraborty, Dhritiman; Mittal, Bhagwant Rai; Harisankar, Chidambaram Natrajan Balasubramanian; Bhattacharya, Anish; Bhadada, Sanjay

    2011-01-01

    Primary hyperparathyroidism results from excessive parathyroid hormone secretion. Approximately 85% of all cases of primary hyperparathyroidism are caused by a single parathyroid adenoma; 10–15% of the cases are caused by parathyroid hyperplasia. Parathyroid carcinoma accounts for approximately 3–4% of cases of primary disease. Technetium-99m-sestamibi (MIBI), the current scintigraphic procedure of choice for preoperative parathyroid localization, can be performed in various ways. The “single-isotope, double-phase technique” is based on the fact that MIBI washes out more rapidly from the thyroid than from abnormal parathyroid tissue. However, not all parathyroid lesions retain MIBI and not all thyroid tissue washes out quickly, and subtraction imaging is helpful. Single photon emission computed tomography (SPECT) provides information for localizing parathyroid lesions, differentiating thyroid from parathyroid lesions, and detecting and localizing ectopic parathyroid lesions. Addition of CT with SPECT improves the sensitivity. This pictorial assay demonstrates various SPECT/CT patterns observed in parathyroid scintigraphy. PMID:21969785

  10. Incarcerated obturator hernia: early diagnostic using helical computed tomography.

    PubMed

    Avaro, J-P; Biance, N; Savoie, P-H; Peycru, T; Pauleau, G; Richez, P; Charpentier, R; Balandraud, P

    2008-04-01

    Obturator hernia is a rare event with poor clinical signs. Delayed diagnosis is a cause of increased mortality due to ruptured gangrenous bowel. We report a case of incarcerated obturator hernia which highlights the usefulness of computed tomography (CT) scanning in diagnosing this condition. PMID:17628737

  11. An Easily Assembled Laboratory Exercise in Computed Tomography

    ERIC Educational Resources Information Center

    Mylott, Elliot; Klepetka, Ryan; Dunlap, Justin C.; Widenhorn, Ralf

    2011-01-01

    In this paper, we present a laboratory activity in computed tomography (CT) primarily composed of a photogate and a rotary motion sensor that can be assembled quickly and partially automates data collection and analysis. We use an enclosure made with a light filter that is largely opaque in the visible spectrum but mostly transparent to the near…

  12. Computed Tomography-Enhanced Anatomy Course Using Enterprise Visualization

    ERIC Educational Resources Information Center

    May, Hila; Cohen, Haim; Medlej, Bahaa; Kornreich, Liora; Peled, Nathan; Hershkovitz, Israel

    2013-01-01

    Rapid changes in medical knowledge are forcing continuous adaptation of the basic science courses in medical schools. This article discusses a three-year experience developing a new Computed Tomography (CT)-based anatomy curriculum at the Sackler School of Medicine, Tel Aviv University, including describing the motivations and reasoning for the…

  13. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  14. Evolution of the Cranial Computed Tomography Scan in Child Abuse.

    ERIC Educational Resources Information Center

    Feldman, Kenneth W.; And Others

    1995-01-01

    A retrospective review of medical charts for 34 children with a diagnosis of child abuse, who had cranial computed tomography scans performed, revealed that some scans initially interpreted as normal were subsequently reinterpreted as abnormal, and some children's repeat scannings were interpreted as abnormal, modifying the medical and legal…

  15. Computed tomography of the orbit - A review and an update.

    PubMed

    Tawfik, Hatem A; Abdelhalim, Ahmed; Elkafrawy, Mamdouh H

    2012-10-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) of the orbit have been competing for the hearts and minds of health care providers for well over 2 decades. While several drawbacks pertaining to CT have been outlined since the introduction of MRI, CT remains the standard diagnostic test for evaluating cross-sectional, 2 or 3-dimensional images of the body. PMID:23961026

  16. Micro-computed tomography: an alternative method for shark ageing.

    PubMed

    Geraghty, P T; Jones, A S; Stewart, J; Macbeth, W G

    2012-04-01

    Micro-computed tomography (microCT) produced 3D reconstructions of shark Carcharhinus brevipinna vertebrae that could be virtually sectioned along any desired plane, and upon which growth bands were readily visible. When compared to manual sectioning, it proved to be a valid and repeatable means of ageing and offers several distinct advantages over other ageing methods. PMID:22497384

  17. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... location and distribution of gamma ray- and positron-emitting radionuclides in the body and produce...

  18. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... location and distribution of gamma ray- and positron-emitting radionuclides in the body and produce...

  19. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... location and distribution of gamma ray- and positron-emitting radionuclides in the body and produce...

  20. Cystosarcoma phylloides: calcified pulmonary metastases detected by computed tomography.

    PubMed

    Samuels, T; Kerenyi, N; Hamilton, P

    1990-08-01

    We report the appearance of calcifications on computed tomography (CT) images of pulmonary metastases from a rare breast tumor, malignant cystosarcoma phylloides. Histologic examination of the pulmonary masses revealed malignant spindle cells with osteoid and cartilage components in the cellular stroma. This appearance has not been described previously. PMID:2169970

  1. Lumbosacral plexus lesions: correlation of clinical signs and computed tomography.

    PubMed Central

    Vock, P; Mattle, H; Studer, M; Mumenthaler, M

    1988-01-01

    Neurological signs and computed tomographic morphology were compared in 60 patients. The primary neurological deficit was most commonly located in the sacral (n = 31) or lumbar plexus (n = 23) and was most commonly caused by a neoplasm (n = 40). In 78% of the patients it correlated with the lesions detected by computed tomography (CT). CT reliably demonstrates extraspinal mass lesions, but only moderately well predicts functional signs. Images PMID:3351532

  2. Comparison of Computed Tomography Scout Based Reference Point Localization to Conventional Film and Axial Computed Tomography

    SciTech Connect

    Jiang Lan; Templeton, Alistair; Turian, Julius; Kirk, Michael; Zusag, Thomas; Chu, James C.H.

    2011-01-01

    Identification of source positions after implantation is an important step in brachytherapy planning. Reconstruction is traditionally performed from films taken by conventional simulators, but these are gradually being replaced in the clinic by computed tomography (CT) simulators. The present study explored the use of a scout image-based reconstruction algorithm that replaces the use of traditional film, while exhibiting low sensitivity to metal-induced artifacts that can appear in 3D CT methods. In addition, the accuracy of an in-house graphical software implementation of scout-based reconstruction was compared with seed location reconstructions for 2 phantoms by conventional simulator and CT measurements. One phantom was constructed using a planar fixed grid of 1.5-mm diameter ball bearings (BBs) with 40-mm spacing. The second was a Fletcher-Suit applicator embedded in Styrofoam (Dow Chemical Co., Midland, MI) with one 3.2-mm-diameter BB inserted into each of 6 surrounding holes. Conventional simulator, kilovoltage CT (kVCT), megavoltage CT, and scout-based methods were evaluated by their ability to calculate the distance between seeds (40 mm for the fixed grid, 30-120 mm in Fletcher-Suit). All methods were able to reconstruct the fixed grid distances with an average deviation of <1%. The worst single deviations (approximately 6%) were exhibited in the 2 volumetric CT methods. In the Fletcher-Suit phantom, the intermodality agreement was within approximately 3%, with the conventional sim measuring marginally larger distances, with kVCT the smallest. All of the established reconstruction methods exhibited similar abilities to detect the distances between BBs. The 3D CT-based methods, with lower axial resolution, showed more variation, particularly with the smaller BBs. With a software implementation, scout-based reconstruction is an appealing approach because it simplifies data acquisition over film-based reconstruction without requiring any specialized equipment

  3. Comparison of computed tomography scout based reference point localization to conventional film and axial computed tomography.

    PubMed

    Jiang, Lan; Templeton, Alistair; Turian, Julius; Kirk, Michael; Zusag, Thomas; Chu, James C H

    2011-01-01

    Identification of source positions after implantation is an important step in brachytherapy planning. Reconstruction is traditionally performed from films taken by conventional simulators, but these are gradually being replaced in the clinic by computed tomography (CT) simulators. The present study explored the use of a scout image-based reconstruction algorithm that replaces the use of traditional film, while exhibiting low sensitivity to metal-induced artifacts that can appear in 3D CT methods. In addition, the accuracy of an in-house graphical software implementation of scout-based reconstruction was compared with seed location reconstructions for 2 phantoms by conventional simulator and CT measurements. One phantom was constructed using a planar fixed grid of 1.5-mm diameter ball bearings (BBs) with 40-mm spacing. The second was a Fletcher-Suit applicator embedded in Styrofoam (Dow Chemical Co., Midland, MI) with one 3.2-mm-diameter BB inserted into each of 6 surrounding holes. Conventional simulator, kilovoltage CT (kVCT), megavoltage CT, and scout-based methods were evaluated by their ability to calculate the distance between seeds (40 mm for the fixed grid, 30-120 mm in Fletcher-Suit). All methods were able to reconstruct the fixed grid distances with an average deviation of <1%. The worst single deviations (approximately 6%) were exhibited in the 2 volumetric CT methods. In the Fletcher-Suit phantom, the intermodality agreement was within approximately 3%, with the conventional sim measuring marginally larger distances, with kVCT the smallest. All of the established reconstruction methods exhibited similar abilities to detect the distances between BBs. The 3D CT-based methods, with lower axial resolution, showed more variation, particularly with the smaller BBs. With a software implementation, scout-based reconstruction is an appealing approach because it simplifies data acquisition over film-based reconstruction without requiring any specialized equipment

  4. Single-photon emission computed tomography/computed tomography in abdominal diseases.

    PubMed

    Schillaci, Orazio; Filippi, Luca; Danieli, Roberta; Simonetti, Giovanni

    2007-01-01

    Single-photon emission computed tomography (SPECT) studies of the abdominal region are established in conventional nuclear medicine because of their easy and large availability, even in the most peripheral hospitals. It is well known that SPECT imaging demonstrates function, rather than anatomy. It is useful in the diagnosis of various disorders because of its ability to detect changes caused by disease before identifiable anatomic correlates and clinical manifestations exist. However, SPECT data frequently need anatomic landmarks to precisely depict the site of a focus of abnormal tracer uptake and the structures containing normal activity; the fusion with morphological studies can furnish an anatomical map to scintigraphic findings. In the past, software-based fusion of independently performed SPECT and CT or magnetic resonance images have been demonstrated to be time consuming and not useful for routine clinical employment. The recent development of dual-modality integrated imaging systems, which provide SPECT and CT images in the same scanning session, with the acquired images co-registered by means of the hardware, has created a new scenario. The first data have been mainly reported in oncology patients and indicate that SPECT/CT is very useful because it is able to provide further information of clinical value in several cases. In SPECT studies of abdominal diseases, hybrid SPECT/CT can play a role in the differential diagnosis of hepatic hemangiomas located near vascular structures, in precisely detecting and localizing active splenic tissue caused by splenosis in splenectomy patients, in providing important information for therapy optimization in patients submitted to hepatic arterial perfusion scintigraphy, in accurately identifying the involved bowel segments in patients with inflammatory bowel diseases, and in correctly localizing the bleeding sites in patients with gastrointestinal bleeding. PMID:17161039

  5. Computer tomography of large dust clouds in complex plasmas

    SciTech Connect

    Killer, Carsten; Himpel, Michael; Melzer, André

    2014-10-15

    The dust density is a central parameter of a dusty plasma. Here, a tomography setup for the determination of the three-dimensionally resolved density distribution of spatially extended dust clouds is presented. The dust clouds consist of micron-sized particles confined in a radio frequency argon plasma, where they fill almost the entire discharge volume. First, a line-of-sight integrated dust density is obtained from extinction measurements, where the incident light from an LED panel is scattered and absorbed by the dust. Performing these extinction measurements from many different angles allows the reconstruction of the 3D dust density distribution, analogous to a computer tomography in medical applications.

  6. Computed tomography in acute cholecystitis: new observations

    SciTech Connect

    Kane, R.A.; Costello, P.; Duszlak, E.

    1983-10-01

    The computed tomographic CT findings in five patients with acute cholecystitis were analyzed. Common findings included thickening and nodularity of the gallbladder wall, cholelithiasis, and dilatation of the gallbladder lumen. Other more specific findings included poor definition of the gallbladder wall, pericholecystic fluid collections, and gas collections within the gallbladder wall. Most of the CT findings are suggestive but not pathognomonic, and correlation with the clinical, scintigraphic, and sonographic findings is necessary.

  7. Assessment of asthmatic inflammation using hybrid fluorescence molecular tomography-x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Ma, Xiaopeng; Prakash, Jaya; Ruscitti, Francesca; Glasl, Sarah; Stellari, Fabio Franco; Villetti, Gino; Ntziachristos, Vasilis

    2016-01-01

    Nuclear imaging plays a critical role in asthma research but is limited in its readings of biology due to the short-lived signals of radio-isotopes. We employed hybrid fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) for the assessment of asthmatic inflammation based on resolving cathepsin activity and matrix metalloproteinase activity in dust mite, ragweed, and Aspergillus species-challenged mice. The reconstructed multimodal fluorescence distribution showed good correspondence with ex vivo cryosection images and histological images, confirming FMT-XCT as an interesting alternative for asthma research.

  8. Flip-flop phenomenon in systemic sclerosis on fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Oksuzoglu, Kevser; Ozen, Gulsen; Inanir, Sabahat; Direskeneli, Rafi Haner

    2015-01-01

    Systemic sclerosis (SSc) is a rare autoimmune disease, which may affect multiple organ systems. Fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) can demonstrate the degree and anatomical extent of involvement in the entire body and coexisting malignancies in connective tissue diseases. We present a case of SSc with an increased 18F-FDG uptake in the cutaneous and subcutaneous tissues even higher than the neighboring skeletal muscles ("flip-flop phenomenon," that is, an increased 18F-FDG uptake in the skin but a decreased 18F-FDG uptake in the skeletal muscles). PMID:26430324

  9. Theoretical and computational aspects of seismic tomography

    NASA Astrophysics Data System (ADS)

    Alekseev, A. S.; Lavrentiev, M. M.; Romanov, V. G.; Romanov, M. E.

    1990-12-01

    This paper reviews aspects related to applications of seismic wave kinematics for the reconstruction of internal characteristics of an elastic medium. It presents the results of studying the inverse kinematic seismic problem and its linear analogue — problems of integral geometry, obtained in recent decades with an emphasis on the work done by Soviet scientists. Computational techniques of solving these problems are discussed. This review should be of interest to geophysicists studying the oceans, atmosphere and ionosphere as well as those studying the solid part of the Earth.

  10. Diagnosing pulmonary embolism: new computed tomography applications.

    PubMed

    Nikolaou, Konstantin; Thieme, Sven; Sommer, Wieland; Johnson, Thorsten; Reiser, Maximilian F

    2010-05-01

    Computed tomographic pulmonary angiography has become the standard of care for the evaluation of patients with suspected pulmonary embolism (PE). In addition to the direct depiction or exclusion of a pulmonary embolus in suspected PE, a number of predictive markers have been established to evaluate the patient's prognosis in acute and in chronic PE. An accurate risk stratification based on CT findings is crucial because optimal management, monitoring, and therapeutic strategies depend on the prognosis. With the recent introduction of the so-called "dual-source" CT scanners, that is, a scanner consisting of 2 tubes and 2 detectors mounted orthogonally to each other, different tube voltages can be used simultaneously, resulting in different energies of the emitted x-ray spectra (dual-energy CT; DECT). Initial results have shown that DECT is capable of iodine mapping of the pulmonary parenchyma, reliably depicting the segmental defects in iodine distribution in locations corresponding to embolic vessel occlusions. This study deals with a number of actual topics on PE imaging with multidetector CT and DECT, including the discussion of the relevant imaging findings to assess the patient's prognosis, the potential and additional benefit of dual-energy information on the parenchymal iodine distribution, the optimization of scan protocols including low-radiation dose chest pain protocols, and the discussion on future perspectives of CT in PE patients, such as the role of computer-aided diagnostic tools or the potential of ventilation imaging with DECT. PMID:20463534

  11. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended...

  12. Clinical utility of dental cone-beam computed tomography: current perspectives

    PubMed Central

    Jaju, Prashant P; Jaju, Sushma P

    2014-01-01

    Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis. PMID:24729729

  13. Computed tomography of the normal thymus

    SciTech Connect

    Baron, R.L.; Lee, J.K.T.; Sagel, S.S.; Peterson, R.R.

    1982-01-01

    Recognition of variations in size, shape, and density of the normal thymus on computed tomographic (CT) scans is of paramount importance, less it be misinterpreted as an abnormal mediastinal mass. Studying patients subsequently proved free of active chest disease, we analyzed 154 CT scans of the mediastinum, performed on a fourth-generation scanner, to determine the incidence of visualization and appearance of the normal thymus. The thymus was seen in 100% of patients under age 30, 73% of patients between 30 and 49 years, and in 17% of patients over 49 years of age. The thickness of the thymus showed a definite decrease in size with increasing age; although the width showed a similar general tendency, a wide variation was noted within each age group. In younger patients, the density of the thymus was similar to that of muscle; the attenuation values progressively decreased in older patients, finally approaching that of fat.

  14. Giant intracranial aneurysms: rapid sequential computed tomography

    SciTech Connect

    Pinto, R.S.; Cohen, W.A.; Kricheff, I.I.; Redington, R.W.; Berninger, W.H.

    1982-11-01

    Giant intracranial aneurysms often present as mass lesions rather than with subarachnoid hemorrhage. Routine computed tomographic (CT) scans with contrast material will generally detect them, but erroneous diagnosis of basal meningioma is possible. Rapid sequential scanning (dynamic CT) after bolus injection of 40 ml of Renografin-76 can conclusively demonstrate an intracranial aneurysm, differentiating it from other lesions by transit-time analysis of the passage of contrast medium. In five patients, the dynamics of contrast bolus transit in aneurysms were consistently different from the dynamics in pituitary tumors, craniopharyngiomas, and meningiomas, thereby allowing a specific diagnosis. Dynamic CT was also useful after treatment of the aneurysms by carotid artery ligation and may be used as an alternative to angiographic evaluation in determining luminal patency or thrombosis.

  15. Computed tomography of human joints and radioactive waste drums

    SciTech Connect

    Martz, Harry E.; Roberson, G. Patrick; Hollerbach, Karin; Logan, Clinton M.; Ashby, Elaine; Bernardi, Richard

    1999-12-02

    X- and gamma-ray imaging techniques in nondestructive evaluation (NDE) and assay (NDA) have seen increasing use in an array of industrial, environmental, military, and medical applications. Much of this growth in recent years is attributed to the rapid development of computed tomography (CT) and the use of NDE throughout the life-cycle of a product. Two diverse examples of CT are discussed, 1.) Our computational approach to normal joint kinematics and prosthetic joint analysis offers an opportunity to evaluate and improve prosthetic human joint replacements before they are manufactured or surgically implanted. Computed tomography data from scanned joints are segmented, resulting in the identification of bone and other tissues of interest, with emphasis on the articular surfaces. 2.) We are developing NDE and NDA techniques to analyze closed waste drums accurately and quantitatively. Active and passive computed tomography (A and PCT) is a comprehensive and accurate gamma-ray NDA method that can identify all detectable radioisotopes present in a container and measure their radioactivity.

  16. Computed tomography of human joints and radioactive waste drums

    SciTech Connect

    Ashby, E; Bernardi, R; Hollerbach, K; Logan, C; Martz, H; Roberson, G P

    1999-06-01

    X- and gamma-ray imaging techniques in nondestructive evaluation (NDE) and assay (NDA) have been increasing use in an array of industrial, environmental, military, and medical applications. Much of this growth in recent years is attributed to the rapid development of computed tomography (CT) and the use of NDE throughout the life-cycle of a product. Two diverse examples of CT are discussed. (1) The computational approach to normal joint kinematics and prosthetic joint analysis offers an opportunity to evaluate and improve prosthetic human joint replacements before they are manufactured or surgically implanted. Computed tomography data from scanned joints are segmented, resulting in the identification of bone and other tissues of interest, with emphasis on the articular surfaces. (2) They are developing NDE and NDE techniques to analyze closed waste drums accurately and quantitatively. Active and passive computed tomography (A and PCT) is a comprehensive and accurate gamma-ray NDA method that can identify all detectable radioisotopes present in a container and measure their radioactivity.

  17. Spent nuclear fuel assembly inspection using neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Pope, Chad Lee

    The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.

  18. Classification of breast computed tomography data

    SciTech Connect

    Nelson, Thomas R.; Cervino, Laura I.; Boone, John M.; Lindfors, Karen K.

    2008-03-15

    Differences in breast tissue composition are important determinants in assessing risk, identifying disease in images and following changes over time. This paper presents an algorithm for tissue classification that separates breast tissue into its three primary constituents of skin, fat and glandular tissue. We have designed and built a dedicated breast CT scanner. Fifty-five normal volunteers and patients with mammographically identified breast lesions were scanned. Breast CT voxel data were filtered using a 5 pt median filter and the image histogram was computed. A two compartment Gaussian fit of histogram data was used to provide an initial estimate of tissue compartments. After histogram analysis, data were input to region-growing algorithms and classified as to belonging to skin, fat or gland based on their value and architectural features. Once tissues were classified, a more detailed analysis of glandular tissue patterns and a more quantitative analysis of breast composition was made. Algorithm performance assessment demonstrated very good or excellent agreement between algorithm and radiologist observers in 97.7% of the segmented data. We observed that even in dense breasts the fraction of glandular tissue seldom exceeded 50%. For most individuals the composition is better characterized as being a 70% (fat)-30% (gland) composition than a 50% (fat)-50% (gland) composition.

  19. Intracranial Carotid Calcification on Cranial Computed Tomography

    PubMed Central

    Subedi, Deepak; Zishan, Umme Sara; Chappell, Francesca; Gregoriades, Maria-Lena; Sudlow, Cathie; Sellar, Robin

    2015-01-01

    Background and Purpose— Intracranial internal carotid artery calcification is associated with cerebrovascular risk factors and stroke, but few quantification methods are available. We tested the reliability of visual scoring, semiautomated Agatston score, and calcium volume measurement in patients with recent stroke. Methods— We used scans from a prospective hospital stroke registry and included patients with anterior circulation ischemic stroke or transient ischemic stroke whose noncontrast cranial computed tomographic scans were available electronically. Two raters measured semiautomatic quantitative Agatston score, and calcium volume, and performed qualitative visual scoring using the original 4-point Woodcock score and a modified Woodcock score, where each image on which the internal carotid arteries appeared was scored and the slice scores summed. Results— Intra- and interobserver coefficient of variations were 8.8% and 16.5% for Agatston, 8.8% and 15.5% for calcium volume, and 5.7% and 5.4% for the modified Woodcock visual score, respectively. The modified Woodcock visual score correlated strongly with both Agatston and calcium volume quantitative measures (both R2=0.84; P<0.0001); calcium volume increased by 0.47-mm/point increase in modified Woodcock visual score. Intracranial internal carotid artery calcification increased with age by all measures (eg, visual score, Spearman ρ=0.4; P=0.005). Conclusions— Visual scores correlate highly with quantitative intracranial internal carotid artery calcification measures, with excellent observer agreements. Visual intracranial internal carotid artery scores could be a rapid and practical method for epidemiological studies. PMID:26251250

  20. Didactics and training in cardiovascular computed tomography angiography.

    PubMed

    Bhojraj, Sanjay D; Al-Mallah, Mouaz H

    2009-01-01

    As the role of cardiovascular computed tomography angiography (CCTA) is further expanded through research, the use of this technology will expand as a result of demand both from medical professionals and the public. To ensure a standardized quality of interpretation of these scans in the face of an increased demand for physicians qualified to interpret these studies, the Society of Cardiovascular Computed Tomography, along with several other professional societies, has proposed a didactic curriculum for the study of CCTA. This review highlights the currently proposed didactic curriculum for the study of CCTA, examines current trends in training for both medical trainees and physicians in practice, and proposes future directions for the study of CCTA. PMID:19203747

  1. [Computed tomography in space-occupying intraspinal processes].

    PubMed

    Prömper, C; Friedmann, G

    1983-02-01

    Spinal computed tomography has considerably enhanced differential diagnostic safety in the course of the past two years. It has disclosed new possibilities of indication in the diagnosis of the vertebral column. With the expected improvement in apparatus technology, computed tomography will increasingly replace invasive examination methods. Detailed knowledge of clinical data, classification of the neurological findings, and localisation of the height--as far as possible--are the necessary prerequisites of successful diagnosis. If they are absent, it is recommended to perform myelography followed by secondary CT-myelography. If these preliminary conditions are observed, spinal CT can make outstanding contributions to the diagnosis of slipped disk, of the constricted vertebral canal, as well as tumours, malformations and posttraumatic conditions, postoperative changes and inflammatory processes. PMID:6338578

  2. Bone single photon emission computed tomography with computed tomography disclosing chronic uterine perforation with intrauterine device migration into the anterior wall of the bladder: a case report

    PubMed Central

    2013-01-01

    Introduction Extraosseous uptake of 99mTc-hydroxymethylene diphosphonate is a common situation of variable clinical relevance. Case presentation A 52-year-old Caucasian woman presented to our department for breast cancer staging. A 99mTc-hydroxymethylene diphosphonate bone scan was performed and showed focal pelvic hyperfixation that disclosed intrauterine device migration into the anterior wall of the bladder on single photon emission computed tomography with computed tomography. Conclusion This observation confirms the major role of single photon emission computed tomography with computed tomography in achieving an exact diagnosis. PMID:23759143

  3. Cone Beam Computed Tomography for the Dental Implant Patient.

    PubMed

    Klokkevold, Perry R

    2015-09-01

    Cone beam computed tomography offers many advantages over 2-D imaging for the evaluation of potential implant sites. With the use of CBCT scans becoming more commonplace, it is important for clinicians to be knowledgeable and to use this new technology appropriately and judiciously. The purpose of this article is to describe the advantages and limitations of CBCT imaging for the presurgical and postsurgical evaluations of implant treatment and assessment of implant-related complications. PMID:26820009

  4. Evaluation of posterior fossa lesions by computer assisted tomography (CAT).

    PubMed

    Lott, T; El Gammal, T; Volcan, I

    1977-07-01

    Valuable neuroradiologic information can be obtained with routine examination of the posterior fossa by computer assisted tomography (CAT). The diagnosis can be difficult in the posterior fossa due to the relatively small size of the compartment and its proximities to large bony masses and air in the mastoid cells. However, many lesions can be accurately diagnosed when close attention is given to anatomic detail and the frequent use of contrast enhancement. We introduced a new CAT classification of posterior fossa neoplasms. PMID:877637

  5. Use of Cone Beam Computed Tomography in Endodontics

    PubMed Central

    Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.

    2009-01-01

    Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362

  6. Computed tomography identification of an exophytic colonic liposarcoma.

    PubMed

    Chou, Chung Kuao; Chen, Sung-Ting

    2016-09-01

    It may be difficult to ascertain the relationship between a large intra-abdominal tumor and the adjacent organs if they are close together. In the current case, a definitive preoperative diagnosis of an exophytic colonic tumor was obtained by the demonstration of obtuse angles between the tumor and colon and by distinct recognition of the mucosa-submucosa of the colonic wall on computed tomography; the accuracy of this preoperative diagnosis was subsequently confirmed by pathologic findings. PMID:27594941

  7. Computed tomography findings in pseudothrombosis of the iliofemoral vein.

    PubMed

    Desai, Gaurav; Poder, Liina; Wang, Zhen J; Yeh, Benjamin M; Webb, Emily M; Coakley, Fergus V

    2010-01-01

    Computed tomography findings in 3 patients with apparent thrombosis of an iliofemoral vein due to mixing artifact related to venous collateral formation are presented, 1 with portosystemic collaterals and 2 with collaterals secondary to subclavian vein thrombosis. Mixing artifact or asymmetric enhancement related to collateral formation should be considered for an apparent thrombus in the iliofemoral vein. Examination of axial and reformatted images may facilitate recognition and help avoid an erroneous diagnosis of deep venous thrombosis. PMID:20118738

  8. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2016-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  9. Computed tomography radiation dosimetry: from the indicators to the indications.

    PubMed

    Kordolaimi, Sofia D; Efstathopoulos, Efstathios P

    2014-01-01

    The technological advances in computed tomography (CT) scanners and their continuously increased use have raised concern about the patient-induced risks from the CT procedures. In the present review, all available dose metrics used in CT dosimetry are described, evaluated, and compared. The various models and methodologies currently existing for the estimation of the effective dose and, by extension, the carcinogenesis probability as well as the way that this is derived from dose descriptors are also considered. PMID:25055163

  10. Efficacy of multislice computed tomography for gastroenteric and hepatic surgeries

    PubMed Central

    Ohtani, Hiroshi; Kawajiri, Hidemi; Arimoto, Yuichi; Ohno, Koichi; Fujimoto, Yasuhisa; Oba, Hiroko; Adachi, Kenji; Hirano, Masaya; Terakawa, Shoichi; Tsubakimoto, Mitsuo

    2005-01-01

    AIM: To determine the efficacy of multislice CT for gastroenteric and hepatic surgery. METHODS: Dual-phase helical computed tomography was performed in 50 of 51 patients who underwent gastroenteric and hepatic surgeries. Twenty-eight, eighteen and four patients suffering from colorectal cancer, gastric cancer, and liver cancer respectively underwent colorectal surgery (laparoscopic surgery: 6 cases), gastrectomy, and hepatectomy. Three-dimensional computed tomography imaging of the inferior mesenteric artery, celiac artery and hepatic artery was performed. And in the follow-up examination of postoperative patients, multiplanar reconstruction image was made in case of need. RESULTS: Scans in 50 patients were technically satisfactory and included in the analysis. Depiction of major visceral arteries, which were important for surgery and other treatments, could be done in all patients. Preoperative visualization of the left colic artery and sigmoidal arteries, the celiac artery and its branches, and hepatic artery was very useful to lymph node dissection, the planning of a reservoir and hepatectomy. And multiplanar reconstruction image was helpful to diagnosis for the postoperative follow-up of patients. CONCLUSION: Three-dimensional volume rendering or multiplanar reconstruction imaging performed by multislice computed tomography was very useful for gastroenteric and hepatic surgeries. PMID:15770732

  11. Legal considerations in the use of cone beam computer tomography imaging.

    PubMed

    Zinman, Edwin J; White, Stuart C; Tetradis, Sotirios

    2010-01-01

    Cone beam computed tomography imaging represents a paradigm shift for enhancing diagnosis and treatment planning. Questions regarding cone beam computed tomography's associated legal responsibility are addressed, including cone beam computed tomography necessity, recognition of pathosis in the scan's entire volume, adequate training, informed consent and/or refusal and current court status of cone beam computed tomography. Judicious selection and prudent use of cone beam computed tomography technology to protect and promote patient safety and efficacious treatment complies with the standard of care. PMID:20178227

  12. SADMFR guidelines for the use of Cone-Beam Computed Tomography/ Digital Volume Tomography.

    PubMed

    Dula, Karl; Bornstein, Michael M; Buser, Daniel; Dagassan-Berndt, Dorothea; Ettlin, Dominik A; Filippi, Andreas; Gabioud, François; Katsaros, Christos; Krastl, Gabriel; Lambrecht, J Thomas; Lauber, Roland; Luebbers, Heinz-Theo; Pazera, Pawel; Türp, Jens C

    2014-01-01

    Cone-Beam Computed Tomography (CBCT) has been introduced in 1998. This radiological imaging procedure has been provided for dentistry and is comparable to computed tomography (CT) in medicine. It is expected that CBCT will have the same success in dental diagnostic imaging as computed tomography had in medicine. Just as CT is responsible for a significant rise in radiation dose to the population from medical X-ray diagnostics, CBCT studies will be accompanied by a significant increase of the dose to our patients by dentistry. Because of the growing concern for an uncritical and consequently rapidly increasing use of CBCT the Swiss Society of Dentomaxillofacial Radiology convened a first consensus conference in 2011 to formulate indications for CBCT, which can be used as guidelines. In this meeting, oral and maxillofacial surgery, orthodontics and temporomandibular joint disorders and diseases were treated and the most important and most experienced users of DVT in these areas were asked to participate. In general, a highly restrictive use of CBCT is required. Justifying main criterion for CBCT application is that additional, therapy-relevant information is expected that should lead to a significant benefit in patient care. All users of CBCT should have completed a structured, high-level training, just like that offered by the Swiss Society of Dentomaxillofacial Radiology. PMID:25428284

  13. Validation of visual surface measurement using computed tomography

    NASA Astrophysics Data System (ADS)

    VanBerlo, Amy M.; Campbell, Aaron R.; Ellis, Randy E.

    2011-03-01

    Although dysesthesia is a common and persistent surgical complication, there is no accepted method for quantitatively tracking affected skin. To address this, two types of computer vision technologies were tested in a total of four configurations. Surface regions on plastic models of limbs were delineated with colored tape, imaged, and compared with computed tomography scans. The most accurate system used visually projected texture captured by a binocular stereo camera, capable of measuring areas to within 0.05% of the ground-truth areas with 1.4% variance. This simple, inexpensive technology shows promise for postoperative monitoring of dysesthesia surrounding surgical scars.

  14. Expandable computed-tomography architecture for nondestructive inspection

    NASA Astrophysics Data System (ADS)

    Agi, Iskender; Hurst, Paul J.; Current, K. W.

    1993-04-01

    The Radon transform and its inverse, commonly used for computed tomography (CT), are computationally burdensome for single processor computers. Since projection-based computations are easily executed in parallel, multiprocessor architectures have been proposed for high-speed operation. In this paper, we describe an architecture for a high-speed (30 MHz raster-scan image data rate), high accuracy (12-bits per pixel) computed-tomography system for use in non-destructive inspection system. This architecture reconstructs images from fan- or parallel-beam data using either single-pass or iterative reconstruction techniques. Our architecture uses a number of identical processor modules in a pipeline. Each processor module consists of memory for data storage, a commercially available digital signal processing (DSP) chip for filtering, and our custom IC which performs 450 million mathematical operations per second (MOPS). This architecture can reconstruct CT images as large as 1024 X 1024 pixels from a variety of image reconstruction algorithms. The details of the implementation and performance of our expandable architecture are discussed.

  15. Parallel multithread computing for spectroscopic analysis in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Trojanowski, Michal; Kraszewski, Maciej; Strakowski, Marcin; Pluciński, Jerzy

    2014-05-01

    Spectroscopic Optical Coherence Tomography (SOCT) is an extension of Optical Coherence Tomography (OCT). It allows gathering spectroscopic information from individual scattering points inside the sample. It is based on time-frequency analysis of interferometric signals. Such analysis requires calculating hundreds of Fourier transforms while performing a single A-scan. Additionally, further processing of acquired spectroscopic information is needed. This significantly increases the time of required computations. During last years, application of graphical processing units (GPU's) was proposed to reduce computation time in OCT by using parallel computing algorithms. GPU technology can be also used to speed-up signal processing in SOCT. However, parallel algorithms used in classical OCT need to be revised because of different character of analyzed data. The classical OCT requires processing of long, independent interferometric signals for obtaining subsequent A-scans. The difference with SOCT is that it requires processing of multiple, shorter signals, which differ only in a small part of samples. We have developed new algorithms for parallel signal processing for usage in SOCT, implemented with NVIDIA CUDA (Compute Unified Device Architecture). We present details of the algorithms and performance tests for analyzing data from in-house SD-OCT system. We also give a brief discussion about usefulness of developed algorithm. Presented algorithms might be useful for researchers working on OCT, as they allow to reduce computation time and are step toward real-time signal processing of SOCT data.

  16. Is there any role of positron emission tomography computed tomography for predicting resectability of gallbladder cancer?

    PubMed

    Kim, Jaihwan; Ryu, Ji Kon; Kim, Chulhan; Paeng, Jin Chul; Kim, Yong-Tae

    2014-05-01

    The role of integrated (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography computed tomography (PET-CT) is uncertain in gallbladder cancer. The aim of this study was to show the role of PET-CT in gallbladder cancer patients. Fifty-three patients with gallbladder cancer underwent preoperative computed tomography (CT) and PET-CT scans. Their medical records were retrospectively reviewed. Twenty-six patients underwent resection. Based on the final outcomes, PET-CT was in good agreement (0.61 to 0.80) with resectability whereas CT was in acceptable agreement (0.41 to 0.60) with resectability. When the diagnostic accuracy of the predictions for resectability was calculated with the ROC curve, the accuracy of PET-CT was higher than that of CT in patients who underwent surgical resection (P=0.03), however, there was no difference with all patients (P=0.12). CT and PET-CT had a discrepancy in assessing curative resection in nine patients. These consisted of two false negative and four false positive CT results (11.3%) and three false negative PET-CT results (5.1%). PET-CT was in good agreement with the final outcomes compared to CT. As a complementary role of PEC-CT to CT, PET-CT tended to show better prediction about resectability than CT, especially due to unexpected distant metastasis. PMID:24851025

  17. Computed tomography of the trachea: normal and abnormal

    SciTech Connect

    Gamsu, G.; Webb, W.R.

    1982-08-01

    The trachea was investigated by means of computed tomography (CT) in 50 patients without tracheal or mediastinal abnormalities and in 39 patients with various diseases of the trachea. The variations in the normal CT appearance of the trachea and surrounding structures are described. CT did not provide additional information in the detection of characterization of tracheal stenosis beyond that obtained from more conventional studies, including tomography and positive-contrast tracheography. In patients with a saber-sheath trachea, CT demonstrated the abnormal configuration of the tracheal cartilages and abnormal collapse of the trachea on forced expiration. In patients with primary or secondary neoplasms involving the trachea, CT was most accurate in defining the intraluminal presence of tumor, the degree of airway compression, and the extratracheal extension of tumor. CT can be of value in determining the resectability of primary tracheal neoplasms and the planning of radiation therapy in metastatic lesions to the trachea and surrounding mediastinum.

  18. Single photon emission computed tomography in AIDS dementia complex

    SciTech Connect

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-08-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder.

  19. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  20. Inferior vena cava thrombosis with hot quadrate lobe sign demonstrated by Tc-99m macroaggregated albumin radionuclide venogram and single-photon emission computed tomography/computed tomography

    PubMed Central

    Theerakulpisut, Daris

    2016-01-01

    In this article, a case of a young woman who presented with extensive deep venous thrombosis of the inferior vena cava and lower extremities with pulmonary embolism is described. Findings of various imaging modalities highlighting an interesting finding of a “hot quadrate lobe” sign demonstrated by planar radionuclide venography and single photon emission computed tomography/computed tomography are illustrated. PMID:27095866

  1. A case of sarcoidosis diagnosed by positron emission tomography/computed tomography.

    PubMed

    Aksoy, Sabire Yilmaz; Özdemir, Elif; Sentürk, Aysegül; Türkölmez, Seyda

    2016-01-01

    Sarcoidosis is a multisystem granulomatous disorder of unknown cause which may affect any organ or system but primarily involve the lungs and the lymphatic system. Extrapulmonary sarcoidosis represents approximately 30-50% of patients. We report the case of a 51-year-old female who presented with increasing complaints of a cough, weakness, weight loss, and chest pain and who was found to have a suspicious lesion on thorax computed tomography(CT). Fluorodeoxyglucose (FDG) positron emission tomography/CT performed for diagnostic purposes demonstrated increased FDG accumulation at the bilateral enlarged parotid and lacrimal gland and in the reticulonodular infiltration area located in the left lung as well as multiple lymphadenopathies with increased FDG accumulation. There were also hepatosplenomegaly and splenic uptake. Skin biopsy showed noncaseating granulomas, and the patient was diagnosed as stage 2 sarcoidosis. PMID:27385890

  2. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    SciTech Connect

    Chen, Dongmei; Zhu, Shouping Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  3. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  4. Unusual case of infantile fibrosarcoma evaluated on F-18 fluorodeoxyglucose positron emission tomography-computed tomography.

    PubMed

    Bedmutha, Akshay; Singh, Natasha; Shivdasani, Divya; Gupta, Nitin

    2016-01-01

    Infantile fibrosarcoma (IFS) is a rare soft-tissue sarcoma originating from extremities and occasionally from axial soft tissue. The prognosis is good with favorable long-term survival. It is rarely metastasizing tumor, the chances being lesser with IFS originating from extremities. Use of neoadjuvant chemotherapy (NACT) as a treatment regime further reduces the chances of local relapse and distant metastasis. The organs commonly affected in metastatic IFS are lungs and lymph nodes. We report an unusual case of an IFS originating from extremity, which received NACT, yet presented with an early metastatic disease involving soft tissues and sparing lungs and lymph nodes, as demonstrated on fluorodeoxyglucose positron emission tomography-computed tomography. PMID:27385891

  5. Unusual case of infantile fibrosarcoma evaluated on F-18 fluorodeoxyglucose positron emission tomography-computed tomography

    PubMed Central

    Bedmutha, Akshay; Singh, Natasha; Shivdasani, Divya; Gupta, Nitin

    2016-01-01

    Infantile fibrosarcoma (IFS) is a rare soft-tissue sarcoma originating from extremities and occasionally from axial soft tissue. The prognosis is good with favorable long-term survival. It is rarely metastasizing tumor, the chances being lesser with IFS originating from extremities. Use of neoadjuvant chemotherapy (NACT) as a treatment regime further reduces the chances of local relapse and distant metastasis. The organs commonly affected in metastatic IFS are lungs and lymph nodes. We report an unusual case of an IFS originating from extremity, which received NACT, yet presented with an early metastatic disease involving soft tissues and sparing lungs and lymph nodes, as demonstrated on fluorodeoxyglucose positron emission tomography-computed tomography. PMID:27385891

  6. A case of sarcoidosis diagnosed by positron emission tomography/computed tomography

    PubMed Central

    Aksoy, Sabire Yilmaz; Özdemir, Elif; Sentürk, Aysegül; Türkölmez, Seyda

    2016-01-01

    Sarcoidosis is a multisystem granulomatous disorder of unknown cause which may affect any organ or system but primarily involve the lungs and the lymphatic system. Extrapulmonary sarcoidosis represents approximately 30-50% of patients. We report the case of a 51-year-old female who presented with increasing complaints of a cough, weakness, weight loss, and chest pain and who was found to have a suspicious lesion on thorax computed tomography(CT). Fluorodeoxyglucose (FDG) positron emission tomography/CT performed for diagnostic purposes demonstrated increased FDG accumulation at the bilateral enlarged parotid and lacrimal gland and in the reticulonodular infiltration area located in the left lung as well as multiple lymphadenopathies with increased FDG accumulation. There were also hepatosplenomegaly and splenic uptake. Skin biopsy showed noncaseating granulomas, and the patient was diagnosed as stage 2 sarcoidosis. PMID:27385890

  7. Calorimetry in Medical Applications: Single-Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Chen, C.-T.

    2006-10-27

    Positron emission tomography (PET) and single-photon emission computed tomography (SPECT), two nuclear medicine imaging modalities broadly used in clinics and research, share many common instrumentation, detector, and electronics technology platforms with calorimetry in high-energy physics, astronomy, and other physics sciences. Historically, advances made in calorimetry had played major roles in the development of novel approaches and critical technologies essential to the evolution of PET and SPECT. There have also been examples in which PET/SPECT developments had led to new techniques in calorimetry for other application areas. In recent years, several innovations have propelled advances in both calorimetry in general and PET/SPECT in particular. Examples include time-of-flight (TOF) measurements, silicon photomultipliers (SiPMs), etc.

  8. Reconstruction of limited computed tomography data of fuel cell components using Direct Iterative Reconstruction of Computed Tomography Trajectories

    NASA Astrophysics Data System (ADS)

    Lange, Axel; Kupsch, Andreas; Hentschel, Manfred P.; Manke, Ingo; Kardjilov, Nikolay; Arlt, Tobias; Grothausmann, Roman

    CT (computed tomography) reconstructions of fuel cell components of a yet unrivaled spatial resolution and quality are presented. This is achieved by application of the novel DIRECTT (Direct Iterative Reconstruction of Computed Tomography Trajectories) algorithm. We focus on two different key issues which essentially rule the fuel cell's durability on different length scales and physical interactions. On the resolution scale of some 100 μm agglomerations of condensed water in flow-field channels are detected by means of quasi- in situ neutron CT (after operation). Five orders of magnitude below nanometer sized Ru catalyst particles on carbon black support are visualized by electron tomography. Both types of experiments are especially adapted to the type of material involved but they are accompanied by severe deviations from ideal CT measuring conditions, as well. In order to overcome the tremendous reconstruction artifacts of standard algorithms, we employ DIRECTT which is described in detail. Comparisons of DIRECTT reconstructions to the conventional filtered back projection, prove the significant improvements in both experimental methods.

  9. Three-dimensional holographic reconstruction from computational tomography images

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Cao, Liangcai; Zhang, Hao; He, Qingsheng; Jin, Guofan

    2014-11-01

    An angular spectrum holographic algorithm is proposed for generating three-dimensional (3D) reconstruction from multiple computational tomography (CT) slices. Objects consist of multiple slices can be easily modeled by the angular spectrum. So the 3D structure can be built through the superposition of computer generated phase holograms originally from parallel discrete planes at different depths. Then the superposed phase hologram is uploaded to the phase-only spatial light modulator (SLM). With the SLM illuminated by the coherent light, the 3D reconstruction is observed by a camera. The proposed method is more computationally efficient compared with the point source algorithm, and the angular spectrum holographic algorithm can process more large-capacity CT data for the 3D visualization. Experiment demonstrates the feasibility of reconstructing CT biological structure with holographic display.

  10. From 2-dimensional cephalograms to 3-dimensional computed tomography scans.

    PubMed

    Halazonetis, Demetrios J

    2005-05-01

    Computed tomography is entering the orthodontic specialty as a mainstream diagnostic modality. Radiation exposure and cost have decreased significantly, and the diagnostic value is very high compared with traditional radiographic options. However, 3-dimensional data present new challenges and need a different approach from traditional viewing of static images to make the most of the available possibilities. Advances in computer hardware and software now enable interactive display of the data on personal computers, with the ability to selectively view soft or hard tissues from any angle. Transfer functions are used to apply transparency and color. Cephalometric measurements can be taken by digitizing points in 3-dimensional coordinates. Application of 3-dimensional data is expected to increase significantly soon and might eventually replace many conventional orthodontic records that are in use today. PMID:15877045

  11. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease.

    PubMed

    Horger, Marius; Bares, Roland

    2006-10-01

    Radiological (plain radiographs, computed tomography [CT], magnetic resonance imaging [MRI]) and nuclear medicine methods (bone scan, leukocyte scan) both provide unique information about the status of the skeleton. Both have typical strengths and weaknesses, which often lead to the sequential use of different procedures in daily routine. This use causes the unnecessary loss of time and sometimes money, if redundant information is obtained without establishing a final diagnosis. Recently, new devices for hybrid imaging (single-photon emission computed tomography/computed tomography [SPECT/CT], positron emission tomography/computed tomography [PET/CT]) were introduced, which allow for direct fusion of morphological (CT) and functional (SPECT, PET) data sets. With regard to skeletal abnormalities, this approach appears to be extremely useful because it combines the advantages of both techniques (high-resolution imaging of bone morphology and high sensitivity imaging of bone metabolism). By the accurate correlation of both, a new quality of bone imaging has now become accessible. Although researchers undertaking the initial studies exclusively used low-dose CT equipment, a new generation of SPECT/CT devices has emerged recently. By integrating high-resolution spiral CT, quality of bone imaging may improve once more. Ongoing prospective studies will have to show whether completely new diagnostic algorithms will come up for classification of bone disease as a consequence of this development. Besides, the role of ultrasonography and MRI for bone and soft-tissue imaging also will have to be re-evaluated. Looking at the final aim of all imaging techniques--to achieve correct diagnosis in a fast, noninvasive, comprehensive, and inexpensive way--we are now on the edge of a new era of multimodality imaging that will probably change the paths and structure of medicine in many ways. Presently, hybrid imaging using SPECT/CT has been proven to increase sensitivity and specificity

  12. Detection of lung cancer in patients with pneumoconiosis by fluorodeoxyglucose-positron emission tomography/computed tomography: four cases.

    PubMed

    Yu, Hua; Zhang, Hua; Wang, Yanli; Cui, Xinjian; Han, Jiankui

    2013-01-01

    We report 4 cases of lung cancer in patients with pneumoconiosis detected by F18-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT), which could differentiate lung cancer and pneumoconiosis. FDG-PET/CT may be useful in cancer screening for patients with pneumoconiosis. PMID:23369632

  13. Static and dynamic assessment of myocardial perfusion by computed tomography.

    PubMed

    Danad, Ibrahim; Szymonifka, Jackie; Schulman-Marcus, Joshua; Min, James K

    2016-08-01

    Recent developments in computed tomography (CT) technology have fulfilled the prerequisites for the clinical application of myocardial CT perfusion (CTP) imaging. The evaluation of myocardial perfusion by CT can be achieved by static or dynamic scan acquisitions. Although both approaches have proved clinically feasible, substantial barriers need to be overcome before its routine clinical application. The current review provides an outline of the current status of CTP imaging and also focuses on disparities between static and dynamic CTPs for the evaluation of myocardial blood flow. PMID:27013250

  14. Multimodality Imaging in Coronary Artery Disease: Focus on Computed Tomography

    PubMed Central

    Lee, Ji Hyun; Han, Donghee; Danad, Ibrahim; Hartaigh, Bríain ó; Lin, Fay Y.

    2016-01-01

    Coronary artery disease (CAD) is the leading cause of mortality worldwide, and various cardiovascular imaging modalities have been introduced for the purpose of diagnosing and determining the severity of CAD. More recently, advances in computed tomography (CT) technology have contributed to the widespread clinical application of cardiac CT for accurate and noninvasive evaluation of CAD. In this review, we focus on imaging assessment of CAD based upon CT, which includes coronary artery calcium screening, coronary CT angiography, myocardial CT perfusion, and fractional flow reserve CT. Further, we provide a discussion regarding the potential implications, benefits and limitations, as well as the possible future directions according to each modality. PMID:27081438

  15. Computed tomography in the evaluation of thyroid disease

    SciTech Connect

    Silverman, P.M.; Newman, G.E.; Korobkin, M.; Workman, J.B.; Moore, A.V.; Coleman, R.E.

    1984-05-01

    Traditionally, thyroid imaging has been performed primarily using radionuclide scanning. High-resolution computed tomography (CT) was performed in 18 patients to evaluate the CT appearance of various thyroid abnormalities including diffuse toxic goiter, multinodular goiter, Hashimoto thyroiditis, thyroid adenoma, and malignant thyroid tumors. CT images of the thyroid were correlated with radionuclide scanning, surgical findings, and clinical and laboratory results. CT provided a complementary method for evaluation of the thyroid by defining the morphology of the thyroid gland and more precisely defining the anatomic extent of thyroid abnormalities in relation to the normal structures of the neck and mediastinum.

  16. Effective regularized algebraic reconstruction technique for computed tomography

    SciTech Connect

    Prun, V. E.; Nikolaev, D. P.; Buzmakov, A. V.; Chukalina, M. V.; Asadchikov, V. E.

    2013-12-15

    A new fast version of the reconstruction algorithm for computed tomography based on the simultaneous algebraic reconstruction technique (SART) is proposed. The algorithm iteration is asymptotically accelerated using the fast Hough transform from O(n{sup 3}) to O(n{sup 2}logn). Similarly to the algebraic reconstruction technique (RegART), which was proposed by us previously, the regularization operator is applied after each iteration. A bilateral filter plays the role of this operator. The algorithm behavior is investigated using the model experiment.

  17. Pulmonary multislice computed tomography findings in acute aortic dissection

    PubMed Central

    Okur, Aysegul; Sahin, Sinan

    2012-01-01

    Objective To document the type and incidence of pulmonary multislice computed tomography (CT) findings at presentation in patients with acute aortic dissection. Materials and methods Multidetector CT scans of 36 patients with a diagnosis of acute aortic dissection or intramural hematoma were retrospectively reviewed. Results Pleural effusion, dependent stasis, mosaic attenuation, interlobular septal thickening, thickening of the peribronchovascular interstitium, vascular enlargement, compression atelectasis were common findings. Additionally air trapping, emphysema, consolidation, nodules, bronchiectasis or scarring were also noted. Conclusions Various pulmonary imaging findings may accompany acute aortic dissection. These findings and their clinical significance should be further investigated. PMID:23050112

  18. Computed tomography of CNS disease. A teaching file

    SciTech Connect

    Yock, D.H.

    1985-01-01

    This ''teaching file'' comprises a clinically representative collection of over 400 cases of neuropathology diagnosed by computed tomography. Each case is accompanied by a discussion of CT interpretation. Comments on clinical presentation, pathophysiological findings, and therapy are included where appropriate. Abnormalities covered include metastases, meningiomas, posterior fossa tumors inflammatory and degenerative diseases, infarction and anoxia, and spinal lesions. Each pathological category demonstrates a range of CT findings from ''classic'' patterns to atypical examples. Anatomical variants are included only if they mimic pathology. Diverse lesions that potentially resemble each other are highlighted throughout the book in special sections entitled, ''Differential Diagnoses''.

  19. Liabilities and risks of using cone beam computed tomography.

    PubMed

    Friedland, Bernard; Miles, Dale A

    2014-07-01

    The use of conebeam computed tomography (CBCT) carries with it medicolegal risks of which the practitioner should be aware. These include licensing and malpractice liability concerns. A practitioner who intends to take and/or use CBCT scans should seek advice from his malpractice carrier before doing so. All scans should be read by someone competent to interpret them. Using the services of an out-of-state radiologist to read scans poses its own set of risks. Consultation with a malpractice carrier and dental boards is advisable in this situation. PMID:24993928

  20. Cardiac Computed Tomography Angiography for Left Atrial Appendage Closure.

    PubMed

    Saw, Jacqueline; Lopes, Joao Pedro; Reisman, Mark; McLaughlin, Patrick; Nicolau, Savvas; Bezerra, Hiram G

    2016-08-01

    Atrial fibrillation is prevalent and percutaneous left atrial appendage (LAA) closure is increasingly performed worldwide. This procedure is technically challenging and the success and procedural complexities depend on anatomy of the LAA and surrounding structures. These are readily depicted on cardiac computed tomography angiography (CCTA), which offers unique imaging planes. CCTA allows not only preplanning anatomic LAA assessment, but can also be used to evaluate for pre-existing LAA thrombus, and done postprocedure for surveillance for device-related thrombus, residual leak, and complications. In this article, we review the practical utility of CCTA for LAA closure. PMID:26907169

  1. Role of Computed Tomography in Pediatric Abdominal Conditions.

    PubMed

    Eapen, Anu; Gibikote, Sridhar

    2016-07-01

    In the pediatric patient, computed tomography (CT) scan as an imaging modality for evaluation of the abdomen is to be used judiciously. The use of correct scanning protocols, single phase scanning, scanning only when required are key factors to minimize radiation doses to the child, while providing diagnostic quality. CT is the preferred modality in the evaluation of trauma, to assess extent of solid organ or bowel injury. It is also useful in several inflammatory conditions such as inflammatory bowel diseases and acute pancreatitis. CT also has an important role in evaluating intra-abdominal tumors, although magnetic resonance imaging (MRI) can be used as an alternative to CT. PMID:26964550

  2. Renal Leiomyoma: Ultrasonography and Computed Tomography Features with Histopathologic Correlation

    PubMed Central

    Onur, Mehmet Ruhi; Akin, Mehmet Mustafa; Onur, Ahmet Rahmi

    2013-01-01

    Renal leiomyomas are not uncommon mesenchymal neoplasms of the kidney, found in 5% of autopsy specimens and comprising 0.3% of all treated tumors. These tumors arise from the smooth muscle cells of the kidney and are mostly located in the renal capsule. Typical imaging features of renal leiomyomas include a peripheral location, well-defined margins, and hyperattenuation on nonenhanced computed tomography (CT) images. The differential diagnosis of renal leiomyomas includes benign and malignant solid neoplasms of the kidney. Familiarity with typical renal leiomyoma imaging findings may help in the management of these patients and prevent unnecessary surgery. PMID:25610282

  3. Non-functioning adrenal adenomas discovered incidentally on computed tomography

    SciTech Connect

    Mitnick, J.S.; Bosniak, M.A.; Megibow, A.J.; Naidich, D.P.

    1983-08-01

    Eighteen patients with unilateral non-metastatic non-functioning adrenal masses were studied with computed tomography (CT). Pathological examination in cases revealed benign adrenal adenomas. The others were followed up with serial CT scans and found to show no change in tumor size over a period of six months to three years. On the basis of these findings, the authors suggest certain criteria of a benign adrenal mass, including (a) diameter less than 5 cm, (b) smooth contour, (c) well-defined margin, and (d) no change in size on follow-up. Serial CT scanning can be used as an alternative to surgery in the management of many of these patients.

  4. Multidetector Computer Tomography: Evaluation of Blunt Chest Trauma in Adults

    PubMed Central

    Matos, António P.; Mascarenhas, Vasco; Herédia, Vasco

    2014-01-01

    Imaging plays an essential part of chest trauma care. By definition, the employed imaging technique in the emergency setting should reach the correct diagnosis as fast as possible. In severe chest blunt trauma, multidetector computer tomography (MDCT) has become part of the initial workup, mainly due to its high sensitivity and diagnostic accuracy of the technique for the detection and characterization of thoracic injuries and also due to its wide availability in tertiary care centers. The aim of this paper is to review and illustrate a spectrum of characteristic MDCT findings of blunt traumatic injuries of the chest including the lungs, mediastinum, pleural space, and chest wall. PMID:25295188

  5. Multidetector computer tomography: evaluation of blunt chest trauma in adults.

    PubMed

    Palas, João; Matos, António P; Mascarenhas, Vasco; Herédia, Vasco; Ramalho, Miguel

    2014-01-01

    Imaging plays an essential part of chest trauma care. By definition, the employed imaging technique in the emergency setting should reach the correct diagnosis as fast as possible. In severe chest blunt trauma, multidetector computer tomography (MDCT) has become part of the initial workup, mainly due to its high sensitivity and diagnostic accuracy of the technique for the detection and characterization of thoracic injuries and also due to its wide availability in tertiary care centers. The aim of this paper is to review and illustrate a spectrum of characteristic MDCT findings of blunt traumatic injuries of the chest including the lungs, mediastinum, pleural space, and chest wall. PMID:25295188

  6. Computed Tomography Angiography of the Hepatic, Pancreatic, and Splenic Circulation.

    PubMed

    Price, Melissa; Patino, Manuel; Sahani, Dushyant

    2016-01-01

    Multidetector computed tomography angiography (MDCTA) has become a routine imaging tool to assess visceral vascular anatomy and abdominal parenchymal pathology. Enhanced temporal resolution and rapid acquisition allow for precise delineation of arterial and venous anatomy. The excellent spatial resolution permits assessment of small parenchyma lesions and vasculature. The ability of CT to rapidly acquire data and reconstruct with thinner slices allows robust 3D mapping using maximum intensity projection before definitive surgical or interventional therapy. Emerging novel techniques of image acquisition offer sensitive methods for detecting enhancement and allow for virtual imaging subtraction, all while limiting the total radiation burden. PMID:26654391

  7. The value of computed tomography in myasthenia gravis

    SciTech Connect

    Brown, L.R.; Muhm, J.R.; Sheedy, P.F. II; Unni, K.K.; Bernatz, P.E.; Hermann, R.C. Jr.

    1983-01-01

    In a 5 year study, 19 patients with myasthenia gravis were studied by computed tomography (CT) and underwent thymectomy. CT was accurate in detecting the nine true thymic masses but could not differentiate thymomas from nonthymomatous masses, including thymic cysts. No thymoma was found in a patient under 25 years of age. In one case, the 18 sec scanner could not differentiate a large gland from a thymoma. In eight cases, glands with histologic thymic hyperplasia and histologically normal thymus appeared to be similar and could not be differentiated by CT.

  8. Computed tomography and magnetic resonance imaging evaluation of pericardial disease

    PubMed Central

    Shahid, Muhammad; Watkin, Richard W.

    2016-01-01

    Pericardial diseases are commonly encountered in clinical practice and may present as an isolated process or in association with various systemic conditions. Traditionally transthoracic echocardiography (TTE) has been the method of choice for the evaluation of suspected pericardial disease but increasingly computed tomography (CT) and magnetic resonance imaging (MRI) are also being used as part of a rational multi-modality imaging approach tailored to the specific clinical scenario. This paper reviews the role of CT and MRI across the spectrum of pericardial diseases. PMID:27429911

  9. Computer Tomography Analysis of Fastrac Composite Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2000-01-01

    Computed tomography (CT) inspection has been integrated into the production process for NASA's Fastrac composite thrust chamber assemblies (TCAs). CT has been proven to be uniquely qualified to detect the known critical flaw for these nozzles, liner cracks that are adjacent to debonds between the liner and overwrap. CT is also being used as a process monitoring tool through analysis of low density indications in the nozzle overwraps. 3d reconstruction of CT images to produce models of flawed areas is being used to give program engineers better insight into the location and nature of nozzle flaws.

  10. Micro Computer Tomography for medical device and pharmaceutical packaging analysis.

    PubMed

    Hindelang, Florine; Zurbach, Raphael; Roggo, Yves

    2015-04-10

    Biomedical device and medicine product manufacturing are long processes facing global competition. As technology evolves with time, the level of quality, safety and reliability increases simultaneously. Micro Computer Tomography (Micro CT) is a tool allowing a deep investigation of products: it can contribute to quality improvement. This article presents the numerous applications of Micro CT for medical device and pharmaceutical packaging analysis. The samples investigated confirmed CT suitability for verification of integrity, measurements and defect detections in a non-destructive manner. PMID:25710902

  11. Differential diagnosis of intrasellar tumors by computed tomography

    SciTech Connect

    Daniels, D.L.; Williams, A.L.; Thornton, R.S.; Meyer, G.A.; Cusick, J.F.; Haughton, V.M.

    1981-12-01

    The specificity of the computed tomography (CT) diagnosis of intrasellar adenoma has not been studied. We compared the CT findings in intrasellar meningiomas, craniopharyngiomas, aneurysms, and metastases with those of pituitary adenomas. Calcification was a feature of intrasellar meningiomas, aneurysms, and craniopharyngiomas, but not a typical feature of adenomas. Low-density regions representing necrosis or cyst were found in most types of intrasellar tumors. Eccentricity, hyperostosis, and bone destruction were useful signs of aneurysm, meningioma, and metastasis, respectively. Since adenoma cannot always be distinghished from another intrasellar mass, angiography to demonstrate tumor angioarchitecture may be needed to characterize some neoplasms or to confirm an intrasellar aneurysm.

  12. An evaluation of cadmium telluride detectors for computer assisted tomography.

    PubMed

    Chu, D; Kaufman, L; Hosier, K; Hoenninger, J

    1978-11-01

    Cadmium telluride (CdTe) presents a set of extremely attractive features as an X-ray detector for computer assisted tomography (CAT). It is stable and easily handled; has a high detection efficiency and very efficient conversion of energy to charge; and permits a high element density in a compact configuration. Unfortunately, effects due to "polarization," "tailing," high and variable leakage currents, and long "memory" are incompatible with the needs of CAT instrumentation. Pulse-processing techniques have allowed us to eliminate these problems in positive-sensitive detectors, thus opening the way for utilization of CdTe in CAT. PMID:711945

  13. Radiation dose reduction in computed tomography: techniques and future perspective

    PubMed Central

    Yu, Lifeng; Liu, Xin; Leng, Shuai; Kofler, James M; Ramirez-Giraldo, Juan C; Qu, Mingliang; Christner, Jodie; Fletcher, Joel G; McCollough, Cynthia H

    2011-01-01

    Despite universal consensus that computed tomography (CT) overwhelmingly benefits patients when used for appropriate indications, concerns have been raised regarding the potential risk of cancer induction from CT due to the exponentially increased use of CT in medicine. Keeping radiation dose as low as reasonably achievable, consistent with the diagnostic task, remains the most important strategy for decreasing this potential risk. This article summarizes the general technical strategies that are commonly used for radiation dose management in CT. Dose-management strategies for pediatric CT, cardiac CT, dual-energy CT, CT perfusion and interventional CT are specifically discussed, and future perspectives on CT dose reduction are presented. PMID:22308169

  14. Industrial applications of computed tomography at Los Alamos Scientific Laboratory

    SciTech Connect

    Kruger, R.P.; Morris, R.A.; Wecksung, G.W.; Wonn, G.; London, R.

    1980-06-01

    A research and development program was begun two years ago at the Los Alamos Scientific Laboratory (LASL) to study nonmedical applications of computed tomography. This program had several goals. The first goal was to develop the necessary reconstruction algorithms to accurately reconstruct cross sections of nonmedical industrial objects. The second goal was to be able to perform extensive tomographic simulations to determine the efficacy of tomographic reconstruction with a variety of hardware configurations. The final goal was to construct an inexpensive industrial prototype scanner with a high degree of design flexibility. The implementation of these program goals is described.

  15. Cardiac PET/Computed Tomography Applications and Cardiovascular Outcome.

    PubMed

    Schindler, Thomas Hellmut

    2015-07-01

    Cardiac PET/computed tomography (CT) in conjunction with different blood flow tracers is increasingly applied for the assessment of myocardial perfusion and myocardial flow reserve (MFR) in the detection of coronary artery disease (CAD). The ability of PET/CT to noninvasively determine regional myocardial blood flow at rest and during vasomotor stress allows the calculation of the MFR, which carries important prognostic information in patients with subclinical forms of cardiomyopathy. The measured MFR optimizes the identification and characterization of the extent and severity of CAD burden, and contributes to the flow-limiting effect of single lesions in multivessel CAD. PMID:26099678

  16. Computed Tomography Angiography for Preoperative Thoracoabdominal Flap Planning.

    PubMed

    O'Malley, Ryan B; Robinson, Tracy J; Kozlow, Jeffrey H; Liu, Peter S

    2016-01-01

    Mastectomy rates have increased, coinciding with more advanced reconstruction options. Deep inferior epigastric perforator (DIEP) flaps decrease abdominal donor site morbidity, but require considerable technical expertise. Preoperative computed tomography angiography (CTA) can accurately demonstrate DIEA anatomy and perforator courses, facilitating preoperative planning and flap design, allowing for more targeted intraoperative microdissection. Patients who undergo CTA before DIEP flap have better clinical outcomes with shorter operative times and hospital length of stay, which can decrease overall associated health care costs. Future directions include selected imaging of the thoracic anatomy and recipient vasculature, allowing for additional preoperative planning and customization. PMID:26654396

  17. PRaVDA: High Energy Physics towards proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Price, T.

    2016-07-01

    Proton radiotherapy is an increasingly popular modality for treating cancers of the head and neck, and in paediatrics. To maximise the potential of proton radiotherapy it is essential to know the distribution, and more importantly the proton stopping powers, of the body tissues between the proton beam and the tumour. A stopping power map could be measured directly, and uncertainties in the treatment vastly reduce, if the patient was imaged with protons instead of conventional x-rays. Here we outline the application of technologies developed for High Energy Physics to provide clinical-quality proton Computed Tomography, in so reducing range uncertainties and enhancing the treatment of cancer.

  18. A proton Computed Tomography system for medical applications

    NASA Astrophysics Data System (ADS)

    Sipala, V.; Bruzzi, M.; Bucciolini, M.; Carpinelli, M.; Cirrone, G. A. P.; Civinini, C.; Cuttone, G.; Lo Presti, D.; Pallotta, S.; Pugliatti, C.; Randazzo, N.; Romano, F.; Scaringella, M.; Stancampiano, C.; Talamonti, C.; Tesi, M.; Vanzi, E.; Zani, M.

    2013-02-01

    Proton Computed Tomography (pCT) can improve the accuracy of both patient positioning and dose calculation in proton therapy, enabling to accurately reconstruct the electron density distribution of irradiated tissues. A pCT prototype, equipped with a silicon tracker and a YAG:Ce calorimeter, has been manufactured by an Italian collaboration. First tests under proton beam allowed obtaining good quality tomographic images of a non-homogeneous phantom. Manufacturing of a new large area system with real-time data acquisition is under way.

  19. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  20. Tracker Readout ASIC for Proton Computed Tomography Data Acquisition.

    PubMed

    Johnson, Robert P; Dewitt, Joel; Holcomb, Cole; Macafee, Scott; Sadrozinski, Hartmut F-W; Steinberg, David

    2013-10-01

    A unique CMOS chip has been designed to serve as the front-end of the tracking detector data acquisition system of a pre-clinical prototype scanner for proton computed tomography (pCT). The scanner is to be capable of measuring one to two million proton tracks per second, so the chip must be able to digitize the data and send it out rapidly while keeping the front-end amplifiers active at all times. One chip handles 64 consecutive channels, including logic for control, calibration, triggering, buffering, and zero suppression. It outputs a formatted cluster list for each trigger, and a set of field programmable gate arrays merges those lists from many chips to build the events to be sent to the data acquisition computer. The chip design has been fabricated, and subsequent tests have demonstrated that it meets all of its performance requirements, including excellent low-noise performance. PMID:24653525

  1. Tracker Readout ASIC for Proton Computed Tomography Data Acquisition

    PubMed Central

    Johnson, Robert P.; DeWitt, Joel; Holcomb, Cole; Macafee, Scott; Sadrozinski, Hartmut F.-W.; Steinberg, David

    2014-01-01

    A unique CMOS chip has been designed to serve as the front-end of the tracking detector data acquisition system of a pre-clinical prototype scanner for proton computed tomography (pCT). The scanner is to be capable of measuring one to two million proton tracks per second, so the chip must be able to digitize the data and send it out rapidly while keeping the front-end amplifiers active at all times. One chip handles 64 consecutive channels, including logic for control, calibration, triggering, buffering, and zero suppression. It outputs a formatted cluster list for each trigger, and a set of field programmable gate arrays merges those lists from many chips to build the events to be sent to the data acquisition computer. The chip design has been fabricated, and subsequent tests have demonstrated that it meets all of its performance requirements, including excellent low-noise performance. PMID:24653525

  2. Evidence review and status update on computed tomography colonography.

    PubMed

    Boone, Darren; Halligan, Steve; Taylor, Stuart A

    2011-10-01

    Computed tomographic (CT) colonography is being implemented increasingly in the USA and Europe, and in many centers it has become the radiological technique of choice for imaging the whole colorectum. Although high diagnostic accuracy has been demonstrated in both screening and symptomatic populations, controversy persists regarding implementation, who should interpret the examination, and its cost effectiveness, particularly in the context of primary colorectal cancer screening. Published research in recent years has demonstrated efficacy in a wide range of patient groups, striking technical improvements, and high levels of patient acceptability. New developments continue in the fields of computer aided detection, digital cleansing, and integration into positron emission tomography. The purpose of this review is to bring the reader up-to-date with the latest developments in CT colonography, in particular, those of the last year. PMID:21773705

  3. High-precision synthetic computed tomography of reconstructed porous media

    NASA Astrophysics Data System (ADS)

    Hilfer, R.; Zauner, Th.

    2011-12-01

    Multiscale simulation of transport in disordered and porous media requires microstructures covering several decades in length scale. X-ray and synchrotron computed tomography are presently unable to resolve more than one decade of geometric detail. Recent advances in pore scale modeling [Biswal, Held, Khanna, Wang, and Hilfer, Phys. Rev. E PLEEE81539-375510.1103/PhysRevE.80.041301 80, 041301 (2009)] provide strongly correlated microstructures with several decades in microstructural detail. A carefully calibrated microstructure model for Fontainebleau sandstone has been discretized into a suite of three-dimensional microstructures with resolutions from roughly 128 μm down to roughly 500 nm. At the highest resolution the three-dimensional image consists of 327683=35184372088832 discrete cubic volume elements with gray values between 0 and 216. To the best of our knowledge, this synthetic image is the largest computed tomogram of a porous medium available at present.

  4. Boxers--computed tomography, EEG, and neurological evaluation

    SciTech Connect

    Ross, R.J.; Cole, M.; Thompson, J.S.; Kim, K.H.

    1983-01-14

    During the last three years, 40 ex-boxers were examined to determine the effects of boxing in regard to their neurological status and the computed tomographic (CT) appearance of the brain. Thirty-eight of these patients had a CT scan of the brain, and 24 had a complete neurological examination including an EEG. The results demonstrate a significant relationship between the number of bouts fought and CT changes indicating cerebral atrophy. Positive neurological findings were not significantly correlated with the number of bouts. Electroencephalographic abnormalities were significantly correlated with the number of bouts fought. Computed tomography and EEG of the brain should be considered as part of a regular neurological examination for active boxers and, if possible, before and after each match, to detect not only the effects of acute life-threatening brain trauma such as subdural hematomas and brain hemorrhages, but the more subtle and debilitating long-term changes of cerebral atrophy.

  5. Temporomandibular joint computed tomography: development of a direct sagittal technique

    SciTech Connect

    van der Kuijl, B.; Vencken, L.M.; de Bont, L.G.; Boering, G. )

    1990-12-01

    Radiology plays an important role in the diagnosis of temporomandibular disorders. Different techniques are used with computed tomography offering simultaneous imaging of bone and soft tissues. It is therefore suited for visualization of the articular disk and may be used in patients with suspected internal derangements and other disorders of the temporomandibular joint. Previous research suggests advantages to direct sagittal scanning, which requires special positioning of the patient and a sophisticated scanning technique. This study describes the development of a new technique of direct sagittal computed tomographic imaging of the temporomandibular joint using a specially designed patient table and internal light visor positioning. No structures other than the patient's head are involved in the imaging process, and misleading artifacts from the arm or the shoulder are eliminated. The use of the scanogram allows precise correction of the condylar axis and selection of exact slice level.

  6. Development of the translating and rotating volume computed tomography (TRVCT)

    NASA Astrophysics Data System (ADS)

    Park, Shin-Woong; Yi, Yun; Park, Jung Byung

    2007-03-01

    We describe a novel system named TRVCT (Translating and Rotating Volume Computed Tomography), developed for computed tomography image from large object with simple method and low price. Tomogram images can be acquired when the object is translating and rotating simultaneously with vertical linear array detector. This method is different from the normal X-ray CT completely. We used fan-beam X-ray, and the direction of the detector and rotating axis are in parallel. Because a hundred or thousand tomograms with Z-axis from just one scanning, it has excellent Z-axis resolution and has an advantage that can improve the resolution in X-Y plane with changing translating speed and frequency of data acquisition. There is no ring artifact that is generated frequently in the third generation CT scanner. So, we can have high resolution tomograms from this TRVCT system. The TRVCT can be used to acquire images for large object like tire, engine, or whole car, and it can remove the scattering from X-ray for high resolution images.

  7. Computed tomography angiography in patients with active gastrointestinal bleeding*

    PubMed Central

    Reis, Fatima Regina Silva; Cardia, Patricia Prando; D'Ippolito, Giuseppe

    2015-01-01

    Gastrointestinal bleeding represents a common medical emergency, with considerable morbidity and mortality rates, and a prompt diagnosis is essential for a better prognosis. In such a context, endoscopy is the main diagnostic tool; however, in cases where the gastrointestinal hemorrhage is massive, the exact bleeding site might go undetected. In addition, a trained professional is not always present to perform the procedure. In an emergency setting, optical colonoscopy presents limitations connected with the absence of bowel preparation, so most of the small bowel cannot be assessed. Scintigraphy cannot accurately demonstrate the anatomic location of the bleeding and is not available at emergency settings. The use of capsule endoscopy is inappropriate in the acute setting, particularly in the emergency department at night, and is a highly expensive method. Digital angiography, despite its high sensitivity, is invasive, presents catheterization-related risks, in addition to its low availability at emergency settings. On the other hand, computed tomography angiography is fast, widely available and minimally invasive, emerging as a promising method in the diagnostic algorithm of these patients, being capable of determining the location and cause of bleeding with high accuracy. Based on a critical literature review and on their own experience, the authors propose a computed tomography angiography protocol to assess the patient with gastrointestinal bleeding. PMID:26811556

  8. Applications of cone beam computed tomography for a prosthodontist.

    PubMed

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice - from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors' clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:27134420

  9. X-ray computed tomography using curvelet sparse regularization

    SciTech Connect

    Wieczorek, Matthias Vogel, Jakob; Lasser, Tobias; Frikel, Jürgen; Demaret, Laurent; Eggl, Elena; Pfeiffer, Franz; Kopp, Felix; Noël, Peter B.

    2015-04-15

    Purpose: Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. Methods: In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Results: Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method’s strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. Conclusions: The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  10. Quantitative features in the computed tomography of healthy lungs.

    PubMed Central

    Fromson, B H; Denison, D M

    1988-01-01

    This study set out to determine whether quantitative features of lung computed tomography scans could be identified that would lead to a tightly defined normal range for use in assessing patients. Fourteen normal subjects with apparently healthy lungs were studied. A technique was developed for rapid and automatic extraction of lung field data from the computed tomography scans. The Hounsfield unit histograms were constructed and, when normalised for predicted lung volumes, shown to be consistent in shape for all the subjects. A three dimensional presentation of the data in the form of a "net plot" was devised, and from this a logarithmic relationship between the area of each lung slice and its mean density was derived (r = 0.9, n = 545, p less than 0.0001). The residual density, calculated as the difference between measured density and density predicted from the relationship with area, was shown to be normally distributed with a mean of 0 and a standard deviation of 25 Hounsfield units (chi 2 test: p less than 0.05). A presentation combining this residual density with the net plot is described. PMID:3353883

  11. Computed tomography of nonanesthetized cats with upper airway obstruction.

    PubMed

    Stadler, Krystina; O'Brien, Robert

    2013-01-01

    Upper airway obstruction is a potentially life-threatening problem in cats and for which a noninvasive, sensitive method rapid diagnosis is needed. The purposes of this prospective study were to describe a computed tomography (CT) technique for nonanesthetized cats with upper airway obstruction, CT characteristics of obstructive diseases, and comparisons between CT findings and findings from other diagnostic tests. Ten cats with clinical signs of upper airway obstruction were recruited for the study. Four cats with no clinical signs of upper airway obstruction were recruited as controls. All cats underwent computed tomography imaging without sedation or anesthesia, using a 16-slice helical CT scanner and a previously described transparent positional device. Three-dimensional (3D) internal volume rendering was performed on all CT image sets and 3D external volume rendering was also performed on cats with evidence of mass lesions. Confirmation of upper airway obstruction was based on visual laryngeal examination, endoscopy, fine-needle aspirate, biopsy, or necropsy. Seven cats were diagnosed with intramural upper airway masses, two with laryngotracheitis, and one with laryngeal paralysis. The CT and 3D volume-rendered images identified lesions consistent with upper airway disease in all cats. In cats with mass lesions, CT accurately identified the mass and location. Findings from this study supported the use of CT imaging as an effective technique for diagnosing upper airway obstruction in nonanesthetized cats. PMID:23441677

  12. Assessment of metabolic bone diseases by quantitative computed tomography

    SciTech Connect

    Richardson, M.L.; Genant, H.K.; Cann, C.E.; Ettinger, B.; Gordan, G.S.; Kolb, F.O.; Reiser, U.J.

    1985-05-01

    Advances in the radiologic sciences have permitted the development of numerous noninvasive techniques for measuring the mineral content of bone, with varying degrees of precision, accuracy, and sensitivity. The techniques of standard radiography, radiogrammetry, photodensitometry, Compton scattering, neutron activation analysis, single and dual photon absorptiometry, and quantitative computed tomography (QCT) are described and reviewed in depth. Results from previous cross-sectional and longitudinal QCT investigations are given. They then describe a current investigation in which they studied 269 subjects, including 173 normal women, 34 patients with hyperparathyroidism, 24 patients with steroid- induced osteoporosis, and 38 men with idiopathic osteoporosis. Spinal quantitative computed tomography, radiogrammetry, and single photon absorptiometry were performed, and a spinal fracture index was calculated on all patients. The authors found a disproportionate loss of spinal trabecular mineral compared to appendicular mineral in the men with idiopathic osteoporosis and the patients with steroid-induced osteoporosis. They observed roughly equivalent mineral loss in both the appendicular and axial regions in the hyperparathyroid patients. The appendicular cortical measurements correlated moderately well with each other but less well with spinal trabecular QCT. The spinal fracture index correlated well with QCT and less well with the appendicular measurements.

  13. Glandular dose in breast computed tomography with synchrotron radiation.

    PubMed

    Mettivier, G; Fedon, C; Di Lillo, F; Longo, R; Sarno, A; Tromba, G; Russo, P

    2016-01-21

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported. PMID:26683710

  14. Glandular dose in breast computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Mettivier, G.; Fedon, C.; Di Lillo, F.; Longo, R.; Sarno, A.; Tromba, G.; Russo, P.

    2016-01-01

    The purpose of this work is to provide an evaluation of the mean glandular dose (MGD) for breast computed tomography (CT) with synchrotron radiation in an axial scanning configuration with a partial or total organ volume irradiation, for the in vivo program of breast CT ongoing at the ELETTRA facility (Trieste, Italy). A Geant4 Monte Carlo code was implemented, simulating the photon irradiation from a synchrotron radiation source in the energetic range from 8 to 50 keV with 1 keV intervals, to evaluate the MGD. The code was validated with literature data, in terms of mammographic normalized glandular dose coefficients (DgN) and with ad hoc experimental data, in terms of computed tomography dose index (CTDI). Simulated cylindrical phantoms of different sizes (diameter at phantom base 8, 10, 12, 14 or 16 cm, axial length 1.5 times the radius) and glandular fraction by weight (0%, 14.3%, 25%, 50%, 75% and 100%) were implemented into the code. The validation of the code shows an excellent agreement both with previously published work and in terms of DgN and CDTI measurements. The implemented simulations show a dependence of the glandular dose estimate on the vertical dimension of the irradiated zone when a partial organ irradiation was implemented. Specific normalized coefficients for calculating the MGD to the whole breast or to the single irradiated slice were reported.

  15. Cardiac computed tomography in patients with acute chest pain.

    PubMed

    Nieman, Koen; Hoffmann, Udo

    2015-04-14

    The efficient and reliable evaluation of patients with acute chest pain is one of the most challenging tasks in the emergency department. Coronary computed tomography (CT) angiography may play a major role, since it permits ruling out coronary artery disease with high accuracy if performed with expertise in properly selected and prepared patients. Several randomized trials have established early cardiac CT as a viable safe and potentially more efficient alternative to functional testing in the evaluation of acute chest pain. Ongoing investigations explore whether advanced anatomic and functional assessments such as high-risk coronary plaque, resting myocardial perfusion, and left ventricular function, or the simulation of the fractional coronary flow reserve will add information to the anatomic assessment for stenosis, which would allow expanding the benefits of cardiac CT from triage to treatment decisions. Especially, the combination of high-sensitive troponins and coronary computed tomography angiography may play a valuable role in future strategies for the management of patients presenting with acute chest pain. PMID:25687351

  16. Can Dental Cone Beam Computed Tomography Assess Bone Mineral Density?

    PubMed Central

    2014-01-01

    Mineral density distribution of bone tissue is altered by active bone modeling and remodeling due to bone complications including bone disease and implantation surgery. Clinical cone beam computed tomography (CBCT) has been examined whether it can assess oral bone mineral density (BMD) in patient. It has been indicated that CBCT has disadvantages of higher noise and lower contrast than conventional medical computed tomography (CT) systems. On the other hand, it has advantages of a relatively lower cost and radiation dose but higher spatial resolution. However, the reliability of CBCT based mineral density measurement has not yet been fully validated. Thus, the objectives of this review are to discuss 1) why assessment of BMD distribution is important and 2) whether the clinical CBCT can be used as a potential tool to measure the BMD. Brief descriptions of image artefacts associated with assessment of gray value, which has been used to account for mineral density, in CBCT images are provided. Techniques to correct local and conversion errors in obtaining the gray values in CBCT images are also introduced. This review can be used as a quick reference for users who may encounter these errors during analysis of CBCT images. PMID:25006568

  17. Fundamentals of cone beam computed tomography for a prosthodontist.

    PubMed

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10-70 s) and radiation dosages reportedly up to 15-100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  18. Fundamentals of cone beam computed tomography for a prosthodontist

    PubMed Central

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10–70 s) and radiation dosages reportedly up to 15–100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  19. Evaluation of defects in composite components using Computed Tomography

    SciTech Connect

    Muralidhar, C.; George, Sheri

    1999-12-02

    Non Destructive Evaluation (NDE) techniques such as Ultrasonic and X-ray Radiography are not often suitable for Fibre Reinforced Plastic (FRP) composite structures because of its multilayered, anisotropic and heterogeneous nature. X-ray Computed Tomography (CT) generates an image of a thin, cross sectional slice of an object. The CT image represents point by point linear attenuation coefficients in the slice. X-ray Computed Tomography inspection has been carried out on composite components of i) high silica glass phenolic cylindrical liner of 2 mm thick bonded to an aluminum casing of 2 mm thick ii) a dish liner bonded to an aluminum casing. The tomograms revealed the various defects such as debonds, delaminations, voids, foreign inclusions and interply density variations. The linear attenuation coefficients in terms of Hounsfield values (HU) have been measured, compared and correlated on the CT images at the contrasts observed to identify the above defects. The density profile at the location marked differentiates debonds/delaminations from Interply density variations. Images of planes could be cut from 3-D data for mapping delamination/debond. The relative advantages of CT in identifying and analysing the defects over conventional NDE techniques have been brought out.

  20. Computed tomography findings of paracoccidiodomycosis in musculoskeletal system

    PubMed Central

    Lima Júnior, Francisco Valtenor Araújo; Savarese, Leonor Garbin; Monsignore, Lucas Moretti; Martinez, Roberto; Nogueira-Barbosa, Marcello Henrique

    2015-01-01

    Objective To evaluate musculoskeletal involvement in paracoccidioidomycosis at computed tomography. Materials and Methods Development of a retrospective study based on a review of radiologic and pathologic reports in the institution database. Patients with histopathologically confirmed musculoskeletal paracoccidioidomycosis and submitted to computed tomography were included in the present study. The imaging findings were consensually described by two radiologists. In order to avoid bias in the analysis, one patient with uncountable bone lesions was excluded from the study. Results A total of seven patients were included in the present study. A total of 18 bone lesions were counted. The study group consisted of 7 patients. A total number of 18 bone lesions were counted. Osteoarticular lesions were the first manifestation of the disease in four patients (57.14%). Bone lesions were multiple in 42.85% of patients. Appendicular and axial skeleton were affected in 85.71% and 42.85% of cases, respectively. Bone involvement was characterized by well-demarcated osteolytic lesions. Marginal osteosclerosis was identified in 72.22% of the lesions, while lamellar periosteal reaction and soft tissue component were present in 5.55% of them. One patient showed multiple small lesions with bone sequestra. Conclusion Paracoccidioidomycosis can be included in the differential diagnosis of either single or multiple osteolytic lesions in young patients even in the absence of a previous diagnosis of pulmonary or visceral paracoccidioidomycosis PMID:25798000

  1. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    NASA Astrophysics Data System (ADS)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bakar, K. A.; Haron, M. R.; Kayun, Z.

    2016-04-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDIw), dose length product (DLP) and effective dose (E). The mean values of CTDIw, DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts.

  2. Estimation of feline renal volume using computed tomography and ultrasound.

    PubMed

    Tyson, Reid; Logsdon, Stacy A; Werre, Stephen R; Daniel, Gregory B

    2013-01-01

    Renal volume estimation is an important parameter for clinical evaluation of kidneys and research applications. A time efficient, repeatable, and accurate method for volume estimation is required. The purpose of this study was to describe the accuracy of ultrasound and computed tomography (CT) for estimating feline renal volume. Standardized ultrasound and CT scans were acquired for kidneys of 12 cadaver cats, in situ. Ultrasound and CT multiplanar reconstructions were used to record renal length measurements that were then used to calculate volume using the prolate ellipsoid formula for volume estimation. In addition, CT studies were reconstructed at 1 mm, 5 mm, and 1 cm, and transferred to a workstation where the renal volume was calculated using the voxel count method (hand drawn regions of interest). The reference standard kidney volume was then determined ex vivo using water displacement with the Archimedes' principle. Ultrasound measurement of renal length accounted for approximately 87% of the variability in renal volume for the study population. The prolate ellipsoid formula exhibited proportional bias and underestimated renal volume by a median of 18.9%. Computed tomography volume estimates using the voxel count method with hand-traced regions of interest provided the most accurate results, with increasing accuracy for smaller voxel sizes in grossly normal kidneys (-10.1 to 0.6%). Findings from this study supported the use of CT and the voxel count method for estimating feline renal volume in future clinical and research studies. PMID:23278991

  3. Observation of the pulp horn by swept source optical coherence tomography and cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Iino, Yoshiko; Yoshioka, Toshihiko; Hanada, Takahiro; Ebihara, Arata; Sunakawa, Mitsuhiro; Sumi, Yasunori; Suda, Hideaki

    2015-02-01

    Cone-beam computed tomography (CBCT) is one of the most useful diagnostic techniques in dentistry but it involves ionizing radiation, while swept source optical coherence tomography (SS-OCT) has been introduced recently as a nondestructive, real-time, high resolution imaging technique using low-coherence interferometry, which involves no ionizing radiation. The purpose of this study was to evaluate the ability of SS-OCT to detect the pulp horn (PH) in comparison with that of CBCT. Ten extracted human mandibular molars were used. After horizontally removing a half of the tooth crown, the distance from the cut dentin surface to PH was measured using microfocus computed tomography (Micro CT) (SL) as the gold standard, by CBCT (CL) and by SS-OCT (OL). In the SS-OCT images, only when PH was observed beneath the overlying dentin, the distance from the cut dentin surface to PH was recorded. If the pulp was exposed, it was defined as pulp exposure (PE). The results obtained by the above three methods were statistically analyzed by Spearman's rank correlation coefficient at a significance level of p < 0.01. SS-OCT detected the presence of PH when the distance from the cut dentin surface to PH determined by SL was 2.33 mm or less. Strong correlations of the measured values were found between SL and CL (r=0.87), SL and OL (r=0.96), and CL and OL (r=0.86). The results showed that SS-OCT images correlated closely with CBCT images, suggesting that SS-OCT can be a useful tool for the detection of PH.

  4. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed...

  5. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    SciTech Connect

    Fitzpatrick, Gianna M.; Wells, R. Glenn

    2006-08-15

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with {sup 68}Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing {sup 68}Ge- to CT-based AC with the CT map acquired at end inhalation.

  6. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  7. Complementary roles of brain scintigraphy and computed tomography in multiple sclerosis

    SciTech Connect

    Moreno, A.J.; Brown, J.M.; Waller, S.F.; Lundy, M.M.; Brown, T.J.

    1983-12-01

    Cerebral computed tomography, with and without iodinated contrast, revealed the appearance and evolution of lesions in a 32-year-old man with multiple sclerosis. Two areas were enhanced with contrast, with one showing a mild mass effect and rim of enhancement. Serial brain scintigraphy using technetium-/sub 99m/ glucoheptonate, following the computed tomography, showed the appearance and regression of corresponding regions of increased uptake. Computed tomography one day prior to brain scintigraphy failed to demonstrate a region of increased accumulation of radiotracer. One week later, however, evidence of a corresponding unenhanced defect was noted on computed tomography. Clinical correlation is given additionally.

  8. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice

    PubMed Central

    Zhang, Minfang; Jasim, Dhifaf A; Ménard-Moyon, Cécilia; Nunes, Antonio; Iijima, Sumio; Bianco, Alberto; Yudasaka, Masako; Kostarelos, Kostas

    2016-01-01

    In this work, we report that the biodistribution and excretion of carbon nanohorns (CNHs) in mice are dependent on their size and functionalization. Small-sized CNHs (30–50 nm; S-CNHs) and large-sized CNHs (80–100 nm; L-CNHs) were chemically functionalized and radiolabeled with [111In]-diethylenetriaminepentaacetic acid and intravenously injected into mice. Their tissue distribution profiles at different time points were determined by single photon emission computed tomography/computed tomography. The results showed that the S-CNHs circulated longer in blood, while the L-CNHs accumulated faster in major organs like the liver and spleen. Small amounts of S-CNHs- and L-CNHs were excreted in urine within the first few hours postinjection, followed by excretion of smaller quantities within the next 48 hours in both urine and feces. The kinetics of excretion for S-CNHs were more rapid than for L-CNHs. Both S-CNH and L-CNH material accumulated mainly in the liver and spleen; however, S-CNH accumulation in the spleen was more prominent than in the liver. PMID:27524892

  9. Correlation of tuned aperture computed tomography with conventional computed tomography for evaluation of osseous healing in calvarial defects

    PubMed Central

    Nair, Madhu K.; Nair, Umadevi P.; Seyedain, Ali; Gassner, Robert; Piesco, Nicholas; Mooney, Mark; Ganta, Sudhakar; Agarwal, Sudha

    2016-01-01

    Objective To compare the diagnostic efficacy of iteratively restored tuned aperture computed tomography (TACT) with conventional computed tomography (CT) for evaluation of osseous healing in induced calvarial defects. Study design Fifty-six calvarial defects in 14 rabbits received 1 of 4 possible treatments: copolymer membranes with and without bone marrow stromal cells (BMSCs), BMSCs alone, or no treatment (control). Healing was measured after 2, 4, and 8 wks as remaining defect areas measured on TACT and CT images. Histomorphometric analyses were done on the specimens. Results Bone formation was minimal to none in control defects and those treated with BMSCs or polymer matrices alone. Healthy bone formation was noted in defects treated with polymers impregnated with BMSCs. Unresolved defect area measurements using TACT and CT of osseous healing showed a high positive correlation. Conclusions Potential for TACT to accurately detect osseous healing in surgical defects was demonstrated. High resolution of TACT combined with generation of information in 3D yields comparable performance to CT. PMID:17234546

  10. Estimation of computed tomography dose index in cone beam computed tomography: MOSFET measurements and Monte Carlo simulations.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry; Toncheva, Greta; Yoo, Sua; Yin, Fang-Fang; Frush, Donald

    2010-05-01

    To address the lack of accurate dose estimation method in cone beam computed tomography (CBCT), we performed point dose metal oxide semiconductor field-effect transistor (MOSFET) measurements and Monte Carlo (MC) simulations. A Varian On-Board Imager (OBI) was employed to measure point doses in the polymethyl methacrylate (PMMA) CT phantoms with MOSFETs for standard and low dose modes. A MC model of the OBI x-ray tube was developed using BEAMnrc/EGSnrc MC system and validated by the half value layer, x-ray spectrum and lateral and depth dose profiles. We compared the weighted computed tomography dose index (CTDIw) between MOSFET measurements and MC simulations. The CTDIw was found to be 8.39 cGy for the head scan and 4.58 cGy for the body scan from the MOSFET measurements in standard dose mode, and 1.89 cGy for the head and 1.11 cGy for the body in low dose mode, respectively. The CTDIw from MC compared well to the MOSFET measurements within 5% differences. In conclusion, a MC model for Varian CBCT has been established and this approach may be easily extended from the CBCT geometry to multi-detector CT geometry. PMID:20386198

  11. Evaluation of dosimetry and image of very low-dose computed tomography attenuation correction for pediatric positron emission tomography/computed tomography: phantom study

    NASA Astrophysics Data System (ADS)

    Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.

    2014-04-01

    In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.

  12. Diagnosis of simulated condylar bone defects using panoramic radiography, spiral tomography and cone-beam computed tomography: A comparison study

    PubMed Central

    Salemi, Fatemeh; Shokri, Abbas; Baharvand, Maryam

    2015-01-01

    Objectives: Radiographic examination is one of the most important parts of the clinical assessment routine for temporomandibular disorders. The aim of this study was to compare the diagnostic accuracy of cone-beam computed tomography(CBCT) with panoramic radiography and spiral computed tomography for the detection of the simulated mandibular condyle bone lesions. Study Design: The sample consisted of 10 TMJs from 5 dried human skulls. Simulated erosive and osteophytic lesions were created in 3 different sizes using round diamond bur and bone chips, respectively. Panoramic radiography, spiral tomography and cone-beam computed tomography were used in defect detection. Data were statistically analyzed with the Mann-Whitney test. The reliability and degrees of agreement between two observers were also determined by the mean of Cohen’s Kappa analysis. Results: CBCT had a statistically significant superiority than other studied techniques in detection of both erosive and osteophytic lesions with different sizes. There were significant differences between tomography and panoramic in correct detection of both erosive and osteophytic lesions with 1mm and 1.5 mm in size. However, there were no significant differences between Tomography and Panoramic in correct detection of both erosive and osteophytic lesions with 0.5 mm in size. Conclusions: CBCT images provide a greater diagnostic accuracy than spiral tomography and panoramic radiography in the detection of condylar bone erosions and osteophytes. Key words:Bone defect, Condyle, CBCT, Panoramic, radiography. PMID:25810839

  13. Nondestructive assay using active and passive computed tomography

    SciTech Connect

    Roberson, G. P. ,LLNL

    1998-07-01

    The United States Department of Energy (DOE) has over 600,000 transuranic (TRU) waste drums temporarily stored at nearly 40 sites within the United States. Contents of these drums must be characterized before they are transported for permanent disposal. Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to nonuniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by application of tomographic techniques, that measure these distributions. The Lawrence Livermore National Laboratory (LLNL) has developed two tomographic-based waste assay systems. They use external radioactive sources and tomography-protocol to map the attenuation within a waste drum as a function of mono-energetic gamma-ray energy in waste containers. Passive tomography is used to localize and identify specific radioactive waste contents within the same waste containers. Reconstruction of the passive data via the active images allows internal waste radioactivities in a drum to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste radioactivities. Calibration of both systems requires only point source measurements and are independent of matrix materials. The first system is housed at LLNL and was developed to study and validate research concepts. The second system is being developed with Bioimaging Research, Inc. (BIR) and is housed within a mobile waste characterization trailer. This system has traveled to three DOE facilities to demonstrate the active and passive computed tomography capability. Both systems have participated in and successfully passed the requirements of formal DOE-sponsored intercomparison studies. The systems have measured approximately 1 to 100 grains of plutonium within a variety of waste matrix materials. Laboratory and field results from these two systems over the past several years show that both systems

  14. Quantifying the debonding of inclusions through tomography and computational homology.

    SciTech Connect

    Lu, Wei-Yang; Johnson, George C.; Mota, Alejandro; Foulk, James W., III; Jin, Huiqing

    2010-09-01

    This report describes a Laboratory Directed Research and Development (LDRD) project to use of synchrotron-radiation computed tomography (SRCT) data to determine the conditions and mechanisms that lead to void nucleation in rolled alloys. The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) has provided SRCT data of a few specimens of 7075-T7351 aluminum plate (widely used for aerospace applications) stretched to failure, loaded in directions perpendicular and parallel to the rolling direction. The resolution of SRCT data is 900nm, which allows elucidation of the mechanisms governing void growth and coalescence. This resolution is not fine enough, however, for nucleation. We propose the use statistics and image processing techniques to obtain sub-resolution scale information from these data, and thus determine where in the specimen and when during the loading program nucleation occurs and the mechanisms that lead to it. Quantitative analysis of the tomography data, however, leads to the conclusion that the reconstruction process compromises the information obtained from the scans. Alternate, more powerful reconstruction algorithms are needed to address this problem, but those fall beyond the scope of this project.

  15. High-resolution positron emission tomography/computed tomography imaging of the mouse heart.

    PubMed

    Greco, Adelaide; Fiumara, Giovanni; Gargiulo, Sara; Gramanzini, Matteo; Brunetti, Arturo; Cuocolo, Alberto

    2013-03-01

    Different animal models have been used to reproduce coronary heart disease, but in recent years mice have become the animals of choice, because of their short life cycle and the possibility of genetic manipulation. Various techniques are currently used for cardiovascular imaging in mice, including high-resolution ultrasound, X-ray computed tomography (CT), magnetic resonance imaging and nuclear medicine procedures. In particular, molecular imaging with cardiac positron emission tomography (PET) allows non-invasive evaluation of changes in myocardial perfusion, metabolism, apoptosis, inflammation and gene expression or measurement of changes in left ventricular functional parameters. With technological advances, dedicated small laboratory PET/CT imaging has emerged in cardiovascular research, providing in vivo a non-invasive, serial and quantitative assessment of left ventricular function, myocardial perfusion and metabolism at a molecular level. This non-invasive methodology might be useful in longitudinal studies to monitor cardiac biochemical parameters and might facilitate studies to assess the effect of different interventions after acute myocardial ischaemia. PMID:23118016

  16. Quality Assurance of Positron Emission Tomography/Computed Tomography for Radiation Therapy

    SciTech Connect

    Xing Lei

    2008-05-01

    Recent advances in radiation delivery techniques, such as intensity-modulated radiation therapy, provide unprecedented ability to exquisitely control three-dimensional dose distribution. Development of on-board imaging and other image-guidance methods significantly improved our ability to better target a radiation beam to the tumor volume. However, in reality, accurate definition of the location and boundary of the tumor target is still problematic. Biologic and physiologic imaging promises to solve the problem in a fundamental way and has a more and more important role in patient staging, treatment planning, and therapeutic assessment in radiation therapy clinics. The last decade witnessed a dramatic increase in the use of positron emission tomography and computed tomography in radiotherapy practice. To ensure safe and effective use of nuclide imaging, a rigorous quality assurance (QA) protocol of the imaging tools and integration of the imaging data must be in place. The application of nuclide imaging in radiation oncology occurs at different levels of sophistication. Quantitative use of the imaging data in treatment planning through image registration and standardized uptake value calculation is often involved. Thus, QA should not be limited to the performance of the scanner, but should also include the process of implementing image data in treatment planning, such as data transfer, image registration, and quantitation of data for delineation of tumors and sensitive structures. This presentation discusses various aspects of nuclide imaging as applied to radiotherapy and describes the QA procedures necessary for the success of biologic image-guided radiation therapy.

  17. Role of positron emission tomography-computed tomography in non-small cell lung cancer.

    PubMed

    Garg, Pankaj Kumar; Singh, Saurabh Kumar; Prakash, Gaurav; Jakhetiya, Ashish; Pandey, Durgatosh

    2016-03-26

    Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respectively. Multimodality treatment plays a key role in the successful management of lung cancer depending upon the histological subtype, stage of disease, and performance status. Imaging modalities play an important role in the diagnosis and accurate staging of the disease, in assessing the response to neoadjuvant therapy, and in the follow-up of the patients. Last decade has witnessed voluminous upsurge in the use of positron emission tomography-computed tomography (PET-CT); role of PET-CT has widened exponentially in the management of lung cancer. The present article reviews the role of 18-fluoro-deoxyglucose PET-CT in the management of non small cell lung cancer with emphasis on staging of the disease and the assessment of response to neoadjuvant therapy based on available literature. PMID:27018223

  18. Mycosis fungoides: Positron emission tomography/computed tomography in staging and monitoring the effect of therapy

    PubMed Central

    D’Souza, Maria Mathew; D’Souza, Paschal; Sharma, Rajnish; Jaimini, Abhinav; Mondal, Anupam

    2015-01-01

    A 58-year-old woman, diagnosed as a case of mycosis fungoides (MF), underwent [18F]-fluoro-D-glucose positron emission tomography/computed tomography (FDG PET/CT) examination. The study revealed intense FDG uptake in a large ulceroproliferative right thigh lesion, indurated plaques in the chest wall and left thigh, along with multiple sites of cutaneous involvement, axillary and inguinal lymphadenopathy. The patient underwent chemotherapy with CHOP regimen, radiotherapy for the right thigh lesion, along with topical corticosteroids and emollients for the disseminated cutaneous involvement. Repeat [18F]-FDG PET/CT study performed a year later, showed near complete disease regression specifically of the ulceroproliferative lesion and indurated cutaneous plaques, no change in lymphadenopathy, and a subtle diffuse progression of the remaining cutaneous lesions. A multidisciplinary approach to the diagnosis, staging and treatment of MF has long been suggested for optimizing outcomes from management of patients with this disease. This case highlights the potential role of incorporating PET/CT as a single modality imaging technique in the staging and assessment of response to therapy. PMID:25829740

  19. Management of urological malignancies: Has positron emission tomography/computed tomography made a difference?

    PubMed Central

    Nirmal, Thampi John; Kekre, Nitin S.

    2015-01-01

    Positron emission tomography/computed tomography (PET/CT) technology has been a significant, but expensive addition to the oncologist's armamentarium. The aim of this review was to determine the clinical utility of PET/CT in urological oncology, its impact on disease outcome and cost-effectiveness. We searched MedLine and peer reviewed journals for all relevant literature available online from the year 2000 until January 2014 regarding the use of PET/CT in the management of urological malignancies. 11C-choline PET/CT has emerged as a powerful tool for assessment of biochemical relapse in prostate cancer. Use of novel radiotracers like 124I-girentuximab has shown promise in the diagnosis of clear cell renal carcinoma. Fluorodeoxyglucose PET has a proven role in seminoma for the evaluation of postchemotherapy residual masses and has shown encouraging results when used for detection of metastasis in renal, bladder, and penile cancer. Introduction of novel radiotracers and advanced technology has led to a wider application of PET/CT in urological oncology. However, testicular seminoma aside, its impact on disease outcome and cost-effectiveness still needs to be established. PMID:25624571

  20. Detecting Metastatic Bladder Cancer Using 18F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography

    PubMed Central

    Öztürk, Hakan

    2015-01-01

    Purpose The purpose of this study was to retrospectively investigate the contribution of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) to detection of metastatic bladder cancer. Materials and Methods The present study included 79 patients (69 men and 10 women) undergoing 18F-FDG-PET/CT upon suspicion of metastatic bladder cancer between July 2007 and April 2013. The mean age was 66.1 years with a standard deviation of 10.7 years (range, 21 to 85 years). Patients were required to fast for 6 hours prior to scanning, and whole-body PET scanning from the skull base to the upper thighs was performed approximately 1 hour after intravenous injection of 555 MBq of 18F-FDG. Whole body CT scanning was performed in the cranio-caudal direction. FDG-PET images were reconstructed using CT data for attenuation correction. Suspicious recurrent or metastatic lesions were confirmed by histopathology or clinical follow-up. Results The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 18F-FDG-PET/CT were 89%, 78%, 90%, 75%, and 86%, respectively. Conclusion 18F-FDG-PET/CT can detect metastases with high sensitivity and positive predictive values in patients with metastatic bladder carcinoma. PMID:25687863

  1. False-positive Uptake on Positron Emission Tomography/Computed Tomography Immediately After Lung Biopsy

    PubMed Central

    Bae, Jung Min; Lee, Ho Yun; Choi, Joon Young

    2015-01-01

    Abstract 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is an evolving tool in the field of oncology. 18F-fluorodeoxyglucose, however, is not a specific tool for malignant tumor that it may also accumulate in benign processes. To avoid false-positive interpretation of 18F-FDG-PET/computed tomography (CT), having knowledge of the potential pitfalls is important. The authors present a case of a patient with a lung mass who underwent fluoroscopy-guided transthoracic lung biopsy followed by 18F-FDG-PET/CT scan with a 4-hour interval between biopsy and scanning. Abnormally increased FDG uptake in the mass and pleural effusion was detected. Pathologic examination of the specimen, however, revealed only fibrous tissues with chronic inflammatory cells. On performing CT imaging, 1 month later, the mass and effusion had spontaneously resolved without treatment. Our findings suggest that PET/CT performed immediately following invasive procedures can result in false-positive results and thus mislead diagnosis. Therefore, the interval and order, in which PET/CT and invasive procedures are performed, should be carefully considered in oncologic work-up. PMID:26554786

  2. Pulmonary malignant melanoma with distant metastasis assessed by positron emission tomography-computed tomography.

    PubMed

    Kim, So Ri; Yoon, Ha-Yong; Jin, Gong Yong; Choe, Yeong Hun; Park, Seung Yong; Lee, Yong Chul

    2016-07-01

    Melanoma is a cutaneous malignant neoplasm of melanocytes. Primary malignant melanoma (MM) of the lung is very rare. Although previous reports have described the radiologic features of pulmonary MM, its rarity means that many factors are unknown. Thus, radiologic diagnosis is very difficult. Furthermore, there is little information regarding diagnostic application and/or the usefulness of [(18)F]-fluorine-2-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (FDG-PET-CT) for primary pulmonary MM. A 69-year-old patient with a productive cough lasting three weeks was admitted to our hospital. Chest CT showed a large single mass with a multi-lobulated margin and homogeneous enhancement in the right upper lobe, which was subsequently diagnosed as a primary pulmonary MM with multiple metastases. On PET-CT images, the pulmonary mass and multiple bone lesions showed very increased uptakes of FDG. Considering that pulmonary metastasis from a mucocutaneous melanoma is the main differential diagnosis of primary pulmonary MM, systemic assessment of the whole body is more important than for other types of lung malignancies. This report introduces PET-CT as a useful diagnostic modality for pulmonary MM, especially in cases of distant multiple metastases. PMID:27385996

  3. Role of positron emission tomography-computed tomography in non-small cell lung cancer

    PubMed Central

    Garg, Pankaj Kumar; Singh, Saurabh Kumar; Prakash, Gaurav; Jakhetiya, Ashish; Pandey, Durgatosh

    2016-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respectively. Multimodality treatment plays a key role in the successful management of lung cancer depending upon the histological subtype, stage of disease, and performance status. Imaging modalities play an important role in the diagnosis and accurate staging of the disease, in assessing the response to neoadjuvant therapy, and in the follow-up of the patients. Last decade has witnessed voluminous upsurge in the use of positron emission tomography-computed tomography (PET-CT); role of PET-CT has widened exponentially in the management of lung cancer. The present article reviews the role of 18-fluoro-deoxyglucose PET-CT in the management of non small cell lung cancer with emphasis on staging of the disease and the assessment of response to neoadjuvant therapy based on available literature. PMID:27018223

  4. Malignant uveal melanoma and similar lesions studied by computed tomography

    SciTech Connect

    Mafee, M.F.; Peyman, G.A.; McKusick, M.A.

    1985-08-01

    Forty-four patients with intraocular disease were studied by computed tomography (CT); in 19 cases malignant uveal melanoma was considered the likely diagnosis. CT proved to be accurate in determining the location and size of uveal melanomas, demonstrating scleral invasion, and differentiating melanoma from choroidal detachment or angioma, toxocariasis, and senile macular degeneration. On CT, uveal melanomas appeared as hyperdense lesions with slight to moderate contrast enhancement. Tumors thinner than 2 mm could not be seen. Using dynamic CT, the authors noted moderate peak amplitude, normal or delayed tissue transit time, and persistently elevated washout phase (downslope), indicating increased permeability as the result of an impaired tumor blood barrier. Histological types of uveal melanoma could not be differentiated on the basis of circulatory patterns. Dynamic CT may be useful in distinguishing uveal melanoma from choroidal hemangioma or hematoma.

  5. Fossa navicularis magna detection on cone-beam computed tomography.

    PubMed

    Syed, Ali Z; Mupparapu, Mel

    2016-03-01

    Herein, we report and discuss the detection of fossa navicularis magna, a close radiographic anatomic variant of canalis basilaris medianus of the basiocciput, as an incidental finding in cone-beam computed tomography (CBCT) imaging. The CBCT data of the patients in question were referred for the evaluation of implant sites and to rule out pathology in the maxilla and mandible. CBCT analysis showed osseous, notch-like defects on the inferior aspect of the clivus in all four cases. The appearance of fossa navicularis magna varied among the cases. In some, it was completely within the basiocciput and mimicked a small rounded, corticated, lytic defect, whereas it appeared as a notch in others. Fossa navicularis magna is an anatomical variant that occurs on the inferior aspect of the clivus. The pertinent literature on the anatomical variations occurring in this region was reviewed. PMID:27051639

  6. Study on examinee's dose delivered in computed tomography.

    PubMed

    Cheung, T; Cheng, Q; Feng, D; Stokes, M J

    2001-03-01

    Dose profiles are presented resulting from computed tomography (CT). The profiles are positioned at the central axis, 1 cm away from the outer surface of the phantom, for single and multiple scans. A Hitachi W-1000 scanner is used with a thermoluminescent dosimeter (TLD), and standard dosimetry head and trunk phantoms. Regression equations are found linking the dose resulting from scattered radiation associated with a single scan to the distance from the scanning centre. The impact on the CT dose index value (CTDI) for varying integrating lengths is analysed. Some problems associated with CT dose measurement are noted, which may assist in the practical application of IBSS (International Basic Standard of Radiation Protection and Safety of Radiation Sources) guide levels. PMID:11277227

  7. Initial results of finger imaging using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    van Es, Peter; Biswas, Samir K.; Moens, Hein J. Bernelot; Steenbergen, Wiendelt; Manohar, Srirang

    2014-06-01

    We present a photoacoustic computed tomography investigation on a healthy human finger, to image blood vessels with a focus on vascularity across the interphalangeal joints. The cross-sectional images were acquired using an imager specifically developed for this purpose. The images show rich detail of the digital blood vessels with diameters between 100 μm and 1.5 mm in various orientations and at various depths. Different vascular layers in the skin including the subpapillary plexus could also be visualized. Acoustic reflections on the finger bone of photoacoustic signals from skin were visible in sequential slice images along the finger except at the location of the joint gaps. Not unexpectedly, the healthy synovial membrane at the joint gaps was not detected due to its small size and normal vascularization. Future research will concentrate on studying digits afflicted with rheumatoid arthritis to detect the inflamed synovium with its heightened vascularization, whose characteristics are potential markers for disease activity.

  8. Inguinoscrotal Pathology on Computed Tomography: An Alternative Perspective.

    PubMed

    Daimiel Naranjo, Isaac; Alcalá-Galiano Rubio, Andrea

    2016-08-01

    Computed tomography (CT) is not the imaging technique of choice to assess inguinoscrotal pathology, as magnetic resonance or ultrasonography have superior soft tissue contrast resolution and do not involve gonadal exposure to ionizing radiation. However, testicular and inguinoscrotal pathology may be found both as an extension of intra-abdominal processes or incidentally on CT scans requested for other reasons. CT also plays a role in the evaluation of testicular injury when associated to pelvic trauma and in perineal infections with scrotal extension. A pictorial review of testicular and inguinoscrotal involvement in vascular, neoplastic, traumatic, infectious, or inflammatory diseases and in complications of abdominal surgeries is presented. Additionally, the CT appearance of several congenital anomalies and benign processes is depicted. PMID:27221696

  9. Cholesteatomas of the temporal bone: role of computed tomography

    SciTech Connect

    Johnson, D.W.; Voorhees, R.L.; Lufkin, R.B.; Canalis, R.

    1983-09-01

    Computed tomography (CT) of the temporal bone was performed in 64 patients thought to have a cholesteatoma of the middle ear. Twenty had not had surgery before, while 44 had been operated on; special consideration was given to 21 patients who were scanned immediately before a second operation and had confirmation of the CT findings. Inflammatory disease without cholesteatoma was characterized by absence of erosion of the otic capsule or ossicular chain. Sharply circumscribed cholesteatomas were easily diagnosed by CT. When they were combined with scarring, granulation tissue, or postsurgical changes, the resulting soft-tissue masses were indistinguishable, although cholesteatoma may be suspected if there is evidence of progressive bone erosion about the middle ear. CT can play a major role in postoperative follow-up by confirming that the ear is normal and demonstrating displacement of ossicular grafts or prostheses.

  10. Computed tomography and magnetic resonance imaging comparisons in boxers

    SciTech Connect

    Jordan, B.D. ); Zimmerman, R.D. )

    1990-03-23

    The efficacy of computed tomography (CT) and magnetic resonance imaging (MRI) in identifying traumatic injuries of the brain was compared in a referred population of 21 amateur and professional boxers. Three boxers displayed CT scans with equivocal findings that were verified as artifacts by MRI. Eleven boxers had both CT and MRI scans with normal findings, and 7 boxers had both CT and MRI scans with abnormal findings. There were no instances where abnormalities demonstrated on CT scanning were not detected by MRI. However, some abnormalities detected on MRI were not detected on CT scans. These included a subdural hematoma, white-matter changes, and a focal contusion. Magnetic resonance imaging appears to be the neuroradiodiagnostic test of choice compared with CT.

  11. Applications of dual energy computed tomography in abdominal imaging.

    PubMed

    Lestra, T; Mulé, S; Millet, I; Carsin-Vu, A; Taourel, P; Hoeffel, C

    2016-06-01

    Dual energy computed tomography (CT) is an imaging technique based on data acquisition at two different energy settings. Recent advances in CT have allowed data acquisition and almost simultaneously analysis of two spectra of X-rays at different energy levels resulting in novel developments in the field of abdominal imaging. This technique is widely used in cardiovascular imaging, especially for pulmonary embolism work-up but is now also increasingly developed in the field of abdominal imaging. With dual-energy CT it is possible to obtain virtual unenhanced images from monochromatic reconstructions as well as attenuation maps of different elements, thereby improving detection and characterization of a variety of renal, adrenal, hepatic and pancreatic abnormalities. Also, dual-energy CT can provide information regarding urinary calculi composition. This article reviews and illustrates the different applications of dual-energy CT in routine abdominal imaging. PMID:26993967

  12. High-resolution computed tomography of the normal larynx

    SciTech Connect

    Silverman, P.M.; Korobkin, M.

    1983-05-01

    Computed tomography (CT) provides a unique method of evaluating abnormalities of the larynx by virture of its cross-sectional images. Several reports have demonstrated its utility in staging laryngeal carcinoma and defining the extent of injury in cases of laryngeal trauma. In order to appreciate subtle abnormalities of the larynx, a thorough understanding of the normal structures in this small anatomic area is crucial. Although previous studies have defined the normal CT anatomy of the larynx, many of the CT-anatomic correlations of the normal larynx used earlier-generation CT scanners with relatively poor resolution or were limited to transaxial images. High-resolution transaxial, coronal, and sagittal CT in vivo images are correlated with line drawings displaying normal laryngeal anatomy. The exquisite anatomic detail apparent in these images provides a sound basis for understanding subtle abnormalities in pathologic cases. (JMT)

  13. Ultrafast three-dimensional x-ray computed tomography

    SciTech Connect

    Bieberle, Martina; Barthel, Frank; Hampel, Uwe; Menz, Hans-Juergen; Mayer, Hans-Georg

    2011-01-17

    X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s{sup -1}. Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

  14. Three-dimensional computed tomography of the carpal ligaments.

    PubMed

    Nanno, Mitsuhiko; Viegas, Steven F

    2009-03-01

    This article details a current perspective and accurate anatomical three-dimensional descriptions of the ligaments of the wrist. The carpometacarpal ligaments, the intercarpal ligaments, and the radiocarpal ligaments are described and illustrated using a unique combination of detailed dissection, computed tomography, and a three-dimensional digitization technique. Detailed information is also provided about the ligamentous attachments of the carpometacarpal joints, the carpal bones, and the distal radius. This study improves knowledge and understanding of the normal anatomy and mechanics of the radiocarpal and intercarpal ligaments and the carpometacarpal joints, and it should help in the assessment of radiographic images and treatment of various injuries and degenerative changes seen in the wrist. The knowledge of the ligaments will further serve as a foundation for understanding the anatomy of the ligaments, the biomechanics of the wrist, and the function of the individual ligaments and their roles in joint motion and stability. PMID:19235667

  15. Glasses for 3D ultrasound computer tomography: phase compensation

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Hopp, T.; Ruiter, N. V.

    2016-03-01

    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  16. Ultrafast three-dimensional x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Bieberle, Martina; Barthel, Frank; Menz, Hans-Jürgen; Mayer, Hans-Georg; Hampel, Uwe

    2011-01-01

    X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s-1. Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

  17. Multidetector computed tomography of temporomandibular joint: A road less travelled

    PubMed Central

    Pahwa, Shivani; Bhalla, Ashu Seith; Roychaudhary, Ajoy; Bhutia, Ongkila

    2015-01-01

    This article reviews the imaging anatomy of temporomandibular joint (TMJ), describes the technique of multi-detector computed tomography (MDCT) of the TMJ, and describes in detail various osseous pathologic afflictions affecting the joint. Traumatic injuries affecting the mandibular condyle are most common, followed by joint ankylosis as a sequel to arthritis. The congenital anomalies are less frequent, hemifacial microsomia being the most commonly encountered anomaly involving the TMJ. Neoplastic afflictions of TMJ are distinctly uncommon, osteochondroma being one of the most common lesions. MDCT enables comprehensive evaluation of osseous afflictions of TMJ, and is a valuable tool for surgical planning. Sagittal, coronal and 3D reformatted images well depict osseous TMJ lesions, and their relationship to adjacent structures. PMID:25984518

  18. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  19. Computed tomography of cystadenoma and cystadenocarcinoma of the pancreas

    SciTech Connect

    Itai, Y.; Moss, A.A.; Ohtomo, K.

    1982-11-01

    Ten cases of cystadenoma or cystadenocarcinoma of the pancreas were examined by computed tomography (CT). All but one showed characteristic findings consisting of both cystic and solid components. Innumerable small cysts producing a honeycomb appearance were noticed in serous cystadenomas. A well-defined multilocular cystic mass containing thin, straight, and/or curvilinear septa or a unilocular cystic tumor with a papillary projection and locally thickened wall was present in mucinous cystadenomas. The CT findings in cystadenocarcinomas varied depending on the relative size of the cystic and solid portions and the grade of malignancy. CT was useful in detecting and diagnosing cystic neoplasms of the pancreas and differentiating benign serous cystadenomas from potentially malignant cystadenomas in typical cases. However, aspiration biopsy is recommended when findings are equivocal.

  20. Multidetector computed tomography findings in deaths with severe burns.

    PubMed

    Levy, Angela D; Harcke, Howard T; Getz, John M; Mallak, Craig T

    2009-06-01

    This study compared autopsy with postmortem multidetector computed tomography (MDCT) findings in charred remains. Seventeen consecutive male subjects (mean age, 29.4 years) who perished in a fire-related event resulting in charred remains underwent total body MDCT immediately prior to routine autopsy that included serum carboxyhemoglobin measurement. MDCT showed all thermal tissue changes (skin and subcutaneous fat loss, skeletal muscle retraction, pugilistic attitude, cortical fractures, bone and organ destruction, thermal epidural hematoma, and thermal amputation) and established all fracture patterns that were lethal, but autopsy added the fire as a contributory cause of death when there was carboxyhemoglobin elevation. MDCT had limited value in determination of lethal vascular and visceral injuries. MDCT is an effective complement to autopsy in the setting of charred remains and may serve to augment a limited autopsy. This may be particularly useful in mass casualty scenarios. PMID:19465802

  1. Inspection of a Medieval Wood Sculpture Using Computer Tomography

    NASA Astrophysics Data System (ADS)

    Kapitany, K.; Somogyi, A.; Barsi, A.

    2016-06-01

    Computer tomography (CT) is an excellent technique for obtaining accurate 3D information about the human body. It allows to visualize the organs, bones and blood vessels, furthermore it enables to diagnose anomalies and diseases. Its spatial reconstruction capability supports other interesting applications, such as inspecting different, even valuable objects like ancient sculptures. Current paper presents a methodology of evaluating CT and video imagery through the example of investigating a wood Madonna with infant Jesus sculpture from the 14th century. The developed techniques extract the outer boundary of the statue, which has been triangulated to derive the surface model. The interior of the sculpture has also been revealed: the iron bolts and rivets as well as the woodworm holes can be mapped. By merging the interior and outer data (geometry and texture) interesting visualizations (perspective views, sections etc.) have been created.

  2. Tuned Aperture Computed Tomography to Evaluate Osseous Healing

    PubMed Central

    Nair, M.K.; Seyedain, A.; Agarwall, S.; Webber, R.L.; Nair, U.P.; Piesco, N.P.; Mooney, M.P.; Grondahl, H.-G.

    2016-01-01

    Quantification of osseous healing is a challenging task, requiring expensive advanced imaging modalities. To improve diagnostic osseous imaging, we undertook this prospective study to explore the potential of Tuned Aperture Computed Tomography®. Eighty defects in 20 rabbit mandibles, randomly carrying an osteoblast suspension or a polymer matrix or a combination thereof or no treatment, were imaged at 3, 6, 9, and 12 weeks post-surgery. TACT slices, iteratively restored TACT, and conventional digital radiographs were evaluated. Mean-gray-value distribution within regions of interest was correlated with histomorphometric data. Lesions treated with osteoblast/polymer-matrix delivery systems demonstrated the highest mean gray-value, while the diagnostic efficacy of TACT-IR was significantly better than that of other imaging modalities (p < 0.001). Thus, TACT is an accurate imaging modality for non-destructive quantification of osseous dynamics. PMID:11597021

  3. Non-diffusing photochromic gel for optical computed tomography phantoms

    NASA Astrophysics Data System (ADS)

    Jordan, K.

    2013-06-01

    This study examines photochromic response in radiation sensitive hydrogels. Genipin, crosslinked, gelatin gel can support high resolution images because the chromophores do not diffuse. A low power, 633 nm He-Ne laser was used to write lines into the gels by a photobleaching reaction. Optical cone-beam computed tomography (CBCT) scans mapped the high resolution images in 3D with 0.25 mm voxel resolution. A straight line was written into a deformed gel and then readout in its relaxed, initial shape. The curved, photo-bleached line demonstrated deformable 3D dosimetry is possible with this system to the balloon edge. High resolution, photochromic images provide key information for characterizing optical CT scanners and 3D dosimeters. Many, ionizing radiation, dosimeter materials demonstrate either a photochromic or photothermal response, allowing this approach to be widely used in quantitative 3D scanning.

  4. Performance of latex balloons for optical computed tomography

    NASA Astrophysics Data System (ADS)

    Jordan, K.; Walsh, A.; Peng, M.; Battista, J.

    2013-06-01

    Latex balloons filled with radiation sensitive hydrogels were evaluated as 3D dosimeters with optical computed tomography (CT) readout. Custom balloons, with less than 10 cm diameters, were made from latex sheets. Commercial, 13 cm diameter, clear balloons were investigated for larger volumes. Ferrous-xylenol orange and genipin gelatin gels selected for 1 and 30 Gy experiments, respectively. The thin stretched latex membrane allowed optical imaging to within 1 mm of the interior balloon edge. Reconstructed dose distributions demonstrated valid measurements to within 2 mm of the balloon surface. The rubber membrane provides a hybrid approach to deforming hydrogels. Uniform irradiation of a deformed gel resulted in a uniform dose being measured when scanned in the relaxed, initial balloon shape. The 13 cm diameter balloons were also effective and inexpensive vessels for hydrogels due to their high clarity, thinness and mechanical strength. Latex balloons represent an inexpensive method to obtain useful information from nearly the entire dosimeter volume.

  5. Quantifying Void Ratio Variation in Sand using Computed Tomography

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Batiste, Susan N.; Swanson, Roy A.; Sture, Stein; Costes, Nicholas C.; Lankton, Mark R.

    1999-01-01

    A series of displacement-controlled, conventional, drained axisymmetric (triaxial) experiments were conducted on dry Ottawa sand specimens at very low effective confining stresses in a microgravity environment aboard the Space Shuttle during the NASA STS-89 mission. Post-flight analysis included studying the internal fabric and failure patterns of these specimens using Computed Tomography (CT). The CT scans of three specimens subjected to different compression levels (uncompressed specimen, a specimen compressed to 3.3% nominal axial strain (epsilon(sub a)), and a specimen compressed to 25% epsilon(sub a)) are presented to investigate the evolution of instability patterns and to quantify void ratio variation. The progress of failure is described and discussed. Also, specimens' densities were calibrated using standard ASTM procedures and void ratio spatial variation was calculated and represented by contour maps and histograms. The CT technique demonstrated good ability to detect specimen inhomogeneities, localization patterns, and quantifying void ratio variation within sand specimens.

  6. Helical differential X-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Willner, Marian; Chen, Liyuan; Tan, Renbo; Achterhold, Klaus; Bech, Martin; Herzen, Julia; Kunka, Danays; Mohr, Juergen; Pfeiffer, Franz

    2014-05-01

    We report on the first experimental results of helical differential phase-contrast computed tomography (helical DPC-CT) with a laboratory X-ray tube source and a Talbot-Lau grating interferometer. The results experimentally verify the feasibility of helical data acquisition and reconstruction in phase-contrast imaging, in analogy to its use in clinical CT systems. This allows fast and continuous volumetric scans for long objects with lengths exceeding the dimension of the detector. Since helical CT revolutionized the field of medical CT several years ago, we anticipate that this method will bring the same significant impact on the future medical and industrial applications of X-ray DPC-CT. PMID:24518822

  7. FDG positron emission computed tomography in a study of aphasia

    SciTech Connect

    Metter, E.J.; Wasterlain, C.G.; Kuhl, D.E.; Hanson, W.R.; Phelps, M.E.

    1981-08-01

    Positron emission computed tomography (PECT) using 18F-2-fluoro-2-deoxy-D-glucose (FDG) was used to investigate the correlations between clinical status, anatomy (as described by CT), and metabolism in five patients with stable aphasia resulting from ischemic cerebral infarction. Local cerebral metabolic activity was diminished in an area larger than the area of infarction demonstrated by CT. In one patient, FDG PECT revealed a metabolic lesion that probably caused the aphasic syndrome and was not apparent by CT. The data suggest that reliance on CT in delineating the extent of the brain lesion in aphasia or other neuropsychological defects can be misleading; FDG PECT may provide important additional information. Two patients with similar metabolic lesions had very different clinical syndromes, showing that even when currently available methods are combined, major gaps remain in clinicoanatomical correlations in aphasia.

  8. X- and {gamma}-ray computed tomography applications at LLNL

    SciTech Connect

    Roberson, G.P.; Martz, H.E.; Schneberk, D.J.; Azevedo, S.G.

    1993-04-01

    Members of the Nondestructive Evaluation (NDE) Section at the Lawrence Livermore National Laboratory (LLNL) have implemented the advanced three-dimensional imaging technique of x and {gamma}-ray computed tomography (CAT or CT) for industrial and scientific nondestructive evaluation. This technique provides internal and external views of materials, components, and assemblies nonintrusively. Our research and development includes building CT scanners as well as data preprocessing, image reconstruction, display and analysis algorithms. These capabilities have been applied for a variety of industrial and scientific NDE applications where objects can range in size from 1 mm{sup 3} to 1 m{sup 3}. Here we discuss the usefulness of Cr to evaluate: Ballistic target materials, high-explosives shape charges, missile nosetips, and reactor-fuel tubes.

  9. Sparse-Coding-Based Computed Tomography Image Reconstruction

    PubMed Central

    Yoon, Gang-Joon

    2013-01-01

    Computed tomography (CT) is a popular type of medical imaging that generates images of the internal structure of an object based on projection scans of the object from several angles. There are numerous methods to reconstruct the original shape of the target object from scans, but they are still dependent on the number of angles and iterations. To overcome the drawbacks of iterative reconstruction approaches like the algebraic reconstruction technique (ART), while the recovery is slightly impacted from a random noise (small amount of ℓ2 norm error) and projection scans (small amount of ℓ1 norm error) as well, we propose a medical image reconstruction methodology using the properties of sparse coding. It is a very powerful matrix factorization method which each pixel point is represented as a linear combination of a small number of basis vectors. PMID:23576898

  10. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  11. Computed tomography used in weld inspections at NASA

    NASA Technical Reports Server (NTRS)

    Murray, S. H.

    1990-01-01

    This paper describes an application of computed tomography (CT) for an evaluation of a series of welding-end hydraulic accumulators in use at Kennedy Space Center, which were suspected of possibly containing fatigue cracks in their welds, the failure which could result in a high-velocity or high-volume leakage of hydraulic fluid. The accumulator welds were evaluated in terms of incomplete penetration, porosity, and incomplete fusion. Out of 43 accumulators examined, six were given the ranking of 'good', i.e., having no incomplete penetration, and only slight porosity and incomplete fusion. These were selected for use in most critical locations of the hydraulic system used to load the Magellan spacecraft into the payload bay of the Space Shuttle Discovery, with the resulting successful loading and subsequent launching of the Magellan spacecraft.

  12. Breast computed tomography with the PICASSO detector: A feasibility study

    NASA Astrophysics Data System (ADS)

    Rigon, Luigi; Tapete, Federica; Dreossi, Diego; Arfelli, Fulvia; Bergamaschi, Anna; Chen, Rong-Chang; Longo, Renata; Menk, Ralf-Hendrik; Schmitt, Bernd; Vallazza, Erik; Castelli, Edoardo

    2011-02-01

    The SYRMEP (Synchrotron Radiation for Medical Physics) collaboration has performed, for the first time in the world, a clinical program of mammography with synchrotron radiation. This program provided excellent results, although utilizing a commercial screen-film system as a detector. The PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiation) project has developed a detector prototype capable of fully exploiting the peculiar characteristics of the synchrotron source, utilizing silicon microstrip sensors illuminated in the edge-on geometry and operated in single-photon counting. In this paper the potential of the PICASSO detector in breast computed tomography was evaluated by means of custom phantoms. Very encouraging results have been obtained with severe dose constrains as far as both spatial and contrast resolution are concerned. Moreover, the capability of detecting phase contrast effects was demonstrated, albeit with a higher delivered dose.

  13. Three Dimensional Display Of Tumors Via Computed Tomography

    NASA Astrophysics Data System (ADS)

    Smathers, Ralph L.

    1985-09-01

    Computed tomography is widely utilized for the detection and staging of neoplasm. Typical chest, abdomen or pelvis CT scans may produce 10 to 20 transverse slices for each region. The mental reconstruction of the three dimensional anatomy from these transverse sections can be done by a physician who has had training in the analysis and interpretation of cross sectional anatomy and pathology. This mental reconstruction, however, may take years to develop into an efficient tool. With the 3-D reconstructions used in this study, diagnostic information concerning the location, shape and spread of tumor masses can be presented in a simple, intuitive 3-dimensional display. This technique has been found to be useful for improving communication between diagnostic radiologists and consulting physicians.

  14. Gastric hepatoid adenocarcinoma: a computed tomography report of six cases.

    PubMed

    Ren, An; Cai, Feng; Shang, Yan-Ning; Ma, En-Sen; Huang, Zhen-Guo; Wang, Wu; Luo, Jie

    2014-10-28

    We describe the computed tomography (CT) imaging findings in six cases (five males and one female; age range 61-78 years; mean age 67.3 years) with histologically proven hepatoid adenocarcinoma of the stomach (HAS). Five of the six patients had elevated serum alpha-fetoprotein levels. The most common type of gross appearance HAS on CT is a polypoid mass (83%, 5/6). The most common contrast enhancement pattern was heterogeneous. All six patients had a regional lymphadenopathy larger than 6 mm in its short axis. Liver metastases (n = 3) were noted. Venous tumor thrombosis was identified in the portal vein (n = 2) of the regions near primary gastric tumors or metastatic masses. Our findings suggest in an elderly, male patients with a large heterogeneous enhancement tumor, the presence of distant metastases, regional lymphadenopathy and characteristically increased serum alpha-fetoprotein levels indicates a high likelihood of HAS. PMID:25356063

  15. Computed tomography of mesenteric involvement in fulminant pancreatitis

    SciTech Connect

    Jeffery, R.B.; Federle, M.P.; Laing, F.C.

    1983-04-01

    Although extension into the mesentery has been recognized as a frequent pathway of extrapancreatic spread in acute pancreatitis, it has received relatively little attention in the computed tomography (CT) literature. The medical records and CT scans of 55 patients with severe pancreatitis were reviewed in this study; of these patients, 19 (35%) had mesenteric abnormalities, which in 11 patients (20%) represented the most extensive extrapancreatic site of the most extensive extrapancreatic site of involvement. In fulminant pancreatitis, dissection along the mesentery is an important pathway for spread of pancreatic abscesses or phlegmons. Clinical correlation suggests that a combination of mesenteric with lesser sac and anterior pararenal space involvement is frequently associated with significant morbidity and mortality. Of the 19 patients with mesenteric involvement, two died and 14 (74%) required surgery for abscesses, pseudocysts, or, in one case, a colonic fistula. The CT features of the normal mesentery and CT criteria for diagnosing mesenteric inflammatory lesions are reviewed.

  16. Iterative image reconstruction techniques: cardiothoracic computed tomography applications.

    PubMed

    Cho, Young Jun; Schoepf, U Joseph; Silverman, Justin R; Krazinski, Aleksander W; Canstein, Christian; Deak, Zsuzsanna; Grimm, Jochen; Geyer, Lucas L

    2014-07-01

    Iterative image reconstruction algorithms provide significant improvements over traditional filtered back projection in computed tomography (CT). Clinically available through recent advances in modern CT technology, iterative reconstruction enhances image quality through cyclical image calculation, suppressing image noise and artifacts, particularly blooming artifacts. The advantages of iterative reconstruction are apparent in traditionally challenging cases-for example, in obese patients, those with significant artery calcification, or those with coronary artery stents. In addition, as clinical use of CT has grown, so have concerns over ionizing radiation associated with CT examinations. Through noise reduction, iterative reconstruction has been shown to permit radiation dose reduction while preserving diagnostic image quality. This approach is becoming increasingly attractive as the routine use of CT for pediatric and repeated follow-up evaluation grows ever more common. Cardiovascular CT in particular, with its focus on detailed structural and functional analyses, stands to benefit greatly from the promising iterative solutions that are readily available. PMID:24662334

  17. Computed tomography dose optimisation in cystic fibrosis: A review

    PubMed Central

    Ferris, Helena; Twomey, Maria; Moloney, Fiachra; O’Neill, Siobhan B; Murphy, Kevin; O’Connor, Owen J; Maher, Michael

    2016-01-01

    Cystic fibrosis (CF) is the most common autosomal recessive disease of the Caucasian population worldwide, with respiratory disease remaining the most relevant source of morbidity and mortality. Computed tomography (CT) is frequently used for monitoring disease complications and progression. Over the last fifteen years there has been a six-fold increase in the use of CT, which has lead to a growing concern in relation to cumulative radiation exposure. The challenge to the medical profession is to identify dose reduction strategies that meet acceptable image quality, but fulfil the requirements of a diagnostic quality CT. Dose-optimisation, particularly in CT, is essential as it reduces the chances of patients receiving cumulative radiation doses in excess of 100 mSv, a dose deemed significant by the United Nations Scientific Committee on the Effects of Atomic Radiation. This review article explores the current trends in imaging in CF with particular emphasis on new developments in dose optimisation. PMID:27158420

  18. Acute aortic syndromes: new insights from electrocardiographically gated computed tomography.

    PubMed

    Fleischmann, Dominik; Mitchell, R Scott; Miller, D Craig

    2008-01-01

    The development of retrospective electrocardiographic (ECG)-gating has proved to be a diagnostic and therapeutic boon for computed tomography (CT) imaging of patients with acute thoracic aortic diseases, such as aortic dissection/intramural hematoma (AD/IMH), penetrating atherosclerotic ulcer (APU), and ruptured/leaking aneurysm. The notorious pulsation motion artifacts in the ascending aorta confounding regular CT scanning can be eliminated, and involvement of the sinuses of Valsalva, the valve cusps, the aortic annulus, and the coronary arteries in aortic dissection can be clearly depicted or excluded. Motion-free images also allow reliable identification of the site of the primary intimal tear, the location, and extent of the intimomedial flap, and branch artery involvement. ECG-gated CTA also allows the detection of more subtle lesions and variants of aortic dissection, which may ultimately expand our understanding of these complex, life-threatening disorders. PMID:19251175

  19. Fossa navicularis magna detection on cone-beam computed tomography

    PubMed Central

    Mupparapu, Mel

    2016-01-01

    Herein, we report and discuss the detection of fossa navicularis magna, a close radiographic anatomic variant of canalis basilaris medianus of the basiocciput, as an incidental finding in cone-beam computed tomography (CBCT) imaging. The CBCT data of the patients in question were referred for the evaluation of implant sites and to rule out pathology in the maxilla and mandible. CBCT analysis showed osseous, notch-like defects on the inferior aspect of the clivus in all four cases. The appearance of fossa navicularis magna varied among the cases. In some, it was completely within the basiocciput and mimicked a small rounded, corticated, lytic defect, whereas it appeared as a notch in others. Fossa navicularis magna is an anatomical variant that occurs on the inferior aspect of the clivus. The pertinent literature on the anatomical variations occurring in this region was reviewed. PMID:27051639

  20. The vertex scan: an important component of cranial computed tomography.

    PubMed

    Wing, S D; Osborn, A G; Wing, R W

    1978-04-01

    Physicians who monitor cranial computed tomography occasionally omit the most superior aspects of the brain and calvarium because of time limitations and overloaded scanning schedules. In addition, standardized CT reporting forms as well training literature distributed by some manufacturers support the concept that a complete CT series consists of three scan pairs. Omission of a vertex scan pair results in failure to visualize 10%-15% of the brain volume. We have reviewed the results of 2,000 consecutive CT studies to determine the number and variety of pathologic entities that would have been missed had a vertex scan not been obtained. The most significant or sole abnormality was present on the vertex scan alone in 3% of the cases. Examples are presented. A true vertex levels should be obtained in every routine CT examination. PMID:416693

  1. Window manipulation in diagnosis of body packing using computed tomography.

    PubMed

    Sengupta, Anshuman; Page, Patrick

    2008-05-01

    Body packing refers to the internal concealment of narcotics, usually within the gastrointestinal tract. This is important to recognise for clinical and forensic reasons. Imaging is often helpful, particularly because an accurate history is unusual. Furthermore, clinical examination and urine screens are often unreliable. Plain abdominal radiography and ultrasonography have been used with limited success. Thus, the use of alternative modalities, such as computed tomography (CT), is becoming more widespread. Although there have been no large trials, one false-negative has been reported. We report the case of a body packer whose CT appeared normal with standard abdominal windowing (level 40/width 400). However, on manipulation of the windowing (level -175/width 600), paraffin and heroin packages became conspicuous within the colon. We suggest that the simple step of reviewing images on wider than standard abdominal windows may be helpful in the detection of ingested illicit packages of fatty density within the bowel. PMID:17713799

  2. Correlation modeling for compression of computed tomography images.

    PubMed

    Munoz-Gomez, Juan; Bartrina-Rapesta, Joan; Marcellin, Michael W; Serra-Sagristà, Joan

    2013-09-01

    Computed tomography (CT) is a noninvasive medical test obtained via a series of X-ray exposures resulting in 3-D images that aid medical diagnosis. Previous approaches for coding such 3-D images propose to employ multicomponent transforms to exploit correlation among CT slices, but these approaches do not always improve coding performance with respect to a simpler slice-by-slice coding approach. In this paper, we propose a novel analysis which accurately predicts when the use of a multicomponent transform is profitable. This analysis models the correlation coefficient r based on image acquisition parameters readily available at acquisition time. Extensive experimental results from multiple image sensors suggest that multicomponent transforms are appropriate for images with correlation coefficient r in excess of 0.87. PMID:25055372

  3. Software innovations in computed tomography for structural heart disease interventions.

    PubMed

    Hell, Michaela; Marwan, Mohamed; Gaede, Luise; Achenbach, Stephan

    2016-05-17

    Computed tomography (CT) provides high, isotropic spatial resolution and has become firmly established in pre-procedural imaging for structural heart disease interventions. It allows determination of the exact dimensions of the target structure, provides information regarding the access route and permits identification of fluoroscopic projection angles to provide optimal visualisation for device placement. Several software solutions are available and have been systematically evaluated in the context of transcatheter aortic valve implantation (TAVI). The use of software products to perform automated measurements can be useful, especially when the experience and expertise regarding evaluation of CT in the context of structural heart disease are limited. In scientific studies, software has been demonstrated to provide accurate support for annulus sizing and prosthesis selection, to aid in reliably identifying patients in whom a transfemoral access may be problematic, and to suggest suitable angulations for fluoroscopic imaging to achieve an orthogonal view onto the aortic valve during implantation. PMID:27174116

  4. Zygomatic sialolithiasis diagnosed with computed tomography in a dog.

    PubMed

    Lee, Namsoon; Choi, Mihyun; Keh, Seoyeon; Kim, Taehyun; Kim, Hyunwook; Yoon, Junghee

    2014-10-01

    A 10-year-old castrated Shih-Tzu male dog was referred for examination of acute right exophthalmos, protrusion of the third eyelid and soft tissue swelling ventral to the globe. Ultrasonography revealed echogenic fluid around the right globe. Computed tomography (CT) showed an enlarged right zygomatic salivary gland compared with the left zygomatic gland and an amorphous cystic mass ventral to the right globe. Hyperdense material, which we suspected to be a sialolith, was identified in the right zygomatic gland. The zygomatic gland and the cystic lesion were removed, and a zygomatic sialocele with sialolith and ductal obstruction were found by histopathological examination. CT was a useful diagnostic tool for zygomatic sialolithiasis. PMID:24942114

  5. Zygomatic Sialolithiasis Diagnosed with Computed Tomography in a Dog

    PubMed Central

    LEE, Namsoon; CHOI, Mihyun; KEH, Seoyeon; KIM, Taehyun; KIM, Hyunwook; YOON, Junghee

    2014-01-01

    ABSTRACT A 10-year-old castrated Shih-Tzu male dog was referred for examination of acute right exophthalmos, protrusion of the third eyelid and soft tissue swelling ventral to the globe. Ultrasonography revealed echogenic fluid around the right globe. Computed tomography (CT) showed an enlarged right zygomatic salivary gland compared with the left zygomatic gland and an amorphous cystic mass ventral to the right globe. Hyperdense material, which we suspected to be a sialolith, was identified in the right zygomatic gland. The zygomatic gland and the cystic lesion were removed, and a zygomatic sialocele with sialolith and ductal obstruction were found by histopathological examination. CT was a useful diagnostic tool for zygomatic sialolithiasis. PMID:24942114

  6. Non‐invasive coronary angiography using multislice computed tomography

    PubMed Central

    Schussler, Jeffrey M; Grayburn, Paul A

    2007-01-01

    Non‐invasive methods for detection of coronary atherosclerosis have been limited to indirect markers, such as myocardial perfusion or wall motion during exercise or pharmacological stress. However, advances in multislice computed tomography (MSCT) not allow sufficient spatial resolution for direct non‐invasive imaging of the coronary arteries. This review focuses on imaging techniques and clinical applications of MSCT in human studies. Published studies of the diagnostic accuracy of MSCT in native coronary arteries and bypass grafts indicate excellent sensitivity and specificity for detection of 50% diameter stenosis. MSCT is particularly good for evaluating the origin and course of anomalous coronary arteries. MSCT offers the ability to visualise both the lumen and wall of artery, as well as to quantify coronary classification. Further technical developments promise to render MSCT the ideal non‐invasive tool for direct visualisation of the coronary arteries. PMID:16387814

  7. Novel clinical applications of dual energy computed tomography.

    PubMed

    Kraśnicki, Tomasz; Podgórski, Przemysław; Guziński, Maciej; Czarnecka, Anna; Tupikowski, Krzysztof; Garcarek, Jerzy; Marek Sąsiadek, Marek

    2012-01-01

    Dual energy CT (DECT) was conceived at the very beginning of the computed tomography era. However the first DECT scanner was developed in 2006. Nowadays there are three different types of DECT available: dual-source CT with 80(100) kVp and 140 kVp tubes (Siemens Medical Solution); dual-layer multi-detector scanner with acquisition 120 or 140kVp (Philips Healthcare); CT unit with one rapid kVp switching source and new detector based on gemstone scintillator materials (GE Healthcare). This article describes the physical background and principles of DECT imaging as well as applications of this innovative method in routine clinical practice (renal stone differentiation, pulmonary perfusion, neuroradiology and metallic implant imaging). The particular applications are illustrated by cases from author's material. PMID:23457140

  8. Cardiac Injuries: A Review of Multidetector Computed Tomography Findings

    PubMed Central

    Baxi, Ameya Jagdish; Restrepo, Carlos; Mumbower, Amy; McCarthy, Michael; Rashmi, Katre

    2015-01-01

    Trauma is the leading cause of death in United States in the younger population. Cardiac trauma is common following blunt chest injuries and is associated with high morbidity and mortality. This study discusses various multidetector computed tomography (MDCT) findings of cardiac trauma. Cardiac injuries are broadly categorized into the most commonly occurring blunt cardiac injury and the less commonly occurring penetrating injury. Signs and symptoms of cardiac injury can be masked by the associated injuries. Each imaging modality including chest radiographs, echocardiography, magnetic resonance imaging and MDCT has role in evaluating these patients. However, MDCT is noninvasive; universally available and has a high spatial, contrast, and temporal resolution. It is a one stop shop to diagnose and evaluate complications of cardiac injury. MDCT is an imaging modality of choice to evaluate patients with cardiac injuries especially the injuries capable of causing hemodynamic instability. PMID:26839855

  9. Dandy-Walker syndrome studied by computed tomography and pneumoencephalography

    SciTech Connect

    Masdeu, J.C.; Dobben, G.D.; Azar-Kia, B.

    1983-04-01

    Based on air studies, some authors have disputed the ability of computed tomography (CT) to diagnose posterior fossa cysts. The authors correlated the pneumoencephalographic, CT, and pathological findings in 4 patients with classic Dandy-Walker syndrome. Three cases had been misdiagnosed as retrocerebellar arachnoid cysts because the fourth ventricle was incorrectly considered normal on brow-up or erect air studies, reflecting the inability of such studies to evaluate an agenetic vermis and deficient posterior medullary velum which are characteristic of Dandy-Walker malformation. Careful correlation with autopsy findings showed that even with complete agenesis of the inferior vermis, if the slit between the cerebellar hemispheres is narrow, the fourth ventricle could be misinterpreted as normal on pneumoencephalography and sagittal CT. Radionuclide studies, a small amount of air, or metrizamide may be needed to determine whether the cyst communicates with the subarachnoid space.

  10. Effect of object location on the density measurement in cone-beam computed tomography versus multislice computed tomography

    PubMed Central

    Eskandarloo, Amir; Abdinian, Mehrdad; Salemi, Fatemeh; Hashemzadeh, Zahra; Safaei, Mehran

    2012-01-01

    Background: Bone density measurement in a radiographic view is a valuable method for evaluating the density of bone quality before performing some dental procedures such as, dental implant placements. It seems that Cone-Beam Computed Tomography (CBCT) can be used as a diagnostic tool for evaluating the density of the bone, prior to any treatment, as the reported radiation dose in this method is minimal. The aim of this study is to investigate the effect of object location on the density measurement in CBCT versus Multislice computed tomography (CT). Materials and Methods: In an experimental study, three samples with similar dimensions, but different compositions, different densities (Polyethylene, Polyamide, Polyvinyl Chloride), and three bone pieces of different parts of the mandibular bone were imaged in three different positions by CBCT and Multislice CT sets. The average density value was computed for each sample in each position. Then the data obtained from each CBCT was converted to a Hounsfield unit and evaluated using a single variable T analysis. A P value <0.05 was considered to be significant. Results: The density in a Multislice CT is stable in the form of a Hounsfield Number, but this density is variable in the images acquired through CBCT, and the change in the position results in significant changes in the density. In this study, a statistically significant difference (P value = 0.000) has been observed for the position of the sample and its density in CBCT in comparison to Multislice CT. Conclusions: Density values in CBCT are not real because they are affected by the position of the object in the machine. PMID:23814567

  11. Assessment of metabolic bone diseases by quantitative computed tomography

    NASA Technical Reports Server (NTRS)

    Richardson, M. L.; Genant, H. K.; Cann, C. E.; Ettinger, B.; Gordan, G. S.; Kolb, F. O.; Reiser, U. J.

    1985-01-01

    Advances in the radiologic sciences have permitted the development of numerous noninvasive techniques for measuring the mineral content of bone, with varying degrees of precision, accuracy, and sensitivity. The techniques of standard radiography, radiogrammetry, photodensitometry, Compton scattering, neutron activation analysis, single and dual photon absorptiometry, and quantitative computed tomography (QCT) are described and reviewed in depth. Results from previous cross-sectional and longitudinal QCT investigations are given. They then describe a current investigation in which they studied 269 subjects, including 173 normal women, 34 patients with hyperparathyroidism, 24 patients with steroid-induced osteoporosis, and 38 men with idiopathic osteoporosis. Spinal quantitative computed tomography, radiogrammetry, and single photon absorptiometry were performed, and a spinal fracture index was calculated on all patients. The authors found a disproportionate loss of spinal trabecular mineral compared to appendicular mineral in the men with idiopathic osteoporosis and the patients with steroid-induced osteoporosis. They observed roughly equivalent mineral loss in both the appendicular and axial regions in the hyperparathyroid patients. The appendicular cortical measurements correlated moderately well with each other but less well with spinal trabecular QCT. The spinal fracture index correlated well with QCT and less well with the appendicular measurements. Knowledge of appendicular cortical mineral status is important in its own right but is not a valid predictor of axial trabecular mineral status, which may be disproportionately decreased in certain diseases. Quantitative CT provides a reliable means of assessing the latter region of the skeleton, correlates well with the spinal fracture index (a semiquantitative measurement of end-organ failure), and offers the clinician a sensitive means of following the effects of therapy.

  12. Assessment of liver ablation using cone beam computed tomography

    PubMed Central

    Abdel-Rehim, Mohamed; Ronot, Maxime; Sibert, Annie; Vilgrain, Valérie

    2015-01-01

    AIM: To investigate the feasibility and accuracy of cone beam computed tomography (CBCT) in assessing the ablation zone after liver tumor ablation. METHODS: Twenty-three patients (17 men and 6 women, range: 45-85 years old, mean age 65 years) with malignant liver tumors underwent ultrasound-guided percutaneous tumor ablation [radiofrequency (n = 14), microwave (n = 9)] followed by intravenous contrast-enhanced CBCT. Baseline multidetector computed tomography (MDCT) and peri-procedural CBCT images were compared. CBCT image quality was assessed as poor, good, or excellent. Image fusion was performed to assess tumor coverage, and quality of fusion was rated as bad, good, or excellent. Ablation zone volumes on peri-procedural CBCT and post-procedural MDCT were compared using the non-parametric paired Wilcoxon t-test. RESULTS: Rate of primary ablation effectiveness was 100%. There were no complications related to ablation. Local tumor recurrence and new liver tumors were found 3 mo after initial treatment in one patient (4%). The ablation zone was identified in 21/23 (91.3%) patients on CBCT. The fusion of baseline MDCT and peri-procedural CBCT images was feasible in all patients and showed satisfactory tumor coverage (at least 5-mm margin). CBCT image quality was poor, good, and excellent in 2 (9%), 8 (35%), and 13 (56%), patients respectively. Registration quality between peri-procedural CBCT and post-procedural MDCT images was good to excellent in 17/23 (74%) patients. The median ablation volume on peri-procedural CBCT and post-procedural MDCT was 30 cm3 (range: 4-95 cm3) and 30 cm3 (range: 4-124 cm3), respectively (P-value > 0.2). There was a good correlation (r = 0.79) between the volumes of the two techniques. CONCLUSION: Contrast-enhanced CBCT after tumor ablation of the liver allows early assessment of the ablation zone. PMID:25593467

  13. Sex estimation from sternal measurements using multidetector computed tomography.

    PubMed

    Ekizoglu, Oguzhan; Hocaoglu, Elif; Inci, Ercan; Bilgili, Mustafa Gokhan; Solmaz, Dilek; Erdil, Irem; Can, Ismail Ozgur

    2014-12-01

    We aimed to show the utility and reliability of sternal morphometric analysis for sex estimation.Sex estimation is a very important step in forensic identification. Skeletal surveys are main methods for sex estimation studies. Morphometric analysis of sternum may provide high accuracy rated data in sex discrimination. In this study, morphometric analysis of sternum was evaluated in 1 mm chest computed tomography scans for sex estimation. Four hundred forty 3 subjects (202 female, 241 male, mean age: 44 ± 8.1 [distribution: 30-60 year old]) were included the study. Manubrium length (ML), mesosternum length (2L), Sternebra 1 (S1W), and Sternebra 3 (S3W) width were measured and also sternal index (SI) was calculated. Differences between genders were evaluated by student t-test. Predictive factors of sex were determined by discrimination analysis and receiver operating characteristic (ROC) analysis. Male sternal measurement values are significantly higher than females (P < 0.001) while SI is significantly low in males (P < 0.001). In discrimination analysis, MSL has high accuracy rate with 80.2% in females and 80.9% in males. MSL also has the best sensitivity (75.9%) and specificity (87.6%) values. Accuracy rates were above 80% in 3 stepwise discrimination analysis for both sexes. Stepwise 1 (ML, MSL, S1W, S3W) has the highest accuracy rate in stepwise discrimination analysis with 86.1% in females and 83.8% in males. Our study showed that morphometric computed tomography analysis of sternum might provide important information for sex estimation. PMID:25501090

  14. Quantification of Hepatic Steatosis With Dual-Energy Computed Tomography

    PubMed Central

    Artz, Nathan S.; Hines, Catherine D.G.; Brunner, Stephen T.; Agni, Rashmi M.; Kühn, Jens-Peter; Roldan-Alzate, Alejandro; Chen, Guang-Hong; Reeder, Scott B.

    2012-01-01

    Objective The aim of this study was to compare dual-energy computed tomography (DECT) and magnetic resonance imaging (MRI) for fat quantification using tissue triglyceride concentration and histology as references in an animal model of hepatic steatosis. Materials and Methods This animal study was approved by our institution's Research Animal Resource Center. After validation of DECT and MRI using a phantom consisting of different triglyceride concentrations, a leptin-deficient obese mouse model (ob/ob) was used for this study. Twenty mice were divided into 3 groups based on expected levels of hepatic steatosis: low (n = 6), medium (n = 7), and high (n = 7) fat. After MRI at 3 T, a DECT scan was immediately performed. The caudate lobe of the liver was harvested and analyzed for triglyceride concentration using a colorimetric assay. The left lateral lobe was also extracted for histology. Magnetic resonance imaging fat-fraction (FF) and DECT measurements (attenuation, fat density, and effective atomic number) were compared with triglycerides and histology. Results Phantom results demonstrated excellent correlation between triglyceride content and each of the MRI and DECT measurements (r2 ≥ 0.96, P ≤ 0.003). In vivo, however, excellent triglyceride correlation was observed only with attenuation (r2 = 0.89, P < 0.001) and MRI-FF (r2 = 0.92, P < 0.001). Strong correlation existed between attenuation and MRI-FF (r2 = 0.86, P < 0.001). Nonlinear correlation with histology was also excellent for attenuation and MRI-FF. Conclusions Dual-energy computed tomography (CT) data generated by the current Gemstone Spectral Imaging analysis tool do not improve the accuracy of fat quantification in the liver beyond what CT attenuation can already provide. Furthermore, MRI may provide an excellent reference standard for liver fat quantification when validating new CT or DECT methods in human subjects. PMID:22836309

  15. Synergistic image reconstruction for hybrid ultrasound and photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Wang, Kun; Wang, Lihong V.; Anastasio, Mark A.

    2015-03-01

    Conventional photoacoustic computed tomography (PACT) image reconstruction methods assume that the object and surrounding medium are described by a constant speed-of-sound (SOS) value. In order to accurately recover fine structures, SOS heterogeneities should be quantified and compensated for during PACT reconstruction. To address this problem, several groups have proposed hybrid systems that combine PACT with ultrasound computed tomography (USCT). In such systems, a SOS map is reconstructed first via USCT. Consequently, this SOS map is employed to inform the PACT reconstruction method. Additionally, the SOS map can provide structural information regarding tissue, which is complementary to the functional information from the PACT image. We propose a paradigm shift in the way that images are reconstructed in hybrid PACT-USCT imaging. Inspired by our observation that information about the SOS distribution is encoded in PACT measurements, we propose to jointly reconstruct the absorbed optical energy density and SOS distributions from a combined set of USCT and PACT measurements, thereby reducing the two reconstruction problems into one. This innovative approach has several advantages over conventional approaches in which PACT and USCT images are reconstructed independently: (1) Variations in the SOS will automatically be accounted for, optimizing PACT image quality; (2) The reconstructed PACT and USCT images will possess minimal systematic artifacts because errors in the imaging models will be optimally balanced during the joint reconstruction; (3) Due to the exploitation of information regarding the SOS distribution in the full-view PACT data, our approach will permit high-resolution reconstruction of the SOS distribution from sparse array data.

  16. Computed tomography for pancreatic injuries in pediatric blunt abdominal trauma

    PubMed Central

    Almaramhy, Hamdi Hameed; Guraya, Salman Yousuf

    2012-01-01

    AIM: To evaluate the efficacy of computed tomography scan in diagnosing and grading the pattern of pancreatic injuries in children. METHODS: We conducted a retrospective study to review medical files of children admitted with blunt pancreatic injuries to the Maternity and Children Hospital Al-Madina Al-Munawwarah, Kingdom of Saudi Arabia. The demographic details and mechanisms of injury were recorded. From the database of the Picture Archiving and Communication System of the radiology department, multidetector computed tomography (MDCT) images of the pancreatic injuries, severity, type of injuries and grading of pancreatic injuries were established. RESULTS: Seven patients were recruited in this study over a period of 5 years; 5 males and 2 females with a mean age of 7 years (age range 5-12 years). Fall from height was the most frequent mechanism of injury, reported in 5 (71%), followed by road traffic accident (1 patient, 14%) and cycle handlebar (1 patient, 14%) injuries. According to the American Association for the Surgery of Trauma grading system, 1 (14%) patient sustained Grade I, 1 (14%) Grade II, 3 (42%) Grade III and 2 (28%) patients were found to have Grade V pancreatic injuries. This indicated a higher incidence of severe pancreatic injuries; 5 (71.4%) patients were reported to have Grade III and higher on the injury scale. Three (42%) patients had associated abdominal organ injuries. CONCLUSION: Pediatric pancreatic injuries due to blunt abdominal trauma are rare. The majority of the patients sustained extensive pancreatic injuries. MDCT findings are helpful and reliable in diagnosing and grading the pancreatic injuries. PMID:22905284

  17. Photoacoustic computed tomography without accurate ultrasonic transducer responses

    NASA Astrophysics Data System (ADS)

    Sheng, Qiwei; Wang, Kun; Xia, Jun; Zhu, Liren; Wang, Lihong V.; Anastasio, Mark A.

    2015-03-01

    Conventional photoacoustic computed tomography (PACT) image reconstruction methods assume that the object and surrounding medium are described by a constant speed-of-sound (SOS) value. In order to accurately recover fine structures, SOS heterogeneities should be quantified and compensated for during PACT reconstruction. To address this problem, several groups have proposed hybrid systems that combine PACT with ultrasound computed tomography (USCT). In such systems, a SOS map is reconstructed first via USCT. Consequently, this SOS map is employed to inform the PACT reconstruction method. Additionally, the SOS map can provide structural information regarding tissue, which is complementary to the functional information from the PACT image. We propose a paradigm shift in the way that images are reconstructed in hybrid PACT-USCT imaging. Inspired by our observation that information about the SOS distribution is encoded in PACT measurements, we propose to jointly reconstruct the absorbed optical energy density and SOS distributions from a combined set of USCT and PACT measurements, thereby reducing the two reconstruction problems into one. This innovative approach has several advantages over conventional approaches in which PACT and USCT images are reconstructed independently: (1) Variations in the SOS will automatically be accounted for, optimizing PACT image quality; (2) The reconstructed PACT and USCT images will possess minimal systematic artifacts because errors in the imaging models will be optimally balanced during the joint reconstruction; (3) Due to the exploitation of information regarding the SOS distribution in the full-view PACT data, our approach will permit high-resolution reconstruction of the SOS distribution from sparse array data.

  18. Pore scale definition and computation from tomography data

    NASA Astrophysics Data System (ADS)

    Dupuy, P. M.; Austin, P.; Delaney, G. W.; Schwarz, M. P.

    2011-10-01

    During recent years characterisation capabilities of porous media have been transformed by advances in computation and visualisation technologies. It is now possible to obtain detailed topological and hydrodynamic information of porous media by combining tomographic and computational fluid dynamic studies. Despite the existence of these new capabilities, the characterisation process itself is based on the same antiquated experimental macroscopic concepts. We are interested in an up-scaling process where we can keep key information for every pore size present in the media in order to feed multi-scale transport models. Hydrometallurgical, environmental, food, pharmaceutical and chemical engineering are industries with process outcomes based on homogeneous and heterogeneous reactions and therefore sensitive to the reaction and transport processes happening at different pore scales. The present work addresses a key step in the information up-scaling process, i.e. a pore identification algorithm similar to alternating sequential filters. In a preliminary study, topological and hydrodynamic variables are correlated with the pore size. Micrometre and millimetre resolution tomographies are used to characterise the pore size distribution of a packed column and different rocks. Finally, we compute the inter-pore-scale redistribution function which is a measure of the heterogeneity of the media and magnitude needed in multi-scale modelling.

  19. Time-Domain Terahertz Computed Axial Tomography NDE System

    NASA Technical Reports Server (NTRS)

    Zimdars, David

    2012-01-01

    NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D

  20. Enhancement of photoacoustic tomography in the tissue with speed-of-sound variance using ultrasound computed tomography

    NASA Astrophysics Data System (ADS)

    Cheng, Ren-Xiang; Chao, Tao; Xiao-Jun, Liu

    2015-11-01

    The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomogeneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography to enhance the photoacoustic tomography in this situation. The speed-of-sound information is recovered by ultrasound computed tomography. Then, an improved delay-and-sum method is used to reconstruct the image from the photoacoustic signals. The simulation results validate that the proposed method can obtain a better photoacoustic tomography than the conventional method when the speed-of-sound variance is increased. In addition, the influences of the speed-of-sound variance and the fan-angle on the image quality are quantitatively explored to optimize the image scheme. The proposed method has a good performance even when the speed-of-sound variance reaches 14.2%. Furthermore, an optimized fan angle is revealed, which can keep the good image quality with a low cost of hardware. This study has a potential value in extending the biomedical application of photoacoustic tomography. Projection supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11422439, 11274167, and 11274171), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120091110001).

  1. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in a child with chronic granulomatous disease.

    PubMed

    Garg, Gunjan; DaSilva, Raphaella; Bhalakia, Avni; Milstein, David M

    2016-01-01

    We report the fluorodeoxyglucose positron emission tomography/computed tomography (FDG - PET/CT) findings in an 11-month-old boy with suspected milk protein allergy, presented to the hospital with 2-month history of fever of unknown origin and failure to thrive. It showed FDG avid lymphadenopathy above and below the diaphragm and splenic focus, which could represent diffuse inflammatory process or lymphoma. Subsequent jejunal biopsy showed non-necrotizing granulomas. PMID:26917900

  2. F-18 fluoro-d-glucose positron emission tomography/computed tomography in a patient with corticobasal degeneration.

    PubMed

    Marti, Alejandro

    2015-01-01

    Corticobasal degeneration is a rare neurodegenerative disorder that often eludes clinical diagnosis. The present case shows the F-18 fluoro-d-glucose positron emission tomography/computed tomography (PET/CT) of a 62-year-old man with a progressive movement disorder with asymmetric features. PET/CT examination showed a markedly right-brain hemispheric hypometabolism also involving basal ganglia. PMID:25829747

  3. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in a child with chronic granulomatous disease

    PubMed Central

    Garg, Gunjan; DaSilva, Raphaella; Bhalakia, Avni; Milstein, David M.

    2016-01-01

    We report the fluorodeoxyglucose positron emission tomography/computed tomography (FDG - PET/CT) findings in an 11-month-old boy with suspected milk protein allergy, presented to the hospital with 2-month history of fever of unknown origin and failure to thrive. It showed FDG avid lymphadenopathy above and below the diaphragm and splenic focus, which could represent diffuse inflammatory process or lymphoma. Subsequent jejunal biopsy showed non-necrotizing granulomas. PMID:26917900

  4. EEG, transmission computed tomography, and positron emission tomography with fluorodeoxyglucose /sup 18/F. Their use in adults with gliomas

    SciTech Connect

    Newmark, M.E.; Theodore, W.H.; Sato, S.; De La Paz, R.; Patronas, N.; Brooks, R.; Jabbari, B.; Di Chiro, G.

    1983-10-01

    We evaluated the relationship between findings from EEG, transmission computed tomography (CT), and positron emission tomography in 23 adults with gliomas. The cortical metabolic rate was suppressed in patients with and without focal slowing. Focal delta activity was not related to involvement of gray or white matter. Rhythmic delta activity and focal attenuation of background amplitude on EEG, however, were correlated with involvement of the thalamus.

  5. Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology.

    PubMed

    Schmidt, Gerwin P; Kramer, Harald; Reiser, Maximilian F; Glaser, Christian

    2007-06-01

    The advent of positron emission tomography-computed tomography (PET-CT) and whole-body magnetic resonance imaging (WB-MRI) has introduced tumor imaging with a systemic and functional approach compared with established sequential, multimodal diagnostic algorithms.Whole-body PET with [18F]-fluoro-2-desoxy-glucose is a useful imaging procedure for tumor staging and monitoring that can visualize active tumor tissue by detecting pathological glucose metabolism. The combination of PET with the detailed anatomical information of multislice computed tomography as dual-modality scanners has markedly increased lesion localization and diagnostic accuracy compared with both modalities as standalone applications.Hardware innovations, such as the introduction of multi-receiver channel whole-body MRI scanners at 1.5 and, recently, 3 T, combined with acquisition acceleration techniques, have made high-resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution, and contrast media dynamics can be combined with whole-body anatomical coverage in a multiplanar imaging approach. More flexible protocols (eg, T1-weighted turbo spin-echo and short inversion recovery imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen) can be performed within 45 minutes.Whole-body magnetic resonance imaging has recently been proposed for tumor screening of asymptomatic individuals, and potentially life-changing diagnoses, such as formerly unknown malignancy, have been reported. However, larger patient cohort studies will have to show the cost efficiency and the clinical effectiveness of such an approach.For initial tumor staging, PET-CT has proved more accurate for the definition of T-stage and lymph node assessment, mainly because of the missing metabolic information in WB-MRI. However, new applications, such as magnetic resonance whole-body diffusion-weighted imaging or lymphotropic contrast

  6. Just Scan It!-Weapon Reconstruction in Computed Tomography on Historical and Current Swiss Military Guns.

    PubMed

    Franckenberg, Sabine; Binder, Thomas; Bolliger, Stephan; Thali, Michael J; Ross, Steffen G

    2016-09-01

    Cross-sectional imaging, such as computed tomography, has been increasingly implemented in both historic and recent postmortem forensic investigations. It aids in determining cause and manner of death as well as in correlating injuries to possible weapons. This study illuminates the feasibility of reconstructing guns in computed tomography and gives a distinct overview of historic and recent Swiss Army guns. PMID:27454744

  7. Role of computed tomography and radionuclide scintigraphy in the localization of osteomyelitis in flat bones

    SciTech Connect

    Hernandez, R.J.; Conway, J.J.; Poznanski, A.K.; Tachdjian, M.O.; Dias, L.S.; Kelikian, A.S.

    1985-03-01

    The combined use of radionuclide scintigraphy and computed tomography is recommended for evaluating children with laboratory and clinical data suggestive of flat bone osteomyelitis despite normal conventional radiographs. In addition, computed tomography may be helpful in the presence of abnormal radiographs in determining the exact location of the focus of osteomyelitis and the most suitable route for appropriate drainage or to obtain culture material.

  8. Detection of root perforations using conventional and digital intraoral radiography, multidetector computed tomography and cone beam computed tomography

    PubMed Central

    Eskandarloo, Amir; Noruzi-Gangachin, Maruf; Khajeh, Samira

    2015-01-01

    Objectives This study aimed to compare the accuracy of conventional intraoral (CI) radiography, photostimulable phosphor (PSP) radiography, cone beam computed tomography (CBCT) and multidetector computed tomography (MDCT) for detection of strip and root perforations in endodontically treated teeth. Materials and Methods Mesial and distal roots of 72 recently extracted molar were endodontically prepared. Perforations were created in 0.2, 0.3, or 0.4 mm diameter around the furcation of 48 roots (strip perforation) and at the external surface of 48 roots (root perforation); 48 roots were not perforated (control group). After root obturation, intraoral radiography, CBCT and MDCT were taken. Discontinuity in the root structure was interpreted as perforation. Two observers examined the images. Data were analyzed using Stata software and Chi-square test. Results The sensitivity and specificity of CI, PSP, CBCT and MDCT in detection of strip perforations were 81.25% and 93.75%, 85.42% and 91.67%, 97.92% and 85.42%, and 72.92% and 87.50%, respectively. For diagnosis of root perforation, the sensitivity and specificity were 87.50% and 93.75%, 89.58% and 91.67%, 97.92% and 85.42%, and 81.25% and 87.50%, respectively. For detection of strip perforation, the difference between CBCT and all other methods including CI, PSP and MDCT was significant (p < 0.05). For detection of root perforation, only the difference between CBCT and MDCT was significant, and for all the other methods no statistically significant difference was observed. Conclusions If it is not possible to diagnose the root perforations by periapical radiographs, CBCT is the best radiographic technique while MDCT is not recommended. PMID:25671214

  9. Comparison of image quality in computed laminography and tomography.

    PubMed

    Xu, Feng; Helfen, Lukas; Baumbach, Tilo; Suhonen, Heikki

    2012-01-16

    In computed tomography (CT), projection images of the sample are acquired over an angular range between 180 to 360 degrees around a rotation axis. A special case of CT is that of limited-angle CT, where some of the rotation angles are inaccessible, leading to artefacts in the reconstrucion because of missing information. The case of flat samples is considered, where the projection angles that are close to the sample surface are either i) completely unavailable or ii) very noisy due to the limited transmission at these angles. Computed laminography (CL) is an imaging technique especially suited for flat samples. CL is a generalization of CT that uses a rotation axis tilted by less than 90 degrees with respect to the incident beam. Thus CL avoids using projections from angles closest to the sample surface. We make a quantitative comparison of the imaging artefacts between CL and limited-angle CT for the case of a parallel-beam geometry. Both experimental and simulated images are used to characterize the effect of the artefacts on the resolution and visible image features. The results indicate that CL has an advantage over CT in cases when the missing angular range is a significant portion of the total angular range. In the case when the quality of the projections is limited by noise, CT allows a better tradeoff between the noise level and the missing angular range. PMID:22274425

  10. A Novel Automated Method for Analyzing Cylindrical Computed Tomography Data

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Burke, E. R.; Rauser, R. W.; Martin, R. E.

    2011-01-01

    A novel software method is presented that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography. This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2-D sheets in the vertical direction in addition to volume rendering and normal plane views provided by traditional CT software. The method is based on interior and exterior surface edge detection and under proper conditions, is FULLY AUTOMATED and requires no input from the user except the correct voxel dimension from the CT scan. The software is available from NASA in 32- and 64-bit versions that can be applied to gigabyte-sized data sets, processing data either in random access memory or primarily on the computer hard drive. Please inquire with the presenting author if further interested. This software differentiates itself in total from other possible re-slicing software solutions due to complete automation and advanced processing and analysis capabilities.

  11. Image reconstruction in transcranial photoacoustic computed tomography of the brain

    NASA Astrophysics Data System (ADS)

    Mitsuhashi, Kenji; Wang, Lihong V.; Anastasio, Mark A.

    2015-03-01

    Photoacoustic computed tomography (PACT) holds great promise for transcranial brain imaging. However, the strong reflection, scattering, attenuation, and mode-conversion of photoacoustic waves in the skull pose serious challenges to establishing the method. The lack of an appropriate model of solid media in conventional PACT imaging models, which are based on the canonical scalar wave equation, causes a significant model mismatch in the presence of the skull and thus results in deteriorated reconstructed images. The goal of this study was to develop an image reconstruction algorithm that accurately models the skull and thereby ameliorates the quality of reconstructed images. The propagation of photoacoustic waves through the skull was modeled by a viscoelastic stress tensor wave equation, which was subsequently discretized by use of a staggered grid fourth-order finite-difference time-domain (FDTD) method. The matched adjoint of the FDTD-based wave propagation operator was derived for implementing a back-projection operator. Systematic computer simulations were conducted to demonstrate the effectiveness of the back-projection operator for reconstructing images in a realistic three-dimensional PACT brain imaging system. The results suggest that the proposed algorithm can successfully reconstruct images from transcranially-measured pressure data and readily be translated to clinical PACT brain imaging applications.

  12. High-resolution computed tomography reconstructions of invertebrate burrow systems

    PubMed Central

    Hale, Rachel; Boardman, Richard; Mavrogordato, Mark N.; Sinclair, Ian; Tolhurst, Trevor J.; Solan, Martin

    2015-01-01

    The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (μ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≤2,000 raw image slices aquarium−1, isotropic voxel resolution, 81 μm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture. PMID:26396743

  13. Compensation for air voids in photoacoustic computed tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Li, Lei; Wang, Lihong V.; Anastasio, Mark A.

    2016-03-01

    Most image reconstruction methods in photoacoustic computed tomography (PACT) assume that the acoustic properties of the object and the surrounding medium are homogeneous. This can lead to strong artifacts in the reconstructed images when there are significant variations in sound speed or density. Air voids represent a particular challenge due to the severity of the differences between the acoustic properties of air and water. In whole-body small animal imaging, the presence of air voids in the lungs, stomach, and gastrointestinal system can limit image quality over large regions of the object. Iterative reconstruction methods based on the photoacoustic wave equation can account for these acoustic variations, leading to improved resolution, improved contrast, and a reduction in the number of imaging artifacts. However, the strong acoustic heterogeneities can lead to instability or errors in the numerical wave solver. Here, the impact of air voids on PACT image reconstruction is investigated, and procedures for their compensation are proposed. The contributions of sound speed and density variations to the numerical stability of the wave solver are considered, and a novel approach for mitigating the impact of air voids while reducing the computational burden of image reconstruction is identified. These results are verified by application to an experimental phantom.

  14. Pediatric Computed Tomography. Radiation Dose in Abdominal Studies

    NASA Astrophysics Data System (ADS)

    López, X.; Ruiz-Trejo, C.; Buenfil, A. E.; Gamboa-deBuen, I.; Dies, P.

    2008-08-01

    Computed tomography is one of the most popular medical imaging modalities used in the last years. However, because is one of the techniques that delivered a considerable radiation dose, precautions should be taken into account. Pediatric patients are more radiosensitive than adults, and the probability that no desirable biological effects can occur is greater. To this, also it adds the probability that they will need more radiological studies in the future. The work consisted in determining the received dose by the pediatric patients undergoing abdominal studies in a multislice computed tomograph, according to the dosimetric quantities established by a Code of Practice published by the International Atomic Energy Agency; using a ionization chamber and a phantom that simulates the abdomen of a pediatric patient. The weighted air kerma index (Cw) was 14.3±0.4 mGy, this value is lower than the published by the American College of Radiology, 25 mGy. The multiple scan average dose (MSAD), which is a quantity established by the NOM-229-SSA1-2002 was determined, finding a value of 14.2±0.1 mGy, it is also below the value established, 25 mGy for an adult study.

  15. Computing field statics with the help of seismic tomography

    SciTech Connect

    De Amorim, W.N.; Hubral, P.; Tygel, M.

    1987-10-01

    Field static corrections in general need be applied to all onshore seismic reflection data to eliminate the disturbing effects a weathering layer or near-surface low velocity zone has on the continuity of deep seismic reflections. The traveltimes of waves refracted at the bottom of the low velocity zone (or intermediate refracting interfaces) can often be observed as first breaks on shot records and used to develop a laterally inhomogeneous velocity model for this layer, from which the field static corrections can then be obtained. A simple method is described for computing accurate field statics from first breaks. It is based on a linearization principal for traveltimes and leads to the algorithms that are widely and successfully applied within the framework of seismic tomography. The authors refine an initial model for the low velocity layer (estimated by a standard traveltime inversion technique) by minimizing the errors between the observed first arrivals on field records and those computed by ray theory through an initial model of the low velocity layer. Thus, one can include more lateral velocity variations within the low velocity layers, which are important to obtain good field static corrections. Traditional first break traveltime inversion methods cannot, in general, provide such refined velocity values. The technique is successfully applied to seismic data from the Amazon Basin. It is based on a simple model for the low velocity layer that consists of an undulating earth surface and one planar horizontal refractor overlain by a laterally changing velocity field.

  16. Physics-based modeling of computed tomography systems

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Kim, Ho Kyung; Kam, Soohwa; Kim, Seung Ho; Park, Ji Woong; Jeon, Hosang

    2015-03-01

    We present a theoretical framework describing projections obtained from computed tomography systems considering physics of each component consisting of the systems. The projection model mainly consists of the attenuation of x-ray photons through objects including x-ray scatter and the detection of attenuated/scattered x-ray photons at pixel detector arrays. X-ray photons are attenuated by the Beers-Lambert law and scattered by using the Klein-Nishina formula. The cascaded signal-transfer model for the detector includes x-ray photon detection and light photon conversion/spreading in scintillators, light photon detection in photodiodes, and the addition of electronic noise quanta. On the other hand, image noise is considered by re-distributing the pixel signals in pixel-by-pixel ways at each image formation stage using the proper distribution functions. Instead of iterating the ray tracing over each energy bin in the x-ray spectrum, we first perform the ray tracing for an object only considering the thickness of each component. Then, we assign energy-dependent linear attenuation coefficients to each component in the projected images. This approach reduces the computation time by a factor of the number of energy bins in the x-ray spectrum divided by the number of components in the object compared with the conventional ray-tracing method. All the methods developed in this study are validated in comparisons with the measurements or the Monte Carlo simulations.

  17. 3D ultrasound computer tomography: update from a clinical study

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  18. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  19. Personalized identification of abdominal wall hernia meshes on computed tomography.

    PubMed

    Pham, Tuan D; Le, Dinh T P; Xu, Jinwei; Nguyen, Duc T; Martindale, Robert G; Deveney, Clifford W

    2014-01-01

    An abdominal wall hernia is a protrusion of the intestine through an opening or area of weakness in the abdominal wall. Correct pre-operative identification of abdominal wall hernia meshes could help surgeons adjust the surgical plan to meet the expected difficulty and morbidity of operating through or removing the previous mesh. First, we present herein for the first time the application of image analysis for automated identification of hernia meshes. Second, we discuss the novel development of a new entropy-based image texture feature using geostatistics and indicator kriging. Third, we seek to enhance the hernia mesh identification by combining the new texture feature with the gray-level co-occurrence matrix feature of the image. The two features can characterize complementary information of anatomic details of the abdominal hernia wall and its mesh on computed tomography. Experimental results have demonstrated the effectiveness of the proposed study. The new computational tool has potential for personalized mesh identification which can assist surgeons in the diagnosis and repair of complex abdominal wall hernias. PMID:24184112

  20. Pediatric Computed Tomography. Radiation Dose in Abdominal Studies

    SciTech Connect

    Lopez, X.; Ruiz-Trejo, C.; Buenfil, A. E.; Gamboa-deBuen, I.; Dies, P

    2008-08-11

    Computed tomography is one of the most popular medical imaging modalities used in the last years. However, because is one of the techniques that delivered a considerable radiation dose, precautions should be taken into account. Pediatric patients are more radiosensitive than adults, and the probability that no desirable biological effects can occur is greater. To this, also it adds the probability that they will need more radiological studies in the future. The work consisted in determining the received dose by the pediatric patients undergoing abdominal studies in a multislice computed tomograph, according to the dosimetric quantities established by a Code of Practice published by the International Atomic Energy Agency; using a ionization chamber and a phantom that simulates the abdomen of a pediatric patient. The weighted air kerma index (C{sub w}) was 14.3{+-}0.4 mGy, this value is lower than the published by the American College of Radiology, 25 mGy. The multiple scan average dose (MSAD), which is a quantity established by the NOM-229-SSA1-2002 was determined, finding a value of 14.2{+-}0.1 mGy, it is also below the value established, 25 mGy for an adult study.

  1. Inexpensive computed tomography for remote areas via teleradiology

    NASA Astrophysics Data System (ADS)

    Gordon, Richard

    1990-06-01

    While x-ray computed tomography (CT) is falling in price it is still beyond the means of most primary and secondary health care centres in the world. I would like to show how if a teleradiology system is installed there is a good prospect for also being able to install a simple but diagnostically effective CT system. This can be based on film used either as a one or two dimensional detector. 1. CT SYSTEMS The major components of a CT system are: 1) health care worker(s) who can decide which part of a patient needs to be imaged 2) an x-ray transparent bed on which a patient can be made comfortable positioned and restrained as necessary 3) an x-ray source mounted on a gantry 4) an x-ray detector mounted on the gantry 5) a digitizer for the x-ray signal 6) a computer to receive the signal 7) an algorithm that calculates the reconstructed CT image 8) a halftone or color display monitor 9) a radiologist who can interpret the images 10) communication from the radiologist to the health care worker(s). 2. BENEFITS OF CT VIA TELERADIOLOGY I would like to proceed on the premise that a teleradiology system could be placed between steps 6 and 7. This has the following benefits: a) Radiologists who are relatively scarce and generally located in urban tertiary care centres could serve people in remote areas

  2. High-resolution computed tomography reconstructions of invertebrate burrow systems.

    PubMed

    Hale, Rachel; Boardman, Richard; Mavrogordato, Mark N; Sinclair, Ian; Tolhurst, Trevor J; Solan, Martin

    2015-01-01

    The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (μ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≤ 2,000 raw image slices aquarium(-1), isotropic voxel resolution, 81 μm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture. PMID:26396743

  3. Noninvasive Risk Stratification of Lung Adenocarcinoma using Quantitative Computed Tomography

    PubMed Central

    Raghunath, Sushravya; Maldonado, Fabien; Rajagopalan, Srinivasan; Karwoski, Ronald A.; DePew, Zackary S.; Bartholmai, Brian J.; Peikert, Tobias; Robb, Richard A.

    2014-01-01

    Introduction Lung cancer remains the leading cause of cancer-related deaths in the US and worldwide. Adenocarcinoma is the most common type of lung cancer and encompasses lesions with widely variable clinical outcomes. In the absence of noninvasive risk stratification, individualized patient management remains challenging. Consequently a subgroup of pulmonary nodules of the lung adenocarcinoma spectrum is likely treated more aggressively than necessary. Methods Consecutive patients with surgically resected pulmonary nodules of the lung adenocarcinoma spectrum (lesion size ≤ 3 cm, 2006–2009) and available pre-surgical high-resolution computed tomography (HRCT) imaging were identified at Mayo Clinic Rochester. All cases were classified using an unbiased Computer-Aided Nodule Assessment and Risk Yield (CANARY) approach based on the quantification of pre-surgical HRCT characteristics. CANARY-based classification was independently correlated to postsurgical progression-free survival. Results CANARY analysis of 264 consecutive patients identified three distinct subgroups. Independent comparisons of 5-year disease-free survival (DFS) between these subgroups demonstrated statistically significant differences in 5-year DFS, 100%, 72.7% and 51.4%, respectively (p = 0.0005). Conclusions Non-invasive CANARY based risk stratification identifies subgroups of patients with pulmonary nodules of the adenocarcinoma spectrum characterized by distinct clinical outcomes. This technique may ultimately improve the current expert opinion-based approach to the management of these lesions by facilitating individualized patient management. PMID:25170645

  4. Noise reduction for helical computed tomography using coupled projections

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Ma, Jianhua; Liu, Yan; Lu, Hongbing; Liang, Zhengrong

    2012-03-01

    Helical computed tomography (HCT) has demonstrated the effectiveness in virtual colonoscopy (VC) or CTcolonography (CTC). One major concern with this clinical application is associated with the risk of high radiation exposure, especially for its use for screening purpose at a large population. In this work, we presented an improved Karhunen-Loeve (KL) domain penalized weighted least-squares (PWLS) strategy which considers the data correlations among the projection rays mainly due to partially overlap while system rotates. Two 1-dimensional (1D) projections, which called coupled projections (CPs), are composed according to the geometry. Each element of the 1D projection is carefully selected for a specific point within 2π angle along the system rotates and thus a highly correlation can be observed between any specific projection and the CPs. These highly correlated projections can be treated by an adaptive KL-PWLS strategy for accurate noise reduction. This method has been implemented and tested on computer simulated sinograms which mimic low-dose CT scans. The reconstructed images by the presented strategy demonstrated the potential of ultra low-dose CT application.

  5. Development of Proton Computed Tomography for Applications in Proton Therapy

    NASA Astrophysics Data System (ADS)

    Bashkirov, Vladimir; Schulte, Reinhard; Coutrakon, George; Erdelyi, Bela; Wong, Kent; Sadrozinski, Hartmut; Penfold, Scott; Rosenfeld, Anatoly; McAllister, Scott; Schubert, Keith

    2009-03-01

    Determination of the Bragg peak position in proton therapy requires accurate knowledge of the electron density and ratio of effective atomic number and mass (Z/A) of the body tissues traversed. While the Z/A ratio is fairly constant for human tissues, the density of tissues varies significantly. One possibility to obtain accurate electron density information of tissues is to use protons of sufficient energy to penetrate the patient and measure their energy loss. From these transmission measurements, it is possible to reconstruct a three-dimensional map of electron densities using algebraic techniques. The interest in proton computed tomography (pCT) has considerably increased in recent years due to the more common use of proton accelerators for cancer treatment world-wide and a modern design concept based on current high-energy physics technology has been suggested. This contribution gives a status update on the pCT project carried out by the pCT Collaboration, a group of institutions sharing interest and expertise in the development of pCT. We will present updated imaging data obtained with a small pCT prototype developed in collaboration with the Santa Cruz Institute of Particle Physics and installed on the proton research beam line at Loma Linda University Medical Center. We will discuss hardware decisions regarding the next-generation pCT scanner, which will permit scanning of head-sized objects. Progress has also been made in the formulation of the most likely path of protons through an object and parallelizable iterative reconstruction algorithms that can be implemented on general-purpose commodity graphics processing units. Finally, we will present simulation studies for utilizing pCT technology for on-line proton dose verification and tumor imaging with positron emission tomography (PET).

  6. X-ray diffraction computed tomography: a survey and description

    NASA Astrophysics Data System (ADS)

    Kleuker, Ulf

    1997-10-01

    Coherently scattered x-rays are mainly confined to a forward peaked cone, which exhibits, due to their coherence, structural information of the atomic arrangement in the sample. Coherent scattering in amorphous materials, which are of random short range order, therefore results in board diffraction ring patter, whereas crystalline substance show more confined diffraction rings or even Brag spots. X-ray diffraction computed tomography (XRDCT) reconstructs the intensities diffracted from extended objects on a square image grid and thus retrieves the local structure. A short survey is presented about what information can be extracted from diffraction experiments. Hereby a new method is proposed to use the Rietveld refinement for quantitative XRDCT. Also the possible use of XRDCT to reconstruct the spatial distribution of preferred orientation axis is suggested. An imaging system for XRDCT, consisting of a medical image intensifier tube and CCD readout system, is presented, which includes a modified beam stop for recording the intensity of the transmitted beam. Depending on the application this imaging system cam work in first generation or second generation tomography mode. Furthermore a new approach for the reconstruction of the differential coherent cross-section is proposed. It includes an absorption correction based on weighted sinograms. The introduced reconstruction strategy is elucidated by experimental result from a simple phantom. The measured data also validate the simulation program, written to study more complex phantoms under different experimental conditions. Finally possible applications in medical and material science are discussed. A design for a mammography setup using x-ray diffraction is presented.

  7. Preclinical spectral computed tomography of gold nano-particles

    NASA Astrophysics Data System (ADS)

    Roessl, Ewald; Cormode, David; Brendel, Bernhard; Jürgen Engel, Klaus; Martens, Gerhard; Thran, Axel; Fayad, Zahi; Proksa, Roland

    2011-08-01

    Today's state-of the art clinical computed tomography (CT) scanners exclusively use energy-integrating, scintillation detector technology, despite the fact that a part of the information carried by the transmitted X-ray photons is lost during the detection process. Room-temperature semiconductors, like CdTe or CZT, operated in energy-sensitive photon-counting mode provide information about the energy of every single X-ray detection event. This capability allows novel, promising approaches to selectively image abnormal tissue types like cancerous tissue or atherosclerotic plaque with the CT modality.In this article we report on recent dual K-edge imaging results obtained in the domain of pre-clinical, energy-sensitive photon-counting CT. In this approach, the tuning of threshold levels in the detector electronics to the K-edge energy in the attenuation of contrast agents (CA) offers highly specific, quantitative imaging of the distribution of the CA on top of the conventional, morphological image information. The combination of the high specificity of the K-edge imaging technique together with the powerful tool of targeting specific diseases in the human body by dedicated contrast materials might enrich the CT modality with capabilities of functional imaging known from the nuclear medicine imaging modalities, e.g., positron-emission-tomography but with the additional advantage of high spatial and temporal resolution. We also discuss briefly the technological difficulties to be overcome when translating the technique to human CT imaging and present the results of simulations indicating the feasibility of the K-edge imaging of vulnerable plaque using targeted gold nano-particles as contrast materials. Our experiments in the pre-clinical domain show that dual-K edge imaging of iodine and gold-based CAs is feasible while our simulations for the imaging of gold CAs in the clinical case support the future possibility of translating the technique to human imaging.

  8. Proposal of a computed tomography classification for hepatic alveolar echinococcosis

    PubMed Central

    Graeter, Tilmann; Kratzer, Wolfgang; Oeztuerk, Suemeyra; Haenle, Mark Martin; Mason, Richard Andrew; Hillenbrand, Andreas; Kull, Thomas; Barth, Thomas F; Kern, Peter; Gruener, Beate

    2016-01-01

    AIM: To establish a computed tomography (CT)-morphological classification for hepatic alveolar echinococcosis was the aim of the study. METHODS: The CT morphology of hepatic lesions in 228 patients with confirmed alveolar echinococcosis (AE) drawn from the Echinococcus Databank of the University Hospital of Ulm was reviewed retrospectively. For this reason, CT datasets of combined positron emission tomography (PET)-CT examinations were evaluated. The diagnosis of AE was made in patients with unequivocal seropositivity; positive histological findings following diagnostic puncture or partial resection of the liver; and/or findings typical for AE at either ultrasonography, CT, magnetic resonance imaging or PET-CT. The CT-morphological findings were grouped into the new classification scheme. RESULTS: Within the classification a lesion was dedicated to one out of five “primary morphologies” as well as to one out of six “patterns of calcification”. “primary morphology” and “pattern of calcification” are primarily focussed on separately from each other and combined, whereas the “primary morphology” V is not further characterized by a “pattern of calcification”. Based on the five primary morphologies, further descriptive sub-criteria were appended to types I-III. An analysis of the calcification pattern in relation to the primary morphology revealed the exclusive association of the central calcification with type IV primary morphology. Similarly, certain calcification patterns exhibited a clear predominance for other primary morphologies, which underscores the delimitation of the individual primary morphological types from each other. These relationships in terms of calcification patterns extend into the primary morphological sub-criteria, demonstrating the clear subordination of those criteria. CONCLUSION: The proposed CT-morphological classification (EMUC-CT) is intended to facilitate the recognition and interpretation of lesions in hepatic

  9. Development of Proton Computed Tomography for Applications in Proton Therapy

    SciTech Connect

    Bashkirov, Vladimir; Schulte, Reinhard; Coutrakon, George; Erdelyi, Bela; Wong, Kent; Sadrozinski, Hartmut; Penfold, Scott; Rosenfeld, Anatoly; McAllister, Scott; Schubert, Keith

    2009-03-10

    Determination of the Bragg peak position in proton therapy requires accurate knowledge of the electron density and ratio of effective atomic number and mass (Z/A) of the body tissues traversed. While the Z/A ratio is fairly constant for human tissues, the density of tissues varies significantly. One possibility to obtain accurate electron density information of tissues is to use protons of sufficient energy to penetrate the patient and measure their energy loss. From these transmission measurements, it is possible to reconstruct a three-dimensional map of electron densities using algebraic techniques. The interest in proton computed tomography (pCT) has considerably increased in recent years due to the more common use of proton accelerators for cancer treatment world-wide and a modern design concept based on current high-energy physics technology has been suggested. This contribution gives a status update on the pCT project carried out by the pCT Collaboration, a group of institutions sharing interest and expertise in the development of pCT. We will present updated imaging data obtained with a small pCT prototype developed in collaboration with the Santa Cruz Institute of Particle Physics and installed on the proton research beam line at Loma Linda University Medical Center. We will discuss hardware decisions regarding the next-generation pCT scanner, which will permit scanning of head-sized objects. Progress has also been made in the formulation of the most likely path of protons through an object and parallelizable iterative reconstruction algorithms that can be implemented on general-purpose commodity graphics processing units. Finally, we will present simulation studies for utilizing pCT technology for on-line proton dose verification and tumor imaging with positron emission tomography (PET)

  10. Positron emission tomography/computed tomography--imaging protocols, artifacts, and pitfalls.

    PubMed

    Bockisch, Andreas; Beyer, Thomas; Antoch, Gerald; Freudenberg, Lutz S; Kühl, Hilmar; Debatin, Jörg F; Müller, Stefan P

    2004-01-01

    There has been a longstanding interest in fused images of anatomical information, such as that provided by computed tomography (CT) or magnetic resonance imaging (MRI) systems, with biological information obtainable by positron emission tomography (PET). The near-simultaneous data acquisition in a fixed combination of a PET and a CT scanner in a combined PET/CT imaging system minimizes spatial and temporal mismatches between the modalities by eliminating the need to move the patient in between exams. In addition, using the fast CT scan for PET attenuation correction, the duration of the examination is significantly reduced compared to standalone PET imaging with standard rod-transmission sources. The main source of artifacts arises from the use of the CT-data for scatter and attenuation correction of the PET images. Today, CT reconstruction algorithms cannot account for the presence of metal implants, such as dental fillings or prostheses, properly, thus resulting in streak artifacts, which are propagated into the PET image by the attenuation correction. The transformation of attenuation coefficients at X-ray energies to those at 511 keV works well for soft tissues, bone, and air, but again is insufficient for dense CT contrast agents, such as iodine or barium. Finally, mismatches, for example, due to uncoordinated respiration result in incorrect attenuation-corrected PET images. These artifacts, however, can be minimized or avoided prospectively by careful acquisition protocol considerations. In doubt, the uncorrected images almost always allow discrimination between true and artificial finding. PET/CT has to be integrated into the diagnostic workflow for harvesting the full potential of the new modality. In particular, the diagnostic power of both, the CT and the PET within the combination must not be underestimated. By combining multiple diagnostic studies within a single examination, significant logistic advantages can be expected if the combined PET

  11. Trends in radiation protection of positron emission tomography/computed tomography imaging.

    PubMed

    Alenezi, A; Soliman, K

    2015-06-01

    Over the past decade, the number of positron emission tomography/computed tomography (PET/CT) imaging procedures has increased substantially. This imaging technique provides accurate functional and anatomical information, particularly for oncological applications. Separately, both PET and CT are considered as high-dose imaging modalities. With the increased use of PET/CT, one could expect an increase in radiation doses to staff and patients. As such, major efforts have been made to reduce radiation dose in PET/CT facilities. Variations in working techniques have made it difficult to compare published results. This study aimed to review the literature on proposed methods to reduce patient and staff dose in clinical PET/CT imaging. A brief overview of some published information on staff and patient doses will be analysed and presented. Recent trends regarding radiation protection in PET/CT imaging will be discussed, and practical recommendations for reducing radiation doses to staff and patients will be discussed and summarised. Generally, the CT dose component is often higher in magnitude than the dose from PET alone; as such, focusing on CT dose reduction will decrease the overall patient dose in PET/CT imaging studies. The following factors should be considered in order to reduce the patient's dose from CT alone: proper justification for ordering contrast-enhanced CT; use of automatic exposure control features; use of adaptive statistical iterative reconstruction algorithms; and optimisation of scan parameters, especially scan length. The PET dose component can be reduced by administration of lower activity to the patient, optimisation of the workflow, and appropriate use of protective devices and engineered systems. At the international level, there is wide variation in work practices among institutions. The current observed trends are such that the annual dose limits for radiation workers in PET/CT imaging are unlikely to be exceeded. PMID:25915553

  12. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  13. Enhancement of positron emission tomography-computed tomography image quality using the principle of stochastic resonance

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Singh, Harmandeep; Patel, Chetan; Sarkar, Kaushik; Kumar, Rakesh; Bal, Chandra Sekhar

    2014-01-01

    Purpose: Acquisition of higher counts improves visual perception of positron emission tomography-computed tomography (PET-CT) image. Larger radiopharmaceutical doses (implies more radiation dose) are administered to acquire this count in a short time period. However, diagnostic information does not increase after a certain threshold of counts. This study was conducted to develop a post processing method based on principle of “stochastic resonance” to improve visual perception of the PET-CT image having a required threshold counts. Materials and Methods: PET-CT images (JPEG file format) with low, medium, and high counts in the image were included in this study. The image was corrupted with the addition of Poisson noise. The amplitude of the Poisson noise was adjusted by dividing each pixel by a constant 1, 2, 4, 8, 16, and 32. The best amplitude of the noise that gave best images quality was selected based on high value of entropy of the output image, high value of structural similarity index and feature similarity index. Visual perception of the image was evaluated by two nuclear medicine physicians. Results: The variation in structural and feature similarity of the image was not appreciable visually, but statistically images deteriorated as the noise amplitude increases although maintaining structural (above 70%) and feature (above 80%) similarity of input images in all cases. We obtained the best image quality at noise amplitude “4” in which 88% structural and 95% feature similarity of the input images was retained. Conclusion: This method of stochastic resonance can be used to improve the visual perception of the PET-CT image. This can indirectly lead to reduction of radiation dose. PMID:25400362

  14. High temporal resolution for multislice helical computed tomography.

    PubMed

    Taguchi, K; Anno, H

    2000-05-01

    Multislice helical computed tomography (CT) substantially reduces scanning time. However, the temporal resolution of individual images is still insufficient for imaging rapidly moving organs such as the heart and adjacent pulmonary vessels. It may, in some cases, be worse than with current single-slice helical CT. The purpose of this study is to describe a novel image reconstruction algorithm to improve temporal resolution in multislice helical CT, and to evaluate its performance against existing algorithms. The proposed image reconstruction algorithm uses helical interpolation followed by data weighting based on the acquisition time. The temporal resolution, the longitudinal (z-axis) spatial resolution, the image noise, and the in-plane image artifacts created by a moving phantom were compared with those from the basic multislice helical reconstruction (helical filter interpolation, HFI) algorithm and the basic single-slice helical reconstruction algorithm (180 degrees linear interpolation, 180LI) using computer simulations. Computer simulation results were verified with CT examinations of the heart and lung vasculature using a 0.5 second multislice scanner. The temporal resolution of HFI algorithm varies from 0.28 and 0.86 s, depending on helical pitch. The proposed method improves the resolution to a constant value of 0.29 s, independent of pitch, allowing moving objects to be imaged with reduced blurring or motion artifacts. The spatial (z) resolution was slightly worse than with the HFI algorithm; the image noise was worse than with the HFI algorithm but was comparable to axial (step-and-shoot) CT. The proposed method provided sharp images of the moving objects, portraying the anatomy accurately. The proposed algorithm for multislice helical CT allowed us to obtain CT images with high temporal resolution. It may improve the image quality of clinical cardiac, lung, and vascular CT imaging. PMID:10841388

  15. Computed Tomography Number Measurement Consistency Under Different Beam Hardening Conditions: Comparison Between Dual-Energy Spectral Computed Tomography and Conventional Computed Tomography Imaging in Phantom Experiment

    PubMed Central

    He, Tian; Qian, Xiaojun; Zhai, Renyou; Yang, Zongtao

    2015-01-01

    Purpose To compare computed tomography (CT) number measurement consistency under different beam hardening conditions in phantom experiment between dual-energy spectral CT and conventional CT imaging. Materials and Methods A phantom with 8 cells in periphery region and 1 cell in central region were used. The 8 conditioning tubes in the periphery region were filled with 1 of the 3 iodine solutions to simulate different beam hardening conditions: 0 for no beam hardening (NBH), 20 mg/mL for weak beam hardening (WBH) and 50 mg/mL for severe beam hardening (SBH) condition. Test tube filled with 0, 0.1, 0.5, 1, 2, 5, 10, 20, and 50 mg/mL iodine solution was placed in the central cell alternately. The phantom was scanned with conventional CT mode with 80, 100, 120, and 140 kVp and dual energy spectral CT mode. For spectral CT, 11 monochromatic image sets from 40 to 140 keV with interval of 10 keV were reconstructed. The CT number shift caused by beam hardening was evaluated by measuring the CT number difference (ΔCT) with and without beam hardening, with the following formulas: ΔCTWBH = |CTWBH − CTNBH| and ΔCTSBH = |CTSBH − CTNBH|. Data were compared with 1-way analysis of variance. Results Under both WBH and SBH conditions, the CT number shifts in all monochromatic image sets were less than those for polychromatic images (all P < 0.001). Under WBH condition, the maximum CT number shift was less than 6 Hounsfield units for monochromatic spectral CT images of all energy levels; under SBH condition, only monochromatic images at 70 keV and 80 keV had CT number shift less than 6 HU. Conclusion Dual energy spectral CT imaging provided more accurate CT number measurement than conventional CT under various beam hardening conditions. The optimal keV level for monochromatic spectral CT images with the most accurate CT number measurement depends on the severities of beam hardening condition. PMID:26196347

  16. Computational hemodynamics of abdominal aortic aneurysms: Three-dimensional ultrasound versus computed tomography.

    PubMed

    Owen, Benjamin; Lowe, Christopher; Ashton, Neil; Mandal, Parthasarathi; Rogers, Steven; Wein, Wolfgang; McCollum, Charles; Revell, Alistair

    2016-03-01

    The current criterion for surgical intervention in abdominal aortic aneurysms, based upon a maximal aortic diameter, is considered conservative due to the high mortality rate in case of rupture. The research community is actively investigating the use of computational mechanics tools combined with patient-specific imaging to help identify more accurate criteria. Widespread uptake of a successful metric will however be limited by the need for computed tomography, which is at present the primary image extraction method on account of the location and complex shape of the aneurysms. The use of three-dimensional ultrasound as the scanning method is more attractive on account of increased availability, reduced cost and reduced risk to patients. The suitability of three-dimensional ultrasound is assessed for this purpose in the present work; computational fluid dynamics simulations were performed on geometries obtained from the same patient using both ultrasound and computed tomography. The influence of different smoothing algorithms is investigated in the geometry preparation stage and Taubin's low-pass filter was found to best preserve geometry features. Laminar, Newtonian, steady-state simulation analysis identified haemodynamic characteristics to be qualitatively similar in terms of wall shear stress, velocity and vorticity. The study demonstrates the potential for three-dimensional ultrasound to be integrated into a more accessible patient-specific modelling tool able to identify the need for surgical intervention of abdominal aortic aneurysms. PMID:26893226

  17. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    PubMed Central

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558

  18. Computer-aided classification of lung nodules on computed tomography images via deep learning technique.

    PubMed

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558

  19. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    SciTech Connect

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Ricardi, Umberto; Milanesi, Enrica; Cassoni, Paola; Baccega, Massimo; Filippini, Claudia; Racca, Patrizia; Lesca, Adriana; Munoz, Fernando H.; Fora, Gianluca; Skanjeti, Andrea; Cravero, Francesca; Morino, Mario

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectal examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.

  20. Surgical strategy for aortic prosthetic graft infection with (18)F-fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Yamanaka, Katsuhiro; Matsueda, Takashi; Miyahara, Shunsuke; Nomura, Yoshikatsu; Sakamoto, Toshihito; Morimoto, Naoto; Inoue, Takeshi; Matsumori, Masamichi; Okada, Kenji; Okita, Yutaka

    2016-09-01

    A 30-year-old man with Marfan syndrome who underwent Crawford type II extension aneurysm repair about 9 years ago was referred to our hospital with persistent fever. Computed tomography (CT) showed air around the mid-descending aortic prosthetic graft. Because the air did not disappear in spite of intravenous antibiotics, (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) was performed. FDG-PET/CT revealed four high-uptake lesions. After dissecting the aortic graft particularly focusing on the high-uptake lesions, this patient underwent in situ graft re-replacement of descending aortic graft with a rifampicin-bonded gelatin-impregnated Dacron graft and omentopexy. The patient remains well without recurrent infection at 3 months after surgery. PMID:25563707

  1. Numerical observer for atherosclerotic plaque classification in spectral computed tomography.

    PubMed

    Lorsakul, Auranuch; Fakhri, Georges El; Worstell, William; Ouyang, Jinsong; Rakvongthai, Yothin; Laine, Andrew F; Li, Quanzheng

    2016-07-01

    Spectral computed tomography (SCT) generates better image quality than conventional computed tomography (CT). It has overcome several limitations for imaging atherosclerotic plaque. However, the literature evaluating the performance of SCT based on objective image assessment is very limited for the task of discriminating plaques. We developed a numerical-observer method and used it to assess performance on discrimination vulnerable-plaque features and compared the performance among multienergy CT (MECT), dual-energy CT (DECT), and conventional CT methods. Our numerical observer was designed to incorporate all spectral information and comprised two-processing stages. First, each energy-window domain was preprocessed by a set of localized channelized Hotelling observers (CHO). In this step, the spectral image in each energy bin was decorrelated using localized prewhitening and matched filtering with a set of Laguerre-Gaussian channel functions. Second, the series of the intermediate scores computed from all the CHOs were integrated by a Hotelling observer with an additional prewhitening and matched filter. The overall signal-to-noise ratio (SNR) and the area under the receiver operating characteristic curve (AUC) were obtained, yielding an overall discrimination performance metric. The performance of our new observer was evaluated for the particular binary classification task of differentiating between alternative plaque characterizations in carotid arteries. A clinically realistic model of signal variability was also included in our simulation of the discrimination tasks. The inclusion of signal variation is a key to applying the proposed observer method to spectral CT data. Hence, the task-based approaches based on the signal-known-exactly/background-known-exactly (SKE/BKE) framework and the clinical-relevant signal-known-statistically/background-known-exactly (SKS/BKE) framework were applied for analytical computation of figures of merit (FOM). Simulated data of a

  2. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  3. Volume estimation of multidensity nodules with thoracic computed tomography.

    PubMed

    Gavrielides, Marios A; Li, Qin; Zeng, Rongping; Myers, Kyle J; Sahiner, Berkman; Petrick, Nicholas

    2016-01-01

    This work focuses on volume estimation of "multidensity" lung nodules in a phantom computed tomography study. Eight objects were manufactured by enclosing spherical cores within larger spheres of double the diameter but with a different density. Different combinations of outer-shell/inner-core diameters and densities were created. The nodules were placed within an anthropomorphic phantom and scanned with various acquisition and reconstruction parameters. The volumes of the entire multidensity object as well as the inner core of the object were estimated using a model-based volume estimator. Results showed percent volume bias across all nodules and imaging protocols with slice thicknesses [Formula: see text] ranging from [Formula: see text] to 6.6% for the entire object (standard deviation ranged from 1.5% to 7.6%), and within [Formula: see text] to 5.7% for the inner-core measurement (standard deviation ranged from 2.0% to 17.7%). Overall, the estimation error was larger for the inner-core measurements, which was expected due to the smaller size of the core. Reconstructed slice thickness was found to substantially affect volumetric error for both tasks; exposure and reconstruction kernel were not. These findings provide information for understanding uncertainty in volumetry of nodules that include multiple densities such as ground glass opacities with a solid component. PMID:26844235

  4. Cochlear anatomy using micro computed tomography (μCT) imaging

    NASA Astrophysics Data System (ADS)

    Kim, Namkeun; Yoon, Yongjin; Steele, Charles; Puria, Sunil

    2008-02-01

    A novel micro computed tomography (μCT) image processing method was implemented to measure anatomical features of the gerbil and chinchilla cochleas, taking into account the bent modailosis axis. Measurements were made of the scala vestibule (SV) area, the scala tympani (SV) area, and the basilar membrane (BM) width using prepared cadaveric temporal bones. 3-D cochlear structures were obtained from the scanned images using a process described in this study. It was necessary to consider the sharp curvature of mododailosis axis near the basal region. The SV and ST areas were calculated from the μCT reconstructions and compared with existing data obtained by Magnetic Resonance Microscopy (MRM), showing both qualitative and quantitative agreement. In addition to this, the width of the BM, which is the distance between the primary and secondary osseous spiral laminae, is calculated for the two animals and compared with previous data from the MRM method. For the gerbil cochlea, which does not have much cartilage in the osseous spiral lamina, the μCT-based BM width measurements show good agreement with previous data. The chinchilla BM, which contains more cartilage in the osseous spiral lamina than the gerbil, shows a large difference in the BM widths between the μCT and MRM methods. The SV area, ST area, and BM width measurements from this study can be used in building an anatomically based mathematical cochlear model.

  5. RADIATION DOSE IN PAEDIATRIC COMPUTED TOMOGRAPHY: RISKS AND BENEFITS

    PubMed Central

    Ogbole, G.I.

    2010-01-01

    Computed tomography (CT) is a powerful tool for the accurate and effective diagnosis and treatment of a variety of conditions because it allows high-resolution three-dimensional images to be acquired very quickly. However as the number of CT procedures performed globally have continued to increase; with growing concerns about patient protection. Currently, no system is in place to track patient doses and the lifetime cumulative dose from medical sources. The widespread use of CT even in developing countries has raised questions regarding the possible threat to public health especially in children. The best available risk estimates suggest that paediatric CT will result in significantly increased lifetime radiation risk over adult CT. Studies have shown that lower milliampere-second (mAs) settings can be used for children without significant loss of information. Although the risk–benefit balance is still strongly tilted toward benefit, there is still need for caution. Furthermore since the frequency of paediatric CT examinations is rapidly increasing, and estimates suggest that quantitative lifetime radiation risks for children are not negligible, efforts should be made toward more active reduction of CT exposure settings in paediatric patients. This article hopes to address this concerns and draw attention to the fact that children are not ‘small adults ’ and should therefore be treated differently. PMID:25161479

  6. Review methods for image segmentation from computed tomography images

    SciTech Connect

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-12-04

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.

  7. Computed tomography study of pineal calcification in schizophrenia.

    PubMed

    Bersani, G; Garavini, A; Taddei, I; Tanfani, G; Nordio, M; Pancheri, P

    1999-06-01

    Computed tomography studies concerning pineal calcification (PC) in schizophrenia have been conducted mainly by one author who correlated this calcification with several aspects of the illness. On the basis of these findings the aim of the present study was to analyze size and incidence of pineal gland calcification by CT in schizophrenics and healthy controls, and to verify the relationship between pineal calcification and age, and the possible correlation with psychopathologic variables. Pineal calcification was measured on CT scans of 87 schizophrenics and 46 controls divided into seven age subgroups of five years each. No significant differences in PC incidence and mean size between patients and controls were observed as far as the entire group was considered. PC size correlated with age both in schizophrenics and controls. We found a higher incidence of PC in schizophrenics in the age subgroup of 21-25 years, and a negative correlation with positive symptoms of schizophrenia in the overall group. These findings could suggest a premature calcific process in schizophrenics and a probable association with 'non-paranoid' aspects of the illness. Nevertheless the potential role of this process possibly related to some aspects of the altered neurodevelopment in schizophrenia is still unclear. PMID:10572342

  8. Multi-Mounted X-Ray Computed Tomography

    PubMed Central

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  9. IMPLICATIONS OF PATIENT CENTRING ON ORGAN DOSE IN COMPUTED TOMOGRAPHY.

    PubMed

    Kataria, Bharti; Sandborg, Michael; Althén, Jonas Nilsson

    2016-06-01

    Automatic exposure control (AEC) in computed tomography (CT) facilitates optimisation of dose absorbed by the patient. The use of AEC requires appropriate 'patient centring' within the gantry, since positioning the patient off-centre may affect both image quality and absorbed dose. The aim of this experimental study was to measure the variation in organ and abdominal surface dose during CT examinations of the head, neck/thorax and abdomen. The dose was compared at the isocenter with two off-centre positions-ventral and dorsal to the isocenter. Measurements were made with an anthropomorphic adult phantom and thermoluminescent dosemeters. Organs and surfaces for ventral regions received lesser dose (5.6-39.0 %) than the isocenter when the phantom was positioned +3 cm off-centre. Similarly, organ and surface doses for dorsal regions were reduced by 5.0-21.0 % at -5 cm off-centre. Therefore, correct vertical positioning of the patient at the gantry isocenter is important to maintain optimal imaging conditions. PMID:26743256

  10. Computed tomography predictors of hepatocellular carcinoma tumour necrosis after chemoembolization

    PubMed Central

    Bryant, Mary K; Dorn, David P; Zarzour, Jessica; Smith, J Kevin; Redden, David T; Saddekni, Souheil; Aal, Ahmed Kamel Abdel; Gray, Stephen H; Eckhoff, Devin E; DuBay, Derek A

    2014-01-01

    Background Radiographical features associated with a favourable response to trans-arterial chemoembolization (TACE) are poorly defined for patients with hepatocellular carcinoma (HCC). Methods From 2008 to 2012, all first TACE interventions for HCC performed at the University of Alabama at Birmingham (UAB) were retrospectively reviewed. Only patients with a pre-TACE and a post-TACE computed tomography (CT) scan were included in the analyses (n = 115). HCC tumour response to TACE was quantified via the the modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria. Univariate and multivariable analyses were constructed. Results The index HCC tumours experienced a > 90% or complete tumour necrosis in 59/115 (51%) of patients after the first TACE intervention. On univariate analysis, smaller tumour size, peripheral tumour location and arterial enhancement were associated with a > 90% or complete tumour necrosis, whereas, only smaller tumour size [odds ratio (OR) 0.62; 95% confidence interval (CI) 0.48, 0.81] and peripheral location (OR 6.91; 95% CI 1.75, 27.29) were significant on multivariable analysis. There was a trend towards improved survival in the patients that experienced a > 90% or complete tumour necrosis (P = 0.08). Conclusions Peripherally located smaller HCC tumours are most likely to experience a > 90% or complete tumour necrosis after TACE. Surprisingly, arterial-phase enhancement and portal venous-phase washout were not significantly predictive of TACE-induced tumour necrosis. The TACE response was not statistically associated with improved survival. PMID:23980917

  11. Postmortem computed tomography (PMCT) and disaster victim identification.

    PubMed

    Brough, A L; Morgan, B; Rutty, G N

    2015-09-01

    Radiography has been used for identification since 1927, and established a role in mass fatality investigations in 1949. More recently, postmortem computed tomography (PMCT) has been used for disaster victim identification (DVI). PMCT offers several advantages compared with fluoroscopy, plain film and dental X-rays, including: speed, reducing the number of on-site personnel and imaging modalities required, making it potentially more efficient. However, there are limitations that inhibit the international adoption of PMCT into routine practice. One particular problem is that due to the fact that forensic radiology is a relatively new sub-speciality, there are no internationally established standards for image acquisition, image interpretation and archiving. This is reflected by the current INTERPOL DVI form, which does not contain a PMCT section. The DVI working group of the International Society of Forensic Radiology and Imaging supports the use of imaging in mass fatality response and has published positional statements in this area. This review will discuss forensic radiology, PMCT, and its role in disaster victim identification. PMID:26108152

  12. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.

    PubMed

    Gür, Y

    2014-12-01

    The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using In Vaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient's skull CT scan data was considered, and a tangible version of the skull was manufactured by a 3D FDM desktop printer. During the 3D printing process, the skull was built using acrylonitrile-butadiene-styrene (ABS) co-polymer plastic. The printed model showed that the 3D FDM printing technology is able to fabricate anatomical models with high accuracy. As a result, the skull model can be used for preoperative surgical planning, medical training activities, implant design and simulation to show the potential of the FDM technology in medical field. It will also improve communication between medical stuff and patients. Current result indicates that a 3D desktop printer which uses FDM technology can be used to obtain accurate anatomical models. PMID:26336695

  13. Computed tomography in patients with cardiac pacemakers: difficulties and solutions.

    PubMed

    Mlynarski, Rafal; Sosnowski, Maciej; Mlynarska, Agnieszka; Tendera, Michał

    2012-05-01

    The presence of cardiac pacemaker systems may significantly limit interpretation of multi-slice computed tomography (MSCT) images. In 80 patients (45 men; aged 69.5 ± 13.4) with previously implanted anti-arrhythmic devices, a 64-slice CT (Aquilion-64) was performed. In 61 patients (76.3%), ECG gating was used (coronaries visualization) and in 19 patients (23.7%) without ECG gating (not coronaries visualization). In all 19 patients without ECG gating MSCT images were diagnostic. In 37 (60.6%) patients of 61, there was no problem with gating process and image quality was diagnostic. In 24 (39.4%) with visible spikes in the ECG-gating group, there were difficulties in differentiating the R spike from an artificial spike (unipolar pacing) by MSCT software. In 15 patients (24.6%) after reprogramming, it was possible to obtain good quality images. In nine (14.7%) patients, it was not possible to reprogram devices due to old unipolar leads, but in two cases (3.3%), ECG gating was corrected manually and good image quality was obtained. In seven (11.5%) patients, it was not possible to perform ECG gating. The ECG gating process was identified as the main cause of the imaging problems. Bipolar leads working as bipolar pacing seem to be necessary to perform MSCT with ECG gating. A unipolar system lead may cause serious problems with reconstructions. PMID:21505855

  14. Artifact reduction in industrial computed tomography via data fusion

    SciTech Connect

    Schrapp, Michael; Goldammer, Matthias; Stephan, Jürgen

    2014-02-18

    As the most stressed part of a gas turbine the first row of turbine blades is not only a challenge for the materials used. Also the testing of these parts have to meet the highest standards. Computed tomography (CT) as the technique which could reveal the most details also provides the biggest challenges [1]: A full penetration of large sized turbine blades is often only possible at high X-ray voltages causing disproportional high costs. A reduction of the X-ray voltage is able to reduce these arising costs but yields non penetration artifacts in the reconstructed CT image. In most instances, these artifacts manifests itself as blurred and smeared regions at concave edges due to a reduced signal to noise ratio. In order to complement the missing information and to increase the overall image quality of our reconstruction, we use further imaging modalities such as a 3-D Scanner and ultrasonic imaging. A 3-D scanner is easy and cost effective to implement and is able to acquire all relevant data simultaneously with the CT projections. If, however, the interior structure is of supplemental interest, an ultrasonic imaging method is additionally used. We consider this data as a priori knowledge to employ them in an iterative reconstruction. To do so, standard iterative reconstruction methods are modified to incorporate the a priori data in a regularization approach in combination with minimizing the total variation of our image. Applying this procedure on turbine blades, we are able to reduce the apparent artifacts almost completely.

  15. Automatic computed tomography patient dose calculation using DICOM header metadata.

    PubMed

    Jahnen, A; Kohler, S; Hermen, J; Tack, D; Back, C

    2011-09-01

    The present work describes a method that calculates the patient dose values in computed tomography (CT) based on metadata contained in DICOM images in support of patient dose studies. The DICOM metadata is preprocessed to extract necessary calculation parameters. Vendor-specific DICOM header information is harmonized using vendor translation tables and unavailable DICOM tags can be completed with a graphical user interface. CT-Expo, an MS Excel application for calculating the radiation dose, is used to calculate the patient doses. All relevant data and calculation results are stored for further analysis in a relational database. Final results are compiled by utilizing data mining tools. This solution was successfully used for the 2009 CT dose study in Luxembourg. National diagnostic reference levels for standard examinations were calculated based on each of the countries' hospitals. The benefits using this new automatic system saved time as well as resources during the data acquisition and the evaluation when compared with earlier questionnaire-based surveys. PMID:21831868

  16. Quantitative computed tomography detects peripheral airway disease in asthmatic children.

    PubMed

    Jain, Neal; Covar, Ronina A; Gleason, Melanie C; Newell, John D; Gelfand, Erwin W; Spahn, Joseph D

    2005-09-01

    The aim of this study was to compare air-trapping as quantified by high-resolution computed tomography (HRCT) of the chest with measures of lung function and airway inflammation in children with mild to moderate asthma. Plethysmography indices, respiratory resistance, and reactance before and after bronchodilator with impulse oscillation (IOS), exhaled nitric oxide (eNO), total eosinophil count (TEC), and serum eosinophil cationic protein (ECP) levels were measured in 21 subjects. A single-cut HRCT image at end-expiration was obtained. Air-trapping was quantified and expressed in terms of the pixel index (PI) by determining the percentage of pixels in lung fields below -856 and -910 Hounsfeld units (HU). Pairwise linear correlations between PI and other parameters were evaluated. Subjects had only mild airflow limitation based on prebronchodilator forced expiratory volume in 1 sec (FEV(1)), but were hyperinflated and had air-trapping based on elevated total lung capacity (TLC) and residual volume (RV)/TLC ratio, respectively. The PI at -856 HU was positively correlated with % predicted TLC, total gas volume (TGV), and ECP level, and was inversely correlated with FEV(1)/forced vital capacity (FVC) and % predicted forced expiratory flow between 25-75% FVC (FEF(25-75)). The PI at -910 HU correlated similarly with these variables, and also correlated positively with IOS bronchodilator reversibility. This data suggest that quantitative HRCT may be a useful tool in the evaluation of peripheral airflow obstruction in children with asthma. PMID:16015663

  17. Motion artifact detection in four-dimensional computed tomography images

    NASA Astrophysics Data System (ADS)

    Bouilhol, G.; Ayadi, M.; Pinho, R.; Rit, S.; Sarrut, D.

    2014-03-01

    Motion artifacts appear in four-dimensional computed tomography (4DCT) images because of suboptimal acquisition parameters or patient breathing irregularities. Frequency of motion artifacts is high and they may introduce errors in radiation therapy treatment planning. Motion artifact detection can be useful for image quality assessment and 4D reconstruction improvement but manual detection in many images is a tedious process. We propose a novel method to evaluate the quality of 4DCT images by automatic detection of motion artifacts. The method was used to evaluate the impact of the optimization of acquisition parameters on image quality at our institute. 4DCT images of 114 lung cancer patients were analyzed. Acquisitions were performed with a rotation period of 0.5 seconds and a pitch of 0.1 (74 patients) or 0.081 (40 patients). A sensitivity of 0.70 and a specificity of 0.97 were observed. End-exhale phases were less prone to motion artifacts. In phases where motion speed is high, the number of detected artifacts was systematically reduced with a pitch of 0.081 instead of 0.1 and the mean reduction was 0.79. The increase of the number of patients with no artifact detected was statistically significant for the 10%, 70% and 80% respiratory phases, indicating a substantial image quality improvement.

  18. False Computed Tomography Findings in Bilateral Choanal Atresia

    PubMed Central

    Elsheikh, Ezzeddin; El-Anwar, Mohammad Waheed

    2015-01-01

    Introduction Choanal atresia (CA) is a challenging surgical problem defined as a failure in the development of communication between the nasal cavity and nasopharynx. Objective The objective of this study is to describe computed tomography (CT) findings in cases with bilateral choanal atresia. Methods The study involved performing axial and coronal non-contrast CT scanning with 2–3 mm sections on14 neonates that had bilateral CA. We used fiberoptic nasal endoscopy to confirm the diagnosis. We evaluated coronal CT to study the skull base area in such neonates. Results This study included 14 neonates with bilateral CA; with mean age of 7 ± 3.5 days. Mixed atretic plates were found in 12 (85.7%) cases while two (14.3%) had pure bony atresia. Isolated CA was detected in 9 cases (64.3%) and 5 (35.7%) cases had associated anomalies. Coronal CT showed soft tissue density in the nasal cavity that appeared to extend through an apparent defect in the nasal roof (cribriform plate), falsely diagnosed by radiologists as associated encephalocele. At the time of surgical repair, all patients showed thick tenacious mucous secretions in both nasal cavities and revealed no encephalocele. Nasal roof remained intact in all cases. Conclusion The thick secretion of bilateral CA could give a false encephalocele appearance on the CT. It is highly recommended to perform proper suction of the nasal cavity of suspected CA cases just before CT scanning. PMID:27096022

  19. False Computed Tomography Findings in Bilateral Choanal Atresia.

    PubMed

    Elsheikh, Ezzeddin; El-Anwar, Mohammad Waheed

    2016-04-01

    Introduction Choanal atresia (CA) is a challenging surgical problem defined as a failure in the development of communication between the nasal cavity and nasopharynx. Objective The objective of this study is to describe computed tomography (CT) findings in cases with bilateral choanal atresia. Methods The study involved performing axial and coronal non-contrast CT scanning with 2-3 mm sections on14 neonates that had bilateral CA. We used fiberoptic nasal endoscopy to confirm the diagnosis. We evaluated coronal CT to study the skull base area in such neonates. Results This study included 14 neonates with bilateral CA; with mean age of 7 ± 3.5 days. Mixed atretic plates were found in 12 (85.7%) cases while two (14.3%) had pure bony atresia. Isolated CA was detected in 9 cases (64.3%) and 5 (35.7%) cases had associated anomalies. Coronal CT showed soft tissue density in the nasal cavity that appeared to extend through an apparent defect in the nasal roof (cribriform plate), falsely diagnosed by radiologists as associated encephalocele. At the time of surgical repair, all patients showed thick tenacious mucous secretions in both nasal cavities and revealed no encephalocele. Nasal roof remained intact in all cases. Conclusion The thick secretion of bilateral CA could give a false encephalocele appearance on the CT. It is highly recommended to perform proper suction of the nasal cavity of suspected CA cases just before CT scanning. PMID:27096022

  20. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment

    PubMed Central

    Edmunds, Kyle Joseph; Gíslason, Magnus K.; Arnadottir, Iris D.; Marcante, Andrea; Piccione, Francesco; Gargiulo, Paolo

    2016-01-01

    Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT) and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU) values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration. PMID:27478562

  1. Cone-beam computed tomography findings of impacted upper canines

    PubMed Central

    Bastos, Luana Costa; Oliveira-Santos, Christiano; da Silva, Silvio José Albergaria; Neves, Frederico Sampaio; Campos, Paulo Sérgio Flores

    2014-01-01

    Purpose To describe the features of impacted upper canines and their relationship with adjacent structures through three-dimensional cone-beam computed tomography (CBCT) images. Materials and Methods Using the CBCT scans of 79 upper impacted canines, we evaluated the following parameters: gender, unilateral/bilateral occurrence, location, presence and degree of root resorption of adjacent teeth (mild, moderate, or severe), root dilaceration, dental follicle width, and presence of other associated local conditions. Results Most of the impacted canines were observed in females (56 cases), unilaterally (51 cases), and at a palatine location (53 cases). Root resorption in adjacent teeth and root dilaceration were observed in 55 and 47 impacted canines, respectively. In most of the cases, the width of the dental follicle of the canine was normal; it was abnormally wide in 20 cases. A statistically significant association was observed for all variables, except for root dilaceration (p=0.115) and the side of impaction (p=0.260). Conclusion Root resorption of adjacent teeth was present in most cases of canine impaction, mostly affecting adjacent lateral incisors to a mild degree. A wide dental follicle of impacted canines was not associated with a higher incidence of external root resorption of adjacent teeth. PMID:25473636

  2. Coronary computed tomography angiography for risk stratification before noncardiac surgery

    PubMed Central

    Fathala, Ahmed

    2016-01-01

    Background: Currently, there are limited available data for coronary computed tomography angiography (CCTA) in the setting of the risk stratification before noncardiac surgery. The main purpose of this study is to investigate the role of CCTA in cardiac risk stratification before noncardiac surgery. Materials and Methods: Ninety-three patients underwent CCTA in the assessment of cardiac risk before noncardiac surgery. Patients with normal or mildly abnormal CCTA (<50% stenosis) underwent surgery without any further testing (Group 1). Patients with abnormal CCTA (17 patients) (more than 50% stenosis) and nondiagnostic CCTA (5%) underwent either stress myocardial perfusion scintigraphy or conventional coronary angiography, Group 2. Results: Group one consists of 71 patients who went for surgery without any further testing. 59 of 71 (83%) patients had no complications in the postoperative period, 9 patients had noncardiac complications, 1 had a cardiac complication (new onset atrial fibrillation), and 2 patients died in the postoperative period due to noncardiac complications. Group 2 comprises 22 (26%) patients, 16 patients had no postoperative complications, 5 patients had noncardiac complications, and one patient developed postoperative acute heart failure. Conclusions: CCTA is diagnostic in up to 95% in the preoperative setting, and it provides a comprehensive cardiac examination in the risk stratification before intermediate and high-risk noncardiac surgery. Therefore, CCTA may be considered as an alternative test for already established imaging techniques for preoperative cardiac risk stratification before noncardiac surgery. PMID:26750671

  3. Compressing industrial computed tomography images by means of contour coding

    NASA Astrophysics Data System (ADS)

    Jiang, Haina; Zeng, Li

    2013-10-01

    An improved method for compressing industrial computed tomography (CT) images is presented. To have higher resolution and precision, the amount of industrial CT data has become larger and larger. Considering that industrial CT images are approximately piece-wise constant, we develop a compression method based on contour coding. The traditional contour-based method for compressing gray images usually needs two steps. The first is contour extraction and then compression, which is negative for compression efficiency. So we merge the Freeman encoding idea into an improved method for two-dimensional contours extraction (2-D-IMCE) to improve the compression efficiency. By exploiting the continuity and logical linking, preliminary contour codes are directly obtained simultaneously with the contour extraction. By that, the two steps of the traditional contour-based compression method are simplified into only one. Finally, Huffman coding is employed to further losslessly compress preliminary contour codes. Experimental results show that this method can obtain a good compression ratio as well as keeping satisfactory quality of compressed images.

  4. Computed Tomography- and Magnetic Resonance Imaging: Guided Microtherapy.

    PubMed

    Seibel; Melzer; Schmidt; Plabetamann

    1997-06-01

    This report describes techniques of computed tomography (CT) and magnetic resonance imaging (MRI) image-guided diagnosis and therapy. Fine-needle biopsy, interstitial tumor therapy, and chemical sympathectomy, as well as the treatment of chronic spinal diseases, including periradicular infiltration at irritated spinal nerve roots, percutaneous laser decompression of intervertebral disks, and intraspinal microendoscopic scar dissection after failed back surgery are described. To overcome specific drawbacks of CT application, we have evaluated technological prerequisites and feasibility of MRI guidance of interventional procedures, such as biopsy, aspiration of neoplasm, and local interstitial drug instillation. New MR-compatible needles, trocars/cannulae, endoscopes, and ancillary equipment were developed and evaluated in collaboration with industry. Sequences, study protocols, and the strategies of performing the procedure within the environment of an interventional MRI suite have been formulated. In 168 patients, 204 interventions such as aspiration biopsy, peridural corticoid injection at spinal nerve roots, intratumoral ethanol instillation, chemical sympathectomy, and percutaneous laser decompression of herniated intervertebral disks were performed successfully. CT and MRI guidance of percutaneous and microendoscopic interventions provides a reproducible and precise means of instrument control. Aside from preoperative planning of the access trajectory, instruments can be placed under CT or MRI control and the therapeutic process can be monitored. Although MRI avoids the need for ionizing radiation and provides multiplanar multislice images with excellent soft tissue contrast, the representation of instruments and the resolution is currently inferior to that achieved by CT imaging. PMID:10401142

  5. A constrained conjugate gradient algorithm for computed tomography

    SciTech Connect

    Azevedo, S.G.; Goodman, D.M.

    1994-11-15

    Image reconstruction from projections of x-ray, gamma-ray, protons and other penetrating radiation is a well-known problem in a variety of fields, and is commonly referred to as computed tomography (CT). Various analytical and series expansion methods of reconstruction and been used in the past to provide three-dimensional (3D) views of some interior quantity. The difficulties of these approaches lie in the cases where (a) the number of views attainable is limited, (b) the Poisson (or other) uncertainties are significant, (c) quantifiable knowledge of the object is available, but not implementable, or (d) other limitations of the data exist. We have adapted a novel nonlinear optimization procedure developed at LLNL to address limited-data image reconstruction problems. The technique, known as nonlinear least squares with general constraints or constrained conjugate gradients (CCG), has been successfully applied to a number of signal and image processing problems, and is now of great interest to the image reconstruction community. Previous applications of this algorithm to deconvolution problems and x-ray diffraction images for crystallography have shown the great promise.

  6. Continuous analog of multiplicative algebraic reconstruction technique for computed tomography

    NASA Astrophysics Data System (ADS)

    Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.

  7. Digital Radiography and Computed Tomography (DRCT) Product Improvement Plan (PIP)

    SciTech Connect

    Tim Roney; Bob Pink; Karen Wendt; Robert Seifert; Mike Smith

    2010-12-01

    The Idaho National Laboratory (INL) has been developing and deploying x-ray inspection systems for chemical weapons containers for the past 12 years under the direction of the Project Manager for Non-Stockpile Chemical Materiel (PMNSCM). In FY-10 funding was provided to advance the capabilities of these systems through the DRCT (Digital Radiography and Computed Tomography) Product Improvement Plan (PIP), funded by the PMNSCM. The DRCT PIP identified three research tasks; end user study, detector evaluation and DRCT/PINS integration. Work commenced in February, 2010. Due to the late start and the schedule for field inspection of munitions at various sites, it was not possible to spend sufficient field time with operators to develop a complete end user study. We were able to interact with several operators, principally Mr. Mike Rowan who provided substantial useful input through several discussions and development of a set of field notes from the Pueblo, CO field mission. We will be pursuing ongoing interactions with field personnel as opportunities arise in FY-11.

  8. Multi-Mounted X-Ray Computed Tomography.

    PubMed

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  9. Validation of a Prototype Optical Computed Tomography System

    PubMed Central

    Zakariaee, Seyed Salman; Molazadeh, Mikaeil; Takavar, Abbas; Shirazi, Alireza; Mesbahi, Asghar; Zeinali, Ahad

    2015-01-01

    In radiation cancer treatments, the most of the side effects could be minimized using a proper dosimeter. Gel dosimeter is the only three-dimensional dosimeter and magnetic resonance imaging (MRI) is the gold standard method for gel dosimeter readout. Because of hard accessibility and high cost of sample reading by MRI systems, some other alternative methods were developed. The optical computed tomography (OCT) method could be considered as the most promising alternative method that has been studied widely. In the current study, gel dosimeter scanning using a prototype optical scanner and validation of this optical scanner was performed. Optical absorbance of the irradiated gel samples was determined by both of conventional spectrophotometer and the fabricated OCT system at 632 nm. Furthermore, these irradiated vials were scanned by a 1.5 T MRI. The slope of the curves was extracted as the dose-response sensitivity. The R2-dose sensitivity measured by MRI method was 0.1904 and 0.113 for NIPAM and PAGAT gels, respectively. The optical dose sensitivity obtained by conventional spectrophotometer and the fabricated optical scanner was 0.0453 and 0.0442 for NIPAM gels and 0.0244 and 0.0242 for PAGAT gels, respectively. The scanning results of the absorbed dose values showed that the new OCT and conventional spectrophotometer were in fair agreement. From the results, it could be concluded that the fabricated system is able to quantize the absorbed dose values in polymer gel samples with acceptable accuracy. PMID:26120572

  10. Bone marrow scintigraphy and computed tomography in myloproliferative disease

    SciTech Connect

    Goldsmith, S.J.; Gilbert, H.S.; Hermann, G.

    1985-05-01

    Peripheral bone marrow (BM) expansion in myeloproliferative disease (MPD) is demonstrated by scintigraphy (scint) with Technetium 99m sulfur colloid (TSC) or Indium III chloride (In). Computed tomography (CT) of the normal adult medullary cavity yields negative attenuation coefficients (AC) which become positive when BM fat is replaced. BM scint and CT of the medullary cavity are obtained in 23 studies in 21 pts: 6 polycythemia vera (PCV), 6 post PCV myeloid metaplasis (MyM), 4 agnogenic MyM, 3 myelodysplasia with refractory anemia, 1 acute myelocytic leukemia and 1 chronic myelocytic with acute leukemic transformation. AC were measured for BM cavity of lower extremities at each third of the femur and tibia. Values ranged from -89 to +289 Hounsfield units. The results are presented in this paper. There was agreement between SCINT and CT in 83% pts and segments. 80% of MB segments with + AC had scint identified BM. BM biopsy of the iliac crest demonstrated fibrosis or blast proliferation in pts with +AC rather than hypercellularity or osteosclerosis. The highest AC values (>200) were seen in pts with blast proliferation and fibrosis. Decreased BM scint visualization and +CT AC correlated with BM fibrosis and may reflect replacement of BM elements or decreased RES function. BM scint and CT are useful to monitor MPD and select BM sites for biopsy.

  11. Ultrasound attenuation computed tomography assessment of PAGAT gel dose.

    PubMed

    Khoei, S; Trapp, J V; Langton, C M

    2014-08-01

    Ultrasound has been previously investigated as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose responses. We extend previous work utilizing a new computed tomography ultrasound scanner comprising of two identical 5 MHz, 128-element linear-array ultrasound transducers, co-axially aligned and submerged in water as a coupling agent, with rotational of the gel dosimeter between the transducers facilitated by a robotic arm. We have investigated the dose-dependence of both ultrasound bulk attenuation and broadband ultrasound attenuation (BUA) for the PAGAT gel dosimeter. The ultrasound bulk attenuation dose sensitivity was found to be 1.46  ±  0.04 dB m( -1) Gy( -1), being in agreement with previously published results for PAG and MAGIC gels. BUA was also found to be dose dependent and was measured to be 0.024  ±  0.003 dB MHz( -1) Gy( -1); the advantage of BUA being its insensitivity to frequency-independent attenuation mechanisms including reflection and refraction, thereby minimizing image reconstruction artefacts. PMID:25049236

  12. Clinical significance of computed tomography assessment for third molar surgery.

    PubMed

    Nakamori, Kenji; Tomihara, Kei; Noguchi, Makoto

    2014-07-28

    Surgical extraction of the third molar is the most commonly performed surgical procedure in the clinical practice of oral surgery. Third molar surgery is warranted when there is inadequate space for eruption, malpositioning, or risk for cyst or odontogenic tumor formation. Preoperative assessment should include a detailed morphologic analysis of the third molar and its relationship to adjacent structures and surrounding tissues. Due to developments in medical engineering technology, computed tomography (CT) now plays a critical role in providing the clear images required for adequate assessment prior to third molar surgery. Removal of the maxillary third molar is associated with a risk for maxillary sinus perforation, whereas removal of the mandibular third molar can put patients at risk for a neurosensory deficit from damage to the lingual nerve or inferior alveolar nerve. Multiple factors, including demographic, anatomic, and treatment-related factors, influence the incidence of nerve injury during or following removal of the third molar. CT assessment of the third molar prior to surgery can identify some of these risk factors, such as the absence of cortication between the mandibular third molar and the inferior alveolar canal, prior to surgery to reduce the risk for nerve damage. This topic highlight presents an overview of the clinical significance of CT assessment in third molar surgery. PMID:25071882

  13. Clinical significance of computed tomography assessment for third molar surgery

    PubMed Central

    Nakamori, Kenji; Tomihara, Kei; Noguchi, Makoto

    2014-01-01

    Surgical extraction of the third molar is the most commonly performed surgical procedure in the clinical practice of oral surgery. Third molar surgery is warranted when there is inadequate space for eruption, malpositioning, or risk for cyst or odontogenic tumor formation. Preoperative assessment should include a detailed morphologic analysis of the third molar and its relationship to adjacent structures and surrounding tissues. Due to developments in medical engineering technology, computed tomography (CT) now plays a critical role in providing the clear images required for adequate assessment prior to third molar surgery. Removal of the maxillary third molar is associated with a risk for maxillary sinus perforation, whereas removal of the mandibular third molar can put patients at risk for a neurosensory deficit from damage to the lingual nerve or inferior alveolar nerve. Multiple factors, including demographic, anatomic, and treatment-related factors, influence the incidence of nerve injury during or following removal of the third molar. CT assessment of the third molar prior to surgery can identify some of these risk factors, such as the absence of cortication between the mandibular third molar and the inferior alveolar canal, prior to surgery to reduce the risk for nerve damage. This topic highlight presents an overview of the clinical significance of CT assessment in third molar surgery. PMID:25071882

  14. Artifact reduction in industrial computed tomography via data fusion

    NASA Astrophysics Data System (ADS)

    Schrapp, Michael; Goldammer, Matthias; Stephan, Jürgen

    2014-02-01

    As the most stressed part of a gas turbine the first row of turbine blades is not only a challenge for the materials used. Also the testing of these parts have to meet the highest standards. Computed tomography (CT) as the technique which could reveal the most details also provides the biggest challenges [1]: A full penetration of large sized turbine blades is often only possible at high X-ray voltages causing disproportional high costs. A reduction of the X-ray voltage is able to reduce these arising costs but yields non penetration artifacts in the reconstructed CT image. In most instances, these artifacts manifests itself as blurred and smeared regions at concave edges due to a reduced signal to noise ratio. In order to complement the missing information and to increase the overall image quality of our reconstruction, we use further imaging modalities such as a 3-D Scanner and ultrasonic imaging. A 3-D scanner is easy and cost effective to implement and is able to acquire all relevant data simultaneously with the CT projections. If, however, the interior structure is of supplemental interest, an ultrasonic imaging method is additionally used. We consider this data as a priori knowledge to employ them in an iterative reconstruction. To do so, standard iterative reconstruction methods are modified to incorporate the a priori data in a regularization approach in combination with minimizing the total variation of our image. Applying this procedure on turbine blades, we are able to reduce the apparent artifacts almost completely.

  15. Atypical gunshot wound: Bullet trajectory analyzed by computed tomography

    PubMed Central

    Ro, Tae; Murray, Richard; Galvan, Dan; Nazim, Muhammad H.

    2015-01-01

    Introduction Gunshot injuries are a result of a bullet or projectile fired from a weapon that penetrates the body. Homicide, suicide, and occasionally, accidental events are a significant cause of firearm-related injuries. In rare cases, the damage from the gunshot injury can be masked due to an atypical bullet trajectory. Presentation of case A 63-year-old male was found with a gunshot wound to the anterior left knee. Computed tomography (CT) scans revealed a bullet track extending from the anterior aspect of the left knee that traveled cephalad subcutaneously and entered into the peritoneal cavity, perforating the distal descending colon. The bullet was found to be at rest adjacent to the spleen and posterior chest wall, with no injury to the lungs, kidneys or the spleen. The patient required a sigmoid colectomy with descending colostomy and was subsequently discharged home without any complications. Discussion Intra-abdominal organ damage from a gunshot wound to the distal limb is a rare occurrence. Atypical gun shot wounds, such as this case, have the potential for multiple issues including: delayed diagnostic tests, inaccurate radiological readings, and inappropriate medical management. Conclusion If an abnormal trajectory is maintained, it is possible for a bullet to traverse half the length of the body without the patient realizing it. Accurate CT analysis and quick decisions in surgical and medical management are critical takeaways to provide quality care to patients with these injuries. PMID:26263447

  16. Evaluation of variations in sinonasal region with computed tomography

    PubMed Central

    Dasar, Ufuk; Gokce, Erkan

    2016-01-01

    AIM: To investigate the frequency of anatomical variations in sinonasal region and association of these variations with mucosal diseases. METHODS: The study included 400 cases (191 female and 209 male) who were considered to have preliminary diagnoses of sinonasal pathology and who had paranasal sinus computed tomography (CT) examination in axial plane. Reformatted CT images were studied in all planes. RESULTS: Age range of the patients was 20-83 (mean 40.26 ± 14.85). Most commonly detected anatomical variation was Agger nasi cell (74.8%). There was a significant association between clinoid process pneumatization and protrusion of internal carotid arteries and optic nerves into sphenoid sinus (P < 0.001). Besides, the relationships between pterygoid process pneumatization and protrusion of vidian nerve into sphenoid sinus, and between pneumatization of large sphenoid wing and protrusion of maxillary nerves into sphenoid sinus were also significant (P < 0.001). Uncinate bulla and giant ethmoid bulla were found to be significantly associated with sinonasal mucosal diseases (P = 0.004 and P = 0.002, respectively). CONCLUSION: Sinonasal region has a great number of variations, and some of them have been determined to be associated with sinonasal mucosal disease. It is necessary to know that some of these variations are associated with protrusion of significant structures such as carotid artery or optic nerve into the sinus and care should be observed in surgeries on patients carrying these variations. PMID:26834948

  17. Potential of Computed Tomography for inspection of aircraft components

    SciTech Connect

    Azevedo, S.G.; Martz, H.E.; Schneberk, D.J.

    1993-08-01

    Computed Tomography (CT) using penetrating radiation (x- or gamma-rays) can be used in a number of aircraft applications. This technique results in 3D volumetric attenuation data that is related to density and effective atomic number. CT is a transmission scanning method that must allow complete access to both sides of the object under inspection; the radiation source and detection systems must surround the object. This normally precludes the inspection of some large or planar (large aspect ratio) parts of the aircraft. However, we are pursuing recent limited-data techniques using object model information to obtain useful data from the partial information acquired. As illustrative examples, we describe how CT was instrumental in the analysis of particular aircraft components. These include fuselage panels, single crystal turbine blades, and aluminumlithium composites. These tests were performed by the members of the Nondestructive Evaluation Section at the Lawrence Livermore National Laboratory (LLNL) where we have been actively working in CT research and development. The aerospace applications can represent various phases of the design, manufacture, assembly, test, and retirement of various components and assemblies.

  18. Pathophysiological Implication of Computed Tomography Images of Chronic Pulmonary Aspergillosis.

    PubMed

    Ando, Tsunehiro; Tochigi, Naobumi; Gocho, Kyoko; Moriya, Atsuko; Ikushima, Soichiro; Kumasaka, Toshio; Takemura, Tamiko; Shibuya, Kazutoshi

    2016-03-23

    Chronic pulmonary aspergillosis (CPA) is a refractory disorder that needs long-term antifungal treatment and occasionally results in fatal respiratory failure and hemoptysis. However, the pathological features of the disorder have not been thoroughly delineated. Thirty cases were therefore analyzed clinically and histologically to elucidate the pathophysiology of CPA. The subjects comprised 14 individuals who underwent surgical removal and 16 patients who died. No subject exhibited a severely immunocompromised state. The main symptoms included cough, hemosputum, and dyspnea. Chest computed tomography (CT) findings revealed a cavity, fungus ball, and consolidation and/or ground glass opacity (GGO); 27 serial CT scans showed enlarged consolidation and/or GGO (70%), dilatation of the cavity (26%), and extension to the opposite lung (22%). Histopathological findings revealed a cavity with ulceration, bronchitis, and various degrees of organizing pneumonia (OP) that were correlated with the area of consolidation and GGO on the CT scan. The essential pathophysiology of CPA can be understood as an active state of ulceration of the cavity and/or erosive bronchitis caused by contact with the fungus ball, which may play a significant role in the development of OP. Consequently, OP is thought to reflect respiratory failure that relates to the prognosis of CPA. PMID:26166500

  19. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    PubMed

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively. PMID:26981458

  20. Direct reconstruction of enhanced signal in computed tomography perfusion

    NASA Astrophysics Data System (ADS)

    Li, Bin; Lyu, Qingwen; Ma, Jianhua; Wang, Jing

    2016-04-01

    High imaging dose has been a concern in computed tomography perfusion (CTP) as repeated scans are performed at the same location of a patient. On the other hand, signal changes only occur at limited regions in CT acquired at different time points. In this work, we propose a new reconstruction strategy by effectively utilizing the initial phase high-quality CT to reconstruct the later phase CT acquired with a low-dose protocol. In the proposed strategy, initial high-quality CT is considered as a base image and enhanced signal (ES) is reconstructed directly by minimizing the penalized weighted least-square (PWLS) criterion. The proposed PWLS-ES strategy converts the conventional CT reconstruction into a sparse signal reconstruction problem. Digital and anthropomorphic phantom studies were performed to evaluate the performance of the proposed PWLS-ES strategy. Both phantom studies show that the proposed PWLS-ES method outperforms the standard iterative CT reconstruction algorithm based on the same PWLS criterion according to various quantitative metrics including root mean squared error (RMSE) and the universal quality index (UQI).

  1. [Computed tomography imaging in ureteropelvic junction obstruction--case report].

    PubMed

    Pilch, Katarzyna; Jaźwiec, Przemysław; Truszkiewicz, Krystian; Gać, Paweł

    2016-01-01

    Ureteropelvic junction obstruction (UPJO) is defined as an impedance in the normal flow of urine from the renal pelvis into the proximal ureter. This leads to an increase urine pressure in the pelvicalyceal system and as a consequence cause hydronephrosis and damage of renal parenchyma. Presence of anomalous vessels crossing the ureter (crossing vessels) is one of the many reasons of UPJ obstruction. We report a case of 32-year-old female patient with chronic abdominal pain and recurrent episodes of pyelonephritis in the past. Contrast enhanced URO-CT was performed in order to determine the cause of complaints. This examination revealed right pelvicalyceal system dilatation and ipsilateral UPJ obstruction. After urological consultation patient was qualified for surgery, which aimed to decompress right pelvicalyceal system by changing anatomical conditions between the ureter and presumably crossing vessels. We demonstrate in the described case the value of contrast enhanced computed tomography URO-CT) in the diagnostic process of UPJ pathology. A multitude of information that we obtain from URO-CT examination allows the surgeon to reveal the cause of abnormal urine flow and choose the optimal operating method to minimize the risk of adverse events (such as intraoperative bleeding from mutilated crossing vessels). PMID:27120949

  2. Established and emerging dose reduction methods in cardiac computed tomography.

    PubMed

    Small, Gary R; Kazmi, Mustapha; Dekemp, Robert A; Chow, Benjamin J W

    2011-08-01

    Cardiac computed tomography (CT) is a non-invasive modality that is commonly used as an alternative to invasive coronary angiography for the investigation of coronary artery disease. The enthusiasm for this technology has been tempered by a growing appreciation of the potential risks of malignancy associated with the use of ionising radiation. In the spirit of minimizing patient risk, the medical profession and industry have worked hard to developed methods and protocols to reduce patient radiation exposure while maintaining excellent diagnostic accuracy. A complete understanding of radiation reduction techniques will allow clinicians to reduce patient risk while providing an important diagnostic service. This review will consider the established and emerging techniques that may be adopted to reduce patient absorbed doses from x-ray CT. By modifying (1) x-ray tube output, (2) imaging time (scan duration), (3) imaging distance (scan length) and (4) the appropriate use of shielding, clinicians will be able to adhere to the 'as low as reasonably achievable (ALARA)' principle. PMID:21630110

  3. [Diagnosis. Radiological study. Ultrasound, computed tomography and magnetic resonance imaging].

    PubMed

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Because of its low cost, availability in primary care and ease of interpretation, simple X-ray should be the first-line imaging technique used by family physicians for the diagnosis and/or follow-up of patients with osteoarthritis. Nevertheless, this technique should only be used if there are sound indications and if the results will influence decision-making. Despite the increase of indications in patients with rheumatological disease, the role of ultrasound in patients with osteoarthritis continues to be limited. Computed tomography (CT) is of some -although limited- use in osteoarthritis, especially in the study of complex joints (such as the sacroiliac joint and facet joints). Magnetic resonance imaging (MRI) has represented a major advance in the evaluation of joint cartilage and subchondral bone in patients with osteoarthritis but, because of its high cost and diagnostic-prognostic yield, this technique should only be used in highly selected patients. The indications for ultrasound, CT and MRI in patients with osteoarthritis continue to be limited in primary care and often coincide with situations in which the patient may require hospital referral. Patient safety should be bourne in mind. Patients should be protected from excessive ionizing radiation due to unnecessary repeat X-rays or inadequate views or to requests for tests such as CT, when not indicated. PMID:24467957

  4. X-ray computed tomography for additive manufacturing: a review

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Maskery, I.; Leach, R. K.

    2016-07-01

    In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM.

  5. Nanoparticle Contrast Agents for Computed Tomography: A Focus on Micelles

    PubMed Central

    Cormode, David P.; Naha, Pratap C.; Fayad, Zahi A.

    2014-01-01

    Computed tomography (CT) is an X-ray based whole body imaging technique that is widely used in medicine. Clinically approved contrast agents for CT are iodinated small molecules or barium suspensions. Over the past seven years there has been a great increase in the development of nanoparticles as CT contrast agents. Nanoparticles have several advantages over small molecule CT contrast agents, such as long blood-pool residence times, and the potential for cell tracking and targeted imaging applications. Furthermore, there is a need for novel CT contrast agents, due to the growing population of renally impaired patients and patients hypersensitive to iodinated contrast. Micelles and lipoproteins, a micelle-related class of nanoparticle, have notably been adapted as CT contrast agents. In this review we discuss the principles of CT image formation and the generation of CT contrast. We discuss the progress in developing non-targeted, targeted and cell tracking nanoparticle CT contrast agents. We feature agents based on micelles and used in conjunction with spectral CT. The large contrast agent doses needed will necessitate careful toxicology studies prior to clinical translation. However, the field has seen tremendous advances in the past decade and we expect many more advances to come in the next decade. PMID:24470293

  6. Brain single photon emission computed tomography in neonates

    SciTech Connect

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.; Spehl, M.; Toppet, V.; Ham, H.; Piepsz, A.; Rubinstein, M.; Nol, P.H.; Haumont, D. )

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.

  7. Frontal sinus parameters in computed tomography and sex determination.

    PubMed

    Akhlaghi, Mitra; Bakhtavar, Khadijeh; Moarefdoost, Jhale; Kamali, Artin; Rafeifar, Shahram

    2016-03-01

    The frontal sinus is a sturdy part of the skull that is likely to be retrieved for forensic investigations. We evaluated frontal sinus parameters in paranasal sinus computed tomography (CT) images for sex determination. The study was conducted on 200 normal paranasal sinus CT images of 100 men and 100 women of Persian origin. We categorized the studied population into three age groups of 20-34, 35-49 and ⩾ 50 years. The number of partial septa in the right frontal sinus and the maximum height and width were significantly different between the two sexes. The highest precision for sex determination was for the maximum height of the left frontal sinus (61.3%). In the 20-34 years age-group, height and width of the frontal sinus were significantly different between the two sexes and the height of the left sinus had the highest precision (60.8%). In the 35-49 years age-group, right anterior-posterior diameter had a sex determination precision of 52.3%. No frontal sinus parameter reached a statistically significant level for sex determination in the ⩾ 50 years age-group. The number of septa and scallopings were not useful in sex determination. Frontal sinus parameters did not have a high precision in sex determination among Persian adults. PMID:26980249

  8. Corrosion monitoring with tangential radiography and limited view computed tomography

    NASA Astrophysics Data System (ADS)

    Ewert, Uwe; Tschaikner, Martin; Hohendorf, Stefan; Bellon, Carsten; Haith, Misty I.; Huthwaite, Peter; Lowe, Michael J. S.

    2016-02-01

    Accurate and reliable detection of subsea pipeline corrosion is required in order to verify the integrity of the pipeline. A laboratory trial was conducted with a representative pipe sample. The accurate measurement of the wall thickness and corrosion was performed with high energy X-rays and a digital detector array. A 7.5 MV betatron was used to penetrate a stepped pipe and a welded test pipe of 3 m length and 327 mm outer diameter, with different artificial corrosion areas in the 24 mm thick steel wall. The radiographs were taken with a 40 x 40 cm² digital detector array, which was not large enough to cover the complete pipe diameter after magnification. A C-arm based geometry was tested to evaluate the potential for automated inspection in field. The primary goal was the accurate measurement of wall thickness conforming to the standard. The same geometry was used to explore the ability of a C-arm based scanner in asymmetric mode for computed tomography (CT) measurement, taking projections covering only two thirds of the pipe diameter. The technique was optimized with the modelling software aRTist. A full volume of the pipe was reconstructed and the CT data set was used for reverse engineering, providing a CAD file for further aRTist simulations to explore the technique for subsea inspections.

  9. Dynamic ventilation imaging from four-dimensional computed tomography

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas; Sanders, Kevin; Castillo, Edward; Zhang, Yin; Bidaut, Luc; Pan, Tinsu; Komaki, Ritsuko

    2006-02-01

    A novel method for dynamic ventilation imaging of the full respiratory cycle from four-dimensional computed tomography (4D CT) acquired without added contrast is presented. Three cases with 4D CT images obtained with respiratory gated acquisition for radiotherapy treatment planning were selected. Each of the 4D CT data sets was acquired during resting tidal breathing. A deformable image registration algorithm mapped each (voxel) corresponding tissue element across the 4D CT data set. From local average CT values, the change in fraction of air per voxel (i.e. local ventilation) was calculated. A 4D ventilation image set was calculated using pairs formed with the maximum expiration image volume, first the exhalation then the inhalation phases representing a complete breath cycle. A preliminary validation using manually determined lung volumes was performed. The calculated total ventilation was compared to the change in contoured lung volumes between the CT pairs (measured volume). A linear regression resulted in a slope of 1.01 and a correlation coefficient of 0.984 for the ventilation images. The spatial distribution of ventilation was found to be case specific and a 30% difference in mass-specific ventilation between the lower and upper lung halves was found. These images may be useful in radiotherapy planning.

  10. Dimensional Control of Micro Components with Synchrotron Computed Tomography

    SciTech Connect

    Ehrig, Karsten; Goebbels, Juergen; Staude, Andreas; Bartscher, Markus; Haertig, Frank; Kniel, Karin; Neukamm, Marko; Neuschaefer-Rube, Ulrich

    2010-04-06

    An advantage of Computed Tomography (CT) is the coordinate measurement capability of small inner structures, which are not accessible with classical measurement techniques. Using the advantages of synchrotron radiation CT measurements of parts with sizes of a few millimeters are performed at BAMline of BESSY II and are expected to be used as references for further dimensional measurements with micro CT. Previous investigations were focused on external gears, which are accessible with standard Coordinate Measurement Machines (CMMs). To obtain information about the accuracy of dimensional measurements of internal gears with CT, reference data have been measured by a tactile-optical CMM. This information is used to evaluate the performance of the CT. In addition to the first results for the evaluation of internal gear flanks, new measurements of different gear materials (steel and zirconium dioxide) will be presented. For functional evaluation, gear flanks are a matter of particular interest. Form deviations are analyzed with respect to the different gear materials to establish CT measurements as technology in the field of quality assurance and to compare the different manufacturing processes.

  11. Computed tomography: What and how does it measure?

    PubMed

    Mazonakis, Michalis; Damilakis, John

    2016-08-01

    The current study provides a comprehensive review about the use and the clinical applications of computed tomography (CT) associated with the in vivo evaluation of the human body composition. The high-resolution CT images allow the accurate separation of the various body compartments at the tissue/organ level including adipose tissue, skeletal muscle, bones and organs. The further ability of the imaging modality to distinguish the cortical from the trabecular bone and the visceral from the susbcutaneous fat is of great value in clinical studies. CT may also give important information about the components of the subcutaneous adipose tissue and the muscle or liver fat infiltration. The efficient determination of the skeletal muscle attenuation and bone mineral density, that related with metabolic disorders, is feasible with the aid of CT data. The area and volume of each human body compartment may be estimated with high accuracy and reproducibility from CT scans. These estimations may be carried out using the methods of manual planimetry, semi-automatic segmentation of the tissue of interest, stereological point-counting approach and geometrical models based either on linear or area measurements. The advantages and disadvantages of the aforementioned methods for the quantification of the human body composition are presented and discussed. PMID:26995675

  12. Spatial smoothing coherence factor for ultrasound computed tomography

    NASA Astrophysics Data System (ADS)

    Lou, Cuijuan; Xu, Mengling; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    In recent years, many research studies have been carried out on ultrasound computed tomography (USCT) for its application prospect in early diagnosis of breast cancer. This paper applies four kinds of coherence-factor-like beamforming methods to improve the image quality of synthetic aperture focusing method for USCT, including the coherence-factor (CF), the phase coherence factor (PCF), the sign coherence factor (SCF) and the spatial smoothing coherence factor (SSCF) (proposed in our previous work). The performance of these methods was tested with simulated raw data which were generated by the ultrasound simulation software PZFlex 2014. The simulated phantom was set to be water of 4cm diameter with three nylon objects of different diameters inside. The ring-type transducer had 72 elements with a center frequency of 1MHz. The results show that all the methods can reveal the biggest nylon circle with the radius of 2.5mm. SSCF gets the highest SNR among the proposed methods and provides a more homogenous background. None of these methods can reveal the two smaller nylon circles with the radius of 0.75mm and 0.25mm. This may be due to the small number of elements.

  13. Computed tomography perfusion imaging denoising using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna

    2012-06-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study.

  14. Sampling The Radon Transformation In Conventional Computed Tomography

    NASA Astrophysics Data System (ADS)

    Parker, Dennis L.; Smith, Vernon; Peschmann, Kristian R.; Couch, John L.

    1981-07-01

    The sampling geometry for conventional, multidetector, computed tomography is illustrated in terms of the Radon transformation for both rotate-rotate (3rd generation fan beam) and rotate-stationary (4th generation fan beam) scanners. By deriving an expression for the outline of the sampling region in the Radon transformation for each detector measurement it is demonstrated that the entire Radon transformation can be covered by non-overlapping sampling regions with the assumption of negligible detector dead space. An expression for angular aliasing is derived which demonstrates that object dependent artifacts can occur if the angular width of the sampling regions in conjunction with the angular sampling increment does not provide sufficient suppression of the high order angular harmonics in the representation of the scanned object. The number of views necessary to suppress angular aliasing, as well as the potential spatial resolution and general image quality are shown to be fundamentally related to the size, shape, and relative orientation of the Radon transformation sampling regions.

  15. Computed tomography-based training model for otoplasty.

    PubMed

    Schneider, Gerlind; Voigt, Sibylle; Rettinger, Gerhard

    2016-09-01

    Otoplasty for the correction of protruding ears is characterized by various techniques and a common and popular cosmetic procedure. For the surgeon, whether beginner or advanced, it is essential to understand the principles and master techniques for standard auricular deformities before applying further sophisticated methods, because a lot of complications and failures are caused by wrong indication and incorrect surgical techniques. The different surgical steps are best learned from teaching models. Therefore, we developed two different silicone models of protruding ears with moderate auricular deformities: one with conchal hyperplasia for the training of conchal resection, and one without antihelix for creating an antihelical fold by suturing technique, based on computed tomography scans of patients. The silicone ear models were evaluated during four standardized surgery courses for residents in otorhinolaryngology by 91 participants using specially designed questionnaires. Nearly all participants rated the training on the auricular models as very helpful (n = 51) or good (n = 31); the scores for the different techniques and properties of the models ranged from 2.0 to 2.6 in a range from 1 (very good) to 4 (inadequate). The good results demonstrate the possibility for learning different surgical otoplasty techniques with this newly designed teaching tool. PMID:26541715

  16. Simulations of an Optical Tactile Sensor Based on Computer Tomography

    NASA Astrophysics Data System (ADS)

    Ohka, Masahiro; Sawamoto, Yasuhiro; Zhu, Ning

    In order to create a robotic tactile sensor of thin shape, a new optical tactile sensor is developed by applying a CT (Computer Tomography) algorithm. The present tactile sensor is comprised of infrared emitting diode arrays, receiving phototransistor arrays and a transparent acrylic plate and a black rubber sheet with projections. Infrared rays emitted from the diode array are directed into one end of the plate and their intensity distribution is measured by the phototransistor array mounted on the other end. If the CT algorithm is directly applied to the tactile sensor, there are two shortcomings: the shape of the sensing area is limited to a circular region and there is a long calculation time. Thus, a new CT algorithm oriented to tactile sensing is proposed for overcoming these problems. In the present algorithm, a square sensing area is divided into an N-by-N array and algebraic equations are derived from the relationship between the input and output light intensities on the assumed light projections. Several reconstruction methods are considered for obtaining pressure values caused in the squares. In the present study, the ART (Algebraic Reconstruction Technique) and LU decomposition methods were employed, and these methods were compared to select the best reconstruction method. In a series of simulations, it was found that the LU decomposition method held an advantage for the present type of tactile sensor because of its robustness against disturbance and short calculation time.

  17. Computed tomography studies of lung ventilation and perfusion.

    PubMed

    Hoffman, Eric A; Chon, Deokiee

    2005-01-01

    With the emergence of multidetector-row computed tomography (CT) it is now possible to image both structure and function via use of a single imaging modality. Breath-hold spiral CT provides detail of the airway and vascular trees along with texture reflective of the state of the lung parenchyma. Use of stable xenon gas wash-in and/or wash-out methods using an axial mode of the CT scanner whereby images are acquired through gating to the respiratory cycle provide detailed images of regional ventilation with isotropic voxel dimensions now on the order of 0.4 mm. Axial scanning during a breath hold and gating to the electrocardiogram during the passage of a sharp bolus injection of iodinated contrast agent provide detailed images of regional pulmonary perfusion. These dynamic CT methods for the study of regional lung function are discussed in the context of other methods that have been used to study heterogeneity of lung function. PMID:16352755

  18. Advances in computed tomography evaluation of skull base diseases.

    PubMed

    Prevedello, Luciano M

    2014-10-01

    Introduction Computed tomography (CT) is a key component in the evaluation of skull base diseases. With its ability to clearly delineate the osseous anatomy, CT can provide not only important tips to diagnosis but also key information for surgical planning. Objectives The purpose of this article is to describe some of the main CT imaging features that contribute to the diagnosis of skull base tumors, review recent knowledge related to bony manifestations of these conditions, and summarize recent technological advances in CT that contribute to image quality and improved diagnosis. Data Synthesis Recent advances in CT technology allow fine-detailed evaluation of the bony anatomy using submillimetric sections. Dual-energy CT material decomposition capabilities allow clear separation between contrast material, bone, and soft tissues with many clinical applications in the skull base. Dual-energy technology has also the ability to decrease image degradation from metallic hardwares using some techniques that can result in similar or even decreased radiation to patients. Conclusions CT is very useful in the evaluation of skull base diseases, and recent technological advances can increase disease conspicuity resulting in improved diagnostic capabilities and enhanced surgical planning. PMID:25992136

  19. The application of computed tomography in wound ballistics research

    NASA Astrophysics Data System (ADS)

    Tsiatis, Nick; Moraitis, Konstantinos; Papadodima, Stavroula; Spiliopoulou, Chara; Kelekis, Alexis; Kelesis, Christos; Efstathopoulos, Efstathios; Kordolaimi, Sofia; Ploussi, Agapi

    2015-09-01

    In wound ballistics research there is a relationship between the data that characterize a bullet and the injury resulted after shooting when it perforates the human body. The bullet path in the human body following skin perforation as well as the damaging effect cannot always be predictable as they depend on various factors such as the bullet's characteristics (velocity, distance, type of firearm and so on) and the tissue types that the bullet passes through. The purpose of this presentation is to highlight the contribution of Computed Tomography (CT) in wound ballistics research. Using CT technology and studying virtual “slices” of specific areas on scanned human bodies, allows the evaluation of density and thickness of the skin, the subcutaneous tissue, the muscles, the vital organs and the bones. Density data taken from Hounsfield units can be converted in g/ml by using the appropriate software. By evaluating the results of this study, the anatomy of the human body utilizing ballistic gel will be reproduced in order to simulate the path that a bullet follows. The biophysical analysis in wound ballistics provides another application of CT technology, which is commonly used for diagnostic and therapeutic purposes in various medical disciplines.

  20. Computed tomography perfusion imaging denoising using gaussian process regression.

    PubMed

    Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna

    2012-06-21

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study. PMID:22617159

  1. Evolution in Computed Tomography: The Battle for Speed and Dose.

    PubMed

    Lell, Michael M; Wildberger, Joachim E; Alkadhi, Hatem; Damilakis, John; Kachelriess, Marc

    2015-09-01

    The advent of computed tomography (CT) has revolutionized radiology. Starting as head-only scanners, modern CT systems are now capable of performing whole-body examinations within a couple of seconds in isotropic resolution. Technical advancements of scanner hardware and image reconstruction techniques are reviewed and discussed in their clinical context. These improvements have led to a steady increase of CT examinations in all age groups for a number of reasons. On the one hand, it is very easy today to obtain whole-body data for oncologic staging and follow-up or for trauma imaging. On the other hand, new examinations such as cardiac imaging, virtual colonoscopy, gout imaging, and whole-organ perfusion imaging have widened the application profile of CT. The increasing awareness of risks associated with radiation exposure triggered the development of a variety of dose reduction techniques. Effective dose values below 1 mSv, less than the annual natural background radiation (3.1 mSv/year on average in the United States), are now routinely possible for a number of dedicated examinations, even for coronary CT angiography. PMID:26135019

  2. Disaster victim identification: new applications for postmortem computed tomography.

    PubMed

    Blau, Soren; Robertson, Shelley; Johnstone, Marnie

    2008-07-01

    Mass fatalities can present the forensic anthropologist and forensic pathologist with a different set of challenges to those presented by a single fatality. To date radiography has played an important role in the disaster victim identification (DVI) process. The aim of this paper is to highlight the benefits of applying computed tomography (CT) technology to the DVI process. The paper begins by reviewing the extent to which sophisticated imaging techniques, specifically CT, have been increasingly used to assist in the analysis of deceased individuals. A small scale case study is then presented which describes aspects of the DVI process following a recent Australian aviation disaster involving two individuals. Having grided the scene of the disaster, a total of 41 bags of heavily disrupted human remains were collected. A postmortem examination was subsequently undertaken. Analysis of the CT images of all body parts (n = 162) made it possible not only to identify and side differentially preserved skeletal elements which were anatomically unrecognizable in the heavily disrupted body masses, but also to observe and record useful identifying features such as surgical implants. In this case the role of the forensic anthropologist and CT technology were paramount in facilitating a quick identification, and subsequently, an effective and timely reconciliation, of body parts. Although this case study is small scale, it illustrates the enormous potential for CT imaging to complement the existing DVI process. PMID:18547358

  3. Rotation axis demultiplexer enabling simultaneous computed tomography of multiple samples

    PubMed Central

    Trtik, Pavel; Geiger, Fabian; Hovind, Jan; Lang, Udo; Lehmann, Eberhard; Vontobel, Peter; Peetermans, Steven

    2016-01-01

    This paper describes a device that allows for simultaneous tomographic imaging of samples on three independent rotational axes. This rotation axis demultiplexer (POLYTOM) is equipped with anti-backlash gears and placed on a standard sample rotation stage thus allowing for the transformation of the input rotation axis onto two additional parallel vertical axes. Consequently, three times the number of samples can be investigated within a given time period, thereby reducing the acquisition time of multiple sample tomographic investigations by a factor of three. The results of our pilot experiments using neutron tomographic imaging are presented. We foresee that the device will be of particular use for tomographic imaging of elongated samples at low-flux (e.g. neutron) sources; however, its use for the more widespread types of imaging techniques (e.g. X-rays) is not ruled out. The highlights of this new device for the purpose of the (neutron) computed tomography are: • Anti-backlash transformation of the input rotation onto two additional rotational axes. • Reduction of the acquisition time of the multiple sample tomographic investigations by a factor of three. • Low-cost. PMID:27158597

  4. Rotation axis demultiplexer enabling simultaneous computed tomography of multiple samples.

    PubMed

    Trtik, Pavel; Geiger, Fabian; Hovind, Jan; Lang, Udo; Lehmann, Eberhard; Vontobel, Peter; Peetermans, Steven

    2016-01-01

    This paper describes a device that allows for simultaneous tomographic imaging of samples on three independent rotational axes. This rotation axis demultiplexer (POLYTOM) is equipped with anti-backlash gears and placed on a standard sample rotation stage thus allowing for the transformation of the input rotation axis onto two additional parallel vertical axes. Consequently, three times the number of samples can be investigated within a given time period, thereby reducing the acquisition time of multiple sample tomographic investigations by a factor of three. The results of our pilot experiments using neutron tomographic imaging are presented. We foresee that the device will be of particular use for tomographic imaging of elongated samples at low-flux (e.g. neutron) sources; however, its use for the more widespread types of imaging techniques (e.g. X-rays) is not ruled out. The highlights of this new device for the purpose of the (neutron) computed tomography are: •Anti-backlash transformation of the input rotation onto two additional rotational axes.•Reduction of the acquisition time of the multiple sample tomographic investigations by a factor of three.•Low-cost. PMID:27158597

  5. Total variation superiorization schemes in proton computed tomography image reconstruction

    PubMed Central

    Penfold, S. N.; Schulte, R. W.; Censor, Y.; Rosenfeld, A. B.

    2010-01-01

    Purpose: Iterative projection reconstruction algorithms are currently the preferred reconstruction method in proton computed tomography (pCT). However, due to inconsistencies in the measured data arising from proton energy straggling and multiple Coulomb scattering, the noise in the reconstructed image increases with successive iterations. In the current work, the authors investigated the use of total variation superiorization (TVS) schemes that can be applied as an algorithmic add-on to perturbation-resilient iterative projection algorithms for pCT image reconstruction. Methods: The block-iterative diagonally relaxed orthogonal projections (DROP) algorithm was used for reconstructing GEANT4 Monte Carlo simulated pCT data sets. Two TVS schemes added on to DROP were investigated; the first carried out the superiorization steps once per cycle and the second once per block. Simplifications of these schemes, involving the elimination of the computationally expensive feasibility proximity checking step of the TVS framework, were also investigated. The modulation transfer function and contrast discrimination function were used to quantify spatial and density resolution, respectively. Results: With both TVS schemes, superior spatial and density resolution was achieved compared to the standard DROP algorithm. Eliminating the feasibility proximity check improved the image quality, in particular image noise, in the once-per-block superiorization, while also halving image reconstruction time. Overall, the greatest image quality was observed when carrying out the superiorization once per block and eliminating the feasibility proximity check. Conclusions: The low-contrast imaging made possible with TVS holds a promise for its incorporation into future pCT studies. PMID:21158301

  6. Computed Tomography-based Subclassification of Chronic Obstructive Pulmonary Disease.

    PubMed

    Dirksen, Asger; Wille, Mathilde M W

    2016-04-01

    Computed tomography (CT) is an obvious modality for subclassification of COPD. Traditionally, the pulmonary involvement of chronic obstructive pulmonary disease (COPD) in smokers is understood as a combination of deleterious effects of smoking on small airways (chronic bronchitis and small airways disease) and distal to the airways with destruction and loss of lung parenchyma (emphysema). However, segmentation of airways is still experimental; with contemporary high-resolution CT (HRCT) we can just see the "entrance" of small airways, and until now changes in airway morphology that have been observed in COPD are subtle. Furthermore, recent results indicate that emphysema may also be the essential pathophysiologic mechanism behind the airflow limitation of COPD. The definition of COPD excludes bronchiectasis as a symptomatic subtype of COPD, and CT findings in chronic bronchitis and exacerbations of COPD are rather unspecific. This leaves emphysema as the most obvious candidate for subclassification of COPD. Both chest radiologists and pulmonary physicians are quite familiar with the appearance of various patterns of emphysema on HRCT, such as centrilobular, panlobular, and paraseptal emphysema. However, it has not yet been possible to develop operational definitions of these patterns that can be used by computer software to automatically classify CT scans into distinct patterns. In conclusion, even though various emphysema patterns can be recognized visually, CT has not yet demonstrated a great potential for automated subclassification of COPD, and it is an open question whether it will ever be possible to achieve success equivalent to that obtained by HRCT in the area of interstitial lung diseases. PMID:27115944

  7. Cyst-based measurements for assessing lymphangioleiomyomatosis in computed tomography

    SciTech Connect

    Lo, P. Brown, M. S.; Kim, H.; Kim, H.; Goldin, J. G.; Argula, R.; Strange, C.

    2015-05-15

    Purpose: To investigate the efficacy of a new family of measurements made on individual pulmonary cysts extracted from computed tomography (CT) for assessing the severity of lymphangioleiomyomatosis (LAM). Methods: CT images were analyzed using thresholding to identify a cystic region of interest from chest CT of LAM patients. Individual cysts were then extracted from the cystic region by the watershed algorithm, which separates individual cysts based on subtle edges within the cystic regions. A family of measurements were then computed, which quantify the amount, distribution, and boundary appearance of the cysts. Sequential floating feature selection was used to select a small subset of features for quantification of the severity of LAM. Adjusted R{sup 2} from multiple linear regression and R{sup 2} from linear regression against measurements from spirometry were used to compare the performance of our proposed measurements with currently used density based CT measurements in the literature, namely, the relative area measure and the D measure. Results: Volumetric CT data, performed at total lung capacity and residual volume, from a total of 49 subjects enrolled in the MILES trial were used in our study. Our proposed measures had adjusted R{sup 2} ranging from 0.42 to 0.59 when regressing against the spirometry measures, with p < 0.05. For previously used density based CT measurements in the literature, the best R{sup 2} was 0.46 (for only one instance), with the majority being lower than 0.3 or p > 0.05. Conclusions: The proposed family of CT-based cyst measurements have better correlation with spirometric measures than previously used density based CT measurements. They show potential as a sensitive tool for quantitatively assessing the severity of LAM.

  8. Computer tomography for nondestructive testing in the automotive industry

    NASA Astrophysics Data System (ADS)

    Bauer, Walter; Bessler, Florian T.; Zabler, Erich; Bergmann, Ralf B.

    2004-10-01

    The application of computer tomography (CT) for non-destructive testing is of continuing interest to research and industry alike, as economic pressure is ever increasing on production processes. Three concurring goals drive the development of CT, namely: It has to be fast, cheap and precise. With a fast CT-system, the technique can not only be used for error analysis and precision measurements, but also for the application as a standard tool in the production line for the complete quality control of parts. At the Robert Bosch corporate research centre in Stuttgart, Germany, we have set up a CT-system, that allows us to conduct experiments towards these goals and to test and develop the latest software for the reconstruction of x-ray images. One of our main challenges is to use CT for reverse engineering processes and to create computer assisted design (CAD) models from measured data. For this application often a coordinate measurement machine (CMM) is used that gathers a cloud of data points by optical inspection. However, for many parts the inside of the object is relevant. Here CT has the unique advantage of delivering volumetric data. Once the process of the generation of a cloud of data points can be achieved with high precision, standard reverse engineering CAD software can be used to determine the dimensions of the interior structure of an object. This paper describes the use of CT for non-destructive testing at Robert Bosch GmbH, the accuracy limits for the measurement of volumetric data and the classification and analysis of material defects. Furthermore, it highlights the ongoing research to make CT fast, exact and cheap, and to enable its utilisation for 100% testing of parts at the end of a production line.

  9. Computed tomography based spectral imaging for fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Ford, Bridget Kathleen

    Multispectral imaging has been used for decades in remote sensing to enhance the classification, discrimination and characterization of materials. Only recently has this same technology been similarly applied to fixed biological samples in cytogenetics, pathology and medicine. A further extension to in vivo studies is often limited by the low levels of associated fluorescence as well as the increased temporal resolution required to analyze physiological changes. In addition, the cellular response to a specific agonist is often heterogeneous across the cellular field requiring a combination of sufficient spatial and temporal resolutions. A computed tomography imaging spectrometer (CTIS) has been developed which overcomes these limitations by simultaneously collecting extended range spectral information (470--740 nm, 5 nm sampling) across a 2-D field of view (200 mum x 200 mum, 0.96 mum sampling). The CTIS uses a computer generated hologram to produce a 5 x 5 array of images with differing amounts and directions of dispersion. This set of images allows the 3-D signal (x, y, lambda) from a fluorescent sample to be mapped onto a 2-D detector array. In this way, the full spectral and spatial information is acquired for a 2-D cellular field during a single integration time (presently 2 sec for biological specimens). The CTIS's design, calibration, and underlying theory are described in detail. In addition, the capability of the CTIS to simultaneously collect the fluorescence emission of multiple fluorophores across a 2-D cellular field is demonstrated. Specifically, the combined spectral variations of seminapthorhodafluor-I and enhanced green fluorescent protein were followed in rat insulinoma cells in order to extend the linear range of intracellular pH detection.

  10. An X-ray Computed Tomography/Positron Emission Tomography System Designed Specifically for Breast Imaging

    PubMed Central

    Boone, John M.; Yang, Kai; Burkett, George W.; Packard, Nathan J.; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D.; Lindfors, Karen K.

    2011-01-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging. PMID:20082528

  11. SADMFR Guidelines for the Use of Cone-Beam Computed Tomography/Digital Volume Tomography.

    PubMed

    Dula, Karl; Benic, Goran I; Bornstein, Michael; Dagassan-Berndt, Dorothea; Filippi, Andreas; Hicklin, Stefan; Kissling-Jeger, Franziska; Luebbers, Heinz-Theo; Sculean, Anton; Sequeira-Byron, Patrick; Walter, Clemens; Zehnder, Matthias

    2015-01-01

    In 2011, the first consensus conference on guidelines for the use of cone-beam computed tomography (CBCT) was convened by the Swiss Society of Dentomaxillofacial Radiology (SGDMFR). This conference covered topics of oral and maxillofacial surgery, temporomandibular joint dysfunctions and disorders, and orthodontics. In 2014, a second consensus conference was convened on guidelines for the use of CBCT in endodontics, periodontology, reconstructive dentistry and pediatric dentistry. The guidelines are intended for all dentists in order to facilitate the decision as to when the use of CBCT is justified. As a rule, the use of CBCT is considered restrictive, since radiation protection reasons do not allow its routine use. CBCT should therefore be reserved for complex cases where its application can be expected to provide further information that is relevant to the choice of therapy. In periodontology, sufficient information is usually available from clinical examination and periapical radiographs; in endodontics alternative methods can often be used instead of CBCT; and for implant patients undergoing reconstructive dentistry, CT is of interest for the workflow from implant planning to the superstructure. For pediatric dentistry no application of CBCT is seen for caries diagnosis. PMID:26399521

  12. Computed tomography and positron emission tomography/computed tomography surveillance after combined modality treatment of supradiaphragmatic Hodgkin lymphoma: a clinical and economic perspective.

    PubMed

    Patel, Vatsal; Buckstein, Michael; Perini, Rodolfo; Hill-Kayser, Christine; Svoboda, Jakub; Plastaras, John P

    2013-10-01

    We studied the clinical benefits of radiological imaging, in the follow-up of patients after combined modality treatment for stage I/II classical supradiaphragmatic Hodgkin lymphoma (HL). Imaging data were collected for 78 adults treated during 1996-2008. Median follow-up was 4.6 years. Six of the nine relapses were detected clinically. On average, 31 imaging studies/patient were performed, with an estimated cost of $12 608/patient. Chest computed tomography (CT) scans accounted for 25%, abdominopelvic CT scans 41% and positron emission tomography (PET) or PET/CT scans 22% of this expense. Only one patient recurred infradiaphragmatically. The estimated radiation dose from imaging was 399 mSv and 229 mSv per patient, in relapse and non-relapse groups, respectively. CT scans contributed over 80% of the imaging radiation exposure. The routine use of CT scans in the surveillance of patients with HL after curative treatment adds to healthcare costs and total body radiation exposure with a low yield. History and physical examination remain effective tools for the follow-up of patients. PMID:23331161

  13. Dosimetry and cost of imaging osseointegrated implants with film-based and computed tomography.

    PubMed

    Scaf, G; Lurie, A G; Mosier, K M; Kantor, M L; Ramsby, G R; Freedman, M L

    1997-01-01

    Thermoluminescent dosimeters were used to measure radiation doses at craniofacial sites in a tissue-equivalent phantom during film-based multidirectional tomography with the Tomax Ultrascan (Incubation Industries, Ivyland, Pa.) and during computed tomography with the Elscint Excel 2400 (Elscint Corp., Tel Aviv, Israel). Mean absorbed doses for presurgical mandibular and maxillary canine and molar implant assessments were converted to equivalent doses, which were then multiplied by published weighting factors and summed to give effective doses. The computed tomography device consistently delivered higher doses than the Tomax Ultrascan to all anatomic locations; the differences were most pronounced when only one or two implant sites were evaluated. The reasons for the dose disparities are considered both anatomically and procedurally. A survey of examination cost revealed film-based multidirectional tomography to be less expensive than computed tomography. PMID:9007922

  14. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    PubMed Central

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-01-01

    IntroductionThis study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. MethodsTen patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. ResultsPre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. ConclusionPS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity. PMID:26229630

  15. 18F-fluorodeoxyglucose Positron Emisson Tomography/Computed Tomography Guided Conformal Brachytherapy for Cervical Cancer

    SciTech Connect

    Nam, Heerim; Huh, Seung Jae; Ju, Sang Gyu; Park, Won; Lee, Jeong Eun; Choi, Joon Young; Kim, Byung-Tae; Kim, Chan Kyo; Park, Byung Kwan

    2012-09-01

    Purpose: To evaluate the feasibility of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-guided conformal brachytherapy treatment planning in patients with cervical cancer. Methods and Materials: Pretreatment FDG-PET/CT was performed for 12 patients with cervical cancer. Brachytherapy simulation was performed after an external-beam radiation therapy median dose of 4140 cGy. Patients underwent FDG-PET/CT scans with placement of tandem and ovoid applicators. The gross tumor volume (GTV) was determined by adjusting the window and level to a reasonable value and outlining the edge of the enhancing area, which was done in consultation with a nuclear medicine physician. A standardized uptake value profile of the tumor margin was taken for each patient relative to the maximum uptake value of each tumor and analyzed. The plan was designed to deliver 400 cGy to point A (point A plan) or to cover the clinical target volume (CTV) (PET/CT plan). Results: The median dose that encompassed 95% of the target volume (D95) of the CTV was 323.0 cGy for the point A plan vs 399.0 cGy for the PET/CT plan (P=.001). The maximum standardized uptake values (SUV{sub max}) of the tumors were reduced by a median of 57% (range, 13%-80%). All but 1 patient presented with discernable residual uptake within the tumors. The median value of the thresholds of the tumors contoured by simple visual analysis was 41% (range, 23%-71%). Conclusions: In this study, the PET/CT plan was better than the conventional point A plan in terms of target coverage without increasing the dose to the normal tissue, making optimized 3-dimensional brachytherapy treatment planning possible. In comparison with the previously reported study with PET or CT alone, we found that visual target localization was facilitated by PET fusion on indeterminate CT masses. Further studies are needed to characterize the metabolic activity detected during radiation therapy for more reliable targeting.

  16. Budget impact from the incorporation of positron emission tomographycomputed tomography for staging lung cancers

    PubMed Central

    Biz, Aline Navega; Caetano, Rosângela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer. METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS) database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT) exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used. RESULTS The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD) million for the restricted offer and 202.7 BRL (125.9 USD) million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD) million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD) and 600 BRL (372.8 USD) million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD) and 103.8 BRL (64.5 USD) million, considering PET-CT for negative CT and PET-CT for all, respectively. CONCLUSIONS The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated. PMID:26274871

  17. Ceramic and polymeric dental onlays evaluated by photo-elasticity, optical coherence tomography, and micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda; Topala, Florin; Ionita, Ciprian; Negru, Radu; Fabriky, Mihai; Marcauteanu, Corina; Bradu, Adrian; Dobre, George; Marsavina, Liviu; Rominu, Mihai; Podoleanu, Adrian

    2011-10-01

    Dental onlays are restorations used to repair rear teeth that have a mild to moderate amount of decay. They can also be used to restore teeth that are cracked or fractured if the damage is not severe enough to require a dental crown. The use of onlays requires less tooth reduction than does the use of metal fillings. This allows dentists to conserve more of a patient's natural tooth structure in the treatment process. The aims of this study are to evaluate the biomechanical comportment of the dental onlays, by using the 3D photo elasticity method and to investigate the integrity of the structures and their fitting to the dental support. For this optical coherence tomography and micro-computed tomography were employed. Both methods were used to investigate 37 dental onlays, 17 integral polymeric and 20 integral ceramic. The results permit to observe materials defects inside the ceramic or polymeric onlays situate in the biomechanically tensioned areas that could lead to fracture of the prosthetic structure. Marginal fitting problems of the onlays related to the teeth preparations were presented in order to observe the possibility of secondary cavities. The resulted images from the optical coherence tomography were verified by the micro-computed tomography. In conclusion, the optical coherence tomography can be used as a clinical method in order to evaluate the integrity of the dental ceramic and polymeric onlays and to investigate the quality of the marginal fitting to the teeth preparations.

  18. Quantitative Computed Tomography Protocols Affect Material Mapping and Quantitative Computed Tomography-Based Finite-Element Analysis Predicted Stiffness.

    PubMed

    Giambini, Hugo; Dragomir-Daescu, Dan; Nassr, Ahmad; Yaszemski, Michael J; Zhao, Chunfeng

    2016-09-01

    Quantitative computed tomography-based finite-element analysis (QCT/FEA) has become increasingly popular in an attempt to understand and possibly reduce vertebral fracture risk. It is known that scanning acquisition settings affect Hounsfield units (HU) of the CT voxels. Material properties assignments in QCT/FEA, relating HU to Young's modulus, are performed by applying empirical equations. The purpose of this study was to evaluate the effect of QCT scanning protocols on predicted stiffness values from finite-element models. One fresh frozen cadaveric torso and a QCT calibration phantom were scanned six times varying voltage and current and reconstructed to obtain a total of 12 sets of images. Five vertebrae from the torso were experimentally tested to obtain stiffness values. QCT/FEA models of the five vertebrae were developed for the 12 image data resulting in a total of 60 models. Predicted stiffness was compared to the experimental values. The highest percent difference in stiffness was approximately 480% (80 kVp, 110 mAs, U70), while the lowest outcome was ∼1% (80 kVp, 110 mAs, U30). There was a clear distinction between reconstruction kernels in predicted outcomes, whereas voltage did not present a clear influence on results. The potential of QCT/FEA as an improvement to conventional fracture risk prediction tools is well established. However, it is important to establish research protocols that can lead to results that can be translated to the clinical setting. PMID:27428281

  19. Role of single photon emission computed tomography/computed tomography in diagnostic iodine-131 scintigraphy before initial radioiodine ablation in differentiated thyroid cancer

    PubMed Central

    Agrawal, Kanhaiyalal; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    Objectives: The study was performed to evaluate the incremental value of single photon emission computed tomography/computed tomography (SPECT/CT) over planar radioiodine imaging before radioiodine ablation in the staging, management and stratification of risk of recurrence (ROR) in differentiated thyroid cancer (DTC) patients. Materials and Methods: Totally, 83 patients (21 male, 62 female) aged 17–75 (mean 39.9) years with DTC were included consecutively in this prospective study. They underwent postthyroidectomy planar and SPECT/CT scans after oral administration of 37–114 MBq iodine-131 (I-131). The scans were interpreted as positive, negative or suspicious for tracer uptake in the thyroid bed, cervical lymph nodes and sites outside the neck. In each case, the findings on planar images were recorded first, without knowledge of SPECT/CT findings. Operative and pathological findings were used for postsurgical tumor–node–metastasis staging. The tumor staging was reassessed after each of these two scans. Results: Single photon emission computed tomography/computed tomography localized radioiodine uptake in the thyroid bed in 9/83 (10.8%) patients, neck nodes in 24/83 (28.9%) patients and distant metastases in 8/83 (9.6%) patients in addition to the planar study. Staging was changed in 8/83 (9.6%), ROR in 11/83 (13.2%) and management in 26/83 (31.3%) patients by the pretherapy SPECT/CT in comparison to planar imaging. SPECT/CT had incremental value in 32/83 patients (38.5%) over the planar scan. Conclusion: Single photon emission computed tomography/computed tomography is feasible during a diagnostic I-131 scan with a low amount of radiotracer. It improved the interpretation of pretherapy I-131 scintigraphy and changed the staging and subsequent patient management. PMID:26170564

  20. Incremental value of single photon emission tomography/computed tomography in 3-phase bone scintigraphy of an accessory navicular bone.

    PubMed

    Jain, Sachin; Karunanithi, Sellam; Agarwal, Krishan Kant; Kumar, Ganesh; Roy, Shambo Guha; Tripathi, Madhavi

    2014-07-01

    Accessory navicular bone is one of the supernumerary ossicles in the foot. Radiography is non diagnostic in symptomatic cases. Accessory navicular has been reported as a cause of foot pain and is usually associated with flat foot. Increased radio tracer uptake on bone scan is found to be more sensitive. We report a case highlighting the significance of single photon emission tomography/computed tomography in methylene diphosphonate bone scan in the evaluation of symptomatic accessory navicular bone where three phase bone scan is equivocal. PMID:25210293

  1. Metastatic superscan in prostate carcinoma on gallium-68-prostate-specific membrane antigen positron emission tomography/computed tomography scan

    PubMed Central

    Agarwal, Krishan Kant; Tripathi, Madhavi; Kumar, Rajeev; Bal, Chandrasekhar

    2016-01-01

    We describe the imaging features of a metastatic superscan on gallium-68 Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68(HBED-CC)], abbreviated as gallium-68-prostate-specific membrane antigen (68Ga-PSMA) positron emission tomography/computed tomography (PET/CT) imaging. 68Ga-PSMA is novel radiotracer undergoing evaluation for PET/CT imaging of prostate carcinoma. This patient had a superscan of metastases on conventional bone scintigraphy and was referred for 68Ga-PSMA PET/CT to evaluate the feasibility of 177Lu-PSMA therapy. PMID:27095868

  2. Clinical usefulness of post-operative 18F-fluorodeoxyglucose positron emission tomography-computed tomography in canine hemangiosarcoma

    PubMed Central

    Lee, Gahyun; Kwon, Seong Young; Son, Kyuyeol; Park, Seungjo; Lee, Ju-hwan; Cho, Kyoung-Oh; Min, Jung-Joon

    2016-01-01

    This report describes the usefulness of positron emission tomography-computed tomography (PET-CT) for evaluating recurrent or residual tumors following surgery. CT and 18F-fluorodeoxyglucose PET-CT were pre- and post-operatively applied to multiple masses in a dog with hemangiosarcoma. The distinction between the left subcutaneous mass and the peritoneum was clarified on pre-operative CT examination, and malignancy was suspected based on PET-CT. A recurrent or residual tumor in the left subcutaneous region was suspected on post-operative PET-CT, and confirmed through histopathologic examination. PMID:26645332

  3. Comparative micro computed tomography study of a vertebral body

    NASA Astrophysics Data System (ADS)

    Drews, Susanne; Beckmann, Felix; Herzen, Julia; Brunke, Oliver; Salmon, Phil; Friess, Sebastian; Laib, Andres; Koller, Bruno; Hemberger, Thomas; Müller-Gerbl, Magdalena; Müller, Bert

    2008-08-01

    Investigations of bony tissues are often performed using micro computed tomography based on X-rays, since the calcium distribution leads to superior contrast. Osteoporotic bone, for example, can be well compared with healthy one with respect to density and morphology. Degenerative and rheumatoid diseases usually start, however, at the bone-cartilage-interface, which is hardly accessible. The direct influence on the bone itself becomes only visible at later stage. For the development of suitable therapies against degenerative cartilage damages the exact three-dimensional description of the bone-cartilage interface is vital, as demonstrated for transplanted cartilage-cells or bone-cartilage-constructs in animal models. So far, the morphological characterization was restricted to magnetic resonance imaging (MRI) with poor spatial resolution or to time-consuming histological sectioning with appropriate spatial resolution only in two rather arbitrarily chosen directions. Therefore, one should develop μCT to extract the features of low absorbing cartilage. The morphology and the volume of the inter-vertebral cartilage disc of lumbar motion segments have been determined for one PMMA embedded specimen. Tomograms were recorded using nanotom® (Phoenix|x-ray, Wunstorf, Germany), μCT 35TM (Scanco Medical, Brütisellen, Switzerland), 1172TM and 1174TM (both Skyscan, Kontich, Belgium), as well as using the SRμCT at HASYLAB/DESY. Conventional and SRμCT can provide the morphology and the volume of cartilage between bones. Increasing the acquisition time, the signal-to-noise ratio becomes better and better but the prominent artifacts in conventional μCT as the result of inhomogeneously distributed bony tissue prevents the exact segmentation of cartilage. SRμCT allows segmenting the cartilage but requires long periods of expensive beam-time to obtain reasonable contrast.

  4. Numerical simulations of the thermoacoustic computed tomography breast imaging system

    NASA Astrophysics Data System (ADS)

    Kiser, William Lester, Jr.

    A thermoacoustic wave is produced when an object absorbs energy and experiences a subsequent thermal expansion. We have developed a Thermoacoustic Computed Tomography (TACT) breast imaging system to exploit the thermoacoustic phenomena as a method of soft tissue imaging. By exposing the breast to short pulses of 434 MHz microwaves, ultrasonic pulses are generated and detected with a hemispherical transducer array submersed in a water bath. Filtering and back projecting the transducer signals generates a 3-D image that maps the localized microwave absorption properties of the breast. In an effort to understand the factors limiting image quality, the TACT system was numerically simulated. The simulations were used to generate the transducer signals that would be collected by the TACT system during a scan of an object. These simulated data streams were then fed into the system image reconstruction software to provide images of simulated phantoms. The effects of transducer diameter, transducer response, transducer array geometry and stimulating pulse width on the spatial and contrast resolution of the system were quantified using the simulations. The spatial resolution was highly dependent upon location in the imaging volume. This was due to the off axis response of transducers of finite aperture. Simulated data were compared with experimental data, obtained by imaging a parallel-piped resolution phantom, to verify the accuracy of the simulation code. A contrast-detail phantom was numerically simulated to determine the ability of the system to image spheres of diameters <1 cm with absorption values on the order of physiologic saline, when located in a background of noise. The results of the contrast-detail analysis were dependent on the location of the spheres in the imaging volume and the diameter of the simulated transducers. This work sets the foundation for the initial image quality studies of the TACT system. Improvements to the current imaging system, based on

  5. Cone-Beam Computed Tomography-Guided Percutaneous Radiologic Gastrostomy

    SciTech Connect

    Moehlenbruch, Markus; Nelles, Michael; Thomas, Daniel; Willinek, Winfried; Gerstner, Andreas; Schild, Hans H.; Wilhelm, Kai

    2010-04-15

    The purpose of this study was to investigate the feasibility of a flat-detector C-arm-guided radiographic technique (cone-beam computed tomography [CBCT]) for percutaneous radiologic gastrostomy (PRG) insertion. Eighteen patients (13 men and 5 women; mean age 62 years) in whom percutaneous endoscopic gastrostomy (PEG) had failed underwent CBCT-guided PRG insertion. PEG failure or unsuitability was caused by upper gastrointestinal tract obstruction in all cases. Indications for gastrostomy were esophageal and head and neck malignancies, respectively. Before the PRG procedure, initial C-arm CBCT scans were acquired. Three- and 2-dimensional soft-tissue reconstructions of the epigastrium region were generated on a dedicated workstation. Subsequently, gastropexy was performed with T-fasteners after CBCT-guided puncture of the stomach bubble, followed by insertion of an 14F balloon-retained catheter through a peel-away introducer. Puncture of the stomach bubble and PRG insertion was technically successful in all patients without alteration of the epigastric region. There was no malpositioning of the tube or other major periprocedural complications. In 2 patients, minor complications occurred during the first 30 days of follow-up (PRG malfunction: n = 1; slight infection: n = 1). Late complications, which were mainly tube disturbances, were observed in 2 patients. The mean follow-up time was 212 days. CBCT-guided PRG is a safe, well-tolerated, and successful method of gastrostomy insertion in patients in whom endoscopic gastrostomy is not feasible. CBCT provides detailed imaging of the soft tissue and surrounding structures of the epigastric region in one diagnostic tour and thus significantly improves the planning of PRG procedures.

  6. Bone morphometry and mineral density measurement using quantitative computed tomography

    SciTech Connect

    Jacobson, D.R.

    1991-01-01

    Application of computed tomography (CT) to the study of bone structure and density was explored and developed. A review of bone mineral densitometry (BMD) methodology and general principles of quantitative CT (QCT) are presented. A method for QCT of the spine was developed using a flexible tissue equivalent reference placed adjacent to the patient. A methodology for the development and production of tissue equivalent materials is also presented. Patient equivalent phantoms were used to characterize the method, and phantom studies were performed at five clinical sites. A protocol is defined for measuring the inside diameter of the lumbar pedicular canal. Data generated from this study has proven invaluable in the planning for lumbar fusion surgery when screws are to be used for immobilization. Pedicular canal data from 33 patients is presented. QCT was also used to quantify several parameters of the femoral shaft for use in hip replacement surgical planning. Parameters studied include inside diameter, BMD, endosteal BMD and proximal shaft morphology. The structure and trabecular BMD of the proximal femur was extensively studied using QCT. A large variation was found in the fat content of marrow within the proximal femur, and phantom studies were performed to quantify the effect of fat on trabecular QCT BMD. Cadaveric trabecular bone samples with marrow were analyzed physically to determine water, fat, non-fat soft tissue, and ash content. Multiple thin-slice CT studies were performed on cadaveric femurs. A structural model of the proximal femur was developed in which the structural support is provided primarily by trabecular bone. This model may have profound implications in the study of femoral fractures and prosthetic hardware design.

  7. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  8. Computed Tomography Appearance of Renal Hybrid Oncocytic/Chromophobe Tumors

    PubMed Central

    Bhatnagar, Akrita; Rowe, Steven P.; Gorin, Michael A.; Pomper, Martin G.; Fishman, Elliot K.; Allaf, Mohamad E.

    2016-01-01

    Objective A series of renal hybrid oncocytic/chromophobe tumors (HOCTs) was retrospectively assessed for morphologic features and enhancement characteristics by computed tomography (CT). Materials (Subjects) and Methods Nine patients with pathologically proven HOCTs were identified. These patients harbored a total of 12 lesions. All patients had available preoperative contrast-enhanced CT examinations, although a proportion of the studies had been carried out at outside institutions. The morphologic characteristics and enhancement patterns of each tumor were evaluated systematically. Results Seventy-eight percent of the patients were men, with a mean age of 62 years. None of the patients had evidence of metastatic disease at the time of surgery. Mean tumor diameter was 4.4 cm. All the lesions were solid and well circumscribed. Calcifications were not seen in any of these masses. Thirty-three percent of the tumors demonstrated a central stellate hypodensity pattern, whereas a further 42% of the tumors demonstrated a heterogenous appearance. Mean attenuation values were 25.7 HU (noncontrast), 77.4 HU (arterial), 124.8 HU (venous), and 76.8 HU (delayed). Tumor-to-cortex ratios for the 2 enhanced phases (arterial and venous) were 0.56 and 0.79, respectively. Conclusions A series of HOCTs were found on CT to have 2 distinct patterns—a heterogenous enhancement pattern and an “oncocytoma-like” pattern with a central stellate hypodensity. Although the prospective diagnosis of HOCTs on the basis of CT findings is unlikely, an awareness of the existence of these lesions is important as new means of characterizing renal masses on imaging arise. PMID:27096398

  9. Comparison of denture models by means of micro computed tomography

    NASA Astrophysics Data System (ADS)

    Vögtlin, Christoph; Schulz, Georg; Deyhle, Hans; Jäger, Kurt; Liebrich, Thomas; Weikert, Sascha; Müller, Bert

    2012-10-01

    The production of dental inlays and crowns requires precise information on patients' teeth morphology. The conventional method is the preparation of impressions using mold materials, e.g. a silicone impression material. The disadvantage of this technique is the human choke impulse and the flavor of the material. These discomforts can be avoided by methods where a three-dimensional scanner is used for recording the teeth morphology. The present study reveals the accuracy of three model types, namely conventional impression, rapid prototyping using an oral scanner C.O.S., 3M (Schweiz) AG and milling from a proprietary resin using the oral scanner iTero, Straumann Holding AG. For each method five models were fabricated from a steel reference (standard). Using a nanotom m (phoenixǀx-ray, GE Sensing and Inspection Technologies GmbH), three-dimensional micro computed tomography data sets of the standard and the 15 models were recorded and landmark distances within the data sets were measured with sub-pixel accuracy. To verify these results a coordinate measuring machine (Leitz PMM 864, Hexagon Metrology GmbH) based on tactile detection was used for the measurement of the landmark distances, and a correction of the distances measured by the nanotom m was arranged. The nanotom data sets of the 15 models were also compared to the standard by means of a non-rigid registration algorithm. The calculated deformation field exhibited mean pixel displacement values of (0.19 +/- 0.09) mm for the C.O.S. models, (0.12 +/- 0.07) mm for the gypsum models and (0.19 +/- 0.12) mm for the i-Tero models.

  10. X-ray Computed Tomography Observation of Methane Hydrate Dissociation

    USGS Publications Warehouse

    Tomutsa, L.; Freifeld, B.; Kneafsey, T.J.; Stern, L.A.

    2002-01-01

    Deposits of naturally occurring methane hydrate have been identified in permafrost and deep oceanic environments with global reserves estimated to be twice the total amount of energy stored in fossil fuels. The fundamental behavior of methane hydrate in natural formations, while poorly understood, is of critical importance if the economic recovery of methane from hydrates is to be accomplished. In this study, computed X-ray tomography (CT) scanning is used to image an advancing dissociation front in a heterogeneous gas hydrate/sand sample at 0.1 MPa. The cylindrical methane hydrate and sand aggregate, 2.54 cm in diameter and 6.3 cm long, was contained in a PVC sample holder that was insulated on all but one end. At the uninsulated end, the dissociated gas was captured and the volume of gas monitored. The sample was initially imaged axially using X-ray CT scanning within the methane hydrate stability zone by keeping the sample temperature at 77??K. Subsequently, as the sample warmed through the methane hydrate dissociation point at 194??K and room pressure, gas was produced and the temperature at the bottom of the sample plug was monitored while CT images were acquired. The experiment showed that CT imaging can resolve the reduction in density (as seen by a reduction in beam attenuation) of the hydrate/sand aggregate due to the dissociation of methane hydrate. In addition, a comparison of CT images with gas flow and temperature measurements reveals that the CT scanner is able to resolve accurately and spatially the advancing dissociation front. Future experiments designed to better understand the thermodynamics of hydrate dissociation are planned to take advantage of the temporal and spatial resolution that the CT scanner provides.

  11. The cardiothoracic ratio on post-mortem computer tomography.

    PubMed

    Jotterand, M; Doenz, F; Grabherr, S; Faouzi, M; Boone, S; Mangin, P; Michaud, K

    2016-09-01

    In clinical practice, the cardiothoracic ratio (CTR) was first utilized on plain chest radiography, and subsequently with computed tomography (CT) to diagnose cardiomegaly with a threshold of 0.5. Using CTR in forensic practice could help to detect cardiomegaly on post-mortem CT (PMCT) prior to the autopsy. However, an adaption of the threshold could be necessary because of post-mortem changes. Our retrospective study aimed to measure the CTR on PMCT and test the possible influence of variables. We selected 109 autopsy cases in which the heart weight was within normal limits. A forensic pathologist and a radiologist measured separately the CTR on axial and scout views on PMCT. We tested the statistical concordance between the two readers and between the axial and scout view and identified factors that could be associated with a modification of the CTR. The CTR measurements revealed an overestimation of the measurements made on scout compared to axial view. The inter-reader correlation was very high for both views. Among the different variables statistically tested, heart dilatation and body mass index (BMI) were the only two factors statistically associated with an augmentation of the CTR. The CTR can be useful in the diagnosis of cardiomegaly on PMCT. However, dilatation of the cardiac chambers caused by acute heart failure may be misinterpreted radiographically as cardiomegaly. Inter-observer reliability in our study was very high. CTR may be overestimated when measured on the scout view. Further investigations with larger cohorts, including cases with cardiac hypertrophy, are necessary to better understand the relationship between radiological CTR and the morphology of the heart. PMID:26886107

  12. Factors Affecting Prostate Volume Estimation in Computed Tomography Images

    SciTech Connect

    Yang, Cheng-Hsiu; Wang, Shyh-Jen; Lin, Alex Tong-Long; Lin, Chao-An

    2011-04-01

    The aim of this study was to investigate how apex-localizing methods and the computed tomography (CT) slice thickness affected the CT-based prostate volume estimation. Twenty-eight volunteers underwent evaluations of prostate volume by CT, where the contour segmentations were performed by three observers. The bottom of ischial tuberosities (ITs) and the bulb of the penis were used as reference positions to locate the apex, and the distances to the apex were recorded as 1.3 and 2.0 cm, respectively. Interobserver variations to locate ITs and the bulb of the penis were, on average, 0.10 cm (range 0.03-0.38 cm) and 0.30 cm (range 0.00-0.98 cm), respectively. The range of CT slice thickness varied from 0.08-0.48 cm and was adopted to examine the influence of the variation on volume estimation. The volume deviation from the reference case (0.08 cm), which increases in tandem with the slice thickness, was within {+-} 3 cm{sup 3}, regardless of the adopted apex-locating reference positions. In addition, the maximum error of apex identification was 1.5 times of slice thickness. Finally, based on the precise CT films and the methods of apex identification, there were strong positive correlation coefficients for the estimated prostate volume by CT and the transabdominal ultrasonography, as found in the present study (r > 0.87; p < 0.0001), and this was confirmed by Bland-Altman analysis. These results will help to identify factors that affect prostate volume calculation and to contribute to the improved estimation of the prostate volume based on CT images.

  13. Computed tomography-enhanced anatomy course using enterprise visualization.

    PubMed

    May, Hila; Cohen, Haim; Medlej, Bahaa; Kornreich, Liora; Peled, Nathan; Hershkovitz, Israel

    2013-01-01

    Rapid changes in medical knowledge are forcing continuous adaptation of the basic science courses in medical schools. This article discusses a three-year experience developing a new Computed Tomography (CT)-based anatomy curriculum at the Sackler School of Medicine, Tel Aviv University, including describing the motivations and reasoning for the new curriculum, the CT-based learning system itself, practical examples of visual dissections, and student assessments of the new curriculum. At the heart of this new curriculum is the emphasis on studying anatomy by navigating inside the bodies of various living individuals utilizing a CT viewer. To assess the students' experience with the new CT-based learning method, an anonymous questionnaire was administered at the end of the course for three consecutive academic years: 2008/2009, 2009/2010, 2010/2011. Based upon the results, modifications were made to the curriculum in the summers of 2009 and 2010. Results showed that: (1) during these three years the number of students extensively using the CT system quadrupled (from 11% to 46%); (2) students' satisfaction from radiologists involvement increased by 150%; and (3) student appreciation of the CT-based learning method significantly increased (from 13% to 68%). It was concluded that discouraging results (mainly negative feedback from students) during the first years and a priori opposition from the teaching staff should not weaken efforts to develop new teaching methods in the field of anatomy. Incorporating a new curriculum requires time and patience. Student and staff satisfaction, along with utilization of the new system, will increase with the improvement of impeding factors. PMID:23401203

  14. High frame rate photoacoustic computed tomography using coded excitation

    NASA Astrophysics Data System (ADS)

    Azuma, Masataka; Zhang, Haichong K.; Kondo, Kengo; Namita, Takeshi; Yamakawa, Makoto; Shiina, Tsuyoshi

    2015-03-01

    Photoacoustic Computed Tomography (PACT) records signals from a wide range of angles to achieve uniform, highresolution images. A high-power laser is generally used for PACT, but the long acquisition time with a single probe is a problem due to the low pulse-repetition frequency (PRF). For PACT, this degrades image resolution and contrast because it is hard to scan with a small step interval. Moreover, in vivo measurement requires a fast image acquisition system to avoid motion artifacts. The problem can be resolved by using a high PRF laser, which provides only weak energy. Averaging measured signals many times can mitigate the low signal-to-noise issue, but the PRF is restricted by the acoustic time of flight, so this is a new source of measurement time increase. Here, we present the coded-excitation approach, which we previously proposed for linear scanning, to increase the PACT frame rate. Coded excitation irradiates temporally encoded pulses and enhances the signal amplitude through decoding. The PRF is thus not restricted to acoustic time of flight. Consequently, acquisition time can be shortened by increasing PRF, and the SNR increases for the same measurement time. To validate the proposed idea, we conducted experiments using a high PRF laser with a revolving motor and compared the performance of coded excitation to that of averaging. Results demonstrated that the contamination of a signal acquired from different angles was negligible, and that the scanning pitch was remarkably improved because the start point of decoding can be set in any code in the periodic sequence.

  15. Computed tomography myelographic findings in dogs with cervical spondylomyelopathy.

    PubMed

    da Costa, Ronaldo C; Echandi, Rita L; Beauchamp, Dustin

    2012-01-01

    Computed tomography (CT) myelography is used occasionally in the diagnosis of cervical spondylomyelopathy, but the type of lesion found in large- versus giant-breed dogs using this modality has not been characterized. Our purpose was to report the frequency of compressive lesions in large- and giant-breed dogs with cervical spondylomyelopathy and imaged using CT myelography. Fifty-eight dogs were retrospectively studied, 23 large-breed and 35 giant-breed dogs. Multiple sites of compression were found in 12 large-breed dogs (52.2%) compared to 30 (85.8%) giant-breed dogs. The main site of compression was at C5-6 and C6-7 in both large-breed (91.3%) and giant-breed (72.4%) dogs. The main cause and direction of compression was disc-associated and ventral in 19 (82.6%) of the large-breed dogs while osseous changes were the primary cause of compression in 27 (77.2%) of the giant-breed dogs, with most compressions being lateral (51.4%), followed by dorsolateral (14.2%). Osseous compression was observed at C7-T1 in eight giant-breed dogs (22.8%), and at T1-T2 or T2 only in five dogs (14.3%). Four of 23 large-breed dogs (17.4%), and seven (20%) of 35 giant-breed dogs had spinal cord atrophy. Therefore, giant-breed dogs often have multiple compressions, usually caused by osseous changes causing lateralized compressions. In large-breed dogs most compressions are disc-associated and located ventrally. Considering the number of giant-breed dogs with compressions at C7-T1, T1-2, and T2, it is important to include the cranial thoracic region when imaging dogs suspected of having cervical spondylomyelopathy. PMID:22093094

  16. Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors

    NASA Astrophysics Data System (ADS)

    Zeqiri, Bajram; Baker, Christian; Alosa, Giuseppe; Wells, Peter N. T.; Liang, Hai-Dong

    2013-08-01

    The principle of using ultrasonic computed tomography (UCT) clinically for mapping tissue acoustic properties was suggested almost 40 years ago. Despite strong research activity, UCT been unable to rival its x-ray counterpart in terms of the ability to distinguish tissue pathologies. Conventional piezoelectric detectors deployed in UCT are termed phase-sensitive (PS) and it is well established that this property can lead to artefacts related to refraction and phase-cancellation that mask true tissue structure, particularly for reconstructions involving attenuation. Equally, it has long been known that phase-insensitive (PI) detectors are more immune to this effect, although sufficiently sensitive devices for clinical use have not been available. This paper explores the application of novel PI detectors to UCT. Their operating principle is based on exploiting the pyroelectric properties of the piezoelectric polymer polyvinylidene difluoride. An important detector performance characteristic which makes it particularly suited to UCT, is the lack of directionality of the PI response, relative to the PS detector mode of operation. The performance of the detectors is compared to conventional PS detection methods, for quantitatively assessing the attenuation distribution within various test objects, including a two-phase polyurethane phantom. UCT images are presented for a range of single detector apertures; tomographic reconstruction images being compared with the known structure of phantoms containing inserts as small as 3 mm, which were readily imaged. For larger diameter inserts (>10 mm), the transmitter-detector combination was able to establish the attenuation coefficient of the insert to within ±10% of values determined separately from plane-wave measurements on representative material plaques. The research has demonstrated that the new PI detectors are significantly less susceptible to refraction and phase-cancellation artefacts, generating realistic images in

  17. Dermatofibrosarcoma Protuberans: Computed Tomography and Magnetic Resonance Imaging Findings

    PubMed Central

    Zhang, Liang; Liu, Qing-yu; Cao, Yun; Zhong, Jin-shuang; Zhang, Wei-dong

    2015-01-01

    Abstract The aim of this study was to analyze the computed tomography (CT) and magnetic resonance imaging (MRI) findings of dermatofibrosarcoma protuberans (DFSP), with a view to improving the diagnosis of this kind of tumor. A total of 27 cases of histopathologically confirmed DFSP were analyzed retrospectively. Of these, 18 patients underwent a CT scan and 9 patients underwent an MRI. All patients underwent unenhanced and contrast-enhanced examinations; 1 patient underwent multiphrase CT enhancement examination. Imaging characteristics, including location, shape, size, number, edge, and attenuation or intensity of each lesion, both unenhanced and contrast enhanced, were analyzed. Of the 27 cases, 24 were solitary, 2 had 2 nodules, and 1 had multiple confluent tumors. The lesion with multiple confluent tumors was ill defined and irregular; the other lesions were oval or round, well-defined nodules or masses. The unenhanced CT images showed 19 homogenous isodense lesions. There was no calcification in any of the patients. The contrast-enhanced CT images showed intermediate and marked nonhomogeneous enhancement in 13 lesions, intermediate homogeneous enhancement in 4 lesions, and a mild heterogeneous enhancement in 2 lesions. MR T1-weighted images revealed 1 ill-defined and 9 well-defined homogeneous isointense lesions. T2-weighted images showed homogeneous hyperintensity to the muscles in 6 lesions, 3 mild hyperintense lesions with hypointense lesions, and 1 mixed, mild hyperintense and isointense lesion. Contrast-enhanced T1-weighted images demonstrated intermediate and marked nonhomogeneous enhancement in 9 lesions and intermediate homogeneous enhancement in 1 lesion. DFSP is characterized by a subcutaneous well-defined soft tissue nodule or mass on plain CT/MR scans, and shows intermediate-to-marked enhancement on contrast-enhanced CT/MR scans. The imaging findings for DFSP are nonspecific, but may help to define the diagnosis in an appropriate clinical setting

  18. [Imaging of coronary stents using multislice computed tomography].

    PubMed

    Seifarth, H; Heindel, W; Maintz, D

    2010-06-01

    Coronary artery stenting has become the most important form of coronary revascularization. With the introduction of drug-eluting stents (DES) the rate of restenosis has declined but due to the delayed formation of intimal tissue the incidence of late (>30 days after stent placement) and very late thrombosis of the stents is higher for DES. Visualization of the stent lumen is possible with multislice computed tomography (MSCT) but blooming artifacts hamper the delineation of the stent lumen. The severity of these artifacts and thus the width of the visible stent lumen depends on several factors, such as the thickness of the stent struts, the design of the stent and the underlying material itself. The most important factor influencing the extent of blooming artifacts is the convolution kernel selected for image reconstruction. Dedicated, edge-enhancing kernels offer superior lumen visualization compared to the soft or medium kernels used for coronary artery imaging. The trade-off using edge-enhancing kernels is an increase in image noise.Despite all efforts undertaken to enhance stent lumen visualization, stent imaging is still a challenge in MSCT. In the majority of stents currently used, sufficient lumen visualization is only possible in stents with a diameter larger than 3 mm. A position of the stent in the proximal segments of the coronary artery tree facilitates delineation of the stent lumen not only because of the relatively little motion but also because of the lesser extent of blooming artifacts obscuring the stent lumen if the stent is oriented perpendicular to the z-axis of the scanner. PMID:20521021

  19. Sinonasal Angiomatous Polyp: Evaluation With 2-Phase Helical Computed Tomography

    PubMed Central

    Ding, Changwei; Wang, Qiushi; Guo, Qiyong; Wang, Zhenhai; Lu, Xiaomei; Zhang, Jun

    2015-01-01

    Abstract Sinonasal angiomatous polyp (SAP) is a rare benign nontumorous lesion and previously considered lack of characteristic computed tomography (CT) findings. This study aimed to evaluate 2-phase helical CT for characterization of SAP. Twelve patients with pathologically confirmed SAP underwent 2-phase helical CT preoperatively. After injection of 80 mL contrast material at a rate of 3 mL/s, early and delayed phases were obtained with delays of 30 and 120 s, respectively. The degree and pattern of enhancement were visually analyzed. The attenuation changes were also analyzed quantitatively by measuring CT values and compared with those of the internal maxillary artery (IMA). All 12 cases showed vessel-like marked heterogeneous enhancement at both early and delayed phases. An irregular linear, nodular, and patchy enhancement pattern was found at the early phase, and enlarged and fused together, that is, progressive enhancement pattern was found at the delayed phase. There was no significant difference between the CT values of SAP and those of the IMA at the plain, arterial phase, and delayed phase (53 ± 6 Hounsfield units [HU] vs 56 ± 7 HU, 187 ± 56 HU vs 209 ± 71 HU, and 143 ± 22 HU vs 139 ± 19 HU, respectively, P = 0.361, 0.429, and 0.613, respectively). Vessel-like marked heterogeneous enhancement was a characteristic CT feature of SAP, and progressive enhancement on 2-phase helical CT could further convince the diagnosis. PMID:26200632

  20. Radiopharmaceuticals for single-photon emission computed tomography brain imaging.

    PubMed

    Kung, Hank F; Kung, Mei-Ping; Choi, Seok Rye

    2003-01-01

    In the past 10 years, significant progress on the development of new brain-imaging agents for single-photon emission computed tomography has been made. Most of the new radiopharmaceuticals are designed to bind specific neurotransmitter receptor or transporter sites in the central nervous system. Most of the site-specific brain radiopharmaceuticals are labeled with (123)I. Results from imaging of benzodiazepine (gamma-aminobutyric acid) receptors by [(123)I]iomazenil are useful in identifying epileptic seizure foci and changes of this receptor in psychiatric disorders. Imaging of dopamine D2/D3 receptors ([(123)I]iodobenzamide and [(123)I]epidepride) and transporters [(123)I]CIT (2-beta-carboxymethoxy-3-beta(4-iodophenyl)tropane) and [(123)I]FP-beta-CIT (N-propyl-2-beta-carboxymethoxy-3-beta(4-iodophenyl)-nortropane has proven to be a simple but powerful tool for differential diagnosis of Parkinson's and other neurodegenerative diseases. A (99m)Tc-labeled agent, [(99m)Tc]TRODAT (technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo [3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)]oxo-[1R-(exo-exo)]-), for imaging dopamine transporters in the brain has been successfully applied in the diagnosis of Parkinson's disease. Despite the fact that (123)I radiopharmaceuticals have been widely used in Japan and in Europe, clinical application of (123)I-labeled brain radiopharmaceuticals in the United States is limited because of the difficulties in supplying such agents. Development of (99m)Tc agents will likely extend the application of site-specific brain radiopharmaceuticals for routine applications in aiding the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. PMID:12605353

  1. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    SciTech Connect

    Sailer, Anna M.; Schurink, Geert Willem H.; Wildberger, Joachim E. Graaf, Rick de Zwam, Willem H. van Haan, Michiel W. de Kemerink, Gerrit J. Jeukens, Cécile R. L. P. N.

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCT dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.

  2. Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors.

    PubMed

    Zeqiri, Bajram; Baker, Christian; Alosa, Giuseppe; Wells, Peter N T; Liang, Hai-Dong

    2013-08-01

    The principle of using ultrasonic computed tomography (UCT) clinically for mapping tissue acoustic properties was suggested almost 40 years ago. Despite strong research activity, UCT been unable to rival its x-ray counterpart in terms of the ability to distinguish tissue pathologies. Conventional piezoelectric detectors deployed in UCT are termed phase-sensitive (PS) and it is well established that this property can lead to artefacts related to refraction and phase-cancellation that mask true tissue structure, particularly for reconstructions involving attenuation. Equally, it has long been known that phase-insensitive (PI) detectors are more immune to this effect, although sufficiently sensitive devices for clinical use have not been available. This paper explores the application of novel PI detectors to UCT. Their operating principle is based on exploiting the pyroelectric properties of the piezoelectric polymer polyvinylidene difluoride. An important detector performance characteristic which makes it particularly suited to UCT, is the lack of directionality of the PI response, relative to the PS detector mode of operation. The performance of the detectors is compared to conventional PS detection methods, for quantitatively assessing the attenuation distribution within various test objects, including a two-phase polyurethane phantom. UCT images are presented for a range of single detector apertures; tomographic reconstruction images being compared with the known structure of phantoms containing inserts as small as 3 mm, which were readily imaged. For larger diameter inserts (>10 mm), the transmitter-detector combination was able to establish the attenuation coefficient of the insert to within ±10% of values determined separately from plane-wave measurements on representative material plaques. The research has demonstrated that the new PI detectors are significantly less susceptible to refraction and phase-cancellation artefacts, generating realistic images in

  3. Dictionary-based image denoising for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Mechlem, Korbinian; Allner, Sebastian; Mei, Kai; Pfeiffer, Franz; Noël, Peter B.

    2016-03-01

    Compared to conventional computed tomography (CT), dual energy CT allows for improved material decomposition by conducting measurements at two distinct energy spectra. Since radiation exposure is a major concern in clinical CT, there is a need for tools to reduce the noise level in images while preserving diagnostic information. One way to achieve this goal is the application of image-based denoising algorithms after an analytical reconstruction has been performed. We have developed a modified dictionary denoising algorithm for dual energy CT aimed at exploiting the high spatial correlation between between images obtained from different energy spectra. Both the low-and high energy image are partitioned into small patches which are subsequently normalized. Combined patches with improved signal-to-noise ratio are formed by a weighted addition of corresponding normalized patches from both images. Assuming that corresponding low-and high energy image patches are related by a linear transformation, the signal in both patches is added coherently while noise is neglected. Conventional dictionary denoising is then performed on the combined patches. Compared to conventional dictionary denoising and bilateral filtering, our algorithm achieved superior performance in terms of qualitative and quantitative image quality measures. We demonstrate, in simulation studies, that this approach can produce 2d-histograms of the high- and low-energy reconstruction which are characterized by significantly improved material features and separation. Moreover, in comparison to other approaches that attempt denoising without simultaneously using both energy signals, superior similarity to the ground truth can be found with our proposed algorithm.

  4. Indications and Overuse of Computed Tomography in Minor Head Trauma

    PubMed Central

    Zargar Balaye Jame, Sanaz; Majdzadeh, Reza; Akbari Sari, Ali; Rashidian, Arash; Arab, Mohammad; Rahmani, Hojjat

    2014-01-01

    Background: Computed Tomography (CT) is a useful diagnostic technology, particularly in accident and emergency departments. Objectives: To identify a comprehensive list of indications for application of CT in patients with minor head trauma (MHT) and to determine appropriateness of its use on the basis of this list. Materials and Methods: A cross-sectional study was conducted in three Imaging centers in Tehran. A panel of experts developed a list of CT indications for MHT by reviewing documents. A pre-structured checklist was designed and incorporated into a structured form. Four hundred consecutive patients referring to three imaging centers for performing CT due to MHT completed the questionnaire. Results: Of 400 patients who underwent CT after MHT, 187 (46.8%) patients had Glasgow coma scale (GCS) score of 13 or 14 at two hours post-trauma and 37 (19.8%) of these patients did not have any indication of imaging. In addition, 213 (53.2%) patients had GCS score of 15 out of which 110 (51.6%) patients did not have any indication of imaging. Patients with a GCS score of 15 had a noticeably lower proportion of abnormal CT results in comparison to patients with a GCS score of 13 or 14, (odds ratio, 19.07; 95% confidence interval, 6.74-54.00; and P < 0.001). There was a statistically significant association between abnormal CT results and the presence of indications including vomiting, dangerous mechanism of injury, visible signs of trauma above the clavicles, signs of skull base fracture, and suspected skull fracture (P < 0.001). Conclusions: On average, about 37% of the patients with MHT referring to the emergency departments had no indication of CT and approximately 86.5% of CT results were normal. Improving this situation can result in a significant saving in health care costs. PMID:25031853

  5. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  6. Validating a new computed tomography atlas for grading ankle osteoarthritis.

    PubMed

    Cohen, Michael M; Vela, Nathan D; Levine, Jason E; Barnoy, Eran A

    2015-01-01

    As the most common joint disease, osteoarthritis (OA) poses a significant source of pain and disability. It can be defined by classic radiographic findings, particular symptoms, or a combination of the 2. Although specific grading scales have been developed to evaluate OA in various joints, such as the shoulder, hip, and knee, no definitive classification system is available for grading OA in the ankle. The purpose of the present study was to create and validate a standardized atlas for grading (or staging) ankle osteoarthritis using computed tomography (CT) and "hallmark" findings noted on coronal, sagittal, and axial views extrapolated from the Kellgren-Lawrence radiographic scale. The CT scans of 226 patients at the Miami Veterans Affairs Medical Center were reviewed. An atlas was derived from a retrospective review of 30 remaining CT scans taken from July 2008 to November 2011. After this review, 3 orthogonal static CT images, obtained from 11 remaining patients, were chosen to represent the various stages on the OA scale and were used to test the validity of the atlas developed by 2 of us (M.M.C. and N.D.V.). A multispecialty panel of 9 examiners, excluding ourselves, independently rated the 11 CT scan subjects. The differences among examiners and specialties were calculated, including an intra-examiner agreement for 2 separate readings spaced 9 months apart. Although the small number of subspecialty examiners made the intraspecialty comparisons difficult to validate, the findings nevertheless indicated excellent agreement among all specialty groups, with good intra-investigational (intraclass correlation coefficient 0.962 and 1) inter-investigational (intraclass correlation coefficient 0.851) values. These results appeared to validate the CT ankle OA atlas, which we believe will be a valuable clinical and research tool, one that will likely be more beneficial than less relevant generalized OA grading scales in use today. PMID:25135101

  7. Computed tomography of ball pythons (Python regius) in curled recumbency.

    PubMed

    Hedley, Joanna; Eatwell, Kevin; Schwarz, Tobias

    2014-01-01

    Anesthesia and tube restraint methods are often required for computed tomography (CT) of snakes due to their natural tendency to curl up. However, these restraint methods may cause animal stress. The aim of this study was to determine whether the CT appearance of the lungs differs for ball pythons in a curled position vs. tube restraint. Whole body CT was performed on ten clinically healthy ball pythons, first in curled and then in straight positions restrained in a tube. Curved multiplanar reformatted (MPR) lung images from curled position scans were compared with standard MPR lung images from straight position scans. Lung attenuation and thickness were measured at three locations for each scan. Time for positioning and scanning was 12 ± 5 min shorter for curled snakes compared to tube restraint. Lung parenchyma thickness and attenuation declined from cranial to caudal on both straight and curled position images. Mean lung parenchyma thickness was greater in curled images at locations 1 (P = 0.048) and 3 (P = 0.044). Mean lung parenchyma thickness decreased between location 1 and 2 by 86-87% (straight: curled) and between location 1 and 3 by 51-50% (straight: curled). Mean lung attenuation at location 1 was significantly greater on curled position images than tube restraint images (P = 0.043). Findings indicated that CT evaluation of the lungs is feasible for ball pythons positioned in curled recumbency if curved MPR is available. However, lung parenchyma thickness and attenuation in some locations may vary from those acquired using tube restraint. PMID:24438485

  8. X-ray Computed Tomography of coal: Final report

    SciTech Connect

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  9. Segmentation and analysis of emission-computed-tomography images

    NASA Astrophysics Data System (ADS)

    Johnson, Valen E.; Bowsher, James E.; Qian, Jiang; Jaszczak, Ronald J.

    1992-12-01

    This paper describes a statistical model for reconstruction of emission computed tomography (ECT) images. A distinguishing feature of this model is that it is parameterized in terms of quantities of direct physiological significance, rather than only in terms of grey-level voxel values. Specifically, parameters representing regions, region means, and region volumes are included in the model formulation and are estimated directly from projection data. The model is specified hierarchically within the Bayesian paradigm. At the lowest level of the hierarchy, a Gibbs distribution is employed to specify a probability distribution on the space of all possible partitions of the discretized image scene. A novel feature of this distribution is that the number of partitioning elements, or image regions, is not assumed known a priori. In contrast, any other segmentation models (e.g., Liang et al., 1991, Amit et al., 1991) require that the number of regions be specified prior to image reconstruction. Since the number of regions in a source distribution is seldom known a priori, allowing the number of regions to vary within the model framework is an important practical feature of this model. In the second level of the model hierarchy, random variables representing emission intensity are associated with each partitioning element or region. Individual voxel intensities are assumed to be drawn from a gamma distribution with mean equal to the region mean in the third stage, and in the final stage of the hierarchy projection data are assumed to be generated from Poisson distributions with means equal to weighted sums of voxel intensities.

  10. A computed tomography phantom study of foam earplugs

    PubMed Central

    Hsu, Li-Sheng; Yen, Ju-Bei; Wang, Shie-Shan; Liao, Chien-Lin

    2016-01-01

    Abstract Ingestion of a foreign body is common among children. However, ingestion of foam earplugs (FEPs) has not been reported previously. A 7-month-old female infant presented with small bowel obstruction, which was finally proved to be a case of FEP ingestion. Computed tomography (CT) phantom study was performed to examine the imaging features of FEPs. We studied the following dry and fully wet FEPs, FEPs squeezed in pure water to varying degrees, and FEPs with different degrees of compression in the dry and wet states from day 0 to 6 and all scanned with a CT scanner. The density of a dry FEP is −843.5 ± 4.5 Hounsfield units (HU) and it increases to 0.76 ± 9.3 HU when fully wet. The densities of FEPs ranged from −844.2 to 1.0 HU with different water/air ratios, and some showed a heterogeneous geographic pattern. The densities of FEPs increase due to compression and gradual water absorption. FEPs can be potentially hazardous objects to children. Owing to the special foam structure of the FEP, it can mimic a fatty lesion if the density ranges from −100 to −50 HU; moreover, it can hide in the water if fully wet. However, it should not be mistaken as air, as the density of a dry FEP is −843.5 HU, and the contour can be observed if the window level is set appropriately. Because of its soft texture, the surgeon should be careful not to miss an FEP during the operation. Moreover, radiologists should be familiar with the CT features of FEPs so that they can be identified before surgery. PMID:27583901

  11. SU-E-I-12: Flexible Geometry Computed Tomography

    SciTech Connect

    Shaw, R

    2015-06-15

    Purpose: The concept separates the mechanical connection between the radiation source and detector. This design allows the trajectory and orientation of the radiation source/detector to be customized to the object that is being imaged. This is in contrast to the formulaic rotation-translation image acquisition of conventional computed tomography(CT).Background/significance:CT devices that image a full range of: anatomy, patient populations, and imaging procedures are large. The root cause of the expanding size of comprehensive CT is due to the commitment to helical geometry that is hardwired into the image reconstruction. FGCT extends the application of alternative reconstruction techniques, i.e. tomosynthesis, by separating the two main components— radiation source and detector— and allow for 6 degrees of freedom motion for radiation source, detector, or both. The image acquisition geometry is then tailored to how the patient/object is positioned. This provides greater flexibility on the position and location that the patient/object is being imaged. Additionally, removing the need of a rotating gantry reduces the footprint so that CT is more mobile and more available to move to where the patient/object is at, instead of the other way around. Methods: As proof-of-principle, a reconstruction algorithm is designed to produce FGCT images. Using simulated detector data, voxels intersecting a line drawn between the radiation source and an individual detector are traced and modified using the detector signal. The detector signal is modified to compensate for changes in the source to detector distance. Adjacent voxels are modified in proportion to the detector signal, providing a simple image filter. Results: Image-quality from the proposed FGCT reconstruction technique is proving to be a challenge, producing hardily recognizable images from limited projections angles. Conclusion: Preliminary assessment of the reconstruction technique demonstrates the inevitable

  12. Multiple pinhole collimator based X-ray luminescence computed tomography.

    PubMed

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-07-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  13. The role of computed tomography in terminal ballistic analysis.

    PubMed

    Rutty, G N; Boyce, P; Robinson, C E; Jeffery, A J; Morgan, B

    2008-01-01

    Terminal ballistics concerns the science of projectile behaviour within a target and includes wound ballistics that considers what happens when a projectile strikes a living being. A number of soft tissue ballistic simulants have been used to assess the damage to tissue caused by projectiles. Standard assessment of these materials, such as ballistic soap or ordnance gelatine, requires the block to be opened or that a mould to be made to visualize the wound track. This is time consuming and may affect the accuracy of the findings especially if the block dries and alters shape during the process. Therefore, accurate numerical analysis of the permanent or temporary cavity is limited. Computed tomography (CT) potentially offers a quicker non-invasive analysis tool for this task. Four commercially purchased ballistic glycerine soap blocks were used. Each had a single firearm discharged into it from a distance of approximately 15 cm using both gunshot and shotgun projectiles. After discharge, each block was imaged by a modern 16 slice multi-detector CT scanner and analysed using 3-D reconstruction software. Using the anterior-posterior and lateral scout views and the multi-plane reconstructed images, it was possible to visualize the temporary cavity, as well as the fragmentation and dispersal pattern of the projectiles, the distance travelled and angle of dispersal within the block of each projectile or fragment. A virtual cast of the temporary cavity can be also be made. Multi-detector CT with 3-D analysis software is shown to create a reliable permanent record of the projectile path allowing rapid analysis of different firearms and projectiles. PMID:17205351

  14. Prior-based artifact correction (PBAC) in computed tomography

    SciTech Connect

    Heußer, Thorsten Brehm, Marcus; Ritschl, Ludwig; Sawall, Stefan; Kachelrieß, Marc

    2014-02-15

    Purpose: Image quality in computed tomography (CT) often suffers from artifacts which may reduce the diagnostic value of the image. In many cases, these artifacts result from missing or corrupt regions in the projection data, e.g., in the case of metal, truncation, and limited angle artifacts. The authors propose a generalized correction method for different kinds of artifacts resulting from missing or corrupt data by making use of available prior knowledge to perform data completion. Methods: The proposed prior-based artifact correction (PBAC) method requires prior knowledge in form of a planning CT of the same patient or in form of a CT scan of a different patient showing the same body region. In both cases, the prior image is registered to the patient image using a deformable transformation. The registered prior is forward projected and data completion of the patient projections is performed using smooth sinogram inpainting. The obtained projection data are used to reconstruct the corrected image. Results: The authors investigate metal and truncation artifacts in patient data sets acquired with a clinical CT and limited angle artifacts in an anthropomorphic head phantom data set acquired with a gantry-based flat detector CT device. In all cases, the corrected images obtained by PBAC are nearly artifact-free. Compared to conventional correction methods, PBAC achieves better artifact suppression while preserving the patient-specific anatomy at the same time. Further, the authors show that prominent anatomical details in the prior image seem to have only minor impact on the correction result. Conclusions: The results show that PBAC has the potential to effectively correct for metal, truncation, and limited angle artifacts if adequate prior data are available. Since the proposed method makes use of a generalized algorithm, PBAC may also be applicable to other artifacts resulting from missing or corrupt data.

  15. Computed tomography perfusion imaging in spectacular shrinking deficit.

    PubMed

    Lee, Vivien H; John, Sayona; Mohammad, Yousef; Prabhakaran, Shyam

    2012-02-01

    Spectacular shrinking deficit (SSD) is characterized by abrupt onset of a major hemispheric stroke syndrome, followed by dramatic and rapid improvement. We retrospectively identified patients with SSD diagnosed at our institution between December 1, 2007, and June 30, 2009. We reviewed computed tomography perfusion (CTP) imaging to determine perfusion defect as a measure of initial ischemic penumbra, and magnetic resonance imaging diffusion-weighted imaging (DWI) to determine the final infarct core. Among the 472 consecutive ischemic stroke patients, 126 (27%) presented with major hemispheric ischemic stroke syndrome, defined as National Institutes of Health Stroke Scale score (NIHSS) ≥8 in the territory of the middle cerebral artery (MCA) or internal carotid artery (ICA). Out of these patients, we identified 8 SSD patients with available CTP data. In these 8 patients, the mean time to dramatic recovery was 3.4 hours (range, 0.75-7 hours), and the mean time from onset to CTP was 12.7 hours (range, 3-30 hours). All 8 patients had perfusion abnormalities in portions of the MCA territory (partial MCA territory in 5 patients and complete MCA territory in 3 patients). The mean time from onset to MRI DWI was 15.5 hours (range, 7.9-34 hours). Restricted diffusion was present in all patients in the corresponding MCA distribution. Vascular imaging revealed MCA occlusion in 2 patients. Cervical vascular imaging revealed carotid occlusion in 2 patients and high-grade carotid stenosis in 2 patients. The stroke mechanisms were cardioembolism in 2 patients, large artery in 4 patients, and unknown in 2 patients. Four patients had repeat CTP imaging available that demonstrated eventual resolution of the perfusion defect. SSD is associated with a "shrinking" clinical syndrome and a "shrinking" perfusion pattern on CTP that lags behind clinical recovery. CTP imaging corroborates that a larger territory is at risk in SSD and contributes to better understanding of SSD. PMID:20702113

  16. Can postmortem computed tomography detect antemortem hypoxic-ischemic encephalopathy?

    PubMed

    Shirota, Go; Ishida, Masanori; Shintani, Yukako; Abe, Hiroyuki; Ikemura, Masako; Fukayama, Masashi; Gonoi, Wataru

    2016-09-01

    The purpose of this study was to evaluate the usefulness of brain postmortem computed tomography (PMCT) findings for the detection of global hypoxia or hypoperfusion leading to hypoxic-ischemic encephalopathy (HIE) prior to death. Cadavers of individuals who died from non-traumatic causes were subjected to PMCT and pathological autopsy. Cases with an episode of cardiopulmonary arrest, hypoxia, or hypoperfusion that required intensive respiratory management at least 24 h before death and exhibited findings of HIE in conventional autopsy (HIE group, n = 6) were compared with those without such episodes prior to death (control group; overall, n = 37; age-matched, n = 8) with regard to four parameters: (1) width of the central sulcus (CS), (2) attenuation difference at the basal ganglia (BG) level, (3) attenuation difference between cerebral gray matter (GM) and cerebral white matter (WM), and (4) attenuation difference between cerebellar GM and cerebral GM. The results revealed significant differences in the width of the CS (P < 0.001), attenuation difference at the BG level (P < 0.001), and attenuation difference between cerebral GM and cerebral WM (P = 0.009) between the HIE group and the overall control group. When the age-matched control group and the HIE group were compared, there was a significant difference in the width of the CS (P = 0.026) and attenuation difference at the BG level (P < 0.001). Our results suggest that effacement of the sulcus of the cerebral hemisphere and the loss of contrast at the BG level on brain PMCT indicate the existence of HIE prior to death. PMID:27342771

  17. Dosimetric characterization of a dedicated breast computed tomography clinical prototype

    SciTech Connect

    Sechopoulos, Ioannis; Feng, Steve Si Jia; D'Orsi, Carl J.

    2010-08-15

    Purpose: To investigate the glandular dose magnitudes and characteristics resulting from image acquisition using a dedicated breast computed tomography (BCT) clinical prototype imaging system. Methods: The x-ray spectrum and output characteristics of a BCT clinical prototype (Koning Corporation, West Henrietta, NY) were determined using empirical measurements, breast phantoms, and an established spectrum model. The geometry of the BCT system was replicated in a Monte Carlo-based computer simulation using the GEANT4 toolkit and was validated by comparing the simulated results for exposure distribution in a standard 16 cm CT head phantom with those empirically determined using a 10 cm CT pencil ionization chamber and dosimeter. The computer simulation was further validated by replicating the results of a previous BCT dosimetry study. Upon validation, the computer simulation was modified to include breasts of varying sizes and homogeneous compositions spanning those encountered clinically, and the normalized mean glandular dose resulting from BCT was determined. Using the system's measured exposure output determined automatically for breasts of different size and density, the mean glandular dose for these breasts was computed and compared to the glandular dose resulting from mammography. Finally, additional Monte Carlo simulations were performed to study how the glandular dose values vary within the breast tissue during acquisition with both this BCT prototype and a typical craniocaudal (CC) mammographic acquisition. Results: This BCT prototype uses an x-ray spectrum with a first half-value layer of 1.39 mm Al and a mean x-ray energy of 30.3 keV. The normalized mean glandular dose for breasts of varying size and composition during BCT acquisition with this system ranges from 0.278 to 0.582 mGy/mGy air kerma with the reference air kerma measured in air at the center of rotation. Using the measured exposure outputs for the tube currents automatically selected by the

  18. X-Ray Micro-Computed Tomography Imaging of the Buzzard Coulee Chondrite

    NASA Astrophysics Data System (ADS)

    Melanson, D.; Samson, C.; Herd, R. K.; Fry, C.; McCausland, P. J. A.; Umoh, J.; Holdsworth, D. W.

    2012-03-01

    This abstract outlines research and some results of X-ray micro-computed tomography imaging of the Buzzard Coulee H4 chondrite. A comparison of bulk density results and an analysis of radio-density profile curves are discussed.

  19. APPLICATION OF COMPUTER AIDED TOMOGRAPHY (CAT) TO THE STUDY OF MARINE BENTIC COMMUNITIES

    EPA Science Inventory

    Sediment cores were imaged using a Computer-Aided Tomography (CT) scanner at Massachusetts General Hospital, Boston, Massachusetts, United States. Procedures were developed, using the attenuation of X-rays, to differentiate between sediment and the water contained in macrobenthic...

  20. The Role of Computed Axial Tomography in the Study of the Child with Minimal Brain Dysfunction.

    ERIC Educational Resources Information Center

    Thompson, J. S.; And Others

    1980-01-01

    It was concluded that computed axial tomography of the brain is not a necessary screening procedure in the evaluation of the child with minimal brain dysfunction or learning disabilities unless there is evidence of a focal neurologic deficit. (Author)