Science.gov

Sample records for computed x-ray tomographic

  1. X-Ray Tomographic Reconstruction

    SciTech Connect

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  2. X-ray Computed Tomographic Investigation of the Porosity and Morphology of Plasma Electrolytic Oxidation Coatings.

    PubMed

    Zhang, Xun; Aliasghari, Sepideh; Němcová, Aneta; Burnett, Timothy L; Kuběna, Ivo; Šmíd, Miroslav; Thompson, George E; Skeldon, Peter; Withers, Philip J

    2016-04-01

    Plasma electrolytic oxidation (PEO) is of increasing interest for the formation of ceramic coatings on metals for applications that require diverse coating properties, such as wear and corrosion resistance, low thermal conductivity, and biocompatibility. Porosity in the coatings can have an important impact on the coating performance. However, the quantification of the porosity in coatings can be difficult due to the wide range of pore sizes and the complexity of the coating morphology. In this work, a PEO coating formed on titanium is examined using high resolution X-ray computed tomography (X-ray CT). The observations are validated by comparisons of surface views and cross-sectional views of specific coating features obtained using X-ray CT and scanning electron microscopy. The X-ray CT technique is shown to be capable of resolving pores with volumes of at least 6 μm(3). Furthermore, the shapes of large pores are revealed and a correlation is demonstrated between the locations of the pores, nodules on the coating surface, and depressions in the titanium substrate. The locations and morphologies of the pores, which constitute 5.7% of the coating volume, indicate that they are generated by release of oxygen gas from the molten coating. PMID:26974706

  3. 3D printing of preclinical X-ray computed tomographic data sets.

    PubMed

    Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew

    2013-01-01

    Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages. PMID:23542702

  4. On-Site Geologic Core Analysis Using a Portable X-ray ComputedTomographic System

    SciTech Connect

    Freifeld, Barry M.; Kneafsey, Timothy J.; Rack, Frank

    2004-03-01

    X-ray computed tomography (CT) is an established techniquefor nondestructively characterizing geologic cores. CT providesinformation on sediment structure, diagenetic alteration, fractures, flowchannels and barriers, porosity, and fluid-phase saturation. A portableCT imaging system has been developed specifically for imaging whole-roundcores at the drilling site. The new system relies upon carefully designedradiological shielding to minimize the size and weight of the resultinginstrument. Specialized x-ray beam collimators and filters maximizesystem sensitivity and performance. The system has been successfullydeployed on the research vessel Joides Resolution for Ocean DrillingProgram's Leg 204 and 210, within the Ocean Drilling Program'srefrigerated Gulf Coast Core Repository, as well as on the Hot Ice #1drilling platform located near the Kuparuk Field, Alaska. A methodologyfor performingsimple densiometry measurements, as well as scanning forgross structural features, will be presented using radiographs from ODPLeg 204. Reconstructed CT images from Hot Ice #1 will demonstrate the useof CT for discerning core textural features. To demonstrate the use of CTto quantitatively interpret dynamic processes, we calculate 95 percentconfidence intervals for density changes occurring during a laboratorymethane hydrate dissociation experiment. The field deployment of a CTrepresents a paradigm shift in core characterization, opening up thepossibility for rapid systematic characterization of three-dimensionalstructural features and leading to improved subsampling andcore-processing procedures.

  5. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tomographic x-ray system. 892.1740 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1740 Tomographic x-ray system. (a) Identification. A tomographic x-ray system is an x-ray device intended to be used to produce radiologic images...

  6. X-ray micro-computer tomographic method to visualize the microstructure of different apple cultivars.

    PubMed

    Ting, Valentina J L; Silcock, Patrick; Bremer, Phil J; Biasioli, Franco

    2013-11-01

    Apples are appreciated for their texture with firmness acting as an indicator of quality. During prolonged storage, apples can soften and their texture can become undesirably mealy. Using an X-ray microcomputer tomography (μ-CT) scanner, the porosity (ratio of intercellular space [IS] to total volume) and the structural arrangement of the parenchyma tissue of 4 apple cultivars (Braeburn, Fuji, Golden Delicious, Jazz) stored under similar conditions for 100 d were visualized via the development of 2D and 3D images. The texture of the apples was also measured using a puncture test. The morphometric and textural measurements revealed that firm Jazz apples (flesh firmness: 29.84N) had a lower porosity (17%) compared to soft Golden Delicious apples (flesh firmness: 14.16N; porosity: 29.8%). In general, firm apples had a higher dry matter (%) and a lower porosity (%), while the reverse was true for softer apples. However, this was not an absolute trend as cultivar specific differences in the microstructural organization and consequent mechanical strength of the parenchyma tissue also influenced firmness. For example, although Fuji apples were firm (28.42N), they had a high porosity (29.3%) due to the presence of numerous small and compact IS. In comparison, soft Golden Delicious apples had a high porosity (29.8%) due to the presence of large, interconnected IS. Imaging technologies have the potential to provide a pictorial or graphical database showing the size range distribution of IS corresponding to different parenchyma tissue types and how they relate to apple texture and eating quality. PMID:24245890

  7. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    SciTech Connect

    Zhang Jin; Yi Byongyong; Lasio, Giovanni; Suntharalingam, Mohan; Yu, Cedric

    2009-10-15

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information from a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.

  8. Development of a portable x-ray computed tomographic imaging system for drill-site investigation of recovered core

    SciTech Connect

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Pruess, Jacob

    2003-05-01

    A portable x-ray computed tomography (CT) system was constructed for imaging core at drill sites. Performing drill-site-based x-ray scanning and CT analysis permits rapid evaluation of core properties (such as density, lithologic structure, and macroporosity distribution) and allows for real-time decision making for additional core-handling procedures. Because of the speed with which scanning is performed, systematic imaging and electronic cataloging of all retrieved core is feasible. Innovations (such as a novel clamshell shielding arrangement integrated with system interlocks) permit safe operation of the x-ray system in a busy core handling area. The minimization of the volume encapsulated with shielding reduces the overall system weight and facilitates instrument portability. The x-ray system as originally fabricated had a 110 kV x-ray source with a fixed 300-micron focal spot size. A 15 cm image intensifier with a cesium iodide phosphor input screen was coupled to a CCD for image capture. The CT system has since been modified with a 130 kV micro-focal x-ray source. With the x-ray system's variable focal spot size, high-resolution studies (10-micron resolution) can be performed on core plugs and coarser (100-micron resolution) images can be acquired of whole drill cores. The development of an aluminum compensator has significantly improved the dynamic range and accuracy of the system. An x-ray filter has also been incorporated, permitting rapid acquisition of multi-energy scans for more quantitative analysis of sample mineralogy. The x-ray CT system has operated reliably under extreme field conditions, which have varied from shipboard to arctic.

  9. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  10. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tomographic x-ray system. 892.1740 Section 892.1740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1740 Tomographic x-ray system. (a) Identification. A tomographic x-ray system is an...

  11. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    PubMed Central

    Wathen, Connor A.; Foje, Nathan; van Avermaete, Tony; Miramontes, Bernadette; Chapaman, Sarah E.; Sasser, Todd A.; Kannan, Raghuraman; Gerstler, Steven; Leevy, W. Matthew

    2013-01-01

    X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site. PMID:23711461

  12. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy.

    PubMed

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (-50 to -6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies. PMID:26151914

  13. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy

    PubMed Central

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (−50 to −6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies. PMID:26151914

  14. Use of Computed X-ray Tomographic Data for Analyzing the Thermodynamics of a Dissociating Porous Sand/Hydrate Mixture

    DOE R&D Accomplishments Database

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

    2002-02-28

    X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.

  15. Use of computed X-ray tomographic data for analyzing the thermodynamics of a dissociating porous sand/hydrate mixture

    SciTech Connect

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

    2002-02-28

    X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.

  16. The internal cranial morphology of an armoured dinosaur Euoplocephalus corroborated by X-ray computed tomographic reconstruction

    PubMed Central

    Miyashita, Tetsuto; Arbour, Victoria M; Witmer, Lawrence M; Currie, Philip J

    2011-01-01

    Internal cranial anatomy is a challenging area to study in fossilized skulls because of small sample sizes and varied post-mortem preservational alterations. This difficulty has led to the lack of correspondence between results obtained from direct osteological observation and from more indirect reconstruction methods. This paper presents corroborating evidence from direct osteological observation and from reconstruction based on computed X-ray tomography (CT) on the internal cranial anatomy of the ankylosaurid dinosaur Euoplocephalus tutus. A remarkable specimen of Euoplocephalus preserves rarely observed internal cranial structures such as vascular impressions in the nasal cavity, olfactory turbinates and possible impressions of conchae. Comparison with fossils and CT models of other taxa and other Euoplocephalus specimens adds osteological evidence for the previously reconstructed nasal cavity in this dinosaur and revises the previously described braincase morphology. A new interpretation of the ethmoidal homology identifies a mesethmoid, sphenethmoid and ectethmoid. These ethmoidal ossifications are continuous with the mineralized walls of the nasal cavity. The location of the olfactory fenestra provides further evidence that the olfactory regions of the nasal cavity are pushed to the sides of the main airway. This implies that the function of the vascular impressions in the nasal cavity and the looping of the cavity are not related to olfaction. A byproduct of the elongate, looping airway is a dramatic increase in surface area of the nasal respiratory mucosa, which in extant species has been linked to heat and water balance. A role in vocalization as a resonating chamber is another possible function of the looping and elongation of the nasal cavity. Olfaction remains as a possible function for the enlarged olfactory region, suggesting that multiple functions account for different parts of the ankylosaurid nasal cavity that underwent substantial modification

  17. Proceedings of the workshop on X-ray computed microtomography

    SciTech Connect

    1998-02-01

    This report consists of vugraphs from the nine presentations at the conference. Titles of the presentations are: CMT: Applications and Techniques; Computer Microtomography Using X-rays from Third Generation Synchrotron X-ray; Approaches to Soft-X-ray Nanotomography; Diffraction Enhanced Tomography; X-ray Computed Microtomography Applications at the NSLS; XCMT Applications in Forestry and Forest Products; 3DMA: Investigating Three Dimensional Pore Geometry from High Resolution Images; X-ray Computed Microtomography Studies of Volcanic Rock; and 3-D Visualization of Tomographic Volumes.

  18. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tomographic x-ray system. 892.1740 Section 892.1740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... a specific cross-sectional plane of the body by blurring or eliminating detail from other...

  19. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tomographic x-ray system. 892.1740 Section 892.1740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... a specific cross-sectional plane of the body by blurring or eliminating detail from other...

  20. 21 CFR 892.1740 - Tomographic x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tomographic x-ray system. 892.1740 Section 892.1740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... a specific cross-sectional plane of the body by blurring or eliminating detail from other...

  1. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.

    1993-09-14

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.

  2. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, John H.; Bonse, Ulrich K.; Johnson, Quintin C.; Nichols, Monte C.; Saroyan, Ralph A.; Massey, Warren N.; Nusshardt, Rudolph

    1993-01-01

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

  3. X-ray tomographic image magnification process, system and apparatus therefor

    SciTech Connect

    Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; NuBhardt, R.

    1991-12-31

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams; (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the beams; (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample; (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means; and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

  4. Microscopic x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Dianwen; Zhang, Kun; Li, Changqing

    2015-03-01

    X-ray luminescence computed tomography (XLCT) was emerged as a new hybrid imaging modality, in which the x-rays are used to excite phosphors emitting optical photons to be measured for imaging. In this paper, we reported a microscopic x-ray luminescence computed tomography (microXLCT) with a spatial resolution up to hundreds of micrometers for deep targets. We use a superfine x-ray pencil beam to scan the phosphor targets. The superfine x-ray pencil beam is generated by a small collimator mounted in front of a powerful x-ray tube (93212, Oxford Instrument). A CT detector is used to image the x-ray beam. We have generated an x-ray beam with a diameter of 192 micrometers with a collimator of 100 micrometers in diameter. The emitted optical photons on the top surface of phantom are reflected by a mirror and acquired by an electron multiplier charge-coupled device (EMCCD) camera (C9100-13, Hamamatsu Photonics). The microXLCT imaging system is built inside an x-ray shielding and light tight cabinet. The EMCCD camera is placed in a lead box. All the imaging components are controlled by a VC++ program. The optical photon propagation is modeled with the diffusion equation solved by the finite element method. We have applied different regularization methods including L2 and L1 in the microXLCT reconstruction algorithms. Numerical simulations and phantom experiments are used to validate the microXLCT imaging system.

  5. Development of tomographic imaging systems using carbon-nanotube-based field-emission x-ray sources

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    2005-11-01

    Conventional thermionic x-ray sources use hot filament cathodes to generate electrons for x-ray production. The thermionic technology has several inherent limitations such as high operating temperature, slow response time, and difficulty for miniaturization. On the other hand, field emission provides an alternative to generate electrons without all these limitations. The concept of field emission x-ray source has been proposed and tested in the early 1970s. Unfortunately all of the early field emission x-ray systems failed due primarily to the limitations on the electron field emitters. Carbon nanotubes (CNT) have recently emerged as a promising class of electron emissive materials and field emission x-ray source based on CNTs are expected to have significantly improved properties. We have recently developed a CNT-based field emission micro-focus x-ray source. It shows stable tube current under high operating voltage, extraordinary dynamic imaging capability, and excellent potential for miniaturization. All of these new features make it very attractive for various potential industrial and medical applications. In order to demonstrate its applications, two sets of x-ray imaging systems using this field emission x-ray source were constructed in our lab. One is a micro-computed tomographic (micro-CT) imaging system using a single field emission x-ray source for dynamic radiographic and tomographic imaging applications. It shows great potential for the future development of dynamic micro-CT scanner. The other one is a multi-beam field emission x-ray source with multiple addressable focal spots which can provide scanning x-ray beams without mechanical movement. It can lead to fast data acquisition rates for future tomographic imaging systems with a simplified experimental set-up.

  6. Chandra X-Ray Observatory Computer Rendering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  7. X-ray Computed Tomography.

    ERIC Educational Resources Information Center

    Michael, Greg

    2001-01-01

    Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)

  8. Non-convexly constrained image reconstruction from nonlinear tomographic X-ray measurements

    PubMed Central

    Blumensath, Thomas; Boardman, Richard

    2015-01-01

    The use of polychromatic X-ray sources in tomographic X-ray measurements leads to nonlinear X-ray transmission effects. As these nonlinearities are not normally taken into account in tomographic reconstruction, artefacts occur, which can be particularly severe when imaging objects with multiple materials of widely varying X-ray attenuation properties. In these settings, reconstruction algorithms based on a nonlinear X-ray transmission model become valuable. We here study the use of one such model and develop algorithms that impose additional non-convex constraints on the reconstruction. This allows us to reconstruct volumetric data even when limited measurements are available. We propose a nonlinear conjugate gradient iterative hard thresholding algorithm and show how many prior modelling assumptions can be imposed using a range of non-convex constraints. PMID:25939619

  9. X-ray Luminescence Efficiency of GAGG:Ce Single Crystal Scintillators for use in Tomographic Medical Imaging Systems

    NASA Astrophysics Data System (ADS)

    David, S. L.; Valais, I. G.; Michail, C. M.; Kandarakis, I. S.

    2015-09-01

    The purpose of the present study was to evaluate different scintillator crystal samples, with a cross section of 3×3mm2 and various thicknesses ranging from 4mm up to 20mm, of the new mixed Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillator material under X-ray irradiation, for potential applications in Tomographic Medical Imaging systems. Evaluation was performed by determining the X-ray luminescence efficiency (XLE) (emitted light energy flux over incident X-ray energy flux) in energies employed in general X-ray imaging. For the luminescence efficiency measurements, the scintillator samples were exposed to X-rays using a BMI General Medical Merate tube, with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. X-ray tube voltages between 50 to 130 kV were selected. An additional 20 mm filtration was introduced to the beam to simulate beam quality alternation equivalent to a human body. The emitted light energy flux measurements were performed using an experimental set up comprising a light integration sphere coupled to an EMI 9798B photomultiplier tube which was connected to a Cary 401 vibrating reed electrometer. The GAGG:Ce sample with dimensions 3×3×10 mm3 exhibited higher XLE values, in the whole X- ray energy range examined. XLE value equal to 0.013 was recorded for this crystal at 130 kVp - a setting frequently used in Computed Tomography applications.

  10. Tomographic scanning microscope for 1-4 KeV x-rays

    SciTech Connect

    McNulty, I.; Feng, Y.P.; Hadda, W.S.; Trebes, J.E.

    1995-12-31

    X-ray microtomography enables three-dimensional imaging at submicron resolution with elemental and chemical state contrast. The 1-4 KeV energy region is promising for microtomography of biological, microelectronics, and materials sciences specimens. To capitalize on this potential, we are constructing a tomographic scanning x-ray microscope for 1-4 KeV x-ray on a spherical grating monochromator beamline at the Advance Photon Source. The microscope, which uses zone plate optics, has an anticipated spatial resolution of 100 nm and an energy resolution of better than 1 eV.

  11. Exposure values around an x-ray scanning transaxial tomograph (EMI scanner).

    PubMed

    Gross, G; McCullough, E C

    1975-01-01

    Measurements of exposure accumulated in a one-month period in and around a scanning x-ray transaxial tomograph are reported. For the unit studied (the EMI neurological scanner) values measured indicate that the shielding required is "minimal." PMID:1186637

  12. X ray computed tomography for failure analysis

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Crews, Alan R.; Georgeson, Gary E.

    1992-08-01

    Under a preliminary testing task assignment of the Advanced Development of X-Ray Computed Tomography Application program, computed tomography (CT) has been studied for its potential as a tool to assist in failure analysis investigations. CT provides three-dimensional spatial distribution of material that can be used to assess internal configurations and material conditions nondestructively. This capability has been used in failure analysis studies to determine the position of internal components and their operation. CT is particularly advantageous on complex systems, composite failure studies, and testing under operational or environmental conditions. CT plays an important role in reducing the time and effort of a failure analysis investigation. Aircraft manufacturing or logistical facilities perform failure analysis operations routinely and could be expected to reduce schedules, reduce costs and/or improve evaluation on about 10 to 30 percent of the problems they investigate by using CT.

  13. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries.

    PubMed

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  14. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    PubMed Central

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  15. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  16. Tomographic imaging of cryogenic biological specimens with the X-ray microscope at BESSY I

    NASA Astrophysics Data System (ADS)

    Weiß, D.; Schneider, G.; Niemann, B.; Guttmann, P.; Rudolph, D.; Schmahl, G.

    2000-05-01

    Soft X-ray microscopy employs the natural absorption contrast between water and protein in the 2.34-4.38 nm wavelength region with a resolution down to 30 nm. The large depth of focus of the Fresnel zone plates used as X-ray objectives permits tomographic reconstruction based on the microscopic images. High-resolution images require a high specimen radiation dose, and a large number of images taken at different viewing angles is needed for tomographic reconstruction. Therefore, cryo microscopy is necessary to preserve the structural integrity of hydrated biological specimens during image acquisition. The cryo transmission X-ray microscope at the electron storage ring BESSY I (Berlin) was used to obtain a tilt series of images of the frozen-hydrated green alga Chlamydomonas reinhardtii. The living specimens were inserted into borosilicate capillaries, then rapidly cooled by plunging into liquid nitrogen. The capillary specimen holders allow image acquisition over the full angular range of 180°. The reconstruction shows details inside the alga down to 60 nm size and conveys a detailed impression of the specimen structure. This technique is expected to be applicable to a wide range of biological specimens, such as the cell nucleus. It offers the possibility of imaging the three-dimensional structure of hydrated biological specimens close to their natural living state.

  17. Dose in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kalender, Willi A.

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  18. Dose in x-ray computed tomography.

    PubMed

    Kalender, Willi A

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment. PMID:24434792

  19. Three-dimensional mapping of soil chemical characteristics at micrometric scale: Statistical prediction by combining 2D SEM-EDX data and 3D X-ray computed micro-tomographic images

    NASA Astrophysics Data System (ADS)

    Hapca, Simona

    2015-04-01

    Many soil properties and functions emerge from interactions of physical, chemical and biological processes at microscopic scales, which can be understood only by integrating techniques that traditionally are developed within separate disciplines. While recent advances in imaging techniques, such as X-ray computed tomography (X-ray CT), offer the possibility to reconstruct the 3D physical structure at fine resolutions, for the distribution of chemicals in soil, existing methods, based on scanning electron microscope (SEM) and energy dispersive X-ray detection (EDX), allow for characterization of the chemical composition only on 2D surfaces. At present, direct 3D measurement techniques are still lacking, sequential sectioning of soils, followed by 2D mapping of chemical elements and interpolation to 3D, being an alternative which is explored in this study. Specifically, we develop an integrated experimental and theoretical framework which combines 3D X-ray CT imaging technique with 2D SEM-EDX and use spatial statistics methods to map the chemical composition of soil in 3D. The procedure involves three stages 1) scanning a resin impregnated soil cube by X-ray CT, followed by precision cutting to produce parallel thin slices, the surfaces of which are scanned by SEM-EDX, 2) alignment of the 2D chemical maps within the internal 3D structure of the soil cube, and 3) development, of spatial statistics methods to predict the chemical composition of 3D soil based on the observed 2D chemical and 3D physical data. Specifically, three statistical models consisting of a regression tree, a regression tree kriging and cokriging model were used to predict the 3D spatial distribution of carbon, silicon, iron and oxygen in soil, these chemical elements showing a good spatial agreement between the X-ray grayscale intensities and the corresponding 2D SEM-EDX data. Due to the spatial correlation between the physical and chemical data, the regression-tree model showed a great potential

  20. Mapping the local nanostructure inside a specimen by tomographic small-angle x-ray scattering

    SciTech Connect

    Schroer, C.G.; Kuhlmann, M.; Roth, S.V.; Gehrke, R.; Stribeck, N.; Almendarez-Camarillo, A.; Lengeler, B.

    2006-04-17

    Small-angle x-ray scattering is combined with scanning microtomography to reconstruct the small-angle diffraction pattern in the direction of the tomographic rotation axis at each location on a virtual section through a specimen. These data yield information about the local nanoscale structure of the sample. With rotational symmetry present in the diffraction patterns, e.g., for isotropic or fiber-textured scatterers, the full reciprocal space information in the small-angle scattering regime can be reconstructed at each location inside the specimen. The method is illustrated investigating a polymer rod made by injection molding.

  1. Sample handler for x-ray tomographic microscopy and image-guided failure assessment

    SciTech Connect

    Wyss, Peter; Thurner, Philipp; Broennimann, Rolf; Sennhauser, Urs; Stampanoni, Marco; Abela, Rafael; Mueller, Ralph

    2005-07-15

    X-ray tomographic microscopy (XTM) yields a three-dimensional data model of an investigated specimen. XTM providing micrometer resolution requires synchrotron light, high resolution area detectors, and a precise sample handler. The sample handler has a height of 270 mm only, is usable for 1 {mu}m resolution, and is able to carry loading machines with a weight of up to 20 kg. This allows exposing samples to load between scans for image-guided failure assessment. This system has been used in the XTM end station of the materials science beamline of the Swiss Light Source at the Paul Scherrer Institut.

  2. Suprathermal electron studies in the TCV tokamak: design of a tomographic hard-x-ray spectrometer.

    PubMed

    Gnesin, S; Coda, S; Decker, J; Peysson, Y

    2008-10-01

    Electron cyclotron resonance heating and electron cyclotron current drive, disruptive events, and sawtooth activity are all known to produce suprathermal electrons in fusion devices, motivating increasingly detailed studies of the generation and dynamics of this suprathermal population. Measurements have been performed in the past years in the tokamak a configuration variable (TCV) tokamak using a single pinhole hard-x-ray (HXR) camera and electron-cyclotron-emission radiometers, leading, in particular, to the identification of the crucial role of spatial transport in the physics of ECCD. The observation of a poloidal asymmetry in the emitted suprathermal bremsstrahlung radiation motivates the design of a proposed new tomographic HXR spectrometer reported in this paper. The design, which is based on a compact modified Soller collimator concept, is being aided by simulations of tomographic reconstruction. Quantitative criteria have been developed to optimize the design for the greatly variable shapes and positions of TCV plasmas. PMID:19044649

  3. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    SciTech Connect

    Chen, Dongmei; Zhu, Shouping Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  4. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  5. Two-ply anode X-ray tube for computed tomography scanner

    NASA Astrophysics Data System (ADS)

    Ignatyev, D.; Taubin, M.; Chesnokov, D.; Malyshev, V.; Yaskolko, A.

    2016-04-01

    This report presents a method of the formation of tungsten layer on the graphite surface. The described method can be used to create the anode of powerful x-ray tubes for medical purposes, in particular, a computer tomograph (CT). The thermal properties of the graphite base and the deposited tungsten coating, as well as the strength of the resulting coating were studied. Thermal fields in the CT-anode with a power of 100 kW were calculated.

  6. Modeling and characterization of X-ray yield in a polychromatic, lab-scale, X-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Mertens, J. C. E.; Chawla, Nikhilesh

    2015-05-01

    A modular X-ray computed micro-tomography (μXCT) system is characterized in terms of X-ray yield resulting both from the generated X-ray spectrum and from X-ray detection with an energy-sensitive detector. The X-ray computed tomography system is composed of a commercially available cone-beam microfocus X-ray source and a modular optically-coupled-CCD-scintillator X-ray detector. The X-ray yield is measured and reported in units independent from exposure time, X-ray tube beam target current, and cone-beam-to-detector geometry. The polychromatic X-ray source is modeled as a broad Bremsstrahlung X-ray spectrum in order to understand the effect of the controllable parameters, that is, X-ray tube accelerating voltage and X-ray beam filtering. An approach is adopted which expresses the absolute number of emitted X-rays. The response of the energy-sensitive detector to the modeled spectrum is modeled as a function of scintillator composition and thickness. The detection efficiency model for the polychromatic X-ray detector considers the response of the light collection system and the electronic imaging array in order to predict absolute count yield under the studied conditions. The modeling approach is applied to the specific hardware implemented in the current μXCT system. The model's predictions for absolute detection rate are in reasonable agreement with measured values under a range of conditions applied to the system for X-ray microtomography imaging, particularly for the LuAG:Ce scintillator material.

  7. Three-dimensional and tomographic imaging device for X-ray and gamma-ray emitting objects

    NASA Technical Reports Server (NTRS)

    Yin, L. I. (Inventor)

    1985-01-01

    An instrument for obtaining quantitative, three-dimensional and tomographic information relating to X-ray and gamma-ray emitting objects and for the orthoscopic viewing of such objects includes a multiple-pinhole aperture plate held spaced from an X-ray or gamma-ray to visible-light converter which is coupled to a visible-light image intensifier. The spacing between the aperture plate and the converter is chosen such that the mini-images of an emitting object formed by the pinholes do not substantially overlap as they impinge on the converter. The output of the image intensifier is digitized by a digitizing camera in terms of position and intensity and fed into a digital computer. The computer may output quantitative information relating to the emitting object directly, such as that relating to tomograms, or provide information in analogue form when coupled with a suitable viewing device to give an orthoscopic, three-dimensional image of the object.

  8. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  9. Multiple pinhole collimator based X-ray luminescence computed tomography.

    PubMed

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-07-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  10. Opportunities for X-ray Science in Future Computing Architectures

    SciTech Connect

    Foster, Ian

    2011-02-09

    The world of computing continues to evolve rapidly. In just the past 10 years, we have seen the emergence of petascale supercomputing, cloud computing that provides on-demand computing and storage with considerable economies of scale, software-as-a-service methods that permit outsourcing of complex processes, and grid computing that enables federation of resources across institutional boundaries. These trends show no sign of slowing down. The next 10 years will surely see exascale, new cloud offerings, and other terabit networks. This talk reviews various of these developments and discusses their potential implications for x-ray science and x-ray facilities.

  11. X-ray and optical multimodality tomographer for small animal examination

    NASA Astrophysics Data System (ADS)

    Da Silva, A.; Leabad, M.; Bordy, T.; Dinten, J.-M.; Peltié, P.; Rizo, P.

    2007-02-01

    A small animal multimodality tomographer dedicated to the co-registration of fluorescence optical signal and X-rays measurements has been developed in our laboratory. The purpose of such a system is to offer the possibility to get in vivo anatomical and functional information at once. Moreover, anatomical measurements can be used as a regularization factor in order to get the reconstructions of the biodistribution of fluorochromes more accurate and to speed up the treatment. The optical system is basically composed with a CW laser (Krypton, 752 nm) for an optimal excitation of Alexa-Fluor 750 fluorochromes, and a CCD camera coupled with a combination of filters for the fluorescence detection. The animal is placed inside a transparent tube filled with an index matching fluid. In order to perform multiple views of fluorescence data acquisitions, the cylinder is fixed to a rotating stage. The excitation beam is brought to the cylinder via two mirrors mounted on translation plates allowing a vertical scan. The optical data acquisitions are performed with a high sensitivity CCD camera. The X-ray generator and the X-ray detector have been placed perpendicularly to the optical chain. A first study on phantoms was conducted to evaluate the feasibility, to test the linearity and the reproducibility, and to fix the parameters for the co-registration. These test experiments were reproduced by considering mice in the oesophagus of which the previous tubes were inserted. Finally, the performance of the system was evaluated in vivo on mice bearing tumours in the lungs, tagged with Transferrin-AlexaFluor 750.

  12. [Multislice computed tomographic myelography].

    PubMed

    Klingebiel, R; Masuhr, F; Rogalla, P; Hein, E; Juran, R; Bauknecht, H C; Bohner, G

    2006-02-01

    While magnetic resonance imaging (MRI) is the first line modality in depicting intramedullary spinal lesions, computed tomographic (CT) myelography has gained renewed attention due to the introduction of multislice scanning (MS-CT). Compared with conventional CT, MS-CT permits rapid, high-resolution imaging of various spinal pathologies with extended scan length. Although soft tissue contrast is inferior to that with MRI, MS-CT myelography performs best in detailed assessment of osseous pathologies, 3D imaging of orthopedic and anesthesiologic implants, and showing dural leakage and causes of CSF circulation impairment. Whenever MRI is not available or contraindicated, MS-CT myelography is the method of choice for evaluating spinal lesions. PMID:16283150

  13. X-ray computed tomography for virtually unrolling damaged papyri

    NASA Astrophysics Data System (ADS)

    Allegra, Dario; Ciliberto, Enrico; Ciliberto, Paolo; Petrillo, Giuseppe; Stanco, Filippo; Trombatore, Claudia

    2016-03-01

    The regular format for ancient works of literature was the papyrus roll. Recently many efforts to perform virtual restoration of this archeological artifact have been done. In fact the case of ancient rolled papyrus is very intriguing. Old papyruses are the substrates of very important historical information, probably being the use of papyrus dated to the Pre-Dynastic Period. Papyrus degradation is often very hard so that physical unrolling is sometime absolutely impossible. In this paper, authors describe their effort in setting a new virtual restoration methodology based on software manipulation of X-ray tomographic images. A realistic model, obtained by painting a hieroglyph inscription of Thutmosis III on a papyrus substrate made by the original method described by Plinius the Elder and by pigments and binders compatible with the Egyptian use (ochers with natural glue), was made for the X-ray investigation. A GE Optima 660 64 slice was used to obtain a stack of tomographic slices of the rolled model. Each slice appears as spiral. The intensity variations along the cross-sectional result from ink on the papyrus. The files were elaborated with original software, written by the use of MATLAB high-level language, and the final result was quite similar to the radiography of the physically unrolled sheet.

  14. Computer assisted analysis of medical x-ray images

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ewert

    1996-01-01

    X-rays were originally used to expose film. The early computers did not have enough capacity to handle images with useful resolution. The rapid development of computer technology over the last few decades has, however, led to the introduction of computers into radiology. In this overview paper, the various possible roles of computers in radiology are examined. The state of the art is briefly presented, and some predictions about the future are made.

  15. X-ray Crystallographic Computations Using a Programmable Calculator.

    ERIC Educational Resources Information Center

    Attard, Alfred E.; Lee, Henry C.

    1979-01-01

    Describes six crystallographic programs which have been developed to illustrate the range of usefulness of programmable calculators in providing computational assistance in chemical analysis. These programs are suitable for the analysis of x-ray diffraction data in the laboratory by students. (HM)

  16. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  17. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended...

  18. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    PubMed Central

    Ruhlandt, Aike; Salditt, Tim

    2016-01-01

    This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality. PMID:26919373

  19. Three-dimensional propagation in near-field tomographic X-ray phase retrieval.

    PubMed

    Ruhlandt, Aike; Salditt, Tim

    2016-03-01

    This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality. PMID:26919373

  20. A four-dimensional X-ray tomographic microscopy study of bubble growth in basaltic foam.

    PubMed

    Baker, Don R; Brun, Francesco; O'Shaughnessy, Cedrick; Mancini, Lucia; Fife, Julie L; Rivers, Mark

    2012-01-01

    Understanding the influence of bubble foams on magma permeability and strength is critical to investigations of volcanic eruption mechanisms. Increasing foam porosity decreases strength, enhancing the probability of an eruption. However, higher porosities lead to larger permeabilities, which can lessen the eruption hazard. Here we measure bubble size and wall thickness distributions, as well as connectivity, and calculate permeabilities and tensile strengths of basaltic foams imaged by synchrotron X-ray tomographic microscopy during bubble growth in hydrated basaltic melts. Rapid vesiculation produces porous foams whose fragmentation thresholds are only 5-6 MPa and whose permeabilities increase from approximately 1×10(-10) to 1×10(-9) m(2) between 10 and 14 s despite decreasing connectivity between bubbles. These results indicate that basaltic magmas are most susceptible to failure immediately upon vesiculation and at later times, perhaps only 10's of seconds later, permeability increases may lessen the hazard of explosive, basaltic, Plinian eruptions. PMID:23072805

  1. Helical x-ray differential phase contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Qi, Zhihua; Thériault-Lauzier, Pascal; Bevins, Nicholas; Zambelli, Joseph; Li, Ke; Chen, Guang-Hong

    2011-03-01

    Helical computed tomography revolutionized the field of x-ray computed tomography two decades ago. The simultaneous translation of an image object with a standard computed tomography acquisition allows for fast volumetric scan for long image objects. X-ray phase sensitive imaging methods have been studied over the past few decades to provide new contrast mechanisms for imaging an object. A Talbot-Lau grating interferometer based differential phase contrast imaging method has recently demonstrated its potential for implementation in clinical and industrial applications. In this work, the principles of helical computed tomography are extended to differential phase contrast imaging to produce volumetric reconstructions based on fan-beam data. The method demonstrates the potential for helical differential phase contrast CT to scan long objects with relatively small detector coverage in the axial direction.

  2. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  3. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  4. X-ray differential phase-contrast tomographic reconstruction with a phase line integral retrieval filter

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Hu, Xinhua; Li, Chen

    2015-04-01

    We report an alternative reconstruction technique for x-ray differential phase-contrast computed tomography (DPC-CT). This approach is based on a new phase line integral projection retrieval filter, which is rooted in the derivative property of the Fourier transform and counteracts the differential nature of the DPC-CT projections. It first retrieves the phase line integral from the DPC-CT projections. Then the standard filtered back-projection (FBP) algorithms popular in x-ray absorption-contrast CT are directly applied to the retrieved phase line integrals to reconstruct the DPC-CT images. Compared with the conventional DPC-CT reconstruction algorithms, the proposed method removes the Hilbert imaginary filter and allows for the direct use of absorption-contrast FBP algorithms. Consequently, FBP-oriented image processing techniques and reconstruction acceleration softwares that have already been successfully used in absorption-contrast CT can be directly adopted to improve the DPC-CT image quality and speed up the reconstruction.

  5. X-ray tomographic microscopy analysis of the dendrite orientation transition in Al-Zn

    NASA Astrophysics Data System (ADS)

    Friedli, Jonathan; Fife, Julie L.; Di Napoli, Paolo; Rappaz, Michel

    2012-07-01

    Recently, Gonzales and Rappaz [Met. Mat. Trans. A37:2797, 2006] showed the influence of an increasing zinc content on the growth directions of aluminum dendrites. langle100rangle and langle110rangle dendrites were observed below 25wt.% and above 55wt.% zinc, respectively, whereas textured seaweeds and langle320rangle dendrites were observed at intermediate compositions. Considering the complexity of these structures, it is necessary to first characterize them in further details and second, to model them using the phase field method. The so-called Dendrite Orientation Transition (DOT) was thus reinvestigated in quenched Bridgman solidification samples. The combination of X-ray tomographic microscopy and electron backscattered diffraction (EBSD) analysis on a whole range of compositions, from 5 to 90wt.% Zn, allowed insights with unprecedented details about texture, growth directions and mechanisms of the aforementioned structures. We show that seaweeds rather than dendrites are found at all intermediate compositions. Their growth was confirmed to be constrained within a (100) symmetry plane. However, new findings indicate that the observed macroscopic texture does not necessarily correspond to the actual growth directions of the microstructure. Further, it seems to operate by an alternating growth direction mechanism and could be linked to the competition between the langle100rangle and langle110rangle characters of regular dendrites observed at the limits of the DOT. These characters, as well as 3D seaweeds, are observed in phase-field simulations of equiaxed growth and directional solidification, respectively. This study emphasizes the importance of accurate experimental data to validate numerical models and details the progress that such combinations provide for the understanding of growth mechanisms.

  6. Voronoï analysis of bubbly flows via ultrafast X-ray tomographic imaging

    NASA Astrophysics Data System (ADS)

    Lau, Yuk Man; Müller, Karolin; Azizi, Salar; Schubert, Markus

    2016-03-01

    Although clustering of bubbles plays a significant role in bubble column reactors regarding the heat and mass transfer due to bubble-bubble and flow field interactions, it has yet to be fully understood. Contrary to flows in bubble columns, most literature studies on clustering report numerical and experimental results on dilute or micro-bubbly flows. In this paper, clustering of bubbles in a cylindrical bubble column of 100 mm diameter is experimentally investigated. Ultrafast X-ray tomographic imaging is used to obtain the bubble positions within a hybrid Eulerian framework. By means of Voronoï analysis, the clustering behavior of bubbles is investigated. Experiments are performed with different superficial gas velocities, where Voronoï diagrams are constructed at several column heights. From the PDFs of the Voronoï diagrams, it is shown that the bubble structuring in terms of Voronoï cell volumes develops slower than the bubble size distribution. The latter reaches a steady state earlier with increasing column height. The measured PDFs are compared with the PDF of randomly distributed points, which showed that the amount of bubbles as part of clusters (Voronoï cells < V/overline{V}_{cluster}) as well as bubbles as part of voids (Voronoï cells > V/overline{V}_{void}) increases with the superficial gas velocity. It is found that all experiments have an approximate cluster limit V/overline{V}_{cluster} of 0.63, while the void limit V/overline{V}_{void} varies between 1.5 and 3.0.

  7. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    SciTech Connect

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  8. Tomographic analysis of the nonthermal x-ray bursts during disruption instability in the T-10 tokamak

    NASA Astrophysics Data System (ADS)

    Savrukhin, P. V.; Ermolaeva, A. I.; Shestakov, E. A.; Khramenkov, A. V.

    2014-10-01

    Non-thermal x-ray radiation (Eγ up to 150 keV) is measured in the T-10 tokamaks during disruption instability using two sets of CdTe detectors (10 vertical and 7 horizontal view detectors). Special narrow cupper tubes collimators with lead screening and CdTe detectors integrated with amplifiers inside metallic containers provides enhanced spatial resolution of the system (r ˜ 3 cm) and assures protection from the parasitic hard x-ray (Eγ up to 1.5 MeV) and electromagnetic loads during disruption. Spatial localization of the nonthermal x-ray emissivity is reconstructed using tomographic Cormack technique with SVD matrix inversion. Analysis indicated appearance of an intensive non-thermal x-ray bursts during initial stage of the disruptions at high density. The bursts are characterized by repetitive spikes (2-3 kHz) of the x-ray emissivity from the plasma core area. Analysis indicated that the spikes can be connected with acceleration of the non-thermal electrons in enhanced longitudinal electric fields induced during energy quench at the disruption instability.

  9. Tomographic analysis of the nonthermal x-ray bursts during disruption instability in the T-10 tokamak

    SciTech Connect

    Savrukhin, P. V.; Ermolaeva, A. I.; Shestakov, E. A.; Khramenkov, A. V.

    2014-10-01

    Non-thermal x-ray radiation (E{sub γ} up to 150 keV) is measured in the T-10 tokamaks during disruption instability using two sets of CdTe detectors (10 vertical and 7 horizontal view detectors). Special narrow cupper tubes collimators with lead screening and CdTe detectors integrated with amplifiers inside metallic containers provides enhanced spatial resolution of the system (r ~ 3 cm) and assures protection from the parasitic hard x-ray (E{sub γ} up to 1.5 MeV) and electromagnetic loads during disruption. Spatial localization of the nonthermal x-ray emissivity is reconstructed using tomographic Cormack technique with SVD matrix inversion. Analysis indicated appearance of an intensive non-thermal x-ray bursts during initial stage of the disruptions at high density. The bursts are characterized by repetitive spikes (2–3 kHz) of the x-ray emissivity from the plasma core area. Analysis indicated that the spikes can be connected with acceleration of the non-thermal electrons in enhanced longitudinal electric fields induced during energy quench at the disruption instability.

  10. Tomographic analysis of the nonthermal x-ray bursts during disruption instability in the T-10 tokamak.

    PubMed

    Savrukhin, P V; Ermolaeva, A I; Shestakov, E A; Khramenkov, A V

    2014-10-01

    Non-thermal x-ray radiation (Eγ up to 150 keV) is measured in the T-10 tokamaks during disruption instability using two sets of CdTe detectors (10 vertical and 7 horizontal view detectors). Special narrow cupper tubes collimators with lead screening and CdTe detectors integrated with amplifiers inside metallic containers provides enhanced spatial resolution of the system (r ∼ 3 cm) and assures protection from the parasitic hard x-ray (Eγ up to 1.5 MeV) and electromagnetic loads during disruption. Spatial localization of the nonthermal x-ray emissivity is reconstructed using tomographic Cormack technique with SVD matrix inversion. Analysis indicated appearance of an intensive non-thermal x-ray bursts during initial stage of the disruptions at high density. The bursts are characterized by repetitive spikes (2-3 kHz) of the x-ray emissivity from the plasma core area. Analysis indicated that the spikes can be connected with acceleration of the non-thermal electrons in enhanced longitudinal electric fields induced during energy quench at the disruption instability. PMID:25362394

  11. Ultrafast three-dimensional x-ray computed tomography

    SciTech Connect

    Bieberle, Martina; Barthel, Frank; Hampel, Uwe; Menz, Hans-Juergen; Mayer, Hans-Georg

    2011-01-17

    X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s{sup -1}. Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

  12. Ultrafast three-dimensional x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Bieberle, Martina; Barthel, Frank; Menz, Hans-Jürgen; Mayer, Hans-Georg; Hampel, Uwe

    2011-01-01

    X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s-1. Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

  13. Helical differential X-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Willner, Marian; Chen, Liyuan; Tan, Renbo; Achterhold, Klaus; Bech, Martin; Herzen, Julia; Kunka, Danays; Mohr, Juergen; Pfeiffer, Franz

    2014-05-01

    We report on the first experimental results of helical differential phase-contrast computed tomography (helical DPC-CT) with a laboratory X-ray tube source and a Talbot-Lau grating interferometer. The results experimentally verify the feasibility of helical data acquisition and reconstruction in phase-contrast imaging, in analogy to its use in clinical CT systems. This allows fast and continuous volumetric scans for long objects with lengths exceeding the dimension of the detector. Since helical CT revolutionized the field of medical CT several years ago, we anticipate that this method will bring the same significant impact on the future medical and industrial applications of X-ray DPC-CT. PMID:24518822

  14. Multi-Mounted X-Ray Computed Tomography

    PubMed Central

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  15. Multi-Mounted X-Ray Computed Tomography.

    PubMed

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  16. Computed tomographic inspection of sample ampoule cartridge assemblies (SACA)

    SciTech Connect

    Krauss, D.G.

    1996-12-31

    This paper will describe and analyze the steps taken to provide Computed Tomographic (CT) inspection of Crystal Growth Furnace (CGF) Sample Ampoule Cartridge Assemblies (SACA). These cartridges were aboard STS-73 during its micro gravity laboratory (USML-2) flight in September 1995. Available radiation sources included a Seifert 420 kilovoltage constant potential dual focal spot X-Ray system and a Gamma Industries Cobalt{sup 60} radioactive isotope camera currently containing 35 curies of source strength.

  17. Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging.

    PubMed

    Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf

    2012-02-01

    X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. PMID:22273540

  18. Comparison of fast tomographic methods for application on the Soft X-Ray Tomography System on Wendelstein 7-X stellarator

    NASA Astrophysics Data System (ADS)

    Carvalho, P. J.; Thomsen, H.; Gori, S.; Toussaint, U. v.; Geiger, J.; Weller, A.; Coelho, R.; Fernandes, H.

    2008-03-01

    The Wendelstein 7-X stellarator, presently under construction in Greifswald, is foreseen to operate on a steady state regime. Under such a scenario, a constant diagnosis of the plasma characteristics is strongly envisaged. A X-Ray Tomography diagnostic is a particularly useful tool since a poloidal cross-section of the plasma's X-Ray emissivity can be reconstructed and the plasma's position as well as MHD activity can be inferred. Fast tomographic algorithms such as the Cormack inversion or neural networks (NN) can be applied to obtain recon-structions at a human time scale (10˜100 reconstructions per second). This paper discusses the potential application of these algorithms on the Wendelstein 7-X stellarator by comparing performance and reliability of the results. The NN reconstruction has proven to be faster and more reliable than the Cormack's.

  19. X-ray computed tomography using curvelet sparse regularization

    SciTech Connect

    Wieczorek, Matthias Vogel, Jakob; Lasser, Tobias; Frikel, Jürgen; Demaret, Laurent; Eggl, Elena; Pfeiffer, Franz; Kopp, Felix; Noël, Peter B.

    2015-04-15

    Purpose: Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. Methods: In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Results: Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method’s strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. Conclusions: The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  20. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  1. X-ray diffraction computed tomography: a survey and description

    NASA Astrophysics Data System (ADS)

    Kleuker, Ulf

    1997-10-01

    Coherently scattered x-rays are mainly confined to a forward peaked cone, which exhibits, due to their coherence, structural information of the atomic arrangement in the sample. Coherent scattering in amorphous materials, which are of random short range order, therefore results in board diffraction ring patter, whereas crystalline substance show more confined diffraction rings or even Brag spots. X-ray diffraction computed tomography (XRDCT) reconstructs the intensities diffracted from extended objects on a square image grid and thus retrieves the local structure. A short survey is presented about what information can be extracted from diffraction experiments. Hereby a new method is proposed to use the Rietveld refinement for quantitative XRDCT. Also the possible use of XRDCT to reconstruct the spatial distribution of preferred orientation axis is suggested. An imaging system for XRDCT, consisting of a medical image intensifier tube and CCD readout system, is presented, which includes a modified beam stop for recording the intensity of the transmitted beam. Depending on the application this imaging system cam work in first generation or second generation tomography mode. Furthermore a new approach for the reconstruction of the differential coherent cross-section is proposed. It includes an absorption correction based on weighted sinograms. The introduced reconstruction strategy is elucidated by experimental result from a simple phantom. The measured data also validate the simulation program, written to study more complex phantoms under different experimental conditions. Finally possible applications in medical and material science are discussed. A design for a mammography setup using x-ray diffraction is presented.

  2. Utilisation of X-Ray computed microtomography for evaluation of iron sulphide distribution in roofing slate

    NASA Astrophysics Data System (ADS)

    Souček, Kamil; Daněk, Tomáš; Vavro, Martin; Botula, Jiří

    2016-04-01

    Roofing slate represents a traditional natural stone used for centuries for roofing and other construction applications in various types of buildings. Quality roofing slate must be primarily splittable into large, thin and waterproof tiles. In addition, it must be stable in colour and resistant against weathering. The abundance of mineral phases that weather easily or minerals that are long-term unstable has the effect of reducing the durability of slates in exterior conditions. One of the most problematic rock components, which are in a larger or smaller extent present in almost all slates, are iron sulphides, such as pyrite, marcasite or pyrrhotite. Under common atmospheric conditions, these minerals tend to oxidise, which leads to the formation of limonite and sulphuric acid. As a consequence of the origin of red-brown Fe oxyhydroxides, the undesirable colour changes of the slate may occur. But the most serious problem which occurs during this process is the changes in volume. This can cause disintegration of slate depending on the form of the iron sulphide occurrence. The content and size distribution of iron sulphides in roofing slate is normally determined using the microscopic analysis in transmitted light, combined with the observation in reflected light. For quantitative determination of iron sulphides in slate, the X-Ray powder diffraction is also often used. The results of the microscopic and X-Ray analyses need to be mutually compared and should not differ fundamentally. This paper is focused on the assessing the possibility of application of the X-Ray computed microtomography (CT) as a new complementary technique enabling the analysis of content and size (volume) distribution of iron sulphides in roofing slate. The X-Ray CT study was conducted using an XT H 225 ST industrial micro-tomographic system made by Nikon Metrology NV. Studied samples were reconstructed using the CT Pro 3D software (Nikon Metrology NV). The visualisation and analysis software

  3. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  4. ADVANCES IN X-RAY COMPUTED MICROTOMOGRAPHY AT THE NSLS.

    SciTech Connect

    DOWD,B.A.

    1998-08-07

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the ''gridding'' algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  5. Advances in x-ray computed microtomography at the NSLS

    SciTech Connect

    Dowd, B.A.; Andrews, A.B.; Marr, R.B.; Siddons, D.P.; Jones, K.W.; Peskin, A.M.

    1998-08-01

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the gridding algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  6. Iterative reconstruction in x-ray computed laminography from differential phase measurements

    NASA Astrophysics Data System (ADS)

    Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2011-08-01

    Phase-contrast X-ray computed laminography is demonstrated for the volume reconstruction of extended flat objects, not suitable to the usual tomographic scan. Using a Talbot interferometer, differential phase measurements are obtained and used to reconstruct the real part of the complex refractive index. The specific geometry of laminography leads to unsampled frequencies in a double cone in the reciprocal space, which degrades the spatial resolution in the direction normal to the object plane. First, the filtered backprojection formula from differential measurements is derived. Then, reconstruction is improved by the use of prior information of compact support and limited range, included in an iterative filtered backprojection algorithm. An implementation on GPU hardware was required to handle the reconstruction of volumes within a reasonable time. A synchrotron radiation experiment on polymer meshes is reported and results of the iterative reconstruction are compared with the simpler filtered backprojection.

  7. Iterative reconstruction in x-ray computed laminography from differential phase measurements.

    PubMed

    Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2011-08-15

    Phase-contrast X-ray computed laminography is demonstrated for the volume reconstruction of extended flat objects, not suitable to the usual tomographic scan. Using a Talbot interferometer, differential phase measurements are obtained and used to reconstruct the real part of the complex refractive index. The specific geometry of laminography leads to unsampled frequencies in a double cone in the reciprocal space, which degrades the spatial resolution in the direction normal to the object plane. First, the filtered backprojection formula from differential measurements is derived. Then, reconstruction is improved by the use of prior information of compact support and limited range, included in an iterative filtered backprojection algorithm. An implementation on GPU hardware was required to handle the reconstruction of volumes within a reasonable time. A synchrotron radiation experiment on polymer meshes is reported and results of the iterative reconstruction are compared with the simpler filtered backprojection. PMID:21935020

  8. Applied x-ray computed tomography with high resolution in paleontology using laboratory and synchrotron sources

    NASA Astrophysics Data System (ADS)

    Bidola, Pidassa; Pacheco, Mirian L. A. F.; Stockmar, Marco K.; Achterhold, Klaus; Pfeiffer, Franz; Beckmann, Felix; Tafforeau, Paul; Herzen, Julia

    2014-09-01

    X-ray computed tomography (CT) has become an established technique in the biomedical imaging or materials science research. Its ability to non-destructively provide high-resolution images of samples makes it attractive for diverse fields of research especially the paleontology. Exceptionally, the Precambrian is a geological time of rocks deposition containing several fossilized early animals, which still need to be investigated in order to predict the origin and evolution of early life. Corumbella werneri is one of those fossils skeletonized in Corumbá (Brazil). Here, we present a study on selected specimens of Corumbella werneri using absorption-based contrast imaging at diverse tomographic setups. We investigated the potential of conventional laboratory-based device and synchrotron radiation sources to visualize internal structures of the fossils. The obtained results are discussed as well as the encountered limitations of those setups.

  9. Hard x-ray tomographic studies of the destruction of an energetic electron ring

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W.; Pribyl, P.

    2013-05-01

    A tomography system was designed and built at the Large Plasma Device to measure the spatial distribution of hard x-ray (100 KeV-3 MeV) emissivity. The x-rays were generated when a hot electron ring was significantly disrupted by a shear Alfvén wave. The plasma is pulsed at 1 Hz (1 shot/s). A lead shielded scintillator detector with an acceptance angle defined by a lead pinhole is mounted on a rotary gimbal and used to detect the x-rays. The system measures one chord per plasma shot using only one detector. A data plane usually consists of several hundred chords. A novel Dot by Dot Reconstruction (DDR) method is introduced to calculate the emissivity profile from the line integrated data. In the experiments, there are often physical obstructions, which make measurements at certain angles impossible. The DDR method works well even in this situation. The method was tested with simulated data, and was found to be more effective than previously published methods for the specific geometry of this experiment. The reconstructed x-ray emissivity from experimental data by this method is shown.

  10. Hard x-ray tomographic studies of the destruction of an energetic electron ring.

    PubMed

    Wang, Y; Gekelman, W; Pribyl, P

    2013-05-01

    A tomography system was designed and built at the Large Plasma Device to measure the spatial distribution of hard x-ray (100 KeV-3 MeV) emissivity. The x-rays were generated when a hot electron ring was significantly disrupted by a shear Alfvén wave. The plasma is pulsed at 1 Hz (1 shot/s). A lead shielded scintillator detector with an acceptance angle defined by a lead pinhole is mounted on a rotary gimbal and used to detect the x-rays. The system measures one chord per plasma shot using only one detector. A data plane usually consists of several hundred chords. A novel Dot by Dot Reconstruction (DDR) method is introduced to calculate the emissivity profile from the line integrated data. In the experiments, there are often physical obstructions, which make measurements at certain angles impossible. The DDR method works well even in this situation. The method was tested with simulated data, and was found to be more effective than previously published methods for the specific geometry of this experiment. The reconstructed x-ray emissivity from experimental data by this method is shown. PMID:23742547

  11. A rotating tomographic imager for solar extreme-ultraviolet/soft X-ray emission

    NASA Astrophysics Data System (ADS)

    Davila, Joseph M.; Thompson, W. T.

    1992-04-01

    A concept is presented for a high-resolution EUV/soft-X-ray imager that has much in common with the medical imaging procedure of tomography. The resulting instrument is compatible with a simpler, less costly spin-axis-stabilized spacecraft. To demonstrate the fidelity of the reconstruction procedure, the observation and reconstruction is simulated to compare the results with the original image.

  12. A rotating tomographic imager for solar extreme-ultraviolet/soft X-ray emission

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Thompson, W. T.

    1992-01-01

    A concept is presented for a high-resolution EUV/soft-X-ray imager that has much in common with the medical imaging procedure of tomography. The resulting instrument is compatible with a simpler, less costly spin-axis-stabilized spacecraft. To demonstrate the fidelity of the reconstruction procedure, the observation and reconstruction is simulated to compare the results with the original image.

  13. Hard x-ray tomographic studies of the destruction of an energetic electron ring

    SciTech Connect

    Wang, Y.; Gekelman, W.; Pribyl, P.

    2013-05-15

    A tomography system was designed and built at the Large Plasma Device to measure the spatial distribution of hard x-ray (100 KeV-3 MeV) emissivity. The x-rays were generated when a hot electron ring was significantly disrupted by a shear Alfven wave. The plasma is pulsed at 1 Hz (1 shot/s). A lead shielded scintillator detector with an acceptance angle defined by a lead pinhole is mounted on a rotary gimbal and used to detect the x-rays. The system measures one chord per plasma shot using only one detector. A data plane usually consists of several hundred chords. A novel Dot by Dot Reconstruction (DDR) method is introduced to calculate the emissivity profile from the line integrated data. In the experiments, there are often physical obstructions, which make measurements at certain angles impossible. The DDR method works well even in this situation. The method was tested with simulated data, and was found to be more effective than previously published methods for the specific geometry of this experiment. The reconstructed x-ray emissivity from experimental data by this method is shown.

  14. X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator

    PubMed Central

    Xiang, Liangzhong; Han, Bin; Carpenter, Colin; Pratx, Guillem; Kuang, Yu; Xing, Lei

    2013-01-01

    Purpose: The feasibility of medical imaging using a medical linear accelerator to generate acoustic waves is investigated. This modality, x-ray acoustic computed tomography (XACT), has the potential to enable deeper tissue penetration in tissue than photoacoustic tomography via laser excitation. Methods: Short pulsed (μs-range) 10 MV x-ray beams with dose-rate of approximately 30 Gy/min were generated from a medical linear accelerator. The acoustic signals were collected with an ultrasound transducer (500 KHz central frequency) positioned around an object. The transducer, driven by a computer-controlled step motor to scan around the object, detected the resulting acoustic signals in the imaging plane at each scanning position. A pulse preamplifier, with a bandwidth of 20 KHz–2 MHz at −3 dB, and switchable gains of 40 and 60 dB, received the signals from the transducer and delivered the amplified signals to a secondary amplifier. The secondary amplifier had bandwidth of 20 KHz–30 MHz at −3 dB, and a gain range of 10–60 dB. Signals were recorded and averaged 128 times by an oscilloscope. A sampling rate of 100 MHz was used to record 2500 data points at each view angle. One set of data incorporated 200 positions as the receiver moved 360°. The x-ray generated acoustic image was then reconstructed with the filtered back projection algorithm. Results: The x-ray generated acoustic signals were detected from a lead rod embedded in a chicken breast tissue. The authors found that the acoustic signal was proportional to the x-ray dose deposition, with a correlation of 0.998. The two-dimensional XACT images of the lead rod embedded in chicken breast tissue were found to be in good agreement with the shape of the object. Conclusions: The first x-ray acoustic computed tomography image is presented. The new modality may be useful for a number of applications, such as providing the location of a fiducial, or monitoring x-ray dose distribution during radiation therapy

  15. [Intracerebral tuberculoma. Clinical and x-ray computed tomographic characteristics].

    PubMed

    Ruelle, A; Boccardo, M; Lasio, G

    1984-01-01

    Intracranial tuberculomas have become uncommon in industrial nations, while they still have a high incidence in underdeveloped countries. Four cases of intracerebral supratentorial tuberculomas are reported in this paper. Clinical findings suggestive of tuberculosis were present in only one case. The other cases were thought to be gliomas or metastases and the diagnosis was made only after surgery. The CT scan provided a good image of the lesions whose characteristics, however, were diagnostically confusing. When a tuberculoma is suspected, medical therapy alone should be administered initially. Surgery should be resorted to in cases of markedly increased intracranial pressure. PMID:6571449

  16. Polycapillary lenses for Soft-X-ray transmission: Model, comparison with experiments and potential application for tomographic measurements in tokamaks

    NASA Astrophysics Data System (ADS)

    Mazon, D.; Abadie, Q.; Dorchies, F.; Lecherbourg, L.; Mollard, A.; Malard, P.; Dabagov, S.

    2015-07-01

    In tokamaks, plasma emits as a volumetric Soft-X-ray (SXR) source. Emitted X-rays can give very useful information about plasma stability, shape and impurity content. Measuring the Soft X-ray (SXR) radiation ([0.1-20 keV]) of magnetic fusion plasmas is a standard way of accessing valuable information on particle transport and MagnetoHydroDynamic. Generally, like at Tore Supra in France, the analysis is performed with a 2D tomographic system composed of several cameras equipped with detectors like Silicon Barrier Diodes spread in periphery of the tokamak. Unfortunately, the strong constraints imposed by the environment of a tokamak reactor (high neutron fluxes, gamma and hard X-ray emission, high magnetic field and high radiofrequency powers) do not authorize to install in a close vicinity of the machine such detectors. We have thus investigated the possibility of using polycapillary lenses to transport the SXR information to several meters from the plasma, not necessarily in a straight line. The idea is to protect the SXR detector from the entire environment by a proper shielding. Different polycapillary lenses could be used for that purpose and have been tested in collaboration with CELIA (CEA-CNRS) of Bordeaux. Transmission of the order of 20% where observed for the low energetic part of the spectrum (down to 3 keV) while still 10% were observed for the remaining part (from 3 to 10 keV). In parallel a model of polycapillary transmission has been developed and validated against experiment. Results are presented confirming the great potential of polycapillary lenses for SXR transmission in tokamak plasma. Studies of the influence of geometrical parameters like diameter and curvature of the channels, on the photons transmission is also presented.

  17. X-Ray Computed Tomography Inspection of the Stardust Heat Shield

    NASA Technical Reports Server (NTRS)

    McNamara, Karen M.; Schneberk, Daniel J.; Empey, Daniel M.; Koshti, Ajay; Pugel, D. Elizabeth; Cozmuta, Ioana; Stackpoole, Mairead; Ruffino, Norman P.; Pompa, Eddie C.; Oliveras, Ovidio; Kontinos, Dean A.

    2010-01-01

    The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses

  18. X-ray Computed Tomography Observation of Methane Hydrate Dissociation

    USGS Publications Warehouse

    Tomutsa, L.; Freifeld, B.; Kneafsey, T.J.; Stern, L.A.

    2002-01-01

    Deposits of naturally occurring methane hydrate have been identified in permafrost and deep oceanic environments with global reserves estimated to be twice the total amount of energy stored in fossil fuels. The fundamental behavior of methane hydrate in natural formations, while poorly understood, is of critical importance if the economic recovery of methane from hydrates is to be accomplished. In this study, computed X-ray tomography (CT) scanning is used to image an advancing dissociation front in a heterogeneous gas hydrate/sand sample at 0.1 MPa. The cylindrical methane hydrate and sand aggregate, 2.54 cm in diameter and 6.3 cm long, was contained in a PVC sample holder that was insulated on all but one end. At the uninsulated end, the dissociated gas was captured and the volume of gas monitored. The sample was initially imaged axially using X-ray CT scanning within the methane hydrate stability zone by keeping the sample temperature at 77??K. Subsequently, as the sample warmed through the methane hydrate dissociation point at 194??K and room pressure, gas was produced and the temperature at the bottom of the sample plug was monitored while CT images were acquired. The experiment showed that CT imaging can resolve the reduction in density (as seen by a reduction in beam attenuation) of the hydrate/sand aggregate due to the dissociation of methane hydrate. In addition, a comparison of CT images with gas flow and temperature measurements reveals that the CT scanner is able to resolve accurately and spatially the advancing dissociation front. Future experiments designed to better understand the thermodynamics of hydrate dissociation are planned to take advantage of the temporal and spatial resolution that the CT scanner provides.

  19. X-ray Computed Tomography of coal: Final report

    SciTech Connect

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  20. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy

    PubMed Central

    Sloof, Willem G.; Pei, Ruizhi; McDonald, Samuel A.; Fife, Julie L.; Shen, Lu; Boatemaa, Linda; Farle, Ann-Sophie; Yan, Kun; Zhang, Xun; van der Zwaag, Sybrand; Lee, Peter D.; Withers, Philip J.

    2016-01-01

    MAX phase materials are emerging as attractive engineering materials in applications where the material is exposed to severe thermal and mechanical conditions in an oxidative environment. The Ti2AlC MAX phase possesses attractive thermomechanical properties even beyond a temperature of 1000 K. An attractive feature of this material is its capacity for the autonomous healing of cracks when operating at high temperatures. Coupling a specialized thermomechanical setup to a synchrotron X-ray tomographic microscopy endstation at the TOMCAT beamline, we captured the temporal evolution of local crack opening and healing during multiple cracking and autonomous repair cycles at a temperature of 1500 K. For the first time, the rate and position dependence of crack repair in pristine Ti2AlC material and in previously healed cracks has been quantified. Our results demonstrate that healed cracks can have sufficient mechanical integrity to make subsequent cracks form elsewhere upon reloading after healing. PMID:26972608

  1. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Sloof, Willem G.; Pei, Ruizhi; McDonald, Samuel A.; Fife, Julie L.; Shen, Lu; Boatemaa, Linda; Farle, Ann-Sophie; Yan, Kun; Zhang, Xun; van der Zwaag, Sybrand; Lee, Peter D.; Withers, Philip J.

    2016-03-01

    MAX phase materials are emerging as attractive engineering materials in applications where the material is exposed to severe thermal and mechanical conditions in an oxidative environment. The Ti2AlC MAX phase possesses attractive thermomechanical properties even beyond a temperature of 1000 K. An attractive feature of this material is its capacity for the autonomous healing of cracks when operating at high temperatures. Coupling a specialized thermomechanical setup to a synchrotron X-ray tomographic microscopy endstation at the TOMCAT beamline, we captured the temporal evolution of local crack opening and healing during multiple cracking and autonomous repair cycles at a temperature of 1500 K. For the first time, the rate and position dependence of crack repair in pristine Ti2AlC material and in previously healed cracks has been quantified. Our results demonstrate that healed cracks can have sufficient mechanical integrity to make subsequent cracks form elsewhere upon reloading after healing.

  2. Laboratory micro- and nanoscale X-ray tomographic investigation of Al–7 at.%Cu solidification structures

    SciTech Connect

    Patterson, B.M. Henderson, K.C.; Gibbs, P.J.; Imhoff, S.D.; Clarke, A.J.

    2014-09-15

    X-ray computed tomography across multiple length scales provides an opportunity to non-destructively visualize and quantify the micro- to nano-scale microstructural features of solidification structures in three dimensions. Aluminum–7 at.%copper samples were directionally solidified at three cooling rates (0.44, 0.67, and 1.33 °C/s), resulting in systematic changes in the as-solidified microstructure, which are difficult to quantify using traditional microscopic techniques. The cooling rate of a material affects its ultimate microstructure, and characterizing that microstructure is key to predicting and understanding its bulk properties. Here, two different laboratory X-ray computed tomography instruments were used to characterize as-solidified microstructures, including micro-scale computed tomography with approximately 1 mm field-of-view, ∼ 1.7 μm resolution, and nano-scale X-ray computed tomography ∼ 65 μm FOV, 150 nm resolution. Micro-scale X-ray radiography and computed tomography enabled a quantitative investigation of changes in the primary dendritic solidification structure with increasing cooling rate. Nano-scale absorption contrast X-ray computed tomography resolved the distinct phases of the lamellar eutectic structure and three dimensional measurements of the ∼ 1 μm interlamellar spacing. It is found that the lamella eutectic structure thickness is inversely proportional to the cooling rate. Nano-scale Zernike phase contrast was also used to image voids at eutectic colony boundaries. The application and resolution of these two instruments are discussed with respect to the resolvable features of the solidification structures. - Highlights: • Al–Cu eutectic is a model system for studying solidification microstructure. • X-ray computed tomography provides a 3D picture of these complex structures. • Micro-scale tomography images the primary and secondary dendritic structures. • Nano-scale tomography images the eutectic lamella and

  3. A high resolution small animal radiation research platform (SARRP) with x-ray tomographic guidance capabilities

    PubMed Central

    Wong, John; Armour, Elwood; Kazanzides, Peter; Iordachita, Iulian; Tryggestad, Erik; Deng, Hua; Matinfar, Mohammad; Kennedy, Christopher; Liu, Zejian; Chan, Timothy; Gray, Owen; Verhaegen, Frank; McNutt, Todd; Ford, Eric; DeWeese, Theodore L.

    2008-01-01

    Purpose To demonstrate the CT imaging, conformal irradiation and treatment planning capabilities of a small animal radiation research platform (SARRP). Methods The SARRP employs a dual-focal spot, constant voltage x-ray source mounted on a gantry with a source-to-isocenter distance of 35 cm. Gantry rotation is limited to 120° from vertical. Eighty to 100 kVp x-rays from the smaller 0.4 mm focal spot are used for imaging. Both 0.4 mm and 3.0 mm focal spots operate at 225 kVp for irradiation. Robotic translate/rotate stages are used to position the animal. Cone-beam (CB) CT imaging is achieved by rotating the horizontal animal between the stationary x-ray source and a flat-panel detector. Radiation beams range from 0.5 mm in diameter to (60 × 60) mm2. Dosimetry is measured with radio-chromic films. Monte Carlo dose calculations are employed for treatment planning. The combination of gantry and robotic stage motions facilitate conformal irradiation. Results The SARRP spans 3 ft × 4 ft × 6 ft (WxLxH). Depending on filtration, the isocenter dose outputs at 1 cm depth in water range from 22 to 375 cGy/min from the smallest to the largest radiation fields. The 20% to 80% dose fall-off spans 0.16 mm. CBCT with (0.6 × 0.6 × 0.6) mm3 voxel resolution is acquired with less than 1 cGy. Treatment planning is performed at sub-mm resolution. Conclusions The capability of the SARRP to deliver highly focal beams to multiple animal model systems provides new research opportunities that more realistically bridge laboratory research and clinical translation. PMID:18640502

  4. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed...

  5. Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao

    1999-09-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.

  6. X-ray computed tomography for additive manufacturing: a review

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Maskery, I.; Leach, R. K.

    2016-07-01

    In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM.

  7. Scale analysis using X-ray microfluorescence and computed radiography

    NASA Astrophysics Data System (ADS)

    Candeias, J. P.; de Oliveira, D. F.; dos Anjos, M. J.; Lopes, R. T.

    2014-02-01

    Scale deposits are the most common and most troublesome damage problems in the oil field and can occur in both production and injection wells. They occur because the minerals in produced water exceed their saturation limit as temperatures and pressures change. Scale can vary in appearance from hard crystalline material to soft, friable material and the deposits can contain other minerals and impurities such as paraffin, salt and iron. In severe conditions, scale creates a significant restriction, or even a plug, in the production tubing. This study was conducted to qualify the elements present in scale samples and quantify the thickness of the scale layer using synchrotron radiation micro-X-ray fluorescence (SRμXRF) and computed radiography (CR) techniques. The SRμXRF results showed that the elements found in the scale samples were strontium, barium, calcium, chromium, sulfur and iron. The CR analysis showed that the thickness of the scale layer was identified and quantified with accuracy. These results can help in the decision making about removing the deposited scale.

  8. X-ray tomographic microscopy for non-destructive inspection and advanced materials characterization. Final report, May 22, 1992--May 21, 1994

    SciTech Connect

    1995-04-27

    This was a CRADA to transfer the x-ray tomographic microscope technology to the Quality Technology Center of General Electric Air Craft Engines Division in Ohio. The x-ray tomographic microscope (XTM) is a high resolution, three-dimensional imaging system that can be used to image materials microstructures noninvasively. The apparatus consists of an x-ray source, x-ray collimators, sample positioning stages, a fluorescent screen to convert x-rays to visible light, an optical lens, and a thermoelectrically cooled charge coupled device detector. The details of the microscope`s design have been described elsewhere. In practice, the sample to be imaged is positioned on a rotating stage. The sample is initially translated out of the x-ray path, and an image is obtained of the incident x-ray beam (the reference image). Next, the sample is placed between the x-ray path and the scintillator, and another image, the projection image, is acquired. The ratios of the logarithms of the reference image and the projection image provide values of the integrated x-ray attenuation through the sample. By rotating the sample in discrete angular increments through 180 degrees, enough data can be obtained to reconstruct the two-dimensional projection images into a three-dimensional image of the mineral density distribution in the sample. This reconstruction procedure, known as reconstruction from projections, is usually performed with the technique of Fourier-filtered back-projection. Using the present microscope, a 1 cubic centimeter volume can be imaged with five micrometer volume elements in about one hour or less.

  9. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... produce cross-sectional images of the body by computer reconstruction of x-ray transmission data from...

  10. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... produce cross-sectional images of the body by computer reconstruction of x-ray transmission data from...

  11. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Computed tomography x-ray system. 892.1750 Section 892.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... produce cross-sectional images of the body by computer reconstruction of x-ray transmission data from...

  12. Three-dimensional X-ray micro-computed tomography analysis of polymerization shrinkage vectors in flowable composite.

    PubMed

    Takemura, Yukihiko; Hanaoka, Koji; Kawamata, Ryota; Sakurai, Takashi; Teranaka, Toshio

    2014-01-01

    The polymerization shrinkage of flowable resin composites was evaluated using air bubbles as traceable markers. Three different surface treatments i.e. an adhesive silane coupling agent, a separating silane coupling agent, and a combination of both, were applied to standard cavities. Before and after polymerization, X-ray micro-computed tomography images were recorded. Their superimposition and comparison allowed position changes of the markers to be visualized as vectors. The movement of the markers in the resin composite was, therefore, quantitatively evaluated from the tomographic images. Adhesion was found to significantly influence shrinkage patterns. The method used here could be employed to visualize shrinkage vectors and shrinkage volume. PMID:24988881

  13. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    NASA Astrophysics Data System (ADS)

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-04-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.

  14. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    PubMed Central

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-01-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies. PMID:27040492

  15. Arbutin: Isolation, X-ray structure and computional studies

    NASA Astrophysics Data System (ADS)

    Nycz, Jacek E.; Malecki, Grzegorz; Morag, Monika; Nowak, Gerard; Ponikiewski, Lukasz; Kusz, Joachim; Switlicka, Anna

    2010-09-01

    Arbutin, an active component originated from Serratula quinquefolia for skin-whitening use and treating skin related allergic inflammation, was characterized by microanalysis, FTIR, UV-Vis, multinuclear NMR spectroscopy, and single crystal X-ray diffraction method. The geometries of the studied compound were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. Electronic spectra were calculated by TDDFT method. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data.

  16. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

    PubMed Central

    Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan

    2014-01-01

    Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824

  17. BraX-Ray: An X-Ray of the Brazilian Computer Science Graduate Programs

    PubMed Central

    Digiampietri, Luciano A.; Mena-Chalco, Jesús P.; Vaz de Melo, Pedro O. S.; Malheiro, Ana P. R.; Meira, Dânia N. O.; Franco, Laryssa F.; Oliveira, Leonardo B.

    2014-01-01

    Research productivity assessment is increasingly relevant for allocation of research funds. On one hand, this assessment is challenging because it involves both qualitative and quantitative analysis of several characteristics, most of them subjective in nature. On the other hand, current tools and academic social networks make bibliometric data web-available to everyone for free. Those tools, especially when combined with other data, are able to create a rich environment from which information on research productivity can be extracted. In this context, our work aims at characterizing the Brazilian Computer Science graduate programs and the relationship among themselves. We (i) present views of the programs from different perspectives, (ii) rank the programs according to each perspective and a combination of them, (iii) show correlation between assessment metrics, (iv) discuss how programs relate to another, and (v) infer aspects that boost programs' research productivity. The results indicate that programs with a higher insertion in the coauthorship network topology also possess a higher research productivity between 2004 and 2009. PMID:24728179

  18. BraX-Ray: an X-ray of the Brazilian computer science graduate programs.

    PubMed

    Digiampietri, Luciano A; Mena-Chalco, Jesús P; Vaz de Melo, Pedro O S; Malheiro, Ana P R; Meira, Dânia N O; Franco, Laryssa F; Oliveira, Leonardo B

    2014-01-01

    Research productivity assessment is increasingly relevant for allocation of research funds. On one hand, this assessment is challenging because it involves both qualitative and quantitative analysis of several characteristics, most of them subjective in nature. On the other hand, current tools and academic social networks make bibliometric data web-available to everyone for free. Those tools, especially when combined with other data, are able to create a rich environment from which information on research productivity can be extracted. In this context, our work aims at characterizing the Brazilian Computer Science graduate programs and the relationship among themselves. We (i) present views of the programs from different perspectives, (ii) rank the programs according to each perspective and a combination of them, (iii) show correlation between assessment metrics, (iv) discuss how programs relate to another, and (v) infer aspects that boost programs' research productivity. The results indicate that programs with a higher insertion in the coauthorship network topology also possess a higher research productivity between 2004 and 2009. PMID:24728179

  19. Exceptionally Preserved Cambrian Trilobite Digestive System Revealed in 3D by Synchrotron-Radiation X-Ray Tomographic Microscopy

    PubMed Central

    Eriksson, Mats E.; Terfelt, Fredrik

    2012-01-01

    The Cambrian ‘Orsten’ fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish ‘Orsten’ fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the ‘Orsten’ fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome. PMID:22558180

  20. Real-time digital filtering, event triggering, and tomographic reconstruction of JET soft x-ray data (abstract)

    NASA Astrophysics Data System (ADS)

    Edwards, A. W.; Blackler, K.; Gill, R. D.; van der Goot, E.; Holm, J.

    1990-10-01

    Based upon the experience gained with the present soft x-ray data acquisition system, new techniques are being developed which make extensive use of digital signal processors (DSPs). Digital filters make 13 further frequencies available in real time from the input sampling frequency of 200 kHz. In parallel, various algorithms running on further DSPs generate triggers in response to a range of events in the plasma. The sawtooth crash can be detected, for example, with a delay of only 50 μs from the onset of the collapse. The trigger processor interacts with the digital filter boards to ensure data of the appropriate frequency is recorded throughout a plasma discharge. An independent link is used to pass 780 and 24 Hz filtered data to a network of transputers. A full tomographic inversion and display of the 24 Hz data is carried out in real time using this 15 transputer array. The 780 Hz data are stored for immediate detailed playback following the pulse. Such a system could considerably improve the quality of present plasma diagnostic data which is, in general, sampled at one fixed frequency throughout a discharge. Further, it should provide valuable information towards designing diagnostic data acquisition systems for future long pulse operation machines when a high degree of real-time processing will be required, while retaining the ability to detect, record, and analyze events of interest within such long plasma discharges.

  1. Noise properties of grating-based x-ray phase contrast computed tomography

    SciTech Connect

    Koehler, Thomas; Juergen Engel, Klaus; Roessl, Ewald

    2011-05-15

    Purpose: To investigate the properties of tomographic grating-based phase contrast imaging with respect to its noise power spectrum and the energy dependence of the achievable contrast to noise ratio. Methods: Tomographic simulations of an object with 11 cm diameter constituted of materials of biological interest were conducted at different energies ranging from 25 to 85 keV by using a wave propagation approach. Using a Monte Carlo simulation of the x-ray attenuation within the object, it is verified that the simulated measurement deposits the same dose within the object at each energy. Results: The noise in reconstructed phase contrast computed tomography images shows a maximum at low spatial frequencies. The contrast to noise ratio reaches a maximum around 45 keV for the simulated object. The general dependence of the contrast to noise on the energy appears to be independent of the material. Compared with reconstructed absorption contrast images, the reconstructed phase contrast images show sometimes better, sometimes worse, and sometimes similar contrast to noise, depending on the material and the energy. Conclusions: Phase contrast images provide additional information to the conventional absorption contrast images and might thus be useful for medical applications. However, the observed noise power spectrum in reconstructed phase contrast images implies that the usual trade-off between noise and resolution is less efficient for phase contrast imaging compared with absorption contrast imaging. Therefore, high-resolution imaging is a strength of phase contrast imaging, but low-resolution imaging is not. This might hamper the clinical application of the method, in cases where a low spatial resolution is sufficient for diagnosis.

  2. X-Ray Micro-Computed Tomography Imaging of the Buzzard Coulee Chondrite

    NASA Astrophysics Data System (ADS)

    Melanson, D.; Samson, C.; Herd, R. K.; Fry, C.; McCausland, P. J. A.; Umoh, J.; Holdsworth, D. W.

    2012-03-01

    This abstract outlines research and some results of X-ray micro-computed tomography imaging of the Buzzard Coulee H4 chondrite. A comparison of bulk density results and an analysis of radio-density profile curves are discussed.

  3. Deterministic Computer-Controlled Polishing Process for High-Energy X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    A deterministic computer-controlled polishing process for large X-ray mirror mandrels is presented. Using tool s influence function and material removal rate extracted from polishing experiments, design considerations of polishing laps and optimized operating parameters are discussed

  4. Evaluation of sample holders designed for long-lasting X-ray micro-tomographic scans of ex-vivo soft tissue samples

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Zemlicka, J.; Krejci, F.; Karch, J.; Patzelt, M.; Zach, P.; Sykora, V.; Mrzilkova, J.

    2016-03-01

    X-ray microradiography and microtomography are imaging techniques with increasing applicability in the field of biomedical and preclinical research. Application of hybrid pixel detector Timepix enables to obtain very high contrast of low attenuating materials such as soft biological tissue. However X-ray imaging of ex-vivo soft tissue samples is a difficult task due to its structural instability. Ex-vivo biological tissue is prone to fast drying-out which is connected with undesired changes of sample size and shape producing later on artefacts within the tomographic reconstruction. In this work we present the optimization of our Timepix equipped micro-CT system aiming to maintain soft tissue sample in stable condition. Thanks to the suggested approach higher contrast of tomographic reconstructions can be achieved while also large samples that require detector scanning can be easily measured.

  5. X-ray structures and computational studies of several cathinones

    NASA Astrophysics Data System (ADS)

    Nycz, Jacek E.; Malecki, Grzegorz; Zawiazalec, Marcin; Pazdziorek, Tadeusz

    2011-09-01

    2-(Ethylamino)-1-(4-methylphenyl)propan-1-one (shortly named 4-MEC) ( 1a), 1-(1,3-benzodioxol-5-yl)-2-(methylamino)propan-1-one (shortly named methylone or 3,4-methylenedioxymethcathinone) ( 1b), 1-(3,4-dimethylphenyl)-2-(methylamino)propan-1-one ( 1c), 2-methylamino-1-(4-methylphenyl)propan-1-one (shortly named mephedrone; 4-MMC or 4-methylmethcathinone) ( 1d) and 2-(methylamino)-1-phenylbutan-1-one (shortly named buphedrone) ( 1e) and their aminium salts ( 2a-e), are examples of cathinones which were characterized by FTIR, UV-Vis, multinuclear NMR spectroscopy. By single crystal X-ray diffraction method structures of 2a, 2b, 2c and 2d were determined. NMR solution spectra showed readily diagnostic H-1 and C-13 signals from methyl, ethyl, N-methyl or N-ethyl groups. The diastereotopic methylene protons of 1a appear as an ABX 3, and 1e and 2e appear as an ABMX 3 system. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. Electronic spectra were calculated by TDDFT method. In general, the predicted bond lengths and angles are in good agreement with the values based on the X-ray crystal structure data.

  6. Multiple pinhole collimator based microscopic x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    X-ray luminescence computed tomography (XLCT) is a new hybrid imaging modality, which has the capability to improve optical spatial resolution to hundreds of micrometers for deep targets. In this paper, we report a multiple pinhole collimator based microscopic X-ray luminescence computed tomography (microXLCT) system for small animal imaging. Superfine collimated X-ray pencil beams are used to excite deeply embedded phosphor particles, allowing us to obtain sub-millimeter optical spatial resolution in deep tissues. Multiple collimated X-ray beams are generated by mounting an array of pinholes in the front of a powerful X-ray tube. With multiple X-ray beams scanning, the phosphor particles in the region of the multiple beams are excited simultaneously, which requires less scanning time compared with a single beam scanning. The emitted optical photons on the top surface of the phantom are measured with an electron multiplying charge-coupled device (EMCCD) camera. Meanwhile, an X-ray detector is used to determine the X-ray beam size and position, which are used as structural guidance in the microXLCT image reconstruction. To validate the performance of our proposed multiple pinhole based microXLCT imaging system, we have performed numerical simulations and a phantom experiment. In the numerical simulations, we simulated a cylindrical phantom with two and six embedded targets, respectively. In the simulations, we used four parallel X-ray beams with the beam diameter of 0.1 mm and the beam interval of 3.2 mm. We can reconstruct deeply embedded multiple targets with a target diameter of 0.2 mm using measurements in six projections, which indicated that four parallel X-ray beam scan could reduce scanning time without comprising the reconstructed image quality. In the phantom experiment, we generated two parallel X-ray beams with the beam diameter of 0.5 mm and the beam interval of 4.2 mm. We scanned a phantom of one target with the two parallel X-ray beams. The target was

  7. Computer solutions for studying correlations between solar magnetic fields and Skylab X-ray observations

    NASA Technical Reports Server (NTRS)

    Teuber, D.; Tandberg-Hanssen, E.; Hagyard, M. J.

    1977-01-01

    A method is described which correlates the NASA-Marshall Space Flight Center (MSFC) Image Data Processing System (IDAPS) and MSFC magnetograph data to X-ray and H-alpha observations from the Skylab mission. Solutions of Laplace's equation in three dimensions, based on the magnetograph data, are convolved with observed X-ray and H-alpha regions. Matched filtering (template matching) provides a best fit of the observed X-ray regions to the computed total magnetic vector magnitude between 10,000 and 15,000 km above the photosphere.

  8. In situ X-ray tomographic microscopy observations of vesiculation of bubble-free and bubble-bearing magmas

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Caricchi, Luca; Fife, Julie L.; Mader, Kevin; Ulmer, Peter

    2015-12-01

    Magma degassing is thought to play a major role in magma fractionation, transport, storage, and volcanic eruption dynamics. However, the conditions that determine when and how magma degassing operates prior to and during an eruption remain poorly constrained. We performed experiments to explore if the initial presence of gas bubbles in magma influences the capability of gas to escape from the magma. Vesiculation of natural H2O-poor (<<1 wt.%) silicic obsidian glasses was investigated by in situ, high-temperature (above the glass transition) experiments using synchrotron-based X-ray tomographic microscopy with high spatial (3 μm/pixel) and temporal resolution (1 second per 3D dataset). As a validation, a second set of experiments was performed on identical starting materials using a Karl-Fisher titration setup to quantify the amount of extracted gas that escapes via volatile diffusion and/or bubble coalescence during vesiculation. In both sets of experiments, vesiculation was triggered by heating the samples at room pressure. Our results suggest that the presence of pre-existing gas bubbles during a nucleation event significantly decreases the tendency of bubbles to coalesce and inhibits magma outgassing. In contrast, in initially bubble-free samples, the nucleation and growth of bubbles is accompanied by significant coalescence and outgassing. We infer that volatile-undersaturated (i.e. bubble-free) magmas in the reservoirs are more likely to erupt effusively, while the presence of excess gas already at depth (i.e. bubble-bearing systems) increases the likelihood of explosive eruptions.

  9. ANL CT Reconstruction Algorithm for Utilizing Digital X-ray

    Energy Science and Technology Software Center (ESTSC)

    2004-05-01

    Reconstructs X-ray computed tomographic images from large data sets known as 16-bit binary sinograms when using a massively parallelized computer architecture such as a Beowuif cluster by parallelizing the X-ray CT reconstruction routine. The algorithm uses the concept of generation of an image from carefully obtained multiple 1-D or 2-D X-ray projections. The individual projections are filtered using a digital Fast Fourier Transform. The literature refers to this as filtered back projection.

  10. Visualization of x-ray computer tomography using computer-generated holography

    NASA Astrophysics Data System (ADS)

    Daibo, Masahiro; Tayama, Norio

    1998-09-01

    The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.

  11. Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography

    PubMed Central

    Cong, Wenxiang; Shen, Haiou; Wang, Ge

    2011-01-01

    The nanophosphors, or other similar materials, emit near-infrared (NIR) light upon x-ray excitation. They were designed as optical probes for in vivo visualization and analysis of molecular and cellular targets, pathways, and responses. Based on the previous work on x-ray fluorescence computed tomography (XFCT) and x-ray luminescence computed tomography (XLCT), here we propose a spectrally-resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography (SXLCT or SXFCT) approach to quantify a spatial distribution of nanophosphors (other similar materials or chemical elements) within a biological object. In this paper, the x-ray scattering is taken into account in the reconstruction algorithm. The NIR scattering is described in the diffusion approximation model. Then, x-ray excitations are applied with different spectra, and NIR signals are measured in a spectrally resolving fashion. Finally, a linear relationship is established between the nanophosphor distribution and measured NIR data using the finite element method and inverted using the compressive sensing technique. The numerical simulation results demonstrate the feasibility and merits of the proposed approach. PMID:21721815

  12. Design and implemention of a multi-functional x-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin; Zhang, Xiang; Deng, Lin; Chen, Siyu; Jin, Zhao; Li, Zengguang

    2015-10-01

    A powerful volume X-ray tomography system has been designed and constructed to provide an universal tool for the three-dimensional nondestructive testing and investigation of industrial components, automotive, electronics, aerospace components, new materials, etc. The combined system is equipped with two commercial X-ray sources, sharing one flat panel detector of 400mm×400mm. The standard focus 450kV high-energy x-ray source is optimized for complex and high density components such as castings, engine blocks and turbine blades. And the microfocus 225kV x-ray source is to meet the demands of micro-resolution characterization applications. Thus the system's penetration capability allows to scan large objects up to 200mm thick dense materials, and the resolution capability can meet the demands of 20μm microstructure inspection. A high precision 6-axis manipulator system is fitted, capable of offset scanning mode in large field of view requirements. All the components are housed in a room with barium sulphate cement. On the other hand, the presented system expands the scope of applications such as dual energy research and testing. In this paper, the design and implemention of the flexible system is described, as well as the preliminary tomographic imaging results of an automobile engine block.

  13. Verifying X-Radiographs With Computed Tomographs

    NASA Technical Reports Server (NTRS)

    Roy, Jagatjit; Pascua, Antonio G.

    1991-01-01

    Nondestructive technique gives added confidence in inspection. Ambiguous indications in radiographic inspections of metal castings checked by computed tomography. Fast and inexpensive conventional x-ray inspection used to make film image of overall casting, and slower, more costly computed tomography used to reinspect relatively few parts of casting presenting possible diffraction patterns or other difficult-to-interpret features. Method effective in resolving ambiguities in radiographs of turbine blades. Provides same information as metallurgical sectioning.

  14. Computing elastic moduli on 3-D X-ray computed tomography image stacks

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.; Kushch, V. I.

    2015-03-01

    A numerical task of current interest is to compute the effective elastic properties of a random composite material by operating on a 3D digital image of its microstructure obtained via X-ray computed tomography (CT). The 3-D image is usually sub-sampled since an X-ray CT image is typically of order 10003 voxels or larger, which is considered to be a very large finite element problem. Two main questions for the validity of any such study are then: can the sub-sample size be made sufficiently large to capture enough of the important details of the random microstructure so that the computed moduli can be thought of as accurate, and what boundary conditions should be chosen for these sub-samples? This paper contributes to the answer of both questions by studying a simulated X-ray CT cylindrical microstructure with three phases, cut from a random model system with known elastic properties. A new hybrid numerical method is introduced, which makes use of finite element solutions coupled with exact solutions for elastic moduli of square arrays of parallel cylindrical fibers. The new method allows, in principle, all of the microstructural data to be used when the X-ray CT image is in the form of a cylinder, which is often the case. Appendix A describes a similar algorithm for spherical sub-samples, which may be of use when examining the mechanical properties of particles. Cubic sub-samples are also taken from this simulated X-ray CT structure to investigate the effect of two different kinds of boundary conditions: forced periodic and fixed displacements. It is found that using forced periodic displacements on the non-geometrically periodic cubic sub-samples always gave more accurate results than using fixed displacements, although with about the same precision. The larger the cubic sub-sample, the more accurate and precise was the elastic computation, and using the complete cylindrical sample with the new method gave still more accurate and precise results. Fortran 90

  15. Scattering-compensated cone beam x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Rong, Junyan; Pu, Huangsheng; Liu, Wenlei; Liao, Qimei; Lu, Hongbing

    2016-04-01

    X-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging with x-ray. It is a dual modality imaging technique based on the principle that some nanophosphors can emit near-infrared (NIR) light when excited by x-rays. The x-ray scattering effect is a great issue in both CT and XLCT reconstruction. It has been shown that if the scattering effect compensated, the reconstruction average relative error can be reduced from 40% to 12% in the in the pencil beam XLCT. However, the scattering effect in the cone beam XLCT has not been proved. To verify and reduce the scattering effect, we proposed scattering-compensated cone beam x-ray luminescence computed tomography using an added leading to prevent the spare x-ray outside the irradiated phantom in order to decrease the scattering effect. Phantom experiments of two tubes filled with Y2O3:Eu3+ indicated that the proposed method could reduce the scattering by a degree of 30% and can reduce the location error from 1.8mm to 1.2mm. Hence, the proposed method was feasible to the general case and actual experiments and it is easy to implement.

  16. Evaluation of the use of six diagnostic X-ray spectra computer codes.

    PubMed

    Meyer, P; Buffard, E; Mertz, L; Kennel, C; Constantinesco, A; Siffert, P

    2004-03-01

    A knowledge of photon energy spectra emitted from X-ray tubes in radiology is crucial for many research domains in the medical field. Since spectrometry is difficult because of high photon fluence rates, a convenient solution is to use computational models. This paper describes the use of six computer codes based on semiempirical or empirical models. The use of the codes was assessed, notably by comparing theoretical half value layers and air kerma with measurements on five different X-ray tubes used in a research hospital. It was found that three out of the six computer codes give relative spectra very close to those produced by X-ray units equipped with constant potential generators: the mean difference between measured and modelled half value layer was less than 3% with a standard deviation of 3.6% whatever the tube and the applied voltage. Absolute output is less accurate: for four computer codes, the mean difference between the measured and modelled air kerma was between 18% and 36%, with a standard deviation of 9% whatever the tube (except for the single phase generator) and the applied voltage. One of the codes gives a good output and beam quality for X-ray units equipped with 100% ripple voltage generators. The use of computational codes as described in this paper provides a means of modelling relative diagnostic X-ray spectra, the usefulness of the tube output data depending on the accuracy required by the end user. PMID:15020364

  17. Digital computer processing of X-ray photos

    NASA Technical Reports Server (NTRS)

    Nathan, R.; Selzer, R. H.

    1967-01-01

    Digital computers correct various distortions in medical and biological photographs. One of the principal methods of computer enhancement involves the use of a two-dimensional digital filter to modify the frequency spectrum of the picture. Another computer processing method is image subtraction.

  18. X-ray 3D computed tomography of large objects: investigation of an ancient globe created by Vincenzo Coronelli

    NASA Astrophysics Data System (ADS)

    Morigi, Maria Pia; Casali, Franco; Berdondini, Andrea; Bettuzzi, Matteo; Bianconi, Davide; Brancaccio, Rosa; Castellani, Alice; D'Errico, Vincenzo; Pasini, Alessandro; Rossi, Alberto; Labanti, C.; Scianna, Nicolangelo

    2007-07-01

    X-ray cone-beam Computed Tomography is a powerful tool for the non-destructive investigation of the inner structure of works of art. With regard to Cultural Heritage conservation, different kinds of objects have to be inspected in order to acquire significant information such as the manufacturing technique or the presence of defects and damages. The knowledge of these features is very useful for determining adequate maintenance and restoration procedures. The use of medical CT scanners gives good results only when the investigated objects have size and density similar to those of the human body, however this requirement is not always fulfilled in Cultural Heritage diagnostics. For this reason a system for Digital Radiography and Computed Tomography of large objects, especially works of art, has been recently developed by researchers of the Physics Department of the University of Bologna. The design of the system is very different from any commercial available CT machine. The system consists of a 200 kVp X-ray source, a detector and a motorized mechanical structure for moving the detector and the object in order to collect the required number of radiographic projections. The detector is made up of a 450x450 mm2 structured CsI(Tl) scintillating screen, optically coupled to a CCD camera. In this paper we will present the results of the tomographic investigation recently performed on an ancient globe, created by the famous cosmographer, cartographer and encyclopedist Vincenzo Coronelli.

  19. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution

    PubMed Central

    Holler, M.; Diaz, A.; Guizar-Sicairos, M.; Karvinen, P.; Färm, Elina; Härkönen, Emma; Ritala, Mikko; Menzel, A.; Raabe, J.; Bunk, O.

    2014-01-01

    X-ray ptychography is a scanning variant of coherent diffractive imaging with the ability to image large fields of view at high resolution. It further allows imaging of non-isolated specimens and can produce quantitative mapping of the electron density distribution in 3D when combined with computed tomography. The method does not require imaging lenses, which makes it dose efficient and suitable to multi-keV X-rays, where efficient photon counting, pixelated detectors are available. Here we present the first highly resolved quantitative X-ray ptychographic tomography of an extended object yielding 16 nm isotropic 3D resolution recorded at 2 Å wavelength. This first-of-its-kind demonstration paves the way for ptychographic X-ray tomography to become a promising method for X-ray imaging of representative sample volumes at unmatched resolution, opening tremendous potential for characterizing samples in materials science and biology by filling the resolution gap between electron microscopy and other X-ray imaging techniques. PMID:24457289

  20. Optimization of X-ray tomography through a cooperative computing system in grid

    SciTech Connect

    Hasan, Moin Goraya, Major Singh

    2015-08-28

    Cooperative Computing implemented as Cooperative Computing System (CCS) in grid has been proved a considerably reliable technique to execute the tasks with real time constraints in a grid environment. This technique can be applied in many high performance distributed computing applications. HPC has a large number of applications in various fields of physics. One such application in radiation physics is X-ray tomography. X-Ray tomography contains numerous applications in various fields of science, technology and research. As the technology is changing from analog to digital in almost all the scenarios, this paper presents an idea towards the attachment of X-ray tomography assembly to HPC environment so as to obtain the highly reliable optimization.

  1. Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL

    NASA Astrophysics Data System (ADS)

    Bird, M. B.; Butler, S. L.; Hawkes, C. D.; Kotzer, T.

    2014-12-01

    The use of numerical simulations to model physical processes occurring within subvolumes of rock samples that have been characterized using advanced 3D imaging techniques is becoming increasingly common. Not only do these simulations allow for the determination of macroscopic properties like hydraulic permeability and electrical formation factor, but they also allow the user to visualize processes taking place at the pore scale and they allow for multiple different processes to be simulated on the same geometry. Most efforts to date have used specialized research software for the purpose of simulations. In this contribution, we outline the steps taken to use commercial software Avizo to transform a 3D synchrotron X-ray-derived tomographic image of a rock core sample to an STL (STereoLithography) file which can be imported into the commercial multiphysics modeling package COMSOL. We demonstrate that the use of COMSOL to perform fluid and electrical current flow simulations through the pore spaces. The permeability and electrical formation factor of the sample are calculated and compared with laboratory-derived values and benchmark calculations. Although the simulation domains that we were able to model on a desk top computer were significantly smaller than representative elementary volumes, and we were able to establish Kozeny-Carman and Archie's Law trends on which laboratory measurements and previous benchmark solutions fall. The rock core samples include a Fountainebleau sandstone used for benchmarking and a marly dolostone sampled from a well in the Weyburn oil field of southeastern Saskatchewan, Canada. Such carbonates are known to have complicated pore structures compared with sandstones, yet we are able to calculate reasonable macroscopic properties. We discuss the computing resources required.

  2. Wolter X-Ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results

    SciTech Connect

    Jackson, J A

    2006-02-27

    It is proposed to build a Wolter X-ray Microscope Computed Tomography System in order to characterize objects to sub-micrometer resolution. Wolter Optics Systems use hyperbolic, elliptical, and/or parabolic mirrors to reflect x-rays in order to focus or magnify an image. Wolter Optics have been used as telescopes and as microscopes. As microscopes they have been used for a number of purposes such as measuring emission x-rays and x-ray fluoresce of thin biological samples. Standard Computed Tomography (CT) Systems use 2D radiographic images, from a series of rotational angles, acquired by passing x-rays through an object to reconstruct a 3D image of the object. The x-ray paths in a Wolter X-ray Microscope will be considerably different than those of a standard CT system. There is little information about the 2D radiographic images that can be expected from such a system. There are questions about the quality, resolution and focusing range of an image created with such a system. It is not known whether characterization information can be obtained from these images and whether these 2D images can be reconstructed to 3D images of the object. A code has been developed to model the 2D radiographic image created by an object in a Wolter X-ray Microscope. This code simply follows the x-ray through the object and optics. There is no modeling at this point of other effects, such as scattering, reflection losses etc. Any object, of appropriate size, can be used in the model code. A series of simulations using a number of different objects was run to study the effects of the optics. The next step will be to use this model to reconstruct an object from the simulated data. Funding for the project ended before this goal could be accomplished. The following documentation includes: (1) background information on current X-ray imaging systems, (2) background on Wolter Optics, (3) description of the Wolter System being used, (4) purpose, limitations and development of the modeling

  3. Collimator Width Optimization in X-Ray Luminescent Computed Tomography (XLCT) with Selective Excitation Scheme

    PubMed Central

    Mishra, S.; Kappiyoor, R.

    2015-01-01

    X-ray luminescent computed tomography (XLCT) is a promising new functional imaging modality based on computed tomography (CT). This imaging technique uses X-ray excitable nanophosphors to illuminate objects of interest in the visible spectrum. Though there are several validations of the underlying technology, none of them have addressed the issues of performance optimality for a given design of the imaging system. This study addresses the issue of obtaining best image quality through optimizing collimator width to balance the signal to noise ratio (SNR) and resolution. The results can be generalized as to any XLCT system employing a selective excitation scheme. PMID:25642356

  4. Measuring the efficacy of a root biobarrier with x-ray computed tomography

    SciTech Connect

    Tollner, E.W.; Murphy, C.E. Jr. . Dept. of Agricultural Engineering)

    1990-08-16

    X-ray computed tomography is a useful tool for investigating soil physical properties nondestructively. There is a need to develop proper calibration relationships between soil properties and the x-ray absorption coefficient. The objective of the work was to evaluate soil factors affecting the x-ray absorption coefficient. Based on a theoretical analysis, experimental data from five soils and on results of several other investigators, it was concluded that for many applications, one calibration relationship is applicable to a wide range of soils. The montmorillinitic clay used in the study required special handling due to the extreme shrinkage of this soil upon drying. Knowledge of chemical composition enables approximations but not exact predictions of the x-ray absorption coefficient. The results suggested some reasonable alternative to exhaustive calibration for each anticipated soil condition. Quantification of root activity in terms of root growth and indirectly through water uptake is necessary for understanding plant growth dynamics. X-ray computed tomography (CT) enables qualitative as well as two quantitative outputs, one of which can lead to conclusions regarding root activity. A greenhouse study involving soil columns (Lakeland sand, bulk density 1.4 Mg/m{sup 3}) planted to soybean, Bahiagras, and control (no vegetation) was conducted in 1989. A treflan based on chemical barrier was placed in half of the soil column of each species. The mean x-ray absorption correlated to water content. Results suggested that root presence can also be indirectly inferred based on water content drawn down during planned stress events. It was concluded that x-ray CT may have a niche in soil-water-plant relation studies, particularly when plant species have large roots. 35 refs., 13 figs., 8 tabs.

  5. Computed tomographic findings in bilateral adrenal tuberculosis

    SciTech Connect

    Wilms, G.E.; Baert, A.L.; Kint, E.J.; Pringot, J.H.; Goddeeris, P.G.

    1983-03-01

    The computed tomographic (CT) features of bilateral adrenal tuberculosis are reported in two cases that demonstrate two typical different clinical and morphological manifestations of the disease. The incidence and CT appearance of adrenal tuberculosis are discussed, with emphasis on differential diagnosis.

  6. Computed tomographic staging of traumatic epidural bleeding

    SciTech Connect

    Zimmerman, R.A.; Bilaniuk, L.T.

    1982-09-01

    The computed tomographic findings in 45 patients with post-traumatic epidural hemotomas are subdivided into three categories (acute, subacute, and chronic) and correlated with the severity of bleeding, clot formation, and clot resorption. Active epidural bleeding may be identified in acute cases.

  7. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    PubMed Central

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  8. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography.

    PubMed

    Egan, C K; Jacques, S D M; Wilson, M D; Veale, M C; Seller, P; Beale, A M; Pattrick, R A D; Withers, P J; Cernik, R J

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  9. High Quality Image of Biomedical Object by X-ray Refraction Based Contrast Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hashimoto, E.; Maksimenko, A.; Sugiyama, H.; Hirano, K.; Hyodo, K.; Shimao, D.; Nishino, Y.; Ishikawa, T.; Yuasa, T.; Ichihara, S.; Arai, Y.; Ando, M.

    2007-01-01

    Recently we have developed a new Computed Tomography (CT) algorithm for refraction contrast that uses the optics of diffraction-enhanced imaging. We applied this new method to visualize soft tissue which is not visualized by the current absorption based contrast. The meaning of the contrast that appears in refraction-contrast X-ray CT images must be clarified from a biologic or anatomic point of view. It has been reported that the contrast is made with the specific gravity map with a range of approximately 10 μarc sec. However, the relationship between the contrast and biologic or anatomic findings has not been investigated, to our knowledge. We compared refraction-contrast X-ray CT images with microscopic X-ray images, and we evaluated refractive indexes of pathologic lesions on phase-contrast X-ray CT images. We focused our attenuation of breast cancer and lung cancer as samples. X-ray refraction based Computed Tomography was appeared to be a pathological ability to depict the boundary between cancer nest and normal tissue, and inner structure of the disease.

  10. Performance analysis of a neutron and X-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, Vaibhav; Srivastava, Anjali; Koo Lee, Hyoung; Liu, Xin

    2014-06-01

    A novel neutron and X-ray combined computed tomography system (NXCT) has been developed at the Missouri University of Science & Technology. It is believed that it will provide a superior method for non-destructive testing and evaluation. The system is housed within the Missouri University of Science & Technology Reactor (MSTR) and is the first such imaging platform and synthesis method to be developed. The system utilizes neutrons obtained directly from the reactor core and X-rays from an X-ray generator. Characterization of the newly developed digital imaging system is imperative to the performance evaluation, as well as for describing the associated parameters. The preliminary evaluation of the NXCT system was performed in terms of image uniformity, linearity and spatial resolution. Additionally, the correlation between the applied beam intensity, the resulting image quality, and the system sensitivity was investigated. The combined neutron/X-ray digital imaging system was evaluated in terms of performance parameters and results are detailed. The Modulation Transfer Function (MTF) of the X-ray imaging module was calculated using the Edge method. The spatial frequency at 10% of the MTF was found to be 8 l p/mm, which is in agreement with the value of 8.5 l p/mm determined from the square wave response method. The highest detective quantum efficiency of the X-ray imaging module was found to be 0.53. Furthermore, the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE) spectrum for the neutron imaging module was also evaluated in a similar way as the X-ray imaging module. In order to improve the image quality of the neutron imaging module, a pin-hole mask phantom was used to correct the geometrical non-linearity of the delay line anode readout. The non-linearity correction of the delay line anode readout has been shown through the corrected images of perforated cadmium strip and electroformed phantom.

  11. X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp x-rays.

    PubMed

    Cheong, Seong-Kyun; Jones, Bernard L; Siddiqi, Arsalan K; Liu, Fang; Manohar, Nivedh; Cho, Sang Hyun

    2010-02-01

    A conventional x-ray fluorescence computed tomography (XFCT) technique requires monochromatic synchrotron x-rays to simultaneously determine the spatial distribution and concentration of various elements such as metals in a sample. However, the synchrotron-based XFCT technique appears to be unsuitable for in vivo imaging under a typical laboratory setting. In this study we demonstrated, for the first time to our knowledge, the possibility of performing XFCT imaging of a small animal-sized object containing gold nanoparticles (GNPs) at relatively low concentrations using polychromatic diagnostic energy range x-rays. Specifically, we created a phantom made of polymethyl methacrylate plastic containing two cylindrical columns filled with saline solution at 1 and 2 wt% GNPs, respectively, mimicking tumors/organs within a small animal. XFCT scanning of the phantom was then performed using microfocus 110 kVp x-ray beam and cadmium telluride (CdTe) x-ray detector under a pencil beam geometry after proper filtering of the x-ray beam and collimation of the detector. The reconstructed images clearly identified the locations of the two GNP-filled columns with different contrast levels directly proportional to gold concentration levels. On the other hand, the current pencil-beam implementation of XFCT is not yet practical for routine in vivo imaging tasks with GNPs, especially in terms of scanning time. Nevertheless, with the use of multiple detectors and a limited number of projections, it may still be used to image some objects smaller than the current phantom size. The current investigation suggests several modification strategies of the current XFCT setup, such as the adoption of the quasi-monochromatic cone/fan x-ray beam and XFCT-specific spatial filters or pinhole detector collimators, in order to establish the ultimate feasibility of a bench-top XFCT system for GNP-based preclinical molecular imaging applications. PMID:20071757

  12. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    SciTech Connect

    Kumar, Arjun S.; Mandal, Pratiti; Zhang, Yongjie; Litster, Shawn

    2015-05-14

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy.

  13. Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study.

    PubMed

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Xing, Lei; Fahrig, Rebecca

    2015-10-01

    Thanks to the current advances in nanoscience, molecular biochemistry, and x-ray detector technology, x-ray fluorescence computed tomography (XFCT) has been considered for molecular imaging of probes containing high atomic number elements, such as gold nanoparticles. The commonly used XFCT imaging performed with K-shell x rays appears to have insufficient imaging sensitivity to detect the low gold concentrations observed in small animal studies. Low energy fluorescence L-shell x rays have exhibited higher signal-to-background ratio and appeared as a promising XFCT mode with greatly enhanced sensitivity. The aim of this work was to experimentally demonstrate the feasibility of L-shell XFCT imaging and to assess its achievable sensitivity. We built an experimental L-shell XFCT imaging system consisting of a miniature x-ray tube and two spectrometers, a silicon drift detector (SDD), and a CdTe detector placed at [Formula: see text] with respect to the excitation beam. We imaged a 28-mm-diameter water phantom with 4-mm-diameter Eppendorf tubes containing gold solutions with concentrations of 0.06 to 0.1% Au. While all Au vials were detectable in the SDD L-shell XFCT image, none of the vials were visible in the CdTe L-shell XFCT image. The detectability limit of the presented L-shell XFCT SDD imaging setup was 0.007% Au, a concentration observed in small animal studies. PMID:26839910

  14. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE PAGESBeta

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  15. SAVLOC, computer program for automatic control and analysis of X-ray fluorescence experiments

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.

    1977-01-01

    A program for a PDP-15 computer is presented which provides for control and analysis of trace element determinations by using X-ray fluorescence. The program simultaneously handles data accumulation for one sample and analysis of data from previous samples. Data accumulation consists of sample changing, timing, and data storage. Analysis requires the locating of peaks in X-ray spectra, determination of intensities of peaks, identification of origins of peaks, and determination of a real density of the element responsible for each peak. The program may be run in either a manual (supervised) mode or an automatic (unsupervised) mode.

  16. Terahertz, X-ray and neutron computed tomography of an Eighteenth Dynasty Egyptian sealed pottery

    NASA Astrophysics Data System (ADS)

    Abraham, E.; Bessou, M.; Ziéglé, A.; Hervé, M.-C.; Szentmiklósi, L.; Kasztovszky, Z. S.; Kis, Z.; Menu, M.

    2014-09-01

    An Eighteenth Dynasty Egyptian sealed pottery stored at the Museum of Aquitaine (Bordeaux, France) has been investigated using terahertz radiation, X-rays and neutrons. THz computed tomography revealed nondestructively the presence of content, whereas X-rays and neutrons analyzed more precisely the fabrication process and conservation of the pottery together with the nature of this content owing to higher spatial resolution and contrast. With neutron tomography, we determined the method used to seal the jar as well as the finer structure of the inner content. Neutron-induced prompt gamma spectroscopy was finally applied to measure the elemental composition of the content, which is supposed to consist of dried germinated seeds.

  17. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    SciTech Connect

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  18. Development of a computer-controlled polishing process for x-ray optics

    NASA Astrophysics Data System (ADS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian

    2009-08-01

    Future X-ray observatory missions require grazing-incidence X-ray optics with angular resolution of < 5 arcsec half power diameter. For X-ray mirrors fabricated using replication processes, the achievable resolution depends ultimately on the quality of the polished replication mandrels. With an aim to fabricate better mirror shells, and also to reduce the cost/time of mandrel production, a computer-controlled machine is being developed for deterministic and localized polishing of mandrels. A key component in this is software that predicts the surface residual errors under a given set of operating parameters and lap configuration. Design considerations of the polishing lap are discussed and the effects of nonconformance of the lap and the mandrel are presented.

  19. Multifractal analysis of mercury inclusions in quartz by X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Maruoka, T.; Echigo, T.

    2014-08-01

    In order to refine our understanding how fluid inclusions were trapped in the host minerals, we non-destructively observed mercury inclusions (liquid Hg0) in quartz samples using X-ray computed tomography (CT) technique. The X-ray CT apparatus can observe internal structures of the samples and give cross-sectional images from the transmission of the X-rays through the samples. From the cross-sectional images, we obtained three-dimensional spatial distributions of mercury inclusions, and quantitatively analyzed them using fractal and multifractal methods. Although the samples were from different mines, the resultant fractal dimensions were about 1.7 for the samples. The fractal dimensions were also close to those predicted by diffusion-limited aggregation models and percolation theory, which are controlled by the irreversible kinetics. Then, the mercury-bearing fluids were not primary fluid inclusions, but migrated into the pre-existing cracks of quartz crystals by diffusion processes.

  20. Observations on the Performance of X-Ray Computed Tomography for Dimensional Metrology

    NASA Astrophysics Data System (ADS)

    Corcoran, H. C.; Brown, S. B.; Robson, S.; Speller, R. D.; McCarthy, M. B.

    2016-06-01

    X-ray computed tomography (XCT) is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  1. Computed tomographic evaluation of laryngoceles

    SciTech Connect

    Silverman, P.M.; Korobkin, M.

    1982-10-01

    Computed tomography (CT) of the larynx was used in three patients with laryngoceles. One of the cases is described. CT was able to define the extent of the laryngocele more precisely than either clinical examination or conventional radiographic techniques.

  2. Design, development and characterization of a novel neutron and x-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, Vaibhav

    Visualizing the three dimensional structure of objects (e.g. nuclear fuel, nuclear materials, explosives and bio materials) and phenomena (e.g. particle tracking) can be very important in nondestructive testing applications. Computed tomography systems are indispensable tools for these types of applications because they provide a versatile non-destructive technique for analysis. A novel neutron and X-ray combined computed tomography (NXCT) system has been designed and developed at the Missouri University of Science & Technology. The neutron and X-ray combined computed tomography system holds much promise for non-destructive material detection and analysis where multiple materials having similar atomic number and differing thermal cross section or vice versa may be present within an object, exclusive neutron or X-ray analysis may exhibit shortcomings in distinguishing interfaces. However, fusing neutron image and X-ray image offers the strengths of both and may provide a superior method of analysis. In addition, a feasible design of a sample positioning system which allows the user to remotely and automatically manipulate the objects makes the NXCT system viable for commercial applications. Moreover, characterization of the newly developed digital imaging system is imperative to the performance evaluation, as well as for describing the associated parameters. The performance of a combined neutron/X-ray digital imaging system was evaluated in terms of modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE). This dissertation is a complete overview of the design of the NXCT system, operation, algorithms, performance evaluation and results.

  3. Radiation dose optimized lateral expansion of the field of view in synchrotron radiation X-ray tomographic microscopy

    PubMed Central

    Haberthür, David; Hintermüller, Christoph; Marone, Federica; Schittny, Johannes C.; Stampanoni, Marco

    2010-01-01

    Volumetric data at micrometer level resolution can be acquired within a few minutes using synchrotron-radiation-based tomographic microscopy. The field of view along the rotation axis of the sample can easily be increased by stacking several tomograms, allowing the investigation of long and thin objects at high resolution. On the contrary, an extension of the field of view in the perpendicular direction is non-trivial. This paper presents an acquisition protocol which increases the field of view of the tomographic dataset perpendicular to its rotation axis. The acquisition protocol can be tuned as a function of the reconstruction quality and scanning time. Since the scanning time is proportional to the radiation dose imparted to the sample, this method can be used to increase the field of view of tomographic microscopy instruments while optimizing the radiation dose for radiation-sensitive samples and keeping the quality of the tomographic dataset on the required level. This approach, dubbed wide-field synchrotron radiation tomographic microscopy, can increase the lateral field of view up to five times. The method has been successfully applied for the three-dimensional imaging of entire rat lung acini with a diameter of 4.1 mm at a voxel size of 1.48 µm. PMID:20724780

  4. TU-A-9A-05: First Experimental Demonstration of the Anisotropic Detection Principle in X-Ray Fluorescence Computed Tomography

    SciTech Connect

    Ahmad, M; Bazalova, M; Fahrig, R; Xing, L

    2014-06-15

    Purpose: To improve the sensitivity of X-ray fluorescence computed tomography (XFCT) for in vivo molecular imaging. Is the maximum sensitivity achieved with an isotropic (4π) detector configuration? We prove that this is not necessarily true, and that a greater sensitivity is possible with anisotropic detector configuration. Methods: An XFCT imaging system was constructed consisting of 1) a collimated pencil beam x-ray source using a fluoroscopy grade x-ray tube; 2) a CdTe x-ray photon counting detector to detect fluorescent x-rays; and 3) a rotation/translation stage for tomographic imaging. We created a 6.5-cm diameter water phantom with 2-cm inserts of low gold concentration (0.25%–1%) to simulate tumors targeted by gold nano-particles. The placement of x-ray fluorescence detector were chosen to minimize scatter x-rays. XFCT imaging was performed at three different detector positions (60°, 90°, 145°) to determine the impact of forward-scatter, side-scatter, and back-scatter on imaging performance. The three data sets were also combined to estimate the imaging performance with an isotropic detector. Results: The highest imaging performance was achieved when the XF detector was in the backscatter 145° configuration. The signal-to-noise ratio (SNR) was 5.5 for the 0.25% gold concentration compared to SNRs of 1.4, 0, and 2.4 for 60°, 90°, and combined (60°+90°+145°) datasets. Only the 145° detector arrangement alone could detect the 0.25% concentration. The imaging dose was 14 mGy for each detector arrangement experiment. Conclusion: This study experimentally proves, for the fist time, the Anisotropic Detection Principle in XF imaging, which holds that optimized anisotropic x-ray fluorescence detection provides greater sensitivity than isotropic detection. The optimized detection arrangement was used to improve the sensitivity of the XFCT experiment. The achieved XFCT sensitivity is the highest ever for a phantom at least this large using a benchtop x-ray

  5. Geometric classification of open-cell metal foams using X-ray micro-computed tomography

    SciTech Connect

    Bock, Jessica Jacobi, Anthony M.

    2013-01-15

    The geometry of foams has long been an area of interest, and a number of idealized geometric descriptions have been proposed. In order to acquire detailed, quantitative, geometric data for aluminum open-cell metal foams, X-ray {mu}CT is employed. The X-ray {mu}CT images are analyzed using specialized software, FoamView Registered-Sign , from which geometric information including strut length and pore shapes are extracted. The X-ray {mu}CT analysis allows comparison of the ideal geometric models to the actual geometric characteristics of the metal foam samples. The results reveal a high variability in ligament length, as well as features supporting the ideal geometry known as the Weaire-Phelan unit cell. The geometric findings provide information useful for improving current models of open-cell metal foam. Applications can range from predicting heat transfer or load failure to predicting liquid retention. Highlights: Black-Right-Pointing-Pointer Aluminum open-cell metal foams are geometrically classified Black-Right-Pointing-Pointer X-ray micro-computed tomography and specialized software are used to gather geometric data Black-Right-Pointing-Pointer The foams are shown to have a high variability in strut length Black-Right-Pointing-Pointer The Weaire-Phelan unit cell is shown to be a better representative of these foams.

  6. A level set segmentation for computer-aided dental x-ray analysis

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Fevens, Thomas; Krzyzak, Adam; Li, Song

    2005-04-01

    A level-set-based segmentation framework for Computer Aided Dental X-rays Analysis (CADXA) is proposed. In this framework, we first employ level set methods to segment the dental X-ray image into three regions: Normal Region (NR), Potential Abnormal Region (PAR), Abnormal and Background Region (ABR). The segmentation results are then used to build uncertainty maps based on a proposed uncertainty measurement method and an analysis scheme is applied. The level set segmentation method consists of two stages: a training stage and a segmentation stage. During the training stage, manually chosen representative images are segmented using hierarchical level set region detection. The segmentation results are used to train a support vector machine (SVM) classifier. During the segmentation stage, a dental X-ray image is first classified by the trained SVM. The classifier provides an initial contour which is close to the correct boundary for the coupled level set method which is then used to further segment the image. Different dental X-ray images are used to test the framework. Experimental results show that the proposed framework achieves faster level set segmentation and provides more detailed information and indications of possible problems to the dentist. To our best knowledge, this is one of the first results on CADXA using level set methods.

  7. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    SciTech Connect

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Astolfo, Alberto; Menk, Ralf-Hendrik; Juurlink, Bernhard H. J.

    2010-07-23

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  8. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Menk, Ralf-Hendrik; Astolfo, Alberto; Juurlink, Bernhard H. J.

    2010-07-01

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  9. Porous Media Contamination: 3-Dimensional Visualization and Quantification Using X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Goldstein, L.; Prasher, S. O.; Ghoshal, S.

    2004-05-01

    Non-aqueous phase liquids (NAPLs), if spilled into the subsurface, will migrate downward, and a significant fraction will become trapped in the soil matrix. These trapped NAPL globules partition into the water and/or vapor phase, and serve as continuous sources of contamination (e.g. source zones). At present, the presence of NAPL in the subsurface is typically inferred from chemical analysis data. There are no accepted methodologies or protocols available for the direct characterization of NAPLs in the subsurface. Proven and cost-effective methodologies are needed to allow effective implementation of remediation technologies at NAPL contaminated sites. X-ray Computed Tomography (CT) has the potential to non-destructively quantify NAPL mass and distribution in soil cores due to this technology's ability to detect small atomic density differences of solid, liquid, gas, and NAPL phases present in a representative volume element. We have demonstrated that environmentally significant NAPLs, such as gasoline and other oil products, chlorinated solvents, and PCBs possess a characteristic and predictable X-ray attenuation coefficient that permits their quantification in porous media at incident beam energies, typical of medical and industrial X-ray CT scanners. As part of this study, methodologies were developed for generating and analyzing X-ray CT data for the study of NAPLs in natural porous media. Columns of NAPL-contaminated soils were scanned, flushed with solvents and water to remove entrapped NAPL, and re-scanned. X-ray CT data was analyzed to obtain numerical arrays of soil porosity, NAPL saturation, and NAPL volume at a spatial resolution of 1 mm. This methodology was validated using homogeneous and heterogeneous soil columns with known quantities of gasoline and tetrachloroethylene. NAPL volumes computed using X-ray CT data was compared with known volumes from volume balance calculations. Error analysis revealed that in a 5 cm long and 2.5 cm diameter soil

  10. Chronic beryllium disease: computed tomographic findings.

    PubMed

    Sharma, Nidhi; Patel, Jeet; Mohammed, Tan-Lucien H

    2010-01-01

    Chronic beryllium disease is a rare multisystem granulomatous disease predominantly involving the lungs and resulting from an immunologic response to long-term occupational exposure. Computed tomography of the chest reveals important lung parenchymal and mediastinal findings and plays an important role in the diagnosis and follow-up assessment of patients with chronic beryllium disease. Its significance lies in the exact localization and evaluation of the extent of lesions. We present an overview of the subject and a pictorial review of the spectrum of computed tomographic features of beryllium disease. PMID:21084914

  11. Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography

    SciTech Connect

    Hsieh Jiang; Londt, John; Vass, Melissa; Li, Jay; Tang Xiangyang; Okerlund, Darin

    2006-11-15

    Coronary artery imaging with x-ray computed tomography (CT) is one of the most recent advancements in CT clinical applications. Although existing ''state-of-the-art'' clinical protocols today utilize helical data acquisition, it suffers from the lack of ability to handle irregular heart rate and relatively high x-ray dose to patients. In this paper, we propose a step-and-shoot data acquisition protocol that significantly overcomes these shortcomings. The key to the proposed protocol is the large volume coverage (40 mm) enabled by the cone beam CT scanner, which allows the coverage of the entire heart in 3 to 4 steps. In addition, we propose a gated complementary reconstruction algorithm that overcomes the longitudinal truncation problem resulting from the cone beam geometry. Computer simulations, phantom experiments, and clinical studies were conducted to validate our approach.

  12. 3-D Multiphase Segmentation of X-Ray Micro Computed Tomography Data of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Tuller, M.; Kulkarni, R.; Fink, W.

    2011-12-01

    Advancements of noninvasive imaging methods such as X-Ray Computed Tomography (CT) led to a recent surge of applications in Geoscience. While substantial efforts and resources have been devoted to advance CT technology and micro-scale analysis, the development of a stable 3-D multiphase image segmentation method applicable to large datasets is lacking. To eliminate the need for wet/dry or dual energy scans, image alignment, and subtraction analysis, commonly applied in synchrotron X-Ray micro CT, a segmentation method based on a Bayesian Markov Random Field (MRF) framework amenable to true 3-D multiphase processing was developed and evaluated. Furthermore, several heuristic and deterministic combinatorial optimization schemes required to solve the labeling problem of the MRF image model were implemented and tested for computational efficiency and their impact on segmentation results. Test results for natural and artificial porous media datasets demonstrate great potential of the MRF image model for 3-D multiphase segmentation.

  13. Radiation dose to patients from X-ray radiographic examinations using computed radiography imaging system.

    PubMed

    Sharma, Reena; Sharma, Sunil Dutt; Pawar, Shramika; Chaubey, Ajay; Kantharia, S; Babu, D A R

    2015-01-01

    The screen-film system is replaced by computed radiography system for recording the images of the patients during X-ray radiography examinations. The change in imaging system requires the re-establishment of the institutional diagnostic reference levels (DRLs) for different types of X-ray examinations conducted at the hospital. For this purpose, patient specific parameters [age, height, weight, body mass index (BMI), object to image distance (OID)] and machine specific parameters (kVp, mAs, distance and field sizes) of 1875 patients during 21 different types of X-ray examinations were recorded for estimating the entrance skin dose (ESD). The ESD for each of these patients were estimated using measured X-ray beam output and the standard value of the back scatter factor. Five number summary was calculated for all the data for their presentation in the Box-Whisker plot, which provides the statistical distribution of the data. The data collected indicates that majorly performed examinations are cervical spine AP, Chest PA and Knee Lat with percentage contributions of 16.05, 16 and 8.27% respectively. The lowest contribution comes from Hip Lat which is about 1.01%. The ratio of measured ESD (maximum to minimum) for these examinations is found to be highest for the cervical spine AP with a value of 50 followed by Thoracic spine AP of 32.36. The ESD ratio for Chest PA, Knee Lat and Lumbar Spine AP are 30.75, 30.4 and 30.2 respectively. The lowest ESD ratio is for Hip Lat which is 2.68. The third quartile values of ESDs are established as the institutional DRLs. The ESD values obtained for 21 different X-ray projections are either comparable or lesser than the reported national/international values. PMID:26150685

  14. Diffusivity measurement of heavy ions in Wyoming montmorillonite gels by X-ray computed tomography.

    PubMed

    Nakashima, Yoshito

    2003-03-01

    Medical X-ray computed tomography (CT) was applied to the measurement of the diffusion coefficients of heavy ions in an artificial barrier material for the disposal of nuclear wastes. Cs(+), Sr(2+), I(-), and Br(-) are the heavy ions measured and the barrier used is the water-rich gel of Wyoming montmorillonite (86.5-100 wt.% H(2)O). X-ray CT yields an inevitable artifact (beam-hardening) in the obtained images. Before the diffusion experiments, the polychromatic primary X-ray spectrum of the CT scanner was measured by a CdZnTe detector, and the effects of the artifact were examined for an aqueous CsCl solution sample. The results show that the beam-hardening artifact derived from the polychromatic photon energy distribution can be suppressed by applying a special image reconstruction method assuming the chemical composition of samples. The transient one-dimensional diffusion of heavy ions in a plastic container filled with the gel was imaged nondestructively by the X-ray CT scanner with an in-plane resolution of 0.31 mm and slice thickness of 2 mm. The results show that diffusivities decrease with increasing clay weight fraction. The degree of the diffusivity decrease was high for cations (Cs(+) and Sr(2+)) and low for anions (I(-) and Br(-)). The quantitative decomposition of the contribution of the geometrical tortuosity and of the sorption to the diffusivity was performed by subtracting the diffusivity of nonsorbing I(-) from the measured diffusivities. The results show that the contribution of the sorption is large for Cs(+), Sr(2+) and small for Br(-). Because X-ray CT allows nondestructive and quick measurements of diffusivities, the technique would be useful particularly for measuring the diffusive migration of harmful radioactive elements. PMID:12598101

  15. Microscale Electromagnetic Heating in Heterogeneous Energetic Materials Based on X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.

    2016-04-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  16. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE PAGESBeta

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.

    2016-04-01

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  17. Computed Tomography Artifact Created by Air in the X-ray Tube Oil.

    PubMed

    Hedrick, Wayne R; Markovic, Michael A; Short, James H; Vera, Chido D

    2016-01-01

    A subtle artifact of patchy hypodensities in computed tomography images of the head mimicked acute or subacute cerebral infarct. The cause of the artifact was air in the oil of the x-ray tube. The artifact manifested only when the acquisition parameters included a rotation time of 0.5 second and a gantry tilt angle of 11 to 20 degrees. Routine quality control testing did not detect nonuniformities in the water phantom. PMID:26466108

  18. X-ray computed tomography studies of gas storage and transport in Devonian shales

    SciTech Connect

    Lu, X.; Miao, P.; Watson, A.T. . Dept. of Chemical Engineering); Pepin, G.P.; Moss, R.M. ); Semmelbeck, M. )

    1994-07-01

    Devonian shales and other unconventional resources can be highly fractured and may have significant amounts of gas stored by adsorption. Conventional experiments are not well suited for characterizing the properties important for describing gas storage and transport in these media. Here, X-ray computed tomography scanning is used to determine gas storage in dynamic gas flow experiments on Devonian shale samples. Several important properties are obtained from these experiments, including fracture widths, adsorption isotherms, and matrix porosities and permeabilities.

  19. X-Ray Digital Radiography and Computed Tomography Characterization of Targets

    SciTech Connect

    Sain, J D; Brown, W D; Chinn, D J; Martz Jr., H E; Morales, K E; Schneberk, D J; Updike, E O

    2008-04-16

    The summary of this report is: (1) The Xradia Micro XCT and LLNL CCAT x-ray systems are used to nondestructively characterize a variety of materials, assemblies, and reference standard components; (2) The digital radiograph (DR) and computed tomography (CT) image data may be used for metrology, quality control, and defect detection; and (3) The ability to detect and characterize imperfections leads to improvements in the manufacturing processes for assemblies.

  20. A Computational Algorithm to Produce Virtual X-ray and Electron Diffraction Patterns from Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Coleman, Shawn P.; Sichani, Mehrdad M.; Spearot, Douglas E.

    2014-03-01

    Electron and x-ray diffraction are well-established experimental methods used to explore the atomic scale structure of materials. In this work, a computational algorithm is developed to produce virtual electron and x-ray diffraction patterns directly from atomistic simulations. This algorithm advances beyond previous virtual diffraction methods by using a high-resolution mesh of reciprocal space that eliminates the need for a priori knowledge of the crystal structure being modeled or other assumptions concerning the diffraction conditions. At each point on the reciprocal space mesh, the diffraction intensity is computed via explicit computation of the structure factor equation. To construct virtual selected-area electron diffraction patterns, a hemispherical slice of the reciprocal lattice mesh lying on the surface of the Ewald sphere is isolated and viewed along a specified zone axis. X-ray diffraction line profiles are created by binning the intensity of each reciprocal lattice point by its associated scattering angle, effectively mimicking powder diffraction conditions. The virtual diffraction algorithm is sufficiently generic to be applied to atomistic simulations of any atomic species. In this article, the capability and versatility of the virtual diffraction algorithm is exhibited by presenting findings from atomistic simulations of <100> symmetric tilt Ni grain boundaries, nanocrystalline Cu models, and a heterogeneous interface formed between α-Al2O3 (0001) and γ-Al2O3 (111).

  1. Synchrotron X-ray Tomographic Quantification of Deformation Induced Strain Localisation in Semi-solid Al- 15wt.%Cu

    NASA Astrophysics Data System (ADS)

    Cai, B.; Karagadde, S.; Marrow, T. J.; Connolley, T.; Lee, P. D.

    2015-06-01

    Uniaxial compression and indentation of a semi-solid Al-15wt.%Cu alloy was investigated by high speed synchrotron X-ray microtomography, quantifying the microstructural response of a solidifying alloy to applied strain. Tomograms were continuously acquired whilst performing deformation using a precision thermal-mechanical rig on a synchrotron beamline. The results illustrate how defects and shear bands can form in response to different loading conditions. Using digital volume correlation, the global and localised strains were measured, providing quantitative datasets for granular flow models of semi-solid deformation.

  2. Jugular foramen: anatomic and computed tomographic study

    SciTech Connect

    Daniels, D.L.; Williams, A.L.; Haughton, V.M.

    1984-01-01

    The computed tomographic (CT) appearance of the jugular foramen was examined in detail, and anatomic and CT sections were correlated. The pars nervosa and pars vascularis were identified, and, with intravenous contrast enhancement, a rapid sequence of scans at a gantry angle of +30/sup 0/ to the canthomeatal line demonstrated cranial nerves IX, X, and XI. The osseous margins of the jugular foramen were best shown by CT at planes of sections parallel and positive (0/sup 0/-30/sup 0/) to the canthomeatal line. CT can be used to evaluate osseous anatomy and the jugular foramen with precision sufficient to confidently exclude an intracanalicular mass.

  3. Health risks from computed tomographic screening.

    PubMed

    Krantz, Seth B; Meyers, Bryan F

    2015-05-01

    Results of the recent National Lung Cancer Screening Trial show a significant survival benefit for annual screening with a low-dose computed tomographic (CT) scan in high-risk individuals. This result has led the US Preventive Services Task Force to recommend annual low-dose CT scans for this at-risk population. Less well characterized are the risks from screening. The primary risks from screening are radiation exposure, false-positive results and unnecessary diagnostic and therapeutic procedures, overdiagnosis and overtreatment, and increased psychological distress. This article reviews these risks, which must be considered and weighed against the benefits when discussing enrollment with patients. PMID:25901559

  4. A multi-channel image reconstruction method for grating-based X-ray phase-contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A.

    2014-03-01

    In this work, we report on the development of an advanced multi-channel (MC) image reconstruction algorithm for grating-based X-ray phase-contrast computed tomography (GB-XPCT). The MC reconstruction method we have developed operates by concurrently, rather than independently as is done conventionally, reconstructing tomographic images of the three object properties (absorption, small-angle scattering, refractive index). By jointly estimating the object properties by use of an appropriately defined penalized weighted least squares (PWLS) estimator, the 2nd order statistical properties of the object property sinograms, including correlations between them, can be fully exploited to improve the variance vs. resolution tradeoff of the reconstructed images as compared to existing methods. Channel-independent regularization strategies are proposed. To solve the MC reconstruction problem, we developed an advanced algorithm based on the proximal point algorithm and the augmented Lagrangian method. By use of experimental and computer-simulation data, we demonstrate that by exploiting inter-channel noise correlations, the MC reconstruction method can improve image quality in GB-XPCT.

  5. Optimal Contrast Agent Staining of Ligaments and Tendons for X-Ray Computed Tomography.

    PubMed

    Balint, Richard; Lowe, Tristan; Shearer, Tom

    2016-01-01

    X-ray computed tomography has become an important tool for studying the microstructures of biological soft tissues, such as ligaments and tendons. Due to the low X-ray attenuation of such tissues, chemical contrast agents are often necessary to enhance contrast during scanning. In this article, the effects of using three different contrast agents-iodine potassium iodide solution, phosphotungstic acid and phosphomolybdic acid-are evaluated and compared. Porcine anterior cruciate ligaments, patellar tendons, medial collateral ligaments and lateral collateral ligaments were used as the basis of the study. Three samples of each of the four ligament/tendon types were each assigned a different contrast agent (giving a total of twelve samples), and the progression of that agent through the tissue was monitored by performing a scan every day for a total period of five days (giving a total of sixty scans). Since the samples were unstained on day one, they had been stained for a total of four days by the time of the final scans. The relative contrast enhancement and tissue deformation were measured. It was observed that the iodine potassium iodide solution penetrated the samples fastest and caused the least sample shrinkage on average (although significant deformation was observed by the time of the final scans), whereas the phosphomolybdic acid caused the greatest sample shrinkage. Equations describing the observed behaviour of the contrast agents, which can be used to predict optimal staining times for ligament and tendon X-ray computed tomography, are presented. PMID:27078030

  6. High-resolution x-ray computed tomography to understand ruminant phylogeny

    NASA Astrophysics Data System (ADS)

    Costeur, Loic; Schulz, Georg; Müller, Bert

    2014-09-01

    High-resolution X-ray computed tomography has become a vital technique to study fossils down to the true micrometer level. Paleontological research requires the non-destructive analysis of internal structures of fossil specimens. We show how X-ray computed tomography enables us to visualize the inner ear of extinct and extant ruminants without skull destruction. The inner ear, a sensory organ for hearing and balance has a rather complex three-dimensional morphology and thus provides relevant phylogenetical information what has been to date essentially shown in primates. We made visible the inner ears of a set of living and fossil ruminants using the phoenix x-ray nanotom®m (GE Sensing and Inspection Technologies GmbH). Because of the high absorbing objects a tungsten target was used and the experiments were performed with maximum accelerating voltage of 180 kV and a beam current of 30 μA. Possible stem ruminants of the living families are known in the fossil record but extreme morphological convergences in external structures such as teeth is a strong limitation to our understanding of the evolutionary history of this economically important group of animals. We thus investigate the inner ear to assess its phylogenetical potential for ruminants and our first results show strong family-level morphological differences.

  7. Optimal Contrast Agent Staining of Ligaments and Tendons for X-Ray Computed Tomography

    PubMed Central

    Balint, Richard; Lowe, Tristan

    2016-01-01

    X-ray computed tomography has become an important tool for studying the microstructures of biological soft tissues, such as ligaments and tendons. Due to the low X-ray attenuation of such tissues, chemical contrast agents are often necessary to enhance contrast during scanning. In this article, the effects of using three different contrast agents—iodine potassium iodide solution, phosphotungstic acid and phosphomolybdic acid—are evaluated and compared. Porcine anterior cruciate ligaments, patellar tendons, medial collateral ligaments and lateral collateral ligaments were used as the basis of the study. Three samples of each of the four ligament/tendon types were each assigned a different contrast agent (giving a total of twelve samples), and the progression of that agent through the tissue was monitored by performing a scan every day for a total period of five days (giving a total of sixty scans). Since the samples were unstained on day one, they had been stained for a total of four days by the time of the final scans. The relative contrast enhancement and tissue deformation were measured. It was observed that the iodine potassium iodide solution penetrated the samples fastest and caused the least sample shrinkage on average (although significant deformation was observed by the time of the final scans), whereas the phosphomolybdic acid caused the greatest sample shrinkage. Equations describing the observed behaviour of the contrast agents, which can be used to predict optimal staining times for ligament and tendon X-ray computed tomography, are presented. PMID:27078030

  8. Computational Models of X-Ray Burst Quenching Times and 12C Nucleosynthesis Following a Superburst

    SciTech Connect

    Fisker, J L

    2009-03-19

    Superbursts are energetic events on neutron stars that are a thousand times more powerful than ordinary type I X-ray bursts. They are believed to be powered by a thermonuclear explosion of accumulated {sup 12}C. However, the source of this {sup 12}C remains elusive to theoretical calculations and its concentration and ignition depth are both unknown. Here we present the first computational simulations of the nucleosynthesis during the thermal decay of a superbust, where X-ray bursts are quenched. Our calculations of the quenching time verify previous analytical calculations and shed new light on the physics of stable burning at low accretion rates. We show that concentrated (X{sub {sup 12}C} {approx}> 0.40), although insufficient, amounts of {sup 12}C are generated during the several weeks following the superburst where the decaying thermal flux of the superburst stabilizes the burning of the accreted material.

  9. X-ray computed tomography of the anterior cruciate ligament and patellar tendon

    PubMed Central

    Shearer, Tom; Rawson, Shelley; Castro, Simon Joseph; Balint, Richard; Bradley, Robert Stephen; Lowe, Tristan; Vila-Comamala, Joan; Lee, Peter David; Cartmell, Sarah Harriet

    2014-01-01

    Summary The effect of phosphotungstic acid (PTA) and iodine solution (IKI) staining was investigated as a method of enhancing contrast in the X-ray computed tomography of porcine anterior cruciate ligaments (ACL) and patellar tendons (PT). We show that PTA enhanced surface contrast, but was ineffective at penetrating samples, whereas IKI penetrated more effectively and enhanced contrast after 70 hours of staining. Contrast enhancement was compared when using laboratory and synchrotron based X-ray sources. Using the laboratory source, PT fascicles were tracked and their alignment was measured. Individual ACL fascicles could not be identified, but identifiable features were evident that were tracked. Higher resolution scans of fascicle bundles from the PT and ACL were obtained using synchrotron imaging techniques. These scans exhibited greater contrast between the fascicles and matrix in the PT sample, facilitating the identification of the fascicle edges; however, it was still not possible to detect individual fascicles in the ACL. PMID:25332942

  10. Microphase-contrast x-ray computed tomography for basic biomedical study at SPring-8

    NASA Astrophysics Data System (ADS)

    Wu, Jin; Takeda, Tohoru; Lwin, Thet-Thet; Koyama, Ichiro; Momose, Atsushi; Fujii, Akiko; Hamaishi, Yoshitaka; Kuroe, Taichi; Yuasa, Tetsuya; Suzuki, Yoshio; Akatsuka, Takao

    2004-10-01

    Micro-phase-contrast X-ray computed tomography with an X-ray interferometer (micro-phase-contrast CT) is in operation to obtain high spatial resolution images of less than 0.01 mm at the undulator beam-line 20XU of SPring-8, Japan, and we applied micro-phase-contrast CT to observe the organs of rats and hamsters. The excised kidney and spleen fixed by formalin were imaged. The fine inner-structures such as vessels, glomeruli of kidney and white and red pulps of spleen were visualized clearly about 0.01-mm spatial resolutions without using contrast agent or staining procedure. The results were very similar to those by optical microscopic images with 20-fold magnification. These results suggest that the micro-phase tomography might be a useful tool for various biomedical researches.

  11. Pseudomonoenergetic x-ray diffraction measurements using balanced filters for coherent-scatter computed tomography

    SciTech Connect

    Beath, S. R.; Cunningham, I. A.

    2009-05-15

    Coherent-scatter computed tomography (CSCT) is a method of ''composition'' imaging based on measurements of diffraction patterns from tissues. Use of an x-ray tube degrades scatter pattern angular resolution due to the x-ray spectral width, making it difficult to uniquely identify some materials. The use of two transmission filters with similar atomic numbers (balanced ''Ross filters'') to generate pseudomonoenergetic scatter patterns is described as it applies to CSCT. An analysis of angular-blur mechanisms reveals that focal spot size and beam width are the most important factors determining Bragg-peak width when Er-Tm filters are used. A relative RMS spectral width of 1% can be achieved in the difference spectrum and a Bragg-peak RMS angular width of approximately 0.14 deg. (relative width of 3% at 5 deg. scatter angle) can be achieved with an effective energy of 58 keV.

  12. Evaluation of a computer aided X-ray fluorographic system. Part 2: Image processing

    NASA Astrophysics Data System (ADS)

    Burch, S. F.; Cocking, S. J.

    1981-12-01

    The TV imagery from a computer aided X-ray fluorographic system has been digitally processed with an I2S model 70E image processor, controlled by a PDP 11/60 minicomputer. The image processor allowed valuable processing for detection of defects in cast components to be carried out at television frame rates. Summation of TV frames was used to reduce noise, and hence improve the thickness sensitivity of the system. A displaced differencing technique and interactive contrast enhancement were then used to improve the reliability of inspection by removing spurious blemishes and interferences lines, while simultaneously enhancing the visibility of real defects. The times required for these operations are given, and the benefits provided for X-ray fluorography are illustrated by the results from inspection of aero engine castings.

  13. Fluorescent X-Ray Computed Tomography towards Molecular Imaging: Proof-of-Concept Experiments

    SciTech Connect

    Yuasa, Tetsuya; Huo, Qingkai; Akatsuka, Takao; Takeda, Tohoru; Hyodo, Kazuyuki; Dilmanian, F. Avraham

    2009-03-10

    By means of fluorescent x-ray computed tomography (FXCT) one can detect and image a distribution of non-radioactive imaging agent, e.g., iodine, in a biomedical subject at a high spatial resolution, so it can be a novel molecular imaging modality. We have been studying an FXCT system using synchrotron radiation for in-vivo imaging brains of small animals such as mouse, or rat. For the purpose, we propose a fast FXCT imaging method based on the novel geometry. In this study, we prove the feasibility of this concept and investigate its imaging properties, including spatial and contrast resolutions and quantitativeness, by imaging an acrylic phantom and a normal mouse brain using a preliminary imaging system with monochromatic synchrotron x rays.

  14. Anatomical evaluation of hepatic vascular system in healthy beagles using X-ray contrast computed tomography.

    PubMed

    Oishi, Yasuhisa; Tani, Kenji; Nakazawa, Hiroshi; Itamoto, Kazuhito; Haraguchi, Tomoya; Taura, Yasuho

    2015-08-01

    Liver contrast X-ray computed tomography (CT) has been used for evaluation of hepatic vessels for liver transplantation, liver lobectomy, interventional radiology and diagnosis of hepatocellular carcinoma in humans. However, there remains scant available anatomical information on normal hepatic vessels in the veterinary field. In this study, visualization of hepatic vessels was evaluated in 32 normal beagle dogs by X-ray contrast CT using triple phase images. The following hepatic vessels were clearly visualized: arterial, portal and hepatic veins. With regards to the running patterns of the portal vein and hepatic vein, there were no significant differences between the dogs. However, the hepatic artery exhibited some differences in each dog. In particular, the hepatic artery of the quadrate lobe and the right lateral lobe had many running patterns. The results of the present study could be useful for veterinary diagnosis, surgery and interventional radiology. PMID:25843113

  15. Development of a Computer-Controlled Polishing Process for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian

    2009-01-01

    The future X-ray observatory missions require grazing-incidence x-ray optics with angular resolution of < 5 arcsec half-power diameter. The achievable resolution depends ultimately on the quality of polished mandrels from which the shells are replicated. With an aim to fabricate better shells, and reduce the cost/time of mandrel production, a computer-controlled polishing machine is developed for deterministic and localized polishing of mandrels. Cylindrical polishing software is also developed that predicts the surface residual errors under a given set of operating parameters and lap configuration. Design considerations of the polishing lap are discussed and the effects of nonconformance of the lap and the mandrel are presented.

  16. On the uncertainty of surface determination in x-ray computed tomography for dimensional metrology

    NASA Astrophysics Data System (ADS)

    Lifton, J. J.; Malcolm, A. A.; McBride, J. W.

    2015-03-01

    With x-ray computed tomography (CT) it is possible to evaluate the dimensions of an object’s internal and external features non-destructively. Dimensional measurements evaluated via x-ray CT require the object’s surfaces first be estimated; this work is concerned with evaluating the uncertainty of this surface estimate and how it impacts the uncertainty of fitted geometric features. The measurement uncertainty due to surface determination is evaluated through the use of a discrete ramp edge model and a Monte Carlo simulation. Based on the results of the Monte Carlo simulation the uncertainty structure of a coordinate set is estimated, allowing individual coordinate uncertainties to be propagated through the geometry fit to the final measurement result. The developed methodology enables the uncertainty due to surface determination to be evaluated for a given measurement task; the method is demonstrated for both measured and simulated data.

  17. Computer modeling of X-ray emission and absorption in the context of hot star winds

    NASA Astrophysics Data System (ADS)

    Abing, C. B.; Miller, N. A.

    2005-12-01

    In support of ongoing studies of the X-ray emission from hot stars, we have been working on simulations of the X-ray output from mixtures of plasmas at wide ranges of temperature. These simulations have been carried out using the Spect3D, Spect3D Visualizer, and Plasma Grid Generator programs developed by Prism Computational Sciences. The Spect3D code allows construction of a plasma of arbitrary geometry and composition, and can then be used to calculate the observed spectrum for any direction of observation. Our initial studies have concentrated on simple geometric situations to build the foundations for more complicated spherical geometries. While the initial simulations used a mixture of hydrogen, helium, and oxygen, later simulations are including all important elements in their astrophysical abundances. We acknowledge support from Research Corporation, NASA grant GO4-5015B, and the University of Wisconsin-Eau Claire.

  18. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    SciTech Connect

    Manohar, Nivedh; Cho, Sang Hyun

    2014-10-15

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  19. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    PubMed Central

    Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun

    2014-01-01

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  20. Computed tomographic features of canine nonparenchymal hemangiosarcoma.

    PubMed

    Fukuda, Shoko; Kobayashi, Tetsuya; Robertson, Ian D; Oshima, Fukiko; Fukazawa, Eri; Nakano, Yuko; Ono, Shin; Thrall, Donald E

    2014-01-01

    The purpose of this retrospective study was to describe pre- and postcontrast computed tomographic (CT) characteristics of confirmed nonparenchymal hemangiosarcoma in a group of dogs. Medical records were searched during the period of July 2003 and October 2011 and dogs with histologically confirmed nonparenchymal hemangiosarcoma and pre- and postcontrast CT images were recruited. Two observers recorded a consensus opinion for the following CT characteristics for each dog: largest transverse tumor diameter, number of masses, general tumor shape, character of the tumor margin, precontrast appearance, presence of dystrophic calcification, presence of postcontrast enhancement, pattern of postcontrast enhancement, presence of regional lymphadenopathy, and presence of associated cavitary fluid. A total of 17 dogs met inclusion criteria. Tumors were located in the nasal cavity, muscle, mandible, mesentery, subcutaneous tissue, and retroperitoneal space. Computed tomographic features of nonparenchymal hemangiosarcoma were similar to those of other soft tissue sarcomas, with most tumors being heterogeneous in precontrast images, invasive into adjacent tissue, and heterogeneously contrast enhancing. One unexpected finding was the presence of intense foci of contrast enhancement in 13 of the 17 tumors (76%). This appearance, which is not typical of other soft tissue sarcomas, was consistent with contrast medium residing in vascular channels. Findings indicated that there were no unique distinguishing CT characteristics for nonparenchymal hemangiosarcoma in dogs; however, the presence of highly attenuating foci of contrast enhancement may warrant further investigation in prospective diagnostic sensitivity and treatment outcome studies. PMID:24382330

  1. Atomistic Computational Model of Ultrafast Response of Complex Systems in Intense X-rays

    NASA Astrophysics Data System (ADS)

    Ho, Phay; Jiang, Wei; Young, Linda

    2013-05-01

    We present a combined Monte-Carlo/Molecular-dynamics (MC/MD) computational model for treating ultrafast electronic damage processes and the subsequent structural distortion on complex systems exposed to femtosecond, high-intensity x-ray free-electrons laser pulses. Our first target systems are nickel nanoparticles since the range for self-seeded LCLS operation (7.1-9.5 keV) spans the nickel K-edge (8333 keV). Our MC/MD method includes the contribution of photoelectrons, Auger electrons, fluorescence photons and secondary electrons. It goes beyond the earlier particle approaches by tracking the electronic configuration of each charged particle throughout the x-ray pulse. With this new capability, we present the impact of both transient core-hole states and delocalized electrons, which may exist within, or within the proximity, of the nanoparticle, on the measured coherent x-ray diffraction pattern. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division and the Advanced Photon Source by the Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  2. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    SciTech Connect

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edges complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.

  3. Reverse projection retrieval in edge illumination x-ray phase contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Hagen, Charlotte K.; Endrizzi, Marco; Diemoz, Paul C.; Olivo, Alessandro

    2016-06-01

    Edge illumination (EI) x-ray phase contrast computed tomography (CT) can provide three-dimensional distributions of the real and imaginary parts of the complex refractive index (n=1-δ +\\text{i}β ) of the sample. Phase retrieval, i.e. the separation of attenuation and refraction data from projections that contain a combination of both, is a key step in the image reconstruction process. In EI-based x-ray phase contrast CT, this is conventionally performed on the basis of two projections acquired in opposite illumination configurations (i.e. with different positions of the pre-sample mask) at each CT angle. Displacing the pre-sample mask at each projection makes the scan susceptible to motor-induced misalignment and prevents a continuous sample rotation. We present an alternative method for the retrieval of attenuation and refraction data that does not require repositioning the pre-sample mask. The method is based on the reverse projection relation published by Zhu et al (2010 Proc. Natl Acad. Sci. USA 107 13576–81) for grating interferometry-based x-ray phase contrast CT. We use this relation to derive a simplified acquisition strategy that allows acquiring data with a continuous sample rotation, which can reduce scan time when combined with a fast read-out detector. Besides discussing the theory and the necessary alignment of the experimental setup, we present tomograms obtained with reverse projection retrieval and demonstrate their agreement with those obtained with the conventional EI retrieval.

  4. A reference workpiece for voxel size correction in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Lifton, Joseph J.; Cross, Kevin J.; Malcolm, Andrew A.; McBride, John W.

    2013-06-01

    X-ray computed tomography (CT) is increasingly used for dimensional metrology, allowing the inspection of both interior and exterior features impossible to observe using traditional optical and tactile measurement techniques. X-ray CT offers many benefits over traditional instruments as a visual inspection tool, however, extracting dimensional information from the reconstructed data-sets must be approached with caution due to error sources that can propagate through the image reconstruction processes. One error source originates from values of the source-to-object and source-to-detector distances; these are critical inputs as they define the voxel size, a global scalar directly influencing all dimensions extracted from the data. To reduce voxel size errors a reference workpiece can be scanned using the same measurement settings as the actual workpiece. By reconstructing the reference workpiece a reference dimension can be evaluated and this then used to adjust the voxel size of the actual workpiece. This reference dimension must be threshold independent, namely it is determined without the influence of edge detection thresholds. This paper offers a reference workpiece designed for measurement in an X-ray CT system, a coordinate measuring machine (CMM), and an optical profiler. Repeated measurements are made of the reference workpiece using all three instruments and

  5. Grating-based X-ray Dark-field Computed Tomography of Living Mice.

    PubMed

    Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F

    2015-10-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545

  6. Grating-based X-ray Dark-field Computed Tomography of Living Mice

    PubMed Central

    Velroyen, A.; Yaroshenko, A.; Hahn, D.; Fehringer, A.; Tapfer, A.; Müller, M.; Noël, P.B.; Pauwels, B.; Sasov, A.; Yildirim, A.Ö.; Eickelberg, O.; Hellbach, K.; Auweter, S.D.; Meinel, F.G.; Reiser, M.F.; Bech, M.; Pfeiffer, F.

    2015-01-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545

  7. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE PAGESBeta

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  8. An original calibration technique for soft x-ray detectors and its use in the Tore Supra tomographic systema)

    NASA Astrophysics Data System (ADS)

    Mazon, D.; Pacella, D.; Malard, P.; Garnier, D.; Romano, A.; Bouchand, C.

    2008-10-01

    This paper describes in detail the recent progresses which have been made in Tore Supra for developing a new technique of calibration of the soft x-ray (SXR) detectors in the range 1-30keV. The diode response as a function of the flux of photons resulted accurately linear over almost three orders of magnitude. Apart from a limited number of deficient detectors, promptly replaced with new ones, the spread of the diode responses (84 detectors) is about 20% total of the average value. It allowed the derivation of the calibration factor for each detector of the tomography system. The effect of the environmental temperature, in the range 15°-40°, has also been studied, revealing that up to 35° the linearity of diode response and these calibration factors remain constant. It demonstrates the capability of discriminating slight and localized changes in the two dimensional spatial distribution of the SXR intensity.

  9. Contrast-Enhanced X-Ray Micro-Computed Tomography as a Versatile Method for Anatomical Studies of Adult Zebrafish.

    PubMed

    Babaei, Fatemeh; Hong, Tony Liu Chi; Yeung, Kelvin; Cheng, Shuk Han; Lam, Yun Wah

    2016-08-01

    One attractive quality of zebrafish as a model organism for biological research is that transparency at early developmental stages allows the optical imaging of cellular and molecular events. However, this advantage cannot be applied to adult zebrafish. In this study, we explored the use of contrast-enhanced X-ray micro-computed tomography (microCT) on adult zebrafish in which the organism was stained with iodine, a simple and economical contrasting agent, after fixation. Tomographic reconstruction of the microCT data allowed the three-dimensional (3D) volumetric analyses of individual organs in adult zebrafish. Adipose tissues showed a higher affinity to iodine and were more strongly contrasted in microCT. As traditional histological techniques often involve dehydration steps that remove tissue lipids, iodine-contrasted microCT offers a convenient method for visualizing fat deposition in fish. Utilizing this advantage, we discovered a transient accumulation of lipids around the heart after ventricular amputation, suggesting a correlation between lipid distribution and heart regeneration. Taken together, microCT is a versatile technique that enables the 3D visualization of zebrafish organs, as well as other fish models, in their anatomical context. This simple method is a valuable new addition to the arsenal of techniques available to this model organism. PMID:27058023

  10. Level-set reconstruction algorithm for ultrafast limited-angle X-ray computed tomography of two-phase flows

    PubMed Central

    Bieberle, M.; Hampel, U.

    2015-01-01

    Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. PMID:25939623

  11. Level-set reconstruction algorithm for ultrafast limited-angle X-ray computed tomography of two-phase flows.

    PubMed

    Bieberle, M; Hampel, U

    2015-06-13

    Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. PMID:25939623

  12. Feasibility study of a high-spatial resolution x-ray computed tomography using sub-pixel shift method

    SciTech Connect

    Yoneyama, Akio Baba, Rika; Sumitani, Kazushi; Hirai, Yasuharu

    2015-02-23

    A high-spatial resolution X-ray computed tomography (CT) adopting a sub-pixel shift method has been developed. By calculating sectional images, using plural CT datasets obtained by scanning the X-ray imager, the spatial resolution can be reduced relative to the sub-pixel size of an X-ray imager. Feasibility observations of a biomedical sample were performed using 12-keV monochromatic synchrotron radiation and a photon-counting X-ray imager 174-μm pixels in size. Four CT measurements were performed to obtain datasets at different positions of the X-ray imager. Fine sectional images were obtained successfully, and the spatial resolution was estimated as 80-μm, which corresponds to just under half the pixel size of the imager. In addition, a fine 3D image was also obtained by scanning the imager two-dimensionally.

  13. Identifying unknown minerals and compounds from X-ray diffraction patterns using the Johnson and Vand FORTRAN 4 computer program

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.

    1976-01-01

    Automated computer identification of minerals and compounds from unknown samples is provided along with detailed instructions and worked examples for use in graduate level courses in mineralogy and X-ray analysis applications.

  14. Plain X-ray, computed tomography and magnetic resonance imaging findings of telangiectatic osteosarcoma: a case report

    PubMed Central

    Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios

    2009-01-01

    An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented. PMID:19918488

  15. High Speed Data Acquisition System for Three-Dimensional X-Ray and Neutron Computed Tomography

    SciTech Connect

    Davis, A.W.; Claytor, T.N.; Sheats, M.J.

    1999-07-01

    Computed tomography for nondestructive evaluation applications has been limited by system cost, resolution, and time requirements for three-dimensional data sets. FlashCT (Flat panel Amorphous Silicon High-Resolution Computed Tomography) is a system developed at Los Alamos National Laboratory to address these three problems. Developed around a flat panel amorphous silicon detector array, FlashCT is suitable for low to medium energy x-ray and neutron computed tomography at 127-micron resolution. Overall system size is small, allowing rapid transportation to a variety of radiographic sources. System control software was developed in LabVIEW for Windows NT to allow multithreading of data acquisition, data correction, and staging motor control. The system control software simplifies data collection and allows fully automated control of the data acquisition process, leading toward remote or unattended operation. The first generation of the FlashCT Data Acquisition System was completed in Au gust 1998, and since that time the system has been tested using x-ray sources ranging in energy from 60 kV to 20MV. The system has also been used to collect data for thermal neutron computed tomography at Los Alamos Neutron Science Center (LANSCE). System improvements have been proposed to provide faster data collection and greater dynamic range during data collection.

  16. Assessment of asthmatic inflammation using hybrid fluorescence molecular tomography-x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Ma, Xiaopeng; Prakash, Jaya; Ruscitti, Francesca; Glasl, Sarah; Stellari, Fabio Franco; Villetti, Gino; Ntziachristos, Vasilis

    2016-01-01

    Nuclear imaging plays a critical role in asthma research but is limited in its readings of biology due to the short-lived signals of radio-isotopes. We employed hybrid fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) for the assessment of asthmatic inflammation based on resolving cathepsin activity and matrix metalloproteinase activity in dust mite, ragweed, and Aspergillus species-challenged mice. The reconstructed multimodal fluorescence distribution showed good correspondence with ex vivo cryosection images and histological images, confirming FMT-XCT as an interesting alternative for asthma research.

  17. Mechanisms of Porphyroblast Crystallization: Results from High-Resolution Computed X-ray Tomography.

    PubMed

    Carlson, W D; Denison, C

    1992-08-28

    Quantitative three-dimensional analysis of rock textures is now possible with the use of high-resolution computed x-ray tomography. When applied to metamorphic rocks, this technique provides data on the sizes and positions of minerals that allow mechanisms of porphyroblast crystallization to be identified. Statistical analysis of the sizes and spatial disposition of thousands of garnet crystals in three regionally metamorphosed rocks with diverse mineralogies, in conjunction with simple numerical models for crystallization, reveals in all cases the dominance of crystallization mechanisms whose kinetics are governed by rates of intergranular diffusion of nutrients. PMID:17742755

  18. Feasibility study of endoscopic x-ray luminescence computed tomography: Simulation demonstration and phantom application

    SciTech Connect

    Chen, Xueli; Liang, Jimin; Cao, Xin; Yang, Defu; Chen, Dongmei; Ripoll, Jorge; Tian, Jie

    2013-08-28

    Even though endoscopic fluorescence diffuse optical tomography (eFDOT) exhibits significant potential, currently its application is limited due to the existence of strong autofluorescence and the imaging inaccuracy caused by a very short source-detector distance. Motivated by the emerging X-ray luminescence computed tomography (XLCT) technology, we presented an endoscopic XLCT (eXLCT) methodology. In the methodology, the aperture angle of the objective was incorporated into the forward model, providing a more accurate description of light propagation. Numerical simulation with a heterogeneous geometry and an imaging experiment with a physical phantom were illustrated to demonstrate the feasibility of the presented eXLCT methodology.

  19. The Effect of Experimental Variables on Industrial X-Ray Micro-Computed Sensitivity

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.

    2014-01-01

    A study was performed on the effect of experimental variables on radiographic sensitivity (image quality) in x-ray micro-computed tomography images for a high density thin wall metallic cylinder containing micro-EDM holes. Image quality was evaluated in terms of signal-to-noise ratio, flaw detectability, and feature sharpness. The variables included: day-to-day reproducibility, current, integration time, voltage, filtering, number of frame averages, number of projection views, beam width, effective object radius, binning, orientation of sample, acquisition angle range (180deg to 360deg), and directional versus transmission tube.

  20. Development of Computer Tomography System for the Soft X-ray Microscope at Ritsumeikan University

    SciTech Connect

    Ohigashi, T.; Fujii, H.; Usui, K.; Namba, H.; Mizutani, H.; Takemoto, K.; Kihara, H.

    2011-09-09

    A synchrotron-based full-field imaging soft x-ray microscope was tuned appropriately to perform computer tomography. The contrast and focal depth of the optical system were evaluated by using a Fresnel zone plate as a test object of variable spatial frequency. A focal depth of 15 {mu}m was obtained at the spatial frequency of 4.3 {mu}m{sup -1} according to Rayleigh's criterion. As a first trial of three-dimensional observation using this system, the cerebral cortex of the brain of a mouse, trimmed to a columnar shape by focused ion beam milling, was studied using a wavelength of 1.87-nm.

  1. Some computational aspects of the hals (harmonic analysis of x-ray line shape) method

    SciTech Connect

    Moshkina, T.I.; Nakhmanson, M.S.

    1986-02-01

    This paper discusses the problem of distinguishing the analytical line from the background and approximates the background component. One of the constituent parts of the program package in the procedural-mathematical software for x-ray investigations of polycrystalline substances in application to the DRON-3, DRON-2 and ADP-1 diffractometers is the SSF system of programs, which is designed for determining the parameters of the substructure of materials. The SSF system is tailored not only to Unified Series (ES) computers, but also to the M-6000 and SM-1 minicomputers.

  2. Refraction-based X-ray Computed Tomography for Biomedical Purpose Using Dark Field Imaging Method

    NASA Astrophysics Data System (ADS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ichihara, Shu; Ando, Masami

    We have proposed a tomographic x-ray imaging system using DFI (dark field imaging) optics along with a data-processing method to extract information on refraction from the measured intensities, and a reconstruction algorithm to reconstruct a refractive-index field from the projections generated from the extracted refraction information. The DFI imaging system consists of a tandem optical system of Bragg- and Laue-case crystals, a positioning device system for a sample, and two CCD (charge coupled device) cameras. Then, we developed a software code to simulate the data-acquisition, data-processing, and reconstruction methods to investigate the feasibility of the proposed methods. Finally, in order to demonstrate its efficacy, we imaged a sample with DCIS (ductal carcinoma in situ) excised from a breast cancer patient using a system constructed at the vertical wiggler beamline BL-14C in KEK-PF. Its CT images depicted a variety of fine histological structures, such as milk ducts, duct walls, secretions, adipose and fibrous tissue. They correlate well with histological sections.

  3. Toward robotic X-ray vision - New directions for computed tomography

    NASA Astrophysics Data System (ADS)

    Gordon, R.

    1985-12-01

    With the advent of industrial computed tomography (CT or reconstruction from projections), which is of much wider scope than medical CT, the basic mathematical and physical assumptions need to be reconsidered. This paper considers the ramifications of the indeterminacy theorem and the underdetermined nature of the reconstruction equations. A search for truth rather than honesty in their solution is suggested. The use of steered microbeams, CT with few photons, multimedia CT, and the CT of soft (deformable) objects are discussed. The latter subject suggests that CT should become amalgamated with finite element analysis and computer-aided. The computational load of 3-D robotic X-ray vision may require fifth-generation computers.

  4. Computed tomographic analysis of meteorite inclusions

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Testa, J. P., Jr.; Friedman, P. J.; Kambic, G. X.

    1983-01-01

    The feasibility of obtaining nondestructively a cross-sectional display of very dense heterogeneous rocky specimens, whether lunar, terrestrial or meteoritic, by using a fourth generation computed tomographic (CT) scanner, with modifications to the software only, is discussed. A description of the scanner, and of the experimental and analytical procedures is given. Using this technique, the interior of heterogeneous materials such as Allende can be probed nondestructively. The regions of material with high and low atomic numbers are displayed quickly; the object can then be cut to obtain for analysis just the areas of interest. A comparison of this technique with conventional industrial and medical techniques is made in terms of image resolution and density distribution display precision.

  5. Computed tomographic features of primary brain lymphoma.

    PubMed

    Barsky, M F; Coates, R K; Macdonald, D R

    1989-04-01

    Head computed tomographic (CT) examinations of 14 patients with primary brain lymphoma were reviewed to assess the CT features of the presenting and subsequent lesions. Presenting lesions were single in 62% and multiple in 38%. Lesions tended to be iso- or hyperdense and homogeneously enhancing. They were commonly located in the deep hemispheric regions, corpus callosum, and posterior fossa. Despite these characteristic patterns, the diagnosis of lymphoma was initially considered in just three patients. Follow-up CT showed good initial response to radiotherapy in 10 patients although mortality was high and posttherapy changes were frequent. Consideration of primary brain lymphoma by radiologists is important, as needle biopsy and radiotherapy may be preferred to a surgical resection. PMID:2702505

  6. Neck after vertical hemilaryngectomy: computed tomographic study

    SciTech Connect

    DiSantis, D.J.; Balfe, D.M.; Hayden, R.; Sessions, D.; Sagel, S.S.

    1984-06-01

    Computed tomographic scans in 22 postoperative vertical hemilaryngectomy patients were analyzed retrospectively to determine the normal postoperative appearance and to evaluate the role of CT in assessing recurrent neoplasm. Twelve patients without clinical evidence of recurrence illustrated the normal postoperative changes. In the six patients with recurrent neoplasm, the CT manifestations included increased width of the remaining true vocal cord, convexity of the surgically formed pseudocord at glottic level, subglottic tumor, and extralaryngeal neck masses. Recurrence was mimicked in four patients by bulky soft tissue at the endolaryngeal operative site at both CT and laryngoscopy. CT supplemented the physical examination and indirect laryngoscopy, providing information regarding the presence and extent of tumor that was useful in planning the mode or scope of subsequent therapy.

  7. Computed tomographic recognition of gastric varices

    SciTech Connect

    Balthazar, E.J.; Megibow, A.; Naidich, D.; LeFleur, R.S.

    1984-06-01

    The computed tomographic (CT) findings in 13 consecutive patients with proven gastric varices were analyzed and correlated with the radiographic, angiographic, and gastroscopic evaluations. In 11 patients, CT clearly identified large (five) or smaller (six) varices located mainly along the posteromedial wall of the gastric fundus and proximal body of the stomach. Well defined rounded or tubular densities that enhanced during intravenous administration of contrast material and could not be distinguished from the gastric wall were identified. Dense, enhancing, round or tubular, intraluminal filling defects were seen in the cases where the stomach was distended with water. In seven patients, the CT examination correctly diagnosed the pathogenesis of gastric varices by identifying hepatic cirrhosis, calcific pancreatis, and carcinoma of the pancreas.

  8. Laboratory manual: mineral X-ray diffraction data retrieval/plot computer program

    USGS Publications Warehouse

    Hauff, Phoebe L.; VanTrump, George

    1976-01-01

    The Mineral X-Ray Diffraction Data Retrieval/Plot Computer Program--XRDPLT (VanTrump and Hauff, 1976a) is used to retrieve and plot mineral X-ray diffraction data. The program operates on a file of mineral powder diffraction data (VanTrump and Hauff, 1976b) which contains two-theta or 'd' values, and intensities, chemical formula, mineral name, identification number, and mineral group code. XRDPLT is a machine-independent Fortran program which operates in time-sharing mode on a DEC System i0 computer and the Gerber plotter (Evenden, 1974). The program prompts the user to respond from a time-sharing terminal in a conversational format with the required input information. The program offers two major options: retrieval only; retrieval and plot. The first option retrieves mineral names, formulas, and groups from the file by identification number, by the mineral group code (a classification by chemistry or structure), or by searches based on the formula components. For example, it enables the user to search for minerals by major groups (i.e., feldspars, micas, amphiboles, oxides, phosphates, carbonates) by elemental composition (i.e., Fe, Cu, AI, Zn), or by a combination of these (i.e., all copper-bearing arsenates). The second option retrieves as the first, but also plots the retrieved 2-theta and intensity values as diagrammatic X-ray powder patterns on mylar sheets or overlays. These plots can be made using scale combinations compatible with chart recorder diffractograms and 114.59 mm powder camera films. The overlays are then used to separate or sieve out unrelated minerals until unknowns are matched and identified.

  9. Why Are Andesitic Eruptions Often More Violent Than Basaltic Ones? -- Insights from 4D X-ray Tomographic Microscopy

    NASA Astrophysics Data System (ADS)

    Baker, D. R.; Brun, F.; Mancini, L.; Polacci, M.; Fife, J.

    2015-12-01

    Basaltic eruptions often are relatively quiescent, producing lava flows and small strombolian eruptions. On the other hand, andesitic eruptions often are much more violent, sometimes plinian. In both cases the eruptions are typically driven by the exsolution of volatiles, primarily H2O, CO2, S and halogens. We seek to understand the origin of these differences in the "average" eruption styles of basaltic and more-silicic magmas. We hypothesize that the topological properties of bubble foams created during vesiculation play an important role in controlling the explosivity of eruptions. As the bubble fraction increases during vesiculation a competition develops between the falling strength of the magma and its increasing permeability. If the permeability increases sufficiently to release trapped magmatic gases before the fragmentation threshold is reached the eruption will be quiescent, whereas if the permeability does not reach a critical threshold value the magma can fragment, producing a violent eruption. To test this hypothesis, we performed 4-D (x, y, z, and time) X-ray microtomography on the TOMCAT beamline at the Swiss Light Source during 1-atm. vesiculation of previously hydrated melts of basaltic, andesitic and dacitic compositions at temperatures reaching 1200 °C. We find that bubble inter-connectivity is significantly higher in basaltic melts than in andesitic and dacitic melts. This higher inter-connectivity in basaltic systems results in higher permeabilities than in andesitic magmas at similar porosities and reduces the probability of violent basaltic eruptions. We attribute the higher bubble inter-connectivity in basaltic melts to their low viscosities, which in some cases are orders-of-magnitude below those of more-silicic melts. We suggest that characterization of the inter-connectivity of a volcano's previous eruptive products (e.g., scoria, pumice, etc.) may provide insight into the explosivity of its future eruptions.

  10. A computer-controlled x-ray imaging scanner using a kinestatic charge detector

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; DiBianca, Frank A.; Tenney, Charles R.; Vance, Joseph E.; Reed, Mark S. C.; Wilson, Donald W.; Dollas, Apostolos; McDaniel, David L.; Granfors, Paul; Petrick, Scott

    1990-02-01

    A prototype scanning imaging system which employs a kinestatic charge detector (KCD) and is under the control of a VAXstation II/GPX computer is described. The operating principles and advantages of the KCD method are reviewed. The detector is a 256-channel ionization drift chamber which creates a two-dimensional x-ray projection image by scanning the detector past the object of interest. The details of the drift chamber design, the signal collection electrodes (channels), and the Frisch grid geometry are given. Also described are the scanning gantry design, computer-controlled drive motor circuit, and safety features. The data acquisition system for the capture of a 1 M byte digital image is presented. This includes amplification, filtration, analog-to-digital conversion, data buffering, and transfer to the VAXstation II computer. The image processing and display techniques specific to the KCD are outlined and the first two-dimensional image taken with this system is presented.

  11. Advances in X-ray Computed Tomography Diagnostics of Ballistic Impact Damage

    NASA Astrophysics Data System (ADS)

    Wells, Joseph M.; Brannon, Rebecca M.

    2007-12-01

    With the relatively recent introduction of quantitative and volumetric X-ray computed tomography (XCT) applied to ballistic impact damage diagnostics, significant inroads have been made in expanding our knowledge base of the morphological variants of physical impact damage. Yet, the current state of the art in computational and simulation modeling of terminal ballistic performance remains predominantly focused on the penetration phenomenon, without detailed consideration of the physical characteristics of actual impact damage. Similarly, armor ceramic material improvements appear more focused on penetration resistance than on improved intrinsic damage tolerance and damage resistance. Basically, these approaches minimize our understanding of the potential influence that impact damage may play in the mitigation or prevention of ballistic penetration. Examples of current capabilities of XCT characterization, quantification, and visualization of complex impact damage variants are demonstrated and discussed for impacted ceramic and metallic terminal ballistic target materials. Potential benefits of incorporating such impact damage diagnostics in future ballistic computational modeling are also briefly discussed.

  12. Computed tomography part 3: Volumetric, high-resolution x-ray analysis of fatigue crack closure

    NASA Astrophysics Data System (ADS)

    Stock, S. R.; Guvenilir, A.; Breunig, T. M.; Kinney, J. H.; Nichols, M. C.

    1995-01-01

    The study described illustrates how extremely high-resolution volumetric x-ray computed tomography can be applied to a materials problem. The work also gives an example of what choices must be made to tailor an experiment to the capabilities of a computed tomography system. Tomography is used to reconstruct the volume of material enclosing a fatigue crack in Al-Li2090. From the reconstructed volume, the separations of crack faces are quantified as a function of position within the sample, and, through use of a small load frame designed for use in computed tomography, the changing physical crack closure is measured as a function of applied load. In other words, the rate and amounts of physical crack closure are measured at different points of the unloading portion of a fatigue cycle.

  13. Initial experience with a small dedicated computer system in a diagnostic x-ray department.

    PubMed

    James, W B; Fulton, A; Reekie, D

    1975-10-01

    The operation of a small computer system involved in day to day management in an X-ray department is described. The system consists of the following equipment: PDP 8/F central processor with 8K core storage, 32K magnetic disc storage, High-speed paper tape reader (300 characters/s) and punch (50 characters/s), 3 Olivetti TE318 terminals with sprocket feed, paper tape reader and punch (10 characters/s). The system stores patient data relating to name, address, age, ward, referring physician, examination(s) requested, date of request, date of examination, date of report. From this data a large volume of relevant statistics is made available to the department and to the health authority. Labels for identifying record card, film envelope and X-ray films are automatically typed. During reporting coded phrases can be used by the radiologist. Interesting films can be recorded and recalled for library or consultation purposes as can research items. At report typing stage, the report heading is automatically recalled from the computer store. Coded phrases are typed automatically as is the radiologist's name and the date of the report. A 'DAYBOOK' IS TYPED AUTOMatically at the end of each working day. Problems encountered in running the system and future developments are described. PMID:1201652

  14. Calibration-free quantification of interior properties of porous media with x-ray computed tomography.

    PubMed

    Hussein, Esam M A; Agbogun, H M D; Al, Tom A

    2015-03-01

    A method is presented for interpreting the values of x-ray attenuation coefficients reconstructed in computed tomography of porous media, while overcoming the ambiguity caused by the multichromatic nature of x-rays, dilution by void, and material heterogeneity. The method enables determination of porosity without relying on calibration or image segmentation or thresholding to discriminate pores from solid material. It distinguishes between solution-accessible and inaccessible pores, and provides the spatial and frequency distributions of solid-matrix material in a heterogeneous medium. This is accomplished by matching an image of a sample saturated with a contrast solution with that saturated with a transparent solution. Voxels occupied with solid-material and inaccessible pores are identified by the fact that they maintain the same location and image attributes in both images, with voxels containing inaccessible pores appearing empty in both images. Fully porous and accessible voxels exhibit the maximum contrast, while the rest are porous voxels containing mixtures of pore solutions and solid. This matching process is performed with an image registration computer code, and image processing software that requires only simple subtraction and multiplication (scaling) processes. The process is demonstrated in dolomite (non-uniform void distribution, homogeneous solid matrix) and sandstone (nearly uniform void distribution, heterogeneous solid matrix) samples, and its overall performance is shown to compare favorably with a method based on calibration and thresholding. PMID:25576734

  15. Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy

    PubMed Central

    Fife, Julie L.; Rappaz, Michel; Pistone, Mattia; Celcer, Tine; Mikuljan, Gordan; Stampanoni, Marco

    2012-01-01

    Understanding the formation of materials at elevated temperatures is critical for determining their final properties. Synchrotron-based X-ray tomographic microscopy is an ideal technique for studying such processes because high spatial and temporal resolutions are easily achieved and the technique is non-destructive, meaning additional analyses can take place after data collection. To exploit the state-of-the-art capabilities at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the Swiss Light Source, a general-use moderate-to-high-temperature furnace has been developed. Powered by two diode lasers, it provides controlled localized heating, from 673 to 1973 K, to examine many materials systems and their dynamics in real time. The system can also be operated in various thermal modalities. For example, near-isothermal conditions at a given sample location can be achieved with a prescribed time-dependent temperature. This mode is typically used to study isothermal phase transformations; for example, the formation of equiaxed grains in metallic systems or to nucleate and grow bubble foams in silicate melts under conditions that simulate volcanic processes. In another mode, the power of the laser can be fixed and the specimen moved at a constant speed in a user-defined thermal gradient. This is similar to Bridgman solidification, where the thermal gradient and cooling rate control the microstructure formation. This paper details the experimental set-up and provides multiple proofs-of-concept that illustrate the versatility of using this laser-based heating system to explore, in situ, many elevated-temperature phenomena in a variety of materials. PMID:22514169

  16. Clogging evaluation of porous asphalt concrete cores in conjunction with medical x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Hsu, Chen-Yu; Lin, Jyh-Dong

    2014-03-01

    This study was to assess the porosity of Porous Asphalt Concrete (PAC) in conjunction with a medical X-ray computed tomography (CT) facility. The PAC was designed as the surface course to achieve the target porosity 18%. There were graded aggregates, soils blended with 50% of coarse sand, and crushed gravel wrapped with geotextile compacted and served as the base, subbase, and infiltration layers underneath the PAC. The test site constructed in 2004 is located in Northern of Taiwan in which the daily traffic has been light and limited. The porosity of the test track was investigated. The permeability coefficient of PAC was found severely degraded from 2.2×10-1 to 1.2×10-3 -cm/sec, after nine-year service, while the permeability below the surface course remained intact. Several field PAC cores were drilled and brought to evaluate the distribution of air voids by a medical X-ray CT nondestructively. The helical mode was set to administrate the X-ray CT scan and two cross-sectional virtual slices were exported in seconds for analyzing air voids distribution. It shows that the clogging of voids occurred merely 20mm below the surface and the porosity can reduce as much about 3%. It was also found that the roller compaction can decrease the porosity by 4%. The permeability reduction in this test site can attribute to the voids of PAC that were compacted by roller during the construction and filled by the dusts on the surface during the service.

  17. X-ray scatter correction method for dedicated breast computed tomography

    SciTech Connect

    Sechopoulos, Ioannis

    2012-05-15

    Purpose: To improve image quality and accuracy in dedicated breast computed tomography (BCT) by removing the x-ray scatter signal included in the BCT projections. Methods: The previously characterized magnitude and distribution of x-ray scatter in BCT results in both cupping artifacts and reduction of contrast and accuracy in the reconstructions. In this study, an image processing method is proposed that estimates and subtracts the low-frequency x-ray scatter signal included in each BCT projection postacquisition and prereconstruction. The estimation of this signal is performed using simple additional hardware, one additional BCT projection acquisition with negligible radiation dose, and simple image processing software algorithms. The high frequency quantum noise due to the scatter signal is reduced using a noise filter postreconstruction. The dosimetric consequences and validity of the assumptions of this algorithm were determined using Monte Carlo simulations. The feasibility of this method was determined by imaging a breast phantom on a BCT clinical prototype and comparing the corrected reconstructions to the unprocessed reconstructions and to reconstructions obtained from fan-beam acquisitions as a reference standard. One-dimensional profiles of the reconstructions and objective image quality metrics were used to determine the impact of the algorithm. Results: The proposed additional acquisition results in negligible additional radiation dose to the imaged breast ({approx}0.4% of the standard BCT acquisition). The processed phantom reconstruction showed substantially reduced cupping artifacts, increased contrast between adipose and glandular tissue equivalents, higher voxel value accuracy, and no discernible blurring of high frequency features. Conclusions: The proposed scatter correction method for dedicated breast CT is feasible and can result in highly improved image quality. Further optimization and testing, especially with patient images, is necessary to

  18. Experimental validation of a kilovoltage x-ray source model for computing imaging dose

    SciTech Connect

    Poirier, Yannick; Kouznetsov, Alexei; Koger, Brandon; Tambasco, Mauro

    2014-04-15

    Purpose: To introduce and validate a kilovoltage (kV) x-ray source model and characterization method to compute absorbed dose accrued from kV x-rays. Methods: The authors propose a simplified virtual point source model and characterization method for a kV x-ray source. The source is modeled by: (1) characterizing the spatial spectral and fluence distributions of the photons at a plane at the isocenter, and (2) creating a virtual point source from which photons are generated to yield the derived spatial spectral and fluence distribution at isocenter of an imaging system. The spatial photon distribution is determined by in-air relative dose measurements along the transverse (x) and radial (y) directions. The spectrum is characterized using transverse axis half-value layer measurements and the nominal peak potential (kVp). This source modeling approach is used to characterize a Varian{sup ®} on-board-imager (OBI{sup ®}) for four default cone-beam CT beam qualities: beams using a half bowtie filter (HBT) with 110 and 125 kVp, and a full bowtie filter (FBT) with 100 and 125 kVp. The source model and characterization method was validated by comparing dose computed by the authors’ inhouse software (kVDoseCalc) to relative dose measurements in a homogeneous and a heterogeneous block phantom comprised of tissue, bone, and lung-equivalent materials. Results: The characterized beam qualities and spatial photon distributions are comparable to reported values in the literature. Agreement between computed and measured percent depth-dose curves is ⩽2% in the homogeneous block phantom and ⩽2.5% in the heterogeneous block phantom. Transverse axis profiles taken at depths of 2 and 6 cm in the homogeneous block phantom show an agreement within 4%. All transverse axis dose profiles in water, in bone, and lung-equivalent materials for beams using a HBT, have an agreement within 5%. Measured profiles of FBT beams in bone and lung-equivalent materials were higher than their

  19. Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors

    SciTech Connect

    Tina, Adrienne

    2015-08-21

    The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enough to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.

  20. Computed tomographic anatomy of the equine foot.

    PubMed

    Claerhoudt, S; Bergman, E H J; Saunders, J H

    2014-10-01

    This study describes a detailed computed tomographic reference of the normal equine foot. Ten forefeet of five adult cadavers, without evidence of orthopaedic disease, were used. Computed tomography (CT) was performed on all feet. Two-millimetre thick transverse slices were obtained, and sagittal and dorsal planes were reformatted. The CT images were matched with the corresponding anatomic slices. The phalanges and the distal sesamoid bone showed excellent detail. The extensor and flexor tendons (including their attachments) could be clearly evaluated. The collateral (sesamoidean) ligaments could be readily located, but were difficult to delineate at their proximal attachment. The distal digital annular ligament could only be distinguished from the deep digital flexor tendon proximal to the distal sesamoid bone, and its proximal attachment could be identified, but not its distal insertion. Small ligaments (impar ligament, chondrosesamoidean, chondrocoronal and chondrocompedal ligaments, axial and abaxial palmar ligaments of the proximal inter-phalangeal joint) were seen with difficulty and not at all slices. The joint capsules could not be delineated from the surrounding soft tissue structures. The lateral and medial proprius palmar digital artery and vein could be visualized occasionally on some slices. The ungular cartilages, corium and hoof wall layering were seen. The nerves, the articular and fibrocartilage of the distal sesamoid bone and the chondroungular ligament could not be assessed. Computed tomography of the equine foot can be of great value when results of radiography and ultrasonography are inconclusive. Images obtained in this study may serve as reference for CT of the equine foot. PMID:24611958

  1. Image recovery techniques for x-ray computed tomography in limited data environments

    SciTech Connect

    Aufderheide, M B; Goodman, D M; Jackson, J A; Johansson, E M

    1999-03-01

    There is an increasing requirement throughout LLNL for nondestructive evaluation using X-ray computed tomography (CT). In many cases, restrictions on data acquisition time, imaging geometry, and budgets make it unfeasible to acquire projection data over enough views to achieve desired spatial resolution using conventional CT methods. In particular, conventional CT methods are non-iterative algorithms that have the advantage of low computational effort, but they are not sufficiently adaptable to incorporate prior information or non-Gaussian statistics. Most currently existing iterative tomography algorithms are based on methods that are time consuming because they converge very flowingly, if at all. The goal of the work was to develop a set of limited data CT reconstruction tools and then demonstrate their usefulness by applying them to a variety of problems of interest to LLNL. In this project they continued their development of reconstruction tools and they have demonstrated their effectiveness on several important problems.

  2. The exploration study of fire damage to concrete specimen using x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Lee, Min-Gin; Chen, Guan-Ying

    2015-04-01

    Portland Cement Concrete (PCC) loses the evaporable water at about 100 °C, decomposes C-S-H at about 200 °C, and dehydrates CH at about 500 °C, and deconstruct C-S-H at about 900°C. The concrete degradation or cracks are caused by several possible parameters, such as vapor pressure in pores, thermal gradient, and varied expansion rates of cement pastes and aggregates. The objective of the exploration study was to assess the porosity before and after conditioning of high temperature in the laboratory with the medical X-ray computed tomography. The experimental program was determined to identify the mineral properties of the aggregates used and determine the consensus properties of compressive, splitting tensile, and flexural strengths. Concrete cylinders were subject with one temperature conditioning, namely 400°C, but two different heat conditioning time namely four and eight hours. The X-ray CT, before and after high temperature conditioning, was administrated on the concrete cylinders to inspect the depth of the damage zone, which shall consist of more porosity than undamaged one. The damage zone will be examined and identified through the changes in porosity of concrete paste and aggregates within a concrete cylinder. The significance of the exploration study was to provide an in-depth insight to define the damaged zone for a better understanding of the following repairing and reinforced work.

  3. Coded aperture x-ray diffraction imaging with transmission computed tomography side-information

    NASA Astrophysics Data System (ADS)

    Odinaka, Ikenna; Greenberg, Joel A.; Kaganovsky, Yan; Holmgren, Andrew; Hassan, Mehadi; Politte, David G.; O'Sullivan, Joseph A.; Carin, Lawrence; Brady, David J.

    2016-03-01

    Coded aperture X-ray diffraction (coherent scatter spectral) imaging provides fast and dose-efficient measurements of the molecular structure of an object. The information provided is spatially-dependent and material-specific, and can be utilized in medical applications requiring material discrimination, such as tumor imaging. However, current coded aperture coherent scatter spectral imaging system assume a uniformly or weakly attenuating object, and are plagued by image degradation due to non-uniform self-attenuation. We propose accounting for such non-uniformities in the self-attenuation by utilizing an X-ray computed tomography (CT) image (reconstructed attenuation map). In particular, we present an iterative algorithm for coherent scatter spectral image reconstruction, which incorporates the attenuation map, at different stages, resulting in more accurate coherent scatter spectral images in comparison to their uncorrected counterpart. The algorithm is based on a spectrally grouped edge-preserving regularizer, where the neighborhood edge weights are determined by spatial distances and attenuation values.

  4. Impurity precipitation in atomized particles evidenced by nano x-ray diffraction computed tomography

    SciTech Connect

    Bonnin, Anne; Wright, Jonathan P.; Tucoulou, Rémi; Palancher, Hervé

    2014-08-25

    Performances and physical properties of high technology materials are influenced or even determined by their initial microstructure and by the behavior of impurity phases. Characterizing these impurities and their relations with the surrounding matrix is therefore of primary importance but it unfortunately often requires a destructive approach, with the risk of misinterpreting the observations. The improvement we have done in high resolution X-ray diffraction computed tomography combined with the use of an X-ray nanoprobe allows non-destructive crystallographic description of materials with microscopic heterogeneous microstructure (with a grain size between 10 nm and 10 μm). In this study, the grain localization in a 2D slice of a 20 μm solidified atomized γU-Mo particle is shown and a minority U(C,O) phase (1 wt. %) with sub-micrometer sized grains was characterized inside. Evidence is presented showing that the onset of U(C,O) grain crystallization can be described by a precipitation mechanism since one single U-Mo grain has direct orientation relationship with more than one surrounding U(C,O) grains.

  5. Detection and assessment of wood decay using x-ray computer tomography

    NASA Astrophysics Data System (ADS)

    McGovern, Megan; Senalik, Adam; Chen, George; Beall, Frank C.; Reis, Henrique

    2010-04-01

    Loblolly pine (Pinus taeda) wood cube specimens were exposed to Gloeophyllum fungus (Gloeophyllum trabeum) for increasing periods of time ranging from one week to twelve weeks. The corresponding mass of each of these specimens was recorded before and after they were subjected to the controlled decay. X-ray computed tomography (CT) was then carried out. From the CT scans and recorded mass data, the specimens' corresponding volumes and densities were calculated. Blocks decayed for twelve weeks experienced, on the average, the greatest loss of mass (~40%), volume (~30%), and density (~37%). The observations quantified the well-known effect of non-uniform decay, with the greatest occurring at the surface in contact with the fungi and decreasing to the opposite surface. Wood blocks subjected to controlled decay for twelve weeks lost 47% of density at the surface in contact with the fungi and 28% at the opposite surface, while blocks subjected to only one week of decay experienced over 5% density loss at the surface in contact with fungi and nearly 0% at the opposite surface. While the mass loss of specimens exposed to only one week of controlled decay was difficult to evaluate because of initial moisture absorption, these results indicate that x-ray CT can detect decay in wood specimens exposed to only one week of controlled decay using density measurements.

  6. Three-dimensional visualisation of soft biological structures by X-ray computed micro-tomography.

    PubMed

    Shearer, Tom; Bradley, Robert S; Hidalgo-Bastida, L Araida; Sherratt, Michael J; Cartmell, Sarah H

    2016-07-01

    Whereas the two-dimensional (2D) visualisation of biological samples is routine, three-dimensional (3D) imaging remains a time-consuming and relatively specialised pursuit. Current commonly adopted techniques for characterising the 3D structure of non-calcified tissues and biomaterials include optical and electron microscopy of serial sections and sectioned block faces, and the visualisation of intact samples by confocal microscopy or electron tomography. As an alternative to these approaches, X-ray computed micro-tomography (microCT) can both rapidly image the internal 3D structure of macroscopic volumes at sub-micron resolutions and visualise dynamic changes in living tissues at a microsecond scale. In this Commentary, we discuss the history and current capabilities of microCT. To that end, we present four case studies to illustrate the ability of microCT to visualise and quantify: (1) pressure-induced changes in the internal structure of unstained rat arteries, (2) the differential morphology of stained collagen fascicles in tendon and ligament, (3) the development of Vanessa cardui chrysalises, and (4) the distribution of cells within a tissue-engineering construct. Future developments in detector design and the use of synchrotron X-ray sources might enable real-time 3D imaging of dynamically remodelling biological samples. PMID:27278017

  7. Iterative reconstruction for x-ray computed tomography using prior-image induced nonlocal regularization.

    PubMed

    Zhang, Hua; Huang, Jing; Ma, Jianhua; Bian, Zhaoying; Feng, Qianjin; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2014-09-01

    Repeated X-ray computed tomography (CT) scans are often required in several specific applications such as perfusion imaging, image-guided biopsy needle, image-guided intervention, and radiotherapy with noticeable benefits. However, the associated cumulative radiation dose significantly increases as comparison with that used in the conventional CT scan, which has raised major concerns in patients. In this study, to realize radiation dose reduction by reducing the X-ray tube current and exposure time (mAs) in repeated CT scans, we propose a prior-image induced nonlocal (PINL) regularization for statistical iterative reconstruction via the penalized weighted least-squares (PWLS) criteria, which we refer to as "PWLS-PINL". Specifically, the PINL regularization utilizes the redundant information in the prior image and the weighted least-squares term considers a data-dependent variance estimation, aiming to improve current low-dose image quality. Subsequently, a modified iterative successive overrelaxation algorithm is adopted to optimize the associative objective function. Experimental results on both phantom and patient data show that the present PWLS-PINL method can achieve promising gains over the other existing methods in terms of the noise reduction, low-contrast object detection, and edge detail preservation. PMID:24235272

  8. High energy x-ray radiography and computed tomography of bridge pins

    SciTech Connect

    Green, R E; Logan, C M; Martz, H E; Updike, E; Waters, A M

    1999-05-01

    Bridge pins were used in the hanger assemblies for some multi-span steel bridges built prior to the 1980's, and are sometimes considered fracture critical elements of a bridge. During a test on a bridge conducted by the Federal Highway Administration (FHWA), ultrasonic field inspection results indicated that at least two pins contained cracks. Several pins were removed and selected for further examination. This provided an excellent opportunity to learn more about these pins and the application of x-ray systems at Lawrence Livermore National Laboratory (LLNL), as well as to learn more about the application of different detectors recently obtained by LLNL. Digital radiographs and computed tomography (CT) were used to characterize the bridge pins, using a LINAC x-ray source with a 9-MV bremsstrahlung spectrum. We will describe the performance of two different digital radiographic detectors. One is a detector system frequently used at LLNL consisting of a scintillator glass optically coupled to a CCD camera. The other detector is a new amorphous silicon detector recently acquired by LLNL.

  9. Investigation of soil structure development and properties of macropore networks with X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Pagenkemper, Sebastian; Uteau Puschmann, Daniel; Peth, Stephan; Horn, Rainer

    2014-05-01

    X-ray computed tomography provides a non-destructive method to visualize and quantify three-dimensional pore networks. Geometrical and morphological parameters of the complex pore system such as connectivity, tortuosity, porosity and pore surface area would be very useful for modeling and simulating of transport and exchange processes. Thus, quantitative data on relevant soil structural features and their modification by soil management could be provided. The scope of this study was to analyze and quantify the development of soil structure in the subsoil depending on three different precrop species (alfalfa, chicory and fescue), at three depths (45, 60 and 75 cm) and three cultivation periods (1, 2 and 3 yrs) on an experimental field trial (Germany) with a Haplic Luvisol as major soil type. Morphological (air-filled porosity, pore surface area) and geometrical (pore diameter, connectivity, continuity, tortuosity) parameters were gathered with X-ray CT and evaluated with image analysis. Furthermore, the results were linked with air-capacity data from laboratory measurements to validate the data and with tortuosity/connectivity data from diffusion-based measurements. Air-filled porosity was highest for alfalfa (3 yrs, 75 cm). Tortuosity values ranged between 1.3 and 4.38, while alfalfa (3 yrs) showed the highest value, which may indicate structural development due to crack formation by enhanced root water uptake. An increase in accessible surfaces may improve water and nutrient supply for plants, whereas the high tortuosity values may also assume that oxygen supply is limited.

  10. Visualization of subcutaneous insulin injections by x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Thomsen, M.; Poulsen, M.; Bech, M.; Velroyen, A.; Herzen, J.; Beckmann, F.; Feidenhans'l, R.; Pfeiffer, F.

    2012-11-01

    We report how the three-dimensional structure of subcutaneous injections of soluble insulin can be visualized by x-ray computed tomography using an iodine based contrast agent. The injections investigated are performed ex vivo in porcine adipose tissue. Full tomography scans carried out at a laboratory x-ray source with a total acquisition time of about 1 min yield CT-images with an effective pixel size of 109 × 109 μm2. The depots are segmented using a modified Chan-Vese algorithm and we are able to observe differences in the shape of the injection depot and the position of the depot in the skin among equally performed injections. To overcome the beam hardening artefacts, which affect the quantitative prediction of the volume injected, we additionally present results concerning the visualization of two injections using synchrotron radiation. The spatial concentration distribution of iodine is calculated to show the dilution of the insulin drug inside the depot. Characterisation of the shape of the depot and the spatial concentration profile of the injected fluid is important knowledge when improving the clinical formulation of an insulin drug, the performance of injection devices and when predicting the effect of the drug through biomedical simulations.

  11. Toward automatic computer aided dental X-ray analysis using level set method.

    PubMed

    Li, Shuo; Fevens, Thomas; Krzyzak, Adam; Jin, Chao; Li, Song

    2005-01-01

    A Computer Aided Dental X-rays Analysis (CADXA) framework is proposed to semi-automatically detect areas of bone loss and root decay in digital dental X-rays. In this framework, first, a new proposed competitive coupled level set method is proposed to segment the image into three pathologically meaningful regions using two coupled level set functions. Tailored for the dental clinical environment, the segmentation stage uses a trained support vector machine (SVM) classifier to provide initial contours. Then, based on the segmentation results, an analysis scheme is applied. First, the scheme builds an uncertainty map from which those areas with bone loss will be automatically detected. Secondly, the scheme employs a method based on the SVM and the average intensity profile to isolate the teeth and detect root decay. Experimental results show that our proposed framework is able to automatically detect the areas of bone loss and, when given the orientation of the teeth, it is able to automatically detect the root decay with a seriousness level marked for diagnosis. PMID:16685904

  12. Deformulation of a solid pharmaceutical form using computed tomography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Oliveira Junior, J. M.; Balcão, V. M.; Vila, M. M. D. C.; Aranha, N.; Yoshida, V. M. H.; Chaud, M. V.; Mangine Filho, S.

    2015-07-01

    Deformulation of medicines is of undeniable importance, since it can be utilized both to unravel the chemical composition of the excipients integrating a pharmaceutical formulation of a specific medicine and as an important tool to conduct morphometric studies of the formulation under study. Such strategy may be utilized in analytical studies aiming at quantifying the components of reference drugs, or in the identification of putative counterfeit pharmaceuticals. Deformulation makes use of physicochemical analysis tools to characterize, from the chemical point of view, the components integrating medicine pharmaceutical formulations and from the physical point of view, the morphological part of the pharmaceutical formulation. The techniques of computer tomography (SkyScan 1174 - Bruker microCT) and X-ray fluorescence analyses (using an X-ray source with W-anode from Hammatsu Photonics and Silicon Drift detector from Amptek) were successfully used in performing a process of deformulation of a solid pharmaceutical formulation of tablets, utilized herein as a model medicine for controlled drug release. The analytical methods used in this work, proved their effectiveness for the main goal of this study, which aimed to characterize a pharmaceutical formulation via its deconstruction.

  13. X-ray cone-beam computed tomography: principles, applications, challenges and solutions

    NASA Astrophysics Data System (ADS)

    Noo, Frederic

    2010-03-01

    In the nineties, x-ray computed tomography, commonly referred to as CT, seemed to be on the track to become old technology, bound to be replaced by more sophisticated techniques such as magnetic resonance imaging, due in particular to the harmful effects of x-ray radiation exposure. Yet, the new century brought with it new technology that allowed a complete change in trends and re-affirmed CT as an essential tool in radiology. For instance, the popularity of CT in 2007 was such that approximately 68.7 million CT examinations were performed in the United States, which was nearly 2.5 times the number of magnetic resonance (MRI) examinations. More than that, CT has expanded beyond its conventional diagnostic role; CT is now used routinely in interventional radiology and also in radiation therapy treatment. The technology advances that allowed the revival of CT are those that made fast, accurate cone-beam data acquisition possible. Nowadays, cone-beam data acquisition allows scanning large volumes with isotropic sub-millimeter spatial resolution in a very fast time, which can be as short as 500ms for cardiac imaging. The principles of cone-beam imaging will be first reviewed. Then a discussion of its applications will be given. Old and new challenges will be presented along the way with current solutions.

  14. Low cost, high resolution x-ray detector system for digital radiography and computed tomography

    SciTech Connect

    Smith, C.R.; Erker, J.W.

    1993-12-31

    The authors have designed and evaluated a novel design of line array x-ray detector for use with digital radiography (DR) and computed tomography (CT) systems. The Radiographic Line Scan (RLS) detector is less than half the cost of discrete multi-channel line array detectors, yet provides the potential for resolution to less than 25 {micro}m at energies of 420 kV. The RLS detector consists of a scintillator fiber-optically coupled to a thermo-electrically cooled line array CCD. Gadolinium oxysulfide screen material has been used as the scintillator, in thicknesses up to 250 {micro}m. Scintillating glass, which is formed into a fiber optic bundle, has also been used in thicknesses up to 2 mm. The large 2.5 mm by 25 {micro}m CCD cells provide high dynamic range while preserving high resolution; the 2.5 mm dimension is oriented in the x-ray absorption direction while the 25 {micro}m dimension is oriented in the resolution direction. Servo controlled thermo-electric cooling of the CCD to a fixed temperature provides reduction of dark current and stabilization of the output. Greater dynamic range is achieved by reducing the dark current, while output stabilization reduces the need for frequent calibration of the detector. Measured performance characteristics are presented along with DR and CT images produced using the RLS detector.

  15. X-ray Absorption Spectroscopy and Coherent X-ray Diffraction Imaging for Time-Resolved Investigation of the Biological Complexes: Computer Modelling towards the XFEL Experiment

    NASA Astrophysics Data System (ADS)

    Bugaev, A. L.; Guda, A. A.; Yefanov, O. M.; Lorenz, U.; Soldatov, A. V.; Vartanyants, I. A.

    2016-05-01

    The development of the next generation synchrotron radiation sources - free electron lasers - is approaching to become an effective tool for the time-resolved experiments aimed to solve actual problems in various fields such as chemistry’ biology’ medicine’ etc. In order to demonstrate’ how these experiments may be performed for the real systems to obtain information at the atomic and macromolecular levels’ we have performed a molecular dynamics computer simulation combined with quantum chemistry calculations for the human phosphoglycerate kinase enzyme with Mg containing substrate. The simulated structures were used to calculate coherent X-ray diffraction patterns’ reflecting the conformational state of the enzyme, and Mg K-edge X-ray absorption spectra, which depend on the local structure of the substrate. These two techniques give complementary information making such an approach highly effective for time-resolved investigation of various biological complexes, such as metalloproteins or enzymes with metal-containing substrate, to obtain information about both metal-containing active site or substrate and the atomic structure of each conformation.

  16. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    NASA Astrophysics Data System (ADS)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  17. Phase segmentation of X-ray computer tomography rock images using machine learning techniques: an accuracy and performance study

    NASA Astrophysics Data System (ADS)

    Chauhan, Swarup; Rühaak, Wolfram; Anbergen, Hauke; Kabdenov, Alen; Freise, Marcus; Wille, Thorsten; Sass, Ingo

    2016-07-01

    Performance and accuracy of machine learning techniques to segment rock grains, matrix and pore voxels from a 3-D volume of X-ray tomographic (XCT) grayscale rock images was evaluated. The segmentation and classification capability of unsupervised (k-means, fuzzy c-means, self-organized maps), supervised (artificial neural networks, least-squares support vector machines) and ensemble classifiers (bragging and boosting) were tested using XCT images of andesite volcanic rock, Berea sandstone, Rotliegend sandstone and a synthetic sample. The averaged porosity obtained for andesite (15.8 ± 2.5 %), Berea sandstone (16.3 ± 2.6 %), Rotliegend sandstone (13.4 ± 7.4 %) and the synthetic sample (48.3 ± 13.3 %) is in very good agreement with the respective laboratory measurement data and varies by a factor of 0.2. The k-means algorithm is the fastest of all machine learning algorithms, whereas a least-squares support vector machine is the most computationally expensive. Metrics entropy, purity, mean square root error, receiver operational characteristic curve and 10 K-fold cross-validation were used to determine the accuracy of unsupervised, supervised and ensemble classifier techniques. In general, the accuracy was found to be largely affected by the feature vector selection scheme. As it is always a trade-off between performance and accuracy, it is difficult to isolate one particular machine learning algorithm which is best suited for the complex phase segmentation problem. Therefore, our investigation provides parameters that can help in selecting the appropriate machine learning techniques for phase segmentation.

  18. Computed tomographic findings in orbital Mucor

    SciTech Connect

    Greenberg, M.R.; Lippman, S.M.; Grinnell, V.S.; Colman, M.F.; Edwards, J.E. Jr.

    1985-07-01

    Mucormycosis is an increasingly important infection in immunocompromised patients; knowledge regarding the variability of its clinical manifestations is expanding steadily. The infection is of paranasal sinus origin and may involve the orbit secondarily via freely communicating foramina and venous channels. Death often ensues when the infection spreads either into the cavernous sinus or the central nervous system. Early diagnosis of rhinocerebral mucormycosis is crucial for a successful outcome. Computed tomographic (CT) scanning is used to visualize many intraorbital pathologic abnormalities. The patient discussed in this paper had extensive orbital Mucor that appeared minimal on a CT scan. This inability of the scan to reflect the severity of infection prompted a review of the literature describing the use of CT scans for detecting this potentially fatal, opportunistic infection. The search showed that a disparity between scan findings and the severity of the disease is the rule rather than the exception. Recognition of this disparity has significant implications for appropriate diagnosis and management of orbital Mucor.

  19. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.; Carroll, Susan A.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  20. Imaging of sand production in a horizontal sand pack by X-ray computed tomography

    SciTech Connect

    Tremblay, B.; Sedgwick, G.; Forshner, K.

    1996-06-01

    A laboratory experiment was performed to better understand how sand production can increase heavy oil recovery. A horizontal sand pack with an orifice at one end modeled the production of oil and sand into a perforation in a vertical well. The sand pack was scanned using X-ray computed tomography (CT). The CT images revealed that a high-porosity channel (wormhole) formed in the pack while sand was produced. The wormhole followed regions within the pack where the porosity was higher, and, consequently, the unconfined compressive strength of the sand was lower. This experiment suggests that wormholes will form within the weaker sands of a formation. The development of these high-permeability channels increases the drainage of the reservoir, which leads to higher oil recovery.

  1. X-ray computed tomography datasets for forensic analysis of vertebrate fossils

    PubMed Central

    Rowe, Timothy B.; Luo, Zhe-Xi; Ketcham, Richard A.; Maisano, Jessica A.; Colbert, Matthew W.

    2016-01-01

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251

  2. Statistical x-ray computed tomography imaging from photon-starved measurements

    NASA Astrophysics Data System (ADS)

    Chang, Zhiqian; Zhang, Ruoqiao; Thibault, Jean-Baptiste; Sauer, Ken; Bouman, Charles

    2013-03-01

    Dose reduction in clinical X-ray computed tomography (CT) causes low signal-to-noise ratio (SNR) in photonsparse situations. Statistical iterative reconstruction algorithms have the advantage of retaining image quality while reducing input dosage, but they meet their limits of practicality when significant portions of the sinogram near photon starvation. The corruption of electronic noise leads to measured photon counts taking on negative values, posing a problem for the log() operation in preprocessing of data. In this paper, we propose two categories of projection correction methods: an adaptive denoising filter and Bayesian inference. The denoising filter is easy to implement and preserves local statistics, but it introduces correlation between channels and may affect image resolution. Bayesian inference is a point-wise estimation based on measurements and prior information. Both approaches help improve diagnostic image quality at dramatically reduced dosage.

  3. The X-ray system of crystallographic programs for any computer having a PIDGIN FORTRAN compiler

    NASA Technical Reports Server (NTRS)

    Stewart, J. M.; Kruger, G. J.; Ammon, H. L.; Dickinson, C.; Hall, S. R.

    1972-01-01

    A manual is presented for the use of a library of crystallographic programs. This library, called the X-ray system, is designed to carry out the calculations required to solve the structure of crystals by diffraction techniques. It has been implemented at the University of Maryland on the Univac 1108. It has, however, been developed and run on a variety of machines under various operating systems. It is considered to be an essentially machine independent library of applications programs. The report includes definition of crystallographic computing terms, program descriptions, with some text to show their application to specific crystal problems, detailed card input descriptions, mass storage file structure and some example run streams.

  4. SYNCHROTRON X-RAY MICROPROBE AND COMPUTED MICROTOMOGRAPHY FOR CHARACTERIZATION OF NANOCATALYSTS.

    SciTech Connect

    JONES, K.W.; FENG, H.; LANZIROTTI, A.; MAHAJAN, D.

    2004-06-01

    Gas-to-liquids (GTL) is a viable pathway for synthesis of clean fuels from natural gas. One of the attractive synthesis options is the Fischer-Tropsch (F-T) method using an iron catalyst to yield a broad range of hydrocarbons. We collected catalyst samples during three separate F-T runs that utilized nanophase (mean particle diameter (MPD): 3 nm and 20-80 nm) and micrometer-sized (32.5 ? m) Fe{sub 2}O{sub 3} that served as catalyst precursors. The collected samples were characterized with micro x-ray fluorescence and computed Microtomography at the National Synchrotron Light Source (NSLS). Results found with two different measurement techniques indicated that there was heterogeneity on a spatial scale corresponding to volumes of roughly 10{sup 3} {micro}m{sup 3}.

  5. Determination of diffusion profiles in altered wellbore cement using X-ray computed tomography methods.

    PubMed

    Mason, Harris E; Walsh, Stuart D C; DuFrane, Wyatt L; Carroll, Susan A

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining "effective linear activity coefficients" (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment. PMID:24869420

  6. Drying of Porous Asphalt Concrete Investigated by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Jerjen, I.; Poulikakos, L. D.; Plamondon, M.; Schuetz, Ph.; Luethi, Th.; Flisch, A.

    Porous asphalt concrete is composed of aggregates, a bituminous binder and air voids which can form a complex network. Because rain water can easily drain through this network of voids, porous asphalt concrete is often used for improving the security of highways. However, porous asphalt concrete is often deteriorating fast due to its large contact area with environmental agents. A quantitative determination of the influence of rain water on the aging of porous asphalt concrete requires an understanding of water drainage and evaporation in the material. In this paper, the water evaporation rate in a sample of porous asphalt concrete was investigated by means of X-ray micro computed tomography. Discontinuities in the evaporation rate were observed. A qualitative inspection of the pore network allowed tentatively linking sudden acceleration of evaporation to the disappearance of water lids which were clogging pores.

  7. REFLECT: A computer program for the x-ray reflectivity of bent perfect crystals

    SciTech Connect

    Etelaeniemi, V.; Suortti, P.; Thomlinson, W. . Dept. of Physics; Brookhaven National Lab., Upton, NY )

    1989-09-01

    The design of monochromators for x-ray applications, using either standard laboratory sources on synchrotron radiation sources, requires a knowledge of the reflectivity of the crystals. The reflectivity depends on the crystals used, the geometry of the reflection, the energy range of the radiation, and, in the present case, the cylindrical bending radius of the optical device. This report is intended to allow the reader to become familiar with, and therefore use, a computer program called REFLECT which we have used in the design of a dual beam Laue monochromator for synchrotron angiography. The results of REFLECT have been compared to measured reflectivities for both bent Bragg and Laue geometries. The results are excellent and should give full confidence in the use of the program. 6 refs.

  8. X-ray computed tomography datasets for forensic analysis of vertebrate fossils.

    PubMed

    Rowe, Timothy B; Luo, Zhe-Xi; Ketcham, Richard A; Maisano, Jessica A; Colbert, Matthew W

    2016-01-01

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251

  9. Non Destructive High-Resolution 3D Investigation of Vesicle Textures in Pumice and Scoria by Synchrotron X-Ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Baker, D.; Mancini, L.; Tromba, G.; Zanini, F.

    2005-12-01

    High resolution X-ray computed microtomography was applied to investigate the 3D structure of pyroclastic material from different active, explosive, hazardous volcanic areas. The experiments were performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility in Trieste (Italy). The 2D image slices resulting from tomography of selected pumice and scoria samples were transformed into volume renderings via specific tomographic software. The reconstructed volumes allowed us to test the applicability of this technique, novel in the field of volcanology, to volcanic specimens with different textural characteristics. The use of a third generation synchrotron radiation facility allowed optimal visualization of vesicle and crystal geometry in the reconstructed volume where conventional X-ray methods are strongly limited. The BLOB3D software package was used to accomplish quantitative descriptions of vesicle textures in terms of vesicularity, number density, volume and connectivity. The results exhibited complex patterns of the vesicle content, size, shape and distribution within the different pyroclasts and allowed us to track the degassing history of each single clast. With this preliminary study we demonstrate that computed microtomography is a feasible tool complementary to conventional microscopy methods for the full 3D textural characterization of volcanic clasts, and that it may be used to provide further constraints to models of degassing at active volcanoes.

  10. Development of Kilovoltage X-ray Dosimetry Methods and Their Application to Cone Beam Computed Tomography

    NASA Astrophysics Data System (ADS)

    Lawless, Michael J.

    The increase in popularity of pre-treatment imaging procedures in radiation therapy, such as kilovoltage cone beam computed tomography (CBCT), has been accompanied by an increase in the dose delivered to the patient from these imaging procedures. The measurement of dose from CBCT scans is complicated, as currently available kilovoltage dosimetry protocols are based on air-kerma standards and radiation detectors exhibit large energy responses at the low photon energies used in the imaging procedures. This work aims to provide the tools and methodology needed to measure the dose from these scans more accurately and precisely. Through the use of a validated Monte Carlo (MC) model of the moderately filtered (M-series) x-ray beams at the University of Wisconsin Accredited Dosimetry Calibration Laboratory, dose-to-water rates were obtained in a water phantom for the M-series x-ray beams with tube potentials from 40-250 kVp. The resulting dose-to-water rates were consistent with previously established methods, but had significantly reduced uncertainties. While detectors are commonly used to measure dose in phantom, previous investigations of the energy response of common detectors in the kilovoltage energy range have been limited to in-air geometries. The newly determined dose-to-water rates were used to characterize the in-phantom energy and depth response of thermoluminescent dosimeters and ionization chambers. When compared to previous investigations of the in-air detector response, the impact of scatter and absorption of the photon beam by the water medium was found to have a significant impact on the response of certain detectors. The dose to water in the NIST-traceable M-series x-ray beams was transferred to clinical CBCT beams and the resulting doses agreed with other dose-to-water measurement techniques. The dose to water in the CBCT beams was used to characterize the energy and depth responses of a number of detectors. The energy response in the CBCT beams agreed

  11. Characterization of impact damage in metallic/nonmetallic composites using x-ray computed tomography imaging

    SciTech Connect

    Green, William H.; Wells, Joseph M.

    1999-12-02

    Characterizing internal impact damage in composites can be difficult, especially in structurally complex composites or those consisting of many materials. Many methods for nondestructive inspection/nondestructive testing (NDI/NDT) of materials have been known and in use for many years, including x-ray film, real-time, and digital radiographic techniques, and ultrasonic techniques. However, these techniques are generally not capable of three-dimensional (3D) mapping of complex damage patterns, which is necessary to visualize and understand damage cracking modes. Conventional x-ray radiography suffers from the loss of 3D information. Structural complexity and signal dispersion in materials with many interfaces significantly effect ultrasonic inspection techniques. This makes inspection scan interpretation difficult, especially in composites containing a number of different materials (i.e., polymer, ceramic, and metallic). X-ray computed tomography (CT) is broadly applicable to any material or test object through which a beam of penetrating radiation may be passed and detected, including metals, plastics, ceramics, metallic/nonmetallic composites, and assemblies. The principal advantage of CT is that it provides densitometric (that is, radiological density and geometry) images of thin cross sections through an object. Because of the absence of structural superposition, images are much easier to interpret than conventional radiological images. The user can quickly learn to read CT data because images correspond more closely to the way the human mind visualizes 3D structures than projection radiology (that is, film radiography, real-time radiography (RTR), and digital radiography (DR)). Any number of CT images, or slices, from scanning an object can be volumetrically reconstructed to produce a 3D attenuation map of the object. The 3D attenuation data can be rendered using multiplanar or 3D solid visualization. In multiplanar visualization there are four planes of view

  12. Characterization of impact damage in metallic/nonmetallic composites using x-ray computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Green, William H.; Wells, Joseph M.

    1999-12-01

    Characterizing internal impact damage in composites can be difficult, especially in structurally complex composites or those consisting of many materials. Many methods for nondestructive inspection/nondestructive testing (NDI/NDT) of materials have been known and in use for many years, including x-ray film, real-time, and digital radiographic techniques, and ultrasonic techniques. However, these techniques are generally not capable of three-dimensional (3D) mapping of complex damage patterns, which is necessary to visualize and understand damage cracking modes. Conventional x-ray radiography suffers from the loss of 3D information. Structural complexity and signal dispersion in materials with many interfaces significantly effect ultrasonic inspection techniques. This makes inspection scan interpretation difficult, especially in composites containing a number of different materials (i.e., polymer, ceramic, and metallic). X-ray computed tomography (CT) is broadly applicable to any material or test object through which a beam of penetrating radiation may be passed and detected, including metals, plastics, ceramics, metallic/nonmetallic composites, and assemblies. The principal advantage of CT is that it provides densitometric (that is, radiological density and geometry) images of thin cross sections through an object. Because of the absence of structural superposition, images are much easier to interpret than conventional radiological images. The user can quickly learn to read CT data because images correspond more closely to the way the human mind visualizes 3D structures than projection radiology (that is, film radiography, real-time radiography (RTR), and digital radiography (DR)). Any number of CT images, or slices, from scanning an object can be volumetrically reconstructed to produce a 3D attenuation map of the object. The 3D attenuation data can be rendered using multiplanar or 3D solid visualization. In multiplanar visualization there are four planes of view

  13. First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging.

    PubMed

    Kuang, Yu; Pratx, Guillem; Bazalova, Magdalena; Meng, Bowen; Qian, Jianguo; Xing, Lei

    2013-02-01

    Simultaneous imaging of multiple probes or biomarkers represents a critical step toward high specificity molecular imaging. In this work, we propose to utilize the element-specific nature of the X-ray fluorescence (XRF) signal for imaging multiple elements simultaneously (multiplexing) using XRF computed tomography (XFCT). A 5-mm-diameter pencil beam produced by a polychromatic X-ray source (150 kV, 20 mA) was used to stimulate emission of XRF photons from 2% (weight/volume) gold (Au), gadolinium (Gd), and barium (Ba) embedded within a water phantom. The phantom was translated and rotated relative to the stationary pencil beam in a first-generation CT geometry. The X-ray energy spectrum was collected for 18 s at each position using a cadmium telluride detector. The spectra were then used to isolate the K shell XRF peak and to generate sinograms for the three elements of interest. The distribution and concentration of the three elements were reconstructed with the iterative maximum likelihood expectation maximization algorithm. The linearity between the XFCT intensity and the concentrations of elements of interest was investigated. We found that measured XRF spectra showed sharp peaks characteristic of Au, Gd, and Ba. The narrow full-width at half-maximum (FWHM) of the peaks strongly supports the potential of XFCT for multiplexed imaging of Au, Gd, and Ba ( FWHM(Au,Kα1) = 0.619 keV, FWHM(Au,Kα2)=1.371 keV , FWHM(Gd,Kα)=1.297 keV, FWHM(Gd,Kβ)=0.974 keV , FWHM(Ba,Kα)=0.852 keV, and FWHM(Ba,Kβ)=0.594 keV ). The distribution of Au, Gd, and Ba in the water phantom was clearly identifiable in the reconstructed XRF images. Our results showed linear relationships between the XRF intensity of each tested element and their concentrations ( R(2)(Au)=0.944 , R(Gd)(2)=0.986, and R(Ba)(2)=0.999), suggesting that XFCT is capable of quantitative imaging. Finally, a transmission CT image was obtained to show the potential of the approach for providing attenuation correction

  14. A measurement-based X-ray source model characterization for CT dosimetry computations.

    PubMed

    Sommerville, Mitchell; Poirier, Yannick; Tambasco, Mauro

    2015-01-01

    The purpose of this study was to show that the nominal peak tube voltage potential (kVp) and measured half-value layer (HVL) can be used to generate energy spectra and fluence profiles for characterizing a computed tomography (CT) X-ray source, and to validate the source model and an in-house kV X-ray dose computation algorithm (kVDoseCalc) for computing machine- and patient-specific CT dose. Spatial variation of the X-ray source spectra of a Philips Brilliance and a GE Optima Big Bore CT scanner were found by measuring the HVL along the direction of the internal bow-tie filter axes. Third-party software, Spektr, and the nominal kVp settings were used to generate the energy spectra. Beam fluence was calculated by dividing the integral product of the spectra and the in-air NIST mass-energy attenuation coefficients by in-air dose measurements along the filter axis. The authors found the optimal number of photons to seed in kVDoseCalc to achieve dose convergence. The Philips Brilliance beams were modeled for 90, 120, and 140 kVp tube settings. The GE Optima beams were modeled for 80, 100, 120, and 140 kVp tube settings. Relative doses measured using a Capintec Farmer-type ionization chamber (0.65 cc) placed in a cylindrical polymethyl methacrylate (PMMA) phantom and irradiated by the Philips Brilliance, were compared to those computed with kVDoseCalc. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima were measured using a (0.015 cc) PTW Freiburg ionization chamber and compared to computations from kVDoseCalc. The number of photons required to reduce the average statistical uncertainty in dose to < 0.3% was 2 × 105. The average percent difference between calculation and measurement over all 12 PMMA phantom positions was found to be 1.44%, 1.47%, and 1.41% for 90, 120, and 140 kVp, respectively. The maximum percent difference between calculation and measurement for all energies, measurement positions, and phantoms was

  15. Microstructural analysis of TRISO particles using multi-scale X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Lowe, T.; Bradley, R. S.; Yue, S.; Barii, K.; Gelb, J.; Rohbeck, N.; Turner, J.; Withers, P. J.

    2015-06-01

    TRISO particles, a composite nuclear fuel built up by ceramic and graphitic layers, have outstanding high temperature resistance. TRISO fuel is the key technology for High Temperature Reactors (HTRs) and the Generation IV Very High Temperature Reactor (VHTR) variant. TRISO offers unparalleled containment of fission products and is extremely robust during accident conditions. An understanding of the thermal performance and mechanical properties of TRISO fuel requires a detailed knowledge of pore sizes, their distribution and interconnectivity. Here 50 nm, nano-, and 1 μm resolution, micro-computed tomography (CT), have been used to quantify non-destructively porosity of a surrogate TRISO particle at the 0.3-10 μm and 3-100 μm scales respectively. This indicates that pore distributions can reliably be measured down to a size approximately 3 times the pixel size which is consistent with the segmentation process. Direct comparison with Scanning Electron Microscopy (SEM) sections indicates that destructive sectioning can introduce significant levels of coarse damage, especially in the pyrolytic carbon layers. Further comparative work is required to identify means of minimizing such damage for SEM studies. Finally since it is non-destructive, multi-scale time-lapse X-ray CT opens the possibility of intermittently tracking the degradation of TRISO structure under thermal cycles or radiation conditions in order to validate models of degradation such as kernel movement. X-ray CT in-situ experimentation of TRISO particles under load and temperature could also be used to understand the internal changes that occur in the particles under accident conditions.

  16. Quantification of changes in zero valent iron morphology using X-ray computed tomography.

    PubMed

    Luo, Ping; Bailey, Elizabeth H; Mooney, Sacha J

    2013-11-01

    Morphological changes within the porous architecture of laboratory scale zero valent iron (ZVI) permeable reactive barriers (PRBs), after exposure to different groundwater conditions, have been quantified experimentally for different ZVI/sand ratios (10%, 50% and 100%, W/W) with the aim of inferring porosity changes in field barriers. Column studies were conducted to simulate interaction with different water chemistries, a synthetic groundwater, acidic drainage and deionised (DI) water as control. Morphological changes, in terms of pore size and distribution, were measured using X-ray computed tomography (CT). CT image analysis revealed significant morphological changes in columns treated with different water chemistries. For example, 100% ZVI (W/W) columns had a higher frequency of small pores (0.6 mm) was observed in ZVI grains reacted with typical groundwater, resulting in a porosity of 27%, compared to 32% when exposed to DI water. In comparison, ZVI grains treated with the acidic drainage had higher porosity (44%) and larger average pore size (2.8 mm). 10% ZVI PRB barrier material had the highest mean porosity (56%) after exposure to any water chemistry whilst 100% ZVI (W/W) columns always had the lowest (34%) with the 50% ZVI (W/W) in between (40%). These results agree with previously published PRB field data and simultaneously conducted geochemical monitoring and mass balance calculation, indicating that both the geochemical and hydraulic environment of the PRB play an important role in determining barrier lifespan. This study suggests that X-ray CT image analysis is a powerful tool for studying the detailed inter pores between ZVI grains within PRBs. PMID:24552065

  17. Computer-aided diagnosis of pulmonary diseases using x-ray darkfield radiography.

    PubMed

    Einarsdóttir, Hildur; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Hellbach, Katharina; Auweter, Sigrid; Yildirim, Önder; Meinel, Felix G; Eickelberg, Oliver; Reiser, Maximilian; Larsen, Rasmus; Ersbøll, Bjarne Kjær; Pfeiffer, Franz

    2015-12-21

    In this work we develop a computer-aided diagnosis (CAD) scheme for classification of pulmonary disease for grating-based x-ray radiography. In addition to conventional transmission radiography, the grating-based technique provides a dark-field imaging modality, which utilizes the scattering properties of the x-rays. This modality has shown great potential for diagnosing early stage emphysema and fibrosis in mouse lungs in vivo. The CAD scheme is developed to assist radiologists and other medical experts to develop new diagnostic methods when evaluating grating-based images. The scheme consists of three stages: (i) automatic lung segmentation; (ii) feature extraction from lung shape and dark-field image intensities; (iii) classification between healthy, emphysema and fibrosis lungs. A study of 102 mice was conducted with 34 healthy, 52 emphysema and 16 fibrosis subjects. Each image was manually annotated to build an experimental dataset. System performance was assessed by: (i) determining the quality of the segmentations; (ii) validating emphysema and fibrosis recognition by a linear support vector machine using leave-one-out cross-validation. In terms of segmentation quality, we obtained an overlap percentage (Ω) 92.63  ±  3.65%, Dice Similarity Coefficient (DSC) 89.74  ±  8.84% and Jaccard Similarity Coefficient 82.39  ±  12.62%. For classification, the accuracy, sensitivity and specificity of diseased lung recognition was 100%. Classification between emphysema and fibrosis resulted in an accuracy of 93%, whilst the sensitivity was 94% and specificity 88%. In addition to the automatic classification of lungs, deviation maps created by the CAD scheme provide a visual aid for medical experts to further assess the severity of pulmonary disease in the lung, and highlights regions affected. PMID:26577057

  18. Computer-aided recognition of dental implants in X-ray images

    NASA Astrophysics Data System (ADS)

    Morais, Pedro; Queirós, Sandro; Moreira, António H. J.; Ferreira, Adriano; Ferreira, Ernesto; Duque, Duarte; Rodrigues, Nuno F.; Vilaça, João. L.

    2015-03-01

    Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant's manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.

  19. Imaging biofilms in porous media using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Davit, Y.; Debenest, G.; Quintard, M.

    2009-12-01

    In soils and rivers subsurface, bacterial biofilms growth induce modifications of mass and momentum transport dynamics. Evidence for these modifications have been developed essentially by inspection, that is, observation of the reduction of hydraulic conductivity, permeability, changes in porosity and anomalous transport. Deeper understanding of these sessile communities in porous media environments and of the multiscale/multiphase complexity of the system requires 3-D informations concerning the pore-scale/biofilm-scale geometry. Additionnally, breakthroughs in imaging techniques are likely to trigger breakthroughs in the theoretical analysis. In this study, we develop a new technique for direct observation and imaging of unstrained biofilms in porous media using X-ray computed micro-tomography. The biofilms are grown for ten days on polyamide and expanded polystyrene beads placed in small plastic columns. A circulation of water from the river Garonne (France) is imposed using peristaltic pumps. No particular bacterial strain is introduced, the micro-organisms being naturally present in the water from the river. The X-ray acquisition is performed by a Skyscan-1174 micro-CT. A special experimental technique, based on two different contrast agents, has been designed to solve the challenging problem of imaging 3 phases of initial similar absorption coefficients. On the one hand, we use a suspension of barium sulfate to enhance the contrast of the water-phase. On the other hand, the absorption of the biofilm-phase is increased using iodine which diffuses into the polymeric matrix. Examples of reconstructed images are given to illustrate the effectiveness of the method. We demonstrate how to combine the 3-D measurements with upscaling techniques such as volume averaging, by calculating the modifications of the permeability of the system when biofilms grow. At last, we aim to couple these 3-D measurements with upscaled reactive models to describe the Darcy

  20. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Senthil; D'Orsi, Carl J.; Sechopoulos, Ioannis

    2016-02-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360° with a perforated tungsten plate in the path of the x-ray beam. To make patient testing feasible, a wirelessly controlled electronic positioner for the tungsten plate was designed and added to a breast CT system. Other improvements to the algorithm were implemented, including automated exclusion of non-valid primary estimate points and the use of a different approximation method to estimate the full scatter signal. To evaluate the effectiveness of the algorithm, evaluation of the resulting image quality was performed with a breast phantom and with nine patient images. The improvements in the algorithm resulted in the avoidance of introduction of artifacts, especially at the object borders, which was an issue in the previous implementation in some cases. Both contrast, in terms of signal difference and signal difference-to-noise ratio were improved with the proposed method, as opposed to with the correction algorithm incorporated in the system, which does not recover contrast. Patient image evaluation also showed enhanced contrast, better cupping correction, and more consistent voxel values for the different tissues. The algorithm also reduces artifacts present in reconstructions of non-regularly shaped breasts. With the implemented hardware and software improvements, the proposed method can be reliably used during patient breast CT imaging, resulting in improvement of image quality, no introduction of artifacts, and in some cases reduction of artifacts already present. The impact of the algorithm on actual clinical performance for detection, diagnosis and other clinical tasks in breast imaging remains to be evaluated.

  1. Computer-aided diagnosis of pulmonary diseases using x-ray darkfield radiography

    NASA Astrophysics Data System (ADS)

    Einarsdóttir, Hildur; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Hellbach, Katharina; Auweter, Sigrid; Yildirim, Önder; Meinel, Felix G.; Eickelberg, Oliver; Reiser, Maximilian; Larsen, Rasmus; Kjær Ersbøll, Bjarne; Pfeiffer, Franz

    2015-12-01

    In this work we develop a computer-aided diagnosis (CAD) scheme for classification of pulmonary disease for grating-based x-ray radiography. In addition to conventional transmission radiography, the grating-based technique provides a dark-field imaging modality, which utilizes the scattering properties of the x-rays. This modality has shown great potential for diagnosing early stage emphysema and fibrosis in mouse lungs in vivo. The CAD scheme is developed to assist radiologists and other medical experts to develop new diagnostic methods when evaluating grating-based images. The scheme consists of three stages: (i) automatic lung segmentation; (ii) feature extraction from lung shape and dark-field image intensities; (iii) classification between healthy, emphysema and fibrosis lungs. A study of 102 mice was conducted with 34 healthy, 52 emphysema and 16 fibrosis subjects. Each image was manually annotated to build an experimental dataset. System performance was assessed by: (i) determining the quality of the segmentations; (ii) validating emphysema and fibrosis recognition by a linear support vector machine using leave-one-out cross-validation. In terms of segmentation quality, we obtained an overlap percentage (Ω) 92.63  ±  3.65%, Dice Similarity Coefficient (DSC) 89.74  ±  8.84% and Jaccard Similarity Coefficient 82.39  ±  12.62%. For classification, the accuracy, sensitivity and specificity of diseased lung recognition was 100%. Classification between emphysema and fibrosis resulted in an accuracy of 93%, whilst the sensitivity was 94% and specificity 88%. In addition to the automatic classification of lungs, deviation maps created by the CAD scheme provide a visual aid for medical experts to further assess the severity of pulmonary disease in the lung, and highlights regions affected.

  2. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  3. A Computer Program for Calculation of Calibration Curves for Quantitative X-Ray Diffraction Analysis.

    ERIC Educational Resources Information Center

    Blanchard, Frank N.

    1980-01-01

    Describes a FORTRAN IV program written to supplement a laboratory exercise dealing with quantitative x-ray diffraction analysis of mixtures of polycrystalline phases in an introductory course in x-ray diffraction. Gives an example of the use of the program and compares calculated and observed calibration data. (Author/GS)

  4. Three-dimensional x-ray microtomography

    SciTech Connect

    Flannery, B.P.; Deckman, H.W.; Roberge, W.G.; D'Amico, K.L.

    1987-09-18

    The new technique of x-ray microtomography nondestructively generates three-dimensional maps of the x-ray attenuation coefficient inside small samples with approximately 1 percent accuracy and with resolution approaching 1 micrometer. Spatially resolved elemental maps can be produced with synchrotron x-ray sources by scanning samples at energies just above and below characteristic atomic absorption edges. The system consists of a high-resolution imaging x-ray detector and high-speed algorithms for tomographic image reconstruction. The design and operation of the microtomography device are described, and tomographic images that illustrate it performance with both synchrotron and laboratory x-ray sources are presented.

  5. Using computational modeling to compare X-ray tube Practical Peak Voltage for Dental Radiology

    NASA Astrophysics Data System (ADS)

    Holanda Cassiano, Deisemar; Arruda Correa, Samanda Cristine; de Souza, Edmilson Monteiro; da Silva, Ademir Xaxier; Pereira Peixoto, José Guilherme; Tadeu Lopes, Ricardo

    2014-02-01

    The Practical Peak Voltage-PPV has been adopted to measure the voltage applied to an X-ray tube. The PPV was recommended by the IEC document and accepted and published in the TRS no. 457 code of practice. The PPV is defined and applied to all forms of waves and is related to the spectral distribution of X-rays and to the properties of the image. The calibration of X-rays tubes was performed using the MCNPX Monte Carlo code. An X-ray tube for Dental Radiology (operated from a single phase power supply) and an X-ray tube used as a reference (supplied from a constant potential power supply) were used in simulations across the energy range of interest of 40 kV to 100 kV. Results obtained indicated a linear relationship between the tubes involved.

  6. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    SciTech Connect

    Abdullah, J.; Sipaun, S. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.

    2008-05-20

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper.

  7. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    NASA Astrophysics Data System (ADS)

    Abdullah, J.; Sipaun, S. M.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.

    2008-05-01

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper.

  8. Region of interest processing for iterative reconstruction in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kopp, Felix K.; Nasirudin, Radin A.; Mei, Kai; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Noël, Peter B.

    2015-03-01

    The recent advancements in the graphics card technology raised the performance of parallel computing and contributed to the introduction of iterative reconstruction methods for x-ray computed tomography in clinical CT scanners. Iterative maximum likelihood (ML) based reconstruction methods are known to reduce image noise and to improve the diagnostic quality of low-dose CT. However, iterative reconstruction of a region of interest (ROI), especially ML based, is challenging. But for some clinical procedures, like cardiac CT, only a ROI is needed for diagnostics. A high-resolution reconstruction of the full field of view (FOV) consumes unnecessary computation effort that results in a slower reconstruction than clinically acceptable. In this work, we present an extension and evaluation of an existing ROI processing algorithm. Especially improvements for the equalization between regions inside and outside of a ROI are proposed. The evaluation was done on data collected from a clinical CT scanner. The performance of the different algorithms is qualitatively and quantitatively assessed. Our solution to the ROI problem provides an increase in signal-to-noise ratio and leads to visually less noise in the final reconstruction. The reconstruction speed of our technique was observed to be comparable with other previous proposed techniques. The development of ROI processing algorithms in combination with iterative reconstruction will provide higher diagnostic quality in the near future.

  9. Mirrors for X-ray telescopes: Fresnel diffraction-based computation of point spread functions from metrology

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Spiga, D.

    2015-01-01

    Context. The imaging sharpness of an X-ray telescope is chiefly determined by the optical quality of its focusing optics, which in turn mostly depends on the shape accuracy and the surface finishing of the grazing-incidence X-ray mirrors that compose the optical modules. To ensure the imaging performance during the mirror manufacturing, a fundamental step is predicting the mirror point spread function (PSF) from the metrology of its surface. Traditionally, the PSF computation in X-rays is assumed to be different depending on whether the surface defects are classified as figure errors or roughness. This classical approach, however, requires setting a boundary between these two asymptotic regimes, which is not known a priori. Aims: The aim of this work is to overcome this limit by providing analytical formulae that are valid at any light wavelength, for computing the PSF of an X-ray mirror shell from the measured longitudinal profiles and the roughness power spectral density, without distinguishing spectral ranges with different treatments. Methods: The method we adopted is based on the Huygens-Fresnel principle for computing the diffracted intensity from measured or modeled profiles. In particular, we have simplified the computation of the surface integral to only one dimension, owing to the grazing incidence that reduces the influence of the azimuthal errors by orders of magnitude. The method can be extended to optical systems with an arbitrary number of reflections - in particular the Wolter-I, which is frequently used in X-ray astronomy - and can be used in both near- and far-field approximation. Finally, it accounts simultaneously for profile, roughness, and aperture diffraction. Results: We describe the formalism with which one can self-consistently compute the PSF of grazing-incidence mirrors, and we show some PSF simulations including the UV band, where the aperture diffraction dominates the PSF, and hard X-rays where the X-ray scattering has a major impact

  10. Object Specific Trajectory Optimization for Industrial X-ray Computed Tomography.

    PubMed

    Fischer, Andreas; Lasser, Tobias; Schrapp, Michael; Stephan, Jürgen; Noël, Peter B

    2016-01-01

    In industrial settings, X-ray computed tomography scans are a common tool for inspection of objects. Often the object can not be imaged using standard circular or helical trajectories because of constraints in space or time. Compared to medical applications the variance in size and materials is much larger. Adapting the acquisition trajectory to the object is beneficial and sometimes inevitable. There are currently no sophisticated methods for this adoption. Typically the operator places the object according to his best knowledge. We propose a detectability index based optimization algorithm which determines the scan trajectory on the basis of a CAD-model of the object. The detectability index is computed solely from simulated projections for multiple user defined features. By adapting the features the algorithm is adapted to different imaging tasks. Performance of simulated and measured data was qualitatively and quantitatively assessed.The results illustrate that our algorithm not only allows more accurate detection of features, but also delivers images with high overall quality in comparison to standard trajectory reconstructions. This work enables to reduce the number of projections and in consequence scan time by introducing an optimization algorithm to compose an object specific trajectory. PMID:26817435

  11. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    SciTech Connect

    Brun, E.; Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S.; Barbone, G.; Mittone, A.; Coan, P.; Bravin, A.

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  12. Object Specific Trajectory Optimization for Industrial X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Lasser, Tobias; Schrapp, Michael; Stephan, Jürgen; Noël, Peter B.

    2016-01-01

    In industrial settings, X-ray computed tomography scans are a common tool for inspection of objects. Often the object can not be imaged using standard circular or helical trajectories because of constraints in space or time. Compared to medical applications the variance in size and materials is much larger. Adapting the acquisition trajectory to the object is beneficial and sometimes inevitable. There are currently no sophisticated methods for this adoption. Typically the operator places the object according to his best knowledge. We propose a detectability index based optimization algorithm which determines the scan trajectory on the basis of a CAD-model of the object. The detectability index is computed solely from simulated projections for multiple user defined features. By adapting the features the algorithm is adapted to different imaging tasks. Performance of simulated and measured data was qualitatively and quantitatively assessed.The results illustrate that our algorithm not only allows more accurate detection of features, but also delivers images with high overall quality in comparison to standard trajectory reconstructions. This work enables to reduce the number of projections and in consequence scan time by introducing an optimization algorithm to compose an object specific trajectory.

  13. Object Specific Trajectory Optimization for Industrial X-ray Computed Tomography

    PubMed Central

    Fischer, Andreas; Lasser, Tobias; Schrapp, Michael; Stephan, Jürgen; Noël, Peter B.

    2016-01-01

    In industrial settings, X-ray computed tomography scans are a common tool for inspection of objects. Often the object can not be imaged using standard circular or helical trajectories because of constraints in space or time. Compared to medical applications the variance in size and materials is much larger. Adapting the acquisition trajectory to the object is beneficial and sometimes inevitable. There are currently no sophisticated methods for this adoption. Typically the operator places the object according to his best knowledge. We propose a detectability index based optimization algorithm which determines the scan trajectory on the basis of a CAD-model of the object. The detectability index is computed solely from simulated projections for multiple user defined features. By adapting the features the algorithm is adapted to different imaging tasks. Performance of simulated and measured data was qualitatively and quantitatively assessed.The results illustrate that our algorithm not only allows more accurate detection of features, but also delivers images with high overall quality in comparison to standard trajectory reconstructions. This work enables to reduce the number of projections and in consequence scan time by introducing an optimization algorithm to compose an object specific trajectory. PMID:26817435

  14. Analytical computation of stray light in nested mirror modules for x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Spiga, Daniele

    2015-09-01

    Stray light in X-ray telescopes are a well-known issue. Unlike rays focused via a double reflection by usual grazing-incidence geometries such as the Wolter-I, stray rays coming from off-axis sources are reflected only once by either the parabolic or the hyperbolic segment. Although not focused, stray light may represent a major source of background and ghost images especially when observing a field of faint sources in the vicinities of another, more intense, just outside the field of view of the telescope. The stray light problem is faced by mounting a pre-collimator in front of the mirror module, in order to shade a part of the reflective surfaces that may give rise to singly-reflected rays. Studying the expected stray light impact, and consequently designing a pre-collimator, is a typical ray-tracing problem, usually time and computation consuming, especially if we consider that rays propagate throughout a densely nested structure. This in turn requires one to pay attention to all the possible obstructions, increasing the complexity of the simulation. In contrast, approaching the problems of stray light calculation from an analytical viewpoint largely simplifies the problem, and may also ease the task of designing an effective pre-collimator. In this work we expose an analytical formalism that can be used to compute the stray light in a nested optical module in a fast and effective way, accounting for obstruction effects.

  15. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography

    PubMed Central

    Manohar, Nivedh; Reynoso, Francisco J.; Diagaradjane, Parmeswaran; Krishnan, Sunil; Cho, Sang Hyun

    2016-01-01

    X-ray fluorescence computed tomography (XFCT) is a technique that can identify, quantify, and locate elements within objects by detecting x-ray fluorescence (characteristic x-rays) stimulated by an excitation source, typically derived from a synchrotron. However, the use of a synchrotron limits practicality and accessibility of XFCT for routine biomedical imaging applications. Therefore, we have developed the ability to perform XFCT on a benchtop setting with ordinary polychromatic x-ray sources. Here, we report our postmortem study that demonstrates the use of benchtop XFCT to accurately image the distribution of gold nanoparticles (GNPs) injected into a tumor-bearing mouse. The distribution of GNPs as determined by benchtop XFCT was validated using inductively coupled plasma mass spectrometry. This investigation shows drastically enhanced sensitivity and specificity of GNP detection and quantification with benchtop XFCT, up to two orders of magnitude better than conventional x-ray CT. The results also reaffirm the unique capabilities of benchtop XFCT for simultaneous determination of the spatial distribution and concentration of nonradioactive metallic probes, such as GNPs, within the context of small animal imaging. Overall, this investigation identifies a clear path toward in vivo molecular imaging using benchtop XFCT techniques in conjunction with GNPs and other metallic probes. PMID:26912068

  16. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography

    NASA Astrophysics Data System (ADS)

    Manohar, Nivedh; Reynoso, Francisco J.; Diagaradjane, Parmeswaran; Krishnan, Sunil; Cho, Sang Hyun

    2016-02-01

    X-ray fluorescence computed tomography (XFCT) is a technique that can identify, quantify, and locate elements within objects by detecting x-ray fluorescence (characteristic x-rays) stimulated by an excitation source, typically derived from a synchrotron. However, the use of a synchrotron limits practicality and accessibility of XFCT for routine biomedical imaging applications. Therefore, we have developed the ability to perform XFCT on a benchtop setting with ordinary polychromatic x-ray sources. Here, we report our postmortem study that demonstrates the use of benchtop XFCT to accurately image the distribution of gold nanoparticles (GNPs) injected into a tumor-bearing mouse. The distribution of GNPs as determined by benchtop XFCT was validated using inductively coupled plasma mass spectrometry. This investigation shows drastically enhanced sensitivity and specificity of GNP detection and quantification with benchtop XFCT, up to two orders of magnitude better than conventional x-ray CT. The results also reaffirm the unique capabilities of benchtop XFCT for simultaneous determination of the spatial distribution and concentration of nonradioactive metallic probes, such as GNPs, within the context of small animal imaging. Overall, this investigation identifies a clear path toward in vivo molecular imaging using benchtop XFCT techniques in conjunction with GNPs and other metallic probes.

  17. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    PubMed Central

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-01-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons. PMID:25975937

  18. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography.

    PubMed

    Manohar, Nivedh; Reynoso, Francisco J; Diagaradjane, Parmeswaran; Krishnan, Sunil; Cho, Sang Hyun

    2016-01-01

    X-ray fluorescence computed tomography (XFCT) is a technique that can identify, quantify, and locate elements within objects by detecting x-ray fluorescence (characteristic x-rays) stimulated by an excitation source, typically derived from a synchrotron. However, the use of a synchrotron limits practicality and accessibility of XFCT for routine biomedical imaging applications. Therefore, we have developed the ability to perform XFCT on a benchtop setting with ordinary polychromatic x-ray sources. Here, we report our postmortem study that demonstrates the use of benchtop XFCT to accurately image the distribution of gold nanoparticles (GNPs) injected into a tumor-bearing mouse. The distribution of GNPs as determined by benchtop XFCT was validated using inductively coupled plasma mass spectrometry. This investigation shows drastically enhanced sensitivity and specificity of GNP detection and quantification with benchtop XFCT, up to two orders of magnitude better than conventional x-ray CT. The results also reaffirm the unique capabilities of benchtop XFCT for simultaneous determination of the spatial distribution and concentration of nonradioactive metallic probes, such as GNPs, within the context of small animal imaging. Overall, this investigation identifies a clear path toward in vivo molecular imaging using benchtop XFCT techniques in conjunction with GNPs and other metallic probes. PMID:26912068

  19. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    NASA Astrophysics Data System (ADS)

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-05-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.

  20. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography.

    PubMed

    Walton, Lucy A; Bradley, Robert S; Withers, Philip J; Newton, Victoria L; Watson, Rachel E B; Austin, Clare; Sherratt, Michael J

    2015-01-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons. PMID:25975937

  1. Computed tomographic anatomy of the canine inner and middle ear.

    PubMed

    Russo, Marco; Covelli, Eugenio M; Meomartino, Leonardo; Lamb, Christopher R; Brunetti, Arturo

    2002-01-01

    A series of high-resolution computed x-ray tomography (CT) images of the normal canine middle and inner ear are presented to serve as a reference for optimal interpretation of clinical CT images of animals with diseases affecting this region. PMID:11866039

  2. MAX--An Interactive Computer Program for Teaching Identification of Clay Minerals by X-ray Diffraction.

    ERIC Educational Resources Information Center

    Kohut, Connie K.; And Others

    1993-01-01

    Discusses MAX, an interactive computer program for teaching identification of clay minerals based on standard x-ray diffraction characteristics. The program provides tutorial-type exercises for identification of 16 clay standards, self-evaluation exercises, diffractograms of 28 soil clay minerals, and identification of nonclay minerals. (MDH)

  3. Influence of non-invasive X-ray computed tomography (XRCT) on the microbial community structure and function in soil.

    PubMed

    Fischer, Doreen; Pagenkemper, Sebastian; Nellesen, Jens; Peth, Stephan; Horn, Rainer; Schloter, Michael

    2013-05-01

    In this study the influence of X-ray computed tomography (XRCT) on the microbial community structure and function in soils has been investigated. Our results clearly indicate that XRCT of soil samples has a strong impact on microbial communities and changes structure and function significantly due to the death of selected microbial groups as a result of the treatment. PMID:23499670

  4. Cybersecurity, massive data processing, community interaction, and other developments at WWW-based computational X-ray Server

    NASA Astrophysics Data System (ADS)

    Stepanov, Sergey

    2013-03-01

    X-Ray Server (x-server.gmca.aps.anl.gov) is a WWW-based computational server for modeling of X-ray diffraction, reflection and scattering data. The modeling software operates directly on the server and can be accessed remotely either from web browsers or from user software. In the later case the server can be deployed as a software library or a data fitting engine. As the server recently surpassed the milestones of 15 years online and 1.5 million calculations, it accumulated a number of technical solutions that are discussed in this paper. The developed approaches to detecting physical model limits and user calculations failures, solutions to spam and firewall problems, ways to involve the community in replenishing databases and methods to teach users automated access to the server programs may be helpful for X-ray researchers interested in using the server or sharing their own software online.

  5. Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography

    SciTech Connect

    Kim, Kwang Yeom; Yun, Tae Sup; Park, Kwang Pil

    2013-08-15

    When cement-based materials are exposed to the high temperatures induced by fire, which can rapidly cause temperatures of over 1000 °C, the changes in pore structure and density prevail. In the present study, mortar specimens were subjected to a series of increasing temperatures to explore the temperature-dependent evolution of internal pore structure. High-performance X-ray computed tomography (CT) was used to observe the evolution of temperature-induced discontinuities at the sub-millimeter level. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to investigate the cause of physical changes in the heated mortar specimens. Results exhibit the changes in pore structure caused by elevated temperatures, and thermally induced fractures. We discuss the progressive formation of thermally induced fracture networks, which is a prerequisite for spalling failure of cement-based materials by fire, based on visual observations of the 3D internal structures revealed by X-ray CT.

  6. Feasibility studies on explosive detection and homeland security applications using a neutron and x-ray combined computed tomography system

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.

    2013-05-01

    The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in

  7. Recent Advances in Computational Studies of Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata

    2016-06-01

    Interest in astrophysical sources of charge exchange (CX) has grown since X-ray emission from comet Hyakutake was first observed, the origin of which is primarily due to CX processes between neutral species in the comet’s atmosphere and highly charged ions from the solar wind. More recent observations have shown that CX may have a significant contribution to the X-ray emission spectra of a wide variety of environments within our solar system including solar wind charge exchange (SWCX) with neutral gases in the heliosphere and in planetary atmospheres, as well as beyond the solar system in galaxy clusters, supernova remnants, and star forming galaxies.While the basic process of CX has been studied for many decades, the reliability of the existing data is not uniform, and the coverage of the astrophysically important projectile and target combinations and collisional velocities is insufficient. The need for reliable and robust CX X-ray emission models will only be amplified with the with the high resolution X-ray spectra expected from the soft X-ray imaging calorimeter spectrometer (SXS) onboard the Hitomi X-ray observatory. In this talk, I will discuss recent advances in theoretical CX cross sections and X-ray modeling with a focus on CX diagnostics. The need for experimental X-ray spectra and cross sections for benchmarking current theory will also be highlighted. This work was performed in collaboration with David Lyons, Patrick Mullen, David Schultz, Phillip Stancil, and Robin Shelton. Work at UGA was partially supported by NASA grant NNX09AC46G.

  8. Method for beam hardening correction in quantitative computed X-ray tomography

    NASA Technical Reports Server (NTRS)

    Yan, Chye Hwang (Inventor); Whalen, Robert T. (Inventor); Napel, Sandy (Inventor)

    2001-01-01

    Each voxel is assumed to contain exactly two distinct materials, with the volume fraction of each material being iteratively calculated. According to the method, the spectrum of the X-ray beam must be known, and the attenuation spectra of the materials in the object must be known, and be monotonically decreasing with increasing X-ray photon energy. Then, a volume fraction is estimated for the voxel, and the spectrum is iteratively calculated.

  9. Assessment of different computational models for generation of x-ray spectra in diagnostic radiology and mammography.

    PubMed

    Ay, M R; Sarkar, S; Shahriari, M; Sardari, D; Zaidi, H

    2005-06-01

    Different computational methods based on empirical or semi-empirical models and sophisticated Monte Carlo calculations have been proposed for prediction of x-ray spectra both in diagnostic radiology and mammography. In this work, the x-ray spectra predicted by various computational models used in the diagnostic radiology and mammography energy range have been assessed by comparison with measured spectra and their effect on the calculation of absorbed dose and effective dose (ED) imparted to the adult ORNL hermaphroditic phantom quantified. This includes empirical models (TASMIP and MASMIP), semi-empirical models (X-rayb&m, X-raytbc, XCOMP, IPEM, Tucker et al., and Blough et al.), and Monte Carlo modeling (EGS4, ITS3.0, and MCNP4C). As part of the comparative assessment, the K x-ray yield, transmission curves, and half value layers (HVLs) have been calculated for the spectra generated with all computational models at different tube voltages. The measured x-ray spectra agreed well with the generated spectra when using X-raytbc and IPEM in diagnostic radiology and mammography energy ranges, respectively. Despite the systematic differences between the simulated and reference spectra for some models, the student's t-test statistical analysis showed there is no statistically significant difference between measured and generated spectra for all computational models investigated in this study. The MCNP4C-based Monte Carlo calculations showed there is no discernable discrepancy in the calculation of absorbed dose and ED in the adult ORNL hermaphroditic phantom when using different computational models for generating the x-ray spectra. Nevertheless, given the limited flexibility of the empirical and semi-empirical models, the spectra obtained through Monte Carlo modeling offer several advantages by providing detailed information about the interactions in the target and filters, which is relevant for the design of new target and filter combinations and optimization of

  10. Assessment of different computational models for generation of x-ray spectra in diagnostic radiology and mammography

    SciTech Connect

    Ay, M.R.; Sarkar, S.; Shahriari, M.; Sardari, D.; Zaidi, H.

    2005-06-15

    Different computational methods based on empirical or semi-empirical models and sophisticated Monte Carlo calculations have been proposed for prediction of x-ray spectra both in diagnostic radiology and mammography. In this work, the x-ray spectra predicted by various computational models used in the diagnostic radiology and mammography energy range have been assessed by comparison with measured spectra and their effect on the calculation of absorbed dose and effective dose (ED) imparted to the adult ORNL hermaphroditic phantom quantified. This includes empirical models (TASMIP and MASMIP), semi-empirical models (X-rayb and m, X-raytbc, XCOMP, IPEM, Tucker et al., and Blough et al.), and Monte Carlo modeling (EGS4, ITS3.0, and MCNP4C). As part of the comparative assessment, the K x-ray yield, transmission curves, and half value layers (HVLs) have been calculated for the spectra generated with all computational models at different tube voltages. The measured x-ray spectra agreed well with the generated spectra when using X-raytbc and IPEM in diagnostic radiology and mammography energy ranges, respectively. Despite the systematic differences between the simulated and reference spectra for some models, the student's t-test statistical analysis showed there is no statistically significant difference between measured and generated spectra for all computational models investigated in this study. The MCNP4C-based Monte Carlo calculations showed there is no discernable discrepancy in the calculation of absorbed dose and ED in the adult ORNL hermaphroditic phantom when using different computational models for generating the x-ray spectra. Nevertheless, given the limited flexibility of the empirical and semi-empirical models, the spectra obtained through Monte Carlo modeling offer several advantages by providing detailed information about the interactions in the target and filters, which is relevant for the design of new target and filter combinations and optimization of

  11. Probing the Dynamics of Biomineralization at the Pore Scale Using X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, R. T.; Ajo Franklin, J. B.

    2009-12-01

    Biomineralization is a natural subsurface process that upon stimulation can dramatically affect soil mechanics and hydraulics. This work presents the results of a study where synchrotron based X-Ray Computed Microtomography (CMT) is used to investigate temporal cementation dynamics and the spatial distribution of biogenic CaCO3 at the pore-scale, thus, shedding light on pore clogging and contact cementation. To facilitate these studies we have developed a family of flow-through bioreactors (ID 8 mm) which can be scanned continuously during precipitation experiments. The reactor is also equipped with differential pressure transducers to allow measurement of sample permeability. Porosity permeability correlations, cementation morphology, CaCO3 spatial distribution, and bulk cementation are addressed herein. Sporosarcina pasteurii (formally Bacillus pasteurii), our model organism, is a prevalent aerobic, motile, soil microbe with a very active urease enzyme. Hydrolysis of urea by the urease enzyme generates carbonate ions, ammonium and an increase in pH which favors carbonate precipitation if appropriate metal cations (e.g. Ca2+) are available. Brightfield microscope results show that precipitation occurs within close proximity of the cell membrane reducing microbial motility and forming a CaCO3 precipitate with a "fluffy" appearance. Besides providing an aqueous environment favorable for mineralization S. pasteurii also provides nucleation sites on its cell membrane. Since this microbe is very effective at inducing carbonate precipitation over a relativity short time span (2-3 days), it was used exclusively in our experiments. Prior to CMT imaging the feasibility of temporal imaging was investigated. Viable cell counts taken before and after imaging showed that a considerable amount of bacteria survived the monochromatic (30 KeV) X-ray exposure. Cementation experiments initiated with inoculation of the CMT column with microbes and urea media, cells were allowed to

  12. Particle induced X-ray emission-computed tomography analysis of an adsorbent for extraction chromatography

    NASA Astrophysics Data System (ADS)

    Satoh, Takahiro; Yokoyama, Akihito; Kitamura, Akane; Ohkubo, Takeru; Ishii, Yasuyuki; Takahatake, Yoko; Watanabe, Sou; Koma, Yoshikazu; Kada, Wataru

    2016-03-01

    Nd, which simulates minor actinides (MAs), was used for investigating residual minor actinides produced during the extraction chromatography separation of spent fuel from fast neutron reactors. A cross-sectional distribution of Nd in a minute globular adsorbent having diameter less than 50 μm was obtained using particle induced X-ray emission-computed tomography with a 3-MeV proton microbeam. The measurement area was 150 × 150 μm2 corresponding to 128 × 128 imaging pixels in projection images with 9° resolution, image reconstruction was carried out by a modified ML-EM (maximum likelihood expectation maximization) method. As a result, the cross-sectional distribution of Nd in the adsorbent was successfully obtained, and it was first revealed that Nd existed both in the central region and on the outer surface even after an elution. This implies that the internal structure of the adsorbent must be modified for improving of the recovery of MAs.

  13. Volumetric characterization of human patellar cartilage matrix on phase contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Z.; Nagarajan, Mahesh B.; Checefsky, Walter A.; Coan, Paola; Diemoz, Paul C.; Hobbs, Susan K.; Huber, Markus B.; Wismüller, Axel

    2015-03-01

    Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 +/- 0.06) and homogeneity (AUC = 0.82 +/- 0.07), which significantly outperformed all Minkowski Functionals (p < 0.05). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  14. X-ray and gamma-ray computed tomography for industrial nondestructive testing and evaluation

    NASA Astrophysics Data System (ADS)

    Costello, Ian; Wells, Peter; Davis, John R.; Benci, Nino; Skerrett, David; Davies, D. R.

    1994-03-01

    This paper presents an overview of two recently constructed computed tomography (CT) scanners that have been designed to provide structural information for industrially relevant materials and components. CT enables cross-sectional slices of an object to be nondestructively imaged and represented as a map of linear attenuation coefficient. As linear attenuation is the product of mass attenuation and density, this usually enables a straightforward interpretation of the image in terms of density. The two instruments are a transportable scanner using a 160 kV(peak) powered x-ray tube for the inspection of wooden power poles up to 450 mm in diameter, and an industrial scanning system designed around an Ir-192 gamma-ray source for materials characterization and the testing and evaluation of castings, ceramics, and composites. The images presented in this paper have generally been reconstructed using the summation convolution back-projection (SCBP) method, and this technique is outlined. Direct Fourier reconstruction is also used and compared with the SCBP method. A brief discussion is offered on incorporating edge detection methods into the image reconstruction process for the improved identification of defects such as cracks and voids.

  15. Imaging of sand production in horizontal packs by x-ray computed tomography

    SciTech Connect

    Tremblay, B.; Sedgwick, G.; Forshner, K.

    1995-12-31

    Production rates for wells in the Cold Lake area of Alberta that are on {open_quotes}coldflow{close_quotes} production can be much higher than expected from estimates based on radial Darcy flow. Coldflow production here refers to a recovery process used in unconsolidated heavy oil reservoirs in which sand and oil are produced together under primary conditions. A laboratory experiment was designed to model sand production into a perforation in a vertical well drilled into the heavy oil formation. In this experiment, heavy oil (21,500 cP) flowed through a horizontal sand pack and into an orifice simulating a perforation. The flowing oil induced the co-production of sand from the pack when the pressure gradient at the orifice reached 33 Mpa/cm. The sand pack was scanned using X-ray computed tomography (CT). The CT images revealed that a high permeability circular channel (wormhole) had formed in the pack while sand was being produced. The wormhole followed the regions within the sand pack where the porosity was higher and consequently the compressive strength was lower. The porosity within the wormhole was much higher (55%) than the porosity within the undisturbed sand pack (32 %). No significant fines migration was observed before sand production occurred. The particle size distribution of the produced sand was the same as that remaining within the wormhole.

  16. Using X-ray computed tomography in pore structure characterization for a Berea sandstone: Resolution effect

    NASA Astrophysics Data System (ADS)

    Peng, Sheng; Hu, Qinhong; Dultz, Stefan; Zhang, Ming

    2012-11-01

    SummaryX-ray computed tomography (XCT) is a powerful tool for detecting the micro-scale pore structure and has been applied to many natural and synthetic porous media. However, due to the resolution limitations, either non-representative view of the sample or inaccurate results can be produced from the XCT image processing. In this paper, two XCT (micro-CT and CT with synchrotron radiation) with different resolutions of 12.7 μm and 0.35 μm, as well as mercury intrusion porosimetry (MIP) with a minimum detection limit of 3 nm, were used for Berea sandstone to investigate the effect of detecting resolution on the pore structure. Several key pore structure parameters, including porosity, pore size distribution, pore connectivity, surface area, hydraulic radius, and aspect ratio were analyzed in a manner of quantitative comparison between different resolutions of XCT and MIP. The low resolution XCT can capture the large-pore porosity, while overestimates the pore size and pore connectivity. The high resolution XCT is more accurate in describing the pore shape, porosity, pore size; however, it is not representative since narrower detecting pore size range and small volume represented. A representative element volume related to large-pore porosity and probably large-pore connectivity with diameter and height of 2.8 mm is obtained through scale effect analysis. Therefore, selecting an appropriate resolution should be a compromise between the pore size and the representative element volume for the specific property or process of interest.

  17. Validation of x-ray microfocus computed tomography as an imaging tool for porous structures

    SciTech Connect

    Kerckhofs, G.; Schrooten, J.; Lomov, S. V.; Wevers, M.; Cleynenbreugel, T. van

    2008-01-15

    X-ray microfocus computed tomography (micro-CT) is recently put forward to qualitatively and quantitatively characterize the internal structure of porous materials. However, it is known that artifacts such as the partial volume effect are inherently present in micro-CT images, thus resulting in a visualization error with respect to reality. This study proposes a validation protocol that in the future can be used to quantify this error for porous structures in general by matching micro-CT tomograms to microscopic sections. One of the innovations of the protocol is the opportunity to reconstruct an interpolated micro-CT image under the same angle as the physical cutting angle of the microscopic sections. Also, a novel thresholding method is developed based on matching micro-CT and microscopic images. In this study, titanium porous structures are assessed as proof of principle. It is concluded for these structures that micro-CT visualizes 89% of the total amount of voxels (solid and pore) correctly. However, 8% represents an overestimation of the real structure and 3% are real structural features not visualized by micro-CT. When exclusively focusing on the solid fraction in both the micro-CT and microscopic images, only an overestimation of about 5% is found.

  18. Visualisation and quantification of water in bulk and rhizosphere soils using X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Tracy, Saoirse; Daly, Keith; Crout, Neil; Bennett, Malcolm; Pridmore, Tony; Foulkes, John; Roose, Tiina; Mooney, Sacha

    2015-04-01

    Understanding how water is distributed in soil and how it changes during the redistribution process or from root uptake is crucial for enhancing our understanding for managing soil and water resources. The application of X-ray Computed Tomography (CT) to soil science research is now well established; however few studies have utilised the technique for visualising water in pore spaces due to several inherent difficulties. Here we present a new method to visualise the water content of a soil in situ and in three-dimensions at successive drying matric potentials. A water release curve was obtained for different soil types using measurements from their real pore geometries. The water, soil, air and root phases from the images were segmented using image analysis techniques and quantified. These measurements allowed us to characterise pore size, shape and connectivity for both air filled pores and water. The non-destructive technique enabled water to be visualised in situ and repeated scanning allowed wetting patterns to be analysed. The experimental results were validated against conventional laboratory derived water release curves and specifically developed mechanistic models of soil-water-root interactions. Micro-scale revelations of the water-soil-root interfaces enabled us to make macro-scale predictions on water movement in soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models.

  19. Data fusion in X-ray computed tomography using a superiorization approach

    SciTech Connect

    Schrapp, Michael J.; Herman, Gabor T.

    2014-05-15

    X-ray computed tomography (CT) is an important and widespread inspection technique in industrial non-destructive testing. However, large-sized and heavily absorbing objects cause artifacts due to either the lack of penetration of the specimen in specific directions or by having data from only a limited angular range of views. In such cases, valuable information about the specimen is not revealed by the CT measurements alone. Further imaging modalities, such as optical scanning and ultrasonic testing, are able to provide data (such as an edge map) that are complementary to the CT acquisition. In this paper, a superiorization approach (a newly developed method for constrained optimization) is used to incorporate the complementary data into the CT reconstruction; this allows precise localization of edges that are not resolvable from the CT data by itself. Superiorization, as presented in this paper, exploits the fact that the simultaneous algebraic reconstruction technique (SART), often used for CT reconstruction, is resilient to perturbations; i.e., it can be modified to produce an output that is as consistent with the CT measurements as the output of unmodified SART, but is more consistent with the complementary data. The application of this superiorized SART method to measured data of a turbine blade demonstrates a clear improvement in the quality of the reconstructed image.

  20. Multicontrast x-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping

    SciTech Connect

    Bevins, Nicholas; Zambelli, Joseph; Li Ke; Qi Zhihua; Chen Guanghong

    2012-01-15

    Purpose: The purpose of this work is to demonstrate that multicontrast computed tomography (CT) imaging can be performed using a Talbot-Lau interferometer without phase stepping, thus allowing for an acquisition scheme like that used for standard absorption CT. Methods: Rather than using phase stepping to extract refraction, small-angle scattering (SAS), and absorption signals, the two gratings of a Talbot-Lau interferometer were rotated slightly to generate a moire pattern on the detector. A Fourier analysis of the moire pattern was performed to obtain separate projection images of each of the three contrast signals, all from the same single-shot of x-ray exposure. After the signals were extracted from the detector data for all view angles, image reconstruction was performed to obtain absorption, refraction, and SAS CT images. A physical phantom was scanned to validate the proposed data acquisition method. The results were compared with a phantom scan using the standard phase stepping approach. Results: The reconstruction of each contrast mechanism produced the expected results. Signal levels and contrasts match those obtained using the phase stepping technique. Conclusions: Absorption, refraction, and SAS CT imaging can be achieved using the Talbot-Lau interferometer without the additional overhead of long scan time and phase stepping.

  1. Monitoring of stainless-steel slag carbonation using X-ray computed microtomography.

    PubMed

    Boone, Marijn A; Nielsen, Peter; De Kock, Tim; Boone, Matthieu N; Quaghebeur, Mieke; Cnudde, Veerle

    2014-01-01

    Steel production is one of the largest contributors to industrial CO2 emissions. This industry also generates large amounts of solid byproducts, such as slag and sludge. In this study, fine grained stainless-steel slag (SSS) is valorized to produce compacts with high compressive strength without the use of a hydraulic binder. This carbonation process is investigated on a pore-scale level to identify how the mineral phases in the SSS react with CO2, where carbonates are formed, and what the impact of these changes is on the pore network of the carbonated SSS compact. In addition to conventional research techniques, high-resolution X-ray computed tomography (HRXCT) is applied to visualize and quantify the changes in situ during the carbonation process. The results show that carbonates mainly precipitate at grain contacts and in capillary pores and this precipitation has little effect on the connectivity of the pore space. This paper also demonstrates the use of a custom-designed polymer reaction cell that allows in situ HRXCT analysis of the carbonation process. This shows the distribution and influence of water and CO2 in the pore network on the carbonate precipitation and, thus, the influence on the compressive strength development of the waste material. PMID:24392942

  2. An X-ray Computed Tomography/Positron Emission Tomography System Designed Specifically for Breast Imaging

    PubMed Central

    Boone, John M.; Yang, Kai; Burkett, George W.; Packard, Nathan J.; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D.; Lindfors, Karen K.

    2011-01-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging. PMID:20082528

  3. Data fusion in X-ray computed tomography using a superiorization approach

    NASA Astrophysics Data System (ADS)

    Schrapp, Michael J.; Herman, Gabor T.

    2014-05-01

    X-ray computed tomography (CT) is an important and widespread inspection technique in industrial non-destructive testing. However, large-sized and heavily absorbing objects cause artifacts due to either the lack of penetration of the specimen in specific directions or by having data from only a limited angular range of views. In such cases, valuable information about the specimen is not revealed by the CT measurements alone. Further imaging modalities, such as optical scanning and ultrasonic testing, are able to provide data (such as an edge map) that are complementary to the CT acquisition. In this paper, a superiorization approach (a newly developed method for constrained optimization) is used to incorporate the complementary data into the CT reconstruction; this allows precise localization of edges that are not resolvable from the CT data by itself. Superiorization, as presented in this paper, exploits the fact that the simultaneous algebraic reconstruction technique (SART), often used for CT reconstruction, is resilient to perturbations; i.e., it can be modified to produce an output that is as consistent with the CT measurements as the output of unmodified SART, but is more consistent with the complementary data. The application of this superiorized SART method to measured data of a turbine blade demonstrates a clear improvement in the quality of the reconstructed image.

  4. Helical X-ray phase-contrast computed tomography without phase stepping.

    PubMed

    Marschner, M; Willner, M; Potdevin, G; Fehringer, A; Noël, P B; Pfeiffer, F; Herzen, J

    2016-01-01

    X-ray phase-contrast computed tomography (PCCT) using grating interferometry provides enhanced soft-tissue contrast. The possibility to use standard polychromatic laboratory sources enables an implementation into a clinical setting. Thus, PCCT has gained significant attention in recent years. However, phase-contrast CT scans still require significantly increased measurement times in comparison to conventional attenuation-based CT imaging. This is mainly due to a time-consuming stepping of a grating, which is necessary for an accurate retrieval of the phase information. In this paper, we demonstrate a novel scan technique, which directly allows the determination of the phase signal without a phase-stepping procedure. The presented work is based on moiré fringe scanning, which allows fast data acquisition in radiographic applications such as mammography or in-line product analysis. Here, we demonstrate its extension to tomography enabling a continuous helical sample rotation as routinely performed in clinical CT systems. Compared to standard phase-stepping techniques, the proposed helical fringe-scanning procedure enables faster measurements, an extended field of view and relaxes the stability requirements of the system, since the gratings remain stationary. Finally, our approach exceeds previously introduced methods by not relying on spatial interpolation to acquire the phase-contrast signal. PMID:27052368

  5. Quantitative assessment of myocardial perfusion using dynamic three-dimensional x-ray computed angiography

    SciTech Connect

    Teslow, T.N.

    1985-01-01

    Using computed tomogram time series, myocardial perfusion was angiographically measured as distributions of x-ray circulatory indicators in three dimensions. By separating the dynamic function from the cardiac structure, these separate components were tested using region-of-interest (ROI) mensuration in simulation, phantom, and in vivo experiments. Statistical criteria were used to evaluate the dynamic component which was represented by analytic mathematical models of indicator dilution. The spatial component was represented by three-dimensional (3-D) and two-dimensional (2-D) geometric models of the heart. Each of these components were determined in individual ROI's and globally integrated to manifest the perfusion heterogeneities. A physical heart phantom with controllable regional perfusion characteristics was also developed and studied. Experiments conducted on dogs compared the accuracy of 2-D and 3-D perfusion measurements by imaging to those using gamma-radioactive microspheres. Accurate reproducible localization of the heart was found to be important for obtaining accurate measures of regional perfusion in 3-D volume images exhibiting high noise.

  6. First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography

    SciTech Connect

    Bernard, Dominique . E-mail: bernard@icmcb.u-bordeaux.fr; Gendron, Damien; Heintz, Jean-Marc; Bordere, Sylvie; Etourneau, Jean

    2005-01-03

    X-ray computed microtomography (XCMT) has been applied to ceramic samples of different materials to visualise, for the first time at this scale, real 3D microstructural evolutions during sintering. Using this technique, it has been possible to follow the whole sintering process of the same grains set. Two materials have been studied; a glass powder heat treated at 700 deg. C and a crystallised lithium borate (Li{sub 6}Gd(BO{sub 3}){sub 3}) powder heat treated at 720 deg. C. XCMT measurements have been done after different sintering times. For each material, a sub-volume was individualised and localised on the successive recordings and its 3D images numerically reconstructed. Description of the three-dimensional microstructures evolution is proposed. From the 3D experimental data, quantitative evolutions of parameters such as porosity and neck size are presented for the glass sample. Possibilities offered by this technique to study complex sintering processes, as for lithium borate, are illustrated.

  7. Use of High-resolution X-ray Computed Tomography for Unsaturated Fine Granular Materials

    NASA Astrophysics Data System (ADS)

    Willson, C. S.; Lu, N.

    2009-05-01

    While many unsaturated soil mechanics principles are based on fundamental concepts and theories, often one or more simplifying assumptions have to be made due to the lack of pore-level details of one or more of the following: granular material packing; pore size/shape distribution, pore network structure; and fluid distribution. Recent advances in high-resolution X-ray computed tomography now allow for non-invasive imaging of porous media systems under a variety of conditions. This technique provides micron-scale images that, when combined with quantitative analysis programs, provide details that allow for the advancement of the principles that govern unsaturated systems. In this work, a series of sand columns at varying degrees of water saturation were imaged at the Advanced Photon Source GSECARS 13-BMD tomography beamline. Once the three phases (sand, water, and air) were segmented, a suite of image analysis programs was used to determine the grain characteristics and packing structure; pore size distribution, pore network structure; and fluid phase characteristics, distribution and correlation to the pore network structure. Here, we will present the results of this analysis and provide some examples of how this level of detail allow for advancements in our ability to measure, understand and model unsaturated fine granular materials.

  8. Permeability, anisotropy and tortuosity measurements of pumices using X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Degruyter, W.; Bachmann, O.; Burgisser, A.; Malaspinas, O.; Cnudde, V.; Masschaele, B.

    2007-12-01

    X-ray computed microtomography (μCT) has become a widely-applied technique to obtain density maps of heterogeneous media; it allows gathering non-destructively qualitative observations as well as quantitative information on the 3D geometries of multi-phase samples. In this study, we obtained 3D images of different pumice types found in the rhyolitic Kos Plateau Tuff (KPT) deposits (160 ky, South Aegean Arc, Greece), and combined anisotropy and (geometrical) tortuosity measurements of these scans with permeability data to gain insights into the development of pathways through magmatic foam and how it affects syn-eruptive degassing. The rhyolitic KPT pumices are particularly prone to textural analysis because (1) the deposits are non-welded, (2) the high viscosity of the magma helped preserving information on the state of the magmatic foam in the conduit immediately prior to fragmentation (i.e., disruption of magma into pyroclastic fragments) and (3) pumices display variable macroscopic textures including tubular and near-spherical networks of bubbles. The stacks of grey-scale μCT images were cropped and segmented to obtain 3D binary volumes. These volumes were submitted to anisotropy and tortuosity measurements using existing softwares. Results suggest a significantly more convoluted path through the spherical bubble networks than the tubular bubble networks. To complement this geometrical characterisation of pumices, permeability values on the same binary volumes will be acquired using two numerical codes (one is based on a Finite Difference scheme, the other using the Lattice Boltzmann technique).

  9. Helical X-ray phase-contrast computed tomography without phase stepping

    NASA Astrophysics Data System (ADS)

    Marschner, M.; Willner, M.; Potdevin, G.; Fehringer, A.; Noël, P. B.; Pfeiffer, F.; Herzen, J.

    2016-04-01

    X-ray phase-contrast computed tomography (PCCT) using grating interferometry provides enhanced soft-tissue contrast. The possibility to use standard polychromatic laboratory sources enables an implementation into a clinical setting. Thus, PCCT has gained significant attention in recent years. However, phase-contrast CT scans still require significantly increased measurement times in comparison to conventional attenuation-based CT imaging. This is mainly due to a time-consuming stepping of a grating, which is necessary for an accurate retrieval of the phase information. In this paper, we demonstrate a novel scan technique, which directly allows the determination of the phase signal without a phase-stepping procedure. The presented work is based on moiré fringe scanning, which allows fast data acquisition in radiographic applications such as mammography or in-line product analysis. Here, we demonstrate its extension to tomography enabling a continuous helical sample rotation as routinely performed in clinical CT systems. Compared to standard phase-stepping techniques, the proposed helical fringe-scanning procedure enables faster measurements, an extended field of view and relaxes the stability requirements of the system, since the gratings remain stationary. Finally, our approach exceeds previously introduced methods by not relying on spatial interpolation to acquire the phase-contrast signal.

  10. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. I.

    PubMed

    Kohn, V G; Khikhlukha, D R

    2016-05-01

    This paper reports computer simulations of the transmitted-beam intensity distribution for the case of six-beam (000, 220, 242, 044, -224, -202) diffraction of X-rays in a perfect silicon crystal of thickness 1 mm. Both the plane-wave angular dependence and the six-beam section topographs, which are usually obtained in experiments with a restricted beam (two-dimensional slit), are calculated. The angular dependence is calculated in accordance with Ewald's theory. The section topographs are calculated from the angular dependence by means of the fast Fourier transformation procedure. This approach allows one to consider, for the first time, the transformation of the topograph's structure due to the two-dimensional slit sizes and the distance between the slit and the detector. The results are in good agreement with the results of other works and with the experimental data. This method of calculation does not require a supercomputer and it was performed on a standard laptop. A detailed explanation of the main features of the diffraction patterns at different distances between the slit and the detector is presented. PMID:27126111

  11. Rapid terrestrial core formation from in situ X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Chen, B.; Zhang, D.; Leng, W.; Jackson, J. M.; Wang, Y.; Yu, T.; Liu, J.; Li, J.

    2011-12-01

    The timescale of the terrestrial core formation constrained from the hafnium-tungsten chronometer is within 30 million years after the Solar System formation (e.g. Kleine et al., 2002; Yin et al., 2002). Possible mechanisms for core formation include diapiric instability of iron-rich liquids and percolation of the liquids through the solid silicate matrix. Core-mantle segregation by diapiric instabilities is thought to be a more rapid and efficient core formation process compared with percolation (Stevenson, 1981; Rubie et al., 2007; Golabek et al., 2008). Our experimental results from in situ X-ray computed microtomography show that at 1-1.5 GPa the iron-sulfur and iron-carbon liquids sank through the underlying olivine layer at a speed consistent with the measured core formation timescale. Our three-dimensional tomography data taken at various heating stages revealed that the iron-rich liquid diapirs in olivine induced percolative flow channeling processes, which affects the rheology of olivine and thus facilitates the sinking of iron-rich diapirs. Numerical simulations of diapir sinking based on the tomography observations suggest that the percolative flow channeling process accompanying the iron diapirs could significantly reduce the time for core formation segregation by a factor of 2 or more, depending on the viscosity reduction ratio caused by the percolative flow. Our study sheds new light on core formation processes in the Earth and terrestrial-like planetary bodies, contributing to our understanding of the origin and dynamics of planetary cores.

  12. Determination of Poisson Ratio of Bovine Extraocular Muscle by Computed X-Ray Tomography

    PubMed Central

    Kim, Hansang; Yoo, Lawrence; Shin, Andrew; Demer, Joseph L.

    2013-01-01

    The Poisson ratio (PR) is a fundamental mechanical parameter that approximates the ratio of relative change in cross sectional area to tensile elongation. However, the PR of extraocular muscle (EOM) is almost never measured because of experimental constraints. The problem was overcome by determining changes in EOM dimensions using computed X-ray tomography (CT) at microscopic resolution during tensile elongation to determine transverse strain indicated by the change in cross-section. Fresh bovine EOM specimens were prepared. Specimens were clamped in a tensile fixture within a CT scanner (SkyScan, Belgium) with temperature and humidity control and stretched up to 35% of initial length. Sets of 500–800 contiguous CT images were obtained at 10-micron resolution before and after tensile loading. Digital 3D models were then built and discretized into 6–8-micron-thick elements. Changes in longitudinal thickness of each microscopic element were determined to calculate strain. Green's theorem was used to calculate areal strain in transverse directions orthogonal to the stretching direction. The mean PR from discretized 3D models for every microscopic element in 14 EOM specimens averaged 0.457 ± 0.004 (SD). The measured PR of bovine EOM is thus near the limit of incompressibility. PMID:23484091

  13. EVALUATION OF BALLISTIC DAMAGE IN AN ENCAPSULATED CERAMIC PANEL VIA X-RAY COMPUTED TOMOGRAPHY

    SciTech Connect

    Green, W. H.; Carter, R. H.

    2009-03-03

    X-ray computed tomography (XCT) is an important non-destructive evaluation technique for revealing the spatial distribution of ballistically-induced damage in ceramics. The level of detection and resolution of damage depends on the size of the sample and the parameters of the XCT approach (e.g., focal spot size, magnification, etc.). Previous and ongoing work in this area includes assessment of ballistically induced damage in both individual ceramic targets and ceramic armor panels. Ballistic damage in an encapsulated ceramic armor panel with a metal backing has been scanned and extensively evaluated using XCT 2-D and 3-D analysis. The purpose of using XCT evaluation in this study was to better characterize and understand all of the detectable damage. This information can be used to correlate damage features and types with the physical processes of damage initiation and growth. XCT scans and analyses of damage in the panel will be shown and discussed. This will include virtual 3-D solid visualizations and some quantitative analysis of damage features.

  14. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    SciTech Connect

    Kuhl, D.E.

    1981-03-03

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings are inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma. Future improvement in radionuclide imaging by means of emission composition potential. The compound plating approacl threshold for all the investigated transistors and fast neutron spectra lies within the raal. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers.

  15. Helical X-ray phase-contrast computed tomography without phase stepping

    PubMed Central

    Marschner, M.; Willner, M.; Potdevin, G.; Fehringer, A.; Noël, P. B.; Pfeiffer, F.; Herzen, J.

    2016-01-01

    X-ray phase-contrast computed tomography (PCCT) using grating interferometry provides enhanced soft-tissue contrast. The possibility to use standard polychromatic laboratory sources enables an implementation into a clinical setting. Thus, PCCT has gained significant attention in recent years. However, phase-contrast CT scans still require significantly increased measurement times in comparison to conventional attenuation-based CT imaging. This is mainly due to a time-consuming stepping of a grating, which is necessary for an accurate retrieval of the phase information. In this paper, we demonstrate a novel scan technique, which directly allows the determination of the phase signal without a phase-stepping procedure. The presented work is based on moiré fringe scanning, which allows fast data acquisition in radiographic applications such as mammography or in-line product analysis. Here, we demonstrate its extension to tomography enabling a continuous helical sample rotation as routinely performed in clinical CT systems. Compared to standard phase-stepping techniques, the proposed helical fringe-scanning procedure enables faster measurements, an extended field of view and relaxes the stability requirements of the system, since the gratings remain stationary. Finally, our approach exceeds previously introduced methods by not relying on spatial interpolation to acquire the phase-contrast signal. PMID:27052368

  16. Segmentation of anatomical structures in x-ray computed tomography images using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Valentino, Daniel J.

    2002-05-01

    Hierarchies of artificial neural networks(ANN's) were trained to segment regularly-shaped and constantly-located anatomical structures in x-ray computed tomography (CT) images. These neural networks learned to associate a point in an image with the anatomical structure containing the point using the image pixel intensity values located in a pattern around the point. The single layer ANN and the bilayer and multi-layer hierarchies of neural networks were developed and evaluated. The hierarchical Artificial Neural Networks(HANN's) consisted of a high-level ANN that identified large-scale anatomical structures (e.g., the head or chest), whose result was passed to a group of neural networks that identified smaller structures (e.g., the brain, sinus, soft tissue, skull, bone, or lung) within the large-scale structures. The ANN's were trained to segment and classify images based on different numbers of training images, numbers of sampling points per image, pixel intensity sampling patterns, hidden layer configuration. The experimental results indicate that multi-layer hierarchy of ANN's trained with data collected from multiple image series accurately classified anatomical structures in unknown chest and head CT images.

  17. Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems

    SciTech Connect

    Kumar, S.B.; Dudukovic, M.

    1998-01-01

    In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  18. X-ray computed tomography imaging: A not-so-nondestructive technique

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.; Sears, Hazel; Ebel, Denton S.; Wallace, Sean; Friedrich, Jon M.

    2016-04-01

    X-ray computed tomography has become a popular means for examining the interiors of meteorites and has been advocated for routine curation and for the examination of samples returned by missions. Here, we report the results of a blind test that indicate that CT imaging deposits a considerable radiation dose in a meteorite and seriously compromises its natural radiation record. Ten vials of the Bruderheim L6 chondrite were placed in CT imager and exposed to radiation levels typical for meteorite studies. Half were retained as controls. Their thermoluminescence (TL) properties were then measured in a blind test. Five of the samples had TL data unaltered from their original (~10 cps) while five had very strong signals (~20,000 cps). It was therefore very clear which samples had been in the CT scanner. For comparison, the natural TL signal from Antarctic meteorites is ~5000-50,000 cps. Using the methods developed for Antarctic meteorites, the apparent dose absorbed by the five test samples was calculated to be 83 ± 5 krad, comparable with the highest doses observed in Antarctic meteorites and freshly fallen meteorites. While these results do not preclude the use of CT scanners when scientifically justified, it should be remembered that the record of radiation exposure to ionizing radiations for the sample will be destroyed and that TL, or the related optically stimulated luminescence, are the primary modern techniques for radiation dosimetry. This is particularly important with irreplaceable samples, such as meteorite main masses, returned samples, and samples destined for archive.

  19. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture.

    PubMed

    Rogers, Eric D; Monaenkova, Daria; Mijar, Medhavinee; Nori, Apoorva; Goldman, Daniel I; Benfey, Philip N

    2016-07-01

    Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. PMID:27208237

  20. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  1. A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS

    PubMed Central

    Kanitpanyacharoen, Waruntorn; Parkinson, Dilworth Y.; De Carlo, Francesco; Marone, Federica; Stampanoni, Marco; Mokso, Rajmund; MacDowell, Alastair; Wenk, Hans-Rudolf

    2013-01-01

    Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-robin project were to (i) characterize microstructures and porosity on the micrometer scale, (ii) compare results measured at three synchrotron facilities, and (iii) identify optimal experimental conditions of high-resolution SRXTM for fine-grained materials. SRXTM data of these shales were acquired under similar conditions at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory, USA, the Advanced Photon Source (APS) of Argonne National Laboratory, USA, and the Swiss Light Source (SLS) of the Paul Scherrer Institut, Switzerland. The data reconstruction of all datasets was handled under the same procedures in order to compare the data quality and determine phase proportions and microstructures. With a 10× objective lens the spatial resolution is approximately 2 µm. The sharpness of phase boundaries in the reconstructed data collected from the APS and SLS was comparable and slightly more refined than in the data obtained from the ALS. Important internal features, such as pyrite (high-absorbing), and low-density features, including pores, fractures and organic matter or kerogen (low-absorbing), were adequately segmented on the same basis. The average volume fractions of low-density features for sample N1 and B1 were estimated at 6.3 (6)% and 4.5 (4)%, while those of pyrite were calculated to be 5.6 (6)% and 2.0 (3)%, respectively. The discrepancy of data quality and volume fractions were mainly due to different types of optical instruments and

  2. A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS.

    PubMed

    Kanitpanyacharoen, Waruntorn; Parkinson, Dilworth Y; De Carlo, Francesco; Marone, Federica; Stampanoni, Marco; Mokso, Rajmund; MacDowell, Alastair; Wenk, Hans Rudolf

    2013-01-01

    Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-robin project were to (i) characterize microstructures and porosity on the micrometer scale, (ii) compare results measured at three synchrotron facilities, and (iii) identify optimal experimental conditions of high-resolution SRXTM for fine-grained materials. SRXTM data of these shales were acquired under similar conditions at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory, USA, the Advanced Photon Source (APS) of Argonne National Laboratory, USA, and the Swiss Light Source (SLS) of the Paul Scherrer Institut, Switzerland. The data reconstruction of all datasets was handled under the same procedures in order to compare the data quality and determine phase proportions and microstructures. With a 10× objective lens the spatial resolution is approximately 2 µm. The sharpness of phase boundaries in the reconstructed data collected from the APS and SLS was comparable and slightly more refined than in the data obtained from the ALS. Important internal features, such as pyrite (high-absorbing), and low-density features, including pores, fractures and organic matter or kerogen (low-absorbing), were adequately segmented on the same basis. The average volume fractions of low-density features for sample N1 and B1 were estimated at 6.3 (6)% and 4.5 (4)%, while those of pyrite were calculated to be 5.6 (6)% and 2.0 (3)%, respectively. The discrepancy of data quality and volume fractions were mainly due to different types of optical instruments and

  3. A reference sample for investigating the stability of the imaging system of x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Sun, Wenjuan; Brown, Stephen; Flay, Nadia; McCarthy, Michael; McBride, John

    2016-08-01

    The use of x-ray computed tomography for dimensional measurements associated with engineering applications has flourished in recent years. However, error sources associated with the technology are not well understood. In this paper, a novel two-sphere reference sample has been developed and used to investigate the stability of the imaging system that consists of an x-ray tube and a detector. In contrast with other research work reported, this work considered relative positional variation along the x-, y- and z-axes. This sample is a significant improvement over the one sphere sample proposed previously, which can only be used to observe the stability of the imaging system along x- and y-axes. Temperature variations of different parts of the system have been monitored and the relationship between temperature variations and x-ray image stability has been studied. Other effects that may also influence the stability of the imaging system have been discussed. The proposed reference sample and testing method are transferable to other types of x-ray computed tomography systems, for example, systems with transmission targets and systems with sub-micrometre focal spots.

  4. Experimental spectral measurements of heavy K-edge filtered beams for x-ray computed mammotomography

    PubMed Central

    Crotty, D J; McKinley, R L; Tornai, M P

    2012-01-01

    A dual modality computed mammotomography (CmT) and single photon emission computed tomography (SPECT) system for dedicated 3D breast imaging is in development. Using heavy K-edge filtration, the CmT component narrows the energy spectrum of the cone-shaped x-ray beam incident on the patient’s pendant, uncompressed breast. This quasi-monochromatic beam is expected to improve discrimination of tissue with similar attenuation coefficients while restraining absorbed dose to below that of dual view mammography. Previous simulation studies showed the optimal energy that maximizes dose efficiency for a 50/50% adipose/glandular breast is between 30 and 40 keV. This study experimentally validates these results using pre-breast and post-breast spectral measurements made under tungsten tube voltages between 40 and 100 kVp using filter materials with K-edge values ranging from 15 to 70 keV. Different filter material thicknesses are used, approximately equivalent to the 200th and 500th attenuating value layer (VL) thickness. Cerium (K = 40.4 keV) filtered post-breast spectra for 8–18 cm breasts are measured for a range of breast compositions. Figures of merit include mean beam energy, spectral full-width at tenth-maximum, beam hardening and dose for the range of breast sizes. Measurements corroborate simulation results, indicating that for a given dose, a 200th VL of cerium filtration may have optimal performance in the dedicated mammotomography paradigm. PMID:17228108

  5. Computer-Controlled Cylindrical Polishing Process for Large X-Ray Mirror Mandrels

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    We are developing high-energy grazing incidence shell optics for hard-x-ray telescopes. The resolution of a mirror shells depends on the quality of cylindrical mandrel from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation software is developed to model the residual surface figure errors of a mandrel due to the polishing process parameters and the tools used, as well as to compute the optical performance of the optics. The study carried out using the developed software was focused on establishing a relationship between the polishing process parameters and the mid-spatial-frequency error generation. The process parameters modeled are the speeds of the lap and the mandrel, the tool s influence function, the contour path (dwell) of the tools, their shape and the distribution of the tools on the polishing lap. Using the inputs from the mathematical model, a mandrel having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. The preliminary results of a series of polishing experiments demonstrate a qualitative agreement with the developed model. We report our first experimental results and discuss plans for further improvements in the polishing process. The ability to simulate the polishing process is critical to optimize the polishing process, improve the mandrel quality and significantly reduce the cost of mandrel production

  6. Nanoimaging cells using soft X-ray tomography.

    PubMed

    Parkinson, Dilworth Y; Epperly, Lindsay R; McDermott, Gerry; Le Gros, Mark A; Boudreau, Rosanne M; Larabell, Carolyn A

    2013-01-01

    Soft X-ray microscopy is ideally suited to visualizing and quantifying biological cells. Specimens, including eukaryotic cells, are imaged intact, unstained and fully hydrated, and therefore visualized in a near-native state. The contrast in soft X-ray microscopy is generated by the differential attenuation of X-rays by the molecules in the specimen-water is relatively transmissive to this type of illumination compared to carbon and nitrogen. The attenuation of X-rays by the specimen follows the Beer-Lambert law, and therefore both linear and a quantitative measure of thickness and chemical species present at each point in the cell. In this chapter, we will describe the procedures and computational methods that lead to 50 nm (or better) tomographic reconstructions of cells using soft X-ray microscope data, and the subsequent segmentation and analysis of these volumetric reconstructions. In addition to being a high-fidelity imaging modality, soft X-ray tomography is relatively high-throughput; a complete tomographic data set can be collected in a matter of minutes. This new modality is being applied to imaging cells that range from small prokaryotes to stem cells obtained from mammalian tissues. PMID:23086890

  7. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube

    SciTech Connect

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-10-15

    Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO{sub 4} scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1 x 2 mm{sup 2} using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.

  8. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    SciTech Connect

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    significant amount of glassy material interspersed among the gas bubbles will be excluded, thus underestimating the melt rate. Likewise, if they are drawn too high, many large voids will be counted as glass, thus overestimating the melt rate. As will be shown later in this report, there is also no guarantee that a given distribution of glass and gas bubbles along a particular sectioned plane will always be representative of the entire sample volume. Poor reproducibility seen in some LMR data may be related to these difficulties of the visual method. In addition, further improvement of the existing melt rate model requires that the overall impact of feed chemistry on melt rate be reflected on measured data at a greater quantitative resolution on a more consistent basis than the visual method can provide. An alternate method being pursued is X-ray computed tomography (CT). It involves X-ray scanning of glass samples, performing CT on the 2-D X-ray images to build 3-D volumetric data, and adaptive segmentation analysis of CT results to not only identify but quantify the distinct regions within each sample based on material density and morphologies. The main advantage of this new method is that it can determine the relative local density of the material remaining in the beaker after the heat treatment regardless of its morphological conditions by selectively excluding all the voids greater than a given volumetric pixel (voxel) size, thus eliminating much of the subjectivity involved in the visual method. As a result, the melt rate data obtained from CT scan will give quantitative descriptions not only on the fully-melted glass, but partially-melted and unmelted feed materials. Therefore, the CT data are presumed to be more reflective of the actual melt rate trends in continuously-fed melters than the visual data. In order to test the applicability of X-ray CT scan to the HLW glass melt rate study, several new series of HLW simulant/frit mixtures were melted in the Melt Rate

  9. A computed tomographic study of schizophrenia.

    PubMed

    Siddharatha; Lal, N; Tewari, S C; Dalal, P K; Kohli, N; Srivastava, S

    1997-04-01

    Fifty schizophrenic patients fulfilling DSM-III-R criteria, and group matched normal healthy controls were selected for the study The case and control groups have been compared in terms of VBR, WSF and WTF. In the study schizophrenics have been divided into positive, negative and mixed subgroups on basis of SAPS and SANS, and these subgroups are compared with each other for VBR, WSF & WTF. Tomographic abnormalities were noted in schizophrenics, particularly with negative and mixed subtypes, when compared to controls. PMID:21584057

  10. X-ray phase computed tomography for nanoparticulated imaging probes and therapeutics: preliminary feasibility study

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2011-03-01

    With the scientific progress in cancer biology, pharmacology and biomedical engineering, the nano-biotechnology based imaging probes and therapeutical agents (namely probes/agents) - a form of theranostics - are among the strategic solutions bearing the hope for the cure of cancer. The key feature distinguishing the nanoparticulated probes/agents from their conventional counterparts is their targeting capability. A large surface-to-volume ratio in nanoparticulated probes/agents enables the accommodation of multiple targeting, imaging and therapeutic components to cope with the intra- and inter-tumor heterogeneity. Most nanoparticulated probes/agents are synthesized with low atomic number materials and thus their x-ray attenuation are very similar to biological tissues. However, their microscopic structures are very different, which may result in significant differences in their refractive properties. Recently, the investigation in the x-ray grating-based differential phase contrast (DPC) CT has demonstrated its advantages in differentiating low-atomic materials over the conventional attenuation-based CT. We believe that a synergy of x-ray grating-based DPC CT and nanoparticulated imaging probes and therapeutic agents may play a significant role in extensive preclinical and clinical applications, or even become a modality for molecular imaging. Hence, we propose to image the refractive property of nanoparticulated imaging probes and therapeutical agents using x-ray grating-based DPC CT. In this work, we conduct a preliminary feasibility study with a focus to characterize the contrast-to-noise ratio (CNR) and contrast-detail behavior of the x-ray grating-based DPC CT. The obtained data may be instructive to the architecture design and performance optimization of the x-ray grating-based DPC CT for imaging biomarker-targeted imaging probes and therapeutic agents, and even informative to the translation of preclinical research in theranostics into clinical applications.

  11. High-resolution X-ray computed tomography scanning of primate copulatory plugs.

    PubMed

    Parga, Joyce A; Maga, Murat; Overdorff, Deborah J

    2006-04-01

    In this study, high-resolution computed tomography X-ray scanning was used to scan ring-tailed lemur (Lemur catta) copulatory plugs. This method produced accurate measures of plug volume and surface area, but was not useful for visualizing plug internal structure. Copulatory plug size was of interest because it may relate to male fertilization success. Copulatory plugs form from coagulated ejaculate, and are routinely displaced in this species by the penis of a subsequent mate during copulation (Parga [2003] Int. J. Primatol. 24:889-899). Because one potential function of these plugs may be to preclude or delay other males' successful insemination of females, we tested the hypothesis that larger plugs are more difficult for subsequent males to displace. Plugs were collected opportunistically upon displacement during data collection on L. catta mating behavior on St. Catherines Island, Georgia (USA) during two subsequent breeding seasons. Copulatory plugs exhibited a wide range of volumes: 1,758-5,013.6 mm3 (n = 9). Intraindividual differences in plug volume were sometimes greater than interindividual differences. Contrary to predictions, larger plugs were not more time-consuming for males to displace via penile intromission during copulation. Nor were plugs with longer vaginal residence times notably smaller than plugs with shorter residence times, as might be expected if plugs disintegrate while releasing sperm (Asdell [1946] Patterns of Mammalian Reproduction; Ithaca: Comstock). We found a significant inverse correlation between number of copulatory mounts leading to ejaculation and copulatory plug volume. This may indicate that if males are sufficiently sexually aroused to reach ejaculation in fewer mounts, they tend to produce ejaculates of greater volume. PMID:16345065

  12. Projection-based metal-artifact reduction for industrial 3D X-ray computed tomography.

    PubMed

    Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Kastner, Johann; Gröller, M Eduard

    2011-12-01

    Multi-material components, which contain metal parts surrounded by plastic materials, are highly interesting for inspection using industrial 3D X-ray computed tomography (3DXCT). Examples of this application scenario are connectors or housings with metal inlays in the electronic or automotive industry. A major problem of this type of components is the presence of metal, which causes streaking artifacts and distorts the surrounding media in the reconstructed volume. Streaking artifacts and dark-band artifacts around metal components significantly influence the material characterization (especially for the plastic components). In specific cases these artifacts even prevent a further analysis. Due to the nature and the different characteristics of artifacts, the development of an efficient artifact-reduction technique in reconstruction-space is rather complicated. In this paper we present a projection-space pipeline for metal-artifacts reduction. The proposed technique first segments the metal in the spatial domain of the reconstructed volume in order to separate it from the other materials. Then metal parts are forward-projected on the set of projections in a way that metal-projection regions are treated as voids. Subsequently the voids, which are left by the removed metal, are interpolated in the 2D projections. Finally, the metal is inserted back into the reconstructed 3D volume during the fusion stage. We present a visual analysis tool, allowing for interactive parameter estimation of the metal segmentation. The results of the proposed artifact-reduction technique are demonstrated on a test part as well as on real world components. For these specimens we achieve a significant reduction of metal artifacts, allowing an enhanced material characterization. PMID:22034338

  13. Developing advanced x-ray scattering methods combined with crystallography and computation

    PubMed Central

    Perry, J. Jefferson P.; Tainer, John A.

    2013-01-01

    The extensive use of small angle x-ray scattering (SAXS) over the last few years is rapidly providing new insights into protein interactions, complex formation and conformational states in solution. This SAXS methodology allows for detailed biophysical quantification of samples of interest. Initial analyses provide a judgment of sample quality, revealing the potential presence of aggregation, the overall extent of folding or disorder, the radius of gyration, maximum particle dimensions and oligomerization state. Structural characterizations include ab initio approaches from SAXS data alone, and when combined with previously determined crystal/NMR, atomistic modeling can further enhance structural solutions and assess validity. This combination can provide definitions of architectures, spatial organizations of protein domains within a complex, including those not determined by crystallography or NMR, as well as defining key conformational states of a protein interaction. SAXS is not generally constrained by macromolecule size, and the rapid collection of data in a 96-well plate format provides methods to screen sample conditions. This includes screening for co-factors, substrates, differing protein or nucleotide partners or small molecule inhibitors, to more fully characterize the variations within assembly states and key conformational changes. Such analyses may be useful for screening constructs and conditions to determine those most likely to promote crystal growth of a complex under study. Moreover, these high throughput structural determinations can be leveraged to define how polymorphisms affect assembly formations and activities. This is in addition to potentially providing architectural characterizations of complexes and interactions for systems biology-based research, and distinctions in assemblies and interactions in comparative genomics. Thus, SAXS combined with crystallography/NMR and computation provides a unique set of tools that should be considered

  14. Theoretical calculations of X-ray absorption spectra of a copper mixed ligand complex using computer code FEFF9

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Shrivastava, B. D.

    2014-09-01

    The terms X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) refer, respectively, to the structure in the X-ray absorption spectrum at low and high energies relative to the absorption edge. Routine analysis of EXAFS experiments generally makes use of simplified models and several many-body parameters, e.g. mean free paths, many-body amplitude factors, and Debye-Waller factors, as incorporated in EXAFS analysis software packages like IFEFFIT which includes Artemis. Similar considerations apply to XANES, where the agreement between theory and experiment is often less satisfactory. The recently available computer code FEFF9 uses the real-space Green's function (RSGF) approach to calculate dielectric response over a broad spectrum including the dominant low-energy region. This code includes improved treatments of many-body effects such as inelastic losses, core-hole effects, vibrational amplitudes, and the extension to full spectrum calculations of optical constants including solid state effects. In the present work, using FEFF9, we have calculated the X-ray absorption spectrum at the K-edge of copper in a complex, viz., aqua (diethylenetriamine) (isonicotinato) copper(II), the crystal structure of which is unknown. The theoretical spectrum has been compared with the experimental spectrum, recorded by us at the XAFS beamline 11.1 at ELETTRA synchrotron source, Italy, in both XANES and EXAFS regions.

  15. Analysis of the fetal placental vascular tree by X-ray micro-computed tomography.

    PubMed

    Langheinrich, A C; Wienhard, J; Vormann, S; Hau, B; Bohle, R M; Zygmunt, M

    2004-01-01

    The current understanding of the placental vascular tree largely derives from time-consuming morphometric analyses performed by conventional histology, electron microscopy of corrosion casts and three-dimensional reconstructions based on physical tissue sections. In the present study, we demonstrate for the first time that micro-computed tomography (micro-CT) emerges as a new, non-destructive and fast tool for imaging and quantifying fetoplacental vasculature. Term placentae (n=5) were perfused with contrast agent consisting of barium-sulfate, gelatine and thymol shortly after Caesarean-section-delivery. Samples (1 cm(3)) from eight different regions of the placenta were subsequently scanned in a micro-CT. Using tomographic reconstruction algorithms, three dimensional images were obtained by micro-CT allowing total stereoscopic visualization and continuous quantitative analysis of the vascular structure of the investigated samples. These samples were compared regarding vascular surface (VS) and vascular density (vascular volume fraction, TCVF). Quantitative assessment showed an average vascular density of 16 per cent (SD+/-0.4) and a vascular surface of 475 mm(2)(SD+/-8) per total tissue volume (including intervillous space) of 125 mm(3). Micro-CT image-analysis showed no significant differences in the fetal vascularization among term placentae. Micro-CT imaging is feasible for imaging and analysis of the villous vascular tree, allows further morphologic studies and immunohistochemistry of the placental specimens and may emerge as an additional tool in the investigation of the physiology and pathophysiology of the placental vasculature. PMID:15013644

  16. Microscale X-ray tomographic investigation of the interfacial morphology between the catalyst and micro porous layers in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Prass, Sebastian; Hasanpour, Sadegh; Sow, Pradeep Kumar; Phillion, André B.; Mérida, Walter

    2016-07-01

    The interfacial morphology between the catalyst layer (CL) and micro porous layer (MPL) influences the performance of proton exchange membrane fuel cells (PEMFCs). Here we report a direct method to investigate the CL-MPL interfacial morphology of stacked and compressed gas diffusion layer (GDL with MPL)-catalyst coated membrane (CCM) assemblies. The area, origin and dimensions of interfacial gaps are studied with high-resolution X-ray micro computed tomography (X-μCT). The projected gap area (fraction of the CL-MPL interface separated by gaps) is higher for GDL-CCM assemblies with large differences in the surface roughness between CL and MPL but reduces with increasing compression and similarity in roughness. Relatively large continuous gaps are found in proximity to cracks in the MPL. These are hypothesized to form due to the presence of large pores on the surface of the GDL. Smaller gaps are induced by the surface roughness features throughout the CL-MPL interface. By modification of the pore sizes on the GDL surface serving as substrate for the MPL, the number and dimension of MPL crack induced gaps can be manipulated. Moreover, adjusting the CL and MPL surface roughness parameters to achieve similar orders of roughness can improve the surface mating characteristics of these two components.

  17. Study of the Microfocus X-Ray Tube Based on a Point-Like Target Used for Micro-Computed Tomography.

    PubMed

    Zhou, Rifeng; Zhou, Xiaojian; Li, Xiaobin; Cai, Yufang; Liu, Fenglin

    2016-01-01

    For a micro-Computed Tomography (Micro-CT) system, the microfocus X-ray tube is an essential component because the spatial resolution of CT images, in theory, is mainly determined by the size and stability of the X-ray focal spot of the microfocus X-ray tube. However, many factors, including voltage fluctuations, mechanical vibrations, and temperature changes, can cause the size and the stability of the X-ray focal spot to degrade. A new microfocus X-ray tube based on a point-like micro-target in which the X-ray target is irradiated with an unfocused electron beam was investigated. EGS4 Monte Carlo simulation code was employed for the calculation of the X-ray intensity produced from the point-like micro-target and the substrate. The effects of several arrangements of the target material, target and beam size were studied. The simulation results demonstrated that if the intensity of X-rays generated at the point-like target is greater than half of the X-ray intensity produced on the substrate, the X-ray focal spot is determined in part by the point-like target rather than by the electron beam in the conventional X-ray tube. In theory, since it is able to reduce those unfavorable effects such as the electron beam trajectory swinging and the beam size changing for the microfocus X-ray tube, it could alleviate CT image artifacts caused by the X-ray focal spot shift and size change. PMID:27249559

  18. Study of the Microfocus X-Ray Tube Based on a Point-Like Target Used for Micro-Computed Tomography

    PubMed Central

    Zhou, Rifeng; Zhou, Xiaojian; Li, Xiaobin; Cai, Yufang; Liu, Fenglin

    2016-01-01

    For a micro-Computed Tomography (Micro-CT) system, the microfocus X-ray tube is an essential component because the spatial resolution of CT images, in theory, is mainly determined by the size and stability of the X-ray focal spot of the microfocus X-ray tube. However, many factors, including voltage fluctuations, mechanical vibrations, and temperature changes, can cause the size and the stability of the X-ray focal spot to degrade. A new microfocus X-ray tube based on a point-like micro-target in which the X-ray target is irradiated with an unfocused electron beam was investigated. EGS4 Monte Carlo simulation code was employed for the calculation of the X-ray intensity produced from the point-like micro-target and the substrate. The effects of several arrangements of the target material, target and beam size were studied. The simulation results demonstrated that if the intensity of X-rays generated at the point-like target is greater than half of the X-ray intensity produced on the substrate, the X-ray focal spot is determined in part by the point-like target rather than by the electron beam in the conventional X-ray tube. In theory, since it is able to reduce those unfavorable effects such as the electron beam trajectory swinging and the beam size changing for the microfocus X-ray tube, it could alleviate CT image artifacts caused by the X-ray focal spot shift and size change. PMID:27249559

  19. Reciprocal Grids: A Hierarchical Algorithm for Computing Solution X-ray Scattering Curves from Supramolecular Complexes at High Resolution.

    PubMed

    Ginsburg, Avi; Ben-Nun, Tal; Asor, Roi; Shemesh, Asaf; Ringel, Israel; Raviv, Uri

    2016-08-22

    In many biochemical processes large biomolecular assemblies play important roles. X-ray scattering is a label-free bulk method that can probe the structure of large self-assembled complexes in solution. As we demonstrate in this paper, solution X-ray scattering can measure complex supramolecular assemblies at high sensitivity and resolution. At high resolution, however, data analysis of larger complexes is computationally demanding. We present an efficient method to compute the scattering curves from complex structures over a wide range of scattering angles. In our computational method, structures are defined as hierarchical trees in which repeating subunits are docked into their assembly symmetries, describing the manner subunits repeat in the structure (in other words, the locations and orientations of the repeating subunits). The amplitude of the assembly is calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the grids of larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures, we developed a hybrid method that sums grids of smaller subunits in order to avoid numerical artifacts. We developed protocols for obtaining high-resolution solution X-ray scattering data from taxol-free microtubules at a wide range of scattering angles. We then validated our method by adequately modeling these high-resolution data. The higher speed and accuracy of our method, over existing methods, is demonstrated for smaller structures: short microtubule and tobacco mosaic virus. Our algorithm may be integrated into various structure prediction computational tools, simulations, and theoretical models, and provide means for testing their predicted structural model, by calculating the expected X-ray scattering curve and comparing with experimental data. PMID:27410762

  20. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis

    PubMed Central

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-01-01

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis. PMID:25939628

  1. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis.

    PubMed

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-06-13

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis. PMID:25939628

  2. X-ray Digital Radiography and Computed Tomography of ICF and HEDP Materials, Subassemblies and Targets

    SciTech Connect

    Brown, W D; Martz Jr., H E

    2006-05-31

    Inertial confinement fusion (ICF) and high energy density physics (HEDP) research are being conducted at large laser facilities, such as the University of Rochester's Laboratory for Laser Energetics OMEGA facility and the Lawrence Livermore National Laboratory's (LLNL) National Ignition Facility (NIF). At such facilities, millimeter-sized targets with micrometer structures are studied in a variety of hydrodynamic, radiation transport, equation-of-state, inertial confinement fusion and high-energy density experiments. The extreme temperatures and pressures achieved in these experiments make the results susceptible to imperfections in the fabricated targets. Targets include materials varying widely in composition ({approx}3 < Z < {approx}82), density ({approx}0.03 to {approx}20 g/cm{sup 3}), geometry (planar to spherical) and embedded structures (joints to subassemblies). Fabricating these targets with structures to the tolerances required is a challenging engineering problem the ICF and HEDP community are currently undertaking. Nondestructive characterization (NDC) provides a valuable tool in material selection, component inspection, and the final pre-shot assemblies inspection. X-rays are a key method used to NDC these targets. In this paper we discuss X-ray attenuation, X-ray phase effects, and the X-ray system used, its performance and application to characterize low-temperature Raleigh-Taylor and non-cryogenic double-shell targets.

  3. Three-Dimensional Imaging and Numerical Reconstruction of Graphite/Epoxy Composite Microstructure Based on Ultra-High Resolution X-Ray Computed Tomography

    NASA Technical Reports Server (NTRS)

    Czabaj, M. W.; Riccio, M. L.; Whitacre, W. W.

    2014-01-01

    A combined experimental and computational study aimed at high-resolution 3D imaging, visualization, and numerical reconstruction of fiber-reinforced polymer microstructures at the fiber length scale is presented. To this end, a sample of graphite/epoxy composite was imaged at sub-micron resolution using a 3D X-ray computed tomography microscope. Next, a novel segmentation algorithm was developed, based on concepts adopted from computer vision and multi-target tracking, to detect and estimate, with high accuracy, the position of individual fibers in a volume of the imaged composite. In the current implementation, the segmentation algorithm was based on Global Nearest Neighbor data-association architecture, a Kalman filter estimator, and several novel algorithms for virtualfiber stitching, smoothing, and overlap removal. The segmentation algorithm was used on a sub-volume of the imaged composite, detecting 508 individual fibers. The segmentation data were qualitatively compared to the tomographic data, demonstrating high accuracy of the numerical reconstruction. Moreover, the data were used to quantify a) the relative distribution of individual-fiber cross sections within the imaged sub-volume, and b) the local fiber misorientation relative to the global fiber axis. Finally, the segmentation data were converted using commercially available finite element (FE) software to generate a detailed FE mesh of the composite volume. The methodology described herein demonstrates the feasibility of realizing an FE-based, virtual-testing framework for graphite/fiber composites at the constituent level.

  4. On how X-ray (micro) computed tomography on turbidites can help us unravel paleoflow successions, directions and dynamics

    NASA Astrophysics Data System (ADS)

    Van Daele, Maarten; Cnudde, Veerle; Boone, Marijn; Deprez, Maxim; De Batist, Marc

    2016-04-01

    Even though X-ray computed tomography (CT) is becoming an increasingly widespread technique in many disciplines - among which sedimentology -, applications are still scarce in turbidite research. In the past few years we showed that medical X-ray CT scans of sediment cores can provide a wealth of information about turbidites and especially their internal structures. In Aysén fjord (Chile) as well as several Chilean and Alaskan lakes, we showed that sedimentary structures such as ripples can be used to reconstruct flow directions, as they can be visualized in 3D. When sedimentary structures are absent, fabrics (e.g. grain imbrication) can also be used. However, the resolution of medical X-ray CT scans is usually not sufficient to visualize single grains or clasts inside the sediment cores. Therefore, medical X-ray CT scans do not allow the determination of single grain orientations. Recently, however, subsamples of sediment cores from a Swiss and an Alaskan lake were scanned at the Centre for X-ray Tomography (UGCT, Ghent University) to obtain μCT data with a resolution of 2 μm. The data allows to isolate single grains that are larger than medium silt, determine their grain size, orientation, as well as other parameters. However, all these grains with variable parameters will react differently to certain flow conditions. While mud clasts are often imbricated, coarse silt grains seem to be only oriented parallel to the flow direction. Studying more turbidites with different compositions and comparing with results from modelling studies (analogue and numerical), will allow to better understand the relationship between flow direction, flow dynamics and grain orientation (for each type of particle). From such an improved understanding not only turbidite paleoseismology, but also many other research disciplines related to fluid flow and particle deposition will benefit.

  5. Automated X-ray and Optical Analysis of the Virtual Observatory and Grid Computing

    NASA Technical Reports Server (NTRS)

    Ptak, A.; Krughoff, S.; Connolly, A.

    2011-01-01

    We are developing a system to combine the Web Enabled Source Identification with X-Matching (WESIX) web service, which emphasizes source detection on optical images,with the XAssist program that automates the analysis of X-ray data. XAssist is continuously processing archival X-ray data in several pipelines. We have established a workflow in which FITS images and/or (in the case of X ray data) an X-ray field can be input to WESIX. Intelligent services return available data (if requested fields have been processed) or submit job requests to a queue to be performed asynchronously. These services will be available via web services (for non-interactive use by Virtual Observatory portals and applications) and through web applications (written in the Django web application framework). We are adding web services for specific XAssist functionality such as determining .the exposure and limiting flux for a given position on the sky and extracting spectra and images for a given region. We are improving the queuing system in XAssist to allow for "watch lists" to be specified by users, and when X-ray fields in a user's watch list become publicly available they will be automatically added to the queue. XAssist is being expanded to be used as a survey planning 1001 when coupled with simulation software, including functionality for NuStar, eRosita, IXO, and the Wide Field Xray Telescope (WFXT), as part of an end to end simulation/analysis system. We are also investigating the possibility of a dedicated iPhone/iPad app for querying pipeline data, requesting processing, and administrative job control.

  6. Automated X-ray and Optical Analysis of the Virtual Observatory and Grid Computing

    NASA Astrophysics Data System (ADS)

    Ptak, A.; Krughoff, S.; Connolly, A.

    2011-07-01

    We are developing a system to combine the Web Enabled Source Identification with X-Matching (WESIX) web service, which emphasizes source detection on optical images,with the XAssist program that automates the analysis of X-ray data. XAssist is continuously processing archival X-ray data in several pipelines. We have established a workflow in which FITS images and/or (in the case of X-ray data) an X-ray field can be input to WESIX. Intelligent services return available data (if requested fields have been processed) or submit job requests to a queue to be performed asynchronously. These services will be available via web services (for non-interactive use by Virtual Observatory portals and applications) and through web applications (written in the Django web application framework). We are adding web services for specific XAssist functionality such as determining the exposure and limiting flux for a given position on the sky and extracting spectra and images for a given region. We are improving the queuing system in XAssist to allow for "watch lists" to be specified by users, and when X-ray fields in a user's watch list become publicly available they will be automatically added to the queue. XAssist is being expanded to be used as a survey planning tool when coupled with simulation software, including functionality for NuStar, eRosita, IXO, and the Wide-Field Xray Telescope (WFXT), as part of an end-to-end simulation/analysis system. We are also investigating the possibility of a dedicated iPhone/iPad app for querying pipeline data, requesting processing, and administrative job control. This work was funded by AISRP grant NNG06GE59G.

  7. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  8. The computed tomographic findings of peritentorial subdural hemorrhage

    SciTech Connect

    Lau, L.S.; Pike, J.W.

    1983-03-01

    The computed tomographic (CT) findings in six cases of subdural hemorrhage in the peritentorial region are listed and discussed. The CT appearance of peritentorial subdural hemorrhage sometimes mimicks that of intra-axial lesions, but coronal scanning or reconstruction can be used to resolve this problem. Awareness of this unusual location for subdural hemorrhage is helpful in providing an accurate preoperative diagnosis.

  9. X-ray solution scattering combined with computation characterizing protein folds and multiple conformational states : computation and application.

    SciTech Connect

    Yang, S.; Park, S.; Makowski, L.; Roux, B.

    2009-02-01

    Small angle X-ray scattering (SAXS) is an increasingly powerful technique to characterize the structure of biomolecules in solution. We present a computational method for accurately and efficiently computing the solution scattering curve from a protein with dynamical fluctuations. The method is built upon a coarse-grained (CG) representation of the protein. This CG approach takes advantage of the low-resolution character of solution scattering. It allows rapid determination of the scattering pattern from conformations extracted from CG simulations to obtain scattering characterization of the protein conformational landscapes. Important elements incorporated in the method include an effective residue-based structure factor for each amino acid, an explicit treatment of the hydration layer at the surface of the protein, and an ensemble average of scattering from all accessible conformations to account for macromolecular flexibility. The CG model is calibrated and illustrated to accurately reproduce the experimental scattering curve of Hen egg white lysozyme. We then illustrate the computational method by calculating the solution scattering pattern of several representative protein folds and multiple conformational states. The results suggest that solution scattering data, when combined with a reliable computational method, have great potential for a better structural description of multi-domain complexes in different functional states, and for recognizing structural folds when sequence similarity to a protein of known structure is low. Possible applications of the method are discussed.

  10. Technical Note: spektr 3.0—A computational tool for x-ray spectrum modeling and analysis

    PubMed Central

    Punnoose, J.; Xu, J.; Sisniega, A.; Zbijewski, W.; Siewerdsen, J. H.

    2016-01-01

    Purpose: A computational toolkit (spektr 3.0) has been developed to calculate x-ray spectra based on the tungsten anode spectral model using interpolating cubic splines (TASMICS) algorithm, updating previous work based on the tungsten anode spectral model using interpolating polynomials (TASMIP) spectral model. The toolkit includes a matlab (The Mathworks, Natick, MA) function library and improved user interface (UI) along with an optimization algorithm to match calculated beam quality with measurements. Methods: The spektr code generates x-ray spectra (photons/mm2/mAs at 100 cm from the source) using TASMICS as default (with TASMIP as an option) in 1 keV energy bins over beam energies 20–150 kV, extensible to 640 kV using the TASMICS spectra. An optimization tool was implemented to compute the added filtration (Al and W) that provides a best match between calculated and measured x-ray tube output (mGy/mAs or mR/mAs) for individual x-ray tubes that may differ from that assumed in TASMICS or TASMIP and to account for factors such as anode angle. Results: The median percent difference in photon counts for a TASMICS and TASMIP spectrum was 4.15% for tube potentials in the range 30–140 kV with the largest percentage difference arising in the low and high energy bins due to measurement errors in the empirically based TASMIP model and inaccurate polynomial fitting. The optimization tool reported a close agreement between measured and calculated spectra with a Pearson coefficient of 0.98. Conclusions: The computational toolkit, spektr, has been updated to version 3.0, validated against measurements and existing models, and made available as open source code. Video tutorials for the spektr function library, UI, and optimization tool are available. PMID:27487888

  11. Local X-ray Computed Tomography Imaging for Mineralogical and Pore Characterization

    NASA Astrophysics Data System (ADS)

    Mills, G.; Willson, C. S.

    2015-12-01

    Sample size, material properties and image resolution are all tradeoffs that must be considered when imaging porous media samples with X-ray computed tomography. In many natural and engineered samples, pore and throat sizes span several orders of magnitude and are often correlated with the material composition. Local tomography is a nondestructive technique that images a subvolume, within a larger specimen, at high resolution and uses low-resolution tomography data from the larger specimen to reduce reconstruction error. The high-resolution, subvolume data can be used to extract important fine-scale properties but, due to the additional noise associated with the truncated dataset, it makes segmentation of different materials and mineral phases a challenge. The low-resolution data of a larger specimen is typically of much higher-quality making material characterization much easier. In addition, the imaging of a larger domain, allows for mm-scale bulk properties and heterogeneities to be determined. In this research, a 7 mm diameter and ~15 mm in length sandstone core was scanned twice. The first scan was performed to cover the entire diameter and length of the specimen at an image voxel resolution of 4.1 μm. The second scan was performed on a subvolume, ~1.3 mm in length and ~2.1 mm in diameter, at an image voxel resolution of 1.08 μm. After image processing and segmentation, the pore network structure and mineralogical features were extracted from the low-resolution dataset. Due to the noise in the truncated high-resolution dataset, several image processing approaches were applied prior to image segmentation and extraction of the pore network structure and mineralogy. Results from the different truncated tomography segmented data sets are compared to each other to evaluate the potential of each approach in identifying the different solid phases from the original 16 bit data set. The truncated tomography segmented data sets were also compared to the whole

  12. Imaging strain localization in porous limestone by X-ray Computed Tomography and Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Baud, P.; Hall, S.; Wong, T.-f.

    2012-04-01

    The brittle-ductile transition in porous sandstones has now been studied extensively. Microstructural studies combining various techniques on samples deformed in the laboratory documented the development of a wide variety on strain localization patterns and failure modes in overall agreement with the field observations in various sandstone formations. In contrast, there is a paucity of mechanical and microstructural laboratory data on the brittle-ductile transition in porous carbonates, particularly for the high porosity end-members. The question of strain localization is in particular hard to tackle as conventional microstructural analyses cannot as in sandstone be guided by acoustic emission statistics. In this context, X-ray Computed Tomography (CT) imaging provides a promising technique to accurately describe the various failure modes associated with the brittle-ductile transition in porous limestone. In this study, we focused on a grainstone from the Majella Mountain, central Italy. Detailed field observations performed in this formation by Tondi et al. (2006) have revealed some complex interplay between deformation/compaction bands and stylolites. Our samples of Majella grainstone had a nominal porosity of 31% and were primarily composed of calcite. A series of hydrostatic and conventional triaxial experiments were performed in dry conditions at room temperature, constant strain rate and at confining pressures ranging from 5 to 50 MPa. Several sets of CT images at a resolution of 25 microns were acquired before and after deformation. Digital Image Correlation (DIC) was performed on images of the intact and deformed samples. The full 3D strain tensor field was derived. Results for the two strain invariants corresponding to the volumetric and shear components were obtained for grid steps of 500 and 250 microns. Our new results showed that deformation was compactant in Majella grainstone over the wide range of pressures investigated. Strain localization was

  13. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    NASA Astrophysics Data System (ADS)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  14. Complex path flows in geological media imaged by X-Ray computed tomography

    NASA Astrophysics Data System (ADS)

    Neuville, Amélie; Ebner, Marcus; Toussaint, Renaud; Renard, François; Koehn, Daniel; Flekkøy, Eirik; Cochard, Alain

    2013-04-01

    Stylolites as well as fractures are reported as major conduits in geological media (1, 2). The flow circulation has a strong influence on hydro-mecanico-chemical processes, in particular on crystallization and dissolution (3, 4). For instance hydrothermal ore deposits are frequently located in stylolites and fractures at depth. The fluid pressure also intervenes as a thermodynamic parameter in chemical reactions, and is in addition responsible for elastic deformations of the medium. Using tridimensional numerical simulations, we aim at better characterizing the flow circulation in complex structures, and at investigating on how the flow modifies the geological medium. First, X-Ray computed tomography scans of a complete stylolite structure (i.e. calcareous matrix, clay layering in the aperture, and the very thin aperture itself), and that of a fractured sandstone sample were performed. Then, image processing is required in order to extract the geometry of the porous medium of each sample. The geometries are actually more complicated than that of classical fractures, because of the existence of non connected -- or barely connected -- void spaces. We report on the influence of this image processing on the aperture geometry and on the computed permeability. This is addressed by first performing a numerical simulation of the tridimensional velocity field, using a coupled lattice Boltzmann method that solves the complete Navier-Stokes equation. After calculating the velocity field we then question the link between the geometry of complex stylolites and fractures, and the spatial auto-correlation of the velocity field. This correlation might indeed be important for dispersion processes. A first approach is to compute this correlation from the simulated velocity field. Another approach is to compute analytically the correlation function, from the knowledge of the aperture correlation. This is however developed in the perturbative limit of small aperture variations, that

  15. The X-Ray Universe as seen through a Super Computer

    NASA Astrophysics Data System (ADS)

    Dolag, Klaus; Biffi, Veronica

    2015-08-01

    Upcoming astronomical surveys and instruments like Planck, SPT, PanStars, DES, Euclid, LOFAR, eROSITA and many more will need a theoretical counterpart in form of simulations which follow the formation of cosmological structures in so far unaccomplished detail, taking into account enough physical processes to allow a self consistent comparison to observations at multiple wavelength and throughout the entire epoch of structure formation. I will report on the results from a recent simulation campaign, where we followed the formation of cosmological structures in so far unaccomplished detail, performing a large set of cosmological, hydrodynamical simulations covering up to Gpc^3 volumes, taking into account enough physical processes (star-formation, chemical enrichment, AGN feedback) to allow a self consistent comparison, especially to observations at X-Ray wavelength. I will put special emphasis on the footprint of clusters and AGNs for future X-Ray missions like eROSITA and ATHENA

  16. A computer controlled television detector for light, X-rays and particles

    NASA Technical Reports Server (NTRS)

    Kalata, K.

    1981-01-01

    A versatile, high resolution, software configurable, two-dimensional intensified vidicon quantum detector system has been developed for multiple research applications. A thin phosphor convertor allows the detection of X-rays below 20 keV and non-relativistic particles in addition to visible light, and a thicker scintillator can be used to detect X-rays up to 100 keV and relativistic particles. Faceplates may be changed to allow any active area from 1 to 40 mm square, and active areas up to 200 mm square are possible. The image is integrated in a digital memory on any software specified array size up to 4000 x 4000. The array size is selected to match the spatial resolution, which ranges from 10 to 100 microns depending on the operating mode, the active area, and the photon or particle energy. All scan and data acquisition parameters are under software control to allow optimal data collection for each application.

  17. In situ compressive damage of cement paste characterized by lab source X-ray computer tomography

    SciTech Connect

    Wan, Keshu; Xue, Xiaobo

    2013-08-15

    This paper aims at illustrating the potential of lab source X-ray CT for studying the damage behavior of cement based materials through in situ load experiments. This approach permits quantifying the microstructure prior and during loading. The load damage is separated from the specimen deformation using an image interpolation method. A quantitative relationship between external load and internal specimen damage is analyzed using the statistical information of gray scale values of the CT data. Local damage degrees are defined on 3D subset, and the 3D spatial distribution of damage information is clarified in this research. - Highlights: • On line damage is characterized by lab source X-ray CT. • Loading damage is separated with the specimen deformation. • Local damage is analyzed using gray scale values of the CT data. • 3D spatial distribution of the local damage information is clarified.

  18. [Manifestations of lobar atelectasis on chest x-rays and correlation with computed tomography findings].

    PubMed

    Cortés Campos, A; Martínez Rodríguez, M

    2014-01-01

    Atelectasis is an important indicator of potentially severe underlying disease that must be diagnosed as early as possible. One of the most common mechanisms is the reabsorption of air distal to respiratory tract obstruction. The chest x-ray is an excellent tool to diagnose atelectasis, and it is especially useful for ruling out central bronchial obstructions (e.g., from endobronchial tumors). If the signs of volume loss are not recognized correctly, the diagnosis and treatment can be delayed. This article describes the main findings of lobar atelectasis on chest x-rays and their correlations with CT findings, including the classic signs described in the literature and other, less known and sometimes subtle signs. PMID:24252304

  19. Hybrid deterministic and stochastic x-ray transport simulation for transmission computed tomography with advanced detector noise model

    NASA Astrophysics Data System (ADS)

    Popescu, Lucretiu M.

    2016-03-01

    We present a model for simulation of noisy X-ray computed tomography data sets. The model is made of two main components, a photon transport simulation component that generates the noiseless photon field incident on the detector, and a detector response model that takes as input the incident photon field parameters and given the X-ray source intensity and exposure time can generate noisy data sets, accordingly. The photon transport simulation component combines direct ray-tracing of polychromatic X-rays for calculation of transmitted data, with Monte Carlo simulation for calculation of the scattered-photon data. The Monte Carlo scatter simulation is accelerated by implementing particle splitting and importance sampling variance reduction techniques. The detector-incident photon field data are stored as energy expansion coefficients on a refined grid that covers the detector area. From these data the detector response model is able to generate noisy detector data realizations, by reconstituting the main parameters that describe each detector element response in statistical terms, including spatial correlations. The model is able to generate very fast, on the fly, CT data sets corresponding to different radiation doses, as well as detector response characteristics, facilitating data management in extensive optimization studies by reducing the computation time and storage space demands.

  20. Structural organization of liquid crystals at liquid crystal-air interface: Synchrotron X-ray reflectivity and computational simulations

    NASA Astrophysics Data System (ADS)

    Sadati, Monirosadat; Ramezani-Dakhel, Hadi; Bu, Wei; Sevgen, Emre; Liang, Zhu; Erol, Cem; Taheri Qazvini, Nader; Rahimi, Mohammad; Lin, Binhua; Roux, Benoit; Schlossman, Mark; de Pablo, Juan J.

    Numerous applications of liquid crystals (LC) rely on control of molecular orientation at an interface. However, little is known about the precise molecular structure of such interfaces. In this work, we have performed synchrotron X-ray reflectivity measurements accompanied by an advanced theoretical and computational analysis to study the structural organization of liquid crystals at the air-liquid crystal interface. The X-ray reflectivity was measured from two nematic (5CB) and smectic (8CB) liquid crystals at several temperatures, in the nematic phase and above the nematic-isotropic transition. Our computational simulations and X-ray reflectivity results indicate that in the case of 8CB nematic phase, incipient bulk smectic fluctuations are pinned at the interface to form temperature-dependent multilayers at the interface. Such layers can extend far from the interface. However, the interface of 5CB in the nematic phase exhibits a relatively small number of layers. These measurements will be extended to the study of the LC-aqueous electrolyte interfaces to understand the effects of electrostatic interactions and external stimuli on the interfacial anchoring energy and LC orientational ordering.

  1. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: Microscale imaging using X-ray computed tomography

    SciTech Connect

    Jin, Yusuke Konno, Yoshihiro; Nagao, Jiro

    2014-09-01

    A pressurized subsampling system was developed for pressured gas hydrate (GH)-bearing sediments, which have been stored under pressure. The system subsamples small amounts of GH sediments from cores (approximately 50 mm in diameter and 300 mm in height) without pressure release to atmospheric conditions. The maximum size of the subsamples is 12.5 mm in diameter and 20 mm in height. Moreover, our system transfers the subsample into a pressure vessel, and seals the pressure vessel by screwing in a plug under hydraulic pressure conditions. In this study, we demonstrated pressurized subsampling from artificial xenon-hydrate sediments and nondestructive microscale imaging of the subsample, using a microfocus X-ray computed tomography (CT) system. In addition, we estimated porosity and hydrate saturation from two-dimensional X-ray CT images of the subsamples.

  2. Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.

  3. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: microscale imaging using X-ray computed tomography.

    PubMed

    Jin, Yusuke; Konno, Yoshihiro; Nagao, Jiro

    2014-09-01

    A pressurized subsampling system was developed for pressured gas hydrate (GH)-bearing sediments, which have been stored under pressure. The system subsamples small amounts of GH sediments from cores (approximately 50 mm in diameter and 300 mm in height) without pressure release to atmospheric conditions. The maximum size of the subsamples is 12.5 mm in diameter and 20 mm in height. Moreover, our system transfers the subsample into a pressure vessel, and seals the pressure vessel by screwing in a plug under hydraulic pressure conditions. In this study, we demonstrated pressurized subsampling from artificial xenon-hydrate sediments and nondestructive microscale imaging of the subsample, using a microfocus X-ray computed tomography (CT) system. In addition, we estimated porosity and hydrate saturation from two-dimensional X-ray CT images of the subsamples. PMID:25273747

  4. Noise reduction by projection direction dependent diffusion for low dose fan-beam x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Tang, Shaojie; Mou, Xuanqin; Zhang, Yanbo; Yu, Hengyong

    2011-03-01

    We propose a novel method to reduce the noise in fan-beam computed tomography (CT) imaging. First, the inverse Radon transform is induced for a family of differential expression of projection function. Second, the diffusion partial differential equation (PDE) is generalized from image space to projection space in parallel-beam geometry. Third, the diffusion PDE is further induced from parallel-beam geometry to fan-beam geometry. Finally, the projection direction dependent diffusion is developed to reduce CT noise, which arises from the quantum variation in the low dose exposure of a medical x-ray CT (XCT) system. The proposed noise reduction processes projections iteratively and dependently on x-ray path position, followed by a general CT reconstruction. Numerical simulation studies have demonstrated its feasibility in the noise reduction of low dose fan-beam XCT imaging.

  5. Maximum-likelihood estimation of scatter components algorithm for x-ray coherent scatter computed tomography of the breast.

    PubMed

    Ghammraoui, Bahaa; Badal, Andreu; Popescu, Lucretiu M

    2016-04-21

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter cross section of the investigated object revealing structural information of tissue under investigation. In the original CSCT proposals the reconstruction of images from coherently scattered x-rays is done at each scattering angle separately using analytic reconstruction. In this work we develop a maximum likelihood estimation of scatter components algorithm (ML-ESCA) that iteratively reconstructs images using a few material component basis functions from coherent scatter projection data. The proposed algorithm combines the measured scatter data at different angles into one reconstruction equation with only a few component images. Also, it accounts for data acquisition statistics and physics, modeling effects such as polychromatic energy spectrum and detector response function. We test the algorithm with simulated projection data obtained with a pencil beam setup using a new version of MC-GPU code, a Graphical Processing Unit version of PENELOPE Monte Carlo particle transport simulation code, that incorporates an improved model of x-ray coherent scattering using experimentally measured molecular interference functions. The results obtained for breast imaging phantoms using adipose and glandular tissue cross sections show that the new algorithm can separate imaging data into basic adipose and water components at radiation doses comparable with Breast Computed Tomography. Simulation results also show the potential for imaging microcalcifications. Overall, the component images obtained with ML-ESCA algorithm have a less noisy appearance than the images obtained with the conventional filtered back projection algorithm for each individual scattering angle. An optimization study for x-ray energy range selection for breast CSCT is also presented. PMID:27025665

  6. Maximum-likelihood estimation of scatter components algorithm for x-ray coherent scatter computed tomography of the breast

    NASA Astrophysics Data System (ADS)

    Ghammraoui, Bahaa; Badal, Andreu; Popescu, Lucretiu M.

    2016-04-01

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter cross section of the investigated object revealing structural information of tissue under investigation. In the original CSCT proposals the reconstruction of images from coherently scattered x-rays is done at each scattering angle separately using analytic reconstruction. In this work we develop a maximum likelihood estimation of scatter components algorithm (ML-ESCA) that iteratively reconstructs images using a few material component basis functions from coherent scatter projection data. The proposed algorithm combines the measured scatter data at different angles into one reconstruction equation with only a few component images. Also, it accounts for data acquisition statistics and physics, modeling effects such as polychromatic energy spectrum and detector response function. We test the algorithm with simulated projection data obtained with a pencil beam setup using a new version of MC-GPU code, a Graphical Processing Unit version of PENELOPE Monte Carlo particle transport simulation code, that incorporates an improved model of x-ray coherent scattering using experimentally measured molecular interference functions. The results obtained for breast imaging phantoms using adipose and glandular tissue cross sections show that the new algorithm can separate imaging data into basic adipose and water components at radiation doses comparable with Breast Computed Tomography. Simulation results also show the potential for imaging microcalcifications. Overall, the component images obtained with ML-ESCA algorithm have a less noisy appearance than the images obtained with the conventional filtered back projection algorithm for each individual scattering angle. An optimization study for x-ray energy range selection for breast CSCT is also presented.

  7. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    NASA Astrophysics Data System (ADS)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this

  8. Seismically induced soft-sediment deformation structures revealed by X-ray computed tomography of boring cores

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    2016-06-01

    X-ray computed tomography (CT) allows us to visualize three-dimensional structures hidden in boring cores nondestructively. We applied medical X-ray CT to cores containing seismically induced soft-sediment deformation structures (SSDSs) obtained from the Kanto region of Japan, where the 2011 off the Pacific coast of Tohoku Earthquake occurred. The CT images obtained clearly revealed various types of the seismically induced SSDSs embedded in the cores: a propagating sand dyke bent complexly by the preexisting geological structure, deformed laminations of fluidized sandy layers, and two types of downward mass movement (ductile downward folding and brittle normal faulting) as compensation for upward sand transport through sand dykes. Two advanced image analysis techniques were applied to the sand dyke CT images for the first time. The GrowCut algorithm, a specific digital image segmentation technique that uses cellular automata, was used successfully to extract the three-dimensional complex sand dyke structures embedded in the sandy sediments, which would have been difficult to achieve using a conventional image processing technique. Local autocorrelation image analysis was performed to detect the flow pattern aligned along the sand dykes objectively. The results demonstrate that X-ray CT coupled with advanced digital image analysis techniques is a promising approach to studying the seismically induced SSDSs in boring cores.

  9. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography.

    PubMed

    Jørgensen, J S; Sidky, E Y

    2015-06-13

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization. PMID:25939620

  10. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography

    PubMed Central

    Jørgensen, J. S.; Sidky, E. Y.

    2015-01-01

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization. PMID:25939620

  11. Development of X-ray computed tomography inspection facility for the H-II solid rocket boosters

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Fujita, T.; Fukushima, Y.; Shimizu, M.; Itoh, S.; Satoh, A.; Miyamoto, H.

    The National Space Development Agency of Japan (NASDA) initiated the development of an X-ray computed tomography (CT) equipment for the H-II solid rocket boosters (SRBs) in 1987 for the purpose of minimizing inspection time and achieving high cost-effectiveness. The CT facility has been completed in Jan. 1991 in Tanegashima Space Center for the inspection of the SRBs transported from the manufacturer's factory to the launch site. It was first applied to the qualification model SRB from Feb. to Apr. in 1991. Through the CT inspection of the SRB, it has been confirmed that inspection time decreased significantly compared with the X-ray radiography method and that even an unskilled inspector could find various defects. As a result, the establishment of a new reliable inspection method for the SRB has been verified. In this paper, the following are discussed: (1) the defect detectability of the CT equipment using a dummy SRB with various artificial defects, (2) the performance comparison between the CT method and the X-ray radiography method, (3) the reliability of the CT equipment, and (4) the radiation shield design of the nondestructive test building.

  12. Improved signal-to-noise ratio for non-perpendicular detection angles in x-ray fluorescence computed tomography (XFCT).

    PubMed

    Sjölin, Martin; Danielsson, Mats

    2014-11-01

    The standard imaging setup in x-ray fluorescence computed tomography detects the fluorescence emission at a right angle with respect to the axis of the excitation beam. In this paper we have studied how the detection angle affects the signal-to-noise ratio (S/N), which is a major factor influencing the low-contrast sensitivity of the imaging system. This is done for an imaging setup using a collimated detector and a pencil beam of excitation x-rays. An ideal detection process is simulated for a generalized imaging case with gold/platinum tracers and experimental measurements are performed using a diagnostic x-ray tube. For monochromatic excitation, the results indicate that order-of-magnitude improvements of the S/N can be achieved by optimizing the detection angle. The maximal S/N, when exciting with an energy just above the K-edge, is achieved for large detection angles, i.e. with the detector close to the source. The improvements also transfer to polychromatic excitation sources and the experimental results show up to four-fold improvements of the S/N when changing the detection angle from 90° to 150°. Also, the changes of the S/N behavior when switching the fluorescent tracer is briefly demonstrated. These results suggest that the choice of detection angle should be taken seriously in the design of future XFCT imaging systems. PMID:25310695

  13. Improved signal-to-noise ratio for non-perpendicular detection angles in x-ray fluorescence computed tomography (XFCT)

    NASA Astrophysics Data System (ADS)

    Sjölin, Martin; Danielsson, Mats

    2014-11-01

    The standard imaging setup in x-ray fluorescence computed tomography detects the fluorescence emission at a right angle with respect to the axis of the excitation beam. In this paper we have studied how the detection angle affects the signal-to-noise ratio (S/N), which is a major factor influencing the low-contrast sensitivity of the imaging system. This is done for an imaging setup using a collimated detector and a pencil beam of excitation x-rays. An ideal detection process is simulated for a generalized imaging case with gold/platinum tracers and experimental measurements are performed using a diagnostic x-ray tube. For monochromatic excitation, the results indicate that order-of-magnitude improvements of the S/N can be achieved by optimizing the detection angle. The maximal S/N, when exciting with an energy just above the K-edge, is achieved for large detection angles, i.e. with the detector close to the source. The improvements also transfer to polychromatic excitation sources and the experimental results show up to four-fold improvements of the S/N when changing the detection angle from 90° to 150°. Also, the changes of the S/N behavior when switching the fluorescent tracer is briefly demonstrated. These results suggest that the choice of detection angle should be taken seriously in the design of future XFCT imaging systems.

  14. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    NASA Astrophysics Data System (ADS)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  15. Transfer of students' learning about X-rays and computer-assisted tomography from physics to medical imaging

    NASA Astrophysics Data System (ADS)

    Kalita, Spartak A.

    In this study we explored students' transfer of learning in the X-ray medical imaging context, including the X-ray-based computer-assisted tomography (or CAT). For this purpose we have conducted a series of clinical and teaching interviews. The investigation was a part of a bigger research effort to design teaching-learning materials for pre-medical students who are completing their algebra-based physics course. Our students brought to the discussion pieces of knowledge transferred from very different sources such as their own X-ray experiences, previous learning and the mass media. This transfer seems to result in more or less firm mental models, although often not internally consistent or coherent. Based on our research on pre-med students' models of X-rays we designed a hands-on lab using semi-transparent Lego bricks to model CAT scans. Without "surgery" (i.e. without intrusion into the Lego "body") students determined the shape of an object, which was built out of opaque and translucent Lego bricks and hidden from view. A source of light and a detector were provided upon request. Using a learning cycle format, we introduced CAT scans after students successfully have completed this task. By comparing students' ideas before and after teaching interview with the groups of 2 or 3 participants, we have investigated transfer of learning from basic physics and everyday experience to a complex medical technology and how their peer interactions trigger and facilitate this process. During the last phase of our research we also introduced a CAT-scan simulation problem into our teaching interview routine and compared students' perception of this simulation and their perception of the hands-on activity.

  16. Microscopy and elemental analysis in tissue samples using computed microtomography with synchrotron x-rays

    SciTech Connect

    Spanne, P.; Rivers, M.L.

    1988-01-01

    The initial development shows that CMT using synchrotron x-rays can be developed to ..mu..m spatial resolution and perhaps even better. This creates a new microscopy technique which is of special interest in morphological studies of tissues, since no chemical preparation or slicing of the sample is necessary. The combination of CMT with spatial resolution in the ..mu..m range and elemental mapping with sensitivity in the ppM range results in a new tool for elemental mapping at the cellular level. 7 refs., 1 fig.

  17. Computer Assisted Gamma and X-Ray Tomography: Applications to Multiphase Flow Systems.

    SciTech Connect

    Kumar, Sailesh B.; Dudukovic, Milorad P.; Toseland, Bernard A.

    1997-03-01

    The application of X-ray and gamma ray transmission tomography to the study of process engineering systems is reviewed. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  18. Structural analysis of advanced polymeric foams by means of high resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Nacucchi, M.; De Pascalis, F.; Scatto, M.; Capodieci, L.; Albertoni, R.

    2016-06-01

    Advanced polymeric foams with enhanced thermal insulation and mechanical properties are used in a wide range of industrial applications. The properties of a foam strongly depend upon its cell structure. Traditionally, their microstructure has been studied using 2D imaging systems based on optical or electron microscopy, with the obvious disadvantage that only the surface of the sample can be analysed. To overcome this shortcoming, the adoption of X-ray micro-tomography imaging is here suggested to allow for a complete 3D, non-destructive analysis of advanced polymeric foams. Unlike metallic foams, the resolution of the reconstructed structural features is hampered by the low contrast in the images due to weak X-ray absorption in the polymer. In this work an advanced methodology based on high-resolution and low-contrast techniques is used to perform quantitative analyses on both closed and open cells foams. Local structural features of individual cells such as equivalent diameter, sphericity, anisotropy and orientation are statistically evaluated. In addition, thickness and length of the struts are determined, underlining the key role played by the achieved resolution. In perspective, the quantitative description of these structural features will be used to evaluate the results of in situ mechanical and thermal test on foam samples.

  19. Quantification of eggshell microstructure using X-ray micro computed tomography

    PubMed Central

    Riley, A.; Sturrock, C. J.; Mooney, S. J.

    2014-01-01

    1. X-ray microcomputed tomography can be used to produce rapid, fully analysable, three-dimensional images of biological and other materials without the need for complex or tedious sample preparation and sectioning. We describe the use of this technique to visualise and analyse the microstructure of fragments of shell taken from three regions of chicken eggs (sharp pole, blunt pole and equatorial region). 2. Two- and three-dimensional images and data were obtained at a resolution of 1.5 microns. The images were analysed to provide measurements of shell thickness, the spacial density of mammillary bodies, the frequency, shape, volume and effective diameter of individual pore spaces, and the intrinsic sponginess (proportion of non-X-ray dense material formed by vesicles) of the shell matrix. Measurements of these parameters were comparable with those derived by traditional methods and reported in the literature. 3. The advantages of using this technology for the quantification of eggshell microstructural parameters and its potential application for commercial, research and other purposes are discussed. PMID:24875292

  20. A practical material decomposition method for x-ray dual spectral computed tomography.

    PubMed

    Hu, Jingjing; Zhao, Xing

    2016-03-17

    X-ray dual spectral CT (DSCT) scans the measured object with two different x-ray spectra, and the acquired rawdata can be used to perform the material decomposition of the object. Direct calibration methods allow a faster material decomposition for DSCT and can be separated in two groups: image-based and rawdata-based. The image-based method is an approximative method, and beam hardening artifacts remain in the resulting material-selective images. The rawdata-based method generally obtains better image quality than the image-based method, but this method requires geometrically consistent rawdata. However, today's clinical dual energy CT scanners usually measure different rays for different energy spectra and acquire geometrically inconsistent rawdata sets, and thus cannot meet the requirement. This paper proposes a practical material decomposition method to perform rawdata-based material decomposition in the case of inconsistent measurement. This method first yields the desired consistent rawdata sets from the measured inconsistent rawdata sets, and then employs rawdata-based technique to perform material decomposition and reconstruct material-selective images. The proposed method was evaluated by use of simulated FORBILD thorax phantom rawdata and dental CT rawdata, and simulation results indicate that this method can produce highly quantitative DSCT images in the case of inconsistent DSCT measurements. PMID:27257878

  1. Computational studies of the x-ray scattering properties of laser aligned stilbene

    SciTech Connect

    Debnarova, Andrea; Techert, Simone; Schmatz, Stefan

    2011-02-07

    The enhancement of the x-ray scattering signal from partially aligned molecular samples is investigated. The alignment properties of the studied molecular system are modeled based on the method of laser alignment. With the advances in the area of laser alignment of molecules, the application of this sample manipulation technique promises a great potential for x-ray scattering measurements. Preferential alignment of molecules in an otherwise amorphous sample leads to constructive interference and thus increases the scattering intensity. This enhances the structural information encoded in the scattering images and enables improved resolution in studies of reaction dynamics, as in this work is shown for the example of the photo-isomerization of stilbene. We demonstrate that the scattering signal is strongly influenced by the alignment axis. Even the most basic one-dimensional alignment offers significant improvement compared to the structural information provided by a randomly oriented sample. Although the signal is sensitive to the uncertainty in the alignment angle, it offers encouraging results even at realistic alignment uncertainties.

  2. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.

    PubMed

    Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood

    2016-01-01

    Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry. PMID:26205316

  3. Rock porosity quantification by dual-energy X-ray computed microtomography.

    PubMed

    Teles, A P; Lima, I; Lopes, R T

    2016-04-01

    Porous media investigation by X-ray microtomography allows obtaining valuable quantitative and qualitative information, while preserving sample integrity. Modern X-ray nanotomography or Synchrotron radiation systems may distinguish structures sized only hundreds of nanometers. However, pores sized less than a few microns (microporosity) may be undetectable due to the system's spatial resolution and noise in microfocus sources, compromising the quality of the measurement. In this study a dual-energy methodology was developed to generate density-based images from two scans made at two different voltages (80kV and 130KV) with a microfocus bench-top microtomography system. The images obtained were quantized in 256 gray levels, where the lowest value (zero) corresponded to voids and the highest value (255) corresponded to the densest regions mapped. From density images and single energy images, porosity was evaluated and compared. Results indicate that density images present better results than single energy images when both are compared with porosity obtained by the helium injection method. In addition, images acquired in dual-energy show good agreement with the sample's real density values. PMID:26897589

  4. Computed Tomography with X-rays and Fast Neutrons for Restoration of Wooden Artwork

    NASA Astrophysics Data System (ADS)

    Osterloh, Kurt; Bellon, Carsten; Hohendorf, Stefan; Kolkoori, Sanjeevareddy; Wrobel, Norma; Nusser, Amélie; Freitag, Markus; Bücherl, Thomas; Bar, Doron; Mor, Ilan; Tamin, Noam; Weiss-Babai, Ruth; Bromberger, Benjamin; Dangendorf, Volker; Tittelmeier, Kai

    The objects of this investigation were sculptures taken from a ca. three hundred years old baroque epitaph of a church in Tönning, a town in Northern Germany. Around 1900 it was found in a disastrous state heavily damaged by wood-worm. At that time, the whole artwork was treated with the tar extract carbolineum as a remedy. Nowadays, this substance has been identified as carcinogenic, and its presence can be perceived by its stench and visually at certain spots on the surface where it has penetrated the covering paint. A gold-painted sculpture of a massive wooden skull was interrogated with X-rays and fast neutrons to investigate the internal distribution of the carbolineum. The X-ray tomography, with its excellent spatial resolution revealed galleries left over from the worm infestation in the outer areas and cracks in the central region. The golden color coating appeared as a thick and dense layer. In comparison the tomography with fast neutrons, though being of lower resolution and yet unresolved artefacts revealed sections of slightly different densities in the bulk of the wood. These differences we attribute to the differences in the distribution of the impregnant in the wood, visible due to its higher hydrogen content making it less transparent for neutrons.

  5. Computed tomographic findings in penetrating peptic ulcer

    SciTech Connect

    Madrazo, B.L.; Halpert, R.D.; Sandler, M.A.; Pearlberg, J.L.

    1984-12-01

    Four cases of peptic ulcer penetrating the head of the pancreas were diagnosed by computed tomography (CT). Findings common to 3 cases included (a) an ulcer crater, (b) a sinus tract, and (c) enlargement of the head of the pancreas. Unlike other modalities, the inherent spatial resolution of CT allows a convenient diagnosis of this important complication of peptic ulcer disease.

  6. Bilateral pulmonary sequestration: computed tomographic appearance

    SciTech Connect

    Wimbish, K.J.; Agha, F.P.; Brady, T.M.

    1983-04-01

    Intralobar pulmonary sequestration is one manifestation of the wide spectrum of congenital bronchopulmonary foregut malformations. Bilateral intralobar pulmonary sequestration is an exceedingly rare anomaly. Only two pathologically proven cases and one possible case have been reported. We report a case presenting as bilateral paraspinal masses, studied by computed tomograpy (CT) and angiography.

  7. ANL CT Image Reconstruction Algorithm for Utilizing Digital X-ray Detector Array

    Energy Science and Technology Software Center (ESTSC)

    2004-08-05

    Reconstructs X-ray computed tomographic images from large data sets known as 16-bit binary sinograms. The algorithm uses the concept of generation of an image from carefully obtained multiple l-D or 2-0 X-ray projections. The individual projections are filtered using a digital Fast Fourier Transform. The literature refers to this as filtered back projection. The software is capable of processing a large file for reconstructing single images or volumetnc (3-D) images from large area high resolutionmore » digital X-ray detectors.« less

  8. Dynamic computed tomographic scans in experimental brain abscess.

    PubMed

    Enzmann, D R; Placone, R C; Britt, R H

    1984-01-01

    Dynamic computed tomographic scans were performed in an experimental brain abscess model to establish criteria that could be utilized in abscess staging. The vascular phase of the time-density curves did not differentiate cerebritis and capsule stages. The amount of residual enhancement after the first pass of an intra-arterial contrast bolus differed between major abscess stages, the greater residual enhancement being noted in the capsule stage. PMID:6462439

  9. In-situ kinetics and x-ray computed microtomography imaging studies of methane hydrates in host sediments

    NASA Astrophysics Data System (ADS)

    Kerkar, Prasad B.

    seawater was found to be delayed with the degree of consolidation. The post-depressurization PT equilibrium values were utilized to calculate the enthalpy of dissociation of methane hydrates. The endothermic effect due to hydrate dissociation was recorded with the highest degree of cooling recorded at the center and the half-radius than that at the core boundary. The cooling responses during depressurization from three thermocouples placed at different lateral and radial positions within core were used as an indicative of presence of hydrates and their preferential dissociation positions. The post-depressurization dissociation was thermally induced, during which the sediments warmed up to the bath temperature. All post-depressurization pressure-temperature (PT) followed theoretical methane-seawater equilibrium on higher pressure side until all hydrates were dissociated. These post-depressurization PT equilibriums were used to estimate the enthalpy of dissociation of methane hydrates from seawater and a consolidated core as 54.774 kJ/mole. The microscopic visualization of time-resolved 3-dimensional (3-D) growth of individual tetrahydrofuran hydrates and methane hydrates formed within a porous media was performed using synchrotron X-ray computed microtomography. Tomographic data were acquired where ˜1200 X-ray images were recorded while rotating the sample tube from 0-180° at the X2B beamline, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL). Each tomogram was reconstructed for 2-dimensional cross-sectional images which were compiled to generate 3-D volume. The images of hydrate patches, formed from excess tetrahydrofuran in aqueous solutions, show random nucleation and growth concomitant with grain movement but independent of container-wall effect. Away from grain surfaces, hydrate surface curvature was convex showing that liquid, not hydrate, was the wetting phase, similar to ice growth in porous media. The time-resolved 3-D images show

  10. Computed tomographic findings in 15 dogs with eosinophilic bronchopneumopathy.

    PubMed

    Mesquita, Luis; Lam, Richard; Lamb, Christopher R; McConnell, J Fraser

    2015-01-01

    Eosinophilic bronchopneumopathy is a disease characterized by the infiltration of the lung and bronchial mucosa by eosinophils. The aim of the present study was to describe the CT findings in a large series of dogs with confirmed diagnosis of eosinophilic bronchopneumopathy. Computed tomographic scans of 15 dogs with confirmed diagnosis of eosinophilic bronchopneumopathy were evaluated retrospectively by two boarded radiologists who reached a consensus. Abnormalities were identified in 14/15 (93%) dogs, including pulmonary parenchymal abnormalities in 14/15 (93%) dogs, bronchial wall thickening in 13 (87%) dogs, which was considered marked in eight (53%), plugging of the bronchial lumen by mucus/debris in 11 (73%) dogs, and bronchiectasis in nine (60%) dogs. Pulmonary nodules were identified in 5/15 (33%) dogs including one dog with a mass. All dogs with a nodular lung pattern had additional abnormalities. Lymphadenopathy was present in 10 dogs (67%). Lesions associated with eosinophilic bronchopneumopathy are variable and heterogeneous and encompass a wider variety of computed tomographic features than reported previously. Computed tomographic images were abnormal in the majority of affected dogs, hence CT is a useful modality to characterize the nature and distribution of thoracic lesions in dogs with eosinophilic bronchopneumopathy. PMID:25124052

  11. X-ray Photon Counting Using 100 MHz Ready-Made Silicon P-Intrinsic-N X-ray Diode and Its Application to Energy-Dispersive Computed Tomography

    NASA Astrophysics Data System (ADS)

    Kodama, Hajime; Watanabe, Manabu; Sato, Eiichi; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-07-01

    X-ray photons are directly detected using a 100 MHz ready-made silicon P-intrinsic-N X-ray diode (Si-PIN-XD). The Si-PIN-XD is shielded using an aluminum case with a 25-µm-thick aluminum window and a BNC connector. The photocurrent from the Si-PIN-XD is amplified by charge sensitive and shaping amplifiers, and the event pulses are sent to a multichannel analyzer (MCA) to measure X-ray spectra. At a tube voltage of 90 kV, we observe K-series characteristic X-rays of tungsten. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by linear scanning at a tube current of 2.0 mA. The exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. At a tube voltage of 90 kV, the maximum count rate is 150 kcps. We carry out PC-CT using gadolinium media and confirm the energy-dispersive effect with changes in the lower level voltage of the event pulse using a comparator.

  12. X-ray computed tomography system for laboratory small-object imaging: Enhanced tomography solutions.

    PubMed

    Kharfi, F; Yahiaoui, M L; Boussahoul, F

    2015-07-01

    A portable X-ray tomography system has been installed and actually being tested at our medical imaging laboratory. This tomography system employs a combination of scintillator screen and CCD camera as image detector. The limit of spatial resolution of 290 μm of this imaging system is determined by the establishment of its modulation transfer function (MTF). In this work, we present attempts to address some issues such as limited resolution and low contrast through the development of affordable post-acquisition solutions based on the application of super-resolution method (projection onto convex sets, POCS) to create new projections set enabling the reconstruction of an improved 3D image in terms of contrast, resolution and noise. In addition to small-object examination, this tomography system is used for hands-on training activities involving students and scientists. PMID:25817383

  13. Flood, Seismic or Volcanic Deposits? New Insights from X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Van Daele, M. E.; Moernaut, J.; Vermassen, F.; Llurba, M.; Praet, N.; Strupler, M. M.; Anselmetti, F.; Cnudde, V.; Haeussler, P. J.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    Event deposits, such as e.g. turbidites incorporated in marine or lacustrine sediment sequences, may be caused by a wide range of possible triggering processes: failure of underwater slopes - either spontaneous or in response to earthquake shaking, hyperpycnal flows and floods, volcanic processes, etc. Determining the exact triggering process remains, however, a major challenge. Especially when studying the event deposits on sediment cores, which typically have diameters of only a few cm, only a small spatial window is available to analyze diagnostic textural and facies characteristics. We have performed X-ray CT scans on sediment cores from Chilean, Alaskan and Swiss lakes. Even when using relatively low-resolution CT scans (0.6 mm voxel size), many sedimentary structures and fabrics that are not visible by eye, are revealed. For example, the CT scans allow to distinguish tephra layers that are deposited by fall-out, from those that reached the basin by river transport or mud flows and from tephra layers that have been reworked and re-deposited by turbidity currents. The 3D data generated by the CT scans also allow to examine relative orientations of sedimentary structures (e.g. convolute lamination) and fabrics (e.g. imbricated mud clasts), which can be used to reconstruct flow directions. Such relative flow directions allow to determine whether a deposit (e.g. a turbidite) had one or several source areas, the latter being typical for seismically triggered turbidites. When the sediment core can be oriented (e.g. using geomagnetic properties), absolute flow directions can be reconstructed. X-ray CT scanning, at different resolution, is thus becoming an increasingly important tool for discriminating the exact origin of EDs, as it can help determining whether e.g. an ash layer was deposited as fall out from an ash cloud or fluvially washed into the lake, or whether a turbidite was triggered by an earthquake or a flood.

  14. Computed tomographic evaluation of pineal calcification.

    PubMed

    Kohli, N; Rastogi, H; Bhadury, S; Tandon, V K

    1992-04-01

    A prospective study to ascertain the incidence of normally calcified pineal gland, was carried out in 1000 consecutive patients from different parts of Uttar Pradesh (India), undergoing cranial computed tomography for reasons other than a pineal or parapineal pathology. A total of 167 (16.70%) patients were found to have calcified pineals. Of these 128 were males and 39 females. The incidence rose from 1.16 per cent in the first decade to 31.88 per cent above the age of 50 yr. The percentage incidence of normal pineal calcification was lower than that seen in the Western population. No significant difference was found between men and women in any age group. Although calcification appeared as early as the first decade, this percentage was significantly lower than in the higher age groups. Significantly higher incidence rates were seen in the second decade, third decade and sixth decade onwards. PMID:1428055

  15. Lymphadenopathy in celiac disease: computed tomographic observations

    SciTech Connect

    Jones, B.; Bayless, T.M.; Fishman, E.K.; Siegelman, S.S.

    1984-06-01

    Lymphadenopathy in patients with celiac disease is generally viewed with alarm due to the association between celiac disease and intestinal lymphoma. Four patients with celiac disease are described in whom significant mesenteric and paraaortic adenopathy was demonstrated by computed tomogrophy (CT). The subsequent clinical course of these patients revealed no evidence of lymphoma. In two patients with longstanding celiac disease and recent relapse, exploratory laparotomy revealed reactive hyperplasia in the enlarged glands; in one patient this was associated with intestinal ulceration, and in the other no underlying pathology was found. Follow-up CT scans in both these patients demonstrated regression of the findings with clinical improvement. In the other two patients, CT was performed as part of the initial evaluation.

  16. A computed tomographic imaging system for experimentation

    NASA Astrophysics Data System (ADS)

    Lu, Yanping; Wang, Jue; Liu, Fenglin; Yu, Honglin

    2008-03-01

    Computed tomography (CT) is a non-invasive imaging technique, which is widely applied in medicine for diagnosis and surgical planning, and in industry for non-destructive testing (NDT) and non-destructive evaluation (NDE). So, it is significant for college students to understand the fundamental of CT. In this work, A CT imaging system named CD-50BG with 50mm field-of-view has been developed for experimental teaching at colleges. With the translate-rotate scanning mode, the system makes use of a 7.4×10 8Bq (20mCi) activity 137Cs radioactive source which is held in a tungsten alloy to shield the radiation and guarantee no harm to human body, and a single plastic scintillator + photomultitude detector which is convenient for counting because of its short-time brightness and good single pulse. At same time, an image processing software with the functions of reconstruction, image processing and 3D visualization has also been developed to process the 16 bits acquired data. The reconstruction time for a 128×128 image is less than 0.1 second. High quality images with 0.8mm spatial resolution and 2% contrast sensitivity can be obtained. So far in China, more than ten institutions of higher education, including Tsinghua University and Peking University, have already applied the system for elementary teaching.

  17. Transmission images and evaluation of tomographic imaging based scattered radiation from biological materials using 10, 15, 20 and 25 keV synchrotron X-rays: An analysis in terms of optimum energy

    SciTech Connect

    Rao, Donepudi V.; Akatsuka, Takao; Tromba, Giuliana

    2004-05-12

    Transmission images and tomographic imaging based scattered radiation is evaluated from biological materials, for example, Polyethylene, Poly carbonate, Plexiglas and Nylon using 10, 15, 20 and 25 keV synchrotron X-rays. The SYRMEP facility at Elettra,Trieste, Italy and the associated detection system has been used for the image acquisition. The scattered radiation is detected for each sample at three energies at an angle of 90 deg. using Si-Pin detector coupled to a multi-channel analyzer. The contribution of transmitted, Compton and fluorescence photons are assessed for a test phantom of small dimensions. The optimum analysis is performed with the use of the dimensions of the sample and detected radiation at various energies.

  18. Fusion imaging of fluorescent and phase-contrast x-ray computed tomography using synchrotron radiation in medical biology

    NASA Astrophysics Data System (ADS)

    Wu, Jin; Takeda, Tohoru; Lwin, Thet Thet; Sunaguchi, Naoki; Fukami, Tadanori; Yuasa, Tetsuya; Minami, Manabu; Akatsuka, Takao

    2006-08-01

    We integrated fluorescent X-ray computed tomography (FXCT) and phase-contrast X-ray computed tomography (PCCT), and the feasibility of this fusion imaging was assessed for small animals. Brain tumor model of mouse and cardiomyopathic model of hamsters were examined. The brain and heart were extracted after intravenous injection of cerebral perfusion agent 127I-IMP and myocardial fatty acid metabolic agent 127I-BMIPP, respectively. Each target organ was fixed by formalin for FXCT and PCCT. Images were obtained three-dimensionally (3D), and the surface contour of brain and heart were determined from 3D-image after re-sampling for the description with the same spatial resolution. These images were fused interactively on displayed images by 3D image manipulation software. In FXCT, cerebral perfusion image with IMP and fatty acid metabolic image with BMIPP were clearly demonstrated at 0.5 mm and 0.2 mm spatial resolution, respectively. PCCT image with 0.03 mm spatial resolution depicted clearly the morphological structures of brain such as cerebral cortex, hippocampus, lateral ventricle and cerebellum, and for heart such as cardiac lumen, papillary muscle, left and right ventricle. On fusion image, localization and degree of abnormality of cerebral perfusion and myocardial fatty acid metabolism were easily recognized. Our results suggested that the integration of FXCT and PCCT is very useful to understand biological state corresponding to its anatomical localization even in small animal.

  19. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Melli, Seyed Ali; Wahid, Khan A.; Babyn, Paul; Montgomery, James; Snead, Elisabeth; El-Gayed, Ali; Pettitt, Murray; Wolkowski, Bailey; Wesolowski, Michal

    2016-01-01

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas-Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  20. Multiple dispersed phases in a high-strength low-carbon steel: An atom-probe tomographic and synchrotron X-ray diffraction study

    SciTech Connect

    Mulholland, Michael D.; Seidman, David N.

    2009-06-12

    The co-precipitation of Cu, M{sub 2}C (where M is any combination of Cr, Mo or Ti) and austenite (face-centered cubic) is characterized for 5 h isochronal aging times by synchrotron X-ray diffraction and three-dimensional atom-probe tomography for a high-strength low-carbon steel, BlastAlloy 160. High number densities, {approx}10{sup 23} m{sup 03}, of co-located Cu and M{sub 2}C preciptates were observed. Only small austenite volume percentages (<2.1%) were measured after aging at temperatures up to 625 C for 5 h.

  1. Method for obtaining silver nanoparticle concentrations within a porous medium via synchrotron X-ray computed microtomography.

    PubMed

    Molnar, Ian L; Willson, Clinton S; O'Carroll, Denis M; Rivers, Mark L; Gerhard, Jason I

    2014-01-21

    Attempts at understanding nanoparticle fate and transport in the subsurface environment are currently hindered by an inability to quantify nanoparticle behavior at the pore scale (within and between pores) within realistic pore networks. This paper is the first to present a method for high resolution quantification of silver nanoparticle (nAg) concentrations within porous media under controlled experimental conditions. This method makes it possible to extract silver nanoparticle concentrations within individual pores in static and quasi-dynamic (i.e., transport) systems. Quantification is achieved by employing absorption-edge synchrotron X-ray computed microtomography (SXCMT) and an extension of the Beer-Lambert law. Three-dimensional maps of X-ray mass linear attenuation are converted to SXCMT-determined nAg concentration and are found to closely match the concentrations determined by ICP analysis. In addition, factors affecting the quality of the SXCMT-determined results are investigated: 1) The acquisition of an additional above-edge data set reduced the standard deviation of SXCMT-determined concentrations; 2) X-ray refraction at the grain/water interface artificially depresses the SXCMT-determined concentrations within 18.1 μm of a grain surface; 3) By treating the approximately 20 × 10(6) voxels within each data set statistically (i.e., averaging), a high level of confidence in the SXCMT-determined mean concentrations can be obtained. This novel method provides the means to examine a wide range of properties related to nanoparticle transport in controlled laboratory porous medium experiments. PMID:24354304

  2. High-Pressure X-ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature

    SciTech Connect

    Wang, Y.; Uchida, T.; Westferro, F.; Rivers, M.L.; Gebhardt, J.; Lesher, C.E.; Sutton, S.R.

    2010-07-20

    A new apparatus has been developed for microtomography studies under high pressure. The pressure generation mechanism is based on the concept of the widely used Drickamer anvil apparatus, with two opposed anvils compressed inside a containment ring. Modifications are made with thin aluminum alloy containment rings to allow transmission of x rays. Pressures up to 8 GPa have been generated with a hydraulic load of 25 T. The modified Drickamer cell is supported by thrust bearings so that the entire pressure cell can be rotated under load. Spatial resolution of the high pressure tomography apparatus has been evaluated using a sample containing vitreous carbon spheres embedded in FeS matrix, with diameters ranging from 0.01 to 0.2 mm. Spheres with diameters as small as 0.02 mm were well resolved, with measured surface-to-volume ratios approaching theoretical values. The sample was then subject to a large shear strain field by twisting the top and bottom Drickamer anvils. Imaging analysis showed that detailed microstructure evolution information can be obtained at various steps of the shear deformation, allowing strain partition determination between the matrix and the inclusions. A sample containing a vitreous Mg{sub 2}SiO{sub 4} sphere in FeS matrix was compressed to 5 GPa, in order to evaluate the feasibility of volume measurement by microtomography. The results demonstrated that quantitative inclusion volume information can be obtained, permitting in situ determination of P-V-T equation of state for noncrystalline materials.

  3. Beam hardening correction for X-ray computed tomography of heterogeneous natural materials

    NASA Astrophysics Data System (ADS)

    Ketcham, Richard A.; Hanna, Romy D.

    2014-06-01

    We present a new method for correcting beam hardening artifacts in polychromatic X-ray CT data. On most industrial CT systems, software beam-hardening correction employs some variety of linearization, which attempts to transform the polychromatic attenuation data into its monochromatic equivalent prior to image reconstruction. However, determining optimal coefficients for the transform equation is not straightforward, especially if the material is not well known or characterized, as is the usual case when imaging geological materials. Our method uses an iterative optimization algorithm to find a generalized spline-interpolated transform that minimizes artifacts as defined by an expert user. This generality accesses a richer set of linearization functions that may better accommodate the effects of multiple materials in heterogeneous samples. When multiple materials are present in the scan field, there is no single optimal correction, and the solution can vary depending on which aspects of the beam-hardening and other image artifacts the user wants to minimize. For example, the correction can be optimized to maximize the fidelity of the object outline for solid model creation rather than simply to minimize variation of CT numbers within the material. We demonstrate our method on a range of specimens of varying difficulty and complexity, with consistently positive results.

  4. Segmentation-free x-ray energy spectrum estimation for computed tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Zhang, Qiude; Niu, Tianye

    2016-03-01

    X-ray energy spectrum plays an essential role in imaging and related tasks. Due to the high photon flux of clinical CT scanners, most of the spectrum estimation methods are indirect and are usually suffered from various limitations. The recently proposed indirect transmission measurement-based method requires at least the segmentation of one material, which is insufficient for CT images of highly noisy and with artifacts. To combat for the bottleneck of spectrum estimation using segmented CT images, in this study, we develop a segmentation-free indirect transmission measurement based energy spectrum estimation method using dual-energy material decomposition. The general principle of the method is to compare polychromatic forward projection with raw projection to calibrate a set of unknown weights which are used to express the unknown spectrum together with a set of model spectra. After applying dual-energy material decomposition using high-and low-energy raw projection data, polychromatic forward projection is conducted on material-specific images. The unknown weights are then iteratively updated to minimize the difference between the raw projection and estimated projection. Both numerical simulations and experimental head phantom are used to evaluate the proposed method. The results indicate that the method provides accurate estimate of the spectrum and it may be attractive for dose calculations, artifacts correction and other clinical applications.

  5. BCL::SAXS: GPU Accelerated Debye Method for computation of Small Angle X Ray Scattering Profiles

    PubMed Central

    Putnam, Daniel K.; Weiner, Brian E.; Woetzel, Nils; Lowe, Edward W.; Meiler, Jens

    2016-01-01

    Small angle X-ray scattering (SAXS) is an experimental technique used for structural characterization of macromolecules in solution. Here, we introduce BCL::SAXS – an algorithm designed to replicate SAXS profiles from rigid protein models at different levels of detail. We first show our derivation of BCL::SAXS and compare our results with the experimental scattering profile of Hen Egg White Lysozyme. Using this protein we show how to generate SAXS profiles representing: 1) complete models, 2) models with approximated side chain coordinates, and 3) models with approximated side chain and loop region coordinates. We evaluated the ability of SAXS profiles to identify a correct protein topology from a non-redundant benchmark set of proteins. We find that complete SAXS profiles can be used to identify the correct protein by receiver operating characteristic (ROC) analysis with an area under the curve (AUC) > 99%. We show how our approximation of loop coordinates between secondary structure elements improves protein recognition by SAXS for protein models without loop regions and side chains. Agreement with SAXS data is a necessary but not sufficient condition for structure determination. We conclude that experimental SAXS data can be used as a filter to exclude protein models with large structural differences from the native. PMID:26018949

  6. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  7. Characterization of a multicomponent lithium lithiate from a combined x-ray diffraction, NMR spectroscopy, and computational approach.

    PubMed

    Pöppler, Ann-Christin; Granitzka, Markus; Herbst-Irmer, Regine; Chen, Yu-Sheng; Iversen, Bo B; John, Michael; Mata, Ricardo A; Stalke, Dietmar

    2014-11-24

    An unusual lithium lithiate [Li(diglyme)2][(diglyme)Li2(C4H3S)3], made up from three carbanions, two lithium cations, and a single donor base molecule in the anion and a single lithium cation, coordinated by two donor base molecules, is investigated in a combined study including X-ray diffraction, NMR spectroscopy and computational approaches in solution and the solid state. While the multicomponent lithiate is the only species present in the solid state, solution NMR spectroscopy and computational methods were employed to identify a second species in solution. The dimer [(diglyme)Li(C4H3S)]2 coexists with the lithiate in solution in a 1:1 ratio, the more the higher the polarity of the solvent is. Only the combination of this multitude of methods provides a firm picture of the whole. PMID:25284593

  8. Direct Numerical Simulation of Liquid Nozzle Spray with Comparison to Shadowgraphy and X-Ray Computed Tomography Experimental Results

    NASA Astrophysics Data System (ADS)

    van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis

    2014-11-01

    In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.

  9. Multiple imaging mode X-ray computed tomography for distinguishing active and inactive phases in lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Komini Babu, Siddharth; Mohamed, Alexander I.; Whitacre, Jay F.; Litster, Shawn

    2015-06-01

    This paper presents the use of nanometer scale resolution X-ray computed tomography (nano-CT) in the three-dimensional (3D) imaging of a Li-ion battery cathode, including the separate volumes of active material, binder plus conductive additive, and pore. The different high and low atomic number (Z) materials are distinguished by sequentially imaging the lithium cobalt oxide electrode in absorption and then Zernike phase contrast modes. Morphological parameters of the active material and the additives are extracted from the 3D reconstructions, including the distribution of contact areas between the additives and the active material. This method could provide a better understanding of the electric current distribution and structural integrity of battery electrodes, as well as provide detailed geometries for computational models.

  10. Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kashkooli, Ali Ghorbani; Farhad, Siamak; Lee, Dong Un; Feng, Kun; Litster, Shawn; Babu, Siddharth Komini; Zhu, Likun; Chen, Zhongwei

    2016-03-01

    A multiscale platform has been developed to model lithium ion battery (LIB) electrodes based on the real microstructure morphology. This multiscale framework consists of a microscale level where the electrode microstructure architecture is modeled and a macroscale level where discharge/charge is simulated. The coupling between two scales are performed in real time unlike using common surrogate based models for microscale. For microscale geometry 3D microstructure is reconstructed based on the nano-scale X-ray computed tomography data replacing typical computer generated microstructure. It is shown that this model can predict the experimental performance of LiFePO4 (LFP) cathode at different discharge rates more accurate than the conventional homogenous models. The approach employed in this study provides valuable insight into the spatial distribution of lithium -ion inside the real microstructure of LIB electrodes. The inhomogenous microstructure of LFP causes a wider range of physical and electrochemical properties in microscale compared to homogenous models.

  11. Anode optimization for miniature electronic brachytherapy X-ray sources using Monte Carlo and computational fluid dynamic codes.

    PubMed

    Khajeh, Masoud; Safigholi, Habib

    2016-03-01

    A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the minimum X-ray attenuation occurred. Second optimization was done on the selection of the anode shape based on the Monte Carlo in water TG-43U1 anisotropy function. This optimization was carried out to get the dose anisotropy functions closer to unity at any angle from 0° to 170°. Three anode shapes including cylindrical, spherical, and conical were considered. Moreover, by Computational Fluid Dynamic (CFD) code the optimal target-buffer shape and different nozzle shapes for electronic brachytherapy were evaluated. The characterization criteria of the CFD were the minimum temperature on the anode shape, cooling water, and pressure loss from inlet to outlet. The optimal anode was conical in shape with a conical nozzle. Finally, the TG-43U1 parameters of the optimal source were compared with the literature. PMID:26966563

  12. 3D Algebraic Iterative Reconstruction for Cone-Beam X-Ray Differential Phase-Contrast Computed Tomography

    PubMed Central

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications. PMID:25775480

  13. Observations of pore-scale growth patterns of carbon dioxide hydrate using X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Ta, Xuan Hien; Yun, Tae Sup; Muhunthan, Balasingam; Kwon, Tae-Hyuk

    2015-03-01

    Natural and artificial gas hydrates with internal pores of nano to centimeters and weak grain-cementation have been widely reported, while the detailed formation process of grain-cementing hydrates remains poorly identified. Pore-scale morphology of carbon dioxide (CO2) hydrate formed in a partially brine-saturated porous medium was investigated via X-ray computed microtomography (X-ray CMT). Emphasis is placed on the pore-scale growth patterns of gas hydrate, including the growth of dendritic hydrate crystals on preformed hydrate and water-wetted grains, porous nature of the hydrate phase, volume expansion of more than 200% during the water-to-hydrate phase transformation, preference of unfrozen water wetting hydrophilic minerals, and the relevance to a weak cementation effect on macroscale physical properties. The presented pore-scale morphology and growth patterns of gas hydrate are expected in natural sediment settings where free gas is available for hydrate formation, such as active gas vents, gas seeps, mud volcanoes, permafrost gas hydrate provinces, and CO2 injected formation for the sake of geologic carbon storage; and in laboratory hydrate samples synthesized from partially brine-saturated sediments or formed from water-gas interfaces.

  14. Anode optimization for miniature electronic brachytherapy X-ray sources using Monte Carlo and computational fluid dynamic codes

    PubMed Central

    Khajeh, Masoud; Safigholi, Habib

    2015-01-01

    A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the minimum X-ray attenuation occurred. Second optimization was done on the selection of the anode shape based on the Monte Carlo in water TG-43U1 anisotropy function. This optimization was carried out to get the dose anisotropy functions closer to unity at any angle from 0° to 170°. Three anode shapes including cylindrical, spherical, and conical were considered. Moreover, by Computational Fluid Dynamic (CFD) code the optimal target-buffer shape and different nozzle shapes for electronic brachytherapy were evaluated. The characterization criteria of the CFD were the minimum temperature on the anode shape, cooling water, and pressure loss from inlet to outlet. The optimal anode was conical in shape with a conical nozzle. Finally, the TG-43U1 parameters of the optimal source were compared with the literature. PMID:26966563

  15. Experimental two-phase flow measurement using ultra fast limited-angle-type electron beam X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Bieberle, M.; Fischer, F.; Schleicher, E.; Koch, D.; Menz, H.-J.; Mayer, H.-G.; Hampel, U.

    2009-09-01

    An experimental evaluation of a novel limited-angle-type ultra fast electron beam X-ray computed tomography approach for the visualization and measurement of a gas-liquid two-phase flow is reported here. With this method, a simple linear electron beam scan is used to produce instantaneous radiographic views of a two-phase flow in a pipe segment of a flow loop. Electron beam scanning can be performed very rapidly, thus a frame rate of 5 kHz is achieved. Radiographic projections are recorded by a very fast detector arc made of zink-cadmium-telluride elements. This detector records the X-ray radiation passing through the object with a sampling rate of 1 MHz. The reconstruction of slice images from the recorded detector data is a limited-angle problem since in our scanning geometry the object’s Radon space is only incompletely sampled. It was investigated here, whether this technology is able to produce accurate gas fraction data from bubbly two-phase flow. Experiments were performed both on a Perspex phantom with known geometry and an experimental flow loop operated under vacuum conditions in an electron beam processing box.

  16. New X-ray Computed Tomography Capability for Pore-Scale Flow and Transport Experimentation at EMSL

    NASA Astrophysics Data System (ADS)

    Hess, N. J.; White, T. A.; Varga, T.; Zhang, C.; Oostrom, M.; Wietsma, T. W.

    2010-12-01

    A new x-ray computed tomography capability for flow and transport research of geologic cores at the pore scale is now available to users at the U.S. Department of Energy’s EMSL, a national scientific laboratory located at Pacific Northwest National Laboratory. The new capability consists of a NIKON Metris 225-320 LC with three interchangeable static and rotating targets generating variable 225-320 kV x-ray energies and spot sizes between 3 and 10 microns. This system was specifically designed to image the pore structure and connectivity of large diameter cores of loosely consolidated sediments typical of the vadose zone. The high energies of the system will permit CT imaging of cores up to 15 cm in diameter with a spatial resolution between 12 and 75 microns dependent on the diameter of the core. Examples of time-lapse imaging will be presented as well dual energy capability for differentiating air versus fluid filled pores. Additional in situ tomography capabilities will be demonstrated, and the EMSL user access via peer-review proposal process will be discussed

  17. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography.

    PubMed

    Wang, Yong; Yue, Wenzheng; Zhang, Mo

    2016-01-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image. PMID:27271330

  18. Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications

    NASA Astrophysics Data System (ADS)

    Hiller, Jochen; Maisl, Michael; Reindl, Leonard M.

    2012-08-01

    This paper presents physical and metrological characterization measurements conducted for an industrial x-ray micro-computed tomography (CT) system. As is well known in CT metrology, many factors, e.g., in the scanning and reconstruction process, the image processing, and the 3D data evaluation, influence the dimensional measurement properties of the system as a whole. Therefore, it is important to know what leads to, and what are the consequences of, e.g., a geometrical misalignment of the scanner system, image unsharpness (blurring), or noise or image artefacts. In our study, the two main components of a CT scanner, i.e. the x-ray tube and the flat-panel detector, are characterized. The contrast and noise transfer property of the scanner is obtained using image-processing methods based on linear systems theory. A long-term temperature measurement in the scanner cabinet has been carried out. The dimensional measurement property has been quantified by using a calibrated ball-bar and uncertainty budgeting. Information about the performance of a CT scanner system in terms of contrast and noise transmission and sources of geometrical errors will help plan CT scans more efficiently. In particular, it will minimize the user's influence by a systematic line of action, taking into account the physical and technical limitations and influences on dimensional measurements.

  19. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Yue, Wenzheng; Zhang, Mo

    2016-06-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image.

  20. X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer

    NASA Astrophysics Data System (ADS)

    Kojima, Chie; Umeda, Yasuhito; Ogawa, Mikako; Harada, Atsushi; Magata, Yasuhiro; Kono, Kenji

    2010-06-01

    Gold nanoparticles (Au NPs) are a potential x-ray computed tomography (CT) contrast agent. A biocompatible and bioinactive surface is necessary for application of gold nanoparticle to CT imaging. Polyethylene glycol (PEG)-attached dendrimers have been used as a drug carrier with long blood circulation. In this study, the Au NPs were grown in the PEGylated dendrimer to produce a CT contrast agent. The Au NPs were grown by adding gold ions and ascorbic acid at various equivalents to the Au NP-encapsulated dendrimer solution. Both size and surface plasmon absorption of the grown Au NPs increased with adding a large number of gold ions. The x-ray attenuation of the Au NPs also increased after the seeded growth. The Au NPs grown in the PEG-attached dendrimer at the maximum under our conditions exhibited a similar CT value to a commercial iodine agent, iopamidol, in vitro. The Au NP-loaded PEGylated dendrimer and iopamidol were injected into mice and CT images were obtained at different times. The Au NP-loaded PEGylated dendrimer achieved a blood pool imaging, which was greater than a commercial iodine agent. Even though iopamidol was excreted rapidly, the PEGylated dendrimer loading the grown Au NP was accumulated in the liver.

  1. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography

    PubMed Central

    Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2015-01-01

    Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606  μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079

  2. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography.

    PubMed

    Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2015-01-01

    A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography ([Formula: see text]) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In [Formula: see text], the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer-Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to [Formula: see text] in SS-OCT. A correlation between [Formula: see text] and SS-OCT was found regarding lesion depth ([Formula: see text], [Formula: see text]) and also surface layer thickness ([Formula: see text], [Formula: see text]). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution [Formula: see text] without the use of x-ray. PMID:26158079

  3. Permeability of laboratory-formed methane-hydrate-bearing sand: Measurements and observations using x-ray computed tomography

    SciTech Connect

    Kneafsey, T. J.; Seol, Y.; Gupta, A.; Tomutsa, L.

    2010-09-15

    Methane hydrate was formed in two moist sands and a sand/silt mixture under a confining stress in an X-ray-transparent pressure vessel. Three initial water saturations were used to form three different methane-hydrate saturations in each medium. X-ray computed tomography (CT) was used to observe location-specific density changes caused by hydrate formation and flowing water. Gas-permeability measurements in each test for the dry, moist, frozen, and hydrate-bearing states are presented. As expected, the effective permeabilities (intrinsic permeability of the medium multiplied by the relative permeability) of the moist sands decreased with increasing moisture content. In a series of tests on a single sample, the effective permeability typically decreased as the pore space became more filled, in the order of dry, moist, frozen, and hydrate-bearing. In each test, water was flowed through the hydrate-bearing medium and we observed the location-specific changes in water saturation using CT scanning. We compared our data to a number of models, and our relative permeability data compare most favorably with models in which hydrate occupies the pore bodies rather than the pore throats. Inverse modeling (using the data collected from the tests) will be performed to extend the relative permeability measurements.

  4. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography

    PubMed Central

    Wang, Yong; Yue, Wenzheng; Zhang, Mo

    2016-01-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image. PMID:27271330

  5. Estimate of transport properties of porous media by microfocus X-ray computed tomography and random walk simulation

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Watanabe, Yoshinori

    2002-12-01

    The transport properties (porosity, surface-to-volume ratio of the pore space, diffusion coefficient, and permeability) of a porous medium were calculated by image analysis and random walk simulation using the digital image data on the pore structure of a bead pack (diameter 2.11 mm). A theory developed for laboratory experiments of nuclear magnetic resonance was applied to the random walk simulation. The three-dimensional data set (2563 voxels) of the bead pack was obtained by microfocus X-ray computed tomography at a spatial resolution of 0.053 mm. An original cluster labeling program, Kai3D.m, was used to estimate the porosity and surface-to-volume ratio. The surface-to-volume ratio and diffusion coefficient were calculated by an original random walk program, RW3D.m. The calculations were completed on a personal computer in reasonable time (≤13 hours). The permeability was estimated by substituting the results of Kai3D.m and RW3D.m into the Kozeny-Carman equation. The results for the porosity, surface-to-volume ratio, and diffusion coefficient were within 5-8% of measured values, whereas the calculated permeability involved an error of 35%. The promising results of the present study indicate that it is possible to estimate the permeability of porous media with reasonable accuracy by the diffusometry and random walk simulation. Because, in principle, the diffusometry could be performed by proton nuclear magnetic resonance logging, the method of estimating the transport properties presented here is applicable to the in situ measurement of strata. We open the original Mathematica® programs (Kai3D.m and RW3D.m) used to calculate the porosity, surface-to-volume ratio, and diffusion coefficient at the authors' home page to facilitate the personal-computer-based study of porous media using X-ray computed tomography.

  6. Small-angle scattering computed tomography (SAS-CT) using a Talbot-Lau interferometer and a rotating anode x-ray tube: theory and experiments

    PubMed Central

    Chen, Guang-Hong; Bevins, Nicholas; Zambelli, Joseph; Qi, Zhihua

    2013-01-01

    X-ray differential phase contrast imaging methods, including projection imaging and the corresponding computed tomography (CT), have been implemented using a Talbot interferometer and either a synchrotron beam line or a low brilliance x-ray source generated by a stationary-anode x-ray tube. From small-angle scattering events which occur as an x-ray propagates through a medium, a signal intensity loss can be recorded and analyzed for an understanding of the micro-structures in an image object. This has been demonstrated using a Talbot-Lau interferometer and a stationary-anode x-ray tube. In this paper, theoretical principles and an experimental implementation of the corresponding CT imaging method are presented. First, a line integral is derived from analyzing the cross section of the small-angle scattering events. This method is referred to as small-angle scattering computed tomography (SAS-CT). Next, a Talbot-Lau interferometer and a rotating-anode x-ray tube were used to implement SAS-CT. A physical phantom and human breast tissue sample were used to demonstrate the reconstructed SAS-CT image volumes. PMID:20588425

  7. Pineal region tumors: computed tomographic-pathologic spectrum

    SciTech Connect

    Futrell, N.N.; Osborn, A.G.; Cheson. B.D.

    1981-11-01

    While several computed tomographic (CT) studies of posterior third ventricular neoplasms have included descriptions of pineal tumors, few reports have concentrated on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attentuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible and is recommended for treatment planning.

  8. Computed tomographic spectrum of intracranial mycosis: correlation with histopathology

    SciTech Connect

    Whelan, M.A.; Stern, J.; deNapoli, R.A.

    1981-12-01

    Four cases of intracerebral fungal infection are reviewed. The clinical course is outlined, and the computed tomographic (CT) characteristics are analyzed in light of known pathological data. The CT appearance of intracranial mycosis is dependent on the type of fungus as well as the dominant infecting form, i.e., yeast or hyphae. The hyphal form leads predominantly to a CT pattern consistent with vascular occlusion and secondary abscess formation; the yeast form generally results in noncaseating granulomas, which appear on CT scan as nodular enhancing lesions. If the patient survives the acute infective process, these fungal lesions undergo a prolonged subacute phase, and may eventually calcify.

  9. The UF series of tomographic computational phantoms of pediatric patients

    SciTech Connect

    Lee, Choonik; Williams, Jonathan L.; Lee, Choonsik; Bolch, Wesley E.

    2005-12-15

    Two classes of anthropomorphic computational phantoms exist for use in Monte Carlo radiation transport simulations: tomographic voxel phantoms based upon three-dimensional (3D) medical images, and stylized mathematical phantoms based upon 3D surface equations for internal organ definition. Tomographic phantoms have shown distinct advantages over the stylized phantoms regarding their similarity to real human anatomy. However, while a number of adult tomographic phantoms have been developed since the early 1990s, very few pediatric tomographic phantoms are presently available to support dosimetry in pediatric diagnostic and therapy examinations. As part of a larger effort to construct a series of tomographic phantoms of pediatric patients, five phantoms of different ages (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) have been constructed from computed tomography (CT) image data of live patients using an IDL-based image segmentation tool. Lungs, bones, and adipose tissue were automatically segmented through use of window leveling of the original CT numbers. Additional organs were segmented either semiautomatically or manually with the aid of both anatomical knowledge and available image-processing techniques. Layers of skin were created by adding voxels along the exterior contour of the bodies. The phantoms were created from fused images taken from head and chest-abdomen-pelvis CT exams of the same individuals (9-month and 4-year phantoms) or of two different individuals of the same sex and similar age (8-year, 11-year, and 14-year phantoms). For each model, the resolution and slice positions of the image sets were adjusted based upon their anatomical coverage and then fused to a single head-torso image set. The resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year, and 14-year are 0.43x0.43x3.0 mm, 0.45x0.45x5.0 mm, 0.58x0.58x6.0 mm, 0.47x0.47x6.00 mm, and 0.625x0.625x6.0 mm, respectively. While organ masses can be

  10. Computed tomographic features of fibrous dysplasia of maxillofacial region

    PubMed Central

    Karjodkar, Freny R; Umarji, Hemant R

    2011-01-01

    Purpose This study was to find the computed tomographic features of fibrous dysplasia of the maxillofacial region. Materials and Methods All eight cases included in the study reported either to Government Dental College and Hospital or Nair Hospital Dental College, Mumbai between 2003 and 2009. The patients were prescribed computed tomogram in addition to conventional radiographs of maxillofacial region which were studied for characteristic features of fibrous dysplasia. The diagnosis of fibrous dysplasia was confirmed by histopathological report. Results All cases showed the ill-defined margins of lesions except in the region where the lesions were extending to cortex of the involved bone. Internal structure of all cases showed ground glass appearance. Four cases of maxillary lesion showed the displacement of maxillary sinus maintaining the shape of maxillary sinus. Two cases showed complete obliteration of maxillary sinus. Displacement of inferior alveolar canal did not follow any typical pattern in any of the cases but was displaced in different directions. Conclusion The craniofacial type of fibrous dysplasia is as common as fibrous dysplasia of jaw. The margins, extent, internal structure and effect on surrounding structure are well detected on computed tomographic images. PMID:21977470

  11. X-ray Computed Tomography and Stereo-Radiographic Inspection Results of the Office of Emergency Response (NA-42) Test Object

    SciTech Connect

    Gibbs, K. N.; Jones, J. D.

    2005-10-10

    This report has documented the worked performed in the x-ray computed tomographic and stereo-radiographic inspection of the NA-42 test object. We have described the method SRNL used to obtain high resolution (80 micron) images of the test object using PSL plates. The PSL plates are an excellent alternative to x-ray film and they eliminate the need for the wet chemistry processing and the disposal of the chemical wastes. The PSL plates were used to provide an overall panoramic view of the large test object. These images were useful in planning other inspection techniques. In addition, a customized digital radiography system with an 85-inch wide field-of-view was assembled to support the data collection for computed tomography. The trade-offs between resolution and data collection and CT reconstruction time were explained in detail. The CT projections and reconstructed slices of the test object were included in the report as static images and ''movies'' were also provided on the attached CD-ROM. The combination of the projections and the CT slices provide a thorough understanding of the internal structure of the device. The full projection CT results were also used as a ''bench mark'' for other techniques investigated during this work, such as the limited view CT and stereo-radiographic work. The limited view CT results were obtained by parsing the full data set into subsets with larger angular intervals and thus fewer projections. These subsets were then processed with the CT reconstruction software. The results of reconstructions from 720 down to 10 projections were compared. Based on these results, we concluded that 20 to 30 projections were adequate. These results were then used to predict the required data collection time for higher resolution systems. It was concluded that from a data collection time basis, limited view CT could provide the desired resolution (1 mm) within a reasonable period of time. However, there were other considerations related to actual

  12. Development and operation of a prototype cone-beam computed tomography system for X-ray medical imaging

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Cha, Bo Kyung; Kim, Ryun Kyung; Kim, Cho-Rong; Yang, Keedong; Huh, Young; Jeon, Sungchae; Park, Justin C.; Song, Bongyong; Song, William Y.

    2014-01-01

    This paper describes the development of a prototype cone-beam computed tomography (CBCT) system for clinical use. The overall system design in terms of physical characteristics, geometric calibration methods, and three-dimensional image reconstruction algorithms are described. Our system consists of an X-ray source and a large-area flat-panel detector with the axial dimension large enough for most clinical applications when acquired in a full gantry rotation mode. Various elaborate methods are applied to measure, analyze and calibrate the system for imaging. The electromechanical and the radiographic subsystems through the synchronized control include: gantry rotation and speed, tube rotor, the high-frequency generator (kVp, mA, exposure time and repetition rate), and the reconstruction server (imaging acquisition and reconstruction). The operator can select between analytic and iterative reconstruction methods. Our prototype system contains the latest hardware and reconstruction algorithms and, thus, represents a step forward in CBCT technology.

  13. Analysis of intraindividual and intraspecific variation in semicircular canal dimensions using high-resolution x-ray computed tomography.

    PubMed

    Welker, Kelli L; Orkin, Joseph D; Ryan, Timothy M

    2009-10-01

    The semicircular canal system tracks head rotation and provides sensory input for the reflexive stabilization of gaze and posture. The purpose of this study was to investigate the intraspecific and intraindividual variation in the size of the three semicircular canals. The right and left temporal bones were extracted from 31 individuals of the short-tailed shrew (Blarina brevicauda) and scanned on a high-resolution x-ray computed tomography system. The radius of curvature was calculated for each of the three semicircular canals for each side. Paired t-tests and independent sample t-tests indicated no significant differences in canal size between the right and left canals of the same individuals or between those of males and females of the same species. Pearson product moment correlation analyses demonstrated that there was no significant correlation between canal size and body mass in this sample. PMID:19619167

  14. Computer-Controlled Cylindrical Polishing Process for Development of Grazing Incidence Optics for Hard X-Ray Region

    NASA Technical Reports Server (NTRS)

    Khan, Gufran Sayeed; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    The presentation includes grazing incidence X-ray optics, motivation and challenges, mid spatial frequency generation in cylindrical polishing, design considerations for polishing lap, simulation studies and experimental results, future scope, and summary. Topics include current status of replication optics technology, cylindrical polishing process using large size polishing lap, non-conformance of polishin lap to the optics, development of software and polishing machine, deterministic prediction of polishing, polishing experiment under optimum conditions, and polishing experiment based on known error profile. Future plans include determination of non-uniformity in the polishing lap compliance, development of a polishing sequence based on a known error profile of the specimen, software for generating a mandrel polishing sequence, design an development of a flexible polishing lap, and computer controlled localized polishing process.

  15. Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan

    NASA Astrophysics Data System (ADS)

    Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis

    2012-12-01

    We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.

  16. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging

    PubMed Central

    2013-01-01

    Background Gastric cancer is 2th most common cancer in China, and is still the second most common cause of cancer-related death in the world. Successful development of safe and effective nanoprobes for in vivo gastric cancer targeting imaging is a big challenge. This study is aimed to develop folic acid (FA)-conjugated silica coated gold nanoclusters (AuNCs) for targeted dual-modal fluorescent and X-ray computed tomography imaging (CT) of in vivo gastric cancer cells. Method AuNCs were prepared, silica was coated on the surface of AuNCs, then folic acid was covalently anchored on the surface of AuNCs, resultant FA-conjugated AuNCs@SiO2 nanoprobes were investigated their cytotoxicity by MTT method, and their targeted ability to FR(+) MGC803 cells and FR(−) GES-1 cells. Nude mice model loaded with MGC803 cells were prepared, prepared nanoprobes were injected into nude mice via tail vein, and then were imaged by fluorescent and X-ray computed tomography (CT) imaging. Results FA-conjugated AuNCs@SiO2 nanoprobes exhibited good biocompatibility, and could target actively the FR(+) MGC-803 cells and in vivo gastric cancer tissues with 5 mm in diameter in nude mice models, exhibited excellent red emitting fluorescence imaging and CT imaging. Conclusion The high-performance FA-conjugated AuNCs@SiO2 nanoprobes can target in vivo gastric cancer cells, can be used for fluorescent and CT dual-mode imaging, and may own great potential in applications such as targeted dual-mode imaging of in vivo early gastric cancer and other tumors with FR positive expression in near future. PMID:23718865

  17. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  18. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  19. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  20. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  1. Imaging Systems for Medical Diagnosis: Fundamentals and Technical Solutions - X-Ray Diagnostics- Computed Tomography - Nuclear Medical Diagnostics - Magnetic Resonance Imaging - Ultrasound Technology

    NASA Astrophysics Data System (ADS)

    Krestel, Erich

    1990-10-01

    Erick Krestel, Editor Imaging Systems for Medical Diagnostics This book provides physicians and clinical physicists with detailed information on todya's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in x-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. Overview of Contents Physiology of vision Image quality X-ray and gamma radiation X-ray diagnostics Computed tomography Nuclear medical diagnostics Magnetic resonance imaging Sonography Biomagnetic diagnostics

  2. Development of the two Korean adult tomographic computational phantoms for organ dosimetry

    SciTech Connect

    Lee, Choonsik; Lee, Choonik; Park, Sang-Hyun; Lee, Jai-Ki

    2006-02-15

    stylized ORNL phantom. The armless KTMAN-1 can be applied to dosimetry for computed tomography or lateral x-ray examination, while the whole body KTMAN-2 can be used for radiation protection dosimetry.

  3. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size

  4. Using Combined X-ray Computed Tomography and Acoustic Resonance to Understand Supercritical CO2 Behavior in Fractured Sandstone

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Nakagawa, S.

    2015-12-01

    Distribution of supercritical (sc) CO2 has a large impact on its flow behavior as well as on the properties of seismic waves used for monitoring. Simultaneous imaging of scCO2 distribution in a rock core using X-ray computed tomography (CT) and measurements of seismic waves in the laboratory can help understand how the distribution evolves as scCO2 invades through rock, and the resulting seismic signatures. To this end, we performed a series of laboratory scCO2 core-flood experiments in intact and fractured anisotropic Carbon Tan sandstone samples. In these experiments, we monitored changes in the CO2 saturation distribution and sonic-frequency acoustic resonances (yielding both seismic velocity and attenuation) over the course of the floods. A short-core resonant bar test system (Split-Hopkinson Resonant Bar Apparatus) custom fit into a long X-ray transparent pressure vessel was used for the seismic measurements, and a modified General Electric medical CT scanner was used to acquire X-ray CT data from which scCO2 saturation distributions were determined. The focus of the experiments was on the impact of single fractures on the scCO2 distribution and the seismic properties. For this reason, we examined several cases including 1. intact, 2. a closely mated fracture along the core axis, 3. a sheared fracture along the core axis (both vertical and horizontal for examining the buoyancy effect), and 4. a sheared fracture perpendicular to the core axis. For the intact and closely mated fractured cores, Young's modulus declined with increasing CO2 saturation, and attenuation increased up to about 15% CO2 saturation after which attenuation declined. For cores having wide axial fractures, the Young's modulus was lower than for the intact and closely mated cases, however did not change much with CO2 pore saturation. Much lower CO2 pore saturations were achieved in these cases. Attenuation increased more rapidly however than for the intact sample. For the core

  5. X-Ray tomography with micrometer spatial resolution

    NASA Astrophysics Data System (ADS)

    Raven, Carsten; Snigirev, Anatoly A.; Koch, Andreas; Snigireva, Irina; Kohn, Victor

    1997-10-01

    3D computed tomographic images with micrometer resolution were made in phase-contrast mode with high energy x-rays at a third generation synchrotron source. The phase-contrast technique enables one to obtain information not only about the amplitude of the wave field behind the object and thus about the absorption, but also about the refractive index distribution inside the sample. Increasing the x-ray energy from the soft x-ray region up to 10-60 keV simplifies the experimental setup and opens the possibility to study organic samples at room-temperature and under normal pressure conditions. The projection data is recorded with a fast, high-resolution x-ray camera consisting of a 5 micrometers thin YAG scintillator crystal, a visible light microscope optics and a slow scan 1k X 1k CCD camera. The spatial resolution of phase-contrast microtomography is currently limited by the resolution of the x-ray detector to about 1-2 micrometers . First applications in biology and geophysics are shown.

  6. X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites

    NASA Astrophysics Data System (ADS)

    Fan, Shuai; Li, Mo

    2015-01-01

    Concrete cracking and deterioration can potentially be addressed by innovative self-healing cementitious materials, which can autogenously regain transport properties and mechanical characteristics after the damage self-healing process. For the development of such materials, it is crucial, but challenging, to precisely characterize the extent and quality of self-healing due to a variety of factors. This study adopted x-ray computed microtomography (μCT) to derive three-dimensional morphological data on microcracks before and after healing in engineered cementitious composite (ECC). Scanning electron microscope and energy dispersive x-ray spectroscopy were also used to morphologically and chemically analyze the healing products. This work showed that the evolution of the microcrack 3D structure due to self-healing in cementitious materials can be directly and quantitatively characterized by μCT. A detailed description of the μCT image analysis method applied to ECC self-healing was presented. The results revealed that the self-healing extent and rate strongly depended on initial surface crack width, with smaller crack width favoring fast and robust self-healing. We also found that the self-healing mechanism in cementitious materials is dependent on crack depth. The region of a crack close to the surface (from 0 to around 50-150 μm below the surface) can be sealed quickly with crystalline precipitates. However, at greater depths the healing process inside the crack takes a significantly longer time to occur, with healing products more likely resulting from continued hydration and pozzolanic reactions. Finally, the μCT method was compared with other self-healing characterization methods, with discussions on its importance in generating new scientific knowledge for the development of robust self-healing cementitious materials.

  7. The nondestructive evaluation of high temperature conditioned concrete in conjunction with acoustic emission and x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Hou, Tsung-Chin; Lin, Li-Chiang; Chen, Gwan-Ying; Pan, Huang-Hsing

    2016-04-01

    Portland Cement Concrete plays a vital part of protecting structural rebars or steels when high-temperature fire incidents occur, that induces loss of evaporate water, dehydration of CH, and deconstruction of C-S-H. The objective of the study was to assess fire-damaged concrete in conjunction with nondestructive evaluation methods of acoustic emission, visual inspections, and X-ray computed tomography. The experimental program was to mix an Ordinary Portland Cement concrete firstly. Concrete cylinders with twenty-day moisture cure were treated in a furnace with 400 and 600°C for one hour. After temperature is cooled down, the concrete cylinders were brought to air or moisture re-curing for ten days. Due to the incident of the furnace, acoustic emission associated with splitting tensile strength test was not able to continue. Future efforts are planned to resume this unfinished task. However, two proposed tasks were executed and completed, namely visual inspections and voids analysis on segments obtained from X-ray CT facility. Results of visual inspections on cross-sectional and cylindrical length of specimens showed that both aggregates and cement pastes turned to pink or red at 600°C. More surface cracks were generated at 600°C than that at 400°C. On the other hand, voids analysis indicated that not many cracks were generated and voids were remedied at 400°C. However, a clear tendency was found that remedy by moisture curing may heal up to 2% voids of the concrete cylinder that was previously subject to 600°C of high temperature conditioning.

  8. X-ray computed tomography observations of phase distribution during methane hydrate formation and dissociation process in a sediment sample

    NASA Astrophysics Data System (ADS)

    Ahn, Taewoong; Lee, Jaehyoung; Lee, Joo Yong; Kim, Se-Joon; Seo, Young-ju

    2016-04-01

    The recovery schemes for natural gas caged in the solid state have not been commercialized. Depressurization has been known as a promising method due to its economic feasibility according to previous lab-scale experiments and simulation studies. However, the results of few field tests showed that the production characteristics of real field differed from that of predicted results. To reliably predict the production performance of real fields, it is necessary to understand quantitative changes of phase distribution and fluid flow in sediments in response to hydrate dissociation by depressurization. In this study, we observed and analyzed the phase distribution and flow behavior during methane hydrate formation and dissociation using X-ray computed tomography which provides high-resolution density distribution. Artificial particles having similar grain size distribution of sandy layers found in real hydrate field were packed into X-ray transparent aluminum vessel. Information on pore distribution within a sediment sample was achieved by comparing CT images between dry condition and fully water-saturated condition. Dynamic changes of phase saturation were observed during gas flooding, through which potential flow pathway was estimated. Hydrate formation and dissociation significantly affected phase distribution and flow pathway. Hydrate distribution was extremely heterogeneous in every tests of hydrate formation repeated with same amount of water. It was inferred that water saturation prior to hydrate formation was not directly correlated to the hydrate distribution. There were definite differences of hydrate dissociation behavior between gas-saturated and water-saturated hydrate-bearing sample. The production of gas and water lasted quite a while even after the production pressure reached the target level of depressurization.

  9. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy

    NASA Astrophysics Data System (ADS)

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2007-03-01

    The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality.

  10. Strategies for efficient scanning and reconstruction methods on very large objects with high-energy x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Reims, Nils; Schoen, Tobias; Boehnel, Michael; Sukowski, Frank; Firsching, Markus

    2014-09-01

    X-ray computed tomography (CT) is an established tool for industrial non-destructive testing purposes. Yet conventional CT devices pose limitations regarding specimen dimensions and material thicknesses. Here we introduce a novel CT system capable of inspecting very large objects (VLO) like automobiles or sea freight containers in 3-D and discuss strategies for efficient scanning and reconstruction methods. The system utilizes a 9 MeV linear accelerator to achieve high penetration lengths in both dense and high-Z materials. The line detector array has an overall length of 4 meters. The presented system allows for reconstruction volumes of 3.2 meters in diameter and 5 meters in height. First we outline the general capabilities of high energy CT imaging and compare it with state of the art 450 kV X-ray systems. The imaging performance is shown based on experimental results. The second part addresses the problem of considerably higher scanning times when using line detectors compared to area detectors. Reducing the number of projections considerably causes image artifacts with standard reconstruction methods like filtered back projection (FBP). Alternative methods which can provide significantly better results are algebraic reconstruction techniques (ART). One of these is compressed sensing (CS) based ART which we discuss regarding its suitability in respect to FBP. We could prove the feasibility of inspecting VLOs like complete automobiles based on experimental data. CS allows for achieving sufficient image quality in terms of spatial and contrast resolution while reducing the number of projections significantly resulting in faster scanning times.

  11. Construction and Test of Low Cost X-Ray Tomography Scanner for Physical-Chemical Analysis and Nondestructive Inspections

    SciTech Connect

    Oliveira, Jose Martins Jr. de; Martins, Antonio Cesar Germano

    2009-06-03

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe the development of a low cost micro-CT X-ray scanner that is being developed for nondestructive testing. This tomograph operates using a microfocus X-ray source and contains a silicon photodiode as detectors. The performance of the system, by its spatial resolution, has been estimated through its Modulation Transfer Function-MTF and the obtained value at 10% of MTF is 661 {mu}m. It was built as a general purpose nondestructive testing device.

  12. Are X-rays the key to integrated computational materials engineering?

    SciTech Connect

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolution to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.

  13. Are X-rays the key to integrated computational materials engineering?

    DOE PAGESBeta

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less

  14. Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Noo, Frédéric; Dennerlein, Frank; Wunderlich, Adam; Lauritsch, Günter; Hornegger, Joachim

    2012-07-01

    Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp-Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp-Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files.

  15. Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom.

    PubMed

    Yu, Zhicong; Noo, Frédéric; Dennerlein, Frank; Wunderlich, Adam; Lauritsch, Günter; Hornegger, Joachim

    2012-07-01

    Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp-Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp-Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files. PMID:22713335

  16. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  17. Patient-Specific Computational Models of Coronary Arteries Using Monoplane X-Ray Angiograms

    PubMed Central

    Zifan, Ali

    2016-01-01

    Coronary artery disease (CAD) is the most common type of heart disease in western countries. Early detection and diagnosis of CAD is quintessential to preventing mortality and subsequent complications. We believe hemodynamic data derived from patient-specific computational models could facilitate more accurate prediction of the risk of atherosclerosis. We introduce a semiautomated method to build 3D patient-specific coronary vessel models from 2D monoplane angiogram images. The main contribution of the method is a robust segmentation approach using dynamic programming combined with iterative 3D reconstruction to build 3D mesh models of the coronary vessels. Results indicate the accuracy and robustness of the proposed pipeline. In conclusion, patient-specific modelling of coronary vessels is of vital importance for developing accurate computational flow models and studying the hemodynamic effects of the presence of plaques on the arterial walls, resulting in lumen stenoses, as well as variations in the angulations of the coronary arteries. PMID:27403203

  18. Cystic tumors of the fetal and neonatal cerebrum: ultrasound and computed tomographic evaluation

    SciTech Connect

    Sauerbrei, E.E.; Cooperberg, P.L.

    1983-06-01

    Three patients (two infants and one fetus) had complex (partially cystic and partially solid) supratentorial tumors involving the brain. The sonographic and computed tomographic appearance in each of these lesions is described and discussed. The cystic component of each lesion was equally well delineated by the two modalities, whereas the peripheral solid component was better defined by contrast-enhanced computed tomographic scans.

  19. Computed tomography with monochromatic x rays from the national synchrotron light source

    SciTech Connect

    Dilmanian, F.A.

    1994-12-31

    A monochromatic computed tomography (CT) system for imaging the human head and neck is being developed at the X17 wiggler beam line of the NSLS. The system, entitled multiple energy computed tomography (MECT), employs a horizontal fan beam and an upright, seated subject rotating about a vertical central body axis. The narrow energy bandwidth of the beam ({approx}0.2% FWHM) eliminates beam-hardening effects and allows the efficient use of the energy-selective methods of K-Edge Subtraction (KES) of iodine and of other high-Z elements, and Dual Photon Absorptiometry (DPA). A prototype of MECT has provided images of phantoms, and of rats and rabbits in vivo. The following components of the clinical MECT have been constructed and are being tested. The monochromator, a Laue-Laue device employing independent gimbal mechanisms, has provided adequate stability and precision. The detector, a 480-element device composed of linear-array modules of CdWO{sub 4} having 32 elements with 0.5 mm center-to-center spacing, coupled to PIN diode modules of corresponding geometry, is currently being tested. The data acquisition system, which employs a fast interface to the host DEC Alpha computer, is also being commissioned. The interface allows sustained data collection at a rate of 1.4 Mbyte/s for several hundred seconds. The first studies with human subjects are expected in 1996, with a 0.5 mm FWHM in-plane resolution and a 20 cm field of view.

  20. Computation of Mass Density Images from X-ray Refraction-Angle Images

    SciTech Connect

    Wernick,M.; Yang, Y.; Mondal, I.; Chapman, D.; Hasnah, M.; Parham, C.; Pisano, E.; Zhong, Z.

    2006-01-01

    In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artifacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.

  1. Computed tomographic evaluation of gallstone calcification for biliary lithotripsy.

    PubMed

    Caslowitz, P L; Fishman, E K; Kafonek, D R; Lillemoe, K D; Mitchell, S; Widlus, D M; Saba, G P

    1991-04-01

    As the Food and Drug Administration trials for biliary lithotripsy in the United States near completion, future criteria for patient eligibility remain to be defined. Gallstone calcification greater than 3-mm partial rim on plain film (KUB) or oral cholecystogram (OCG) has excluded patients thus far, since early results of gallstone clearance (lithotripsy plus chemodissolution) were suboptimal with calcified stones. To evaluate the usefulness of these criteria for gallstone fragmentation, computed tomographic (CT) scans were performed on 20 patients immediately prior to lithotripsy to evaluate gallstone density and 24 hours after lithotripsy to observe the CT appearance of fragmentation. The adequacy of fragmentation was determined by pre- and post-lithotripsy sonography. This report constitutes the results of these investigations. PMID:10149158

  2. Is computed tomographic colonography being held to a higher standard?

    PubMed

    Garg, Samita; Ahnen, Dennis J

    2010-02-01

    Recent guidelines for colorectal cancer screening have reached different conclusions on whether computed tomographic colonography (CTC) is an acceptable screening option, and the Centers for Medicare & Medicaid Services recently decided not to cover CTC screening. The rationale against recommending or covering CTC screening includes concerns about radiation exposure, false-negative rates for small polyps, the discovery of extracolonic findings, variability in performance, a lack of targeted studies, a higher adenoma rate in the Medicare-eligible age group, and an absence of evidence that covering CTC would increase overall screening rates. Similar concerns can be raised for other recommended and covered colon cancer screening tests, but it seems that CTC is being held to a new and higher standard. PMID:20124234

  3. Epinephrine-enhanced computed tomographic arthrography of the canine shoulder.

    PubMed

    De Rycke, Lieve; van Bree, Henri; Van Caelenberg, Annemie; Polis, Ingeborgh; Duchateau, Luc; Gielen, Ingrid

    2015-10-01

    The aim of this study was to investigate the effect of epinephrine-enhanced computed tomographic arthrography (CTA) on the image sharpness of the lateral and medial glenohumeral ligaments (LGHL and MGHL, respectively), biceps tendon (BT) and joint cartilage (JC) in the canine shoulder. The shoulders of eight normal dogs were examined using a 4-slice helical CT scanner. The right shoulders were injected with Iohexol and the left shoulders with a mixture of Iohexol and epinephrine. CTA images were obtained after 1, 3, 5, 9, 13, 20 and 30 min and the image sharpness of the intra-articular structures in both shoulders was graded for visibility. The attenuation values were measured to examine the persistence of contrast appearance. Admixture of epinephrine and Iohexol significantly improved the image sharpness of the LGHL and the BT, especially on delayed CTA images. The use of epinephrine did not negatively affect post-CTA recovery. PMID:26412512

  4. Central nervous system leukemia and lymphoma: computed tomographic manifestations

    SciTech Connect

    Pagani, J.J.; Libshitz, H.I.; Wallace, S.; Hayman, L.A.

    1981-12-01

    Computed tomographic (CT) abnormalities in the brain were identified in 31 of 405 patients with leukemia or lymphoma. Abnormalities included neoplastic masses (15), hemorrhage (nine), abscess (two), other brain tumors (four), and methotrexate leukoencephalopathy (one). CT was normal in 374 patients including 148 with meningeal disease diagnosed by cerebrospinal fluid cytologic examination. Prior to treatment, malignant masses were isodense or of greater density with varying amounts of edema. Increase in size or number of the masses indicated worsening. Response to radiation and chemotherapy was manifested by development of a central low density region with an enhancing rim. CT findings correlated with clinical and cerebrospinal fluid findings. The differential diagnosis of the various abnormalities is considered.

  5. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  6. Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves.

    PubMed

    Verboven, Pieter; Herremans, Els; Helfen, Lukas; Ho, Quang T; Abera, Metadel; Baumbach, Tilo; Wevers, Martine; Nicolaï, Bart M

    2015-01-01

    Synchrotron radiation computed laminography (SR-CL) is presented as an imaging method for analyzing the three-dimensional (3D) anatomy of leaves. The SR-CL method was used to provide 3D images of 1-mm² samples of intact leaves at a pixel resolution of 750 nm. The method allowed visualization and quantitative analysis of palisade and spongy mesophyll cells, and showed local venation patterns, aspects of xylem vascular structure and stomata. The method failed to image subcellular organelles such as chloroplasts. We constructed 3D computer models of leaves that can provide a basis for calculating gas exchange, light penetration and water and solute transport. The leaf anatomy of two different tomato genotypes grown in saturating light conditions was compared by 3D analysis. Differences were found in calculated values of tissue porosity, cell number density, cell area to volume ratio and cell volume and cell shape distributions of palisade and spongy cell layers. In contrast, the exposed cell area to leaf area ratio in mesophyll, a descriptor that correlates to the maximum rate of photosynthesis in saturated light conditions, was no different between spongy and palisade cells or between genotypes. The use of 3D image processing avoids many of the limitations of anatomical analysis with two-dimensional sections. PMID:25319143

  7. Atomistic Computational Model of Radiation Damage of Nano-sized Systems in Intense X-ray Pulses

    NASA Astrophysics Data System (ADS)

    Ho, Phay; Jiang, Wei; Lau, Kar Chun; Young, Linda

    2014-05-01

    We present a combined Monte-Carlo/molecular- dynamics (MC/MD) computational model that is suitable for monitoring the physics of intense, femtosecond XFEL pulses interacting with complex systems of various sizes, from nanometers to micrometers, and matters of various compositions. In this model, the occurrences of x-ray absorption, ionization, relaxation and electron-impact processes are treated by a MC method, and the subsequent dynamics of the all the electrons, ions and atoms are tracked using an MD method. Our model extends the previous MC/MD model and provides new capabilities to probe the impacts of transient states on radiation damage dynamics. Recently, we have added LAMMPS as the driver of MD dynamics. This is a critical addition as now our code can run on Mira, a new petascale supercomputer with 786K core processors at the Argonne Leadership Computing Facility. Also, it can treat micron-sized systems with trillions of particles and both homogeneous and heterogeneous composition. Using our model, we examine the ionization dynamics of Argon clusters in an XFEL pulse as a function of particle sizes and pulse parameters, and we compare our results with the experimental data. Supported by the Chemical Sciences, Geosciences, and Biosciences Di- vision, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  8. A computationally efficient method for automatic registration of orthogonal x-ray images with volumetric CT data

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Varley, Martin R.; Shark, Lik-Kwan; Shentall, Glyn S.; Kirby, Mike C.

    2008-02-01

    The paper presents a computationally efficient 3D-2D image registration algorithm for automatic pre-treatment validation in radiotherapy. The novel aspects of the algorithm include (a) a hybrid cost function based on partial digitally reconstructed radiographs (DRRs) generated along projected anatomical contours and a level set term for similarity measurement; and (b) a fast search method based on parabola fitting and sensitivity-based search order. Using CT and orthogonal x-ray images from a skull and a pelvis phantom, the proposed algorithm is compared with the conventional ray-casting full DRR based registration method. Not only is the algorithm shown to be computationally more efficient with registration time being reduced by a factor of 8, but also the algorithm is shown to offer 50% higher capture range allowing the initial patient displacement up to 15 mm (measured by mean target registration error). For the simulated data, high registration accuracy with average errors of 0.53 mm ± 0.12 mm for translation and 0.61° ± 0.29° for rotation within the capture range has been achieved. For the tested phantom data, the algorithm has also shown to be robust without being affected by artificial markers in the image.

  9. Visualization of microvasculature and thrombi by X-ray phase-contrast computed tomography in hepatocellular carcinoma.

    PubMed

    Jian, Jianbo; Yang, Hao; Zhao, Xinyan; Xuan, Ruijiao; Zhang, Yujie; Li, Dongyue; Hu, Chunhong

    2016-03-01

    Visualization of the microvascular network and thrombi in the microvasculature is a key step to evaluating the development of tumor growth and metastasis, and influences treatment selection. X-ray phase-contrast computed tomography (PCCT) is a new imaging technique that can detect minute changes of density and reveal soft tissues discrimination at micrometer-scale resolution. In this study, six human resected hepatocellular carcinoma (HCC) tissues were investigated with PCCT. A histological stain was added to estimate the accuracy of PCCT. The results showed that the fine structures of the microvasculature (measuring 30-100 µm) and thrombi in tiny blood vessels were displayed clearly on imaging the HCC tissues by PCCT. Moreover, density distributions of the thrombi were obtained, which could be reliably used to distinguish malignant from benign thrombi in HCC. In conclusion, PCCT can clearly show the three-dimensional subtle structures of HCC that cannot be detected by conventional absorption-based computed tomography and provides a new method for the imageology of HCC. PMID:26917149

  10. Screening for pulmonary tuberculosis in a Tanzanian prison and computer-aided interpretation of chest X-rays

    PubMed Central

    Mangu, C.; van den Hombergh, J.; van Deutekom, H.; van Ginneken, B.; Clowes, P.; Mhimbira, F.; Mfinanga, S.; Rachow, A.; Hoelscher, M.

    2015-01-01

    Setting: Tanzania is a high-burden country for tuberculosis (TB), and prisoners are a high-risk group that should be screened actively, as recommended by the World Health Organization. Screening algorithms, starting with chest X-rays (CXRs), can detect asymptomatic cases, but depend on experienced readers, who are scarce in the penitentiary setting. Recent studies with patients seeking health care for TB-related symptoms showed good diagnostic performance of the computer software CAD4TB. Objective: To assess the potential of computer-assisted screening using CAD4TB in a predominantly asymptomatic prison population. Design: Cross-sectional study. Results: CAD4TB and seven health care professionals reading CXRs in local tuberculosis wards evaluated a set of 511 CXRs from the Ukonga prison in Dar es Salaam. Performance was compared using a radiological reference. Two readers performed significantly better than CAD4TB, three were comparable, and two performed significantly worse (area under the curve 0.75 in receiver operating characteristics analysis). On a superset of 1321 CXRs, CAD4TB successfully interpreted >99%, with a predictably short time to detection, while 160 (12.2%) reports were delayed by over 24 h with conventional CXR reading. Conclusion: CAD4TB reliably evaluates CXRs from a mostly asymptomatic prison population, with a diagnostic performance inferior to that of expert readers but comparable to local readers. PMID:26767179

  11. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Ma, Jianhua; Fan, Yi; Liang, Zhengrong

    2012-12-01

    Previous studies have shown that by minimizing the total variation (TV) of the to-be-estimated image with some data and other constraints, piecewise-smooth x-ray computed tomography (CT) can be reconstructed from sparse-view projection data without introducing notable artifacts. However, due to the piecewise constant assumption for the image, a conventional TV minimization algorithm often suffers from over-smoothness on the edges of the resulting image. To mitigate this drawback, we present an adaptive-weighted TV (AwTV) minimization algorithm in this paper. The presented AwTV model is derived by considering the anisotropic edge property among neighboring image voxels, where the associated weights are expressed as an exponential function and can be adaptively adjusted by the local image-intensity gradient for the purpose of preserving the edge details. Inspired by the previously reported TV-POCS (projection onto convex sets) implementation, a similar AwTV-POCS implementation was developed to minimize the AwTV subject to data and other constraints for the purpose of sparse-view low-dose CT image reconstruction. To evaluate the presented AwTV-POCS algorithm, both qualitative and quantitative studies were performed by computer simulations and phantom experiments. The results show that the presented AwTV-POCS algorithm can yield images with several notable gains, in terms of noise-resolution tradeoff plots and full-width at half-maximum values, as compared to the corresponding conventional TV-POCS algorithm.

  12. Computed tomographic arthrography of the normal canine elbow.

    PubMed

    Gendler, Andrew; Keuler, Nicholas S; Schaefer, Susan L

    2015-01-01

    Comprehensive evaluation of canine elbow joint dysfunction includes assessment of articular cartilage, which can noninvasively be performed with contrast arthrography. Aims of this prospective study were to compare positive contrast computed tomographic (CT) arthrography and histomorphometry measures of cartilage thickness in normal canine elbows, and to determine the optimal contrast medium concentration. Thirty-two canine cadaver elbows were examined using multidetector CT, before and after intra-articular administration of iohexol at one of three different concentrations. Articular cartilage thickness was measured on both the CT arthrography images and corresponding histologic specimens. Mean difference (bias) between the CT arthrography and histomorphologic measurements was 0.18 and 0.19 mm in the sagittal and dorsal planes, respectively. Mean bias and precision of CT arthrography measurements made in the sagittal or dorsal reformations were not significantly different from one another. Computed tomographic arthrography measurements from elbows with 75 mg I/ml were significantly larger and had greater bias compared to other contrast medium groups (150 and 37.5 mg I/ml). There was no significant difference in CT arthrography measurement precision between different contrast medium concentrations. Histomorphologic thickness of the articular cartilage overlying the cranial aspect of the ulna (mean 0.32 mm) was significantly thinner than cartilage of the radius (0.36 mm) or humerus (0.36 mm). Findings from this cadaver study indicated that CT arthrography delineates articular cartilage of the normal canine elbow; yields cartilage thickness measures slightly greater than histomorphometry measures; and provides high measurement precision regardless of image plane, contrast medium concentration, or anatomic zone. PMID:25154869

  13. Experimental facility for two- and three-dimensional ultrafast electron beam x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Stürzel, T.; Bieberle, M.; Laurien, E.; Hampel, U.; Barthel, F.; Menz, H.-J.; Mayer, H.-G.

    2011-02-01

    An experimental facility is described, which has been designed to perform ultrafast two-dimensional (2D) and three-dimensional (3D) electron beam computed tomographies. As a novelty, a specially designed transparent target enables tomography with no axial offset for 2D imaging and high axial resolution 3D imaging employing the cone-beam tomography principles. The imaging speed is 10 000 frames per second for planar scanning and more than 1000 frames per second for 3D imaging. The facility serves a broad spectrum of potential applications; primarily, the study of multiphase flows, but also in principle nondestructive testing or small animal imaging. In order to demonstrate the aptitude for these applications, static phantom experiments at a frame rate of 2000 frames per second were performed. Resulting spatial resolution was found to be 1.2 mm and better for a reduced temporal resolution.

  14. X-ray computed tomography to study rice (Oryza sativa L.) panicle development.

    PubMed

    Jhala, Vibhuti M; Thaker, Vrinda S

    2015-11-01

    Computational tomography is an important technique for developing digital agricultural models that may help farmers and breeders for increasing crop quality and yield. In the present study an attempt has been made to understand rice seed development within the panicle at different developmental stages using this technique. During the first phase of cell division the Hounsfield Unit (HU) value remained low, increased in the dry matter accumulation phase, and finally reached a maximum at the maturation stage. HU value and seed dry weight showed a linear relationship in the varieties studied. This relationship was confirmed subsequently using seven other varieties. This is therefore an easy, simple, and non-invasive technique which may help breeders to select the best varieties. In addition, it may also help farmers to optimize post-anthesis agronomic practices as well as deciding the crop harvest time for higher grain yield. PMID:26265763

  15. Recent advances in thoracic x-ray computed tomography for pulmonary imaging

    PubMed Central

    Precious, Bruce J; Raju, Rekha; Leipsic, Jonathon

    2014-01-01

    The present article reviews recent advances in pulmonary computed tomography (CT) imaging, focusing on the application of dual-energy CT and the use of iterative reconstruction. Dual-energy CT has proven to be useful in the characterization of pulmonary blood pool in the setting of pulmonary embolism, characterization of diffuse lung parenchymal diseases, evaluation of thoracic malignancies and in imaging of lung ventilation using inhaled xenon. The benefits of iterative reconstruction have been largely derived from reduction of image noise compared with filtered backprojection reconstructions which, in turn, enables the use of lower radiation dose CT acquisition protocols without sacrificing image quality. Potential clinical applications of iterative reconstruction include imaging for pulmonary nodules and high-resolution pulmonary CT. PMID:24791258

  16. Quantification of soil heterogeneity induced by corroding metal objects, using X-ray computed micro tomography (CMT)

    NASA Astrophysics Data System (ADS)

    Afanasyev, Michael; Heimovaara, Timo; van Paassen, Leon

    2014-05-01

    Metal objects in soil, such as pipelines and sheet pile walls are subject to corrosion, that causes extensive economic damage - the annual direct costs of metal corrosion are estimated as 3-4% of the gross domestic product (GDP) of both developed and developing countries. Corrosion of the metal object results in the diffusion of corrosion products away from the original metal surface, where the corrosion products combine with dissolved species and precipitate, altering the properties of the porous medium. The result is a system composed of the uncorroded metal, the Dense Product Layer (DPL) composed of iron corrosion products, the Transformed Medium (TM) which is a mix of the corrosion products and compounds coming from the surrounding soil and the unaltered soil. Naturally occurring DPL's were reported to reduce the corrosion rate of metal objects in soil and studies of metal archaeological artifacts show that it is possible that microbiota plays a role in the process, controlling the rate and location of reprecipitation of corrosion products. However, the dynamics of such complex processes in soil are not yet fully understood and experimental results that can be used to calibrate and verify numerical models of corrosion processes in porous media are scarce. In this study, we explore the potential of X-ray computed microtomography (CMT) in quantifying the changes occurring in soil around corroding metal objects. Metal coupons were incubated in sand and scanned using a Phoenix Nanotom® s nanofocus computed tomography system. Using objects of known density in the samples, the measurements were density-calibrated and the increase in density and accompanying reduction in porosity due to reprecipitation of corrosion products were quantified. Our results demonstrate the potential of X-ray tomography in non-destructive quantification of corrosion processes in porous media. We suggest using smaller samples to increase resolution of the measurements and to use

  17. Demonstration of synchrotron x-ray phase contrast imaging computed tomography of infiltrative transitional cell carcinoma of the prostatic urethra in a dog.

    PubMed

    Montgomery, James E; Wesolowski, Michal J; Wolkowski, Bailey; Chibbar, Rajni; Snead, Elisabeth C R; Singh, Jaswant; Pettitt, Murray; Malhi, Pritpal S; Barboza, Trinita; Adams, Gregg

    2016-01-01

    Prostatic urethral transitional cell carcinoma with prostatic invasion in a dog was imaged with abdominal radiography and abdominal ultrasonography antemortem. Synchrotron in-line x-ray phase contrast imaging computed tomography (XPCI-CT) was performed on the prostate ex vivo at the Canadian Light Source Synchrotron and compared to histology. XPCI-CT imaging provides greater soft tissue contrast than conventional absorption-based x-ray imaging modalities, permitting visualization of regions of inflammatory cell infiltration, differentiation of invasive versus noninvasive tumor regions, and areas of necrosis and mineralization. This represents the first report of XPCI-CT images of an invasive prostatic urothelial neoplasm in a dog. PMID:27014719

  18. Artifact reduction in non-destructive testing by means of complementary data fusion of x-ray computed tomography and ultrasonic pulse-echo testing

    NASA Astrophysics Data System (ADS)

    Schrapp, Michael; Scharrer, Thomas; Goldammer, Matthias; Rupitsch, Stefan J.; Sutor, Alexander; Ermert, Helmut; Lerch, Reinhard

    2013-12-01

    In industrial non-destructive testing, x-ray computed tomography (CT) and ultrasonic pulse-echo testing play an important role in the investigation of large-scale samples. One major artifact arises in CT, when the x-ray absorption in specific directions is too intense, so that the material cannot be fully penetrated. Due to different physical interaction principles, ultrasonic imaging is able to show features which are not visible in the CT image. In this contribution, we present a novel fusion method for the complementary data provided by x-ray CT and ultrasonic testing. The ultrasonic data are obtained by an adapted synthetic aperture focusing technique (SAFT) and complement the missing edge information in the CT image. Subsequently, the full edge map is incorporated as a priori information in a modified simultaneous iterative reconstruction method (SIRT) and allows a significant reduction of artifacts in the CT image.

  19. Investigation of x-ray photon counting using a silicon-PIN diode and its application to energy-dispersive computed tomography

    NASA Astrophysics Data System (ADS)

    Kodama, Hajime; Sato, Eiichi; Sagae, Michiaki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray photon counting was performed using a readymade silicon-PIN photodiode (Si-PIN-PD) at tube voltages ranging from 42 to 60 kV, and X-ray photons are directly detected using the 100 MHz Si-PIN-PD without a scintillator. Photocurrent from the diode is amplified using charge-sensitive and shaping amplifiers. Using a multichannel analyzer, X-ray spectra at a tube voltage of 60 kV could easily be measured. The photon-counting computed tomography (PCCT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. In the PC-CT, we confirmed the energy-dispersive effect with changes in lower-level voltage of the event pulse using a comparator.

  20. Assessment of Localized Deformations in Sand Using X-Ray Computed Tomography

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A; Sture, Stein; Costes, Nicholas C.; Frank, Mellisa L.; Lankton, Mark R.; Batiste, Susan N.; Swanson, Roy A.

    1999-01-01

    The internal fabric and localized deformation patterns of triaxial sand specimens were investigated using Computed Tomography (CT). Three displacement-controlled, conventional, drained axisymmetric (triaxial) experiments were conducted on dry Ottawa sand specimens at very low effective confining stresses (0.05, 0.52, and 1.30 kPa) in a microgravity environment aboard the Space Shuttle during the NASA STS-79 mission. CT scanning was p'erformed on these flight specimens, as well as on an uncompressed specimen and a specimen tested in a terrestrial laboratory at 1.30 kPa effective confining stress. CT demonstrated high accuracy in detecting specimen inhomogeneity and localization patterns. Formation of deformation patterns is dependent on the effective confining stress and gravity. Multiple symmetrical radial shear bands were observed in the specimens tested in a microgravity environment. In the axial direction, two major conical surfaces were developed. Nonsymmetrical spatial deformation was observed in the 1-G specimen. Analysis tools were developed to quantify the spatial density change. Void ratio variation within and outside the shear bands was calculated and discussed.