Science.gov

Sample records for computer controlled scanning

  1. Multipurpose computer-controlled scanning photometer

    SciTech Connect

    Kleckner, E.W.; Michalsky, J.J.; Smith, L.L.; Schmelzer, J.R.; Severtsen, R.H.; Berndt, J.L.

    1981-11-01

    This paper presents a design for a multipurpose computer-controlled scanning photometer capable of measuring optical radiation ranging in intensity from the subvisual light levels associated with night sky airglow emissions to the intense flux levels of direct sunlight. The instrument has twelve interference filters for wavelength selection, a 2.5/sup 0/ field of view for nighttime observations, and a 1.5/sup 0/ field of view for daytime observations. A photomultiplier tube is used as the low light-level detector, and a silicon-PIN photodiode serves as the insolation detector. A particular measurement sequence is programmed into the instrument and can be modified by reading a cassette tape in the field. Normal operation is fully automatic.

  2. Computer-controlled optical scanning tile microscope.

    PubMed

    Wang, C; Shumyatsky, P; Zeng, F; Zevallos, M; Alfano, R R

    2006-02-20

    A new type of computer-controlled optical scanning, high-magnification imaging system with a large field of view is described that overcomes the commonly believed incompatibility of achieving both high magnification and a large field of view. The new system incorporates galvanometer scanners, a CCD camera, and a high-brightness LED source for the fast acquisition of a large number of a high-resolution segmented tile images with a magnification of 800x for each tile. The captured segmented tile images are combined to create an effective enlarged view of a target totaling 1.6 mm x 1.2 mm in area. The speed and sensitivity of the system make it suitable for high-resolution imaging and monitoring of a small segmented area of 320 microm x 240 microm with 4 microm resolution. Each tile segment of the target can be zoomed up without loss of the high resolution. This new microscope imaging system gives both high magnification and a large field of view. This microscope can be utilized in medicine, biology, semiconductor inspection, device analysis, and quality control. PMID:16523776

  3. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory

    Concerns about the environmental and public health effects of particulate matter (PM) have stimulated interest in analytical techniques capable of measuring the size and chemical composition of individual aerosol particles. Computer-controlled scanning electron microscopy (CCSE...

  4. Scanning computed confocal imager

    DOEpatents

    George, John S.

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  5. Implementation on a desktop computer of the real time feedback control loop of a scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Aloisi, G.; Bacci, F.; Carlà, M.; Dolci, D.; Lanzi, L.

    2008-11-01

    A software package has been developed to implement the real time feedback control loop needed in scanning probe microscopy on a general purpose desktop computer of the current high-speed/multicore generation. The main features of the implementation of both the feedback loop and the control of the experiment on the same computer are discussed. The package can work with several general purpose data acquisition boards and can be extended in a modular way to further board models; timing performance has been tested with several hardware configurations and some applications common in scanning probe microscopy. The package is available under an Open Source license.

  6. Characterization of combustion-derived individual fine particulates by computer-controlled scanning electron microscopy

    SciTech Connect

    Zhang, L.; Yu, D.X.; Yao, H.; Xu, M.H.; Wang, Q.Y.; Ninomiya, Y.

    2009-11-15

    Particulate matter (PM) emission from the combustion of solid fuels potentially poses a severe threat to the environment. In this article, a novel approach was developed to examine the properties of individual particles in PM. With this method, PM emitted from combustion was first size-segregated. Subsequently, each size was characterized by computer-controlled scanning electron microscopy (CCSEM) for both bulk property and single particle analysis. Combustion of bituminous coal, dried sewage sludge (DSS) and their mixture were conducted at 1200 {sup o}C in a laboratory-scale drop tube furnace. Three individual sizes smaller than 2.5 {mu}m were investigated. The results indicate that a prior size-segregation can greatly minimize the particle size contrast and phase contrast on the backscattered images during CCSEM analysis. Consequently, high accuracy can be achieved for quantifying the sub-micron particles and their inherent volatile metals. Regarding the PM properties as attained, concentrations of volatile metals including Na, K, and Zn have a negative relationship with particle size; they are enriched in the smallest particles around 0.11 {mu}m as studied here. Strong interactions can occur during the cofiring of coal and DSS, leading to the distinct properties of PM emitted from cofiring. The method developed here and results attained from it are helpful for management of the risks relating to PM emission during coal-fired boilers.

  7. Distinguishing respirable quartz in coal fly ash using computer-controlled scanning electron microscopy

    SciTech Connect

    Nick Cprek; Naresh Shah; Frank E. Huggins; Gerald P. Huffman

    2007-05-15

    Determination and classification of quartz in coal fly ash (CFA) is a subject of interest because of the adverse health effects caused by inhalation of crystalline silica. Workers with prolonged exposure to this carcinogen can develop respiratory diseases over time. This obviously may include utility plant workers involved in the handling, loading, and hauling of CFA. In this investigation, computer-controlled scanning electron microscopy (CCSEM) and X-ray diffraction (XRD) were used to investigate Si-rich phases in CFA to develop a better approach for the determination of respirable quartz. Three CFA samples from utility boilers and a NIST glass standard CFA sample were investigated. The XRD measurements indicated that the four samples contained from 7.0 to 16.0 wt.% of quartz. The CCSEM measurements utilized both particle size distributions and a particle shape parameter, circularity, to classify the Si-rich phases in these ashes as either crystalline or amorphous (glass). The results indicated that the amount of free, respirable, quartz in these CFA samples ranged from only 0.1-1.0 vol % and showed little correlation with the XRD results for the bulk ash. These results are significant in view of the fact that XRD is the traditional method of measuring crystalline silica in dust collected from workplace atmospheres. The results provide a better understanding of studies that indicate very little evidence of a link between human exposure to CFA and silicosis and lung cancer. 24 refs., 8 figs., 4 tabs.

  8. Distinguishing respirable quartz in coal fly ash using computer-controlled scanning electron microscopy.

    PubMed

    Cprek, Nick; Shah, Naresh; Huggins, Frank E; Huffman, Gerald P

    2007-05-15

    Determination and classification of quartz in coal fly ash (CFA) is a subject of interest because of the adverse health effects caused by inhalation of crystalline silica. Workers with prolonged exposure to this carcinogen can develop respiratory diseases over time. This obviously may include utility plant workers involved in the handling, loading, and hauling of CFA. In this investigation, computer-controlled scanning electron microscopy (CCSEM) and X-ray diffraction (XRD) were used to investigate Si-rich phases in CFA to develop a better approach for the determination of respirable quartz. Three CFA samples from utility boilers and a NIST standard CFA sample were investigated. The XRD measurements indicated that the four samples contained from 7.0 to 16.0 wt.% of quartz. The CCSEM measurements utilized both particle size distributions and a particle shape parameter, circularity, to classify the Si-rich phases in these ashes as either crystalline or amorphous (glass). The results indicated that the amount of free, respirable, quartz in these CFA samples ranged from only 0.1-1.0 vol % and showed little correlation with the XRD results for the bulk ash. These results are significant in view of the factthat XRD is the traditional method of measuring crystalline silica in dust collected from workplace atmospheres. PMID:17547166

  9. Computer control of a scanning electron microscope for digital image processing of thermal-wave images

    NASA Technical Reports Server (NTRS)

    Gilbert, Percy; Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.

    1987-01-01

    Using a recently developed technology called thermal-wave microscopy, NASA Lewis Research Center has developed a computer controlled submicron thermal-wave microscope for the purpose of investigating III-V compound semiconductor devices and materials. This paper describes the system's design and configuration and discusses the hardware and software capabilities. Knowledge of the Concurrent 3200 series computers is needed for a complete understanding of the material presented. However, concepts and procedures are of general interest.

  10. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  11. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory


    Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...

  12. Performance of Passive Samplers Analyzed by Computer-Controlled Scanning Electron Microscopy to Measure PM10-2.5.

    PubMed

    Peters, Thomas M; Sawvel, Eric J; Willis, Robert; West, Roger R; Casuccio, Gary S

    2016-07-19

    We report on the precision and accuracy of measuring PM10-2.5 and its components with particles collected by passive aerosol samplers and analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy. Passive samplers were deployed for week-long intervals in triplicate and colocated with a federal reference method sampler at three sites and for 5 weeks in summer 2009 and 5 weeks in winter 2010 in Cleveland, OH. The limit of detection of the passive method for PM10-2.5 determined from blank analysis was 2.8 μg m(-3). Overall precision expressed as root-mean-square coefficient of variation (CVRMS) improved with increasing concentrations (37% for all samples, n = 30; 19% for PM10-2.5 > 10 μg m(-3), n = 9; and 10% for PM10-2.5 > 15 μg m(-3), n = 4). The linear regression of PM10-2.5 measured passively on that measured with the reference sampler exhibited an intercept not statistically different than zero (p = 0.46) and a slope not statistically different from unity (p = 0.92). Triplicates with high CVs (CV > 40%, n = 5) were attributed to low particle counts (and mass concentrations), spurious counts attributed to salt particles, and Al-rich particles. This work provides important quantitative observations that can help guide future development and use of passive samplers for measuring atmospheric particulate matter. PMID:27300163

  13. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    The application of small computers using digital techniques for operating the servo and control system of large antennas is discussed. The advantages of the system are described. The techniques were evaluated with a forty foot antenna and the Sigma V computer. Programs have been completed which drive the antenna directly without the need for a servo amplifier, antenna position programmer or a scan generator.

  14. A microprocessor controlled pressure scanning system

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.

    1976-01-01

    A microprocessor-based controller and data logger for pressure scanning systems is described. The microcomputer positions and manages data from as many as four 48-port electro-mechanical pressure scanners. The maximum scanning rate is 80 pressure measurements per second (20 ports per second on each of four scanners). The system features on-line calibration, position-directed data storage, and once-per-scan display in engineering units of data from a selected port. The system is designed to be interfaced to a facility computer through a shared memory. System hardware and software are described. Factors affecting measurement error in this type of system are also discussed.

  15. A single photon emission computed tomography scan study of striatal dopamine D2 receptor binding with 123I-epidepride in patients with schizophrenia and controls.

    PubMed

    Tibbo, P; Silverstone, P H; McEwan, A J; Scott, J; Joshua, A; Golberg, K

    1997-01-01

    The usefulness of 123I-epidepride as a single photon emission computed tomography (SPECT) scan D2 receptor ligand was examined in vivo in 13 medicated patients with schizophrenia and age- and sex-matched normal controls. To establish the effect of endogenous dopamine on 123I-epidepride binding, 4 of the 13 controls also received 20 mg D-amphetamine. The results showed that 123I-epidepride had high specific binding to the striatum in both patients with schizophrenia and normal controls. There was a trend for the total striatal binding of medicated patients with schizophrenia, as measured by total basal ganglia: frontal cortex (TBG:FC) ratios, to be less than the binding of controls (P = 0.053). This trend confirms previous work showing that antipsychotic medication decreases the number of D2 receptors available for binding to the radioligand. Interestingly, there was also a significant relationship between 123I-epidepride binding ratios and global functioning scales (Global Assessment of Functioning scale [GAF]) for schizophrenia (r = 0.56, P = 0.045), although there was no such relationship with the Brief Psychiatric Rating Scale (BPRS). In addition, our results showed that amphetamine-induced dopamine release did not alter 123I-epidepride binding, confirming the high specific binding of 123I-epidepride to the D2 receptor. We conclude that 123I-epidepride appears to be a very useful SPECT ligand for imaging the D2 receptor. PMID:9002391

  16. Quaternions for Galileo scan platform control

    NASA Technical Reports Server (NTRS)

    Breckenridge, W. G.; Man, G. K.

    1984-01-01

    The application of quaternions for the articulation control of the Galileo scan platform is presented in this paper. The purpose of selecting quaternions is to minimize onboard computation time and program size. Attention has been focused on performing inertial pointing while the spacecraft is in a dual spin configuration. Target quaternion and relative target quaternion are introduced and used to specify the target position of the scan platform for point-to-point absolute slews and mosaic relative slews, respectively. The pointing error of the platform is represented by an error quaternion which is converted into gimbal angular errors defining the attitude change. For path control, a moving target quaternion is generated; the corresponding tracking error quaternion and the related spacecraft motion compensation capability are also addressed. A sample slew case is used to demonstrate the implementation of these concepts.

  17. Scanning Transmission X-ray Microscope Control Program

    Energy Science and Technology Software Center (ESTSC)

    2005-08-05

    User Interface and control software or C++ to run on specifically equipped computer running Windows Operating Systems. Program performs specific control functions required to operate Interferometer controlled scanning transmission X-ray microscopes at ALS beamlines 532 and 11.0.2. Graphical user interface facilitates control, display images and spectra.

  18. Chemical Characterization of Outdoor and Subway Fine (PM2.5-1.0) and Coarse (PM10-2.5) Particulate Matter in Seoul (Korea) Computer-Controlled Scanning Electron Microscopy (CCSEM)

    EPA Science Inventory

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42-60% (by weight) of fin...

  19. Postoperative myocardial infarction documented by technetium pyrophosphate scan using single-photon emission computed tomography: Significance of intraoperative myocardial ischemia and hemodynamic control

    SciTech Connect

    Cheng, D.C.; Chung, F.; Burns, R.J.; Houston, P.L.; Feindel, C.M. )

    1989-12-01

    The aim of this prospective study was to document postoperative myocardial infarction (PMI) by technetium pyrophosphate scan using single-photon emission computed tomography (TcPPi-SPECT) in 28 patients undergoing elective coronary bypass grafting (CABG). The relationships of intraoperative electrocardiographic myocardial ischemia, hemodynamic responses, and pharmacological requirements to this incidence of PMI were correlated. Radionuclide cardioangiography and TcPPi-SPECT were performed 24 h preoperatively and 48 h postoperatively. A standard high-dose fentanyl anesthetic protocol was used. Twenty-five percent of elective CABG patients were complicated with PMI, as documented by TcPPi-SPECT with an infarcted mass of 38.0 +/- 5.5 g. No significant difference in demographic, preoperative right and left ventricular function, number of coronary vessels grafted, or aortic cross-clamp time was observed between the PMI and non-PMI groups. The distribution of patients using preoperative beta-adrenergic blocking drugs or calcium channel blocking drugs was found to have no correlation with the outcome of PMI. As well, no significant differences in hemodynamic changes or pharmacological requirements were observed in the PMI and non-PMI groups during prebypass or postbypass periods, indicating careful intraoperative control of hemodynamic indices did not prevent the outcome of PMI in these patients. However, the incidence of prebypass ischemia was 39.3% and significantly correlated with the outcome of positive TcPPi-SPECT, denoting a 3.9-fold increased risk of developing PMI. Prebypass ischemic changes in leads II and V5 were shown to correlate with increased CPK-MB release (P less than 0.05) and tends to occur more frequently with lateral myocardial infarction.

  20. Computer-controlled spot-scan imaging of crotoxin complex crystals with 400 keV electrons at near-atomic resolution.

    PubMed

    Brink, J; Chiu, W; Dougherty, M

    1992-10-01

    400 keV electrons yield a better relative image contrast than 100 keV electrons for a beam-sensitive organic crystal when spot-scan imaging is used [J. Brink and W. Chiu, J. Microscopy 161 (1991) 279]. A FORTRAN 77 program has been written to operate the spot-scan imaging system on a computer workstation under the VMS operating system which is interfaced serially to the JEOL4000 electron microscope. We demonstrate the application of this implementation by imaging crotoxin complex crystals embedded in either vitreous ice or glucose to 2.5 A resolution. The intensity strength of the structure factors of this protein crystal are different at low (> 10 A) resolution but similar at high resolution (< 10 A) for the two embedding media as expected from their scattering contrast difference. Based on our experience as judged from the electron diffraction patterns of highly tilted crystals, flat crystals embedded in glucose can be readily obtained. Furthermore, our spot-scan imaging system also has the option of correcting the focus gradient that is present in images of tilted specimens. PMID:1481273

  1. Evolution of the Cranial Computed Tomography Scan in Child Abuse.

    ERIC Educational Resources Information Center

    Feldman, Kenneth W.; And Others

    1995-01-01

    A retrospective review of medical charts for 34 children with a diagnosis of child abuse, who had cranial computed tomography scans performed, revealed that some scans initially interpreted as normal were subsequently reinterpreted as abnormal, and some children's repeat scannings were interpreted as abnormal, modifying the medical and legal…

  2. Tuning and scanning control system for high resolution alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Smith, James C.; Schwemmer, Geary K.

    1988-01-01

    An alexandrite laser is spectrally narrowed and tuned by the use of three optical elements. Each element provides a successively higher degree of spectral resolution. The digitally controlled tuning and scanning control servo system simultaneously positions all three optical elements to provide continuous high resolution laser spectral tuning. The user may select manual, single, or continuous modes of automated scanning of ranges up to 3.00/cm and at scan rates up to 3.85/cm/min. Scanning over an extended range of up to 9.999/cm may be achieved if the highest resolution optic is removed from the system. The control system is also capable of being remotely operated by another computer or controller via standard RS-232 serial data link.

  3. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  4. Computationally efficient control allocation

    NASA Technical Reports Server (NTRS)

    Durham, Wayne (Inventor)

    2001-01-01

    A computationally efficient method for calculating near-optimal solutions to the three-objective, linear control allocation problem is disclosed. The control allocation problem is that of distributing the effort of redundant control effectors to achieve some desired set of objectives. The problem is deemed linear if control effectiveness is affine with respect to the individual control effectors. The optimal solution is that which exploits the collective maximum capability of the effectors within their individual physical limits. Computational efficiency is measured by the number of floating-point operations required for solution. The method presented returned optimal solutions in more than 90% of the cases examined; non-optimal solutions returned by the method were typically much less than 1% different from optimal and the errors tended to become smaller than 0.01% as the number of controls was increased. The magnitude of the errors returned by the present method was much smaller than those that resulted from either pseudo inverse or cascaded generalized inverse solutions. The computational complexity of the method presented varied linearly with increasing numbers of controls; the number of required floating point operations increased from 5.5 i, to seven times faster than did the minimum-norm solution (the pseudoinverse), and at about the same rate as did the cascaded generalized inverse solution. The computational requirements of the method presented were much better than that of previously described facet-searching methods which increase in proportion to the square of the number of controls.

  5. Computer aided manipulator control

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Zawacki, R. L.

    1980-01-01

    This paper describes the hardware and software system of a dedicated mini- and microcomputer network developed at the JPL teleoperator project to aid the operator in real-time control of remote manipulators. The operator can be in series or in parallel with the control computer during operation. The purpose of the project is to develop, demonstrate and evaluate advanced supervisory control concepts and techniques for space applications. The paper concludes with a brief outline of future development plans and issues.

  6. The vertex scan: an important component of cranial computed tomography.

    PubMed

    Wing, S D; Osborn, A G; Wing, R W

    1978-04-01

    Physicians who monitor cranial computed tomography occasionally omit the most superior aspects of the brain and calvarium because of time limitations and overloaded scanning schedules. In addition, standardized CT reporting forms as well training literature distributed by some manufacturers support the concept that a complete CT series consists of three scan pairs. Omission of a vertex scan pair results in failure to visualize 10%-15% of the brain volume. We have reviewed the results of 2,000 consecutive CT studies to determine the number and variety of pathologic entities that would have been missed had a vertex scan not been obtained. The most significant or sole abnormality was present on the vertex scan alone in 3% of the cases. Examples are presented. A true vertex levels should be obtained in every routine CT examination. PMID:416693

  7. Computational fluid dynamic control

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Deabreu-Garcia, Alex

    1989-01-01

    A general technique is presented for modeling fluid, or gas, dynamic systems specifically for the development of control systems. The numerical methods which are generally used in computational fluid dynamics are borrowed to create either continuous-time or discrete-time models of the particular fluid system. The resulting equations can be either left in a nonlinear form, or easily linearized about an operating point. As there are typically very many states in these systems, the usual linear model reduction methods can be used on them to allow a low-order controller to be designed. A simple example is given which typifies many internal flow control problems. The resulting control is termed computational fluid dynamic control.

  8. SCAN+

    Energy Science and Technology Software Center (ESTSC)

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  9. Optimal control computer programs

    NASA Technical Reports Server (NTRS)

    Kuo, F.

    1992-01-01

    The solution of the optimal control problem, even with low order dynamical systems, can usually strain the analytical ability of most engineers. The understanding of this subject matter, therefore, would be greatly enhanced if a software package existed that could simulate simple generic problems. Surprisingly, despite a great abundance of commercially available control software, few, if any, address the part of optimal control in its most generic form. The purpose of this paper is, therefore, to present a simple computer program that will perform simulations of optimal control problems that arise from the first necessary condition and the Pontryagin's maximum principle.

  10. General purpose control system for scanning laser ophthalmoscopes.

    PubMed

    Cushion, John; Reinholz, Fred N; Patterson, Brett A

    2003-06-01

    A flexible control system for scanning laser ophthalmoscopes is described that is quick and simple to configure, easily modified or adapted, and containing many useful features. The system facilitates adjustment of several parameters to account for changes to the scan position, ambient light and temperature, including both optical and electronic components, which is otherwise difficult and time-consuming to perform. The system is portable and uses custom-designed printed circuit boards. All system parameters, such as focus, scan rate,scan depth and stereo control can be digitally controlled from a computer via a single serial port. Custom software allows changes to any system parameters by simply sending the required control data to the rack. The circuit boards in the system are multilayer,incorporating good ground-plane techniques to minimize noise, programmable logic and semicustom logic for low cost and compact size, and microcontrollers with embedded firm ware for flexible operation. Retinal images demonstrate that the system performs well. PMID:12786776

  11. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  12. Impedance feedback control for scanning electrochemical microscopy.

    PubMed

    Alpuche-Aviles, M A; Wipf, D O

    2001-10-15

    A new constant-distance imaging method based on the relationship between tip impedance and tip-substrate separation has been developed for the scanning electrochemical microscope. The tip impedance is monitored by application of a high-frequency ac voltage bias between the tip and auxiliary electrode. The high-frequency ac current is easily separated from the dc-level faradaic electrochemistry with a simple RC filter, which allows impedance measurements during feedback or generation/collection experiments. By employing a piezo-based feedback controller, we are able to maintain the impedance at a constant value and, thus, maintain a constant tip-substrate separation. Application of the method to feedback and generation/collection experiments with tip electrodes as small as 2 microm is presented. PMID:11681463

  13. A computer program for scanning transmission ion microscopy simulation

    NASA Astrophysics Data System (ADS)

    Wu, R.; Shen, H.; Mi, Y.; Sun, M. D.; Yang, M. J.

    2005-04-01

    With the installation of the Scanning Proton Microprobe system at Fudan University, we are in the process of developing a three-dimension reconstruction technique based on scanning transmission ion microscopy-computed tomography (STIM-CT). As the first step, a related computer program of STIM simulation has been established. This program is written in the Visual C++®, using the technique of OOP (Object Oriented Programming) and it is a standard multiple-document Windows® program. It can be run with all MS Windows® operating systems. The operating mode is the menu mode, using a multiple process technique. The stopping power theory is based on the Bethe-Bloch formula. In order to simplify the calculation, the improved cylindrical coordinate model was introduced in the program instead of a usual spherical or cylindrical coordinate model. The simulated results of a sample at several rotation angles are presented.

  14. Dynamic computed tomographic scans in experimental brain abscess.

    PubMed

    Enzmann, D R; Placone, R C; Britt, R H

    1984-01-01

    Dynamic computed tomographic scans were performed in an experimental brain abscess model to establish criteria that could be utilized in abscess staging. The vascular phase of the time-density curves did not differentiate cerebritis and capsule stages. The amount of residual enhancement after the first pass of an intra-arterial contrast bolus differed between major abscess stages, the greater residual enhancement being noted in the capsule stage. PMID:6462439

  15. Cosmetic and aesthetic skin photosurgery using a computer-assisted CO2 laser-scanning system

    NASA Astrophysics Data System (ADS)

    Dutu, Doru C. A.; Dumitras, Dan C.; Nedelcu, Ioan; Ghetie, Sergiu D.

    1997-12-01

    Since the first application of CO2 laser in skin photosurgery, various techniques such as laser pulsing, beam scanning and computer-assisted laser pulse generator have been introduced for the purpose of reducing tissue carbonization and thermal necrosis. Using a quite simple XY optical scanner equipped with two galvanometric driven mirrors and an appropriate software to process the scanning data and control the interaction time and energy density in the scanned area, we have obtained a device which can improve CO2 laser application in cosmetic and aesthetic surgery. The opto-mechanical CO2 laser scanner based on two total reflecting flat mirrors placed at 90 degree(s) in respect to the XY scanning directions and independently driven through a magnetic field provides a linear movement of the incident laser beam in the operating field. A DA converter supplied with scanning data by the software enables a scanning with linearity better than 1% for a maximum angular deviation of 20 degree(s). Because the scanning quality of the laser beam in the operating field is given not only by the displacement function of the two mirrors, but also by the beam characteristics in the focal plane and the cross distribution in the laser beam, the surgeon can control through software either the scanning field dimensions or the distance between two consecutive points of the vertically and/or horizontally sweep line. The development of computer-assisted surgical scanning techniques will help control the surgical laser, to create either a reproducible incision with a controlled depth or a controlled incision pattern with minimal incision width, a long desired facility for plastic surgery, neurosurgery, ENT and dentistry.

  16. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, Gary W.

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  17. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  18. Chemical characterization of outdoor and subway fine (PM(2.5-1.0)) and coarse (PM(10-2.5)) particulate matter in Seoul (Korea) by computer-controlled scanning electron microscopy (CCSEM).

    PubMed

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M

    2015-02-01

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%-60% (by weight) of fine particulate matter larger than 1 µm (PM(2.5-1.0)) in outdoor samples and 18% of PM2.5-1.0 in subway samples. Iron-containing particles accounted for only 3%-6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM(10-2.5)) with soil/road dust particles dominating outdoor samples (66%-83%) and iron-containing particles contributing most to subway PM(10-2.5) (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM(10-2.5) than PM(2.5-1.0). Also as expected, the mass fraction of iron-containing particles was substantially less in PM(10-2.5) than in PM(2.5-1.0). Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM(2.5-1.0) and PM(10-2.5) simultaneously and by composition at multiple locations. PMID:25689348

  19. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.

    PubMed

    Gür, Y

    2014-12-01

    The purpose of the study presented here was to investigate the manufacturability of human anatomical models from Computed Tomography (CT) scan data via a 3D desktop printer which uses fused deposition modelling (FDM) technology. First, Digital Imaging and Communications in Medicine (DICOM) CT scan data were converted to 3D Standard Triangle Language (STL) format by using In Vaselius digital imaging program. Once this STL file is obtained, a 3D physical version of the anatomical model can be fabricated by a desktop 3D FDM printer. As a case study, a patient's skull CT scan data was considered, and a tangible version of the skull was manufactured by a 3D FDM desktop printer. During the 3D printing process, the skull was built using acrylonitrile-butadiene-styrene (ABS) co-polymer plastic. The printed model showed that the 3D FDM printing technology is able to fabricate anatomical models with high accuracy. As a result, the skull model can be used for preoperative surgical planning, medical training activities, implant design and simulation to show the potential of the FDM technology in medical field. It will also improve communication between medical stuff and patients. Current result indicates that a 3D desktop printer which uses FDM technology can be used to obtain accurate anatomical models. PMID:26336695

  20. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy.

    PubMed

    Davis, Brynmor J; Marks, Daniel L; Ralston, Tyler S; Carney, P Scott; Boppart, Stephen A

    2008-06-01

    Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM) allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT), utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR). In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR. PMID:20948975

  1. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    PubMed Central

    Davis, Brynmor. J.; Marks, Daniel. L.; Ralston, Tyler. S.; Carney, P. Scott; Boppart, Stephen. A.

    2008-01-01

    Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM) allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT), utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR). In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR. PMID:20948975

  2. Computer Software for Process Control.

    ERIC Educational Resources Information Center

    Spector, Alfred Z.

    1984-01-01

    Computer software for process control has the primary function of communicating with and governing physical devices. The structure of such software, process-control systems, multitask systems, message passing, problems of deadlock, distributed computer systems, and protection against failure in process-control systems are among the areas examined.…

  3. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0) and Coarse (PM10–2.5) Particulate Matter in Seoul (Korea) by Computer-Controlled Scanning Electron Microscopy (CCSEM)

    PubMed Central

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M.

    2015-01-01

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%–60% (by weight) of fine particulate matter larger than 1 µm (PM2.5–1.0) in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5) with soil/road dust particles dominating outdoor samples (66%–83%) and iron-containing particles contributing most to subway PM10–2.5 (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations. PMID:25689348

  4. A novel multimodal laser scanning microscope control system

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Gu, Zetong; Karasek, Stephen; McLean, James; Zhang, Xi; DiMarzio, Charles; Yin, Jihao; Xiong, Daxi

    2015-03-01

    Traditional laser scanning microscopes require complex control systems to synchronize and control image acquisition. The control system is especially cumbersome in the multimodal laser scanning microscope. We have developed a novel multimodal laser scanning microscope control system based on a National Instruments multifunction data acquisition device (DAQ), which serves as both a data acquisition device and a programmable signal generator. The novel control system is low-cost and easy-to-build, with all components off-the-shelf. We have applied the control system in a multimodal laser scanning microscope. The control system has not only significantly decreased the complexity of the microscope, but also increased the system flexibility. We have demonstrated that the system can be easily customized for various applications.

  5. Control theory for scanning probe microscopy revisited.

    PubMed

    Stirling, Julian

    2014-01-01

    We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation. PMID:24778957

  6. Control theory for scanning probe microscopy revisited

    PubMed Central

    2014-01-01

    Summary We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation. PMID:24778957

  7. Computer Control For Ion Engines

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1989-01-01

    Computer system controls start-up, steady-state operation, throttling, and shutdown of pair of xenon-ion propulsion engines. Controls direction of thrust of each engine through operation of gimbal stepping motors. Controls valves in propellant-storage and propellant-distribution system. Control software establishes and maintains efficient, stable operation over entire range of operating variables, and throttles engines to any point within range. Computer operates power supplies, valves, and flow controllers of two ion engines, ion-neutralizer subsystem, and other equipment. Designed for use in interplanetary flight, system adaptable to industrial use in ion-beam deposition of thin films.

  8. Scanning ablation of root caries with acoustic feedback control

    NASA Astrophysics Data System (ADS)

    Fan, Kenneth; Fried, Daniel

    2007-02-01

    It has been previously demonstrated that short λ=355-nm laser pulses can be used for the selective removal of caries lesions and composite restorative materials from occlusal surfaces with minimal damage to the peripheral sound tooth structure. One advantage of laser-systems is they can be integrated with acoustic and optical feedback systems for the automated discrimination of dental caries and restorative materials. The objective of this study was to test the hypothesis that root caries could be selectively removed from tooth surfaces using a computer controlled laserscanning system coupled with an acoustic feedback system. Dental root caries surfaces on extracted teeth were scanned with λ=355-nm laser pulses at irradiation intensities ranging from 0.6 to 0.8 J/cm2. Acoustic feedback signals were acquired and used to control the laser output and scanning stages were used to position the laser over carious dentin until all the caries were removed to a fixed depth. Polarization optical coherence tomography (PSOCT) was used to acquire images of the root caries lesions before and after removal by the laser in order to assess if ablation was selective. The amplitude of the acoustic waves generated during the ablation of carious dentin was higher than for sound dentin allowing the acoustic feedback system to discriminate between sound and carious dentin. PS-OCT showed that caries were removed to a depth of up to 1.5-mm with minimal peripheral damage to peripheral sound dentin. The acoustic feedback was successfully used to distinguish between root caries and sound dentin, enabling the selective removal of caries from dentin surfaces using a λ=355-nm, Nd:YAG Q-switched laser system.

  9. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers

    SciTech Connect

    Wutscher, T.; Niebauer, J.; Giessibl, F. J.

    2013-07-15

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory.

  10. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers.

    PubMed

    Wutscher, T; Niebauer, J; Giessibl, F J

    2013-07-01

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear-the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory. PMID:23902073

  11. Nanoscale plasmonic devices for dynamically controllable beam focusing and scanning

    NASA Astrophysics Data System (ADS)

    Çetin, A. E.; Sennaroglu, A.; Müstecaplıoğlu, Ö. E.

    2010-01-01

    We have performed simulations to investigate the variable focusing and scanning capability of metallic nano-slit configurations. In a symmetric nanorod configuration inside an aperture with adjustable offset of the center rod, the focal position is found to be variable in the 0.5-3.5 μm range. In a ladder configuration of the rods, the transmitted beam is found to be deflected up to 23°. Horizontal displacement of rods allows for finer control of angular scanning up to 4°. Such slit geometries offer the potential to be controlled by using nano-positioning systems for applications in dynamic beam shaping and scanning on the nanoscale.

  12. [Optimization of the chest computed tomography scan by varying the position of the arms].

    PubMed

    Matsumoto, Yoriaki; Masuda, Takanori; Imada, Naoyuki; Maruyama, Naoya; Inada, Satoshi; Ishibashi, Tooru; Satou, Tomoyasu

    2012-01-01

    Computed tomography automatic exposure control (CT-AEC) technique is calculated from a localizer radiograph. When we perform neck and chest CT examination, at first, we acquire localizer radiograph and neck images by placing the arm in a lowered position. Next, the arm is raised for the chest scan. Therefore, the localizer radiograph and subject information are different in the chest scan. In this situation, the chest scan with the use of the CT-AEC causes radiation over-dose. The purpose of this study is to optimize the CT-AEC by controlling noise index (NI), and make a chest CT scan condition considering the position of the arms. We measured the image noise (SD) in the phantom by using CT-AEC. In addition, dose length product (DLP) was recorded. Moreover, we examined the correlation with the clinical images. The results of our experiments show that radiation dose can be reduced with the image quality kept by controlling NI. PMID:22821158

  13. Search space scanning with planar electronically-controlled array antennas

    NASA Astrophysics Data System (ADS)

    Hanle, E.

    The demands which radar installations have to satisfy are rising with increasing traffic density in the case of civil applications and a growing threat level in the case of the military sector. In many instances, these demands can only be met by adapting the value of the transmitted power to the traffic density or the magnitude of the threat. Such an approach requires the employment of computer-aided radar systems with electronically-controlled antennas. The considered systems have currently also advantages with respect to reliability and cost effectiveness. The present investigation is concerned with suitable procedures for the improvement of the energy management, taking into account mainly aspects of radar control and signal processing. The discussion is based on the consideration of a planar array antenna. Differences arising in connection with the use of other types of antennas are also briefly examined. The employment of an immobile radar antenna for ground-based airspace observation is considered. Attention is given to the appropriate selection of the width of the lobe, the scanning, the tilt of the antenna, and antenna performance characteristics.

  14. Pointing and Scanning Control of Instruments Using Rotating Unbalanced Masses

    NASA Technical Reports Server (NTRS)

    Hung, John Y.

    1996-01-01

    Motions of telescopes, satellites, and other flight bodies have been controlled by various means in the past. For example, gimbal mounted devices can use electric motors to produce pointing and scanning motions. Reaction wheels, control moment gyros, and propellant-charged reaction jets are other technologies that have also been used. Each of these methods has its advantages, but all actuator systems used in a flight environment face the challenges of minimizing weight, reducing energy consumption, and maximizing reliability. Recently, Polites invented and patented the Rotating Unbalanced Mass (RUM) device as a means for generation scanning motion on flight experiments. RUM devices have been successfully used to generate various scanning motions. The basic principle: a RUM rotating at constant annular velocity exerts a cyclic centrifugal force on the instrument or main body, thus producing a periodic scanning motion. A system of RUM devices exerts no reaction forces on the main body, requires very little energy, and is very simple to construct and control. These are significant advantages over electric motors, reaction wheels, and control moment gyroscopes. Although the RUM device very easily produces scanning motion, an auxiliary control system may be required to maintain the proper orientation, or pointing of the main body. It has been suggested that RUM devices can be used to control pointing dynamics, as well as generate the desired periodic scanning motion. The idea is that the RUM velocity will not be constant, but will vary over the period of one RUM rotation. The thought is that the changing angular velocity produces a centrifugal force having time-varying magnitude and direction. The scope of the present research project is to further study the pointing control concept, and to implement a microcontroller program to control an experimental hardware system. This report is subdivided into three themes. The basic dynamic modeling and control principles are

  15. Spacelab data analysis using the space plasma computer analysis network (SCAN) system

    NASA Technical Reports Server (NTRS)

    Green, J. L.

    1984-01-01

    The Space-plasma Computer Analysis Network (SCAN) currently connects a large number of U.S. Spacelab investigators into a common computer network. Used primarily by plasma physics researchers at present, SCAN provides access to Spacelab investigators in other areas of space science, to Spacelab and non-Spacelab correlative data bases, and to large Class VI computational facilities for modeling. SCAN links computers together at remote institutions used by space researchers, utilizing commercially available software for computer-to-computer communications. Started by the NASA's Office of Space Science in mid 1980, SCAN presently contains ten system nodes located at major universities and space research laboratories, with fourteen new nodes projected for the near future. The Stanford University computer gateways allow SCAN users to connect onto the ARPANET and TELENET overseas networks.

  16. Comparison of Image Quality and Radiation Dose of Coronary Computed Tomography Angiography Between Conventional Helical Scanning and a Strategy Incorporating Sequential Scanning

    PubMed Central

    Einstein, Andrew J.; Wolff, Steven D.; Manheimer, Eric D.; Thompson, James; Terry, Sylvia; Uretsky, Seth; Pilip, Adalbert; Peters, M. Robert

    2009-01-01

    Radiation dose from coronary computed tomography angiography may be reduced using a sequential scanning protocol rather than a conventional helical scanning protocol. Here we compare radiation dose and image quality from coronary computed tomography angiography in a single center between an initial period during which helical scanning with electrocardiographically-controlled tube current modulation was used for all patients (n=138) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n=261). Using the sequential-if-appropriate strategy, sequential scanning was employed in 86.2% of patients. Compared to the helical-only strategy, this strategy was associated with a 65.1% dose reduction (mean dose-length product of 305.2 vs. 875.1 and mean effective dose of 14.9 mSv vs. 5.2 mSv, respectively), with no significant change in overall image quality, step artifacts, motion artifacts, or perceived image noise. For the 225 patients undergoing sequential scanning, the dose-length product was 201.9 ± 90.0 mGy·cm, while for patients undergoing helical scanning under either strategy, the dose-length product was 890.9 ± 293.3 mGy·cm (p<0.0001), corresponding to mean effective doses of 3.4 mSv and 15.1 mSv, respectively, a 77.5% reduction. Image quality was significantly greater for the sequential studies, reflecting the poorer image quality in patients undergoing helical scanning in the sequential-if-appropriate strategy. In conclusion, a sequential-if-appropriate diagnostic strategy reduces dose markedly compared to a helical-only strategy, with no significant difference in image quality. PMID:19892048

  17. Low-dose computed tomography image restoration using previous normal-dose scan

    SciTech Connect

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-10-15

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  18. Personal computers in accelerator control

    NASA Astrophysics Data System (ADS)

    Anderssen, P. S.

    1988-07-01

    The advent of the personal computer has created a popular movement which has also made a strong impact on science and engineering. Flexible software environments combined with good computational performance and large storage capacities are becoming available at steadily decreasing costs. Of equal importance, however, is the quality of the user interface offered on many of these products. Graphics and screen interaction is available in ways that were only possible on specialized systems before. Accelerator engineers were quick to pick up the new technology. The first applications were probably for controllers and data gatherers for beam measurement equipment. Others followed, and today it is conceivable to make personal computer a standard component of an accelerator control system. This paper reviews the experience gained at CERN so far and describes the approach taken in the design of the common control center for the SPS and the future LEP accelerators. The design goal has been to be able to integrate personal computers into the accelerator control system and to build the operator's workplace around it.

  19. Computer-controlled warmup circuit

    NASA Technical Reports Server (NTRS)

    Daeges, J. J.

    1980-01-01

    Filament of high-power radio transmitter is brought to operating temperature automatically. Pushbotton reduces operator's role to one-step command and is compatible with various forms of computer control. Filiament shutdown is initiated by "down" command from operator, failure of cooling systems, or power failure for more than few seconds.

  20. Computational approaches to motor control

    PubMed Central

    Flash, Tamar; Sejnowski, Terrence J

    2010-01-01

    New concepts and computational models that integrate behavioral and neurophysiological observations have addressed several of the most fundamental long-standing problems in motor control. These problems include the selection of particular trajectories among the large number of possibilities, the solution of inverse kinematics and dynamics problems, motor adaptation and the learning of sequential behaviors. PMID:11741014

  1. Galileo Spacecraft Scan Platform Celestial Pointing Cone Control Gain Redesign

    NASA Technical Reports Server (NTRS)

    In, C-H. C.; Hilbert, K. B.

    1994-01-01

    During September and October 1991, pictures of the Gaspra asteroid and neighboring stars were taken by the Galileo Optical Navigation (OPNAV) Team for the purpose of navigation the spacecraft for a successful Gaspra encounter. The star tracks in these pictures showed that the scan platform celestial pointing cone controller performed poorly in compensating for wobble-induced cone offsets.

  2. Scanning Tunneling Microscope Data Acquistion and Control System

    Energy Science and Technology Software Center (ESTSC)

    1995-02-01

    SHOESCAN is a PC based code that acquires and displays data for Scanning Tunneling Microscopes (STM). SHOESCAN interfaces with the STM through external electronic feedback and raster control circuits that are controlled by I/O boards on the PC bus. Data is displayed on a separate color monitor that is interfaced to the PC through an additional frame-grabber board. SHOESCAN can acquire a wide range of surface topographic information as well as surface electronic structure information.

  3. Electric-controlled scanning Luneburg lens based on metamaterials

    NASA Astrophysics Data System (ADS)

    Wang, Min; Huang, Cheng; Pu, Ming-Bo; Hu, Cheng-Gang; Pan, Wen-Bo; Zhao, Ze-Yu; Luo, Xian-Gang

    2013-05-01

    The feasibility of 360∘ scanning Luneburg lens based on electric-controlled metamaterial is analyzed. When the line source is fixed in the center of the lens, the direction of radiated beam can be tuned by adjusting the bias voltages distribution applied to the varactors in each unit cell. By introducing an artificial reflective plane, the gain of the antenna can be further enhanced. The minimal step of scanning angle obtained in simulation is only 7∘, which can be further decreased by increasing the dimension and the number of unit cell used in Luneburg lens.

  4. Preliminary performance assessment of computer automated facial approximations using computed tomography scans of living individuals.

    PubMed

    Parks, Connie L; Richard, Adam H; Monson, Keith L

    2013-12-10

    ReFace (Reality Enhancement Facial Approximation by Computational Estimation) is a computer-automated facial approximation application jointly developed by the Federal Bureau of Investigation and GE Global Research. The application derives a statistically based approximation of a face from a unidentified skull using a dataset of ~400 human head computer tomography (CT) scans of living adult American individuals from four ancestry groups: African, Asian, European and Hispanic (self-identified). To date only one unpublished subjective recognition study has been conducted using ReFace approximations. It indicated that approximations produced by ReFace were recognized above chance rates (10%). This preliminary study assesses: (i) the recognizability of five ReFace approximations; (ii) the recognizability of CT-derived skin surface replicas of the same individuals whose skulls were used to create the ReFace approximations; and (iii) the relationship between recognition performance and resemblance ratings of target individuals. All five skin surface replicas were recognized at rates statistically significant above chance (22-50%). Four of five ReFace approximations were recognized above chance (5-18%), although with statistical significance only at the higher rate. Such results suggest reconsideration of the usefulness of the type of output format utilized in this study, particularly in regard to facial approximations employed as a means of identifying unknown individuals. PMID:24314512

  5. Computer control by hand gestures

    NASA Astrophysics Data System (ADS)

    Jemel, Intidhar; Ejbali, Ridha; Zaied, Mourad

    2015-12-01

    This work fits into the context of the interpretation of automatic gestures based on computer vision. The aim of our work is to transform a conventional screen in a surface that allows the user to use his hands as pointing devices. These can be summarized in three main steps. Hand detection in a video, monitoring detected hands and conversion paths made by the hands to computer commands. To realize this application, it is necessary to detect the hand to follow. A classification phase is essential, at the control part. For this reason, we resorted to the use of a neuro-fuzzy classifier for classification and a pattern matching method for detection.

  6. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  7. Analytical scanning evanescent microwave microscope and control stage

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  8. From 2-dimensional cephalograms to 3-dimensional computed tomography scans.

    PubMed

    Halazonetis, Demetrios J

    2005-05-01

    Computed tomography is entering the orthodontic specialty as a mainstream diagnostic modality. Radiation exposure and cost have decreased significantly, and the diagnostic value is very high compared with traditional radiographic options. However, 3-dimensional data present new challenges and need a different approach from traditional viewing of static images to make the most of the available possibilities. Advances in computer hardware and software now enable interactive display of the data on personal computers, with the ability to selectively view soft or hard tissues from any angle. Transfer functions are used to apply transparency and color. Cephalometric measurements can be taken by digitizing points in 3-dimensional coordinates. Application of 3-dimensional data is expected to increase significantly soon and might eventually replace many conventional orthodontic records that are in use today. PMID:15877045

  9. Scan Rate: A New Metric for the Analysis of Reading Behaviors in Asynchronous Computer Conferencing Environments

    ERIC Educational Resources Information Center

    Hewitt, Jim; Brett, Clare; Peters, Vanessa

    2007-01-01

    This article introduces a new computer conferencing metric called Scan Rate, which is a measure of students' and instructors' online reading speed. The term "scan" refers to the practice of either skimming through a message at an unusually rapid pace or reading a message partially and then stopping before the end is reached. It is proposed that…

  10. Characterization of Visual Scanning Patterns in Air Traffic Control

    PubMed Central

    McClung, Sarah N.; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

  11. Improved controlled atmosphere high temperature scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Hansen, K. V.; Wu, Y.; Jacobsen, T.; Mogensen, M. B.; Theil Kuhn, L.

    2013-07-01

    To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface potential. The improved CAHT-SPM, therefore, holds a great potential for local sub-micron analysis of high-temperature and gas induced changes of a wide range of materials.

  12. Characterization of Visual Scanning Patterns in Air Traffic Control.

    PubMed

    McClung, Sarah N; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

  13. Early Lung Computed Tomography Scan after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Cornetto, Marie Alice; Chevret, Sylvie; Abbes, Sarah; de Margerie-Mellon, Constance; Hussenet, Claire; Sicre de Fontbrune, Flore; Tazi, Abdellatif; Ribaud, Patricia; Bergeron, Anne

    2016-08-01

    A lung computed tomography (CT) scan is essential for diagnosing lung diseases in hematopoietic stem cell transplantation (HSCT) recipients. As a result, lung CT scans are increasingly prescribed in the early phase after allogeneic HSCT, with no assessment of the added value for global patient management. Among 250 patients who underwent allogeneic HSCT in our center over a 2-year period, we evaluated 68 patients who had at least 1 lung CT scan within the first 30 days post-transplantation. The median interval between allogeneic HSCT and lung CT scan was 8.5 days. Patients who underwent an early lung CT scan were more immunocompromised and had a more severe course. Fever was the main indication for the CT scan (78%). The lung CT scan was abnormal in 52 patients, including 17 patients who had an abnormal pre-HSCT CT scan. A therapeutic change was noted in 37 patients (54%) within 24 hours after the lung CT scan. The main changes included the introduction of corticosteroids (n = 23; 62%), especially in patients with a normal CT scan (89%). In univariate models, we found that a normal pretransplantation CT scan (P = .002), the absence of either dyspnea (P = .029) or hypoxemia (P = .015), and a serum C-reactive protein level <10 mg/L (P = .004) were associated with a normal post-HSCT lung CT scan. We found that the association of these variables could predict the normality of early post-HSCT lung CT scans. Pretransplantation lung CT scans are useful for the interpretation of subsequent lung CT scans following allogeneic HSCT, which are frequently abnormal. Early post-HSCT lung CT scans are helpful in patient management, but prescriptions could be more targeted. PMID:27189110

  14. Controller for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument

    NASA Technical Reports Server (NTRS)

    Zomberg, Brian G.; Chren, William A., Jr.

    1994-01-01

    A prototype controller for the ESTAR (electronically scanned thinned array radiometer) instrument has been designed and tested. It manages the operation of the digital data subsystem (DDS) and its communication with the Small Explorer data system (SEDS). Among the data processing tasks that it coordinates are FEM data acquisition, noise removal, phase alignment and correlation. Its control functions include instrument calibration and testing of two critical subsystems, the output data formatter and Walsh function generator. It is implemented in a Xilinx XC3064PC84-100 field programmable gate array (FPGA) and has a maximum clocking frequency of 10 MHz.

  15. Sinus computed tomography scan and markers of inflammation in vocal cord dysfunction and asthma

    PubMed Central

    Peters, Edward J.; Hatley, Tina K.; Crater, Scott E.; Phillips, C. Douglas; Platts-Mills, Thomas A. E.; Borish, Larry

    2005-01-01

    Background: The inappropriate closure of the vocal cords is characteristic of vocal cord dysfunction (VCD). These patients present with wheezing and frequently receive a misdiagnosis of asthma. Objective: To demonstrate the ability of computed tomography (CT) scored for the presence and extent of sinus disease and markers of inflammation to distinguish patients with VCD from patients with asthma. Methods: Comparisons of 13 patients with VCD were made to 77 patients presenting to the emergency room with acute asthma, 31 non-acute asthmatic patients, and 65 nonasthmatic controls. Evaluation consisted of exhaled nitric oxide gas (eNO), circulating eosinophils, and total serum immunoglobulin (Ig)E, as well as the sinus CT scan. Results: Extensive sinus CT changes were present in 23 of 74 acute asthmatic patients, 5 of 29 non-acute asthmatic patients, and 2 of 59 nonasthmatic controls. In addition, absolute eosinophil counts, eNO, and total IgE were significantly elevated among the asthmatic patients. Sinus symptoms reported by questionnaire did not predict sinus CT findings. Among the patients with VCD, none had extensive sinus disease. They also had normal eNO, low IgE, and normal eosinophil count. Five of the patients presenting to the emergency room who were identified as acute asthmatic were identified with VCD by laryngoscopy and were all characterized by the absence of significant inflammation on their sinus CT scan, low IgE, and normal eosinophil count. Conclusions: Among patients presenting with intermittent or reversible airway obstruction, patients with VCD can be distinguished from asthma by minimum or absence of inflammation in their sinuses as shown by CT scan. Clinical symptom scores are not predictive of presence or extent of sinus disease in most cases. PMID:12669895

  16. CT scan

    MedlinePlus

    CAT scan; Computed axial tomography scan; Computed tomography scan ... Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, et al. eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ...

  17. Control Of Cryogenic Fourier Transform Spectrometer Scanning Mirrors

    NASA Astrophysics Data System (ADS)

    Tripathi, S. S.; Gowrinathan, S.

    1981-12-01

    The Perkin-Elmer Corporation has designed and built a cryogenically cooled Fourier transform spectrometer for spaceborne applications. In operation, the spectrometer requires mirrors moving at constant velocity in both forward and reverse directions. To maintain efficiency and accuracy, the time taken to reverse direction and the vibration induced due to this reversal must be kept within low limits. This paper deals with the control system design for maintaining a constant velocity during forward and reverse scans and for smooth direction reversals. The systems aspects of the problem are described, and time-domain techniques of modern control theory are applied for optimization of turn-around profile. The analysis leads to a suboptimal design easily implemented by using analog-type components. Test results of satisfactory performance are also included.

  18. Semi-automated method to measure pneumonia severity in mice through computed tomography (CT) scan analysis

    NASA Astrophysics Data System (ADS)

    Johri, Ansh; Schimel, Daniel; Noguchi, Audrey; Hsu, Lewis L.

    2010-03-01

    Imaging is a crucial clinical tool for diagnosis and assessment of pneumonia, but quantitative methods are lacking. Micro-computed tomography (micro CT), designed for lab animals, provides opportunities for non-invasive radiographic endpoints for pneumonia studies. HYPOTHESIS: In vivo micro CT scans of mice with early bacterial pneumonia can be scored quantitatively by semiautomated imaging methods, with good reproducibility and correlation with bacterial dose inoculated, pneumonia survival outcome, and radiologists' scores. METHODS: Healthy mice had intratracheal inoculation of E. coli bacteria (n=24) or saline control (n=11). In vivo micro CT scans were performed 24 hours later with microCAT II (Siemens). Two independent radiologists scored the extent of airspace abnormality, on a scale of 0 (normal) to 24 (completely abnormal). Using the Amira 5.2 software (Mercury Computer Systems), a histogram distribution of voxel counts between the Hounsfield range of -510 to 0 was created and analyzed, and a segmentation procedure was devised. RESULTS: A t-test was performed to determine whether there was a significant difference in the mean voxel value of each mouse in the three experimental groups: Saline Survivors, Pneumonia Survivors, and Pneumonia Non-survivors. It was found that the voxel count method was able to statistically tell apart the Saline Survivors from the Pneumonia Survivors, the Saline Survivors from the Pneumonia Non-survivors, but not the Pneumonia Survivors vs. Pneumonia Non-survivors. The segmentation method, however, was successfully able to distinguish the two Pneumonia groups. CONCLUSION: We have pilot-tested an evaluation of early pneumonia in mice using micro CT and a semi-automated method for lung segmentation and scoring system. Statistical analysis indicates that the system is reliable and merits further evaluation.

  19. The advantage of coronal scanning in cerebral computed angiotomography for diagnosis of moyamoya disease

    SciTech Connect

    Asari, S.; Satoh, T.; Sakurai, M.; Yamamoto, Y.; Sadamoto, K.

    1982-12-01

    The advantage of coronal scanning in cerebral computed angiotomography for diagnosis of and screening for moyamoya disease is demonstrated. Characteristic features on the coronal CT scan include (a) attenuation of and difficulty in following the supraclinoid internal carotid arteries and carotid fork and (b) abnormal ''nebula-like'' high-density areas consisting of irregular, tortuous, or patchy vessels arising in the basal cisterns and extending to the basal ganglia.

  20. The Galileo scan platform pointing control system - a modern control theoretic viewpoint.

    NASA Astrophysics Data System (ADS)

    Sevaston, G. E.; Macala, G. A.; Man, G. K.

    In this paper the authors review the current Galileo scan platform pointing control system, and discuss ways in which modern control concepts could contribute toward a better result. Moreover, the authors describe in detail a robust modern control system architecture and the associated design procedures.

  1. Real-time depth monitoring and control of laser machining through scanning beam delivery system

    NASA Astrophysics Data System (ADS)

    Ji, Yang; Grindal, Alexander W.; Webster, Paul J. L.; Fraser, James M.

    2015-04-01

    Scanning optics enable many laser applications in manufacturing because their low inertia allows rapid movement of the process beam across the sample. We describe our method of inline coherent imaging for real-time (up to 230 kHz) micron-scale (7-8 µm axial resolution) tracking and control of laser machining depth through a scanning galvo-telecentric beam delivery system. For 1 cm trench etching in stainless steel, we collect high speed intrapulse and interpulse morphology which is useful for further understanding underlying mechanisms or comparison with numerical models. We also collect overall sweep-to-sweep depth penetration which can be used for feedback depth control. For trench etching in silicon, we show the relationship of etch rate with average power and scan speed by computer processing of depth information without destructive sample post-processing. We also achieve three-dimensional infrared continuous wave (modulated) laser machining of a 3.96 × 3.96 × 0.5 mm3 (length × width × maximum depth) pattern on steel with depth feedback. To the best of our knowledge, this is the first successful demonstration of direct real-time depth monitoring and control of laser machining with scanning optics.

  2. Sector computed tomographic spine scanning in the diagnosis of lumbar nerve root entrapment

    SciTech Connect

    Risius, B.; Modic, M.T.; Hardy, R.W. Jr.; Duchesneau, P.M.; Weinstein, M.A.

    1982-04-01

    The diagnosis of lumbar nerve root entrapment was made by sector computed tomography (CT) scanning in 25 patients whose myelograms were normal at the site of the CT scan abnormalities. Sector CT scanning demonstrates preoperatively which neural foramina are narrow. This information, correlated with the patient's history and physical examination, indicates which foramina should be operated on and prevents unnecessary exploration of normal neutral foramina. CT findings were confirmed surgically in 14 patients. Eleven of these 14 patients had excellent postoperative results and remain pain free.

  3. Computer-Controlled, Motorized Positioning System

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1994-01-01

    Computer-controlled, motorized positioning system developed for use in robotic manipulation of samples in custom-built secondary-ion mass spectrometry (SIMS) system. Positions sample repeatably and accurately, even during analysis in three linear orthogonal coordinates and one angular coordinate under manual local control, or microprocessor-based local control or remote control by computer via general-purpose interface bus (GPIB).

  4. Computer controlled thermal fatigue test system

    SciTech Connect

    Schmale, D.T.; Jones, W.B.

    1986-01-01

    A servo-controlled hydraulic mechanical test system has been configured to conduct computer-controlled thermal fatigue tests. The system uses induction heating, a digital temperature controller, infrared pyrometry, forced air cooling, and quartz rod extensometry. In addition, a digital computer controls the tests and allows precise data analysis and interpretation.

  5. Computers and quality control in nuclear medicine.

    PubMed

    Brookeman, V A

    1978-04-01

    The general topic of computers and nuclear medicine quality control may be approached from two main areas; controlling the quality of computerized studies, and computer applications in general nuclear medicine quality control. Overlap occurs when quality control of computer studies is performed by the computer itself. The uses of computers in record-keeping and in quality control of imaging instrumentation and in vitro studies, including radioimmunoassay, are discussed in this review. Aspects of quality control for computerized clinical cardiovascular, cerebral, and renal studies and emission computed tomography are reviewed, including consideration of difficulties and inaccuracies involved in the studies. Any automatic computer analysis program should incorporate adequate checks and error detection protocols and should illustrate results for verification. Current routine quality control procedures using the computer unfortunately are few. Quality control criteria are needed for camera/computer systems in high count rate clinical applications, and increasing emphasis should be aimed at quality control of those computerized dynamic and function studies in current clinical use. The computer has a valuable potential for nuclear medicine quality control. In vitro and computerized in vivo studies can be analyzed by readily available statistical programs, and variances can be monitored continuously. Computers can calibrate and monitor instrument performance regularly, and can handle managerial and clerical duties such as bookkeeping. PMID:684439

  6. Progressive dyspnea associated with a crazy-paving appearance on a chest computed tomography scan.

    PubMed

    Maimon, Nimrod; Paul, Narinder; Downey, Gregory P

    2006-01-01

    A 'crazy-paving' appearance of the lungs on computed tomography scanning of the chest was first described nearly 20 years ago in patients with pulmonary alveolar proteinosis, and was thought to be characteristic of this condition. However, this pattern has subsequently been reported in a variety of pulmonary diseases and is now considered to be nonspecific. The present report describes a case of a 74-year-old man in whom congestive heart failure presented with a crazy-paving appearance of the lungs on a chest computed tomography scan. This uncommon association illustrates the importance of the correlation of clinical and radiographic information. PMID:16896429

  7. Review of P-scan computer-based ultrasonic inservice inspection system. Supplement 1

    SciTech Connect

    Harris, R.V. Jr.; Angel, L.J.

    1995-12-01

    This Supplement reviews the P-scan system, a computer-based ultrasonic system used for inservice inspection of piping and other components in nuclear power plants. The Supplement was prepared using the methodology described in detail in Appendix A of NUREG/CR-5985, and is based on one month of using the system in a laboratory. This Supplement describes and characterizes: computer system, ultrasonic components, and mechanical components; scanning, detection, digitizing, imaging, data interpretation, operator interaction, data handling, and record-keeping. It includes a general description, a review checklist, and detailed results of all tests performed.

  8. COMPUTER CONTROL OF BEHAVIORAL EXPERIMENTS.

    ERIC Educational Resources Information Center

    SIEGEL, LOUIS

    THE LINC COMPUTER PROVIDES A PARTICULAR SCHEDULE OF REINFORCEMENT FOR BEHAVIORAL EXPERIMENTS BY EXECUTING A SEQUENCE OF COMPUTER OPERATIONS IN CONJUNCTION WITH A SPECIALLY DESIGNED INTERFACE. THE INTERFACE IS THE MEANS OF COMMUNICATION BETWEEN THE EXPERIMENTAL CHAMBER AND THE COMPUTER. THE PROGRAM AND INTERFACE OF AN EXPERIMENT INVOLVING A PIGEON…

  9. Control and Power in Educational Computing.

    ERIC Educational Resources Information Center

    Kahn, Peter H., Jr.; Friedman, Batya

    Educational computing based on the primacy of human agency is explored, considering ways in which power can be apportioned and exercised in order to enhance educational computing. Ideas about power and control are situated epistemologically. A first consideration is educating for human control of computer technology. Research suggests that…

  10. Computer Aided Control System Design (CACSD)

    NASA Technical Reports Server (NTRS)

    Stoner, Frank T.

    1993-01-01

    The design of modern aerospace systems relies on the efficient utilization of computational resources and the availability of computational tools to provide accurate system modeling. This research focuses on the development of a computer aided control system design application which provides a full range of stability analysis and control design capabilities for aerospace vehicles.

  11. Computer Instructional Aids for Undergraduate Control Education.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…

  12. a Pc-Controlled Ultrafast Scanning Electrochemical Detector for High Performance Liquid Chromatography.

    NASA Astrophysics Data System (ADS)

    Rhodes, Derek Frank

    This research focuses on the design, implementation and evaluation of an ultra-fast scanning Electrochemical Detector (ECD) for High Performance Liquid Chromatography, (HPLC). The scanning detector employs a microelectrode array as the working electrode. The electrode array has been designed to fit directly into a commercially available ECD cell. Microelectrodes allow very rapid changes in potential while maintaining low background currents. Rapidly scanning the potential up to 10 volts per second yields time resolved current-voltage profiles of components as they elute from a chromatographic column. Coeluting peaks in the time domain are then resolved in the potential domain by taking the differential of the electrochemical profile. Several microelectrode arrays for various electrochemical detection techniques were evaluated using gold and carbon electrodes of radius 25mum, 6.5mu m and 3mum with solutions of ferrocene and catecholamines. The detector interface, software and electronics were engineered to interface with an IBM AT or compatible computer with 640 K of memory, a hard disk and a 20 MHz analog-to-digital digital-to-analog board. The rapid potential changes and the resulting cell current were controlled and monitored using fast executing assembler routines. Computer control of the ECD system made the application of a variety of amperometric techniques possible. Extensive data reduction procedures such as signal sorting from three dimensional data (E-i-t), and data averaging and smoothing were also developed. The research also explored the effect of flow rate and solution resistance on the electrochemical cell current.

  13. To assess vascular calcification in the patients of hypoparathyroidism using multidetector computed tomography scan

    PubMed Central

    Agarwal, Pooja; Prakash, Mahesh; Singhal, Manphool; Bhadada, Sanjay Kumar; Gupta, Yashdeep; Khandelwal, Niranjan

    2015-01-01

    Background: Our pilot data showed an increased intima media thickness in the patients with sporadic idiopathic hypoparathyroidism (SIH). Alteration in homeostasis of calcium, phosphate, and parathyroid hormone (PTH) may predispose to increase the risk of cardiovascular morbidity and mortality. The data on objective assessment of this increased risk is however lacking. Objective: To assess the effect of altered calcium, phosphate, and PTH homeostasis in the patients with SIH on coronary calcium score (a marker of increase vascular risk) by multidetector computed tomography scan (MDCT). Methods: In this case-control study, we measured coronary CT calcium score in 30 patients of SIH and compared with 40 age and sex matched healthy subjects. Correlation of coronary calcium score with biochemical parameters was evaluated. Results: Three of the 30 cases (10%) with SIH were found to have coronary artery calcification (CAC) of varying degree, whereas none of the control showed CAC (P = 0.07). The patients with CAC had significantly lower serum calcium levels (albumin corrected), as compared to the patients without CAC. Inverse correlation of CAC was found with serum calcium levels. No correlation was found with other biochemical parameters. Conclusion: The vascular risk is increased in the patients with SIH as assessed by coronary calcium score measured by MDCT. Low serum calcium levels might be a predisposing factor for this increased risk. PMID:26693429

  14. Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?

    SciTech Connect

    Nattenmüller, Johanna Filsinger, Matthias Bryant, Mark Stiller, Wolfram Radeleff, Boris Grenacher, Lars Kauczor, Hans-Ullrich Hosch, Waldemar

    2013-06-19

    PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % in drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.

  15. An adaptable head retention and alignment device for computed tomography scanning of Macaca mulatta.

    PubMed

    Bidez, M W; Mcloughlin, S W; Chen, Y; Lakshminarayanan, A V; Jeffcoat, M K

    1994-10-01

    An adaptable retention device has been developed for the purpose of holding and aligning the head of a sedated primate subject during computed tomography (CT) scan procedures. The device is used to obtain a close reproduction of CT scan studies at a time before and after dental implant placement in the mandibles of nine subjects. Geometric and material properties are extracted from these studies for the purpose of developing finite elements computer models. The device is constructed of low-density acrylic and consists of a horizontal base to which lateral supports are affixed. The device is placed on the CT table and axially aligned with the scan beam. Repeatable, calibrated CT studies of primate implant subjects were possible using the head holding device. PMID:7962014

  16. Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...

  17. Sparse-view computed laminography with a spherical sinusoidal scan for nondestructive testing.

    PubMed

    Abbas, Sajid; Park, Miran; Min, Jonghwan; Kim, Ho Kyung; Cho, Seungryong

    2014-07-28

    X-ray computed laminography is widely used in nondestructive testing of relatively flat objects using an oblique scanning configuration for data acquisition. In this work, a new scanning scheme is proposed in conjunction with the compressive-sensing-based image reconstruction for reducing imaging radiation dose and scanning time. We performed a numerical study comparing image qualities acquired by various scanning configurations that are practically implementable: single-arc, double-arc, oblique, and spherical-sinusoidal trajectories. A compressive-sensing-inspired total-variation (TV) minimization algorithm was used to reconstruct the images from the data acquired at only 40 projection views in those trajectories. It was successfully demonstrated that the proposed scanning scheme outperforms the others in terms of image contrast and spatial resolution, although the oblique scanning scheme showed a comparable resolution property. We believe that the proposed scanning method may provide a solution to fast and low-dose nondestructive testing of radiation-sensitive and highly integrated devices such as multilayer microelectronic circuit boards. PMID:25089394

  18. The Galileo scan platform pointing control system - A modern control theoretic viewpoint

    NASA Astrophysics Data System (ADS)

    Sevaston, G. E.; Macala, G. A.; Man, G. K.

    The current Galileo scan platform pointing control system (SPPCS) is described, and ways in which modern control concepts could serve to enhance it are considered. Of particular interest are: the multi-variable design model and overall control system architecture, command input filtering, feedback compensator and command input design, stability robustness constraint for both continuous time control systems and for sampled data control systems, and digital implementation of the control system. The proposed approach leads to the design of a system that is similar to current Galileo SPPCS configuration, but promises to be more systematic.

  19. Computers Control the Instruments of Science.

    ERIC Educational Resources Information Center

    House, James E.

    1982-01-01

    Discusses the role and use of microcomputers in scientific research, from monitoring instruments to controlling experimental processes. Included are descriptions of a computer-controlled protein sequencer and gene synthesizer, and microcomputer uses in medicine, physiology, biochemistry, and geology. (JN)

  20. A History of Computer Numerical Control.

    ERIC Educational Resources Information Center

    Haggen, Gilbert L.

    Computer numerical control (CNC) has evolved from the first significant counting method--the abacus. Babbage had perhaps the greatest impact on the development of modern day computers with his analytical engine. Hollerith's functioning machine with punched cards was used in tabulating the 1890 U.S. Census. In order for computers to become a…

  1. Detection model modeling and application for batch scans of cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Huang, Kuidong; Zhang, Dinghua; Li, Mingjun; Wang, Kuyu

    2009-07-01

    Aiming at the artifact corrections for batch scans in Cone-Beam Computed Tomography (CBCT) system, the concept of detection model is proposed. Expressing the prior knowledge of CT system and scanned object properties by the detection model, the rapid artifact corrections are achieved based on the object knowledge, which can save the machine consumption, enhance the detection efficiency and improve the correction effect. Based on the Digital Radiography (DR) imaging conditions remained basically unchanged in the batch scans, the modeling method of detection model is established by getting the relevant information through the detected scanning for one of a batch of parts. Finally, the processing flow of CBCT scans and artifact corrections of a batch of parts based on the detection model is given, and some key problems in the flow are discussed to improve the practical operability of the method. The experimental result shows that the modeling method of detection model is feasible, and the rapid CBCT scans and effective artifact corrections can be realized based on the obtained detection model.

  2. A Large Scale Computer Terminal Output Controller.

    ERIC Educational Resources Information Center

    Tucker, Paul Thomas

    This paper describes the design and implementation of a large scale computer terminal output controller which supervises the transfer of information from a Control Data 6400 Computer to a PLATO IV data network. It discusses the cost considerations leading to the selection of educational television channels rather than telephone lines for…

  3. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    EPA Science Inventory

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  4. Performance assessment of a new dynamic scan mode for perfusion computed tomography using a biological phantom

    NASA Astrophysics Data System (ADS)

    Haberland, U.; Klotz, E.,; Abolmaali, N.

    2010-04-01

    Perfusion computed tomography is increasingly being used for stroke and tumor assessment. Using continuous periodic table movement the spatial coverage can be increased beyond the detector width with a new adaptive spiral scanning technique (A4DS). The purpose of this study was to compare perfusion values acquired with the A4DS technique with results from standard dynamic scans at different temporal sampling rates. A biological perfusion phantom (preserved porcine kidney) was scanned with both techniques. In standard mode three scans were performed at adjacent overlapping positions (detector width 38.4 mm) covering the whole phantom. Data were reconstructed with temporal resolutions of 0.5, 1 and 1.5 s. The A4DS scan was performed with a cycle time of 1.5 s and scan ranges of 100 and 148 mm respectively. The phantom was not repositioned between scans in order to assure that identical image slices showed identical phantom slices. Tissue flow was calculated with a deconvolution type algorithm. Regions of interest were drawn in strongly and moderately enhancing areas and around the whole cortex in three slices in the upper, central and lower portion of the phantom. In the flow range of 40 to 100 ml/100ml/min values did not differ by more than 5 ml/100ml/min between any of the scan protocols used. The correlation between the continuous table movement modes and the 0.5 s standard mode was excellent (r2>0.98) indicating that the new mode is well suited for perfusion measurements and allows increasing the coverage by almost a factor of four.

  5. Proceedings of the 1st Space Plasma Computer Analysis Network (SCAN) Workshop. [space plasma computer networks

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Waite, J. H.; Johnson, J. F. E.; Doupnik, J. R.; Heelis, R. A.

    1983-01-01

    The purpose of the workshop was to identify specific cooperative scientific study topics within the discipline of Ionosphere Magnetosphere Coupling processes and to develop methods and procedures to accomplish this cooperative research using SCAN facilities. Cooperative scientific research was initiated in the areas of polar cusp composition, O+ polar outflow, and magnetospheric boundary morphology studies and an approach using a common metafile structure was adopted to facilitate the exchange of data and plots between the various workshop participants. The advantages of in person versus remote workshops were discussed also.

  6. Computer control for remote wind turbine operation

    SciTech Connect

    Manwell, J.F.; Rogers, A.L.; Abdulwahid, U.; Driscoll, J.

    1997-12-31

    Light weight wind turbines located in harsh, remote sites require particularly capable controllers. Based on extensive operation of the original ESI-807 moved to such a location, a much more sophisticated controller than the original one has been developed. This paper describes the design, development and testing of that new controller. The complete control and monitoring system consists of sensor and control inputs, the control computer, control outputs, and additional equipment. The control code was written in Microsoft Visual Basic on a PC type computer. The control code monitors potential faults and allows the turbine to operate in one of eight states: off, start, run, freewheel, low wind shut down, normal wind shutdown, emergency shutdown, and blade parking. The controller also incorporates two {open_quotes}virtual wind turbines,{close_quotes} including a dynamic model of the machine, for code testing. The controller can handle numerous situations for which the original controller was unequipped.

  7. Heart CT scan

    MedlinePlus

    CAT scan - heart; Computed axial tomography scan - heart; Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agaston score; Coronary calcium scan

  8. Micrometric precision of prosthetic dental crowns obtained by optical scanning and computer-aided designing/computer-aided manufacturing system

    NASA Astrophysics Data System (ADS)

    das Neves, Flávio Domingues; de Almeida Prado Naves Carneiro, Thiago; do Prado, Célio Jesus; Prudente, Marcel Santana; Zancopé, Karla; Davi, Letícia Resende; Mendonça, Gustavo; Soares, Carlos José

    2014-08-01

    The current study evaluated prosthetic dental crowns obtained by optical scanning and a computer-aided designing/computer-aided manufacturing system using micro-computed tomography to compare the marginal fit. The virtual models were obtained with four different scanning surfaces: typodont (T), regular impressions (RI), master casts (MC), and powdered master casts (PMC). Five virtual models were obtained for each group. For each model, a crown was designed on the software and milled from feldspathic ceramic blocks. Micro-CT images were obtained for marginal gap measurements and the data were statistically analyzed by one-way analysis of variance followed by Tukey's test. The mean vertical misfit was T=62.6±65.2 μm; MC=60.4±38.4 μm; PMC=58.1±38.0 μm, and RI=89.8±62.8 μm. Considering a percentage of vertical marginal gap of up to 75 μm, the results were T=71.5%, RI=49.2%, MC=69.6%, and PMC=71.2%. The percentages of horizontal overextension were T=8.5%, RI=0%, MC=0.8%, and PMC=3.8%. Based on the results, virtual model acquisition by scanning the typodont (simulated mouth) or MC, with or without powder, showed acceptable values for the marginal gap. The higher result of marginal gap of the RI group suggests that it is preferable to scan this directly from the mouth or from MC.

  9. Motion artifacts in CT scans: a study by computer simulation and mechanical phantom

    NASA Astrophysics Data System (ADS)

    Tien, Der-Chi; Lung, Jen-Kuang; Liao, Chih-Yu; Yong, Tung-Che; Hsu, Chung-Hsien; Liao, Chih-Chiang; Wu, Ren-Hong; Tseng, Kuo-Hsiung; Tsung, Tsing-Tshih

    2008-11-01

    Computed tomography (CT) is one of the most important tools in the diagnosis of thoracic tumors. However, during the scanning process, respiratory motion causes changes in the position and shape of the tumor, creating motion artifacts in the CT scan. This can lead to misdiagnosis of the size and position of the tumor, and can affect the effectiveness of treatment. This study develops a computer model of the movement of the thorax, and simulates the movement of a lung tumor caused by breathing during a CT scan. We show that adjusting the CT slice thickness is sufficient to determine the center of displacement and maximum displacement of a tumor during normal breathing. This model can be applied in the clinical diagnostic use of CT equipment. It will assist in finding the position of lung tumors from motion artifacts in CT scans. The target margin for treatment can thus be defined more accurately, so that appropriate doses of radiation can be applied to the target area, and irradiation of healthy tissue avoided.

  10. Open Source Scanning Probe Microscopy Control Software Package Gxsm

    SciTech Connect

    Zahl P.; Wagner, T.; Moller, R.; Klust, A.

    2009-08-10

    Gxsm is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected toan instrument, it is operating many different avors of SPM, e.g., scanning tunneling microscopy(STM) and atomic force microscopy (AFM) or in general two-dimensional multi channel data acquisition instruments. The Gxsm core can handle different data types, e.g., integer and oating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor (DSP) subsystem runs the feedback loop, generates the scanning signals and acquires the data during SPM measurements. The programmable Gxsm vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy (STS) or tip formation. The Gxsm software is released under the GNU general public license (GPL) and can be obtained via the Internet.

  11. Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease

    SciTech Connect

    Isgum, Ivana; Rutten, Annemarieke; Prokop, Mathias; Ginneken, Bram van

    2007-04-15

    A fully automated method for coronary calcification detection from non-contrast-enhanced, ECG-gated multi-slice computed tomography (CT) data is presented. Candidates for coronary calcifications are extracted by thresholding and component labeling. These candidates include coronary calcifications, calcifications in the aorta and in the heart, and other high-density structures such as noise and bone. A dedicated set of 64 features is calculated for each candidate object. They characterize the object's spatial position relative to the heart and the aorta, for which an automatic segmentation scheme was developed, its size and shape, and its appearance, which is described by a set of approximated Gaussian derivatives for which an efficient computational scheme is presented. Three classification strategies were designed. The first one tested direct classification without feature selection. The second approach also utilized direct classification, but with feature selection. Finally, the third scheme employed two-stage classification. In a computationally inexpensive first stage, the most easily recognizable false positives were discarded. The second stage discriminated between more difficult to separate coronary calcium and other candidates. Performance of linear, quadratic, nearest neighbor, and support vector machine classifiers was compared. The method was tested on 76 scans containing 275 calcifications in the coronary arteries and 335 calcifications in the heart and aorta. The best performance was obtained employing a two-stage classification system with a k-nearest neighbor (k-NN) classifier and a feature selection scheme. The method detected 73.8% of coronary calcifications at the expense of on average 0.1 false positives per scan. A calcium score was computed for each scan and subjects were assigned one of four risk categories based on this score. The method assigned the correct risk category to 93.4% of all scans.

  12. Computational Control Workstation: Users' perspectives

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Straube, Timothy M.; Tave, Jeffrey S.

    1993-01-01

    A Workstation has been designed and constructed for rapidly simulating motions of rigid and elastic multibody systems. We examine the Workstation from the point of view of analysts who use the machine in an industrial setting. Two aspects of the device distinguish it from other simulation programs. First, one uses a series of windows and menus on a computer terminal, together with a keyboard and mouse, to provide a mathematical and geometrical description of the system under consideration. The second hallmark is a facility for animating simulation results. An assessment of the amount of effort required to numerically describe a system to the Workstation is made by comparing the process to that used with other multibody software. The apparatus for displaying results as a motion picture is critiqued as well. In an effort to establish confidence in the algorithms that derive, encode, and solve equations of motion, simulation results from the Workstation are compared to answers obtained with other multibody programs. Our study includes measurements of computational speed.

  13. Refurbishment program of HANARO control computer system

    SciTech Connect

    Kim, H. K.; Choe, Y. S.; Lee, M. W.; Doo, S. K.; Jung, H. S.

    2012-07-01

    HANARO, an open-tank-in-pool type research reactor with 30 MW thermal power, achieved its first criticality in 1995. The programmable controller system MLC (Multi Loop Controller) manufactured by MOORE has been used to control and regulate HANARO since 1995. We made a plan to replace the control computer because the system supplier no longer provided technical support and thus no spare parts were available. Aged and obsolete equipment and the shortage of spare parts supply could have caused great problems. The first consideration for a replacement of the control computer dates back to 2007. The supplier did not produce the components of MLC so that this system would no longer be guaranteed. We established the upgrade and refurbishment program in 2009 so as to keep HANARO up to date in terms of safety. We designed the new control computer system that would replace MLC. The new computer system is HCCS (HANARO Control Computer System). The refurbishing activity is in progress and will finish in 2013. The goal of the refurbishment program is a functional replacement of the reactor control system in consideration of suitable interfaces, compliance with no special outage for installation and commissioning, and no change of the well-proved operation philosophy. HCCS is a DCS (Discrete Control System) using PLC manufactured by RTP. To enhance the reliability, we adapt a triple processor system, double I/O system and hot swapping function. This paper describes the refurbishment program of the HANARO control system including the design requirements of HCCS. (authors)

  14. Parallel computations and control of adaptive structures

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)

    1991-01-01

    The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.

  15. Development of a phase-controlled constant-distance scanning electrochemical microscope.

    PubMed

    Cougnon, Charles; Bauer-Espindola, Klaus; Fabre, Dimitri S; Mauzeroll, Janine

    2009-05-01

    The present shear-force constant-distance scanning electrochemical microscope regulates tip-to-substrate distance using a phase-controlled feedback mechanism that is more sensitive than the amplitude-controlled constant-distance scanning electrochemical microscopes. Phase control responds faster to frequency perturbation and presents enhance sensitivity during distance curves under constant-distance mode. PMID:19326905

  16. A PC-controlled ultrafast scanning electrochemical detector for high-performance liquid chromatography

    SciTech Connect

    Rhodes, D.F.

    1989-01-01

    This research focuses on the design, implementation and evaluation of an ultra-fast scanning Electrochemical Detector (ECD) for High Performance Liquid Chromatography, (HPLC). The scanning detector employs a microelectrode array as the working electrode. The electrode array has been designed to fit directly into a commercially available ECD cell. Microelectrodes allow very rapid changes in potential while maintaining low background currents. Rapidly scanning the potential up to 10 volts per second yields time resolved current-voltage profiles of components as they elute from a chromatographic column. Coeluting peaks in the time domain are then resolved in the potential domain by taking the differential of the electrochemical profile. Several microelectrode arrays for various electrochemical detection techniques were evaluated using gold and carbon electrodes of radius 25{mu}m, 6.5{mu}m and 3{mu}m with solutions of ferrocene and catecholamines. The detector interface, software and electronics were engineered to interface with an IBM AT or compatible computer with 640 K of memory, a hard disk and a 20 MHz analog-to-digital digital-to-analog board. The rapid potential changes and the resulting cell current were controlled and monitored using fast executing assembler routines. Computer control of the ECD system made the application of a variety of amperometric techniques possible. Extensive data reduction procedures such as signal sorting from three dimensional data (E-i-t), and data averaging and smoothing were also developed. The research also explored the effect of flow rate and solution resistance on the electrochemical cell current.

  17. Using computed tomography scans to develop an ex-vivo gastric model

    PubMed Central

    Henry, Jerome A; O’Sullivan, Gerard; Pandit, Abhay S

    2007-01-01

    The objective of this research was to use abdominal computed tomography (CT) scans to non-invasively quantify anthropometrical data of the human stomach and to concomitantly create an anatomically correct and distensible ex-vivo gastric model. Thirty-three abdominal CT scans of human subjects were obtained and were imported into reconstruction software to generate 3D models of the stomachs. Anthropometrical data such as gastric wall thickness, gastric surface area and gastric volume were subsequently quantified. A representative 3D computer model was exported into a selective laser sintering (SLS) rapid prototyping machine to create an anatomically correct solid gastric model. Subsequently, a replica wax template of the SLS model was created. A negative mould was offset around the wax template such that the offset distance was equivalent to that of the gastric wall thickness. A silicone with similar mechanical properties to the human stomach was poured into the offset. The lost wax manufacturing technique was employed to create a hollow distensible stomach model. 3D computer gastric models were generated from the CT scans. A hollow distensible silicone ex-vivo gastric model with similar compliance to that of the human stomach was created. The anthropometrical data indicated that there is no significant relationship between BMI and gastric surface area or gastric volume. There were inter- and intra-group differences between groups with respect to gastric wall thickness. This study demonstrates that abdominal CT scans can be used to both non-invasively determine gastric anthropometrical data as well as create realistic ex-vivo stomach models. PMID:17457968

  18. The Diminishing Role of Pelvic Stability Evaluation in the Era of Computed Tomographic Scanning

    PubMed Central

    Fu, Chih-Yuan; Teng, Lan-Hsuan; Liao, Chien-Hung; Hsu, Yu-Pao; Wang, Shang-Yu; Kuo, Ling-Wei; Yuan, Kuo-Ching

    2016-01-01

    Abstract Pelvic fractures can result in life-threatening hemorrhages or other associated injuries. Therefore, computed tomography (CT) scanning plays a key role in the management of pelvic fracture patients. However, CT scanning is utilized as an adjunct in secondary survey according to traditional Advanced Trauma Life Support (ATLS) guidelines, whereas pelvic x-ray is used as a primary tool to evaluate pelvic stability and the necessity of further CT scanning. In the current study, we attempted to evaluate the role of CT scanning in the era of advanced technology. The significance of pelvic stability was also analyzed. From January 2012 to December 2014, the trauma registry and medical records of pelvic fracture patients were retrospectively reviewed. A 64-slice multidetector CT scanner was used in our emergency department as a standard diagnostic tool for evaluating trauma patients. Pelvic x-ray was used as a primary tool for screening pelvic fractures, and pelvic stability was evaluated accordingly. CT scans were performed in patients with unstable pelvic fractures, suspected associated intra-abdominal injuries (IAIs), or other conditions based on the physicians’ clinical judgment. The clinical features of patients with stable and unstable pelvic fractures were compared. The patients with stable pelvic fractures were analyzed to determine the characteristics associated with retroperitoneal hemorrhage (RH) or IAIs. Patients with stable pelvic fractures were also compared based on whether they underwent a CT scan. A total of 716 patients were enrolled in this study. There were 533 (74.4%) patients with stable pelvic fractures. Of these patients, there were 66 (12.4%) and 50 (9.4%) patients with associated RH and IAI, respectively. There were no significant differences between the patients with associated RH based on their primary evaluation (vital signs, volume of blood transfusion, and hemoglobin level). Similarly, the demographics and the primary evaluation

  19. Fast scan control for deflection type mass spectrometers

    NASA Technical Reports Server (NTRS)

    Yeager, P. R.; Gaetano, G.; Hughes, D. B. (Inventor)

    1974-01-01

    A high speed scan device is reported that allows most any scanning sector mass spectrometer to measure preselected gases at a very high sampling rate. The device generates a rapidly changing staircase output which is applied to the accelerator of the spectrometer and it also generates defocusing pulses that are applied to one of the deflecting plates of the spectrometer which when shorted to ground deflects the ion beam away from the collector. A defocusing pulse occurs each time there is a change in the staircase output.

  20. Computer controlled vent and pressurization system

    NASA Technical Reports Server (NTRS)

    Cieslewicz, E. J.

    1975-01-01

    The Centaur space launch vehicle airborne computer, which was primarily used to perform guidance, navigation, and sequencing tasks, was further used to monitor and control inflight pressurization and venting of the cryogenic propellant tanks. Computer software flexibility also provided a failure detection and correction capability necessary to adopt and operate redundant hardware techniques and enhance the overall vehicle reliability.

  1. Cranial computed tomography scan findings in head trauma patients in Enugu, Nigeria

    PubMed Central

    Ohaegbulam, Samuel C.; Mezue, Wilfred C.; Ndubuisi, Chika A.; Erechukwu, Uwadiegwu A.; Ani, Chinenye O.

    2011-01-01

    Background: The choice of radiological investigations in head trauma in Africa is influenced by factors such as cost. Some patients who require computed tomography (CT) scan elsewhere are either managed blindly or do not present for it at the appropriate time. This paper evaluates the CT scan findings as they are obtained in cases of head trauma in a region of Nigeria. Methods: Prospectively recorded data of all head injury patients who presented for CT scan between January 2009 and April 2010 at Memfys Hospital for Neurosurgery (MHN), Enugu, Nigeria, were analyzed. Mobile CereTom 8-Slice CT was used in all cases. New and follow-up cases were included. Results: There were 204 CT scans for head trauma (171 new, 33 follow-up), accounting for about 34% of all head CT scans performed with this unit. The male to female ratio was 3.5:1. About 33.9% of the patients were in the third and fourth decades of life. In 19.9% cases, CT was unremarkable, while 80.1% cases had abnormal CT findings. The CT diagnosis was not in keeping with the indication of head trauma in 7%, and 13% had more than one finding. The most common CT findings were: subdural hematoma 30%, cerebral contusions and edema 30.7%, skull fractures 23.4% and extradural hematoma 8.0%. About 64% of the CT findings required surgical interventions. The overall mortality was 11.1%, but amongst the 137 patients who had abnormal CT findings, it was 13.9%. Conclusion: The high yield and diversity of CT scan findings in head trauma patients support the indication for the appropriate use of CT in diagnosis and management of head trauma even in developing countries. PMID:22276236

  2. Controlling Laboratory Processes From A Personal Computer

    NASA Technical Reports Server (NTRS)

    Will, H.; Mackin, M. A.

    1991-01-01

    Computer program provides natural-language process control from IBM PC or compatible computer. Sets up process-control system that either runs without operator or run by workers who have limited programming skills. Includes three smaller programs. Two of them, written in FORTRAN 77, record data and control research processes. Third program, written in Pascal, generates FORTRAN subroutines used by other two programs to identify user commands with device-driving routines written by user. Also includes set of input data allowing user to define user commands to be executed by computer. Requires personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. Also requires FORTRAN 77 compiler and device drivers written by user.

  3. Human/computer control of undersea teleoperators

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.; Verplank, W. L.; Brooks, T. L.

    1978-01-01

    The potential of supervisory controlled teleoperators for accomplishment of manipulation and sensory tasks in deep ocean environments is discussed. Teleoperators and supervisory control are defined, the current problems of human divers are reviewed, and some assertions are made about why supervisory control has potential use to replace and extend human diver capabilities. The relative roles of man and computer and the variables involved in man-computer interaction are next discussed. Finally, a detailed description of a supervisory controlled teleoperator system, SUPERMAN, is presented.

  4. Managing computer-controlled operations

    NASA Technical Reports Server (NTRS)

    Plowden, J. B.

    1985-01-01

    A detailed discussion of Launch Processing System Ground Software Production is presented to establish the interrelationships of firing room resource utilization, configuration control, system build operations, and Shuttle data bank management. The production of a test configuration identifier is traced from requirement generation to program development. The challenge of the operational era is to implement fully automated utilities to interface with a resident system build requirements document to eliminate all manual intervention in the system build operations. Automatic update/processing of Shuttle data tapes will enhance operations during multi-flow processing.

  5. [Computer-assisted tomography, B-scan sonography and cerebral angiography in obliterations of the carotid artery (author's transl)].

    PubMed

    Zeitler, E; Greiling, H W; Roth, F J; Friedmann, G

    1980-05-16

    The real-time-B-scan is a new and essential method for diagnosing carotid stenoses. Whereas computer-assisted tomography shows only a minor sensitivity for detection of obliterations of cervical arteries, B-scan sonography has high sensitivity and specificity. B-scans should be increasingly performed both after uncertain clinical and computer tomographic findings prior to angiography of extracranial cerebral vessels. A more stringent indication for angiography and thus avoidance of investigational and irradiation risk can be achieved. Wide use of B-scan sonography may, through early recognition of carotid obliterations, lead to prevention of cerebral insults as patients can undergo vascular surgery at an early stage. PMID:7371550

  6. Improved computed torque control for industrial robots

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Minis, Ioannis; Cleary, Kevin

    1992-01-01

    The authors examine the computed torque control problem for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators due to the dynamics introduced by the joint drive systems. The proposed approach overcomes this problem by combining a novel computed torque algorithm with simple torque controllers at each joint of the robot. The control scheme is applied to a seven degree-of-freedom industrial manipulator, and the system performance in standard tasks is evaluated using both dynamic simulation and actual experiments. The results show that the proposed controller leads to improved tracking performance over a conventional PD (proportional plus derivative) controller.

  7. Tetrahedron-based orthogonal simultaneous scan for cone-beam computed tomography

    PubMed Central

    Ye, Ivan B.; Wang, Ge

    2013-01-01

    In this article, a cone-beam computed tomography scanning mode is designed using four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite of each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22′, while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. A proposed scanning scheme consists of two rotations about orthogonal axes, such that, each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired. PMID:24058220

  8. A computational framework for cancer response assessment based on oncological PET-CT scans.

    PubMed

    Sampedro, Frederic; Escalera, Sergio; Domenech, Anna; Carrio, Ignasi

    2014-12-01

    In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks. PMID:25450224

  9. Logical Access Control Mechanisms in Computer Systems.

    ERIC Educational Resources Information Center

    Hsiao, David K.

    The subject of access control mechanisms in computer systems is concerned with effective means to protect the anonymity of private information on the one hand, and to regulate the access to shareable information on the other hand. Effective means for access control may be considered on three levels: memory, process and logical. This report is a…

  10. Distributed computation of supremal conditionally controllable sublanguages

    NASA Astrophysics Data System (ADS)

    Komenda, Jan; Masopust, Tomáš

    2016-02-01

    In this paper, we further develop the coordination control framework for discrete-event systems with both complete and partial observations. First, a weaker sufficient condition for the computation of the supremal conditionally controllable sublanguage and conditionally normal sublanguage is presented. Then we show that this condition can be imposed by synthesising a-posteriori supervisors. The paper further generalises the previous study by considering general, non-prefix-closed languages. Moreover, we prove that for prefix-closed languages the supremal conditionally controllable sublanguage and conditionally normal sublanguage can always be computed in the distributed way without any restrictive conditions we have used in the past.

  11. Exploring dinosaur neuropaleobiology: viewpoint computed tomography scanning and analysis of an Allosaurus fragilis endocast.

    PubMed

    Rogers, S W

    1998-10-01

    The unique opportunity to examine an exceptionally well-preserved natural endocranial cast (endocast) from a carnivorous dinosaur of the late Jurassic period, Allosaurus fragilis, was afforded this neurobiologist. The endocast exhibits numerous surface features including the complete vestibular apparatus. Spiral computed tomography scanning revealed multiple internal features including putative blood vessels, connective tissue-like arrays, and a prominent symmetrical density consistent with the putative brain or its cast. The evidence suggests that this organism's neurobiology resembled closely that of modern crocodylian species and should be included for consideration when examining ideas of Allosaurus evolution, behavior, and eventual extinction. PMID:9808455

  12. A universal computer control system for motors

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  13. Computer hardware and software for robotic control

    NASA Technical Reports Server (NTRS)

    Davis, Virgil Leon

    1987-01-01

    The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems.

  14. The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Markiewicz, Jakub Stefan

    2016-06-01

    The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  15. Computational Prediction of Alanine Scanning and Ligand Binding Energetics in G-Protein Coupled Receptors

    PubMed Central

    Boukharta, Lars; Gutiérrez-de-Terán, Hugo; Åqvist, Johan

    2014-01-01

    Site-directed mutagenesis combined with binding affinity measurements is widely used to probe the nature of ligand interactions with GPCRs. Such experiments, as well as structure-activity relationships for series of ligands, are usually interpreted with computationally derived models of ligand binding modes. However, systematic approaches for accurate calculations of the corresponding binding free energies are still lacking. Here, we report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 receptor and series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones. PMID:24743773

  16. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... Mosby; 2013:chap 57. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  17. Sinus CT scan

    MedlinePlus

    CAT scan - sinus; Computed axial tomography scan - sinus; Computed tomography scan - sinus; CT scan - sinus ... 2014:chap 67. Shaw AS, Dixon AK. Multidetector computed tomography. In: Adam A, Dixon AK, eds. Grainger & Allison's ...

  18. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... Saunders; 2012:chap 11. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  19. Pelvic CT scan

    MedlinePlus

    CAT scan - pelvis; Computed axial tomography scan - pelvis; Computed tomography scan - pelvis; CT scan - pelvis ... gov/pubmed/18381118 . Shaw AS, Dixon AK. Multidetector computed tomography. In: Grainger RC, Allison D, Adam, Dixon AK, ...

  20. Shoulder CT scan

    MedlinePlus

    CAT scan - shoulder; Computed axial tomography scan - shoulder; Computed tomography scan - shoulder; CT scan - shoulder ... Mosby; 2012:chap 57. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  1. [HEALTH PREDICTION INDICES OBTAINED WITH LOW-DOSE COMPUTER TOMOGRAPHY SCANS].

    PubMed

    Matkevich, E i; Sinitsyn, V e; Ivanov LV

    2015-01-01

    Purpose of the investigation was to make prognostic estimations of reductions in somatic morbidity and temporal disability, and tumor pathology using low-dose computer tomography (CT) scans and to compare with standard protocols. Mean effective radiation doses were determined based on the results of 1627 diagnostic CT investigations made in 2012-2014 at the Treatment and Rehabilitation Center of the Russian Ministry of Health. Low-dose CT scans of the head and thoracic, abdominal and small pelvis organs were obtained on a GE Discovery CT750 HD, and with the help of the ASIR and MBIR algorithms of iterative reconstruction. In comparison with a standard dose, a single CT scan with a dose reduced by 10-12 mSv predicts a decrease in total morbidity by 0.84-5.52% and temporal disability by 0.55-1.65% per 100 employees over a year; total risk of tumors and genetic effects reduced in 5 to 10 times, which may be equal to 40-90 cases per 100,000 of 30 y.o. males. PMID:26934792

  2. Detection of vertical root fractures in endodontically treated teeth by a cone beam computed tomography scan.

    PubMed

    Hassan, Bassam; Metska, Maria Elissavet; Ozok, Ahmet Rifat; van der Stelt, Paul; Wesselink, Paul Rudolf

    2009-05-01

    Our aim was to compare the accuracy of cone beam computed tomography (CBCT) scans and periapical radiographs (PRs) in detecting vertical root fractures (VRFs) and to assess the influence of root canal filling (RCF) on fracture visibility. Eighty teeth were endodontically prepared and divided into four groups. The teeth in groups A and B were artificially fractured, and teeth in groups C and D were not. Groups A and C were root filled. Four observers evaluated the CBCT scans and PR images. Sensitivity and specificity for VRF detection of CBCT were 79.4% and 92.5% and for PR were 37.1% and 95%, respectively. The specificity of CBCT was reduced (p = 0.032) by the presence of RCF, but its overall accuracy was not influenced (p = 0.654). Both the sensitivity (p = 0.006) and overall accuracy (p = 0.008) of PRs were reduced by the presence of RCF. The results showed an overall higher accuracy for CBCT (0.86) scans than PRs (0.66) for detecting VRF. PMID:19410091

  3. Computationally Lightweight Air-Traffic-Control Simulation

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    An algorithm for computationally lightweight simulation of automated air traffic control (ATC) at a busy airport has been derived. The algorithm is expected to serve as the basis for development of software that would be incorporated into flight-simulator software, the ATC component of which is not yet capable of handling realistic airport loads. Software based on this algorithm could also be incorporated into other computer programs that simulate a variety of scenarios for purposes of training or amusement.

  4. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  5. Modern control centers and computer networking

    SciTech Connect

    Dy-Liacco, T.E.

    1994-10-01

    The automation of power system operation is generally achieved with the implementation of two control centers, one for the operation of the generation-transmission system and the other for the operation of the distribution system. These control centers are referred to, respectively, as the energy management system (EMS) and the distribution management system (DMS). The EMS may consist of several control centers in a hierarchy. The DMS may be made up of several independent distribution control centers. This article features the fundamental design aspects of modern EMS and DMS control centers (computer networks, distributed processing, and distributed databases), the linking of computer networks, and the communications that support such internetworking. The extension of such networking beyond the confines of system operation to other corporate networks is now made practical by the maturing concepts of client-server architectures and by the availability of modern communication technologies.

  6. NIF Integrated Computer Controls System Description

    SciTech Connect

    VanArsdall, P.

    1998-01-26

    This System Description introduces the NIF Integrated Computer Control System (ICCS). The architecture is sufficiently abstract to allow the construction of many similar applications from a common framework. As discussed below, over twenty software applications derived from the framework comprise the NIF control system. This document lays the essential foundation for understanding the ICCS architecture. The NIF design effort is motivated by the magnitude of the task. Figure 1 shows a cut-away rendition of the coliseum-sized facility. The NIF requires integration of about 40,000 atypical control points, must be highly automated and robust, and will operate continuously around the clock. The control system coordinates several experimental cycles concurrently, each at different stages of completion. Furthermore, facilities such as the NIF represent major capital investments that will be operated, maintained, and upgraded for decades. The computers, control subsystems, and functionality must be relatively easy to extend or replace periodically with newer technology.

  7. ASTEC: Controls analysis for personal computers

    NASA Technical Reports Server (NTRS)

    Downing, John P.; Bauer, Frank H.; Thorpe, Christopher J.

    1989-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. The project is a follow-on to the INCA (INteractive Controls Analysis) program that has been developed at GSFC over the past five years. While ASTEC makes use of the algorithms and expertise developed for the INCA program, the user interface was redesigned to take advantage of the capabilities of the personal computer. The design philosophy and the current capabilities of the ASTEC software are described.

  8. A pixel-connecting algorithm for enhancement and segmentation of computed tomography scans

    SciTech Connect

    Yanof, J.H.

    1990-01-01

    The objective of the study was to enhance and segment X-ray Computerized Tomography (CT) scans. To deal with the noise and spatial complexity of these images, a relaxation algorithm was developed in order to link pixels together into homogeneous regions. Each pixel is assigned a set of weighted links to its nearest neighbors. The links are initially isotropic, and are arranged into stochastic link matrices. By computing powers of the link matrix, an object-dependent weighting mask for each pixel over an expanded neighborhood is found. The masks are used to compute a similarity measure between pixels in order to adjust the interlinks. The edges, which segment the image, are identified by the below-threshold links, and the displayed mask-weighted averages result in an enhanced image. The algorithm seems robust w.r.t. the five images tested: the images based on the weighted averages have a smooth appearance with sharpened edges. The algorithm has successfully segmented primary liver tumors of varying sizes and shapes. The links which drop below threshold highlight anatomical details of the scans which are difficult to visualize with the unaided eye.

  9. Utilizing computed tomography scans for analysis of motorcycle helmets in real-world crashes - biomed 2011.

    PubMed

    Loftis, Kathryn L; Moreno, Daniel P; Tan, Joshua; Gabler, Hampton C; Stitzel, Joel D

    2011-01-01

    In 2008, there were more than 5,000 motorcycle crash fatalities in the United States. Many states have motorcycle helmet laws that are meant to protect riders during a crash. After recruiting motorcycle occupants injured in crashes, a protocol was established to scan three different types of motorcycle helmets commonly worn (cap, ¾ shield, and full face shield) using a computed tomography (CT) scanner. The protocol developed was for a GE 64 slice PET/CT Discovery VCT scanner with axial images from anterior to posterior helmet acquired in helical mode. It had 512x512 resolution and the full face and ¾ face shield helmets were scanned with greater voxels in the axial plane compared to the skull cap helmets. New helmets were scanned as exemplary images for comparison with helmets involved in motorcycle crashes. After CT scans were gathered, three-dimensional reconstructions were made to visualize scratches and impacts to the exterior of the helmets. Initial work was also conducted in analyzing interior components, and a trend was seen in decreased thickness between the interior foam and shell with sides of the exterior helmet thought to have contacted roadside barriers or the ground during motorcycle crashes. These helmet analysis methods have been established, and will be used to investigate multiple motorcycle crashes in conjunction with occupant injuries and direct head impacts to improve helmet design and the understanding of head injuries. This work also establishes the basis for development of finite element models of three of the most common helmet types. PMID:21525626

  10. Computed Tomography (CT) Scanning Facilitates Early Identification of Neonatal Cystic Fibrosis Piglets

    PubMed Central

    Guillon, Antoine; Chevaleyre, Claire; Barc, Celine; Berri, Mustapha; Adriaensen, Hans; Lecompte, François; Villemagne, Thierry; Pezant, Jérémy; Delaunay, Rémi; Moënne-Loccoz, Joseph; Berthon, Patricia; Bähr, Andrea; Wolf, Eckhard; Klymiuk, Nikolai; Attucci, Sylvie; Ramphal, Reuben; Sarradin, Pierre; Buzoni-Gatel, Dominique; Si-Tahar, Mustapha; Caballero, Ignacio

    2015-01-01

    Background Cystic Fibrosis (CF) is the most prevalent autosomal recessive disease in the Caucasian population. A cystic fibrosis transmembrane conductance regulator knockout (CFTR-/-) pig that displays most of the features of the human CF disease has been recently developed. However, CFTR-/- pigs presents a 100% prevalence of meconium ileus that leads to death in the first hours after birth, requiring a rapid diagnosis and surgical intervention to relieve intestinal obstruction. Identification of CFTR-/- piglets is usually performed by PCR genotyping, a procedure that lasts between 4 to 6 h. Here, we aimed to develop a procedure for rapid identification of CFTR-/- piglets that will allow placing them under intensive care soon after birth and immediately proceeding with the surgical correction. Methods and Principal Findings Male and female CFTR+/- pigs were crossed and the progeny was examined by computed tomography (CT) scan to detect the presence of meconium ileus and facilitate a rapid post-natal surgical intervention. Genotype was confirmed by PCR. CT scan presented a 94.4% sensitivity to diagnose CFTR-/- piglets. Diagnosis by CT scan reduced the birth-to-surgery time from a minimum of 10 h down to a minimum of 2.5 h and increased the survival of CFTR-/- piglets to a maximum of 13 days post-surgery as opposed to just 66 h after later surgery. Conclusion CT scan imaging of meconium ileus is an accurate method for rapid identification of CFTR-/- piglets. Early CT detection of meconium ileus may help to extend the lifespan of CFTR-/- piglets and, thus, improve experimental research on CF, still an incurable disease. PMID:26600426

  11. Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation

    NASA Astrophysics Data System (ADS)

    Teza, Giordano; Pesci, Arianna; Genevois, Rinaldo; Galgaro, Antonio

    2008-05-01

    Assessment and mitigation of the risk induced by landslide activation need an appropriate phenomenon investigation, to obtain useful information about the failure processes. The first step is the complete kinematics characterization of the landslide ground surface, by evaluating the involved displacement and deformation patterns. A dense displacement field can be obtained from comparison of a series of multi-temporal observations performed by means of terrestrial laser scanning. Subsequently, the strain field can be computed from displacement vectors. In this paper, a modified least square technique is employed to compute the strain on the nodes of a regular grid (2D approach) or on the points of a digital terrain model (3D approach). Such a computation takes into account the displacements, their spatial distribution, as well as the measurement and modelling errors. A scale factor is introduced in order to emphasize the contributions of the experimental points on the basis of their distance from each computation point, and to recognize possible scale-depending behaviours. This method has been implemented in Matlab and applied on two landslides located in the northeastern Italian Alps (Lamosano and Perarolo di Cadore). The experiments show that different kinematics can be recognized, and the presence and influence of eventual discontinuities can be revealed.

  12. Scanning, Scanning, Everywhere.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia; Myers, Brenda

    1997-01-01

    Discusses uses of scanning (process of copying or converting text, images, and objects into information that the computer can recognize and manipulate) in schools and notes possible desktop publishing projects. Describes popular scanners and ways to edit a scanned image. A sidebar gives costs and telephone numbers for nine scanners. (AEF)

  13. Intermittent control: a computational theory of human control.

    PubMed

    Gawthrop, Peter; Loram, Ian; Lakie, Martin; Gollee, Henrik

    2011-02-01

    The paradigm of continuous control using internal models has advanced understanding of human motor control. However, this paradigm ignores some aspects of human control, including intermittent feedback, serial ballistic control, triggered responses and refractory periods. It is shown that event-driven intermittent control provides a framework to explain the behaviour of the human operator under a wider range of conditions than continuous control. Continuous control is included as a special case, but sampling, system matched hold, an intermittent predictor and an event trigger allow serial open-loop trajectories using intermittent feedback. The implementation here may be described as "continuous observation, intermittent action". Beyond explaining unimodal regulation distributions in common with continuous control, these features naturally explain refractoriness and bimodal stabilisation distributions observed in double stimulus tracking experiments and quiet standing, respectively. Moreover, given that human control systems contain significant time delays, a biological-cybernetic rationale favours intermittent over continuous control: intermittent predictive control is computationally less demanding than continuous predictive control. A standard continuous-time predictive control model of the human operator is used as the underlying design method for an event-driven intermittent controller. It is shown that when event thresholds are small and sampling is regular, the intermittent controller can masquerade as the underlying continuous-time controller and thus, under these conditions, the continuous-time and intermittent controller cannot be distinguished. This explains why the intermittent control hypothesis is consistent with the continuous control hypothesis for certain experimental conditions. PMID:21327829

  14. Multiaxis Computer Numerical Control Internship Report

    ERIC Educational Resources Information Center

    Rouse, Sharon M.

    2012-01-01

    (Purpose) The purpose of this paper was to examine the issues associated with bringing new technology into the classroom, in particular, the vocational/technical classroom. (Methodology) A new Haas 5 axis vertical Computer Numerical Control machining center was purchased to update the CNC machining curriculum at a community college and the process…

  15. Computer-Controlled HVAC -- at Low Cost

    ERIC Educational Resources Information Center

    American School and University, 1974

    1974-01-01

    By tying into a computerized building-automation network, Schaumburg High School, Illinois, slashed its energy consumption by one-third. The remotely connected computer controls the mechanical system for the high school as well as other buildings in the community, with the cost being shared by all. (Author)

  16. Central control element expands computer capability

    NASA Technical Reports Server (NTRS)

    Easton, R. A.

    1975-01-01

    Redundant processing and multiprocessing modes can be obtained from one computer by using logic configuration. Configuration serves as central control element which can automatically alternate between high-capacity multiprocessing mode and high-reliability redundant mode using dynamic mode switching in real time.

  17. Scanning tunnelling microscope fabrication of arrays of phosphorus atom qubits for a silicon quantum computer

    NASA Astrophysics Data System (ADS)

    O'Brien, J. L.; Schofield, S. R.; Simmons, M. Y.; Clark, R. G.; Dzurak, A. S.; Curson, N. J.; Kane, B. E.; McAlpine, N. S.; Hawley, M. E.; Brown, G. W.

    2002-10-01

    Recognition of the potentially massive computational power of a quantum computer has driven a considerable experimental effort to build such a device. Of the various possible physical implementations, silicon-based architectures are attractive for the long spin relaxation times involved, their scalability, and ease of integration with existing silicon technology. However, their fabrication requires construction at the atomic scale - an immense technological challenge. Here we outline a detailed strategy for the construction of a phosphorus in silicon quantum computer and demonstrate the first significant step towards this goal - the fabrication of atomically precise arrays of single phosphorus bearing molecules on a silicon surface. After using a monolayer hydrogen resist to passivate a silicon surface we apply pulsed voltages to a scanning tunnelling microscope tip to selectively desorb individual hydrogen atoms with atomic resolution. Exposure of this surface to the phosphorus precursor phosphine results in precise placement of single phosphorus atoms on the surface. We also describe preliminary studies into a process to incorporate these surface phosphorus atoms into the silicon crystal at the array sites.

  18. Computation and control with neural nets

    SciTech Connect

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-10-04

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future microprocessors' are predicted and requested on this basis. 19 refs., 18 figs.

  19. National Ignition Facility integrated computer control system

    SciTech Connect

    Van Arsdall, P.J., LLNL

    1998-06-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control systems. The framework provides an open, extensible architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. The ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensors to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance.

  20. National Ignition Facility integrated computer control system

    NASA Astrophysics Data System (ADS)

    Van Arsdall, Paul J.; Bettenhausen, R. C.; Holloway, Frederick W.; Saroyan, R. A.; Woodruff, J. P.

    1999-07-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control system. The framework provides an open, extensive architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. THe ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensor to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance.

  1. A Monte Carlo tool for raster-scanning particle therapy dose computation

    NASA Astrophysics Data System (ADS)

    Jelen, U.; Radon, M.; Santiago, A.; Wittig, A.; Ammazzalorso, F.

    2014-03-01

    Purpose of this work was to implement Monte Carlo (MC) dose computation in realistic patient geometries with raster-scanning, the most advanced ion beam delivery technique, combining magnetic beam deflection with energy variation. FLUKA, a Monte Carlo package well-established in particle therapy applications, was extended to simulate raster-scanning delivery with clinical data, unavailable as built-in feature. A new complex beam source, compatible with FLUKA public programming interface, was implemented in Fortran to model the specific properties of raster-scanning, i.e. delivery by means of multiple spot sources with variable spatial distributions, energies and numbers of particles. The source was plugged into the MC engine through the user hook system provided by FLUKA. Additionally, routines were provided to populate the beam source with treatment plan data, stored as DICOM RTPlan or TRiP98's RST format, enabling MC recomputation of clinical plans. Finally, facilities were integrated to read computerised tomography (CT) data into FLUKA. The tool was used to recompute two representative carbon ion treatment plans, a skull base and a prostate case, prepared with analytical dose calculation (TRiP98). Selected, clinically relevant issues influencing the dose distributions were investigated: (1) presence of positioning errors, (2) influence of fiducial markers and (3) variations in pencil beam width. Notable differences in modelling of these challenging situations were observed between the analytical and Monte Carlo results. In conclusion, a tool was developed, to support particle therapy research and treatment, when high precision MC calculations are required, e.g. in presence of severe density heterogeneities or in quality assurance procedures.

  2. Computational Controls Workstation: Algorithms and hardware

    NASA Technical Reports Server (NTRS)

    Venugopal, R.; Kumar, M.

    1993-01-01

    The Computational Controls Workstation provides an integrated environment for the modeling, simulation, and analysis of Space Station dynamics and control. Using highly efficient computational algorithms combined with a fast parallel processing architecture, the workstation makes real-time simulation of flexible body models of the Space Station possible. A consistent, user-friendly interface and state-of-the-art post-processing options are combined with powerful analysis tools and model databases to provide users with a complete environment for Space Station dynamics and control analysis. The software tools available include a solid modeler, graphical data entry tool, O(n) algorithm-based multi-flexible body simulation, and 2D/3D post-processors. This paper describes the architecture of the workstation while a companion paper describes performance and user perspectives.

  3. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  4. Abdominal computed tomographic scan-merits and demerits over ultrasonography: evaluation of 70 cases.

    PubMed

    Obajimi, M O; Ogunseyinde, A O; Agunloye, A M

    2002-06-01

    Computed tomography (CT) and Ultrasonography (USS) are commonly used to ascertain the cause of abdominal symptoms. In a retrospective study of 70 Nigerian patients who had abdominal ultrasonography prior to abdominal CT scans, the most frequent clinical feature was abdominal pain, which was reported in 20.8% of the patients. The prevalent ultrasonographic finding was hepatomegaly (12.2%) while bowel displacement was the most frequently reported CT finding (18.3%). There was no correlation between USS and CT findings in 11 patients (15.7%). There was some agreement in the findings of both tests in 75.7% of cases. Additional findings were noted in 38 (54.3%) of the latter group of patients on CT scans. Hundred percent agreement was reported in both imaging techniques in 5 radiological findings namely: dilated gall bladder, renal cysts, ascites, adrenal mass and utero-cervical mass. These findings suggest a high yield of diagnostic accuracy from abdominal sonography and increased diagnostic details provided by CT imaging. Our overall impression is that the diagnostic information provided by the two techniques are complimentary. PMID:12518911

  5. Scanning protocol optimization and dose evaluation in coronary stenosis using multi-slices computed tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yung-hui; Chen, Chia-lin; Sheu, Chin-yin; Lee, Jason J. S.

    2007-02-01

    Cardiovascular diseases are the most common incidence for premature death in developed countries. A major fraction is attributable to atherosclerotic coronary artery disease, which may result in sudden cardiac failure. A reduction of mortality caused by myocardial infarction may be achieved if coronary atherosclerosis can be detected and treated at an early stage before symptoms occur. Therefore, there is need for an effective tool that allows identification of patients at increased risk for future cardiac events. The current multi-detector CT has been widely used for detection and quantification of coronary calcifications as a sign of coronary atherosclerosis. The aim of this study is to optimize the diagnostic values and radiation exposure in coronary artery calcium-screening examination using multi-slice CT (MSCT) with different image scan protocols. The radiation exposure for all protocols is evaluated by using computed tomography dose index (CTDI) phantom measurements. We chose an optimal scanning protocol and evaluated patient radiation dose in the MSCT coronary artery screenings and preserved its expecting diagnostic accuracy. These changes make the MSCT have more operation flexibility and provide more diagnostic values in current practice.

  6. A negative cranial computed tomographic scan is not adequate to support a diagnosis of pseudotumor cerebri.

    PubMed

    Said, Rana R; Rosman, N Paul

    2004-08-01

    A 10-year-old boy with daily headache for 1 month and intermittent diplopia for 1 week was found to have a unilateral partial abducens palsy and bilateral papilledema; otherwise, his neurologic examination showed no abnormalities. A cranial computed tomographic (CT) scan was normal. Lumbar puncture disclosed a markedly elevated opening pressure of > 550 mm of cerebrospinal fluid with normal cerebrospinal fluid. Medical therapy with acetazolamide for presumed pseudotumor cerebri was begun. Magnetic resonance imaging (MRI) of the brain, done several days later because of continuing symptoms, unexpectedly showed multiple hyperintensities of cerebral white matter on T2-weighted and fluid-attenuated inversion recovery images. Despite high-dose intravenous methylprednisolone for possible demyelinating disease, he failed to improve. A left temporal brain biopsy followed and disclosed an anaplastic oligodendroglioma. In a patient with features indicating pseudotumor cerebri, a negative cranial CT scan is not adequate to rule out underlying pathology; thus, MRI of the brain should probably always be performed. A revised definition of pseudotumor cerebri could better include "normal MRI of the brain" rather than "normal neuroimaging." PMID:15605471

  7. Computer morphing of scanning electron micrographs: an adjunct to embryology teaching.

    PubMed

    Watt, M E; McDonald, S W; Watt, A

    1996-01-01

    Traditional embryology courses demand considerable expenditure of time and effort from students to master the spatial awareness skills necessary to create three-dimensional mental images from two-dimensional serial sections. Then students must imagine a movie sequence of the changes which take place during normal development. Further steps are required to relate this information to the clinical situation. As more medical and dental schools move towards problem-based curricula, more efficient methods of improving understanding of embryology are needed. The development of many organs can be studied using scanning electron micrographs of embryos at different ages. These high quality images are more easily interpreted by our students than histological sections and the understanding achieved more readily applied to clinical problems. Still more beneficial would be the provision of moving images showing the actual changes happening. We decided to use computer morphing techniques to prepare movie sequences showing development of the face and plate. For each, four scanning electron micrographs of appropriately-sized sheep embryo heads were taken at the same magnification and orientation to use as start and end points of morphing sequences. After using retouching techniques to colour the separate processes, further sequences were prepared. The discipline of maintaining the same magnification throughout and the possibility of directly observing changes between stages revealed some surprising growth patterns. This technique is adaptable to any area of biological development where pre- and post-illustrations are available. Animations can be presented on computer or on video and incorporated into programs. Student feedback has been very favourable. PMID:8983113

  8. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license. Catalogue identifier: AETQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETQ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing

  9. Open questions in computational motor control.

    PubMed

    Karniel, Amir

    2011-09-01

    Computational motor control covers all applications of quantitative tools for the study of the biological movement control system. This paper provides a review of this field in the form of a list of open questions. After an introduction in which we define computational motor control, we describe: a Turing-like test for motor intelligence; internal models, inverse model, forward model, feedback error learning and distal teacher; time representation, and adaptation to delay; intermittence control strategies; equilibrium hypotheses and threshold control; the spatiotemporal hierarchy of wide sense adaptation, i.e., feedback, learning, adaptation, and evolution; optimization based models for trajectory formation and optimal feedback control; motor memory, the past and the future; and conclude with the virtue of redundancy. Each section in this paper starts with a review of the relevant literature and a few more specific studies addressing the open question, and ends with speculations about the possible answer and its implications to motor neuroscience. This review is aimed at concisely covering the topic from the author's perspective with emphasis on learning mechanisms and the various structures and limitations of internal models. PMID:21960308

  10. Computational modeling and multilevel cancer control interventions.

    PubMed

    Morrissey, Joseph P; Lich, Kristen Hassmiller; Price, Rebecca Anhang; Mandelblatt, Jeanne

    2012-05-01

    This chapter presents an overview of computational modeling as a tool for multilevel cancer care and intervention research. Model-based analyses have been conducted at various "beneath the skin" or biological scales as well as at various "above the skin" or socioecological levels of cancer care delivery. We review the basic elements of computational modeling and illustrate its applications in four cancer control intervention areas: tobacco use, colorectal cancer screening, cervical cancer screening, and racial disparities in access to breast cancer care. Most of these models have examined cancer processes and outcomes at only one or two levels. We suggest ways these models can be expanded to consider interactions involving three or more levels. Looking forward, a number of methodological, structural, and communication barriers must be overcome to create useful computational models of multilevel cancer interventions and population health. PMID:22623597

  11. Cerebral metabolic rate of glucose computed by Bayes regression of deoxyglucose PET scans

    SciTech Connect

    Wilson, P.D.; Links, J.M.; Huang, S.C.; Douglass, K.H.; Wong, D.F.; Frost, J.J.; Wagner, H.N. Jr.

    1984-01-01

    Local cerebral metabolic rate of glucose (LCMRG) is currently measured using a PET scan of deoxyglucose at 40-60 min postinjection and computed using assumed mean normal rate constants. While the method is accurate in normal tissue, another study showed that for ischemic regions the use of mean normal rate constants underestimated LCMRG by 50%. The authors used computer simulation to study the use of Bayes Regression, a useful method for combining prior information with patient data to estimate the patient's LCMRG. Prior information (means and variances of rate constants in the population) is combined with the patient's data with weighting factors determined by the variances of the rate constants in the population and the noise in the data. The authors simulated noisy data from both a normal and an ischemic population. Each simulation was based on different randomly-selected rate constants from the parent population. They compared the current method with Bayes Regression in each of 100 simulated experiments in each of 3 cases: (1) normal patient, normal prior; (2) ischemic patient, ischemic prior; (3) ischemic patient, normal prior. In patients with ischemic, Bayes Regression appears to provide truer estimates of LCMRG.

  12. Vibration Pattern Imager (VPI): A control and data acquisition system for scanning laser vibrometers

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Brown, Donald E.; Shaffer, Thomas A.

    1993-01-01

    The Vibration Pattern Imager (VPI) system was designed to control and acquire data from scanning laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor, but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. The sensor itself is not part of the VPI system. A graphical interface program, which runs on a PC under the MS-DOS operating system, functions in an interactive mode and communicates with the DSP and I/O boards in a user-friendly fashion through the aid of pop-up menus. Two types of data may be acquired with the VPI system: single point or 'full field.' In the single point mode, time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and is stored by the PC. The position of the measuring point (adjusted by mirrors in the sensor) is controlled via a mouse input. The mouse input is translated to output voltages by the D/A converter on the I/O board to control the mirror servos. In the 'full field' mode, the measurement point is moved over a user-selectable rectangular area. The time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and converted to a root-mean-square (rms) value by the DSP board. The rms 'full field' velocity distribution is then uploaded for display and storage on the PC.

  13. A computer-based digital feedback control of frequency drift of multiple lasers

    NASA Astrophysics Data System (ADS)

    Zhao, W. Z.; Simsarian, J. E.; Orozco, L. A.; Sprouse, G. D.

    1998-11-01

    We report a method to monitor and control laser frequencies with an optical cavity and a digital feedback system. A frequency-stabilized He-Ne laser provides the reference that is transferred to several other lasers using a scanning Fabry-Pérot cavity. A personal computer-based multifunction data acquisition system generates the scan wave form, and reads the detector outputs synchronously with the cavity scan. The computer determines the positions of all of the peaks in the scan, and generates output signals to control the laser frequencies. It also provides a visual display of cavity spectra. We have successfully used the setup to achieve a long-term lock of the lasers for magneto-optical trapping of radioactive francium atoms.

  14. A COMPUTATIONAL NEUROANATOMY FOR MOTOR CONTROL

    PubMed Central

    Shadmehr, Reza; Krakauer, John W.

    2008-01-01

    The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to built internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the “cost-to-go” during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands. PMID:18251019

  15. Adapting Inspection Data for Computer Numerical Control

    NASA Technical Reports Server (NTRS)

    Hutchison, E. E.

    1986-01-01

    Machining time for repetitive tasks reduced. Program converts measurements of stub post locations by coordinate-measuring machine into form used by numerical-control computer. Work time thus reduced by 10 to 15 minutes for each post. Since there are 600 such posts on each injector, time saved per injector is 100 to 150 hours. With modifications this approach applicable to machining of many precise holes on large machine frames and similar objects.

  16. Zeno effect for quantum computation and control.

    PubMed

    Paz-Silva, Gerardo A; Rezakhani, A T; Dominy, Jason M; Lidar, D A

    2012-02-24

    It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by using projective measurements. Here we combine the theory of weak measurements with stabilizer quantum error correction and detection codes. We derive rigorous performance bounds which demonstrate that the Zeno effect can be used to protect appropriately encoded arbitrary states to arbitrary accuracy while at the same time allowing for universal quantum computation or quantum control. PMID:22463507

  17. Computer control of rf at SLAC

    SciTech Connect

    Schwarz, H.D.

    1985-03-01

    The Stanford Linear Accelerator is presently upgraded for the SLAC Linear Collider project. The energy is to be increased from approximately 31 GeV to 50 GeV. Two electron beams and one positron beam are to be accelerated with high demands on the quality of the beams. The beam specifications are shown. To meet these specifications, all parameters influencing the beams have to be under tight control and continuous surveillance. This task is accomplished by a new computer system implemented at SLAC which has, among many other functions, control over rf accelerating fields. 13 refs., 8 figs., 2 tabs.

  18. Computer controls for the WITCH experiment

    NASA Astrophysics Data System (ADS)

    Tandecki, M.; Beck, D.; Beck, M.; Brand, H.; Breitenfeldt, M.; De Leebeeck, V.; Friedag, P.; Herlert, A.; Kozlov, V.; Mader, J.; Roccia, S.; Soti, G.; Traykov, E.; Van Gorp, S.; Wauters, F.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2011-02-01

    The WITCH experiment is a medium-scale experimental set-up located at ISOLDE/CERN. It combines a double Penning trap system with a retardation spectrometer for energy measurements of recoil ions from β decay. For a correct operation of such a set-up a whole range of different devices is required. Along with the installation and optimization of the set-up a computer control system was developed to control these devices. The CS-Framework that is developed and maintained at GSI, was chosen as a basis for this control system as it is perfectly suited to handle the distributed nature of a control system.We report here on the required hardware for WITCH, along with the basis of this CS-Framework and the add-ons that were implemented for WITCH.

  19. Predictors of unsuccessful magnetic resonance imaging scanning in older generalized anxiety disorder patients and controls.

    PubMed

    Mohlman, Jan; Eldreth, Dana A; Price, Rebecca B; Chazin, Daniel; Glover, Dorie A

    2012-02-01

    A thorough understanding of the neurobiology of late life anxiety is likely to depend on the use of brain imaging techniques such as magnetic resonance imaging (MRI). Generalized anxiety disorder (GAD) is one of the most prevalent anxiety disorders in older adults, and is thus a focus for neurobiological studies using MRI. This study tested 1-3 weeks predictors of unsuccessful scan outcomes (i.e., scan trials in which the participant moved excessively or prematurely terminated the scan) in older adults with GAD (n = 39) and age- and sex-matched nonanxious controls (n = 21). It was hypothesized that successful completion of a prior MRI scan, clinical status (GAD versus control), and scores on the Anxiety Sensitivity Index (ASI; Peterson et al. 1986), a measure tapping psychological aspects of medical interventions, would predict scan outcome when current diagnoses of claustrophobia were controlled. In logistic regression analyses, unsuccessful scan outcome was predicted by prior MRI completion and ASI Mental Concerns subscale scores, but not clinical status. This model correctly classified 91% of successful and 71% of unsuccessful scans. An alternative model that included a single ASI item rather than Mental Concerns subscale scores showed similar performance, and a model including categorical anxiety sensitivity groups was also effective but slightly less accurate. Implications for improving the success rates of MRI with older adults are discussed. PMID:21318410

  20. Computer Interfaced Image Tube Intensified Self-Scanned Array Cameras And Instruments

    NASA Astrophysics Data System (ADS)

    Johnson, C. B.; Blank, R. E.

    1984-01-01

    Image tube intensified linear and area self-scanned array (SSA) readout detector assemblies are becoming increasingly important for automatic inspection systems and machine vision. Proximity focused diode and microchannel plate (MCP) image intensifier tubes are being used in conjunction with SSAs because they can be electronically gated, they are physically small, they do not introduce image distortion, and for several other reasons 11,12,30-33. Even single photon events can be detected by using high gain MCP image tubes. Image intensified linear SSA (IL/SSA) detector assemblies can now provide successive 100% duty cycle optical samples in time periods as short as 1 ms for up to 1024 linear array pixels with 8 or 12 bit parallel output. Image intensified area SSA (IA/SSA) detector assemblies with, for example, 488 x 380 pixels in the active image area, can be read out in 33 ms. Both IL/SSA and IA/SSA detector assemblies can be interfaced to computers directly, or through conventional data acquisition systems (DASs) 14,15,35,45,48,51. Depending upon the maximum input data rate to the computer, the DAS either operates in the continuous-mode or in the burst-mode. Virtually any type of linear or area SSA can be image tube intensified and computer interfaced using the methods described 38,42. A new 512 or 1024 pixel IL/SSA instrument detector assembly, the F4560, coupled to an HP-85 microcomputer through an HP-6942A DAS has been developed.

  1. A voice coil motor based measuring force control system for tactile scanning profiler

    NASA Astrophysics Data System (ADS)

    Feng, Shengdong; Liu, Xiaojun; Chen, Liangzhou; Zhou, Liping; Lu, Wenlong

    2015-02-01

    In tactile scanning profiler, the measuring force would change in a wide range when it was used for profile measurement in a large range, which could possibly destroy the measured surface. To solve the problem, measuring force control system for tactile scanning profiler was needed. In the paper, a voice coil motor-based measuring force control system for tactile scanning profiler was designed. In the design, a low stiffness coefficient spring was used to provide contact force, while a voice coil motor (VCM) to balance the spring force so that the contact force could be kept for constant measuring force. A VCM was designed specially, and for active measuring force control, a precision current source circuit under the control of a DSP unit was designed to drive the VCM. The performance of voice coil motor based measuring force control system had been tested, and its good characteristics were verified.

  2. Measurement of Optimal Insertion Angle for Iliosacral Screw Fixation Using Three-Dimensional Computed Tomography Scans

    PubMed Central

    Kim, Jung-Jae; Jung, Chul-Young; Eastman, Jonathan G.

    2016-01-01

    Background Percutaneous iliosacral screw fixation can provide stable fixation with a minimally invasive surgical technique for unstable posterior pelvic ring injuries. This surgical technique is not limited by cases of difficult fracture patterns, sacral dysplasia, and small sacral pedicles that can occur in Asians. The purpose of this study was to investigate the incidence of the sacral dysplasia in the Korean population and determine the optimal direction of iliosacral screws by analyzing pelvic three-dimensional computed tomography (3D-CT) scans. Methods One hundred adult patients who had pelvic 3D-CT scans were evaluated. The upper sacral morphology was classified into three groups, i.e., normal, transitional, and dysplastic groups; the cross-sectional area of the safe zone was measured in each group. S1 pedicle with a short width of more than 11 mm was defined as safe pedicle. The incidences of safe pedicles at different angles ranging from 0° to 15° were investigated in order to determine optimal angle for screw direction. Results The incidence of normal, transitional, and dysplastic group was 46%, 32%, and 22%, respectively. There were significant increases of the cross-sectional area of the safe zones by increasing the angles from 0° to 15° in all groups. The incidence of safe pedicles increased similar to the changes in cross-sectional area. The overall incidence of safe pedicles was highest at the 10° tilt angle. Conclusions The incidence of sacral dysplasia in Koreans was 54%, which is higher than previous studies for Western populations. The cross-sectional area of the safe zone can be increased by anteromedial direction of the iliosacral screw. Considering the diversity of sacral morphology present in the Korean population, a tilt angle of 10° may be the safest angle. PMID:27247736

  3. High-resolution X-ray computed tomography scanning of primate copulatory plugs.

    PubMed

    Parga, Joyce A; Maga, Murat; Overdorff, Deborah J

    2006-04-01

    In this study, high-resolution computed tomography X-ray scanning was used to scan ring-tailed lemur (Lemur catta) copulatory plugs. This method produced accurate measures of plug volume and surface area, but was not useful for visualizing plug internal structure. Copulatory plug size was of interest because it may relate to male fertilization success. Copulatory plugs form from coagulated ejaculate, and are routinely displaced in this species by the penis of a subsequent mate during copulation (Parga [2003] Int. J. Primatol. 24:889-899). Because one potential function of these plugs may be to preclude or delay other males' successful insemination of females, we tested the hypothesis that larger plugs are more difficult for subsequent males to displace. Plugs were collected opportunistically upon displacement during data collection on L. catta mating behavior on St. Catherines Island, Georgia (USA) during two subsequent breeding seasons. Copulatory plugs exhibited a wide range of volumes: 1,758-5,013.6 mm3 (n = 9). Intraindividual differences in plug volume were sometimes greater than interindividual differences. Contrary to predictions, larger plugs were not more time-consuming for males to displace via penile intromission during copulation. Nor were plugs with longer vaginal residence times notably smaller than plugs with shorter residence times, as might be expected if plugs disintegrate while releasing sperm (Asdell [1946] Patterns of Mammalian Reproduction; Ithaca: Comstock). We found a significant inverse correlation between number of copulatory mounts leading to ejaculation and copulatory plug volume. This may indicate that if males are sufficiently sexually aroused to reach ejaculation in fewer mounts, they tend to produce ejaculates of greater volume. PMID:16345065

  4. A computer-controlled x-ray imaging scanner using a kinestatic charge detector

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; DiBianca, Frank A.; Tenney, Charles R.; Vance, Joseph E.; Reed, Mark S. C.; Wilson, Donald W.; Dollas, Apostolos; McDaniel, David L.; Granfors, Paul; Petrick, Scott

    1990-02-01

    A prototype scanning imaging system which employs a kinestatic charge detector (KCD) and is under the control of a VAXstation II/GPX computer is described. The operating principles and advantages of the KCD method are reviewed. The detector is a 256-channel ionization drift chamber which creates a two-dimensional x-ray projection image by scanning the detector past the object of interest. The details of the drift chamber design, the signal collection electrodes (channels), and the Frisch grid geometry are given. Also described are the scanning gantry design, computer-controlled drive motor circuit, and safety features. The data acquisition system for the capture of a 1 M byte digital image is presented. This includes amplification, filtration, analog-to-digital conversion, data buffering, and transfer to the VAXstation II computer. The image processing and display techniques specific to the KCD are outlined and the first two-dimensional image taken with this system is presented.

  5. Operator control of interneural computing machines.

    PubMed

    Shih, Mau-Hsiang; Tsai, Feng-Sheng

    2013-12-01

    A dynamic representation of neural population responses asserts that motor cortex is a flexible pattern generator sending rhythmic, oscillatory signals to generate multiphasic patterns of movement. This raises a question concerning the design and control of new computing machines that mimic the oscillatory patterns and multiphasic patterns seen in neural systems. To address this issue, we design an interneural computing machine (INCM) made of plastic random interneural connections. We develop a mechanical way to measure collective ensemble firing of neurons in INCM. Two sorts of plasticity operators are derived from the measure of synchronous neural activity and the measure of self-sustaining neural activity, respectively. Such plasticity operators conduct activity-dependent operation to modify the network structure of INCM. The activity-dependent operation meets the neurobiological perspective of Hebbian synaptic plasticity and displays the tendency toward circulation breaking aiming to control neural population dynamics. We call such operation operator control of INCM and develop a population analysis of operator control for measuring how well single neurons of INCM can produce rhythmic, oscillatory activity, but at the level of neural ensembles, generate multiphasic patterns of population responses. PMID:24805217

  6. Superadiabatic Controlled Evolutions and Universal Quantum Computation

    PubMed Central

    Santos, Alan C.; Sarandy, Marcelo S.

    2015-01-01

    Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts. PMID:26511064

  7. Superadiabatic Controlled Evolutions and Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.; Sarandy, Marcelo S.

    2015-10-01

    Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts.

  8. Knee CT scan

    MedlinePlus

    CAT scan - knee; Computed axial tomography scan - knee; Computed tomography scan - knee ... Saunders; 2015:chap 93. Shaw AS, Prokop M. Computed tomography. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  9. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... stopping.) A computer creates separate images of the spine area, called slices. These images can be stored, ...

  10. Upgrade for the NSTX Control Computer

    SciTech Connect

    D. Mueller; D.A. Gates; J.R. Ferron

    1999-06-01

    The National Spherical Torus Experiment (NSTX) is a proof of scientific principle experiment as a magnetic fusion containment device. A primary goal of NSTX operations is control of the plasma current, position and shape in real time for a wide range of plasma pressure and current density profiles. In order to employ the best calculation of the plasma current, position and shape, it is planned to implement the equilibrium analysis code, EFIT, in real-time, RTEFIT. EFIT inverts the Grad-Shafranov equation and performs a least squares fit to the magnetics data. RTEFIT is also capable of providing the plasma current profile and the plasma pressure profile from analysis of diagnostic data. The calculation time for RTEFTI using the present NSTX control computer system is comparable to the expected energy confinement time on NSTX and is thus slower than desired. A computer upgrade based upon 604e processors will permit the RTEFIT calculation loop to complete in about 3 ms. The presence of the passive plates further complicates the control algorithm to be used in conjunction with RTEFIT. The planned approach is to measure the eddy currents in the passive plates and to use the transient response of the coils to minimize the total shell current effect.

  11. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  12. Computer simulation of RF liver ablation on an MRI scan data

    NASA Astrophysics Data System (ADS)

    Kosturski, N.; Margenov, S.; Vutov, Y.

    2012-10-01

    Radio-frequency (RF) ablation is a low invasive technique for treatment of liver tumors. An RF-probe is inserted in the patient's liver and a ground pad is applied to the skin. Then the tumor is heated with RF current. The heat causes the destruction of tumor cells. We use the finite element method (FEM) to simulate and analyze various aspects of the procedure. A 3D image of the patient's liver is obtained from a magnetic resonance imaging (MRI) scan. Then, the geometry for the RFprobe and the ground pad is added. Our focus is on the influence of the position of the ground pads on the ablation process. Our simulation is based on an unstructured mesh. The size of the mesh is large due to the complexity of the domain. We discretize and solve the problem on a parallel computer using MPI for the parallelization. The presented numerical tests are performed on IBM Blue Gene/P machine at BGSC. The parallel efficiency of the incorporated Boomer AMG solver is demonstrated as well.

  13. Cephalometric Angular Measurements of the Mandible Using Three-Dimensional Computed Tomography Scans in Koreans

    PubMed Central

    Kim, Yong Hyun; Kang, Seok Joo

    2016-01-01

    Background We conducted this study to analyze the values of the key cephalometric angular measurements of the mandible using 3-dimensional (3D) computed tomography scans. Methods In the 106 enrolled patients, a 3D cephalometric analysis was performed to measure the angular variables of the mandible. These values were compared between the two sides and between the two sexes. Results The frontal measurements revealed that the mandibular body curve angle was larger on the left (Lt) side (right [Rt], 141.24±7.54; Lt, 142.68±6.94; P=0.002) and the gonial angle was larger on the right side (Rt, 134.37±8.44; Lt, 131.54±7.14; P<0.001). The sagittal measurements showed that the gonial angle was larger on the right side (Rt, 134.37±8.44; Lt, 131.54±7.14; P>0.05). Further, the transverse measurements revealed that the mandibular body curve angle was larger on the right side (Rt, 140.28±7.05; Lt, 137.56±6.23; P<0.001). Conclusions These results provide an average of the mandibular angular measurements for the Korean population, establishing a standard for determining surgical patient groups and outcome evaluations in the field of mandible contour surgery. PMID:26848443

  14. Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling

    DOE PAGESBeta

    Kilina, Svetlana; Yarotski, Dzmitry A.; Talin, A. Alec; Tretiak, Sergei; Taylor, Antoinette J.; Balatsky, Alexander V.

    2011-01-01

    We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM) measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA) constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4 ° and a coiling period of 3.3 nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal π-stacking between DNA nucleotides andmore » the tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5) CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality.« less

  15. Computer-controlled radiation monitoring system

    SciTech Connect

    Homann, S.G.

    1994-09-27

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory`s Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable.

  16. Multiaxis, Lightweight, Computer-Controlled Exercise System

    NASA Technical Reports Server (NTRS)

    Haynes, Leonard; Bachrach, Benjamin; Harvey, William

    2006-01-01

    The multipurpose, multiaxial, isokinetic dynamometer (MMID) is a computer-controlled system of exercise machinery that can serve as a means for quantitatively assessing a subject s muscle coordination, range of motion, strength, and overall physical condition with respect to a wide variety of forces, motions, and exercise regimens. The MMID is easily reconfigurable and compactly stowable and, in comparison with prior computer-controlled exercise systems, it weighs less, costs less, and offers more capabilities. Whereas a typical prior isokinetic exercise machine is limited to operation in only one plane, the MMID can operate along any path. In addition, the MMID is not limited to the isokinetic (constant-speed) mode of operation. The MMID provides for control and/or measurement of position, force, and/or speed of exertion in as many as six degrees of freedom simultaneously; hence, it can accommodate more complex, more nearly natural combinations of motions and, in so doing, offers greater capabilities for physical conditioning and evaluation. The MMID (see figure) includes as many as eight active modules, each of which can be anchored to a floor, wall, ceiling, or other fixed object. A cable is payed out from a reel in each module to a bar or other suitable object that is gripped and manipulated by the subject. The reel is driven by a DC brushless motor or other suitable electric motor via a gear reduction unit. The motor can be made to function as either a driver or an electromagnetic brake, depending on the required nature of the interaction with the subject. The module includes a force and a displacement sensor for real-time monitoring of the tension in and displacement of the cable, respectively. In response to commands from a control computer, the motor can be operated to generate a required tension in the cable, to displace the cable a required distance, or to reel the cable in or out at a required speed. The computer can be programmed, either locally or via

  17. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license. Catalogue identifier: AETQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETQ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing

  18. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich

    2015-01-01

    This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  19. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    EPA Science Inventory

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  20. Optimization and quality control of computed radiography

    NASA Astrophysics Data System (ADS)

    Willis, Charles E.; Weiser, John C.; Leckie, Robert G.; Romlein, John R.; Norton, Gary S.

    1994-05-01

    Computed radiography (CR) is a relatively new technique for projection radiography. Few hospitals have CR devices in routine service and only a handful have more than one CR unit. As such, the clinical knowledge base does not yet exist to establish quality control (QC) procedures for CR devices. Without assurance that CR systems are operating within nominal limits, efforts to optimize CR performance are limited in value. A complete CR system includes detector plates that vary in response, cassettes, an electro-optical system for developing the image, computer algorithms for processing the raw image, and a hard copy output device. All of these subsystems are subject to variations in performance that can degrade image quality. Using CR manufacturer documentation, we have defined acceptance protocols for two different Fuji CR devices, the FCR 7000 and the AC1+, and have applied these tests to ten individual machines. We have begun to establish baseline performance measures and to determine measurement frequencies. CR QC is only one component of the overall quality control for totally digital radiology departments.

  1. A novel quality control procedure for the evaluation of laser scanning data segmentation

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Durgham, K.; Habib, A.

    2014-11-01

    Over the past few years, laser scanning systems have been acknowledged as the leading tools for the collection of high density 3D point cloud over physical surfaces for many different applications. However, no interpretation and scene classification is performed during the acquisition of these datasets. Consequently, the collected data must be processed to extract the required information. The segmentation procedure is usually considered as the fundamental step in information extraction from laser scanning data. So far, various approaches have been developed for the segmentation of 3D laser scanning data. However, none of them is exempted from possible anomalies due to disregarding the internal characteristics of laser scanning data, improper selection of the segmentation thresholds, or other problems during the segmentation procedure. Therefore, quality control procedures are required to evaluate the segmentation outcome and report the frequency of instances of expected problems. A few quality control techniques have been proposed for the evaluation of laser scanning segmentation. These approaches usually require reference data and user intervention for the assessment of segmentation results. In order to resolve these problems, a new quality control procedure is introduced in this paper. This procedure makes hypotheses regarding potential problems that might take place in the segmentation process, detects instances of such problems, quantifies the frequency of these problems, and suggests possible actions to remedy them. The feasibility of the proposed approach is verified through quantitative evaluation of planar and linear/cylindrical segmentation outcome from two recently-developed parameter-domain and spatial-domain segmentation techniques.

  2. Assessment of cardiac single-photon emission computed tomography performance using a scanning linear observer

    SciTech Connect

    Lee, Chih-Jie; Kupinski, Matthew A.; Volokh, Lana

    2013-01-15

    Purpose: Single-photon emission computed tomography (SPECT) is widely used to detect myocardial ischemia and myocardial infarction. It is important to assess and compare different SPECT system designs in order to achieve the highest detectability of cardiac defects. Methods: Whitaker et al.'s study ['Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods,' Opt. Express 16(11), 8150-8173 (2008)] on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than with reconstruction data. Thus, this observer model assesses the overall hardware performance independent of any reconstruction algorithm. In addition, the computation time of image quality studies is significantly reduced. In this study, three systems based on the design of the GE cadmium zinc telluride-based dedicated cardiac SPECT camera Discovery 530c were assessed. This design, which is officially named the Alcyone Technology: Discovery NM 530c, was commercialized in August, 2009. The three systems, GE27, GE19, and GE13, contain 27, 19, and 13 detectors, respectively. Clinically, a human heart can be virtually segmented into three coronary artery territories: the left-anterior descending artery, left-circumflex artery, and right coronary artery. One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can accurately predict in which territory the defect exists [http://www.asnc.org/media/PDFs/PPReporting081511.pdf, Guideline from American Society of Nuclear Cardiology]. A good estimation of the extent of the defect from the projection images is also very helpful for determining the seriousness of the myocardial ischemia. In this study, both the location and extent of defects were estimated by the SLO, and the system performance was assessed by localization

  3. Assessment of cardiac single-photon emission computed tomography performance using a scanning linear observer

    PubMed Central

    Lee, Chih-Jie; Kupinski, Matthew A.; Volokh, Lana

    2013-01-01

    Purpose: Single-photon emission computed tomography (SPECT) is widely used to detect myocardial ischemia and myocardial infarction. It is important to assess and compare different SPECT system designs in order to achieve the highest detectability of cardiac defects. Methods:Whitaker ’s study [“Estimating random signal parameters from noisy images with nuisance parameters: linear and scanning-linear methods,” Opt. Express 16(11), 8150–8173 (2008)]10.1364/OE.16.008150 on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than with reconstruction data. Thus, this observer model assesses the overall hardware performance independent of any reconstruction algorithm. In addition, the computation time of image quality studies is significantly reduced. In this study, three systems based on the design of the GE cadmium zinc telluride-based dedicated cardiac SPECT camera Discovery 530c were assessed. This design, which is officially named the Alcyone Technology: Discovery NM 530c, was commercialized in August, 2009. The three systems, GE27, GE19, and GE13, contain 27, 19, and 13 detectors, respectively. Clinically, a human heart can be virtually segmented into three coronary artery territories: the left-anterior descending artery, left-circumflex artery, and right coronary artery. One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can accurately predict in which territory the defect exists [http://www.asnc.org/media/PDFs/PPReporting081511.pdf, Guideline from American Society of Nuclear Cardiology]. A good estimation of the extent of the defect from the projection images is also very helpful for determining the seriousness of the myocardial ischemia. In this study, both the location and extent of defects were estimated by the SLO, and the system performance was assessed by

  4. GMXPBSA 2.1: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2015-01-01

    GMXPBSA 2.1 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes [R.T. Bradshaw et al., Protein Eng. Des. Sel. 24 (2011) 197-207]. GMXPBSA 2.1 is flexible and can easily be customized to specific needs and it is an improvement of the previous GMXPBSA 2.0 [C. Paissoni et al., Comput. Phys. Commun. (2014), 185, 2920-2929]. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.1 performs different comparative analyses, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complex trajectories, allowing the study of the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS [S. Pronk et al., Bioinformatics 29 (2013) 845-854] and the Poisson-Boltzmann equation solver APBS [N.A. Baker et al., Proc. Natl. Acad. Sci. U.S.A 98 (2001) 10037-10041]. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the

  5. Establishment of optimal scan delay for multi-phase computed tomography using bolus-tracking technique in canine pancreas.

    PubMed

    Choi, Soo-Young; Choi, Ho-Jung; Lee, Ki-Ja; Lee, Young-Won

    2015-09-01

    To establish a protocol for a multi-phase computed tomography (CT) of the canine pancreas using the bolus-tracking technique, dynamic scan and multi-phase CT were performed in six normal beagle dogs. The dynamic scan was performed for 60 sec at 1-sec intervals after the injection (4 ml/sec) of a contrast medium, and intervals from aortic enhancement appearance to aortic, pancreatic parenchymal and portal vein peaks were measured. The multi-phase CT with 3 phases was performed three times using a bolus-tracking technique. Scan delays were 0, 15 and 30 in first multi-phase scan; 5, 20 and 35 in second multi-phase scan; and 10, 25 and 40 sec in third multi-phase scan, respectively. Attenuation values and contrast enhancement pattern were analyzed from the aorta, pancreas and portal vein. The intervals from aortic enhancement appearance to aortic, pancreatic parenchymal and portal vein peaks were 3.8 ± 0.7, 8.7 ± 0.9 and 13.3 ± 1.5 sec, respectively. The maximum attenuation values of the aorta, pancreatic parenchyma and portal vein were present at scan sections with no scan delay, a 5-sec delay and a 10-sec delay, respectively. When a multi-phase CT of the canine pancreas is triggered at aortic enhancement appearance using a bolus-tracking technique, the recommended optimal delay times of the arterial and pancreatic parenchymal phases are no scan delay and 5 sec, respectively. PMID:25843155

  6. Comparison of ultrasonography, computed tomography and 99mTc liver scan in diagnosis of Budd-Chiari syndrome.

    PubMed Central

    Gupta, S; Barter, S; Phillips, G W; Gibson, R N; Hodgson, H J

    1987-01-01

    Ultrasonography, computed tomography and 99mTc liver scanning are all useful in diagnosis of patients with the Budd-Chiari syndrome. In a study to determine their comparative value characteristic findings were recorded in all nine patients at ultrasonography and in seven patients at computed tomography. In contrast 99mTc liver scan showed a characteristic pattern in only one of eight patients. In our experience intrahepatic venous abnormalities were seen better at ultrasonography than at computed tomography. In addition, abnormality in the direction of blood flow could be detected by pulsed Doppler examination. Ultrasonography is relatively inexpensive, readily accessible, does not require administration of radiation or contrast agents and therefore should be the primary non-invasive investigation of patients with Budd-Chiari syndrome, or those at risk of developing it. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:3552905

  7. Digital computer control of a 30-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Low, C. A., Jr.

    1975-01-01

    The major objective was to define the exact role of an onboard spacecraft computer in the control of ion thrusters. An initial computer control system with accurate high speed capability was designed, programmed, and tested with the computer as the sole control element for an operating ion thruster. The command functions and a code format for a spacecraft digital control system were established. A second computer control system was constructed to operate with these functions and format. A throttle program sequence was established and tested. A two thruster array was tested with these computer control systems and the results reported.

  8. Digital computer control of a 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Low, C. A., Jr.

    1975-01-01

    The major objective of this program was to define the exact role of an on-board spacecraft computer in the control of ion thrusters. An initial computer control system with accurate high speed capability was designed, programmed, and tested with the computer as the sole control element for an operating ion thruster. The command functions and a code format for a spacecraft digital control system were established. A second computer control system was constructed to operate with these functions and format. A throttle program sequence was established and tested. A two thruster array was tested with these computer control systems and the results reported.

  9. A COMPUTER-CONTROLLED VAPOR-DILUTION OLFACTOMETER

    EPA Science Inventory

    A computer-controlled olfactometer with several innovations leading to closer control over the stimulus parameters and minimization of nonolfactory cues is presented. A microcomputer is used to control the stimulus duration and interstimulus interval. Electronic mass flow control...

  10. A flexible implementation of scanning probe microscopy utilizing a multifunction system linked to a PC-Pentium controller

    NASA Astrophysics Data System (ADS)

    Barchesi, C.; Cricenti, A.; Generosi, R.; Giammichele, C.; Luce, M.; Rinaldi, M.

    1997-10-01

    A flexible electronic setup on a PC platform and the software implementation in Windows Microsoft environment, for a multipurpose head for scanning probe microscopy (SPM), has been developed. The integrated, multiapplication data acquisition system is linked to a PC-Pentium controller, through a digital I/O board, and consists of: (i) an asynchronous acquisition for real time removal of following error from SPM images; (ii) a three-axes, computer controlled micropositioning stage; (iii) software for electronic control, data acquisition, and graphics elaboration performed through subroutines of Visual Basic (Visual Basic Programming System Professional edition for Windows is a registered trademark of Microsoft Corporation, USA.), and PV-WAVE personal edition. (PV-WAVE Personal edition for Windows is a registered trademark of Visual Numerics, USA.)

  11. Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    PubMed Central

    2011-01-01

    Background The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose. Methods One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population. Results Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters. Conclusions A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques. PMID:22004072

  12. Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans

    NASA Astrophysics Data System (ADS)

    Vicente, Miguel A.; González, Dorys C.; Mínguez, Jesús

    2014-04-01

    Computed tomography (CT) is a nondestructive technique, based on absorbing X-rays, that permits the visualisation of the internal structure of materials in micron-range resolution. In this paper, the CT scan is used to determine the position and orientation of the fibres in steel fibre-reinforced high-strength concrete elements. The aim of this paper was to present a numerical procedure, automated through a MATLAB routine specially developed by the authors, which enables, fast and reliable, to obtain the orientation of each and every one of the fibres and their centre of gravity. The procedure shown is directly extrapolated to any type of fibre-reinforced material, only if there is a wide difference between density of fibres and density of matrix. The mathematical basis of this procedure is very simple and robust. The result is a fast algorithm and a routine easy to use. In addition, the validation tests show that the error is almost zero. This algorithm can help the industry to implement the technology of CT in the protocols of product quality control.

  13. A 4D dose computation method to investigate motion interplay effects in scanned ion beam prostate therapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Jelen, U.

    2014-06-01

    In particle therapy, the interplay between beam scanning and target motion during treatment delivery may result in dose deterioration. Interplay effects have been studied for targets exhibiting periodic respiratory motion, however, they are not well understood for irregular motion patterns, such as those exhibited by the prostate. In this note, we propose and validate a 4D dose computation method, which enables estimation of effective dose delivered to the prostate by scanning ion beams in presence of intrafraction motion, as well as facilitates investigation of various motion interplay countermeasures.

  14. Unusual cause for recurrent Cushing syndrome and its diagnosis by computed tomography and NP-59 radiocholesterol scanning

    SciTech Connect

    Harris, R.D.; Herwig, K.R. )

    1990-09-01

    Cushing syndrome can recur following an adrenalectomy. One of the primary causes is recurrence of adrenal carcinoma either locally or from metastases. Hyperplasia and hyperfunction of adrenal remnants may also occur if there is pituitary stimulation. We have a patient in whom recurrent Cushing syndrome developed from small nonmalignant deposits of adrenal tissue in the perirenal adipose tissue following adrenalectomy of a benign adenoma. These deposits were identifiable by computed tomography. A false-negative NP-59 iodocholesterol scan was instructive in pointing out some problems in the interpretation of this type of scan for adrenal tissue.

  15. Evaluation of post-mortem lateral cerebral ventricle changes using sequential scans during post-mortem computed tomography.

    PubMed

    Hasegawa, Iwao; Shimizu, Akinobu; Saito, Atsushi; Suzuki, Hideto; Vogel, Hermann; Püschel, Klaus; Heinemann, Axel

    2016-09-01

    In the present study, we evaluated post-mortem lateral cerebral ventricle (LCV) changes using computed tomography (CT). Subsequent periodical CT scans termed "sequential scans" were obtained for three cadavers. The first scan was performed immediately after the body was transferred from the emergency room to the institute of legal medicine. Sequential scans were obtained and evaluated for 24 h at maximum. The time of death had been determined in the emergency room. The sequential scans enabled us to observe periodical post-mortem changes in CT images. The series of continuous LCV images obtained up to 24 h (two cases)/16 h (1 case) after death was evaluated. The average Hounsfield units (HU) within the LCVs progressively increased, and LCV volume progressively decreased over time. The HU in the cerebrospinal fluid (CSF) increased at an individual rate proportional to the post-mortem interval (PMI). Thus, an early longitudinal radiodensity change in the CSF could be potential indicator of post-mortem interval (PMI). Sequential imaging scans reveal post-mortem changes in the CSF space which may reflect post-mortem brain alterations. Further studies are needed to evaluate the proposed CSF change markers in correlation with other validated PMI indicators. PMID:27048214

  16. INFLUENCE OF LOCALIZER AND SCAN DIRECTION ON THE DOSE-REDUCING EFFECT OF AUTOMATIC TUBE CURRENT MODULATION IN COMPUTED TOMOGRAPHY.

    PubMed

    Franck, C; Bacher, K

    2016-06-01

    The purpose of this study was to investigate the influence of the localizer and scan direction on the dose-reducing efficacy of the automatic tube current modulation (ATCM) in computed tomography (CT). Craniocaudal and caudocranial chest CT scans, based on anterior-posterior (AP), posterior-anterior (PA), lateral (LAT) or dual AP/LAT localizers, of an anthropomorphic phantom containing thermoluminescent dosimeters (TLDs), were made on three Siemens systems. TLD readings were converted to lung and thyroid doses. A second dose estimation was performed based on Monte Carlo simulations. In addition, the ATCM behaviour of GE and Toshiba was evaluated based on AP, PA and LAT localizers. Compared with AP, tube currents of PA and AP/LAT scans were on average 20 % higher and 40 % lower, respectively, for the Siemens systems. Consequently, thyroid and lung doses increased with 60 % with a PA instead of an AP/LAT scan, with significant differences in image noise. Moreover, the thyroid dose halves by taking the scan in caudocranial direction. Noise values were not significantly different when changing scan direction. PMID:27056145

  17. Direct control and characterization of a Schottky barrier by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.; Hecht, M. H.; Grunthaner, F. J.

    1988-01-01

    Scanning tunneling microscopy (STM) methods are used to directly control the barrier height of a metal tunnel tip-semiconductor tunnel junction. Barrier behavior is measured by tunnel current-voltage spectroscopy and compared to theory. A unique surface preparation method is used to prepare a low surface state density Si surface. Control of band bending with this method enables STM investigation of semiconductor subsurface properties.

  18. Three-Dimensional Reconstruction of Human Vocal Folds and Standard Laryngeal Cartilages Using Computed Tomography Scan Data

    PubMed Central

    Bakhshaee, Hani; Moro, Christina; Kost, Karen; Mongeau, Luc

    2013-01-01

    Summary Three-dimensional (3D) computer models of the human larynx are useful tools for research and for eventual clinical applications. Recently, computed tomography (CT) scanning and magnetic resonance imaging (MRI) have been used to recreate realistic models of human larynx. In the present study, CT images were used to create computer models of vocal folds, vocal tract, and laryngeal cartilages, and the procedure to create solid models are explained in details. Vocal fold and vocal tract 3D models of healthy and postsurgery larynges during phonation and respiration were created and morphometric parameters were quantified. The laryngeal framework of eight patients was also reconstructed from CT scan images. For each cartilage, morphometric landmarks were measured on the basis of their importance for biomechanical modeling. A quantitative comparison was made between measured values from the reconstructions and those from human excised larynges in literature. The good agreement between these measurements supports the accuracy of CT scan-based 3D models. Generic standard models of the laryngeal framework were created using known features in modeling softwares. They were created based on the morphometric landmark dimensions previously defined, preserving all biomechanically important dimensions. These models are accessible, subject independent, easy to use for computational simulations, and make the comparisons between different studies possible. PMID:24119643

  19. Instrument scanning and controlling: Using eye movement data to understand pilot behavior and strategies

    NASA Technical Reports Server (NTRS)

    Dick, A. O.

    1980-01-01

    Eye movement data and other parameters including instrument readings, aircraft state and position variables, and control maneuvers were recorded while pilots flew ILS simulations in a B 737. The experiment itself employed seven airline pilots, each of whom flew approximately 40 approach/landing sequences. The simulator was equipped with a night visual scene but the scene was fogged out down to approximately 60 meters (200 ft). The instrument scanning appeared to follow aircraft parameters not physical position of instruments. One important implication of the results is: pilots look for categories or packets of information. Control inputs were tabulated according to throttle, wheel position, column, and pitch trim changes. Three seconds of eye movements before and after the control input were then obtained. Analysis of the eye movement data for the controlling periods showed clear patterns. The results suggest a set of miniscan patterns which are used according to the specific details of the situation. A model is developed which integrates scanning and controlling. Differentiations are made between monitoring and controlling scans.

  20. Radiology of pulmonary disease. Chest radiography, computed tomography, and gallium scanning

    SciTech Connect

    Golden, J.A.; Sollitto, R.A.

    1988-09-01

    A review of the radiologic manifestations of AIDS pulmonary diseases, with an emphasis on the utility of gallium scanning in the context of the normal or equivocal chest x-ray, is presented.99 references.

  1. Novel control scheme for a high-speed metrological scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Vorbringer-Dorozhovets, N.; Hausotte, T.; Manske, E.; Shen, J. C.; Jäger, G.

    2011-09-01

    Some time ago, an interferometer-based metrological scanning probe microscope (SPM) was developed at the Institute of Process Measurement and Sensor Technology of the Ilmenau University of Technology, Germany. The specialty of this SPM is the combined deflection detection system that comprises an interferometer and a beam deflection. Due to this system it is possible to simultaneously measure the displacement, bending and torsion of the probe (cantilever). The SPM is integrated into a nanopositioning and nanomeasuring machine (NPM machine) and allows measurements with a resolution of 0.1 nm over a range of 25 mm × 25 mm × 5 mm. Excellent results were achieved for measurements of calibrated step height and lateral standards and these results are comparable to the calibration values from the Physikalisch-Technische Bundesanstalt (PTB) (Dorozhovets N et al 2007 Proc. SPIE 6616 661624-1-7). The disadvantage was a low attainable scanning speed and accordingly large expenditure of time. Control dynamics and scanning speed are limited because of the high masses of the stage and corner mirror of the machine. For the vertical axis an additional high-speed piezoelectric drive is integrated in the SPM in order to increase the measuring dynamics. The movement of the piezoelectric drive is controlled and traceable measured by the interferometer. Hence, nonlinearity and hysteresis in the actuator do not affect the measurement. The outcome of this is an improvement of the bending control of the cantilever and much higher scan speeds of up to 200 µm s-1.

  2. Frequency-Controls of Electromagnetic Multi-Beam Scanning by Metasurfaces

    PubMed Central

    Li, Yun Bo; Wan, Xiang; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun

    2014-01-01

    We propose a method to control electromagnetic (EM) radiations by holographic metasurfaces, including to producing multi-beam scanning in one dimension (1D) and two dimensions (2D) with the change of frequency. The metasurfaces are composed of subwavelength metallic patches on grounded dielectric substrate. We present a combined theory of holography and leaky wave to realize the multi-beam radiations by exciting the surface interference patterns, which are generated by interference between the excitation source and required radiation waves. As the frequency changes, we show that the main lobes of EM radiation beams could accomplish 1D or 2D scans regularly by using the proposed holographic metasurfaces shaped with different interference patterns. This is the first time to realize 2D scans of antennas by changing the frequency. Full-wave simulations and experimental results validate the proposed theory and confirm the corresponding physical phenomena. PMID:25370447

  3. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial ... or other growth (mass) Cerebral atrophy (loss of brain tissue) ... with the hearing nerve Stroke or transient ischemic attack (TIA)

  4. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans

    SciTech Connect

    Shiraishi, Junji; Li Qiang; Appelbaum, Daniel; Pu Yonglin; Doi, Kunio

    2007-01-15

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 'gold-standard' interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The

  5. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans.

    PubMed

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Pu, Yonglin; Doi, Kunio

    2007-01-01

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 "gold-standard" interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The

  6. COMSAC: Computational Methods for Stability and Control. Part 1

    NASA Technical Reports Server (NTRS)

    Fremaux, C. Michael (Compiler); Hall, Robert M. (Compiler)

    2004-01-01

    Work on stability and control included the following reports:Introductory Remarks; Introduction to Computational Methods for Stability and Control (COMSAC); Stability & Control Challenges for COMSAC: a NASA Langley Perspective; Emerging CFD Capabilities and Outlook A NASA Langley Perspective; The Role for Computational Fluid Dynamics for Stability and Control:Is it Time?; Northrop Grumman Perspective on COMSAC; Boeing Integrated Defense Systems Perspective on COMSAC; Computational Methods in Stability and Control:WPAFB Perspective; Perspective: Raytheon Aircraft Company; A Greybeard's View of the State of Aerodynamic Prediction; Computational Methods for Stability and Control: A Perspective; Boeing TacAir Stability and Control Issues for Computational Fluid Dynamics; NAVAIR S&C Issues for CFD; An S&C Perspective on CFD; Issues, Challenges & Payoffs: A Boeing User s Perspective on CFD for S&C; and Stability and Control in Computational Simulations for Conceptual and Preliminary Design: the Past, Today, and Future?

  7. The analysis of control trajectories using symbolic and database computing

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    The research broadly concerned the symbolic computation, mixed numeric-symbolic computation, and data base computation of trajectories of dynamical systems, especially control systems. It was determined that trees can be used to compute symbolically series which approximate solutions to differential equations.

  8. Computer Instructional Aids for Undergraduate Control Education. 1978 Edition.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    This work represents the development of computer tools for undergraduate students. Emphasis is on automatic control theory using hybrid and digital computation. The routine calculations of control system analysis are presented as students would use them on the University of Michigan's central digital computer and the time-shared graphic terminals…

  9. Role of Extracranial Carotid Duplex and Computed Tomography Perfusion Scanning in Evaluating Perfusion Status of Pericarotid Stenting

    PubMed Central

    Lin, Chih-Ming; Chang, Yu-Jun; Liu, Chi-Kuang; Yu, Cheng-Sheng

    2016-01-01

    Carotid stenting is an effective treatment of choice in terms of treating ischemic stroke patients with concomitant carotid stenosis. Though computed tomography perfusion scan has been recognized as a standard tool to monitor/follow up this group of patients, not everyone could endure due to underlying medical illness. In contrast, carotid duplex is a noninvasive assessment tool and could track patient clinical condition in real time. In this study we found that “resistance index” of the carotid ultrasound could detect flow changes before and after the stenting procedure, thus having great capacity to replace the role of computed tomography perfusion exam. PMID:27051669

  10. Frequency scanning interferometry with nanometer precision using a vertical-cavity surface-emitting laser diode under scanning speed control

    NASA Astrophysics Data System (ADS)

    Kakuma, Seiichi

    2015-12-01

    Frequency scanning interferometry technique with a nanometer precision using a vertical-cavity surface-emitting laser diode (VCSEL) is presented. Since the frequency scanning of the VCSEL is linearized by the phase-locked-loop technique, the gradient of the interference fringe order can be precisely determined using linear least squares fitting. This enables a length measurement with a precision better than a quarter wavelength, and the absolute fringe number including the integer part at the atomic transition spectrum (rubidium-D2 line) is accurately determined. The validity of the method is demonstrated by excellent results of block gauge measurement with a root mean square error better than 5 nm.

  11. Controlling data transfers from an origin compute node to a target compute node

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2011-06-21

    Methods, apparatus, and products are disclosed for controlling data transfers from an origin compute node to a target compute node that include: receiving, by an application messaging module on the target compute node, an indication of a data transfer from an origin compute node to the target compute node; and administering, by the application messaging module on the target compute node, the data transfer using one or more messaging primitives of a system messaging module in dependence upon the indication.

  12. Adaptive AFM scan speed control for high aspect ratio fast structure tracking

    SciTech Connect

    Ahmad, Ahmad; Schuh, Andreas; Rangelow, Ivo W.

    2014-10-15

    Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on a novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.

  13. Computed tomography scanning can monitor the effects of soil medium on root system development: an example of salt stress in corn.

    PubMed

    Subramanian, Sowmyalakshmi; Han, Liwen; Dutilleul, Pierre; Smith, Donald L

    2015-01-01

    Seeds and young seedlings often encounter high soluble salt levels in the upmost soil layers, impeding vigorous growth by affecting root establishment. Computed tomography (CT) scanning used at low X-ray doses can help study root development in such conditions non-destructively, because plants are allowed to grow throughout the experiment. Using a high-resolution Toshiba XVision CT scanner, we studied corn (Zea mays L.) root growth under optimal and salt-stressed conditions in 3D and on a weekly basis over 3 weeks. Two groups of three corn plants were grown in the controlled environment of a growth chamber, in mid-sized plastic pots filled with sieved and autoclaved sand. Seedlings were subjected to first CT scanning 1 week after seed planting. Our main research objectives concerning root systems were: (i) to quantify structural complexity from fractal dimensions estimated on skeletal 3-D images built from CT scanning data; (ii) to measure growth from volumes and lengths and the derived relative rates and increments, after isolating primary and secondary roots from the soil medium in CT scanning data; and (iii) to assess differences in complexity and growth per week and over Weeks 1-3 for groups of corn plants. Differences between groups were present from Week 1; starting in Week 2 secondary roots were present and could be isolated, which refined the complexity and growth analyses of root systems. Besides expected Week main effects (P < 0.01 or 0.05), Week × Group interaction (P < 0.05 or 0.10), and Group main effects were observed. Graphical, quantitative, and statistical analyses of CT scanning data were thus completed at an unprecedented level, and provided new and important insights regarding root system development. Repeated CT scanning is the key to a better understanding of the establishment in the soil medium of crop plants such as corn and the assessment of salt stress effects on developing root systems, in complexity, volume, and length. PMID:25972876

  14. Computed tomography scanning can monitor the effects of soil medium on root system development: an example of salt stress in corn

    PubMed Central

    Subramanian, Sowmyalakshmi; Han, Liwen; Dutilleul, Pierre; Smith, Donald L.

    2015-01-01

    Seeds and young seedlings often encounter high soluble salt levels in the upmost soil layers, impeding vigorous growth by affecting root establishment. Computed tomography (CT) scanning used at low X-ray doses can help study root development in such conditions non-destructively, because plants are allowed to grow throughout the experiment. Using a high-resolution Toshiba XVision CT scanner, we studied corn (Zea mays L.) root growth under optimal and salt-stressed conditions in 3D and on a weekly basis over 3 weeks. Two groups of three corn plants were grown in the controlled environment of a growth chamber, in mid-sized plastic pots filled with sieved and autoclaved sand. Seedlings were subjected to first CT scanning 1 week after seed planting. Our main research objectives concerning root systems were: (i) to quantify structural complexity from fractal dimensions estimated on skeletal 3-D images built from CT scanning data; (ii) to measure growth from volumes and lengths and the derived relative rates and increments, after isolating primary and secondary roots from the soil medium in CT scanning data; and (iii) to assess differences in complexity and growth per week and over Weeks 1–3 for groups of corn plants. Differences between groups were present from Week 1; starting in Week 2 secondary roots were present and could be isolated, which refined the complexity and growth analyses of root systems. Besides expected Week main effects (P < 0.01 or 0.05), Week × Group interaction (P < 0.05 or 0.10), and Group main effects were observed. Graphical, quantitative, and statistical analyses of CT scanning data were thus completed at an unprecedented level, and provided new and important insights regarding root system development. Repeated CT scanning is the key to a better understanding of the establishment in the soil medium of crop plants such as corn and the assessment of salt stress effects on developing root systems, in complexity, volume, and length. PMID:25972876

  15. Reliable timing systems for computer controlled accelerators

    NASA Astrophysics Data System (ADS)

    Knott, Jürgen; Nettleton, Robert

    1986-06-01

    Over the past decade the use of computers has set new standards for control systems of accelerators with ever increasing complexity coupled with stringent reliability criteria. In fact, with very slow cycling machines or storage rings any erratic operation or timing pulse will cause the loss of precious particles and waste hours of time and effort of preparation. Thus, for the CERN linac and LEAR (Low Energy Antiproton Ring) timing system reliability becomes a crucial factor in the sense that all components must operate practically without fault for very long periods compared to the effective machine cycle. This has been achieved by careful selection of components and design well below thermal and electrical limits, using error detection and correction where possible, as well as developing "safe" decoding techniques for serial data trains. Further, consistent structuring had to be applied in order to obtain simple and flexible modular configurations with very few components on critical paths and to minimize the exchange of information to synchronize accelerators. In addition, this structuring allows the development of efficient strategies for on-line and off-line fault diagnostics. As a result, the timing system for Linac 2 has, so far, been operating without fault for three years, the one for LEAR more than one year since its final debugging.

  16. Computer-controlled endoscopic performance assessment system.

    PubMed

    Hanna, G B; Drew, T; Clinch, P; Hunter, B; Cuschieri, A

    1998-07-01

    We have devised an advanced computer-controlled system (ADEPT) for the objective evaluation of endoscopic task performance. The system's hardware consists of a dual gimbal mechanism that accepts a variety of 5.0-mm standard endoscopic instruments for manipulation in a precisely mapped and enclosed work space. The target object consists of a sprung base plate incorporating various tasks. It is covered by a sprung perforated transparent top plate that has to be moved and held in the correct position by the operator to gain access to the various tasks. Standard video endoscope equipment provides the visual interface between the operator and the target-instrument field. Different target modules can be used, and the level of task difficulty can be adjusted by varying the manipulation, elevation, and azimuth angles. The system's software is designed to (a) prompt the surgeon with the information necessary to perform the task, (b) collect and collate data on performance during execution of specified tasks, and (c) save the data for future analysis. The system was alpha and beta tested to ensure that all functions operated correctly. PMID:9632879

  17. Computer control of a microgravity mammalian cell bioreactor

    NASA Technical Reports Server (NTRS)

    Hall, William A.

    1987-01-01

    The initial steps taken in developing a completely menu driven and totally automated computer control system for a bioreactor are discussed. This bioreactor is an electro-mechanical cell growth system cell requiring vigorous control of slowly changing parameters, many of which are so dynamically interactive that computer control is a necessity. The process computer will have two main functions. First, it will provide continuous environmental control utilizing low signal level transducers as inputs and high powered control devices such as solenoids and motors as outputs. Secondly, it will provide continuous environmental monitoring, including mass data storage and periodic data dumps to a supervisory computer.

  18. Robotic Automation in Computer Controlled Polishing

    NASA Astrophysics Data System (ADS)

    Walker, D. D.; Yu, G.; Bibby, M.; Dunn, C.; Li, H.; Wu, Y.; Zheng, X.; Zhang, P.

    2016-02-01

    We first present a Case Study - the manufacture of 1.4 m prototype mirror-segments for the European Extremely Large Telescope, undertaken by the National Facility for Ultra Precision Surfaces, at the OpTIC facility operated by Glyndwr University. Scale-up to serial-manufacture demands delivery of a 1.4 m off-axis aspheric hexagonal segment with surface precision < 10 nm RMS every four days, compared with a typical year or more for an one-off part. This requires a radically-new approach to large optics fabrication, which will inevitably propagate into wider industrial optics. We report on how these ambitious requirements have stimulated an investigation into the synergy between robots and computer numerically controlled ('CNC') polishing machines for optical fabrication. The objective was not to assess which is superior. Rather, it was to understand for the first time their complementary properties, leading us to operate them together as a unit, integrated in hardware and software. Three key areas are reported. First is the novel use of robots to automate currently-manual operations on CNC polishing machines, to improve work-throughput, mitigate risk of damage to parts, and reduce dependence on highly-skilled staff. Second is the use of robots to pre-process surfaces prior to CNC polishing, to reduce total process time. The third draws the threads together, describing our vision of the automated manufacturing cell, where the operator interacts at cell rather than machine level. This promises to deliver a step-change in end-to-end manufacturing times and costs, compared with either platform used on its own or, indeed, the state-of-the-art used elsewhere.

  19. Computer-aided design of flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Sircar, Subrata

    1991-01-01

    A computer program is presented for facilitating the development and assessment of flight control systems, and application to a control design is discussed. The program is a computer-aided control-system design program based on direct digital synthesis of a proportional-integral-filter controller with scheduled linear-quadratic-Gaussian gains and command generator tracking of pilot inputs. The FlightCAD system concentrates on aircraft dynamics, flight-control systems, stability and performance, and has practical engineering applications.

  20. Just Scan It!-Weapon Reconstruction in Computed Tomography on Historical and Current Swiss Military Guns.

    PubMed

    Franckenberg, Sabine; Binder, Thomas; Bolliger, Stephan; Thali, Michael J; Ross, Steffen G

    2016-09-01

    Cross-sectional imaging, such as computed tomography, has been increasingly implemented in both historic and recent postmortem forensic investigations. It aids in determining cause and manner of death as well as in correlating injuries to possible weapons. This study illuminates the feasibility of reconstructing guns in computed tomography and gives a distinct overview of historic and recent Swiss Army guns. PMID:27454744

  1. SCADA computer sytem controls major Saudi Aramco crude oil pipeline

    SciTech Connect

    Dempsey, J.; Al-Habib, R.

    1996-12-31

    A replacement Supervisory Control and Data Acquisition (SCADA) computer system which monitors and controls two 1,100 kilometer pipelines and eleven associated pump stations is described. The SCADA system was designed to meet two objectives: (1) decentralize the overall control system and provide a distributed control system capable of regulatory control at each pump and pressure reducing station, and (2) provide system wide monitoring and supervisory control function during normal operations at the crude oil terminal. The SCADA computer system hardware (host computers and consoles), software modules, and applications are overviewed. A data flow diagram and a hardware configuration diagram are provided. 3 figs.

  2. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

    PubMed Central

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin

    2016-01-01

    Objective To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. Results All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. Conclusions The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken. PMID:27226958

  3. Bilateral control-based compensation for rotation in imaging in scan imaging systems

    NASA Astrophysics Data System (ADS)

    Tian, Dapeng; Wang, Yutang; Wang, Fuchao; Zhang, Yupeng

    2015-12-01

    Scan imaging systems rely on the rotation of a mirror to scan an image. The rotation in the resulting image must be compensated to prevent information loss. Satisfactory performance of an imaging system is difficult to achieve when employing the methods of mechanical transmission and unilateral tracking control, especially when the system suffers from nonlinear factors, disturbances, and dynamic uncertainties. This paper proposes a compensation method based on bilateral control derived from the field of haptic robots. A two-loop disturbance observer was designed to guarantee that the dynamic characteristics of the motor are close to those of the nominal model. The controllers were designed on the basis of the small gain theorem. Experiments were conducted for a comparison with the traditional unilateral control-based compensation. The comparison showed a reduction of 99.83% in the L2 norm of error, which validates the method. The proposed method improves the accuracy of compensation for rotation in imaging, and demonstrates that bilateral control has feasibility for application in various fields, including photogrammetry.

  4. Image processing of computed tomography scan data for automated structure identification and stress analysis

    SciTech Connect

    Meagher, J.M.

    1988-01-01

    This research investigates a non-invasive method to determine trabecular architecture, and its incorporation into FEM automatically generated from CT scan data. Part of the image processing involves a general method to remove beam hardening error from CT scan data without requiring the original projection data. A FEM of a canine femur is used to investigate bone stress-morphology relationships, and their sensitivity to load distribution, beam hardening errors, and anisotropic modeling of bone. The method to identify bone uses sequential application of edge gradient masks. CT span predictions were verified using histologic sections. The area fraction of bone and trabecular orientation were determined within 10% and 15 degrees when the pixel size was smaller than the intratrabecular spacing. Beam hardening is removed from CT scan data using simulated projections through the uncorrected image. Linearity of the reconstruction algorithm is used to add reconstructed projection corrections to the uncorrected image. The error in theoretical attenuation for a test phantom decreased from 30% to 5% with virtual elimination of the streak artifact. The image improvement equals that achieved with corrections based on the original projection data when all beam hardening occurs within the reconstruction space.

  5. Using a Computer to Control Stuttering.

    ERIC Educational Resources Information Center

    Williams, John

    1983-01-01

    A computer was used to help a man who stuttered severely most of his 37 years. The criterion based treatment used a specifically designed program (Speech Flow Acquisition Program) to train him to speak smoothly. (SEW)

  6. BioSCAN: a network sharable computational resource for searching biosequence databases.

    PubMed

    Singh, R K; Hoffman, D L; Tell, S G; White, C T

    1996-06-01

    We describe a network sharable, interactive computational tool for rapid and sensitive search and analysis of biomolecular sequence databases such as GenBank, GenPept, Protein Identification Resource, and SWISS-PROT. The resource is accessible via the World Wide Web using popular client software such as Mosaic and Netscape. The client software is freely available on a number of computing platforms including Macintosh, IBM-PC, and Unix workstations. PMID:8872387

  7. Comparison of Control Algorithms for a MEMS-based Adaptive Optics Scanning Laser Ophthalmoscope

    PubMed Central

    Li, Kaccie Y.; Mishra, Sandipan; Tiruveedhula, Pavan; Roorda, Austin

    2010-01-01

    We compared four algorithms for controlling a MEMS deformable mirror of an adaptive optics (AO) scanning laser ophthalmoscope. Interferometer measurements of the static nonlinear response of the deformable mirror were used to form an equivalent linear model of the AO system so that the classic integrator plus wavefront reconstructor type controller can be implemented. The algorithms differ only in the design of the wavefront reconstructor. The comparisons were made for two eyes (two individuals) via a series of imaging sessions. All four controllers performed similarly according to estimated residual wavefront error not reflecting the actual image quality observed. A metric based on mean image intensity did consistently reflect the qualitative observations of retinal image quality. Based on this metric, the controller most effective for suppressing the least significant modes of the deformable mirror performed the best. PMID:20454552

  8. Human hand-transmitted vibration measurements on pedestrian controlled tractor operators by a laser scanning vibrometer.

    PubMed

    Deboli, R; Miccoli, G; Rossi, G L

    1999-06-01

    A first application of a new measurement technique to detect vibration transmitted to the human body in working conditions is presented. The technique is based on the use of a laser scanning vibrometer. It was previously developed, analysed and tested using laboratory test benches with electrodynamical exciters, and comparisons with traditional measurement techniques based on accelerometers were made. First, results of tests performed using a real machine generating vibration are illustrated. The machine used is a pedestrian-controlled tractor working in a fixed position. Reference measurements by using the accelerometer have been simultaneously performed while scanning the hand surface by the laser-based measurement system. Results achieved by means of both measurement techniques have been processed, analysed, compared and used to calculate transmissibility maps of the hands of three subjects. PMID:10340028

  9. Automatic exposure control for a slot scanning full field digital mammography system

    SciTech Connect

    Elbakri, Idris A.; Lakshminarayanan, A.V.; Tesic, Mike M.

    2005-09-15

    Automatic exposure control (AEC) is an important feature in mammography. It enables consistently optimal image exposure despite variations in tissue density and thickness, and user skill level. Full field digital mammography systems cannot employ conventional AEC methods because digital receptors fully absorb the x-ray beam. In this paper we describe an AEC procedure for slot scanning mammography. With slot scanning detectors, our approach uses a fast low-resolution and low-exposure prescan to acquire an image of the breast. Tube potential depends on breast thickness, and the prescan histogram provides the necessary information to calculate the required tube current. We validate our approach with simulated prescan images and phantom measurements. We achieve accurate exposure tracking with thickness and density, and expect this method of AEC to reduce retakes and improve workflow.

  10. Computer Control For Gas/Tungsten-Arc Welding

    NASA Technical Reports Server (NTRS)

    Andersen, Kristinn; Springfield, James F.; Barnett, Robert J.; Cook, George E.

    1994-01-01

    Prototype computer-based feedback control system developed for use in gas/tungsten arc welding. Beyond improving welding technician's moment-to-moment general control of welding process, control system designed to assist technician in selecting appropriate welding-process parameters, and provide better automatic voltage control. Modular for ease of reconfiguration and upgrading. Modularity also reflected in software. Includes rack-mounted computer, based on VME bus, containing Intel 80286 and 80386 processors.