Science.gov

Sample records for concentric ring electrode

  1. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes.

    PubMed

    Makeyev, Oleksandr; Besio, Walter G

    2016-01-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933

  2. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    PubMed Central

    Makeyev, Oleksandr; Besio, Walter G.

    2016-01-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933

  3. Towards the clinical use of concentric electrodes in ECG recordings: influence of ring dimensions and electrode position

    NASA Astrophysics Data System (ADS)

    Prats-Boluda, G.; Ye-Lin, Y.; Bueno-Barrachina, JM; Rodriguez de Sanabria, R.; Garcia-Casado, J.

    2016-02-01

    To overcome the limited spatial resolution of standard 12-lead ECG recordings, concentric ring electrodes (CRE) have been proposed to provide valuable data for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. Although theoretical studies indicate that the dimensions of the CRE regulate the depth of the electric dipoles sensed by these electrodes, this has not been experimentally confirmed. The aim of this work was to analyze the influence of CRE dimensions and position of a wireless multi-CRE sensor node on the cardiac signal recorded. For this, four wireless multichannel ECG recording nodes based on flexible multi-ring electrodes were placed at positions CMV1 (position comparable to V1), CMV2, CMV4R and CMV5; each node providing three bipolar concentric ECG signals (BC-ECG). Standard 12-lead ECG and 12 BC-ECG signals were recorded in 29 volunteers. The results revealed that a ring with an outer diameter of 33.5 mm achieves a balance between the ease-of-use and spatial resolution of smaller electrodes and improved detectability and higher amplitudes of signals from larger ring electrodes. Although a standard 12-lead ECG outperforms BC-ECC recordings in detectability of cardiac waves, if the relative amplitude of the wave is also considered, BC-ECG at CMV1 proved superior at picking up atrial activity. In fact, in most of the BC-ECG signals picked up at CMV1, P1 and P2 atrial activity waves were more clearly identified than in simultaneous 12-Lead ECG signals. Likewise, BC-ECG signals revealed higher spatial resolution in detecting anomalous electrical activity in local regions, such as impaired intraventricular driving, or atrioventricular blocks. Finally, the wireless multi-CRE sensor node provides enhanced comfort and handling to both patient and clinician over wired systems.

  4. Fabrication and characterisation of the graphene ring micro electrode (GRiME) with an integrated, concentric Ag/AgCl reference electrode.

    PubMed

    Dickinson, James W; Bromley, Michael; Andrieux, Fabrice P L; Boxall, Colin

    2013-01-01

    We report the fabrication and characterisation of the first graphene ring micro electrodes with the addition of a miniature concentric Ag/AgCl reference electrode. The graphene ring electrode is formed by dip coating fibre optics with graphene produced by a modified Hummers method. The reference electrode is formed using an established photocatalytically initiated electroless deposition (PIED) plating method. The performance of the so-formed graphene ring micro electrodes (GRiMEs) and associated reference electrode is studied using the probe redox system ferricyanide and electrode thicknesses assessed using established electrochemical methods. Using 220 µm diameter fibre optics, a ~15 nm thick graphene ring electrode is obtained corresponding to an inner to outer radius ratio of >0.999, so allowing for use of extant analytical descriptions of very thin ring microelectrodes in data analysis. GRiMEs are highly reliable (current response invariant over >3,000 scans), with the concentric reference electrode showing comparable stability (current response invariant over >300 scans). Furthermore the micro-ring design allows for efficient use of electrochemically active graphene edge sites and the associated nA scale currents obtained neatly obviate issues relating to the high resistivity of undoped graphene. Thus, the use of graphene in ring microelectrodes improves the reliability of existing micro-electrode designs and expands the range of use of graphene-based electrochemical devices. PMID:23493126

  5. Fabrication and Characterisation of the Graphene Ring Micro Electrode (GRiME) with an Integrated, Concentric Ag/AgCl Reference Electrode

    PubMed Central

    Dickinson, James W.; Bromley, Michael; Andrieux, Fabrice P. L.; Boxall, Colin

    2013-01-01

    We report the fabrication and characterisation of the first graphene ring micro electrodes with the addition of a miniature concentric Ag/AgCl reference electrode. The graphene ring electrode is formed by dip coating fibre optics with graphene produced by a modified Hummers method. The reference electrode is formed using an established photocatalytically initiated electroless deposition (PIED) plating method. The performance of the so-formed graphene ring micro electrodes (GRiMEs) and associated reference electrode is studied using the probe redox system ferricyanide and electrode thicknesses assessed using established electrochemical methods. Using 220 μm diameter fibre optics, a ∼15 nm thick graphene ring electrode is obtained corresponding to an inner to outer radius ratio of >0.999, so allowing for use of extant analytical descriptions of very thin ring microelectrodes in data analysis. GRiMEs are highly reliable (current response invariant over >3,000 scans), with the concentric reference electrode showing comparable stability (current response invariant over >300 scans). Furthermore the micro-ring design allows for efficient use of electrochemically active graphene edge sites and the associated nA scale currents obtained neatly obviate issues relating to the high resistivity of undoped graphene. Thus, the use of graphene in ring microelectrodes improves the reliability of existing micro-electrode designs and expands the range of use of graphene-based electrochemical devices. PMID:23493126

  6. High-Frequency Oscillations Recorded on the Scalp of Patients With Epilepsy Using Tripolar Concentric Ring Electrodes.

    PubMed

    2014-01-01

    Epilepsy is the second most prevalent neurological disorder ([Formula: see text]% prevalence) affecting [Formula: see text] million people worldwide with up to 75% from developing countries. The conventional electroencephalogram is plagued with artifacts from movements, muscles, and other sources. Tripolar concentric ring electrodes automatically attenuate muscle artifacts and provide improved signal quality. We performed basic experiments in healthy humans to show that tripolar concentric ring electrodes can indeed record the physiological alpha waves while eyes are closed. We then conducted concurrent recordings with conventional disc electrodes and tripolar concentric ring electrodes from patients with epilepsy. We found that we could detect high frequency oscillations, a marker for early seizure development and epileptogenic zone, on the scalp surface that appeared to become more narrow-band just prior to seizures. High frequency oscillations preceding seizures were present in an average of 35.5% of tripolar concentric ring electrode data channels for all the patients with epilepsy whose seizures were recorded and absent in the corresponding conventional disc electrode data. An average of 78.2% of channels that contained high frequency oscillations were within the seizure onset or irritative zones determined independently by three epileptologists based on conventional disc electrode data and videos. PMID:27170874

  7. Enhancement of non-invasive recording of electroenterogram by means of a flexible array of concentric ring electrodes.

    PubMed

    Garcia-Casado, J; Zena-Gimenez, V; Prats-Boluda, G; Ye-Lin, Y

    2014-03-01

    Monitoring intestinal myoelectrical activity by electroenterogram (EEnG) would be of great clinical interest for diagnosing gastrointestinal pathologies and disorders. However, surface EEnG recordings are of very low amplitude and can be severely affected by baseline drifts and respiratory and electrocardiographic (ECG) interference. In this work, a flexible array of concentric ring electrodes was developed and tested to determine whether it can provide surface EEnG signals of better quality than bipolar recordings from conventional disc electrodes. With this aim, sixteen healthy subjects in a fasting state (>8 h) underwent recording. The capability of detecting intestinal pacemaker activity (slow wave) and the influence of physiological interferences were studied. The signals obtained from the concentric ring electrodes proved to be more robust to ECG and respiratory interference than those from conventional disc electrodes. The results also show that intestinal EEnG components such as the slow wave can be more easily identified by the proposed system based on a flexible array of concentric ring electrodes. The developed active electrode array could be a very valuable tool for non-invasive diagnosis of disease states such as ischemia and motility disorders of the small bowel which are known to alter the normal enteric slow wave activity. PMID:24232692

  8. Toward a noninvasive automatic seizure control system in rats with transcranial focal stimulations via tripolar concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Liu, Xiang; Luna-Munguía, Hiram; Rogel-Salazar, Gabriela; Mucio-Ramirez, Samuel; Liu, Yuhong; Sun, Yan L; Kay, Steven M; Besio, Walter G

    2012-07-01

    Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study, we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback. PMID:22772373

  9. Noninvasive transcranial focal stimulation via tripolar concentric ring electrodes lessens behavioral seizure activity of recurrent pentylenetetrazole administrations in rats.

    PubMed

    Makeyev, Oleksandr; Luna-Munguía, Hiram; Rogel-Salazar, Gabriela; Liu, Xiang; Besio, Walter G

    2013-05-01

    Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We have been developing a noninvasive transcranial focal electrical stimulation with our novel tripolar concentric ring electrodes as an alternative/complementary therapy for seizure control. In this study we demonstrate the effect of focal stimulation on behavioral seizure activity induced by two successive pentylenetetrazole administrations in rats. Seizure onset latency, time of the first behavioral change, duration of seizure, and maximal seizure severity score were studied and compared for focal stimulation treated (n = 9) and control groups (n = 10). First, we demonstrate that no significant difference was found in behavioral activity for focal stimulation treated and control groups after the first pentylenetetrazole administration. Next, comparing first and second pentylenetetrazole administrations, we demonstrate there was a significant change in behavioral activity (time of the first behavioral change) in both groups that was not related to focal stimulation. Finally, we demonstrate focal stimulation provoking a significant change in seizure onset latency, duration of seizure, and maximal seizure severity score. We believe that these results, combined with our previous reports, suggest that transcranial focal stimulation may have an anticonvulsant effect. PMID:22692938

  10. Concentric ring flywheel without expansion separators

    DOEpatents

    Kuklo, T.C.

    1999-08-24

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.

  11. Concentric ring flywheel without expansion separators

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

  12. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  13. OH density optimization in atmospheric-pressure plasma jet by using multiple ring electrodes

    NASA Astrophysics Data System (ADS)

    Yue, Y.; Pei, X.; Lu, X.

    2016-01-01

    OH radical is one of the important reactive species generated by non-equilibrium atmospheric-pressure plasma jets, which is believed to play an important role in plasma medicine applications such as cancer therapy, wound healing and sterilization. In this study, a method to increase OH density is proposed. By using multiple pairs of ring electrodes, we generate 3-5 times more OH radicals than in the common device which uses only one high-voltage ring electrode. Discharge imaging shows that the plasma plume with only one ring electrode is longer and its emission intensity is higher than those with multiple pairs of ring electrodes. Further studies indicate that the distribution of OH radicals is significantly influenced by the gas flow rate. At higher gas flow rates, the OH peak concentration is detected further away from the nozzle, and the position of the peak OH concentration correlates with the product of the gas flow velocity and the pulse duration. As observed from the emission spectra, multiple electrodes only enhance the plasma inside the tube rather than the plasma plume in the surrounding air. These results suggest that the OH radicals are mainly generated inside the tube and then delivered to the outer plasma plume region by the gas flow.

  14. Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-08-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  15. Ring patterned electrode driven by electrical signal liquid crystal microlens with focus tunable

    NASA Astrophysics Data System (ADS)

    Kang, Shengwu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2013-10-01

    In this paper, we present a new LC lens with multi-ring patterned electrode, it consists of two ring-shaped sub-electrodes and a circle sub-electrode, each sub-electrode can be driven separately. The two rings have different diameter but the same center, when the two ring-shaped sub-electrodes are driven independently, the LC lens can work as micro convex lens with different clear aperture and its local length can be tunable along optical axis by electrical signal. As the voltage is applied to the circle sub-electrode, it appears like concave lens. With this design, it can achieve two types microlens effect in one structure, and by applying the voltage to the different patterned electrode, it can switch between two types microlens. The optical properties of the LC microlens are also demonstrated experimentally.

  16. A wide-aperture Pockels cell with three ring electrodes

    SciTech Connect

    Andreev, N F; Bespalov, V I; Bredikhin, V I; Davydov, V S; Katin, E V; Kuznetsov, S P; Matveev, A Z; Rubakha, V I; Garanin, Sergey G; Dolgopolov, Yu V; Kulikov, S M; Sukharev, Stanislav A

    2004-04-30

    A wide-aperture Pockels cell based on a DKDP crystal having an optical diameter of 70 mm is studied. Three silver ring electrodes deposited on the side surface of the crystal were used to apply a high-voltage rectangular pulse of variable duration from 50 to 150 ns to the cell. Chains of KT6117A (2N5551) transistors operating in the avalanche regime served as fast electron switches. The duration of the leading and trailing edges of the pulse formed by these switches did not exceed 15 ns. The nonuniformity of the transmission coefficient over the cross section of the cell caused by the inhomogeneity of the electric field inside the crystal was close to 3.5%. (laser applications and other topics in quantum electronics)

  17. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  18. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, T.C.

    1999-07-20

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  19. The stiffness variation of a micro-ring driven by a traveling piecewise-electrode.

    PubMed

    Li, Yingjie; Yu, Tao; Hu, Yuh-Chung

    2014-01-01

    In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing. PMID:25230308

  20. Beam Tests of a Clearing Electrode for Electron Cloud Mitigation at KEKB Positron Ring

    SciTech Connect

    Suetsugu, Y.; Fukuma, H.; Shibata, K.; Pivi, M.; Wang, L.; /SLAC

    2010-06-15

    In order to mitigate the electron cloud instability in an intense positron ring, an electron clearing electrode with a very thin structure has been developed. The electrode was tested with a positron beam of the KEKB B-factory (KEKB). A drastic reduction in the electron density around the beam was demonstrated in a wiggler magnet with a dipole-type magnetic field of 0.78 T. The clearing electrode was then applied to a copper beam pipe with antechambers assuming an application of the electrode to a wiggler section in the Super KEKB. The beam pipe was installed at a magnetic-free region in the ring and tested with beam. No extra heating of the electrodes and feed-throughs were observed. A reduction in the electron density reasonable in a magnetic-free region was also obtained.

  1. GaInAsP/InP surface emitting injection laser with a ring electrode

    NASA Astrophysics Data System (ADS)

    Uchiyama, S.; Iga, K.

    1984-10-01

    A GaInAsP/InP surface emitting injection laser (lambda = 1.2 microns) with a ring electrode has been fabricated. In this structure the reflecting mirror has been separated from the p-side electrode in order to increase the reflectivity. Threshold current was 90 mA at 77 K and the operating temperature has been raised up to -85 C. The cavity length was 7.5 microns and single longitudinal mode operation was achieved.

  2. Development of a versatile rotating ring-disc electrode for in situ pH measurements.

    PubMed

    Zimer, Alexsandro Mendes; Medina da Silva, Marina; Machado, Eduardo G; Varela, Hamilton; Mascaro, Lucia Helena; Pereira, Ernesto Chaves

    2015-10-15

    There are some electrocatalytic reactions in which the key parameter explaining their behavior is a local change in pH. Therefore, it is of utter importance to develop an electrode that could quantify this parameter in situ, but also be customizable to be used in different systems. The purpose of this work is to build a versatile rotating ring/disc electrode (RRDE) with IrOx deposited on a glass tube as a ring and any kind of material as disc. As the IrOx is sensitive to pH variation, the reactions promoted on the disc can trigger proportional pH shifts on the ring. In such assembly, the IrOx ring presents a fast response time even during the pH transients due to the small thickness of the ring (approximately 10 μm), which enables the detection of interfacial pH changes. The ring electrode was tested toward the interfacial pH shift observed during the electrolytic reduction of water on the disc and also characterized by acid-base titration to determine the response time. As the main conclusions, fast response and durable RRDE were obtained, and this assembly could be used to revisit many electrocatalytic reactions in order to test the importance of local pH on the process. PMID:26515001

  3. New Concentric Electrode Metal-Semiconductor-Metal Photodetectors

    NASA Technical Reports Server (NTRS)

    Towe, Elias

    1996-01-01

    A new metal-semiconductor-metal (MSM) photodetector geometry is proposed. The new device has concentric metal electrodes which exhibit a high degree of symmetry and a design flexibility absent in the conventional MSM device. The concentric electrodes are biased to alternating potentials as in the conventional interdigitated device. Because of the high symmetry configuration, however, the new device also has a lower effective capacitance. This device and the conventional MSM structure are analyzed within a common theoretical framework which allows for the comparison of the important performance characteristics.

  4. Radial profile of plasma potential with various biased electrode ring configurations in a toroidal plasma

    SciTech Connect

    Chaube, N.R.; Jain, K.K.

    1996-07-01

    An experimental study on behavior of radial profile of the floating potential with different biased electrode ring configurations has been carried out in a currentless magnetized toroidal plasma. Radial profile of the floating potential has been measured by biasing single ring of various sizes and two rings. It is observed that floating potential profile of a well shaped with controllable depth, hill-cum-well shaped, and almost flat positive potential can be obtained. Results on parameter dependence studies of floating potential on the bias voltage, magnetic field, and gas pressure are presented. {copyright} {ital 1996 American Institute of Physics.}

  5. Converse magneto-electric coefficient of concentric multiferroic composite ring

    NASA Astrophysics Data System (ADS)

    Chavez, Andres C.; Lopez, Mario; Youssef, George

    2016-06-01

    The converse magnetoelectric (CME) coefficient of an artificial, multiferroic composite cylinder was determined for two interface boundary conditions; specifically epoxy-bonded and shrink-fit. The composite consists of two concentrically bonded rings with the inner and outer rings made from Terfenol-D and lead zirconate titanate, respectively. The diameter of the inner annulus was 25 mm, and the outer ring diameter was 30 mm. Electric fields ranging from 20 kV/m to 80 kV/m with AC components cycling at frequencies from 4 kHz to 50 kHz were applied for actuation of the composite. A magnetic bias field from 0 Oe to 2300 Oe was applied for enhancement of the CME coefficient. It has been found that the maximum CME for epoxy-bonded rings occurs at lower bias magnetic field than shrink-fitted rings. Resonance for the epoxy-bonded composite was found to be 36 kHz whereas the resonant frequency for the shrink-fit structure was 34 kHz. The maximum CME coefficients were approximately 535 mG/V at 100 Vpp and 330 mG/V at 400 Vpp for the epoxy-bonded and shrink-fit configurations, respectively.

  6. Potentiometric studies at ORNL with hydrogen electrode concentration cells

    SciTech Connect

    Mesmer, R.E.; Palmer, D.A.; Wesolowski, D.J.

    1994-12-31

    The absence of suitably stable reference electrodes for and to 300 C led ORNL to develop hydrogen electrode concentration cells for studies of equilibria of interest in reactor and steam generator systems to about 300 C during the late 1960`s and seventies. During the intervening two dozen years over twenty scientists have participated in potentiometric studies at Oak Ridge and much of that work will be summarized in this paper. A description of hydrogen electrode concentration cells developed in the late sixties and currently in use at Oak Ridge is given. The method of measurement, data interpretation, and published results are reviewed for studies of acid-base ionization, metal ion hydrolysis, and metal complexation reactions using principally such cells in titration or flow modes. 41 refs.

  7. Tunable magnetic flux sensor using a metallic Rashba ring with half-metal electrodes

    SciTech Connect

    Chen, J.; Jalil, M. B. A.; Tan, S. G.

    2011-04-01

    We propose a magnetic field sensor consisting of a square ring made of metal with a strong Rashba spin-orbital coupling (RSOC) and contacted to half-metal electrodes. Due to the Aharonov-Casher effect, the presence of the RSOC imparts a spin-dependent geometric phase to conduction electrons in the ring. The combination of the magnetic flux emanating from the magnetic sample placed below the ring, and the Aharonov-Casher effect due to RSOC results in spin interference, which modulates the spin transport in the ring nanostructure. By using the tight-binding nonequilibrium Green's function formalism to model the transport across the nanoring detector, we theoretically show that with proper optimization, the Rashba ring can function as a sensitive and tunable magnetic probe to detect magnetic flux.

  8. Concentric nano rings observed on Al-Cu-Fe microspheres

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang

    2016-05-01

    It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.

  9. Structuring Light by Concentric-Ring Patterned Magnetic Metamaterial Cavities.

    PubMed

    Zeng, Jinwei; Gao, Jie; Luk, Ting S; Litchinitser, Natalia M; Yang, Xiaodong

    2015-08-12

    Ultracompact and tunable beam converters pose a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. Here we design and demonstrate concentric-ring patterned structures of magnetic metamaterial cavities capable of tailoring both polarization and phase of light by converting circularly polarized light into a vector beam with an orbital angular momentum. We experimentally illustrate the realization of both radially and azimuthally polarized vortex beams using such concentric-ring patterned magnetic metamaterials. These results contribute to the advanced complex light manipulation with optical metamaterials, making it one step closer to realizing the simultaneous control of polarization and orbital angular momentum of light on a chip. PMID:26121268

  10. Design of dual working electrodes for concentration process in metalloimmunoassay.

    PubMed

    Hori, Nobuyasu; Chikae, Miyuki; Kirimura, Hiroya; Takamura, Yuzuru

    2016-10-01

    Electrochemical immunosensing, particularly through a metalloimmunoassay, is a promising approach for development of point-of-care (POC) diagnostics devices. This study investigated the structure of dual working electrodes (W1 and W2), used in a silver nanoparticles-labeled sandwich-type immunoassay and silver concentration process, paying special attention to the position of W1 relative to W2. The new structures of the dual working electrodes were fabricated for efficient silver concentration and evaluated experimentally, which showed that the duration of prereduction before current measurement decreased from 480 s to 300 s by transforming the position of W1 from 1 line to 2 lines or 6 parts. The experimental results were also compared with numerical simulations based on three-dimensional diffusion, and the prereduction step almost followed the three-dimensional diffusion equation. Using numerical simulations, the ideal structures of dual working electrodes were designed based on relationships between the structures and duration of prereduction or the LOD. In the case of 36 lines at an area ratio of W1 to W1 + W2 of 1 to 10, the prereduction duration decreased to 96 s. The dual working electrodes designed in this study promise to shorten the total analysis time and lower the LOD for POC diagnostics. PMID:27572238

  11. Electronic transport properties of molecular junctions based on the direct binding of aromatic ring to electrodes

    NASA Astrophysics Data System (ADS)

    Lan, Tran Nguyen

    2014-01-01

    We have used the non-equilibrium Green's function in combination with the density functional theory to investigate the quantum transport properties of the molecular junctions including a terminated benzene ring directly coupled to surface of metal electrodes (physisorption). The other side of molecule was connected to electrode via thiolate bond (chemisorption). Two different electrodes have been studied, namely Cu and Al. Rectification and negative differential resistance behavior have been observed. We found that the electron transport mechanism is affected by the nature of benzene-electrode coupling. In other words, the transport mechanism depends on the nature of metallic electrode. Changing from sp- to sd-metallic electrode, the molecular junction changes from the Schottky to p-n junction-like diode. The transmission spectra, projected density of state, molecular projected self-consistent Hamiltonian, transmission eigenchannel, and Muliken population have been analyzed for explanation of electronic transport properties. Understanding the transport mechanism in junction having direct coupling of π-conjugate to electrode will be useful to design the future molecular devices.

  12. Vibration optimization of ZnO thin film bulk acoustic resonator with ring electrodes

    NASA Astrophysics Data System (ADS)

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin

    2016-04-01

    A rectangular ZnO thin film bulk acoustic resonator with ring electrodes is presented in this paper to demonstrate the existence of a nearly uniform displacement distribution at the central part of this typical resonator. The variational formulation based on two-dimensional scalar differential equations provides a theoretical foundation for the Ritz method adopted in our analysis. The resonant frequencies and vibration distributions for the thickness-extensional modes of this ring electrode resonator are obtained. The structural parameters are optimized to achieve a more uniform displacement distribution and therefore a uniform mass sensitivity, which guarantee the high accuracy and repeatable measurement for sensor detection in an air or a liquid environment. These results provide a fundamental reference for the design and optimization of the high quality sensor.

  13. Can tree ring chemistry indicate soil salt concentrations?

    NASA Astrophysics Data System (ADS)

    Volesky, S.; Gillikin, D. P.; Verheyden, A.; Interlichia, K.

    2008-12-01

    Soil salt concentrations are a major ecological concern, especially in coastal zones and colder climates where road salt is heavily applied. To test if trees could be an archive of soil salinity, we collected sediment and tree stem disks along a transect from a salt-marsh inland. The two species of tree studied were Pinus taeda (Loblolly Pine) and Juniperus virginiana (Eastern Red Cedar). Soil and individual tree rings were analyzed by ICP-OES to determine elemental concentrations. We hypothesized that Sr/Ca ratios in the wood would provide an excellent proxy of soil salinity. Strontium mimics calcium biologically, so Sr/Ca ratios are often taken up in the same ratio as is found in the environment, and at salinities less than 5, Sr/Ca ratios in water typically show a strong positive correlation with salinity. We found that every element studied (Mg, Mn, K, Sr, Ca, Ba, and S) reacted very similarly in the pines. For soil sodium levels less than 60 μg/g, all element concentrations increased sharply, but at 60 μg/g and higher, the element concentrations decreased gradually. In the cedars, a linear correlation was established with each of the elements versus sodium in the soil with R2 values ranging from 0.01 (sulfur) to 0.50 (magnesium). The relationships are not robust, but there is some promise that this tool may eventually be developed.

  14. Detection of crevice corrosion under an O-ring by polarization resistance measurements using electrodes embedded in the O-ring

    SciTech Connect

    Inman, M.; Rawat, A.K.; Taylor, E.J.; Moran, P.J.

    1997-12-01

    An electrochemical sensor which incorporates a counter electrode (CE) and a reference electrode (RE) into an O-ring has been developed for in situ monitoring of crevice corrosion initiation and propagation. It is applicable to crevice corrosion situations where the crevice is created by a gasket or an O-ring and the attack occurs in that crevice. It is shown that polarization resistance (R{sub p}) values calculated from in situ electrochemical impedance measurements correlate with the onset of crevice attack and with its propagation for crevice corrosion of alloy 625 (UNS N06625) in 3.5% NaCl and in 10% FeCl{sub 3} solutions.

  15. Bacterial inactivation using atmospheric pressure single pin electrode microplasma jet with a ground ring

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ja; Chung, T. H.; Bae, S. H.; Leem, S. H.

    2009-04-01

    Bacterial inactivation experiment was performed using atmospheric pressure microplasma jets driven by radio-frequency wave of 13.56 MHz and by low frequency wave of several kilohertz. With addition of a ground ring electrode, the discharge current, the optical emission intensities from reactive radicals, and the sterilization efficiency were enhanced significantly. When oxygen gas was added to helium at the flow rate of 5 SCCM, the sterilization efficiency was enhanced. From the survival curve of Escherichia coli, the primary role in the inactivation was played by reactive species with minor aid from heat, UV photons, charged particles, and electric fields.

  16. Bacterial inactivation using atmospheric pressure single pin electrode microplasma jet with a ground ring

    SciTech Connect

    Kim, Sun Ja; Chung, T. H.; Bae, S. H.; Leem, S. H.

    2009-04-06

    Bacterial inactivation experiment was performed using atmospheric pressure microplasma jets driven by radio-frequency wave of 13.56 MHz and by low frequency wave of several kilohertz. With addition of a ground ring electrode, the discharge current, the optical emission intensities from reactive radicals, and the sterilization efficiency were enhanced significantly. When oxygen gas was added to helium at the flow rate of 5 SCCM, the sterilization efficiency was enhanced. From the survival curve of Escherichia coli, the primary role in the inactivation was played by reactive species with minor aid from heat, UV photons, charged particles, and electric fields.

  17. A lactulose sensor based on coupled enzyme reactions with a ring electrode fabricated from tetrathiafulvalen-tetracyanoquinodimetane.

    PubMed

    Sekine, Y; Hall, E A

    1998-10-15

    A dual enzyme electrode is explored for measuring lactulose in milk. A ring electrode (diameter = 3 mm; ring width = 10-20 microns) is proposed onto which tetrathiafulvalen-tetracyanoquinodimetane (TTF-TCNQ) salt was physically packed. The electrode is a band electrode with dimensions approaching those for micro electrodes, so that the improved faradaic current/charging current ratio lead to improved detection limits. Fructose dehydrogenase (FDH) and beta-galactosidase (beta-gal) were immobilized by covering the electrode surface with a dialysis membrane. Lactulose was hydrolyzed to D-fructose and D-galactose by beta-gal. The hydrolyzed D-fructose was oxidized by FDH which was simultaneously reduced to the reduced form (FDH-PQQH2). The FDH-PQQH2 was directly reoxidized by TTF-TCNQ on the ring electrode, whose current was monitored at 200 mV vs Ag/AgCl. The detection limit of the lactulose sensor was 1.0 microM and the selectivity for lactulose was at least 1000 times higher than that for lactose. Pasteurized, UHT and sterilized milks were applied to the lactulose sensor, showing good accuracy and precision and, furthermore, good correlation to a reference photometric method, even though no rigorous procedure for the electrode fabrication has presently been addressed. PMID:9839388

  18. Electromagnetic Calculation of Combined Earthing System with Ring Earth Electrode and Vertical Rods for Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki

    With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.

  19. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1997-07-22

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.

  20. Electrorefining cell with parallel electrode/concentric cylinder cathode

    SciTech Connect

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-12-31

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium and a mixture of uranium and plutonium for use as a fresh blanket and core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped cathode is disposed about the outer anodic dissolution baskets. Uranium is deposited from the anode baskets in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium collection efficiency enhanced by increasing the electrode area and reducing the anode-cathode spacing for enhanced trapping and recovery of uranium dendrites scraped off of the cylindrical cathodes which may be greater in number than two.

  1. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, Eddie C.; Miller, William E.; Laidler, James J.

    1997-01-01

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.

  2. Surface-initiated ring-opening metathesis polymerization of 5-(perfluorohexyl)norbornene on carbon paper electrodes.

    PubMed

    Faulkner, Christopher J; Payne, P Andrew; Jennings, G Kane

    2010-11-01

    Hydrophobic coatings on carbon paper electrodes are known to provide effective water management, superior gas transfer, and improved mechanical stability of the paper in fuel cell applications. Here, we describe the surface-initiated ring-opening metathesis polymerization (ROMP) of 5-(perfluorohexyl)norbornene (NBF6) to prepare fluorocarbon-rich films on carbon paper substrates that were pre-treated with O(2) plasma. For our reaction scheme, the growth of the pNBF6 films is dependent on the concentration of hydroxyl groups on the carbon paper substrate. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to determine the required time for O(2) plasma exposure to saturate the surface with hydroxyl-termini. Complete, conformal pNBF6 films were grown on carbon paper electrodes exposed to O(2) plasma for at least 45 s. These films exhibit hydrophobic and oleophobic surface properties and serve as insulative barriers to the diffusion of aqueous ions to the conductive carbon fibers. PMID:20709328

  3. Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes.

    PubMed

    Chiu, Chi-Wei; Lin, Yu-Cheng; Chao, Paul C-P; Fuh, Andy Y-G

    2008-11-10

    Aiming to equip commercial camera modules, such as the optical imaging systems with a CMOS sensor module in 3 Mega pixels, an ultra thin liquid crystal lens with designed hole-and-ring electrodes is proposed in this study to achieve high focusing power. The LC lens with proposed electrodes improves the central intensity of electric field which leads to better focusing quality. The overall thickness of the LC lens can be as thin as 1.2 mm and the shortest focal length of the 4 mm-aperture lens occurs at 20 cm under an applied voltage of 30 V at 1 KHz. The inner ring electrode requires only 40% of applied voltage of the external hole electrode. The applied voltages for this internal ring and external hole electrodes can simply be realized by a pre-designed parallel resistance pair and a single voltage source. Experiments are conducted for validation and it shows that the designed LC lens owns good image clearness and contrast at the focal plane. The proposed design reduces the thickness of LC lens and is capable of achieving relative higher focusing power than past studies with lower applied voltage. PMID:19582020

  4. Baldcypress tree ring elemental concentrations at Reelfoot Lake, Tennessee from AD 1795 to AD 1820

    SciTech Connect

    Van Arsdale, R.; Hall, G.

    1995-11-01

    Many two hundred year old baldcypress trees in Reelfoot Lake, Tennessee, lived through the great New Madrid earthquakes of 1811--1812. This study was undertaken to determine if the elemental composition of baldcypress tree rings showed any systematic variation through the earthquake period of AD 1795 through AD 1820. Multiple cores were collected from two Reelfoot Lake baldcypress trees and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Individual yearly rings and five-year ring segments were analyzed to determine their elemental compositions. The cores were analyzed for Li through U but only Ba, Ce, Cs, Cu, I, La, Mg, Mn, Nd, Rb, Sm, Sr, and Zn were found to be in appropriate concentrations for this study. Of these elements only Ce, I, La, Nd, Rb, and Sm showed any systematic changes within individual cores. Comparison of three cores taken from one tree reveal that tree-ring elemental concentrations and changes in tree-ring elemental concentration through time are very different among the cores. When comparing the elemental concentrations of tree rings for the same years in the two different trees neither elemental concentrations nor changes in elemental concentration through time were similar. We conclude that the elemental concentrations in the tree rings of the two baldcypress trees analyzed in this study show no systematic change through the earthquake period of AD 1795 through AD 1820.

  5. Study of Mn dissolution from LiMn{sub 2}O{sub 4} spinel electrodes using rotating ring-disk collection experiments

    SciTech Connect

    Wang, Li-Fang; Ou, Chin-Ching; Striebel, Kathryn A.; Chen, Jenn-Shing

    2003-07-01

    The goal of this research was to measure Mn dissolution from a thin porous spinel LiMn{sub 2}O{sub 4} electrode by rotating ring-disk collection experiments. The amount of Mn dissolution from the spinel LiMn{sub 2}O{sub 4} electrode under various conditions was detected by potential step chronoamperometry. The concentration of dissolved Mn was found to increase with increasing cycle numbers and elevated temperature. The dissolved Mn was not dependent on disk rotation speed, which indicated that the Mn dissolution from the disk was under reaction control. The in situ monitoring of Mn dissolution from the spinel was carried out under various conditions. The ring currents exhibited maxima corresponding to the end-of-charge (EOC) and end-of-discharge (EOD), with the largest peak at EOC. The results suggest that the dissolution of Mn from spinel LiMn{sub 2}O{sub 4} occurs during charge/discharge cycling, especially in a charged state (at >4.1 V) and in a discharged state (at <3.1 V). The largest peak at EOC demonstrated that Mn dissolution took place mainly at the top of charge. At elevated temperatures, the ring cathodic currents were larger due to the increase of Mn dissolution rate.

  6. 5D Einstein-Maxwell solitons and concentric rotating dipole black rings

    SciTech Connect

    Yazadjiev, Stoytcho S.

    2008-09-15

    We discuss the application of the solitonic techniques to the 5D Einstein-Maxwell gravity. As an illustration we construct a new exact solution describing two concentric rotating dipole black rings. The properties of the solution are investigated.

  7. Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.

    PubMed

    Yang, SeungCheol; Choi, Jiyeon; Yeo, Jeong-Gu; Jeon, Sung-Il; Park, Hong-Ran; Kim, Dong Kook

    2016-06-01

    Flow-electrode capacitive deionization (FCDI) is novel capacitive deionization (CDI) technology that exhibits continuous deionization and a high desalting efficiency. A flow-electrode with high capacitance and low resistance is required for achieving an efficient FCDI system with low energy consumption. For developing high-performance flow-electrode, studies should be conducted considering porous materials, conductive additives, and electrolytes constituting the flow-electrode. Here, we evaluated the desalting performances of flow-electrodes with spherical activated carbon and aqueous electrolytes containing various concentrations of NaCl in the FCDI unit cell for confirming the effect of salt concentration on the electrolyte of a flow-electrode on desalting efficiency. We verified the necessity of a moderate amount of salt in the flow-electrode for compensating for the reduction in the performance of the flow-electrode, attributed to the resistance of water used as the electrolyte. Simultaneously, we confirmed the potential use of salt water with a high salt concentration, such as seawater, as an aqueous electrolyte for the flow-electrode. PMID:27162028

  8. Using multivariate analyses to compare subsets of electrodes and potentials within an electrode array for predicting sugar concentrations in mixed solutions.

    SciTech Connect

    Stork, Christopher Lyle; Steen, William Arthur

    2008-04-01

    A non-selective electrode array is presented for the quantification of fructose, galactose, and glucose in mixed solutions. A unique feature of this electrode array relative to other published work is the wide diversity of electrode materials incorporated within the array, being constructed of 41 different metals and metal alloys. Cyclic voltammograms were acquired for solutions containing a single sugar at varying concentrations, and the correlation between current and sugar concentration was calculated as a function of potential and electrode array element. The correlation plots identified potential regions and electrodes that scaled most linearly with sugar concentration, and the number of electrodes used in building predictive models was reduced to 15. Partial least squares regression models relating electrochemical response to sugar concentration were constructed using data from single electrodes and multiple electrodes within the array, and the predictive abilities of these models were rigorously compared using a non-parametric Wilcoxon test. Models using single electrodes (Pt:Rh (90:10) for fructose, Au:Ni (82:18) for galactose, and Au for glucose) were judged to be statistically superior or indistinguishable from those built with multiple electrodes. Additionally, for each sugar, interval partial least squares regression successfully identified a subset of potentials within a given electrode that generated a model of statistically equivalent predictive ability relative to the full potential model. While including data from multiple electrodes offered no benefit in predicting sugar concentration, use of the array afforded the versatility and flexibility of selecting the best single electrode for each sugar.

  9. Compact concentric ring shaped antenna for ultra wide band applications

    NASA Astrophysics Data System (ADS)

    Singha, Rahul; Vakula, D.; Sarma, N. V. S. N.

    2014-10-01

    A novel antenna for compact size, simple structure suitable for low cost fabrication is proposed for UWB application. A compact ring shaped monopole antenna is designed to cover the entire ultra wide bandwidth which has straight forward printed circuit board integration. The dimensions of the antenna are 16mm × 12mm × 0.787mm. More specifically, the impedance matching of the antenna is improved by employment of the tapered microstrip feed line. The measurement and simulation results show that the proposed antenna achieves good impedance bandwidth from 6.5 GHz to 25 GHz which covers the entire UWB. The antenna also has a gain approximately 2.5dBi from 6 GHz to 22 GHz. Compared to the existing UWB antennas, the presented modified structure has the smallest size, the widest bandwidth and better return loss characteristics.

  10. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    PubMed

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  11. I-BIEM calculations of the frequency dispersion and ac current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  12. I-BIEM calculations of the frequency dispersion and AC current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  13. Radiocarbon concentration in modern tree rings from Fukushima, Japan.

    PubMed

    Xu, Sheng; Cook, Gordon T; Cresswell, Alan J; Dunbar, Elaine; Freeman, Stewart P H T; Hastie, Helen; Hou, Xiaolin; Jacobsson, Piotr; Naysmith, Philip; Sanderson, David C W

    2015-08-01

    A 30-year-old Japanese cedar (Cryptomeria japonica), collected from Iwaki, Fukushima in 2014, was analyzed for the long-lived radionuclide (14)C. Values of Δ(14)C varied from 211.7‰ in 1984 to 16.9‰ in 2013. The temporal Δ(14)C variation can be described as an exponential decline, indistinguishable from the general Northern Hemisphere Zone 2 (NH Zone 2) values in the atmosphere, until at least 1994. Values of Δ(14)C for 1999 and 2004 are slightly depleted compared with NH Zone 2 values, while from 1999 to 2013 the data suggest a clear depletion with a 2-8 ppmV additional CO2 contribution from a (14)C-free (i.e. fossil carbon) source. This change coincides with local traffic increases since two nearby expressways were opened in the 1990's. In addition, the small but visible (14)C pulse observed in the 2011 tree-ring might be caused by release from the damaged reactors during the Fukushima nuclear accident. PMID:25917022

  14. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement.

    PubMed

    Yao, Jiafeng; Kodera, Tatsuya; Obara, Hiromichi; Sugawara, Michiko; Takei, Masahiro

    2015-07-01

    The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry. PMID:26392831

  15. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement

    PubMed Central

    Yao, Jiafeng; Kodera, Tatsuya; Obara, Hiromichi; Sugawara, Michiko; Takei, Masahiro

    2015-01-01

    The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry. PMID:26392831

  16. Evaluation of Amount of Blood in Dry Blood Spots: Ring-Disk Electrode Conductometry.

    PubMed

    Kadjo, Akinde F; Stamos, Brian N; Shelor, C Phillip; Berg, Jordan M; Blount, Benjamin C; Dasgupta, Purnendu K

    2016-06-21

    A fixed area punch in dried blood spot (DBS) analysis is assumed to contain a fixed amount of blood, but the amount actually depends on a number of factors. The presently preferred approach is to normalize the measurement with respect to the sodium level, measured by atomic spectrometry. Instead of sodium levels, we propose electrical conductivity of the extract as an equivalent nondestructive measure. A dip-type small diameter ring-disk electrode (RDE) is ideal for very small volumes. However, the conductance (G) measured by an RDE depends on the depth (D) of the liquid below the probe. There is no established way of computing the specific conductance (σ) of the solution from G. Using a COMSOL Multiphysics model, we were able to obtain excellent agreement between the measured and the model predicted conductance as a function of D. Using simulations over a large range of dimensions, we provide a spreadsheet-based calculator where the RDE dimensions are the input parameters and the procedure determines the 99% of the infinite depth conductance (G99) and the depth D99 at which this is reached. For typical small diameter probes (outer electrode diameter ∼ <2 mm), D99 is small enough for dip-type measurements in extract volumes of ∼100 μL. We demonstrate the use of such probes with DBS extracts. In a small group of 12 volunteers (age 20-66), the specific conductance of 100 μL aqueous extracts of 2 μL of spotted blood showed a variance of 17.9%. For a given subject, methanol extracts of DBS spots nominally containing 8 and 4 μL of blood differed by a factor of 1.8-1.9 in the chromatographically determined values of sulfate and chloride (a minor and major constituent, respectively). The values normalized with respect to the conductance of the extracts differed by ∼1%. For serum associated analytes, normalization of the analyte value by the extract conductance can thus greatly reduce errors from variations in the spotted blood volume/unit area. PMID:27226021

  17. Photoelectrocatalytic analysis and electrocatalytic determination of hydroquinone by using a Cu2O-reduced graphene oxide nanocomposite modified rotating ring-disk electrode.

    PubMed

    Xie, Hong; Duan, Kaiyue; Xue, Muyin; Du, Yongling; Wang, Chunming

    2016-08-01

    Reduced graphene oxide (rGO)-based Cu2O nanocomposites were prepared by a facile one-pot reaction process. The surface morphology, structure and chemical composition of Cu2O-rGO nanocomposites were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The Cu2O-rGO modified Pt rotating ring-disk electrode (RRDE) was successfully fabricated for the photoelectrocatalytic analysis of hydroquinone (HQ). The photoelectrochemical behaviors of HQ were investigated by the hydrodynamic differential pulse voltammetry technique, using the Cu2O-rGO modified Pt RRDE as the working electrode. The effects of pH values, rotation rates, illumination time and applied bias potential have been discussed. The possible electroactive intermediate product, namely hydroxyhydroquinone, was obtained through the photoelectrocatalytic degradation of HQ on the Cu2O-rGO modified Pt disk electrode, which was compulsively transported and could only be detected at the bare Pt ring electrode at around +0.02 V with an oxidation signal. We found that the peak current at +0.02 V had a good linear relationship with the HQ concentration in the range from 5.0 × 10(-6) to 1.0 × 10(-3) M, with a low limit of detection and excellent reproducibility. The present work has demonstrated that Cu2O-rGO nanocomposites have enhanced photoelectrocatalytic ability for the degradation of organic pollutants and this modified RRDE technique can be potentially applied for the in situ determination of organic pollutants. PMID:27297492

  18. Effect of a floating electrode on a plasma jet

    SciTech Connect

    Hu, J. T.; Wang, J. G.; Liu, X. Y.; Liu, D. W.; Lu, X. P.; Shi, J. J.; Ostrikov, K.

    2013-08-15

    Two kinds of floating electrode, floating dielectric barrier covered electrode (FDBCE) and floating pin electrode (FPE), which can enhance the performance of plasma jet are reported. The intense discharge between the floating electrode and power electrode decreased the voltage to trigger the plasma jet substantially. The transition of plasma bullet from ring shape to disk shape in the high helium concentration region happened when the floating electrode was totally inside the powered ring electrode. The enhanced electric field between propagating plasma bullet and ground electrode is the reason for this transition. The double plasma bullets happened when part of the FDBCE was outside the powered ring electrode, which is attributed to the structure and surface charge of FDBCE. As part of the FPE was outside the powered ring electrode, the return stroke resulted in a single intensified plasma channel between FPE and ground electrode.

  19. Concentric rings of polystyrene and titanium dioxide nanoparticles patterned by alternating current signal guided coffee ring effect

    NASA Astrophysics Data System (ADS)

    Mu, Jinhua; Lin, Peng; Xia, Qiangfei

    2014-06-01

    The authors studied the surface deposition of nanoparticles by introducing an alternating current (AC) signal into the millimeter-sized nanoparticle droplet. For both polystyrene (PS) in deionized (DI) water and titanium dioxide (TiO2) in toluene, the nanoparticles self-assembled into regular concentric rings over a larger area on the substrate during the droplet drying process. The patterned area decreased, and the inter-ring spacing increased with higher AC frequencies for the TiO2/toluene system, while those for the PS/DI water system only changed slightly. The frequency dependent pattern formation was interpreted by the interaction between different factors such as capillary flow and the AC signal introduced dielectrophoresis force.

  20. A novel thin-layer amperometric detector based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide and nitrite in rat brain combined with in vivo microdialysis.

    PubMed

    Mao, L; Shi, G; Tian, Y; Liu, H; Jin, L; Yamamoto, K; Tao, S; Jin, J

    1998-08-01

    A novel thin-layer amperometric detector (TLAD) based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide (NO) and nitrite (NO(2)(-)) in rat brain were demonstrated in this work. The ring-disc electrode was simultaneously sensitive to nitric oxide (NO) and nitrite (NO(2)(-)) by modifying its inner disc with electropolymerized film of cobalt(II) tetraaminophthalocyanine (polyCoTAPc)/Nafion and its outer ring with poly(vinylpyridine) (PVP), respectively. The ring-disc electrode was used to constitute a novel TLAD in radial flow cell for simultaneous measurements of NO and NO(2)(-) in rat brain combined with techniques of high performance liquid chromatography (HPLC) and in vivo microdialysis. It was found that the basal concentration of NO in the caudate nucleus of rat brain is lower than 1.0x10(-7) mol l(-1), NO(2)(-) concentration is 5.0x10(-7) mol l(-1) and NO exists in brain maybe mainly in the form of its decomposed product. PMID:18967286

  1. [Ring effect and correction studies while retrieving trace gas concentration with passive DOAS].

    PubMed

    Zhang, Ying-Hua; Xie, Pin-Hua; Si, Fu-Qi; Peng, Fu-Min; Dou, Ke; Li, Su-Wen

    2009-02-01

    The method of retrieving the concentration of trace gases using of the diagnostic absorption of trace gases based on the scattered sunlight is called passive DOAS. It has been developed so fast in recent years because it remains simple and is prone to being combined with different platform. While retrieving the column density of trace gases with the scattered sunlight as light source, it will be affected strongly by solar Fraunhofer lines, which is also called Ring effect. It makes it hard to retrieve trace gases concentration and affects measurement precision, especially for lower concentration. The influence of Ring effect and its relation with solar zenith angle in stable day will be introduced in the present paper, and the modification will be provided so that different Ring spectrum is selected according to different solar zenith angle. The slant column density (SCD) of NO2 for 3 stable days was retrieved with this modification. It was proved that the modification is possible. PMID:19445217

  2. Microfluidic devices with disposable enzyme electrode for electrochemical monitoring of glucose concentrations.

    PubMed

    Li, Xin; Zhang, Fan; Shi, Jian; Wang, Li; Tian, Jing-Hua; Zhou, Xiong-Tu; Jiang, Lian-Mei; Liu, Li; Zhao, Zhen-Jie; He, Pin-Gang; Chen, Yong

    2011-11-01

    This article describes the fabrication of tube-like microchannels made of UV curable polymer on a glass substrate and the device assembling with a disposable enzyme-working electrode for high-sensitivity electrochemical detection. While both reference and counter electrodes are patterned on the surface of the glass substrate, the working electrode is flipped on the top of the channel with an open access, providing a face-to-face probing configuration. When the enzyme electrode is contaminated or degraded, it can be easily replaced by a new one, keeping the main body of the device and the detection schema unchanged. Using glucose oxidase-coated gold electrodes, we were able to determine a linear amperometry response to the glucose concentrations in the range of 2-16  mM. By replacing the as-prepared working electrode by the one after thermal treatments, we showed a much more degraded enzyme electrode activity, enabling efficient determination of the electrode quality as well as the whole process optimization. PMID:22038673

  3. Rapid electrical immunoassay of the cardiac biomarker troponin I through dielectrophoretic concentration using imbedded electrodes.

    PubMed

    Sharma, Abhinav; Han, Chang-Ho; Jang, Jaesung

    2016-08-15

    Rapidity and high sensitivity are critical factors for the diagnoses of heart attacks, and cardiac troponin I (cTnI) is at present a clinical standard for its diagnosis. Here we report a rapid, label-free, and highly sensitive single-walled carbon nanotube (SWCNT) electrical immunosensor, featuring two pairs of electrodes. Two concentration electrodes (gaps: 25 and 80µm) and two detection electrodes (source and drain; gap: 20µm; width: 50µm) were used for dielectrophoretic concentration of cTnI on the SWCNT channels and resistance measurements of the dielectrophoresis (DEP)-concentrated cTnI, respectively. The two concentration electrodes were imbedded between upper and lower dielectric layers, facing each other, underneath the -COOH-functionalized SWCNT channels deposited between the detection electrodes. Therefore, the gap between these imbedded concentration electrodes can be reduced to maximize the electric field intensity for DEP-mediated concentration of cTnI, thereby greatly reducing the detection time (1min) and enhancing the limit of detection (0.7-0.8pgmL(-)(1)). Relative resistance changes of the SWCNTs were measured as cTnI concentration in Tris-Borate-EDTA (TBE; 0.0025×) and human serum diluted 500-fold with 0.0025× TBE decreased from 100ngmL(-)(1) to 1pgmL(-1), and they were shown to be linear with the logarithm of cTnI concentration (R(2)=0.99 and 0.97, respectively). These immunosensors also showed high specificity over another cardiac biomarker, myoglobin, TBE medium (0.0025×), and 500-fold diluted human serum. The DEP-capture of cTnI depended on the frequency of the applied electric field, demonstrating the qualitative nature of the real part of the Clausius-Mossotti factor for cTnI. PMID:27043478

  4. Measurements of air concentrations of thorium during grinding and welding operations using thoriated tungsten electrodes

    SciTech Connect

    Crim, E.M.; Bradley, T.D.

    1995-05-01

    An evaluation was performed to determine whether thorium was present in concentrations above the derived air concentration during grinding and welding operations using thoriated tungsten electrodes. A few of the advantages of using thoriated tungsten electrodes in industry include easier arc starting, greater stability, and reduced weld metal contamination. The electrodes used in this evaluation contained 2% thoria (thorium oxide) and were either 2.4 mm or 3.9 mm in diameter. Personal breathing zone and area air samples were collected for the experienced welders participating in this evaluation during grinding operations. The results during the grinding operations for personal and area air samples were generally below the derived air concentration (DAC) for {sup 232}Th for solubility class Y of 0.04 Bq m{sup -3} (1 x 10 {sup -12} {mu}Ci mL{sup -1}) as per 10 CFR 20. The area samples collected during welding operations were below the DAC.

  5. Structure and Electroanalytical Application of Nitrogen-doped Carbon Thin Film Electrode with Lower Nitrogen Concentration.

    PubMed

    Kamata, Tomoyuki; Kato, Dai; Umemura, Shigeru; Niwa, Osamu

    2015-01-01

    We studied a nitrogen-doped nanocarbon film electrode with a nitrogen concentration of lower than 10.9 at% formed by the unbalanced magnetron (UBM) sputtering method. The sp(3) content in the nitrogen-doped UBM sputtering nanocarbon film (N-UBM film) slightly increases with increasing nitrogen concentration. The nitrogen-containing graphite-like bonding decreases and pyridine-like bonding increases with increasing nitrogen concentration. The N-UBM film has a very smooth surface with an average roughness of 0.1 to 0.3 nm, which is almost independent of nitrogen concentration. The N-UBM film electrode shows a wider potential window (4.1 V) than a pure-UBM film electrode (3.9 V) due to its slight increase in the sp(3) content. The electrocatalytic activity increased with increasing nitrogen concentration, suggesting that the electroactivity is maximum when the nitrogen concentration is around 10.9 at%, which is confirmed by the peak separation of Fe(CN)6(4-). The hydrogen peroxide (H2O2) reduction potentials at the N-UBM film electrode shifted about 0.1 V, and the peak current of H2O2 increased about 4 times. PMID:26165287

  6. In situ control of local pH using a boron doped diamond ring disk electrode: optimizing heavy metal (mercury) detection.

    PubMed

    Read, Tania L; Bitziou, Eleni; Joseph, Maxim B; Macpherson, Julie V

    2014-01-01

    A novel electrochemical approach to modifying aqueous solution pH in the vicinity of a detector electrode in order to optimize the electrochemical measurement signal is described. A ring disk electrode was employed where electrochemical decomposition of water on the ring was used to generate a flux of protons which adjusts the local pH controllably and quantifiably at the disk. Boron doped diamond (BDD) functioned as the electrode material given the stability of this electrode surface especially when applying high potentials (to electrolyze water) for significant periods of time. A pH sensitive iridium oxide electrode electrodeposited on the disk electrode demonstrated that applied positive currents on the BDD ring, up to +50 μA, resulted in a local pH decrease of over 4 orders of magnitude, which remained stable over the measurement time of 600 s. pH generation experiments were found to be in close agreement with finite element simulations. The dual electrode arrangement was used to significantly improve the stripping peak signature for Hg in close to neutral conditions by the generation of pH = 2.0, locally. With the ability to create a localized pH change electrochemically in the vicinity of the detector electrode, this system could provide a simple method for optimized analysis at the source, e.g., river and sea waters. PMID:24321045

  7. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the

  8. A novel ring electrode setup for the recording of somatosensory evoked potentials during transcranial direct current stimulation (tDCS).

    PubMed

    Sehm, Bernhard; Hoff, Maike; Gundlach, Christopher; Taubert, Marco; Conde, Virginia; Villringer, Arno; Ragert, Patrick

    2013-01-30

    Transcranial direct current stimulation (tDCS) modulates cortical excitability thereby influencing behavior and learning. While previous studies focused on tDCS after-effects, limited information about "online" tDCS effects is available. This in turn is an important prerequisite to better characterize and/or optimize tDCS effects. Here, we aimed to explore the feasibility of recording low-artifact somatosensory evoked potentials (SEPs) during tDCS using a novel ring electrode setup. We recorded SEP before, during and after 10 min of anodal or sham tDCS using a full-band direct current (DC) EEG system in a total number of 3 subjects. SEPs were recorded in the bore of the tDCS ring electrode. Using this approach, no tDCS-induced artifacts could be observed after the application of a standard EEG filter. This new setup might help to better characterize how tDCS alters evoked brain responses thus providing novel insight into underlying physiological effects during stimulation. PMID:23103376

  9. Rings

    SciTech Connect

    Davis, R.L.

    1989-01-01

    The essence of vortex physics is that at certain low-energy scales elementary excitations of a point particle theory can behave like strings rather than particles. Vortices are the resulting string-like solutions; their thickness sets the distance scale beyond which physics is string-like rather than particle-like. String degrees of freedom are massless in the sense that excitations on a string can have an arbitrarily low frequency. Non-string degrees of freedom correspond to massive particles and are absent from the low energy spectrum. This article considers only field theories with vortices at low energies. The possible existence of a class of solitons in these vortex theories will be discussed. They are vortex rings: they are localized and finite in energy, and able to carry the quantum numbers of point particles. Rings are thus particle-like solutions of a vortex theory, which is itself a limit of a point particle field theory.

  10. Spatiotemporal correlation between microdischarges in concentric ring pattern in dielectric barrier discharge at atmospheric pressure

    SciTech Connect

    Dong Lifang; Liu Liang; Wang Yongjie; Yue Han; Li Xinchun

    2012-06-15

    The spatiotemporal correlation between microdischarges of the concentric ring pattern in a dielectric barrier discharge in argon at atmospheric pressure is studied by the wavelet-correlation technique for the first time. The concentric ring patterns lasting more than 5 min have been obtained under circular boundaries with different sizes by suddenly raising the applied voltage. The average correlation coefficient between microdischarge clusters increases with their discharge region increasing. The wavelet-correlation shows a higher correlation degree between the microdischarge clusters at the edge where (d|U{sub appl}|/dt)<0 than at the edge where (d|U{sub appl}|/dt)>0 in per half-cycle of the applied voltage U{sub appl}.

  11. Impedances of electrochemically impregnated nickel electrodes as functions of potential, KOH concentration, and impregnation method

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1989-01-01

    Impedances of fifteen electrodes form each of the four U.S. manufactures were measured at 0.200 V vs. the Hg/HgO reference electrode. This corresponds to a voltage of 1.145 for a Ni/H2 cell. Measurements were also made of a representative sample of these at 0.44 V. At the higher voltage, the impedances were small and very similar, but at the lower voltage there were major differences between manufacturers. Electrodes from the same manufacturers showed only small differences. The impedances of electrodes from two manufacturers were considerably different in 26 percent KOH from those in 31 percent KOH. These preliminary results seen to correlate with the limited data from earlier life testing of cells from these manufacturers. The impedances of cells being tested for Space Station Freedom are being followed, and more impendance measurements of electrodes are being performed as functions of manufacturer, voltage, electrolyte concentration, and cycle history in hopes of finding better correlations of impedance with life.

  12. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations.

    PubMed

    Domingos, Rute F; Carreira, Sara; Galceran, Josep; Salaün, Pascal; Pinheiro, José P

    2016-05-12

    The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu(2+)) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration. PMID:27114220

  13. A ring-like concentration of mm-sized particles in Sz 91

    NASA Astrophysics Data System (ADS)

    Canovas, H.; Caceres, C.; Schreiber, M. R.; Hardy, A.; Cieza, L.; Ménard, F.; Hales, A.

    2016-05-01

    Models of planet formation and disc evolution predict a variety of observables in the dust structure of protoplanetary discs. Here, we present Atacama Large Millimeter/submillimeter Array (ALMA) Band-6 and Band-7 observations of the transition disc Sz 91 showing that the continuum emission at 870 μm, which is dominated by emission from large dust grains, is localized in an optically thin narrow ring. We find that most of the emission (˜95 per cent) is concentrated in a ring located at 110 au from the central star that is only about 44 au wide. In contrast, the 12CO (2-1) emission peaks closer to the star and is detected up to ˜488 au from the star. The concentration of large grains in a ring-like structure while the gas disc extends much further in and further out is in qualitative agreement with predictions of hydrodynamical models of planet-disc interactions including radial drift and gas drag.

  14. Increase of radiocarbon concentration in tree rings from Kujawy (SE Poland) around AD 774-775

    NASA Astrophysics Data System (ADS)

    Rakowski, Andrzej Z.; Krąpiec, Marek; Huels, Mathias; Pawlyta, Jacek; Dreves, Alexander; Meadows, John

    2015-10-01

    Evidence of a rapid increase in atmospheric radiocarbon (14C) content in AD 774-775 was presented by Miyake et al. (2012), who observed an increase of about 12‰ in the 14C content in annual tree rings from Japanese cedar. Usoskin et al. (2013) report a similar 14C spike in German oak, and attribute it to exceptional solar activity. If this phenomenon is global in character, such rapid changes in 14C concentration may affect the accuracy of calibrated dates, as the existing calibration curve is composed mainly of decadal samples. Single-year samples of dendro-chronologically dated tree rings of deciduous oak (Quercus robur) from Kujawy, a village near Krakow (SE Poland), spanning the years AD 765-796, were collected and their 14C content was measured using the AMS system in the Leibniz Laboratory. The results clearly show a rapid increase of 9.2 ± 2.1‰ in the 14C concentration in tree rings between AD 774 and AD 775, with maximum Δ14C = 4.1 ± 2.3‰ noted in AD 776.

  15. Concentration and density changes at an electrode surface and the principle of unchanging total concentration

    DOE PAGESBeta

    Stephen W. Feldberg; Lewis, Ernie R.

    2016-02-17

    In this study, the principle of unchanging total concentration as described by Oldham and Feldberg [J. Phys. Chem. B, 103, 1699 (1999)] is invoked to analyze systems comprising a redox pair (Xz11 and Xz22) plus one or more non-electroactive species (Xz33,Xz44...Xzjmaxjmax) where Xzjj is the jth species with charge zj and concentration; cj. The principle states that if the diffusion coefficients for all species are identical and mass transport is governed by the Nernst-Planck expression, the total concentration does not change during any electrochemical perturbation, i.e.: Σjmaxj=1[Xzjj]=Σjmaxj=1 cj = SP With this principle we deduce the electrochemically induced difference betweenmore » the surface and bulk concentrations for each species. Those concentration differences are translated into density differences which are a function of the density of the solvent and of the concentration differences, molecular masses and the standard partial molar volumes of all species. Those density differences in turn can induce convection that will ultimately modify the observed current. However, we did not attempt to quantify details of the natural convection and current modification produced by those density differences.« less

  16. Quantitating Changes in Jitter and Spike Number Using Concentric Needle Electrodes in Amyotrophic Lateral Sclerosis Patients

    PubMed Central

    Liu, Ming-Sheng; Niu, Jing-Wen; Li, Yi; Guan, Yu-Zhou; Cui, Li-Ying

    2016-01-01

    Background: Single-fiber electromyography (SFEMG) has been suggested as a quantitative method for supporting chronic partial denervation in amyotrophic lateral sclerosis (ALS) by the revised EI Escorial criteria. Although concentric needle (CN) electrodes have been used to assess jitter in myasthenia gravis patients and healthy controls, there are few reports using CN electrodes to assess motor unit instability and denervation in neurogenic diseases. The aim of this study was to determine whether quantitative changes in jitter and spike number using CN electrodes could be used for ALS studies. Methods: Twenty-seven healthy controls and 23 ALS patients were studied using both CN and single-fiber needle (SFN) electrodes on the extensor digitorum communis muscle with an SFEMG program. The SFN-jitter and SFN-fiber density data were measured using SFN electrodes. The CN-jitter and spike number were measured using CN electrodes. Results: The mean CN-jitter was significantly increased in ALS patients (47.3 ± 17.0 μs) than in healthy controls (27.4 ± 3.3 μs) (P < 0.001). Besides, the mean spike number was significantly increased in ALS patients (2.5 ± 0.5) than in healthy controls (1.7 ± 0.3) (P < 0.001). The sensitivity and specificity in the diagnosis of ALS were 82.6% and 92.6% for CN-jitter (cut-off value: 32 μs), and 91.3% and 96.3% for the spike number (cut-off value: 2.0), respectively. There was no significant difference between the SFN-jitter and CN-jitter in ALS patients; meanwhile, there was no significant difference between the SFN-jitter and CN-jitter in healthy controls. Conclusion: CN-jitter and spike number could be used to quantitatively evaluate changes due to denervation-reinnervation in ALS. PMID:27098787

  17. Narrow and deep fano resonances in a rod and concentric square ring-disk nanostructures.

    PubMed

    Huo, Yanyan; Jia, Tianqing; Zhang, Yi; Zhao, Hua; Zhang, Shian; Feng, Donghai; Sun, Zhenrong

    2013-01-01

    Localized surface plasmon resonances (LSPRs) in metallic nanostructures have been studied intensely in the last decade. Fano interference is an important way to decrease the resonance linewidth and enhance the spectral detection resolution, but realizing a Fano lineshape with both a narrow linewidth and high spectral contrast-ratio is still challenging. Here we propose a metallic nanostructure consisting of a concentric square ring-disk (CSRD) nanostructure and an outside nanorod. Fano linewidth and spectral contrast ratio can be actively manipulated by adjusting the gap between the nanorod and CSRD, and by adjusting the gap between the ring and disk in CSRD. When the gap size in CSRD is reduced to 5 nm, the quadrupolar Fano linewidth is of 0.025 eV, with a contrast ratio of 80%, and the figure of merit reaches 15. PMID:24064596

  18. Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump

    PubMed Central

    Suss, Matthew E.; Mani, Ali; Zangle, Thomas A.; Santiago, Juan G.

    2010-01-01

    Current methods of optimizing electroosmotic (EO) pump performance include reducing pore diameter and reducing ionic strength of the pumped electrolyte. However, these approaches each increase the fraction of total ionic current carried by diffuse electric double layer (EDL) counterions. When this fraction becomes significant, concentration polarization (CP) effects become important, and traditional EO pump models are no longer valid. We here report on the first simultaneous concentration field measurements, pH visualizations, flow rate, and voltage measurements on such systems. Together, these measurements elucidate key parameters affecting EO pump performance in the CP dominated regime. Concentration field visualizations show propagating CP enrichment and depletion fronts sourced by our pump substrate and traveling at order mm/min velocities through millimeter-scale channels connected serially to our pump. The observed propagation in millimeter-scale channels is not explained by current propagating CP models. Additionally, visualizations show that CP fronts are sourced by and propagate from the electrodes of our system, and then interact with the EO pump-generated CP zones. With pH visualizations, we directly detect that electrolyte properties vary sharply across the anode enrichment front interface. Our observations lead us to hypothesize possible mechanisms for the propagation of both pump- and electrode-sourced CP zones. Lastly, our experiments show the dynamics associated with the interaction of electrode and membrane CP fronts, and we describe the effect of these phenomena on EO pump flow rates and applied voltages under galvanostatic conditions. PMID:21516230

  19. The Impact of Non-Passive Monitor Behavior on Developing Tree Ring Elemental Concentration Based Chronologies of Environmental Change

    NASA Astrophysics Data System (ADS)

    Bukata, A. R.; Kyser, K.

    2008-12-01

    Most temperate tree species contain visibly distinct annual growth rings. These individual rings contain distinct isotopic and elemental compositions from pith to bark. As these individual rings can be dated to specific growth years, it is tempting to interpret these variations as directly reflecting temporal changes in the geochemical environment. However, tree physiology, in addition to changes in elemental bioavailability can effect the elemental composition of the growth ring. The viability of variations in tree ring elemental concentration as a proxy for changing environmental conditions is dependent on whether they are passive monitors of element bioavailability or their active incorporation can be characterized and properly considered during interpretation. We measured elemental concentrations in tree rings from red and white oak trees at sites across Southern Ontario, Canada, to determine whether they passively record changes in geochemical cycling in the presence of environmental stress. Periods of stress were defined as sustained intervals with elevated δ13C values in tree rings relative to contemporaneous atmospheric carbon dioxide. In some trees, nutrient concentrations (Ca, Mg, Mn) were highly variable during periods of stress while chemically similar non-nutrients (Ba, Sr) and the anthropogenic pollutant Pb were not. The concentration of Ca and Sr in the tree rings were related to bedrock type and leachable concentration in the soil, while Mn, Ba and Pb were not, but were inversely related to soil pH. The erratic behavior of nutrients during periods of stress suggests that although they are not always passive monitors of bioavailability, their variation may have environmental significance. The application of analytical techniques such as laser ablation ICP-MS to micro- sample across individual rings and around the bole will likely lead to the application of dendrochemistry to study environmental questions of a spatial or sub-annual nature. Although

  20. Circular electrode geometry metal-semiconductor-metal photodetectors

    NASA Technical Reports Server (NTRS)

    Mcaddo, James A. (Inventor); Towe, Elias (Inventor); Bishop, William L. (Inventor); Wang, Liang-Guo (Inventor)

    1994-01-01

    The invention comprises a high speed, metal-semiconductor-metal photodetector which comprises a pair of generally circular, electrically conductive electrodes formed on an optically active semiconductor layer. Various embodiments of the invention include a spiral, intercoiled electrode geometry and an electrode geometry comprised of substantially circular, concentric electrodes which are interposed. These electrode geometries result in photodetectors with lower capacitances, dark currents and lower inductance which reduces the ringing seen in the optical pulse response.

  1. Circular electrode geometry metal-semiconductor-metal photodetectors

    NASA Technical Reports Server (NTRS)

    Mcadoo, James A. (Inventor); Towe, Elias (Inventor); Bishop, William L. (Inventor); Wang, Liang-Guo (Inventor)

    1995-01-01

    The invention comprises a high speed, metal-semiconductor-metal photodetector which comprises a pair of generally circular, electrically conductive electrodes formed on an optically active semiconductor layer. Various embodiments of the invention include a spiral, intercoiled electrode geometry and an electrode geometry comprised of substantially circular, concentric electrodes which are interposed. These electrode geometries result in photodetectors with lower capacitances, dark currents and lower inductance which reduces the ringing seen in the optical pulse response.

  2. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  3. Deposition of amorphous silicon using a tubular reactor with concentric-electrode confinement

    NASA Astrophysics Data System (ADS)

    Conde, J. P.; Chan, K. K.; Blum, J. M.; Arienzo, M.; Cuomo, J. J.

    1992-04-01

    High-quality, hydrogenated amorphous silicon (a-Si:H) is deposited at room temperature by rf glow discharge at a high deposition rate using a tubular reactor with cylindrical symmetry (concentric-electrode plasma-enhanced chemical vapor deposition, CE-PECVD). Using the novel CE-PECVD design, room-temperature deposition of a-Si:H with growth rates up to 14 Å s-1, low hydrogen concentration (≲10%), and the bonded hydrogen in the Si-H monohydride configuration, is achieved for the first time using an rf glow-discharge technique. The influence of the deposition parameters (silane flow rate, pressure, and power density) on the growth rate, optical band gap, and silicon-hydrogen bonding configuration, is quantitatively predicted using a deposition mechanism based on the additive contribution of three growth precursors, SiH2, SiH3, and Si2H6, with decreasing sticking coefficients of 0.7, 0.1, and 0.001, respectively. The low hydrogen concentration is due to the enhanced ion bombardment resulting from the concentric electrode design.

  4. Harvesting Energy from Salinity Differences Using Battery Electrodes in a Concentration Flow Cell.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-09-01

    Salinity-gradient energy (SGE) technologies produce carbon-neutral and renewable electricity from salinity differences between seawater and freshwater. Capacitive mixing (CapMix) is a promising class of SGE technologies that captures energy using capacitive or battery electrodes, but CapMix devices have produced relatively low power densities and often require expensive materials. Here, we combined existing CapMix approaches to develop a concentration flow cell that can overcome these limitations. In this system, two identical battery (i.e., faradaic) electrodes composed of copper hexacyanoferrate (CuHCF) were simultaneously exposed to either high (0.513 M) or low (0.017 M) concentration NaCl solutions in channels separated by a filtration membrane. The average power density produced was 411 ± 14 mW m(-2) (normalized to membrane area), which was twice as high as previously reported values for CapMix devices. Power production was continuous (i.e., it did not require a charging period and did not vary during each step of a cycle) and was stable for 20 cycles of switching the solutions in each channel. The concentration flow cell only used inexpensive materials and did not require ion-selective membranes or precious metals. The results demonstrate that the concentration flow cell is a promising approach for efficiently harvesting energy from salinity differences. PMID:27518198

  5. UWB Band-notched Adjustable Antenna Using Concentric Split-ring Slots Structure

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hong, J. S.

    2014-09-01

    In this paper, a kind of concentric split-ring slots structure is utilized to design a novel triple-band-notched UWB antenna. Firstly, a concentric split-ring slots structure that has a higher VSWR than that of a single slot at notch frequency is presented. What's more, the structure is very simple and feasible to obtain notched-band at different frequency by adjustment of the length of slot. Secondly, a triple-band-notched antenna, whose notched bands are at 3.52-3.81 GHz for WiMAX and 5.03-5.42 GHz and 5.73-56.17 GHz for WLAN, is designed by using this structure. At last, a compact size of 24 × 30 mm2 of the proposed antenna has been fabricated and measured and it is shown that the proposed antenna has a broadband matched impedance (3.05-14 GHz, VSWR < 2), relatively stable gain and good omnidirectional radiation patterns at low bands.

  6. Concentric Coplanar Capacitive Sensor System with Quantitative Model

    NASA Technical Reports Server (NTRS)

    Bowler, Nicola (Inventor); Chen, Tianming (Inventor)

    2014-01-01

    A concentric coplanar capacitive sensor includes a charged central disc forming a first electrode, an outer annular ring coplanar with and outer to the charged central disc, the outer annular ring forming a second electrode, and a gap between the charged central disc and the outer annular ring. The first electrode and the second electrode may be attached to an insulative film. A method provides for determining transcapacitance between the first electrode and the second electrode and using the transcapacitance in a model that accounts for a dielectric test piece to determine inversely the properties of the dielectric test piece.

  7. Element concentrations in growth rings of trees near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Yanosky, T.M.; Carmichael, J.K.

    1993-01-01

    Multielement analysis was performed on individual annual rings of trees growing at and near an abandoned wood-preserving plant site in Jackson, Tennessee, that operated from the early 1930's until 1981. Numerous organic compounds associated with the wood-preserving process have been detected in soils, ground water, and surface water within much of the site. Tree-ring investigations were conducted prior to investigations of ground water downgradient from the site to determine if trees preserved an areal and temporal record of contaminant movement into offsite areas. Increment cores were collected from trees on the abandoned plant site, in downgradient areas west and south of the site, and at two locations presumably unaffected by contamination from the site. Multielement analysis by proton-induced X-ray emission was performed on 5 to 15 individual growth rings from each of 34 trees that ranged in age from about 5 to 50 years. Concentrations of 16 elements were evaluated by analyzing average concentrations within the 1987, 1989, and 1990 rings of all trees; analyzing element-concentration trends along entire core radii; and analyzing element correlations between and among trees. Concentrations of some nutrients and trace metals were elevated in the outermost sapwood rings of some trees that grow south and southwest of the most contaminated part of the site; small trees on the main part of the site and larger trees to the west generally contained fewer rings with elevated concentrations, particularly of trace metals. Concentrations of several elements elevated in tree rings also were elevated in water samples collected from the reach of a stream that flows near the southwestern part of the site. Multielement analysis of each ring of a willow growing along the southern boundary of the site detected extremely large concentrations of chromium, nickel, and iron in rings that formed in 1986 and thereafter. Relative increases in the concentrations of these elements also

  8. Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature

    PubMed Central

    Zhou, Wei; Liang, Fengli; Shao, Zongping; Chen, Jiuling; Zhu, Zhonghua

    2011-01-01

    Heterostructures of oxides have been widely investigated in optical, catalytic and electrochemical applications, because the heterostructured interfaces exhibit pronouncedly different transport, charge, and reactivity characteristics compared to the bulk of the oxides. Here we fabricated a three-dimensional (3D) heterostructured electrode with a concentration gradient shell. The concentration gradient shell with the composition of Ba0.5-xSr0.5-yCo0.8Fe0.2O3-δ (BSCF-D) was prepared by simply treating porous Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) backbone with microwave-plasma. Electrochemical impedance spectroscopy reveals that the oxygen surface exchange rate of the BSCF-D is enhanced by ~250% that of the pristine BSCF due to the appearance of the shell. The heterostructured electrode shows an interfacial resistance as low as 0.148 Ω cm2 at 550°C and an unchanged electrochemical performance after heating treatment for 200 h. This method offers potential to prepare heterostructured oxides not only for electrochemical devices but also for many other applications that use ceramic materials. PMID:22355670

  9. Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure

    SciTech Connect

    Huo, Y. Y.; Jia, T. Q. Zhao, H.; Zhang, S. A.; Feng, D. H.; Sun, Z. R.; Zhang, Y.

    2014-03-17

    This paper reports a spaser based on Fano resonance of a plasmonic nanostructure consisting of a rod and concentric square ring-disk structure coated with a layer of gain media. The amplification of the dark quadrupolar mode at the Fano resonance wavelength causes the spaser with a high Purcell factor of 3.24 × 10{sup 7}, a high signal to noise ratio of 4.4 × 10{sup 6}, and a lower threshold of 0.02086. These significant optical properties are attributed to the greatly enhanced spontaneous emission and depressed radiation loss supported by the strong localized dark mode at the Fano resonance wavelength.

  10. Concentric ring and Jerusalem cross arrays as frequency selective surfaces for a 45 deg incidence diplexer

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Parker, E. A.

    1982-04-01

    It is pointed out that, with respect to ease of manufacture, plane reflectors have a distinct advantage over curved reflectors. Since theoretical modelling is also usually easier for plane frequency selective surfaces, it is of interest to study dual-band feeds incorporating them. In the present investigation a comparison is conducted of the linear crosspolar performances of two single layer plane arrays of elements, including standard Jerusalem crosses (without the inductive grid) and concentric rings. The results for the two arrays are presented in graphs for the frequency ranges where the copolar loss was 0.5 dB or less. A dependence by up to 5 dB of crosspolar levels on plane of incidence for gridded Jerusalem crosses was noted for reflection only by Arnaud and Pelow (1975) for incident at 20 deg. The results of the present investigation show that this effect can also be significant for Jerusalem crosses in transmission.

  11. A search for concentric rings with unusual variance in the 7-year WMAP temperature maps using a fast convolution approach

    NASA Astrophysics Data System (ADS)

    Bielewicz, P.; Wandelt, B. D.; Banday, A. J.

    2013-02-01

    We present a method for the computation of the variance of cosmic microwave background (CMB) temperature maps on azimuthally symmetric patches using a fast convolution approach. As an example of the application of the method, we show results for the search for concentric rings with unusual variance in the 7-year Wilkinson Microwave Anisotropy Probe (WMAP) data. We re-analyse claims concerning the unusual variance profile of rings centred at two locations on the sky that have recently drawn special attention in the context of the conformal cyclic cosmology scenario proposed by Penrose. We extend this analysis to rings with larger radii and centred on other points of the sky. Using the fast convolution technique enables us to perform this search with higher resolution and a wider range of radii than in previous studies. We show that for one of the two special points rings with radii larger than 10° have systematically lower variance in comparison to the concordance Λ cold dark matter model predictions. However, we show that this deviation is caused by the multipoles up to order ℓ = 7. Therefore, the deficit of power for concentric rings with larger radii is yet another manifestation of the well-known anomalous CMB distribution on large angular scales. Furthermore, low-variance rings can be easily found centred on other points in the sky. In addition, we show also the results of a search for extremely high-variance rings. As for the low-variance rings, some anomalies seem to be related to the anomalous distribution of the low-order multipoles of the WMAP CMB maps. As such our results are not consistent with the conformal cyclic cosmology scenario.

  12. Increasing Glucose Concentrations Interfere with Estimation of Electrolytes by Indirect Ion Selective Electrode Method.

    PubMed

    Goyal, Bela; Datta, Sudip Kumar; Mir, Altaf A; Ikkurthi, Saidaiah; Prasad, Rajendra; Pal, Arnab

    2016-04-01

    The estimation of electrolytes like sodium (Na(+)), potassium (K(+)) and chloride (Cl(-)) using direct and indirect ion-selective electrodes (ISE) is a routine laboratory practice. Interferents like proteins, triglycerides, drugs etc. are known to affect the results. The present study was designed to look into the effect of increasing glucose concentrations on estimation of Na(+), K(+) and Cl(-) by direct and indirect ISE. Pooled sera was mixed with glucose stock solution (20 g/dL) prepared in normal saline to obtain glucose concentrations ranging from ~100 to ~5000 mg/dL. Na(+), K(+) and Cl(-) levels were estimated by direct and indirect ISE analyzers and results were statistically analysed using ANOVA and Pearson's correlation. Similar experiment was also performed in 24 h urine sample from healthy subjects. Significant difference was observed between Na(+) and Cl(-) measurements by direct and indirect ISE, with indirect ISE values being consistently higher than direct ISE. Besides this, significant difference was observed amongst Na(+) and Cl(-) values from baseline values obtained by indirect ISE at glucose concentrations ≥2486 mg/dL. However, no such difference was observed with direct ISE. Na(+) and Cl(-) estimation by indirect ISE showed significant negative correlation with glucose concentration, more so, above ~2000 mg/dL. K(+), however, showed no significant difference with varying glucose. Similar results were observed in 24 h urine samples with a significant difference observed amongst Na(+) and Cl(-) values at ≥2104 mg/dL glucose. Thus we conclude that high glucose concentrations interfere significantly in estimation of Na(+) and Cl(-) by indirect ISE in serum as well as urine. PMID:27069331

  13. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Farma, R.; Deraman, M.; Talib, I. A.; Awitdrus, Omar, R.; Ishak, M. M.; Taer, E.; Basri, N. H.; Dolah, B. N. M.

    2015-04-01

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N2 environment at 800°C to produce carbon monoliths (CM) and the CM was CO2 activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H2SO4 electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.

  14. Ethylene evolution, radial growth and carbohydrate concentrations in Abies balsamea shoots ringed with Ethrel.

    PubMed

    Eklund, Leif; Little, C. H. Anthony

    1998-06-01

    The terminal (1-year-old) shoot of quiescent, 2-year-old Abies balsamea (L.) Mill. seedlings was either left untreated or ringed with 0, 1 or 10 mg Ethrel g(-1) lanolin. After 5 weeks of culture under environmental conditions favorable for growth, the shoots were harvested to measure ethylene evolution and carbohydrate concentrations by gas chromatography, and tracheid number and bark radial width by microscopy. In untreated shoots, the basal rate of ethylene evolution followed the order: cambial region > cortex + periderm = xylem + pith = needles. Wound-induced ethylene production was not detected until at least 4 h after excision, but was evident in all fractions 24 h after excision; the increase in wound-induced ethylene evolution followed the order: cambial region > cortex + periderm > xylem + pith > needles. Compared with untreated controls, the application of plain lanolin, which involved the removal of needles and periderm, increased bark radial width and wound-induced ethylene production by the cambial region and the cortex + periderm, but decreased cambial region concentrations of fructose, glucose and starch at the application point. At the application point, Ethrel concomitantly increased ethylene evolution from the cambial region and the cortex + periderm, tracheid number, bark radial width, and the cambial region concentrations of fructose, glucose, sucrose and starch. No effects of Ethrel treatment were detected above or below the application point, with the exception that the 10 mg g(-1) Ethrel treatment stimulated ethylene evolution and decreased starch concentration of the cambial region. The results indicate that: (1) the cambial region is the major source of endogenous ethylene in the 1-year-old shoot; (2) the magnitude of the difference in ethylene evolution between particular shoot fractions is different before and after the start of wound-induced ethylene production; (3) the Ethrel-induced increase in tracheid number and bark radial width at

  15. Anodic concentration loss and impedance characteristics in rotating disk electrode microbial fuel cells.

    PubMed

    Shen, Liye; Ma, Jingxing; Song, Pengfei; Lu, Zhihao; Yin, Yao; Liu, Yongdi; Cai, Lankun; Zhang, Lehua

    2016-10-01

    A rotating disk electrode (RDE) was used to investigate the concentration loss and impedance characteristics of anodic biofilms in microbial fuel cells (MFCs). Amperometric time-current analysis revealed that at the rotation rate of 480 rpm, a maximum current density of 168 µA cm(-2) can be achieved, which was 22.2 % higher than when there was no rotation. Linear sweep voltammetry and electrochemical impedance spectroscopy tests showed that when the anodic potential was set to -300 mV vs. Ag/AgCl reference, the power densities could increase by 59.0  %, reaching 1385 mW m(-2), the anodic resistance could reduce by 19  %, and the anodic capacitance could increase by 36 %. These results concur with a more than 85 % decrease of the diffusion layer thickness. Data indicated that concentration loss, diffusion layer thickness, and the mixing velocity play important roles in anodic resistance reduction and power output of MFCs. These findings could be helpful to the design of future industrial-scale MFCs with mixed bacteria biofilms. PMID:27282165

  16. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.

    PubMed

    Suss, Matthew E; Biesheuvel, P M; Baumann, Theodore F; Stadermann, Michael; Santiago, Juan G

    2014-01-01

    Capacitive deionization (CDI) is an emerging water desalination technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and temporally resolved salt concentration between the CDI electrodes. Our technique measures the local fluorescence intensity of a neutrally charged fluorescent probe which is collisionally quenched by chloride ions. To our knowledge, our system is the first to measure in situ and spatially resolved chloride concentration in a laboratory CDI cell. We here demonstrate good agreement between our dynamic measurements of salt concentration in a charging, millimeter-scale CDI system to the results of a modified Donnan porous electrode transport model. Further, we utilize our dynamic measurements to demonstrate that salt removal between our charging CDI electrodes occurs on a longer time scale than the capacitive charging time scales of our CDI cell. Compared to typical measurements of CDI system performance (namely, measurements of outflow ionic conductivity), our technique can enable more advanced and better-controlled studies of ion transport in CDI systems, which can potentially catalyze future performance improvements. PMID:24433022

  17. Concentric ring phosphor geometry on the luminous efficiency of white-light-emitting diodes with excellent color rendering property.

    PubMed

    Ying, Shang-Ping; Shen, Jian-Yu

    2016-05-01

    This study presents a novel remote phosphor design involving a concentric ring remote phosphor layer in which green and red phosphors are separated. The green and red phosphor rings were separately illuminated by blue light emitted from the light-emitting diode (LED), causing low reabsorption in phosphor-converted LEDs (pcLEDs) using green and red phosphors. The experimental results revealed that the pcLEDs with green and red phosphors showed high color rendering, indicating that the LEDs are suitable for certain medical applications and architectural lighting. Moreover, for given green/red phosphor ratio and weights of the green and red phosphors, the output power and luminous flux of the pcLED with a concentric ring remote phosphor layer were greater than those of the pcLED with a mixed remote phosphor layer. The reduction in the reabsorption of green emission by red phosphor in pcLED with a concentric ring remote phosphor layer was responsible for the high luminous flux and indicated a high correlated color temperature of pcLED. PMID:27128056

  18. Influence of the solid electrolyte interphase on the performance of redox shuttle additives in Li-ion batteries - A rotating ring-disc electrode study

    NASA Astrophysics Data System (ADS)

    Kaymaksiz, Serife; Wachtler, Mario; Wohlfahrt-Mehrens, Margret

    2015-01-01

    Redox shuttle electrolyte additives (RSAs) can be applied for reversible overcharge protection of batteries. Their successful operation involves their oxidation at the cathode and reduction at the anode. The most common anodes in lithium-ion batteries are graphite or amorphous carbon, which are normally covered with a solid electrolyte interphase (SEI). The reduction of RSAs at these anodes is in apparent contradiction with the common understanding of the SEI, which is thought to be electronically insulating. In this communication the reduction behaviour of ferrocene and 2,5-di-tert-butyl-1,4-dimethoxybenzene is studied at un-filmed and SEI-filmed electrodes. It is found that it depends strongly on the type of RSA and/or composition of the SEI. The rotating ring-disc electrode (RRDE) is introduced as a powerful diagnostic tool to study the reaction mechanism of RSAs in general and the influence of the SEI in particular.

  19. Selective electrochemical discrimination between dopamine and phenethylamine-derived psychotropic drugs using electrodes modified with an acyclic receptor containing two terminal 3-alkoxy-5-nitroindazole rings.

    PubMed

    Doménech, Antonio; Navarro, Pilar; Arán, Vicente J; Muro, Beatriz; Montoya, Noemí; García-España, Enrique

    2010-06-01

    Electrochemical discrimination between dopamine and psychotropic drugs which have in common a skeletal structure of phenethylamine, can be obtained using acyclic receptors L(1) and L(2), containing two terminal 3-alkoxy-5-nitroindazole rings. Upon attachment to graphite electrodes, L(1) and L(2) exhibit a well-defined, essentially reversible solid state electrochemistry in contact with aqueous media, based on electrolyte-assisted reduction processes involving successive cation and anion insertion/binding. As a result, a distinctive, essentially Nernstian electrochemical response is obtained for phenethylammonium ions of methamphetamine (METH), p-methoxyamphetamine (PMA), amphetamine (AMPH), mescaline (MES), homoveratrylamine (HOM), phenethylamine (PEA) and dopamine (DA) in aqueous media. PMID:20407681

  20. ANODIC STRIPPING VOLTAMMETRY AT A MERCURY FILM ELECTRODE: BASELINE CONCENTRATIONS OF CADMIUM, LEAD, AND COPPER IN SELECTED NATURAL WATERS

    EPA Science Inventory

    A simple, rapid, and inexpensive anodic stripping voltammetric method with a mercury thin film electrode is reported for the establishment of baseline concentrations of cadmium, lead, and copper in natural waters. The procedure for routine surface preparation of wax-impregnated g...

  1. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional Superresolution imaging.

    PubMed

    Lyu, Zhixin; Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2016-10-01

    FtsZ is an essential bacterial cytoskeletal protein that assembles into a ring-like structure (Z-ring) at midcell to carry out cytokinesis. In vitro, FtsZ exhibits polymorphism in polymerizing into different forms of filaments based on its GTPase activity, concentration, and buffer condition. In vivo, the Z-ring appeared to be punctate and heterogeneously organized, although continuous, homogenous Z-ring structures have also been observed. Understanding how the Z-ring is organized in vivo is important because it provides a structural basis for the functional role of the Z-ring in cytokinesis. Here, we assess the effects of both GTPase activity and FtsZ concentration on the organization of the Z-ring in vivo using three-dimensional (3D) superresolution microscopy. We found that the Z-ring became more homogenous when assembled in the presence of a GTPase-deficient mutant, and upon overexpression of either wt or mutant FtsZ. These results suggest that the in vivo organization of the Z-ring is largely dependent on the intrinsic polymerization properties of FtsZ, which are significantly influenced by the GTPase activity and concentration of FtsZ. Our work provides a unifying theme to reconcile previous observations of different Z-ring structures, and supports a model in which the wt Z-ring comprises loosely associated, heterogeneously distributed FtsZ clusters. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 725-734, 2016. PMID:27310678

  2. Study of Z > 18 elements concentration in tree rings from surroundings forests of the Mexico Valley using external beam PIXE

    NASA Astrophysics Data System (ADS)

    Calva-Vázquez, G.; Razo-Angel, G.; Rodríguez-Fernández, L.; Ruvalcaba-Sil, J. L.

    2006-08-01

    The concentration of elements with Z > 18 is measured in tree rings from forests at the surroundings of the Mexico Valley: El Chico National Park (ECP) and Desierto de los Leones National Park (DLP). The analysis was done by simultaneous PIXE-RBS using an external proton beam on tree rings of Pine and Sacred fir (species Pinus montezumae and Abies religiosa, respectively). This study provides information about the elemental concentration in trees of those parks during the years from 1965 to 2003. Typical elements such as K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb were detected using PIXE technique while the wood matrix composition (mainly C and O) was determined by RBS. In general, elemental contents present large variations but concentrations oscillate around the mean value during this period of time. Nevertheless, the measurements showed some trends for Fe and Zn in the tree-rings elemental composition that may be correlated to recent volcanic activities in the region. The low Mn contents indicate soil acidification in DLP from 1968 and the forest decline in ECP during the last 15 years.

  3. Energy Dependence of Vitreous B2O3 On Boroxol Ring Concentration

    SciTech Connect

    Park, Byeongwon; Bylaska, Eric J.; Corrales, Louis R.

    2003-06-01

    Total energy calculations of borate glass samples with fixed fraction of boroxol rings are carried out using density function theory. In this work, the method of preparation of the samples is described and preliminary results are presented. This work suggests that initial structures may strongly affect simulation results, although further work is needed.

  4. Local contamination, and not feeding preferences, explains elevated PCB concentrations in Labrador ringed seals (Pusa hispida).

    PubMed

    Brown, Tanya M; Iverson, Sara J; Fisk, Aaron T; Macdonald, Robie W; Helbing, Caren C; Reimer, Ken J

    2015-05-15

    Polychlorinated biphenyls (PCBs) in high trophic level species typically reflect the contributions of myriad sources, such that source apportionment is rarely possible. The release of PCBs by a military radar station into Saglek Bay, Labrador contaminated the local marine food web. For instance, while heavier (higher chlorinated) PCB profiles in some ringed seals (Pusa hispida) were previously attributed to this local source, differences in feeding preferences among seals could not be ruled out as a contributing factor. Herein, similar fatty acid profiles between those seals with 'local' PCB profiles and those with 'long-range' or background profiles indicate little support for the possibility that differential feeding ecologies underlay the divergent PCB profiles. Ringed seals appeared to feed predominantly on zooplankton (Mysis oculata and Themisto libellula), followed by the dusky snailfish (Liparis gibbus), arctic cod (Boreogadus saida), and shorthorn sculpin (Myoxocephalus scorpius). Principal components analysis (PCA) and PCB homolog profiles illustrated the extent of contamination of the Saglek food web, which had very different (and much heavier) PCB profiles than those food web members contaminated by 'long-range' sources. Locally contaminated prey had PCB levels that were higher (2- to 544-fold) than prey contaminated by 'long-range' sources and exceeded wildlife consumption guidelines for PCBs. The application of multivariate analyses to two distinct datasets, including PCB congeners (n=50) and fatty acids (n=65), afforded the opportunity to clearly distinguish the contribution of locally-released PCBs to a ringed seal food web from those delivered via long-ranged transport. Results from the present study strongly suggest that habitat use rather than differences in prey selection is the primary mechanism explaining the divergent PCB patterns in Labrador ringed seals. PMID:25725460

  5. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    SciTech Connect

    Farma, R.; Awitdrus,; Taer, E.; Deraman, M. Talib, I. A.; Omar, R.; Ishak, M. M.; Basri, N. H.; Dolah, B. N. M.

    2015-04-16

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N{sub 2} environment at 800°C to produce carbon monoliths (CM) and the CM was CO{sub 2} activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H{sub 2}SO{sub 4} electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.

  6. Effect of applied voltage, initial concentration and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes

    PubMed Central

    Sun, Mei; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.

    2012-01-01

    Carbon electrodes are proposed in reactive sediment caps for in situ treatment of contaminants. The electrodes produce reducing conditions and H2 at the cathode and oxidizing conditions and O2 at the anode. Emplaced perpendicular to seepage flow, the electrodes provide the opportunity for sequential reduction and oxidation of contaminants. The objectives of this study are to demonstrate degradation of nitrobenzene (NB) as a probe compound for sequential electrochemical reduction and oxidation, and to determine the effect of applied voltage, initial concentration and natural organic matter on the degradation rate. In H-cell reactors with graphite electrodes and buffer solution, NB was reduced stoichiometrically to aniline (AN) at the cathode with nitrosobenzene (NSB) as the intermediate. AN was then removed at the anode, faster than the reduction step. No common AN oxidation intermediate was detected in the system. Both the first order reduction rate constants of NB (kNB) and NSB (kNSB) increased with applied voltage between 2V and 3.5 V (when the initial NB concentration was 100 µM, kNB=0.3 d−1 and kNSB=0.04 d−1at 2V; kNB=1.6 d−1 and kNSB=0.64 d−1at 3.5 V) but stopped increasing beyond the threshold of 3.5V. When initial NB concentration decreased from 100 to 5 µM, kNB and kNSB became 9 and 5 times faster, respectively, suggesting that competition for active sites on the electrode surface is an important factor in NB degradation. Presence of natural organic matter (in forms of either humic acid or Anacostia River sediment porewater) decreased kNB while slightly increased kNSB, but only to a limited extent (~factor of 3) for dissolved organic carbon content up to 100 mg/l. These findings suggest that electrode-based reactive sediment capping via sequential reduction/oxidation is a potentially robust and tunable technology for in situ contaminants degradation. PMID:22571797

  7. Plasmon-Induced Transparency by Hybridizing Concentric-Twisted Double Split Ring Resonators

    NASA Astrophysics Data System (ADS)

    Parvinnezhad Hokmabadi, Mohammad; Philip, Elizabath; Rivera, Elmer; Kung, Patrick; Kim, Seongsin M.

    2015-10-01

    As a classical analogue of electromagnetically induced transparency, plasmon induced transparency (PIT) has attracted great attention by mitigating otherwise cumbersome experimental implementation constraints. Here, through theoretical design, simulation and experimental validation, we present a novel approach to achieve and control PIT by hybridizing two double split ring resonators (DSRRs) on flexible polyimide substrates. In the design, the large rings in the DSRRs are stationary and mirror images of each other, while the small SRRs rotate about their center axes. Counter-directional rotation (twisting) of the small SRRs is shown to lead to resonance shifts, while co-directional rotation results in splitting of the lower frequency resonance and emergence of a PIT window. We develop an equivalent circuit model and introduce a mutual inductance parameter M whose sign is shown to characterize the existence or absence of PIT response from the structure. This model attempts to provide a quantitative measure of the physical mechanisms underlying the observed PIT phenomenon. As such, our findings can support the design of several applications such as optical buffers, delay lines, and ultra-sensitive sensors.

  8. Plasmon-Induced Transparency by Hybridizing Concentric-Twisted Double Split Ring Resonators

    PubMed Central

    Parvinnezhad Hokmabadi, Mohammad; Philip, Elizabath; Rivera, Elmer; Kung, Patrick; Kim, Seongsin M.

    2015-01-01

    As a classical analogue of electromagnetically induced transparency, plasmon induced transparency (PIT) has attracted great attention by mitigating otherwise cumbersome experimental implementation constraints. Here, through theoretical design, simulation and experimental validation, we present a novel approach to achieve and control PIT by hybridizing two double split ring resonators (DSRRs) on flexible polyimide substrates. In the design, the large rings in the DSRRs are stationary and mirror images of each other, while the small SRRs rotate about their center axes. Counter-directional rotation (twisting) of the small SRRs is shown to lead to resonance shifts, while co-directional rotation results in splitting of the lower frequency resonance and emergence of a PIT window. We develop an equivalent circuit model and introduce a mutual inductance parameter M whose sign is shown to characterize the existence or absence of PIT response from the structure. This model attempts to provide a quantitative measure of the physical mechanisms underlying the observed PIT phenomenon. As such, our findings can support the design of several applications such as optical buffers, delay lines, and ultra-sensitive sensors. PMID:26507006

  9. An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Boucher, É.; Guiot, J.; Hatté, C.; Daux, V.; Danis, P.-A.; Dussouillez, P.

    2013-11-01

    Over the last decades, dendroclimatologists have relied upon linear transfer functions to reconstruct historical climate. Transfer functions need to be calibrated using recent data from periods where CO2 concentrations reached unprecedented levels (near 400 ppm). Based on these transfer functions, dendroclimatologists must then reconstruct a different past, a past where CO2 concentrations were much below 300 ppm. However, relying upon transfer functions calibrated in this way may introduce an unanticipated bias in the reconstruction of past climate, particularly if CO2 levels have had a noticeable fertilizing effect since the beginning of the industrial era. As an alternative to the transfer function approach, we run the MAIDENiso ecophysiological model in an inverse mode to link together climatic variables, atmospheric CO2 concentrations and tree growth parameters. Our approach endeavors to find the optimal combination of meteorological conditions that best simulate observed tree ring patterns. We test our approach in the Fontainebleau forest (France). By comparing two different CO2 scenarios, we present evidence that increasing CO2 concentrations have had a slight, yet significant, effect on reconstruction results. We demonstrate that higher CO2 concentrations augment the efficiency of water use by trees, therefore favoring the reconstruction of a warmer and drier climate. Under elevated CO2 concentrations, trees close their stomata and need less water to produce the same amount of wood. Inverse process-based modeling represents a powerful alternative to the transfer function technique, especially for the study of divergent tree-ring-to-climate relationships. The approach has several advantages, most notably its ability to distinguish between climatic effects and CO2 imprints on tree growth. Therefore our method produces reconstructions that are less biased by anthropogenic greenhouse gas emissions and that are based on sound ecophysiological knowledge.

  10. Performance characteristics of a mode-locked erbium-doped fiber ring laser as a function of erbium ion concentration

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Gerhardstein, Cheryl M.; Vettese, E. K.; Winter, D. L.; Johns, Steven T.; Bussjager, Rebecca J.; Hayduk, Michael J.

    2003-07-01

    The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications including photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers are typically used to generate pulses at this wavelength. In addition to stability and output power, the physical size of the laser cavity is of primary importance. The length of the erbium-doped fiber used as the gain medium may be on the order of meters or even tens of meters which makes packing of the laser rather difficult. However the length of the gain medium can often be reduced if the erbium ion concentration within the fiber is increased. This paper will investigate the performance of an erbium-doped fiber ring laser as a function of ion concentration within the gain medium. Results will be presented for mode-locked lasers consisting of Lucent HE980, HG980 and HC erbium-doped fibers. The parameters that will be compared between the lasers include the output power as a function of length and concentration, optical pulse width and spectral bandwidth. Phase noise measurements of the laser output will also be presented.

  11. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation.

    PubMed

    Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C T; Xiao, Xingcheng; Gao, Huajian; Qi, Yue

    2016-02-01

    Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself. However, the chemical composition and mechanical property change of coating materials during the lithiation and delithiation process imposed a grand challenge to design coating/Si nanostructure as an integrated electrode system. In our work, we first developed reactive force field (ReaxFF) parameters for Li-Si-Al-O materials to simulate the lithiation process of Si-core/Al2O3-shell and Si-core/SiO2-shell nanostructures. With reactive dynamics simulations, we were able to simultaneously track and correlate the lithiation rate, compositional change, mechanical property evolution, stress distributions, and fracture. A new mechanics model based on these varying properties was developed to determine how to stabilize the coating with a critical size ratio. Furthermore, we discovered that the self-accelerating Li diffusion in Al2O3 coating forms a well-defined Li concentration gradient, leading to an elastic modulus gradient, which effectively avoids local stress concentration and mitigates crack propagation. Based on these results, we propose a modulus gradient coating, softer outside, harder inside, as the most efficient coating to protect the Si electrode surface and improve its current efficiency. PMID:26760786

  12. Retrospective study of 14C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique

    NASA Astrophysics Data System (ADS)

    Ješkovský, Miroslav; Povinec, Pavel P.; Steier, Peter; Šivo, Alexander; Richtáriková, Marta; Golser, Robin

    2015-10-01

    Atmospheric radiocarbon has been monitored around the Nuclear Power Plant (NPP) Jaslovské Bohunice (Slovakia) using CO2 absorption in NaOH solution since 1969. In 2012, tree ring samples were collected from Tilia cordata using an increment borer at Žlkovce monitoring station situated close to the Bohunice NPP. Each tree ring was identified and graphite targets were produced for 14C analysis by accelerator mass spectrometry. The 14C concentrations obtained from the tree-ring samples have been in a reasonable agreement with the averaged annual 14C concentrations in atmospheric CO2.

  13. The study of concentration effects of target hybridization on cervical cancer detection using interdigitated electrodes (IDE)

    NASA Astrophysics Data System (ADS)

    Noriani, C.; Hashim, U.; Azizah, N.

    2016-07-01

    Human Papilloma Virus (HPV) is a virus from the Papilloma virus family that affects human skin and the moist membranes that line the body, such as the throat, mouth, feet, fingers, nails, anus and cervix [1]. There are over 100 types, of which 40 can affect the genital area. Most known HPV types cause no symptoms to humans. Some, however, can cause verrucae (warts), while a small number can increase the risk of developing several cancers, such as that of the cervix, penis, vagina, anus and oropharynx (oral part of the pharynx - throat cancer). HPV strand 16 and 18 are well known for causing the advanced of Cervical Cancer (CC). Currently, integrated electrodes (IDEs) are implemented in various sensing devices including surface acoustic wave (SAW) sensors, chemical sensors as well as current MEMS biosensors. IDEs have been optimized for a variety of sensing applications including biosensors sensors, acoustic sensors, and chemical sensors. However, optimization for cancer cell detection has yet to be reported. The output signal strength of IDEs is controlled through careful design of the active area, width, and spacing of the electrode fingers the efficiency of DNA nanochip depends mainly on the sequence of the capture probes and the way they are attached to the support [2]. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis. The coupling procedure must be quick, covalent, and reproducible.

  14. Influence of Electrolyte Concentration on the Aggregation of Colloidal Particles near Electrodes in Oscillatory Fields.

    PubMed

    Saini, Sukhleen; Bukosky, Scott C; Ristenpart, William D

    2016-05-01

    Micron-scale particles suspended in various aqueous electrolytes have been widely observed to aggregate near electrodes in response to oscillatory electric fields, a phenomenon believed to result from electrically induced flows around the particles. Previous work has focused on elucidating the effects of the applied field strength, frequency, and electrolyte type on the aggregation rate of particles, with less attention paid to the ionic strength. Here we demonstrate that an applied field causes micron-scale particles in aqueous NaCl to rapidly aggregate over a wide range of ionic strengths, but with significant differences in aggregation morphology. Optical microscopy observations reveal that at higher ionic strengths (∼1 mM) particles arrange as hexagonally closed-packed (HCP) crystals, but at lower ionic strengths (∼0.05 mM) the particles arrange in randomly closed-packed (RCP) structures. We interpret this behavior in terms of two complementary effects: an increased particle diffusivity at lower ionic strengths due to increased particle height over the electrode and the existence of a deep secondary minimum in the particle pair interaction potential at higher ionic strength that traps particles in close proximity to one another. The results suggest that electrically induced crystallization will readily occur only over a narrow range of ionic strengths. PMID:27054682

  15. High-accuracy measurements of N2O concentration and isotopic composition of low and high concentration samples with small volume injections using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Palmer, Melissa; Huang, Kuan

    2015-04-01

    Nitrous oxide (N2O) gas is among the major contributors to global warming and ozone depletion in stratosphere. Quantitative estimate of N2O production in various pathways and N2O fluxes across different reservoirs is the key to understanding the role of N2O in the global change. To achieve this goal, accurate and concurrent measurement of both N2O concentration ([N2O]) and its associated isotopic ratios (δ 15Nα , δ 15{N}β & δ 18O) is desired. Recent developments in Cavity Ring-Down Spectroscopy (CRDS) have enabled high-precision measurements of [N2O] and Site-Preference-δ 15N (SP-δ 15N) and δ 18O of a continuous gas flow. However, many N2O samples are discrete with limited volume ( 2 ppm), and are not suitable for direct continuous measurements by CRDS. Here we present results of a small sample introduction and handling device, labelled as Small Sample Isotope Module (SSIM), coupled to and automatically coordinated with a Picarro isotopic N2O CRDS analyzer to handle and measure high concentration and/or small volume samples. The SSIM requires 20 ml of sample volume per analysis at STP, and transfers the sample to the CRDS for high-precision concentration and isotope ratio measurements. When the injected sample is

  16. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode.

    PubMed

    Elabbas, S; Ouazzani, N; Mandi, L; Berrekhis, F; Perdicakis, M; Pontvianne, S; Pons, M-N; Lapicque, F; Leclerc, J-P

    2016-12-01

    This paper deals with the ability of electrocoagulation (EC) to remove simultaneously COD and chromium from a real chrome tanning wastewater in a batch stirred electro-coagulation cell provided with two aluminium-based electrodes (aluminium/copper/magnesium alloy and pure aluminium). Effects of operating time, current density and initial concentration of Cr(III) and COD have been investigated. The concentrations of pollutants have been successfully reduced to environmentally acceptable levels even if the concentrated effluent requires a long time of treatment of around 6h with a 400A/m(2) current density. The aluminium alloy was found to be more efficient than pure aluminium for removal of COD and chromium. Dilution of the waste has been tested for treatment: high abatement levels could be obtained with shorter time of treatment and lower current densities. Energy consumption of the electrocoagulation process was also discussed. The dilution by half of the concentrated waste leads to a higher abatement performance of both COD and chromium with the best energy efficiency. PMID:26777109

  17. Electrochemically Modulated Separation, Concentration, and Detection of Plutonium Using an Anodized Glassy Carbon Electrode and Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    Clark, William J.; Park, Sea H.; Bostick, Debra A.; Duckworth, Doug C.; Van Berkel, Gary J.

    2006-12-15

    Plutonium is shown to be retained on anodized glassy carbon (GC) electrodes at potentials positive of +0.7 V (vs. Ag/AgCl reference) and released upon potential shifts to values negative of +0.3 V. This phenomenon has been exploited for the separation, concentration, and detection of plutonium by the coupling an electrochemical flow cell online with an ICP-MS system. The electrochemically-controlled deposition and analysis of Pu improves detection limits by analyte preconcentration and by matrix and isobaric ion elimination. Information related to the parametric optimization of the technique and hypotheses regarding the mechanism of electrochemical accumulation of Pu are reported. The most likely accumulation scenario involves complexation of Pu (IV) species, produced under a controlled potential, with anions retained in the anodization film that develops during the activation of the GC electrode. The release mechanism is believed to result from the reduction of Pu(IV) in the anion complex to Pu (III), which has a lower tendency to form complexes.

  18. Electrochemically modulated separation, concentration, and detection of plutonium using an anodized glassy carbon electrode and inductively coupled plasma mass spectrometry.

    PubMed

    Clark, William J; Park, Sea H; Bostick, Debra A; Duckworth, Douglas C; Van Berkel, Gary J

    2006-12-15

    Plutonium is shown to be retained on anodized glassy carbon (GC) electrodes at potentials positive of +0.7 V (vs Ag/AgCl reference) and released upon potential shifts to values negative of +0.3 V. This phenomenon has been exploited for the separation, concentration, and detection of plutonium by the coupling an electrochemical flow cell on-line with an ICPMS system. The electrochemically controlled deposition and analysis of Pu improves detection limits by analyte preconcentration and by matrix and isobaric ion elimination. Information related to the parametric optimization of the technique and hypotheses regarding the mechanism of electrochemical accumulation of Pu are reported. The most likely accumulation scenario involves complexation of Pu(IV) species, produced under a controlled potential, with anions retained in the anodization film that develops during the activation of the GC electrode. The release mechanism is believed to result from the reduction of Pu(IV) in the anion complex to Pu(III), which has a lower tendency to form complexes. PMID:17165850

  19. Functional behavior of bio-electrochemical treatment system with increasing azo dye concentrations: Synergistic interactions of biocatalyst and electrode assembly.

    PubMed

    Sreelatha, S; Velvizhi, G; Naresh Kumar, A; Venkata Mohan, S

    2016-08-01

    Treatment of dye bearing wastewater through biological machinery is particularly challenging due to its recalcitrant and inhibitory nature. In this study, functional behavior and treatment efficiency of bio-electrochemical treatment (BET) system was evaluated with increasing azo dye concentrations (100, 200, 300 and 500mg dye/l). Maximum dye removal was observed at 300mg dye/l (75%) followed by 200mg dye/l (65%), 100mg dye/l (62%) and 500mg dye/l (58%). Concurrent increment in dye load resulted in enhanced azo reductase and dehydrogenase activities respectively (300mg dye/l: 39.6U; 4.96μg/ml). Derivatives of cyclic voltammograms also supported the involvement of various membrane bound redox shuttlers, viz., cytochrome-c, cytochrome-bc1 and flavoproteins during the electron transfer. Bacterial respiration during BET operation utilized various electron acceptors such as electrodes and dye intermediates with simultaneous bioelectricity generation. This study illustrates the synergistic interaction of biocatalyst with electrode assembly for efficient treatment of azo dye wastewater. PMID:27067459

  20. Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry.

    PubMed

    Węgiel, Krystian; Jedlińska, Katarzyna; Baś, Bogusław

    2016-06-01

    A study of a new type of mercury-free working electrode - the bismuth bulk annular band working electrode (BiABE) - applied for thallium(I) detection via differential pulse anodic stripping voltammetry (DP ASV), preceded by the complexation of interfering ions (Cd(2+), Pb(2+)) with EDTA in an acetate buffer (pH 4.5), is reported. The optimisation of experimental conditions included selection of the appropriate supporting electrolyte solution, potential and time of preconcentration, and DP mode parameters. The peak current was proportional to the concentration of Tl(I) in the range from 0.5 to 49nmolL(-1) (R=0.9992) and from 0.05 to 1.4nmolL(-1) (R=0.9987) for accumulation times of 60s and 300s, respectively. For 60s of accumulation time, the LOD was 0.005nmolL(-1) (1ngL(-1)) (at S/N=3), and the sensitivity of 18.5nA/nM was achieved. The relative standard deviation for 4.9nmolL(-1) of Tl(I) was 4.3% (n=5). Finally, the proposed method was successfully applied to determine Tl(I) in the certified reference materials-waters (SPS-SW1 and SPS-SW2) as well as the spiked tap and river water samples. PMID:26921513

  1. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries

    PubMed Central

    2014-01-01

    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate. PMID:24790684

  2. Continuous field deployable methane concentration measurements from ice cores with near-infrared cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Stowasser, Christopher; Blunier, Thomas; Gkinis, Vasileios; Popp, Trevor; Kettner, Ernesto

    2010-05-01

    The analysis of gases and chemical impurities trapped in ice provides knowledge of earth's past climate. Deep ice cores from Greenland act as climate archives with high temporal resolution for more than the last 100,000 years covering Holocene, last glacial period and part of the previous interglacial called Eemian. Traditionally methane concentrations from ice cores are measured by gas chromatography. This technique is time consuming, labor intensive and generally not field deployable. Here we present results from the first laboratory and field tests of a new method for measuring methane concentrations from deep ice cores with high temporal resolution using a commercially available but slightly modified near-infrared cavity ring-down spectrometer (NIR-CRDS; http://www.picarro.com/). The NIR-CRDS is connected to a Continuous Flow Analysis (CFA) system, where air bubbles are continuously extracted from the melted ice water stream with the help of a hydrophobic membrane. The extracted gases are forwarded into the NIR-CRDS where the methane concentration is measured every 4 to 5 seconds. As the sample is diluted with helium during the extraction process an oxygen sensor is built into the NIR-CRDS. The continuous extraction of air and the high measurement frequency yield an extremely high temporal resolution, thus better exploiting the temporal resolution available from ice cores. At a typical CFA melt rate of 35 mm/min we obtain concentration measurements approximately every 3 mm of ice. The system is robust, compact and therefore suited for field measurements in combination with a continuous melting device. It was tested on the Greenland ice sheet during the 2009 field season of the North Greenland Eemian Ice Drilling (NEEM) project coupled to the University of Bern CFA system and under laboratory conditions with NGRIP ice coupled to the Copenhagen CFA system. The precision of the measurements of the first field season is encouraging but does not match the precision

  3. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  4. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  5. Electroreduction of nitrate ions in concentrated sodium hydroxide solutions at lead, zinc, nickel, and phthalocyanine-modified electrodes

    SciTech Connect

    Li, H. |; Chambers, J.Q.; Hobbs, D.T.

    1987-12-31

    The electrochemical reduction of nitrate in strongly alkaline solution has been studied using nickel, lead, zinc, and iron cathodes. Intermediate formation of nitrate ion and ammonia product was observed for all electrode materials. Coating a nickel sponge electrode with phthalocyanine renders it less active toward nitrate reduction, while iron electrodes appear to be activated. Electrolysis between a lead cathode and a nickel anode is an efficient means of removing nitrate from strongly alkaline solutions. Electrode pretreatment and solution conditions were chosen to correspond to those that might be encountered in practical applications, for example, the cleanup of radioactive waste solutions.

  6. A cavity ring-down spectroscopy system for high time resolution measurements of gaseous elemental mercury concentrations

    NASA Astrophysics Data System (ADS)

    Pierce, Ashley M.

    The global cycling of mercury (Hg), a highly toxic environmental pollutant, currently has many unknowns. There are various sources of Hg to the atmosphere including both anthropogenic and natural sources. Processes involved in the global cycling of Hg include emissions from legacy Hg pools, deposition, re-emission, and chemical and physical transformation processes such as gas-phase oxidation and heterogeneous redox reactions. Gaseous elemental mercury (GEM) can represent >95% of Hg present in the atmosphere. GEM has a relatively long atmospheric lifetime, which allows it to be transported 1000s of km, effectively making it a global pollutant. Once deposited, Hg can be converted to methylmercury, a bioavailable form of Hg known to cause neurological damage in wildlife and humans. Current atmospheric Hg sensors require long analyzing periods for a single sample (minutes to hours), thus a faster-response sensor would improve characterization of surface-atmosphere exchange processes and atmospheric Hg dynamics. The goal of this thesis work was to develop a new, field-deployable sensor for high time resolution measurements of GEM in ambient air using pulsed cavity ring-down spectroscopy (CRDS). In this research, a CRDS system was developed using a pulsed laser (50 Hz pulse repetition rate) emitting wavelengths tunable between 215 and 280 nm (Hg absorbs at 253.65 nm), a high finesse 1-m-long cavity lined with two high reflectivity mirrors. Due to the long path length (˜1 km) produced inside the short cavity, sample volumes could be kept small while measurement sensitivity remained high. By optimizing the CRDS setup and reducing interferences (e.g., ozone concentration fluctuations), the current CRDS sensor was deployed in the field to measure GEM concentrations in ambient air. The sensor was also used for the first-ever GEM flux measurements by the eddy covariance flux method. Results showed that fast GEM fluctuations could be detected by the CRDS sensor and the

  7. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  8. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  9. Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes

    SciTech Connect

    Zhang, Kai; Li, Yong; Zheng, Bailin

    2015-09-14

    The composition-gradient electrode material is considered as one of the most promising materials for lithium-ion batteries because of its excellent electrochemical performance and thermal stability. In this work, the effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induce stress in the composition-gradient electrodes were studied. The coupling equations of elasticity and diffusion under both potentiostatic charging and galvanostatic charging were developed to obtain the distributions of both the Li-ions concentration and the stress. The results indicated that the effects of the concentration-dependent elastic modulus on the Li-ions diffusion and the diffusion-induce stresses are controlled by the lithiation induced stiffening factor in the composition-gradient electrodes: a low stiffening factor at the center and a high stiffening factor at the surface lead to a significant effect, whereas a high stiffening factor at the center and a low stiffening factor at the surface result in a minimal effect. The results in this work provide guidance for the selection of electrode materials.

  10. Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Li, Yong; Zheng, Bailin

    2015-09-01

    The composition-gradient electrode material is considered as one of the most promising materials for lithium-ion batteries because of its excellent electrochemical performance and thermal stability. In this work, the effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induce stress in the composition-gradient electrodes were studied. The coupling equations of elasticity and diffusion under both potentiostatic charging and galvanostatic charging were developed to obtain the distributions of both the Li-ions concentration and the stress. The results indicated that the effects of the concentration-dependent elastic modulus on the Li-ions diffusion and the diffusion-induce stresses are controlled by the lithiation induced stiffening factor in the composition-gradient electrodes: a low stiffening factor at the center and a high stiffening factor at the surface lead to a significant effect, whereas a high stiffening factor at the center and a low stiffening factor at the surface result in a minimal effect. The results in this work provide guidance for the selection of electrode materials.

  11. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  12. Long lifetime in concentrated LiOH aqueous solution of air electrode protected with interpenetrating polymer network membrane

    NASA Astrophysics Data System (ADS)

    Ghamouss, Fouad; Mallouki, Mohamed; Bertolotti, Bruno; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2012-01-01

    Solid anion-exchange membranes that display interpenetrating polymer network (IPN) architecture were developed to be assembled on air electrode surface to improve its electrochemical stability in alkaline environment. The IPN membranes associate an anionic conducting polyepichlorohydrin network entangled within a cross-linked poly(2-hydroxyethyl methacrylate) in different mass proportions. The membranes possess suitable mechanical and thermal properties, an ionic conductivity of about 1 × 10-3 S cm-1 and suitable cation selectivity. The electrochemical behaviour of the air electrode/IPN membrane assemblies (AEMA) were then evaluated in LiOH 5 M. The polarization curves indicate that a good electrochemical interface was established between the electrode and the IPN membranes. Moreover, the AEMA exhibits a discharge stability in LiOH 5 M ten times higher compared to a bare electrode under the same conditions.

  13. Variability in pigment concentration in warm-core rings as determined by coastal zone color scanner satellite imagery from the Mid-Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Garcia-Moliner, Graciela; Yoder, James A.

    1994-01-01

    A time series of coastal zone color scanner (CZCS) derived chlorophyll (CZCS-chl) and sea surface temperature (SST) satellite imagery was developed for the Mid-Atlantic Bight (MAB). Warm-core rings (WCR) were identified by both the warmer SST signal as well as the low pigment concentrations of their cores. The variation in pigment concentrations and SST observed in satellite imagery over the geographic range and life span of four WCRs is investigated. The hypotheses are that pigment concentration increase during the lifetime of the WCR is a response to processes such as convective overturn, upwelling, edge enhancement due to increased vertical mixing, active convergence, or lateral exchange. Empirical orthogonal function analysis (EOF) is used to investigate the relationship between SST and pigment patterns observed in the presence of a WCR. The first two EOF modes explain more than 80% of the variability observed in all four WCRs and in both (SST and pigment) data sets. The results of this study show that, at the synoptic scales of staellite data, the variability observed in the WCRs is greater at the periphery of the rings. These results show that advective entrainment, rather than processes at ring center (e.g., shoaling of the pycnocline/nutricline in response to frictional decay) or at the periphery due to other processes such as vertical mixing, is the mechanism responsible for the observed variability.

  14. Determination of sparfloxacin concentrations in chicken serums and residues in chicken tissues and manures using self-ordered ring fluorescence microscopic imaging technique.

    PubMed

    Dong, Cheng-Yu; Liu, Yuan-Yuan; Liu, Ying

    2012-10-01

    Based on the self-ordered ring (SOR) fluorescence microscopic imaging technique on a hydrophobic glass slide with Zn2+ and cetyltrimethyl ammonium bromide (CTMAB) as sensitizer, and poly (vinyl alcohol) 124 (PVA-124) and NH3-NH4Cl (pH 10.00) as the medium, a method has been developed for determining sparfloxacin (SPFX) concentrations in chicken serum and residues in chicken tissues and manures. When the droplet volume was 0.20 microL, SPFX was determined in the range of 1.38 x 10(-13)-2.03 x 10(-12) mol x ring(-1) (or 6.90 x 10(-7)-1.02 x 10(-5) mol x L(-1)), and the limit of detection (LOD) was 14 fmol x ring (or 6.90 x 10(-8) mol x L(-1)). The recoveries of SPFX at all different spiked levels are in the range of 90.74%-106.61% when the methanol or acetonitrile were used as extracting agent, respectively, and the relative standard deviations (RSDs) are less than 3.0%. This study expands the applied fields of SOR technique in drug concentrations and residues determination. PMID:23285882

  15. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  16. Optimization of bioelectricity generation in fed-batch microbial fuel cell: effect of electrode material, initial substrate concentration, and cycle time.

    PubMed

    Cirik, Kevser

    2014-05-01

    Effective wastewater treatment and electricity generation using dual-chamber microbial fuel cell (MFC) will require a better understanding of how operational parameters affect system performance. Therefore, the main aim of this study is to investigate the bioelectricity production in a dual-chambered MFC-operated batch mode under different operational conditions. Initially, platinum (Pt) and mixed metal oxide titanium (Ti-TiO2) electrodes were used to investigate the influence of the electrode materials on the power generation at initial dissolved organic carbon (DOC) concentration of 400 mg/L and cycle time of 15 days. MFC equipped with Ti-TiO2 electrode performed better and was used to examine the effect of influent DOC concentration and cycle time on MFC performance. Increasing influent DOC concentration resulted in improving electricity generation, corresponding to a 1.65-fold increase in power density. However, decrease in cycle time from 15 to 5 days adversely affected reactor performance. Maximum DOC removal was 90 ± 3 %, which was produced at 15-day cycle time with an initial DOC of 3,600 mg/L, corresponding to maximum power generation of about 7,205 mW/m(2). PMID:24639089

  17. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Rabaey, Korneel; Radjenovic, Jelena

    2013-01-01

    Reverse osmosis concentrate from wastewater reclamation contains biorefractory trace organic contaminants that may pose environmental or health hazard. Due to its high conductivity, electrochemical oxidation of brine requires low voltage which is energetically favourable. However, the presence of chloride ions may lead to the formation of chlorinated by-products, which are likely to exert an increased toxicity and persistence to further oxidation than their non-chlorinated analogues. Here, the performance of Ti/Pt-IrO(2), Ti/SnO(2)-Sb and Si/BDD anodes was evaluated for the electrochemical oxidation of ROC in the presence of chloride, nitrate or sulfate ions (0.05 M sodium salts). In order to investigate the electrooxidation of ROC with nitrate and sulfate ions as dominant ion mediators, chloride ion concentration was decreased 10 times by electrodialytic pretreatment. The highest Coulombic efficiency for chemical oxygen demand (COD) removal was observed in the presence of high chloride ions concentration for all anodes tested (8.3-15.9%). Electrooxidation of the electrodialysed concentrate at Ti/SnO(2)-Sb and Ti/Pt-IrO(2) electrodes exhibited low dissolved organic carbon (DOC) (i.e. 23 and 12%, respectively) and COD removal (i.e. 37-43 and 6-22%, respectively), indicating that for these electrodes chlorine-mediated oxidation was the main oxidation mechanism, particularly in the latter case. In contrast, DOC removal for the electrodialysed concentrate stream was enhanced at Si/BDD anode in the presence of SO(4)(2-) (i.e. 51%) compared to NO(3)(2-) electrolyte (i.e. 41%), likely due to the contribution of SO(4)(·-) and S(2)O(8)(2-) species to the oxidative degradation. Furthermore, decreased concentration of chloride ions lead to a lower formation of haloacetic acids and trihalomethanes at all three electrodes tested. PMID:23137830

  18. Preset Electrodes for Electrical-Discharge Machining

    NASA Technical Reports Server (NTRS)

    Coker, Bill E.

    1987-01-01

    New electrode holder for electrical-discharge machining (EDM) provides for repeatable loading and setting of many electrodes. New holder is rotating-index tool carrying six, eight, or more electrodes. Before use, all electrodes set with aid of ring surrounding tool, and locked in position with screws. When electrode replaced, EDM operator pulls spring-loaded pin on tool so it rotates about center pin. Fresh electrode then rotated into position against workpiece.

  19. Electromechanical filed concentrations and polarization switching due to interdigitated electrodes in piezoelectric macro-fiber composites under tension

    NASA Astrophysics Data System (ADS)

    Narita, Fumio; Shindo, Yasuhide; Sato, Koji; Takeda, Tomo

    2011-04-01

    This work investigates the electromechanical response of piezoelectric macro-fiber composites (MFCs) under tension. Nonlinear three dimensional finite element model incorporating the polarization switching mechanism was used to predict the electromechanical fields near interdigitated electrode (IDEs) in the piezoelectric MFCs. The lead zirconate titanate (PZT) fibers in the MFC are partially poled. The electric field-induced strain was then measured, and test results were presented to validate the predictions.

  20. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  1. Microwave properties of a Y 0.7Ca 0.3Ba 2Cu 3O 7- δ microstrip ring resonator with various hole concentrations

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Lin, J. Y.; Gou, Y. S.

    2004-10-01

    Superconducting ring resonator with a Y 0.7Ca 0.3Ba 2Cu 3O 7- δ ground plane was fabricated by using Y 0.7Ca 0.3Ba 2Cu 3O 7- δ thin film deposited on both sides of a LaAlO 3 (LAO) substrate. The resonator exhibits a high quality factor Q > 10 4 at T < 30 K, and from empirical relation, Tc/ Tc,max = 1 - 82.6( p - 0.16) 2, we obtained the hole concentration p. By controlling the oxygen contents of the ring resonator, the hole concentration p was controlled from 0.218 to 0.088, determined by the empirical relation, in the same film. The temperature dependence of the resonance frequency, f( T), was then systematically studied. By using Chang’s inductive formula and taking a functional form ( λ(5 K)/ λ( T)) 2 = 1 - ( T/ Tc) 2 at T < 0.6 Tc, the London penetration depths λ(5 K) for various oxygen contents at 5 K were obtained, respectively. Finally, it allows us to test the Uemura relation 1/ λ2(5 K) ∝ Tc from the over- to the underdoped regime in the same sample.

  2. Tree ring proxies show physiological responses of eastern red cedar to increased CO2 and SO4 concentrations over the 20th century

    NASA Astrophysics Data System (ADS)

    Thomas, R. B.; Spal, S.; Maxwell, S.; Nippert, J. B.

    2011-12-01

    We examined the relationships between tree growth during the past century and the ratio of internal carbon dioxide concentration to atmospheric CO2 concentration (ci/ca) and instantaneous water-use efficiency (iWUE) by analyzing δ13C in tree rings of Juniperus virginiana growing on a limestone outcrop in West Virginia, US. Tree rings from years 1909 to 2008 from five Juniperus virginiana trees that ranged from 116 years to over 300 years in age were measured for basal area growth and used for isotopic analysis. Instantaneous WUE increased from approximately 75 to 112μmol mmol-1 over the past century, representing a 49% increase. In addition, we found a positive relationship between iWUE and the basal area increase over this time period, suggesting the increase in WUE translated into greater growth of the Juniperus trees. Typically, we might expect that increased growth of these trees reflects increased photosynthetic rates and decreased stomatal conductance rates resulting from increased atmospheric CO2 concentrations. However, this area of the central Appalachian Mountains has historically received some of the highest rates of acid deposition in the nation resulting from being downwind from an abundance of coal-fired power plants in the Ohio River valley. Our results show that ci/ca declined 14% between 1909 and 1980, but increased 9.6% between 1980 and 2009. We hypothesize that the directional change in ci/ca that occurred around 1980 was due to a reduction in sulfur emissions imposed by the Clean Air Act, environmental legislation enacted in 1970 and amended in 1990. Sulfur deposition measured by the National Atmospheric Deposition Program (NADP) in West Virginia near our Juniperus site shows a 53% decline between 1979 and 2009 and these NADP data show a highly significant negative correlation with ci/ca of Juniperus over this time period. Previously, experimental studies have shown that acidic sulfur mist leaches calcium from leaves causing a reduction in

  3. One sample is not enough: Differences and similarities in element concentrations of tree rings in dependence of sampling direction and height along the stem

    NASA Astrophysics Data System (ADS)

    Scharnweber, Tobias; Hevia Cabal, Andrea; van der Maaten, Ernst; Buras, Allan; Wilmking, Martin

    2015-04-01

    Dendrochemistry, i.e. the chronological analysis of element concentrations in the rings of living trees and archaeological wood is an evolving field. Attempts have been made to attribute trends, peaks or depletion of certain metal elements to volcanic eruptions, atmospheric pollution and other abrupt and gradual environmental or climatic changes (e.g. Padilla and Anderson, 2002; Pearson et al., 2009; Watmough, 1999). Once scientifically successfully established, the relationship between environmental drivers (the contemporary growth environment) and element concentrations in tree rings may offer great annually or even intra-annually resolved proxy potential as trees or archaeological/subfossil wood are widely available. Current challenges to dendrochemistry are mainly due to: 1) Possible radial or vertical translocation processes of elements in the wood (active during heartwood formation or passive) that might blur or obscure any dendrochemical signal and hamper precise dating of events. 2) Labour and time intensive methods (e.g. atomic absorption spectrometry (AAS) or inductively coupled plasma mass spectroscopy (ICP-MS)) that normally require sample digestion or solvent extraction and limit the amount of samples which can be processed. This leads to usually small sample sizes (<10) in dendrochemical studies, with mostly only one sample (core) per individual analyzed. X-ray fluorescence (µXRF) provides a non-destructive, high resolution and timesaving alternative and offers the opportunity to increase sample size, but needs to be methodologically tested to ensure scientific accuracy. In our study we systematically compare count-rates of certain elements (Al, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Ni) between three different stem expositions (N, S and W) and three different heights (base, middle and top) along the stems of mature deciduous (Castanea sativa Mill.) and coniferous (Pinus sylvestris L.) trees. Measurements are conducted with an ITRAX Multiscanner equipped

  4. Active Laplacian electrode for the data-acquisition system of EHG

    NASA Astrophysics Data System (ADS)

    Li, G.; Wang, Y.; Lin, L.; Jiang, W.; Wang, L. L.; C-Y Lu, Stephen; Besio, Walter G.

    2005-01-01

    EHG (electrohysterogram) is the recording of uterine electromyogram with external electrodes located on the abdomen of pregnant woman. Derived from the electrical activity generated at the muscle fiber lever, it provides complementary information from the muscle, and appears to be a very promising technique for clinical or physiologic investigation of uterine activity, compared with current monitoring which can't give us complementary phase information of uterine activity. In this article we have shown the disadvantages of the conventional electrodes for EHG data-acquisition system and put forward a new type of electrode that is called active Laplacian electrode. It integrates concentric rings electrode with a bioelectricity preamplifier and is capable of acquiring localized information. We can localise the EHG signals source more easily by using this new electrode.

  5. Optical noninvasive calculation of hemoglobin components concentrations and fractional oxygen saturation using a ring-scattering pulse oximeter

    NASA Astrophysics Data System (ADS)

    Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus

    2004-06-01

    The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.

  6. Planetary rings

    SciTech Connect

    Greenberg, R.; Brahic, A.

    1984-01-01

    Among the topics discussed are the development history of planetary ring research, the view of planetary rings in astronomy and cosmology over the period 1600-1900, the characteristics of the ring systems of Saturn and Uranus, the ethereal rings of Jupiter and Saturn, dust-magnetosphere interactions, the effects of radiation forces on dust particles, the collisional interactions and physical nature of ring particles, transport effects due to particle erosion mechanisms, and collision-induced transport processes in planetary rings. Also discussed are planetary ring waves, ring particle dynamics in resonances, the dynamics of narrow rings, the origin and evolution of planetary rings, the solar nebula and planetary disk, future studies of the planetary rings by space probes, ground-based observatories and earth-orbiting satellites, and unsolved problems in planetary ring dynamics.

  7. EDM Electrode for Internal Grooves

    NASA Technical Reports Server (NTRS)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  8. Investigation of particle inertial migration in high particle concentration suspension flow by multi-electrodes sensing and Eulerian-Lagrangian simulation in a square microchannel.

    PubMed

    Zhao, Tong; Yao, Jiafeng; Liu, Kai; Takei, Masahiro

    2016-03-01

    The inertial migration of neutrally buoyant spherical particles in high particle concentration (αpi  > 3%) suspension flow in a square microchannel was investigated by means of the multi-electrodes sensing method which broke through the limitation of conventional optical measurement techniques in the high particle concentration suspensions due to interference from the large particle numbers. Based on the measured particle concentrations near the wall and at the corner of the square microchannel, particle cross-sectional migration ratios are calculated to quantitatively estimate the migration degree. As a result, particle migration to four stable equilibrium positions near the centre of each face of the square microchannel is found only in the cases of low initial particle concentration up to 5.0 v/v%, while the migration phenomenon becomes partial as the initial particle concentration achieves 10.0 v/v% and disappears in the cases of the initial particle concentration αpi  ≥ 15%. In order to clarify the influential mechanism of particle-particle interaction on particle migration, an Eulerian-Lagrangian numerical model was proposed by employing the Lennard-Jones potential as the inter-particle potential, while the inertial lift coefficient is calculated by a pre-processed semi-analytical simulation. Moreover, based on the experimental and simulation results, a dimensionless number named migration index was proposed to evaluate the influence of the initial particle concentration on the particle migration phenomenon. The migration index less than 0.1 is found to denote obvious particle inertial migration, while a larger migration index denotes the absence of it. This index is helpful for estimation of the maximum initial particle concentration for the design of inertial microfluidic devices. PMID:27158288

  9. Steel Collet For Welding Electrodes

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Burley, Richard K.; Fogul, Irving

    1992-01-01

    Improved steel collet holds electrode for tungsten inert-gas welding but allows quick and easy replacement. Also ensures reliable arc starting. Slip-on compression ring compresses tapered section of body of collet around inner end of welding electrode. Collet mounted in receptacle below stack of lenses and filters in coaxial-vision welding torch. Blind hole in collet protects outermost lens from damage by electrode.

  10. PVDF-ErGO-GRC electrode: A single setup electrochemical system for separation, pre-concentration and detection of lead ions in complex aqueous samples.

    PubMed

    Hamsawahini, Kunashegaran; Sathishkumar, Palanivel; Ahamad, Rahmalan; Yusoff, Abdull Rahim Mohd

    2016-02-01

    An effective electrode was developed based on electromembrane extraction (EME) and square wave voltammetry (SWV) for simultaneous separation, pre-concentration and determination of lead (II) (Pb(II)) ions in complex aqueous samples. Electrochemically reduced graphene oxide-graphite reinforced carbon (ErGO-GRC) was utilized in conjunction with the SWV. Pb(II) ions were extracted from an aqueous sample solution into an acidic acceptor phase (1M HCl) in the lumen of the polyvinylidene fluoride (PVDF) membrane bag by the application of voltage of maximum 6 V across the supported liquid membrane (SLM), consisting of organic solvent and di-(2-ethylhexyl)phosphoric acid (D2EHPA). The parameters affecting the EME were optimized for Pb(II) ions. The optimum EME conditions were found to be 20% D2EHPA in 1-octanol impregnated in the wall of PVDF membrane (PVDF17) as the SLM, extraction time of 20 min, pH of sample solution of 8 and a voltage of 5 V. The PVDF-ErGO-GRC electrode system attained enrichment factors of 40 times and 80% of extraction with relative standard deviations (n=5) of 8.3%. Good linearity ranging from 0.25 to 2 nM with coefficients correlation of 0.999 was obtained. The Pb(II) ions detection limit of PVDF-ErGO-GRC electrode was found to be 0.09 nM. The newly developed single setup electrochemical system was applied to complex aqueous samples such as tap, river and sea water to evaluate the feasibility of the method for applications. PMID:26653429

  11. Development of a high time resolution measurement of NO2 and HCHO concentration in the atmosphere using high repetition rate cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Ida, A.; Nakamura, K.; Kajii, Y. J.

    2013-12-01

    Many chemical species with light absorption band at 300 ~ 350 nm are contained in the atmosphere, however these trace gases have important role in the atmosphere. The sun light is absorbed by these trace gases then free radicals cause the photochemistry in the atmosphere are formed by photolysis of these trace gases. Both hydrogen and formylradicals which will be converted into HO2 radicals in the atmosphere are generated in the photolysis of formaldehyde in the atmosphere. NO2 is important precursor for O3 in the troposphere that strongly control oxidation capacity of the air because OH radicals are formed in the photolysis of ozone. It is important to measure concentrations of these photoactive species precisely to reveal the atmospheric chemistry. These trace gases have short lifetimes and the forming process are complicated then these trace gases have wide fluctuations of concentrations. In this study, we developed a measurement system of NO2 and H2CO with high time resolution and high sensitivity using UV laser absorption system. The Cavity ring-down system was employed with high repetition rate laser system (10kHz). The ring-down time of N2 was measured to be 2.9×0.9, 3.0×0.1, 2.90×0.01 μs with the averaging time of 1 (0.1 ms), 50 (5ms) and 100000 (1s) shots, respectively. The uncertainty was decreasing to increase average times and the limit of detection was drastically decreasing. For example of NO2, the limit of detection was improved from 1.4 ppm to 3 ppb. The intercomparison measurement of the sample gases containing NO2 was performed under the several NO2 concentrations with this CRDS system and NOx analyser (MODEL 42i: Thermo Electron Corporation) employed cemiluminescense. The correlation factor was calculated to be 0.975. Measurement values from CRDS system was ensured. H2CO absorbs the UV light around 350~360 nm. The concentration was determined using the absorption band. The limit of detection was about 10 ppb of H2CO. In January 2012, ambient

  12. Sensors for Highly Toxic Gases: Methylamine and Hydrogen Chloride Detection at Low Concentrations in an Ionic Liquid on Pt Screen Printed Electrodes

    PubMed Central

    Murugappan, Krishnan; Silvester, Debbie S.

    2015-01-01

    Commercially available Pt screen printed electrodes (SPEs) have been employed as possible electrode materials for methylamine (MA) and hydrogen chloride (HCl) gas detection. The room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) was used as a solvent and the electrochemical behaviour of both gases was first examined using cyclic voltammetry. The reaction mechanism appears to be the same on Pt SPEs as on Pt microelectrodes. Furthermore, the analytical utility was studied to understand the behaviour of these highly toxic gases at low concentrations on SPEs, with calibration graphs obtained from 10 to 80 ppm. Three different electrochemical techniques were employed: linear sweep voltammetry (LSV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV), with no significant differences in the limits of detection (LODs) between the techniques (LODs were between 1.4 to 3.6 ppm for all three techniques for both gases). The LODs achieved on Pt SPEs were lower than the current Occupational Safety and Health Administration Permissible Exposure Limit (OSHA PEL) limits of the two gases (5 ppm for HCl and 10 ppm for MA), suggesting that Pt SPEs can successfully be combined with RTILs to be used as cheap alternatives for amperometric gas sensing in applications where these toxic gases may be released. PMID:26506358

  13. Sensors for highly toxic gases: methylamine and hydrogen chloride detection at low concentrations in an ionic liquid on Pt screen printed electrodes.

    PubMed

    Murugappan, Krishnan; Silvester, Debbie S

    2015-01-01

    Commercially available Pt screen printed electrodes (SPEs) have been employed as possible electrode materials for methylamine (MA) and hydrogen chloride (HCl) gas detection. The room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C₂mim][NTf₂]) was used as a solvent and the electrochemical behaviour of both gases was first examined using cyclic voltammetry. The reaction mechanism appears to be the same on Pt SPEs as on Pt microelectrodes. Furthermore, the analytical utility was studied to understand the behaviour of these highly toxic gases at low concentrations on SPEs, with calibration graphs obtained from 10 to 80 ppm. Three different electrochemical techniques were employed: linear sweep voltammetry (LSV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV), with no significant differences in the limits of detection (LODs) between the techniques (LODs were between 1.4 to 3.6 ppm for all three techniques for both gases). The LODs achieved on Pt SPEs were lower than the current Occupational Safety and Health Administration Permissible Exposure Limit (OSHA PEL) limits of the two gases (5 ppm for HCl and 10 ppm for MA), suggesting that Pt SPEs can successfully be combined with RTILs to be used as cheap alternatives for amperometric gas sensing in applications where these toxic gases may be released. PMID:26506358

  14. Saturn's rings

    NASA Technical Reports Server (NTRS)

    2000-01-01

    When seen from the unlit side, the rings of Saturn present a much different appearance from that familiar to telescopic observers. Relatively opaque areas like the B Ring turn black, while lightly populated zones, such as the C Ring and the Cassini Division, prove to excellent diffuse transmitters of sunlight. The A Ring, with intermediate opacity, is at an intermediate level of brightness.

  15. Readout electrode assembly for measuring biological impedance

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Moody, D. L., Jr. (Inventor)

    1976-01-01

    The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes.

  16. Observation of radio frequency ring-shaped hollow cathode discharge plasma with MgO and Al electrodes for plasma processing

    SciTech Connect

    Ohtsu, Yasunori Matsumoto, Naoki

    2014-05-15

    Various high-density plasma sources have been proposed for plasma processing. Especially, the hollow cathode discharge is one of the powerful ones. In this work, radio-frequency (RF) driven ring-shaped hollow cathode discharges with high secondary-electron emission have been investigated, using an aluminum (Al) cathode, coated or not with magnesium oxide (MgO). The thickness of MgO thin film is approximately 200 nm. The RF discharge voltage for the coated cathode is almost the same as that for the uncoated one, in a wide range of Ar gas pressure, from 5.3 to 53.2 Pa. The results reveal that the plasma density has a peak at an Ar gas pressure of 10.6 Pa for both cathodes. The plasma density for the coated cathode is about 1.5–3 times higher than that for the uncoated one, at various gas pressures. To the contrary, the electron temperature for the coated cathode is lower than temperature obtained with the uncoated cathode, at various gas pressures. Radial profiles of electron saturation current, which is proportional to plasma flux, are also examined for a wide range of gas pressure. Radial profiles of electron temperature at various axial positions are almost uniform for both cathodes so that the diffusion process due to density gradient is dominant for plasma transport. The secondary electrons emitted from the coated cathode contribute to the improvement of the plasma flux radial profile obtained using the uncoated cathode.

  17. Sunset on Saturn's Rings

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is a rare view of Saturn's rings seen just after the Sun has set below the ring plane, taken with the Hubble Space Telescope on Nov. 21, 1995.

    This perspective is unusual because the Earth is slightly above (2.7 degrees latitude) Saturn's rings and the Sun is below them. Normally we see the rings fully illuminated by the Sun.

    The photograph shows three bright ring features: the F Ring, the Cassini Division, and the C Ring (moving from the outer rings to the inner). The low concentration of material in these rings allows light from the Sun to shine through them. The A and B rings are much denser, which limits the amount of light that penetrates through them. Instead, they are faintly visible because they reflect light from Saturn's disk.

    Scientists believe that the F Ring is slightly warped because it disappears part way around on the right (West) side. Hubble's high resolution shows the that A Ring's shadow obscures part of the F ring (right).

    The image was assembled from 20 exposures taken with Wide Field Planetary Camera-2 over 8 hours.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  18. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  19. Increasing Ambient CO2 Concentrations are Reflected in the Stable C and O Isotopes from Tree Rings along a Siberian North South Transect in the Last 150 Years

    NASA Astrophysics Data System (ADS)

    Siegwolf, R. T.; Sidorova, O. V.; Saurer, M.; Knorre, A.; Kirdyanov, A.

    2010-12-01

    The ongoing industrialization in the last 150 years left its fingerprints with an increase in atmospheric CO2 (ca) from ca. 260 to 385 ppm due to the growing use of fossil fuels. Elevated CO2 affects the vegetation, as plants respond instantaneously with an increased photosynthetic rate, and a reduction in stomatal conductance. This results in a lower ci/ca ratio (ci leaf intercellular CO2 concentration), causing a reduced 13C fractionation during photosynthesis. This is reflected in the intrinsic water use efficiency (WUEi), although plants acclimatize, i.e. down regulate the maximum photosynthetic capacity (Amax) as a consequence of elevated CO2 for the last 150 years. The degree of the long-term response to changes in CO2 varies largely between plants growing under different growth conditions, i.e. water availability, temperature, nutrient supply and between different species. Along with an increasing CO2 concentration a rise in the mean annual temperature is observed at the Northern timberline. An increasing temperature might stimulate tree growth, yet it also increases the Air to Leaf Vapor Pressure Difference (ALVPD), resulting in an increase of drought stress, as the precipitation in the Siberian regions is rather low. This will induce a reduction in stomatal conductance and a diminished productivity, reflected in tree ring width. We present C and O isotope values from tree rings for the last 150 years. The data reflect changes in the carbon water relations (WUEi) from central Siberia (Russia) along a north south transect of ca. 2400 km from the northern timberline to the forest steppe. Changes in the environment either increase or reduce the effect of elevated CO2 on trees, growing in the highly sensitive Siberian ecosystem. The combination of the C and O isotope values in a conceptual model (Scheidegger et al., 2000; Saurer and Siegwolf, 2007) allows the link between tree response reflected in δ13C and δ18O data and gas exchange patterns providing a

  20. Evaluation of 2 portable ion-selective electrode meters for determining whole blood, plasma, urine, milk, and abomasal fluid potassium concentrations in dairy cattle.

    PubMed

    Megahed, A A; Hiew, M W H; Grünberg, W; Constable, P D

    2016-09-01

    Two low-cost ion-selective electrode (ISE) handheld meters (CARDY C-131, LAQUAtwin B-731; Horiba Ltd., Albany, NY) have recently become available for measuring the potassium concentration ([K(+)]) in biological fluids. The primary objective of this study was to characterize the analytical performance of the ISE meters in measuring [K(+)] in bovine whole blood, plasma, urine, milk, and abomasal fluid. We completed 6 method comparison studies using 369 whole blood and plasma samples from 106 healthy periparturient Holstein-Friesian cows, 138 plasma samples from 27 periparturient Holstein-Friesian cows, 92 milk samples and 204 urine samples from 16 lactating Holstein-Friesian cows, and 94 abomasal fluid samples from 6 male Holstein-Friesian calves. Deming regression and Bland-Altman plots were used to characterize meter performance against reference methods (indirect ISE, Hitachi 911 and 917; inductively coupled plasma-optical emission spectroscopy). The CARDY ISE meter applied directly in plasma measured [K(+)] as being 7.3% lower than the indirect ISE reference method, consistent with the recommended adjustment of +7.5% when indirect ISE methods are used to analyze plasma. The LAQUAtwin ISE meter run in direct mode measured fat-free milk [K(+)] as being 3.6% lower than the indirect ISE reference method, consistent with a herd milk protein percentage of 3.4%. The LAQUAtwin ISE meter accurately measured abomasal fluid [K(+)] compared to the indirect ISE reference method. The LAQUAtwin ISE meter accurately measured urine [K(+)] compared to the indirect ISE reference method, but the median measured value for urine [K(+)] was 83% of the true value measured by inductively coupled plasma-optical emission spectroscopy. We conclude that the CARDY and LAQUAtwin ISE meters are practical, low-cost, rapid, accurate point-of-care instruments suitable for measuring [K(+)] in whole blood, plasma, milk, and abomasal fluid samples from cattle. Ion-selective electrode methodology is

  1. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes. PMID:22945587

  2. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  3. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  4. Theoretical Treatment and Numerical Simulation of Potential and Concentration Profiles in Extremely Thin Non-Electroneutral Membranes Used for Ion-Selective Electrodes

    PubMed Central

    Morf, W. E.; Pretsch, E.; De Rooij, N. F.

    2010-01-01

    The applicability of extremely thin non-electroneutral membranes for ion-selective electrodes (ISEs) is investigated. A theoretical treatment of potential and concentration profiles in space-charge membranes of << 1 μm thickness is presented. The theory is based on the Nernst-Planck equation for ion fluxes, which reduces to Boltzmann’s formula at equilibrium, and on the Poisson relationship between space-charge density and electric field gradient. A general solution in integral form is obtained for the potential function and the corresponding ion profiles at equilibrium. A series of explicit sub-solutions is derived for particular cases. Membrane systems with up to three different ion species are discussed, including trapped ionic sites and co-extracted ions. Solid-contacted thin membranes (without formation of aqueous films at the inner interface) are shown to exhibit a sub-Nernstian response. The theoretical results are confirmed by numerical simulations using a simplified finite-difference procedure based on the Nernst-Planck-Poisson model, which are shown to be in excellent agreement. PMID:23255874

  5. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.

    2002-08-01

    The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.

  6. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  7. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  8. Discovery of concentric broken rings at sub-arcsec separations in the HD 141569A gas-rich, debris disk with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Perrot, C.; Boccaletti, A.; Pantin, E.; Augereau, J.-C.; Lagrange, A.-M.; Galicher, R.; Maire, A.-L.; Mazoyer, J.; Milli, J.; Rousset, G.; Gratton, R.; Bonnefoy, M.; Brandner, W.; Buenzli, E.; Langlois, M.; Lannier, J.; Mesa, D.; Peretti, S.; Salter, G.; Sissa, E.; Chauvin, G.; Desidera, S.; Feldt, M.; Vigan, A.; Di Folco, E.; Dutrey, A.; Péricaud, J.; Baudoz, P.; Benisty, M.; De Boer, J.; Garufi, A.; Girard, J. H.; Menard, F.; Olofsson, J.; Quanz, S. P.; Mouillet, D.; Christiaens, V.; Casassus, S.; Beuzit, J.-L.; Blanchard, P.; Carle, M.; Fusco, T.; Giro, E.; Hubin, N.; Maurel, D.; Moeller-Nilsson, O.; Sevin, A.; Weber, L.

    2016-05-01

    Context. Transition disks correspond to a short stage between the young protoplanetary phase and older debris phase. Along this evolutionary sequence, the gas component disappears leaving room for a dust-dominated environment where already-formed planets signpost their gravitational perturbations. Aims: We endeavor to study the very inner region of the well-known and complex debris, but still gas-rich disk, around HD 141569A using the exquisite high-contrast capability of SPHERE at the VLT. Recent near-infrared (IR) images suggest a relatively depleted cavity within ~200 au, while former mid-IR data indicate the presence of dust at separations shorter than ~100 au. Methods: We obtained multi-wavelength images in the near-IR in J, H2, H3 and Ks-bands with the IRDIS camera and a 0.95-1.35 μm spectral data cube with the IFS. Data were acquired in pupil-tracking mode, thus allowing for angular differential imaging. Results: We discovered several new structures inside 1'', of which the most prominent is a bright ring with sharp edges (semi-major axis: 0.4'') featuring a strong north-south brightness asymmetry. Other faint structures are also detected from 0.4'' to 1'' in the form of concentric ringlets and at least one spiral arm. Finally, the VISIR data at 8.6 μm suggests the presence of an additional dust population closer in. Besides, we do not detect companions more massive than 1-3 mass of Jupiter. Conclusions: The performance of SPHERE allows us to resolve the extended dust component, which was previously detected at thermal and visible wavelengths, into very complex patterns with strong asymmetries; the nature of these asymmetries remains to be understood. Scenarios involving shepherding by planets or dust-gas interactions will have to be tested against these observations. Based on data collected at the European Southern Observatory, Chile, ESO programs 095.C-0381 and 095.C-0298.

  9. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  10. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  11. Working Electrodes

    NASA Astrophysics Data System (ADS)

    Komorsky-Lovrić, Šebojka

    In electrochemistry an electrode is an electronic conductor in contact with an ionic conductor. The electronic conductor can be a metal, or a semiconductor, or a mixed electronic and ionic conductor. The ionic conductor is usually an electrolyte solution; however, solid electrolytes and ionic melts can be used as well. The term "electrode" is also used in a technical sense, meaning the electronic conductor only. If not specified otherwise, this meaning of the term "electrode" is the subject of the present chapter. In the simplest case the electrode is a metallic conductor immersed in an electrolyte solution. At the surface of the electrode, dissolved electroactive ions change their charges by exchanging one or more electrons with the conductor. In this electrochemical reaction both the reduced and oxidized ions remain in solution, while the conductor is chemically inert and serves only as a source and sink of electrons. The technical term "electrode" usually also includes all mechanical parts supporting the conductor (e.g., a rotating disk electrode or a static mercury drop electrode). Furthermore, it includes all chemical and physical modifications of the conductor, or its surface (e.g., a mercury film electrode, an enzyme electrode, and a carbon paste electrode). However, this term does not cover the electrolyte solution and the ionic part of a double layer at the electrode/solution interface. Ion-selective electrodes, which are used in potentiometry, will not be considered in this chapter. Theoretical and practical aspects of electrodes are covered in various books and reviews [1-9].

  12. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  13. Vascular rings.

    PubMed

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K

    2016-06-01

    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. PMID:27301603

  14. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  15. Modification of Carrier Gas Stream to Improve 13C/12C Isotopic Accuracy in Cavity Ring-Down Spectroscopy-Based Measurements of Low-Concentration Dissolved Carbon Samples

    NASA Astrophysics Data System (ADS)

    Conaway, C. H.; Morkner, P.; Thomas, B.; Saad, N.

    2013-12-01

    Determining isotopic composition of dissolved organic and inorganic carbon in natural waters is of critical importance to a broad set of scientific objectives. The routine analysis of these sample types can be expensive and in the past has been limited predominantly to laboratories capable of high-precision isotope ratio mass spectrometric analysis. More recently, cavity ring-down spectroscopy (CRDS) has provided an alternative instrumental means for characterizing these samples. One challenge with these types of is that the CRDS can show a non-linear response in d13C at low carbon concentrations (<0.5 mM). Here we present a new approach using a modification of a total organic carbon-cavity ring-down spectroscopy (TOC-CRDS) continuous flow system by adding a background stream of carbon dioxide of known isotopic composition to the CRDS analytical train. The isotopic carbon values generated by the CRDS are then corrected using a two-component isotopic mixing model. This modification is useful in reducing bias towards lighter carbon isotopic values when measuring samples with low carbon concentration, such as natural waters with either dissolved organic or inorganic carbon concentrations of less than 0.5 mM, and does not introduce substantial bias for higher concentration samples.

  16. Storage ring development at the National Synchrotron Light Source

    SciTech Connect

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design.

  17. Storage Rings

    SciTech Connect

    Fischer, W.

    2011-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10{sup -6} eV to 3.5 x 10{sup 12} eV (LHC, 7 x 10{sup 12} eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or

  18. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    NASA Astrophysics Data System (ADS)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  19. Advantage of four-electrode over two-electrode defibrillators.

    PubMed

    Bragard, J; Šimić, A; Laroze, D; Elorza, J

    2015-12-01

    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock. PMID:26764786

  20. Advantage of four-electrode over two-electrode defibrillators

    NASA Astrophysics Data System (ADS)

    Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.

    2015-12-01

    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.

  1. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  2. Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Dennefeld, M.; Materne, J.

    1980-09-01

    Among the 338 exotic, intriguing and/or fascinating objects contained in Arp's catalogue of peculiar galaxies, two, Arp 146 and 147, are calling special attention as a presumably separate class of objects displaying closed rings with almost empty interior. It is difficult to find out when, historically speaking, attention was called first to this type of object as a peculiar class, but certainly ga1axies with rings were widely found and recognized in the early sixties, ul}der others by Vorontsov-Velyaminov (1960), Sandage (1961) in the Hubble Atlas or de Vaucouleurs (1964) in the first reference catalogue of ga1axies. The most recent estimates by Arp and Madore (1977) from a search on about 200 Schmidt plates covering 7,000 square degrees give 3.6 per cent of ring galaxies among 2,784 peculiar galaxies found. However, despite the mythological perfection associated with a circle, some ordering is necessary before trying to understand the nature of such objects. This is particularly true because a large fraction of those galaxies with rings are probably normal spiral galaxies of type RS or S(r) as defined by de Vaucouleurs, where the spiral arms are simply "closing the circle". A good example of such "ordinary" galaxy is NGC 3081 in the Hubble Atlas .

  3. A gastroesophageal electrode for atrial and ventricular pacing.

    PubMed

    McEneaney, D J; Cochrane, D J; Anderson, J A; Adgey, A A

    1997-07-01

    Temporary transvenous cardiac pacing requires technical expertise and access to fluoroscopy. We have developed a gastroesophageal electrode capable of atrial and ventricular pacing. The flexible polythene gastroesophageal electrode is passed into the stomach under light sedation. Five ring electrodes, now positioned in the lower esophagus, are used for atrial pacing. A point source (cathode) on the distal tip of the electrode, now positioned in the gastric fundus, is used for ventricular pacing. Two configurations of atrial and ventricular pacing were compared: unipolar and bipolar. During unipolar ventricular pacing the indifferent electrode (anode) was a high impedance chest pad. For bipolar ventricular pacing the indifferent electrode was a ring electrodes placed 2 cm proximal to the tip. Unipolar atrial pacing was performed with 1 of 5 proximal ring electrodes acting as cathode ("cathodic") or as anode ("anodic") in conjunction with a chest pad. Bipolar atrial pacing was performed using combinations of 2 of 5 ring electrodes. Atrial capture was obtained in all 55 subjects attempted. When all electrode combinations were compared, atrial capture was significantly more frequent using the bipolar approach (153/210 bipolar, 65/210 unipolar; t = 7.37, P < 0.001). For unipolar atrial pacing, cathodic stimulation (from esophagus) was more successful than anodic stimulation (cathodic 62/105, anodic 20/105; t = 5.81, P < 0.001). In 43 subjects attempted unipolar ventricular pacing resulted in a higher frequency of capture than the bipolar approach (unipolar 41/43 (95.3%), bipolar 19/43 (44.2%); P < 0.001). In conclusion, atrial pacing was optimal using pairs of ring electrodes ("bipolar") while ventricular pacing was optimal using the distal electrode tip (cathode) in conjunction with a chest pad electrode ("unipolar"). This gastroesophageal electrode may be useful in the emergency management of acute bradyarrhythmias and for elective electrophysiological studies. PMID

  4. Swirl Ring Improves Performance Of Welding Torch

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Plasma-arc welding torch modified to create vortex in plasma gas to focus arc into narrower and denser column. Swirl ring contains four channels with angled exit holes to force gas to swirl as it flows out of torch past tip of electrode. Degradation of electrode and orifice more uniform and need to rotate torch during operation to compensate for asymmetry in arc reduced or eliminated. Used in both keyhole and nonkeyhole welding modes.

  5. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  6. Inexpensive and Disposable pH Electrodes

    ERIC Educational Resources Information Center

    Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily

    2010-01-01

    Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…

  7. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  8. A simple, sensitive, and accurate alcohol electrode

    SciTech Connect

    Verduyn, C.; Scheffers, W.A.; Van Dijken, J.P.

    1983-04-01

    The construction and performance of an enzyme electrode is described which specifically detects lower primary aliphatic alcohols in aqueous solutions. The electrode consists of a commercial Clark-type oxygen electrode on which alcohol oxidase (E.C. 1.1.3.13) and catalase were immobilized. The decrease in electrode current is linearly proportional to ethanol concentrations betwee 1 and 25 ppm. The response of the electrode remains constant during 400 assays over a period of two weeks. The response time is between 1 and 2 min. Assembly of the electrode takes less than 1 h.

  9. Control of laser-ablation plasma potential with external electrodes

    SciTech Connect

    Isono, Fumika Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2015-08-15

    The potential of a laser-ablation plasma was controlled stably up to +2 kV by using external ring electrodes. A stable electron sheath was formed between the plasma and the external electrodes by placing the ring electrodes away from the boundary of the drifting plasma. The plasma kept the potential for a few μs regardless of the flux change of the ablation plasma. We also found that the plasma potential changed with the expansion angle of the plasma from the target. By changing the distance between the plasma boundary and the external electrodes, we succeeded in controlling the potential of laser-ablation plasma.

  10. Formation of lunar basin rings

    USGS Publications Warehouse

    Hodges, C.A.; Wilhelms, D.E.

    1978-01-01

    The origin of the multiple concentric rings that characterize lunar impact basins, and the probable depth and diameter of the transient crater have been widely debated. As an alternative to prevailing "megaterrace" hypotheses, we propose that the outer scarps or mountain rings that delineate the topographic rims of basins-the Cordilleran at Orientale, the Apennine at Imbrium, and the Altai at Nectaris-define the transient cavities, enlarged relatively little by slumping, and thus are analogous to the rim crests of craters like Copernicus; inner rings are uplifted rims of craters nested within the transient cavity. The magnitude of slumping that occurs on all scarps is insufficient to produce major inner rings from the outer. These conclusions are based largely on the observed gradational sequence in lunar central uplifts:. from simple peaks through somewhat annular clusters of peaks, peak and ring combinations and double ring basins, culminating in multiring structures that may also include peaks. In contrast, belts of slump terraces are not gradational with inner rings. Terrestrial analogs suggest two possible mechanisms for producing rings. In some cases, peaks may expand into rings as material is ejected from their cores, as apparently occurred at Gosses Bluff, Australia. A second process, differential excavation of lithologically diverse layers, has produced nested experimental craters and is, we suspect, instrumental in the formation of terrestrial ringed impact craters. Peak expansion could produce double-ring structures in homogeneous materials, but differential excavation is probably required to produce multiring and peak-in-ring configurations in large lunar impact structures. Our interpretation of the representative lunar multiring basin Orientale is consistent with formation of three rings in three layers detected seismically in part of the Moon-the Cordillera (basin-bounding) ring in the upper crust, the composite Montes Rook ring in the underlying

  11. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  12. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  13. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).

    PubMed

    Alam, Mahtab; Truong, Dennis Q; Khadka, Niranjan; Bikson, Marom

    2016-06-21

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability-enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm(2)) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring's diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation ([Formula: see text] · (σ [Formula: see text] V)  =  0) was solved for cortical electric field, which was interpreted using physiological assumptions to correlate with stimulation and modulation. Cortical field intensity was predicted to increase with increasing ring diameter at the cost of focality while uni-directionality decreased. Additional surrounding ring electrodes increased uni-directionality while lowering cortical field intensity and increasing focality; though, this effect saturated and more than 4 surround electrode would not be justified. Using a range of concentric HD-tDCS montages, we showed that cortical region of influence can be

  14. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  15. Photoelectrochemical electrodes

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rembaum, A. (Inventor)

    1983-01-01

    The surface of a moderate band gap semiconductor such as p-type molybdenum sulfide is modified to contain an adherent film of charge mediating ionene polymer containing an electroactive unit such as bipyridimium. Electron transport between the electrode and the mediator film is favorable and photocorrosion and recombination processes are suppressed. Incorporation of particles of catalyst such as platinum within the film provides a reduction in overvoltage. The polymer film is readily deposited on the electrode surface and can be rendered stable by ionic or addition crosslinking. Catalyst can be predispersed in the polymer film or a salt can be impregnated into the film and reduced therein.

  16. Ringing wormholes

    SciTech Connect

    Konoplya, R.A.; Molina, C.

    2005-06-15

    We investigate the response of traversable wormholes to external perturbations through finding their characteristic frequencies and time-domain profiles. The considered solution describes traversable wormholes between the branes in the two brane Randall-Sundrum model and was previously found within Einstein gravity with a conformally coupled scalar field. The evolution of perturbations of a wormhole is similar to that of a black hole and represents damped oscillations (ringing) at intermediately late times, which are suppressed by power-law tails (proportional to t{sup -2} for monopole perturbations) at asymptotically late times.

  17. Reflex ring laser amplifier system

    DOEpatents

    Summers, Mark A.

    1985-01-01

    A laser pulse is injected into an unstable ring resonator-amplifier structure. Inside this resonator the laser pulse is amplified, spatially filtered and magnified. The laser pulse is recirculated in the resonator, being amplified, filtered and magnified on each pass. The magnification is chosen so that the beam passes through the amplifier in concentric non-overlapping regions similar to a single pass MOPA. After a number of passes around the ring resonator the laser pulse is spatially large enough to exit the ring resonator system by passing around an output mirror.

  18. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  19. Composite electrode for use in electrochemical cells

    DOEpatents

    Vanderborgh, Nicholas E.; Huff, James R.; Leddy, Johna

    1989-01-01

    A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode.

  20. Composite electrode for use in electrochemical cells

    DOEpatents

    Vanderborgh, N.E.; Huff, J.R.; Leddy, J.

    1987-10-16

    A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode. 4 figs., 1 tab.

  1. Two-image mosaic of Saturn's rings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This computer-assembled two-image mosaic of Saturn's rings, taken by NASA's Voyager 1 on Nov. 6, 1980 at a range of 8 million kilometers (5 million miles), shows approximately 95 individual concentric features in the rings. The extraordinarily complex structure of the rings is easily seen across the entire span of the ring system. The ring structure, once thought to be produced by the gravitational interaction between Saturn's satellites and the orbit of ring particles, has now been found to be too complex for this explanation alone. The 14th satellite of Saturn, discovered by Voyager 1, is seen (upper left) just inside the narrow F-ring, which is less than 150 kilometers (93 miles wide). The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  2. Swarming rings of bacteria.

    NASA Astrophysics Data System (ADS)

    Brenner, M. P.; Levitov, L. S.

    1996-03-01

    The behavior of bacterii controlled by chemotaxis can lead to a complicated spatial organization, producing swarming rings, and steady or moving aggregates( E. O. Budrene, and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630-633 (1991). ). We present a simple theory that explains the experimentally observed structures, by solving analytically two coupled differential equations, for the densities of bacterii and of chemoattractant. The equations have an interesting relation to the exactly solvable Burgers equation, and admit soliton-like solutions, that can be steady or moving. In addition, we find that there are singular solutions to the equations in which the bacterial density diverges. The theory agrees very well with the experiment: the solitons correspond to the observed travelling rings, the singularities describe formation of aggregates. In particular, the theory explains why the velocity of swarming rings decreases with the increase of the food concentration, the fact apparently not accounted by other existing approaches( L. Tsimring et. al., Phys. Rev. Lett., 75, 1859 (1995); Woodward, et al, Biophysical Journal, 68, 2181-2189 (1995). ).

  3. Research on degradation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment.

    PubMed

    Wang, Tao; Zhao, Huanping; Wang, Hui; Liu, Botan; Li, Chunqing

    2016-07-01

    The membrane electro-bioreactor (MEBR) is a novel technology, it treats wastewater by combining membrane filtration, electrokinetic phenomena, and biological processes in one reactor. This paper aims to deal with hard biodegradation and high concentration phenol wastewater. Investigating the influence factors such as initial concentration, voltage, pH value, temperature and mixed liquor suspended solids (MLSS) toward phenol degradation process in electrocatalytic process and membrane bioreactor (MBR), and then apply the optimum conditions in the MEBR system. Results of continuous flow experiments demonstrated that MEBR increased the quality of the treated wastewater than conventional MBR. The above technics followed the zero-order reaction kinetics. The removal efficiency of MEBR was about 11.1% higher for phenol than the sum of the two individual processes. With the help of gas chromatography/mass spectrometry (GC-MS), this qualitative analysis looks at the degradation products of phenol generated in MEBR, through which 2,6-di-tert-butyl-p-benzoquinone was confirmed as the main degradation product. PMID:27108366

  4. Charge neutralization process of mobile species at any distance from the electrode/solution interface. 2. Concentration gradients during potential pulse experiments.

    PubMed

    Garay, Fernando; Barbero, Cesar A

    2006-10-01

    The theoretical model presented in part 1 of this work is employed to simulate and fit experimental probe beam deflection (PBD) data of Fe(CN)6(3-)/Fe(CN)6(4-) and Fe3+/Fe2+ couples. Current and beam deviation dependency on time at constant potential (chronoamperometry and chronodeflectometry) is analyzed via a new treatment based on the migration and diffusion properties of all the species involved. The diffusion coefficients of electroactive species are obtained by fitting chronoamperometric curves. Those coefficients are then employed to simulate the respective chronodeflectometric profiles. The experimental data and the theoretical function are fitted by the minimum squares Simplex algorithm. The effect of working with systems in which both electroactive species are charged is discussed in detail. Specifically, the possibility of quantitative analysis of nonspecific techniques data is analyzed when a relative high concentration of supporting electrolyte is used. Such analysis widens the scope of techniques as PBD since in many cases the effect of supporting electrolyte species could be negligible as compared to the response of electroactive species. The variation of the refraction index with the concentration gradient of each soluble species is also discussed. PMID:17007492

  5. Effect of Aluminum concentration on structural and optical properties of DC reactive magnetron sputtered Zinc Aluminum Oxide thin films for transparent electrode applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Subba Rao, T.

    2012-11-01

    Zinc Aluminum Oxide(ZAO) thin films were deposited on glass substrates by DC reactive magnetron sputtering in an Ar+O2 gas mixture using commercial available Zn metal (99.99% purity) and Al (99.99% purity) targets of 2 inch diameter and 4 mm thickness. The films were characterized and the effect of aluminum (Al) concentration (2 at %-6 at %) on the structural and optical properties was studied. The average crystallite size obtained from Scherer formula is in the range of 32-44nm. Microstructural analysis using Scanning Electron Microscope (SEM) supplemented with EDS is carried out to find the grain size as well as to find the composition elemental data of prepared thin films. Optical study is performed to calculate the extinction coefficient (k), absorption coefficient (a), optical band gap (Eg) using transmission spectra obtained using UV-VIS-NIR spectrophotometer. There was widening of optical band gap with increasing aluminum concentration. ZAO film with low resistivity 3.2 × 10-4 cm and high transmittance of 80% is obtained for 3at% doped Al which is crucial for optoelectronic applications.

  6. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  7. Sequential flow membraneless microfluidic fuel cell with porous electrodes

    NASA Astrophysics Data System (ADS)

    Salloum, Kamil S.; Hayes, Joel R.; Friesen, Cody A.; Posner, Jonathan D.

    A novel convective flow membraneless microfluidic fuel cell with porous disk electrodes is described. In this fuel cell design, the fuel flows radially outward through a thin disk shaped anode and across a gap to a ring shaped cathode. An oxidant is introduced into the gap between anode and cathode and advects radially outward to the cathode. This fuel cell differs from previous membraneless designs in that the fuel and the oxidant flow in series, rather than in parallel, enabling independent control over the fuel and oxidant flow rate and the electrode areas. The cell uses formic acid as a fuel and potassium permanganate as the oxidant, both contained in a sulfuric acid electrolyte. The flow velocity field is examined using microscale particle image velocimetry and shown to be nearly axisymmetric and steady. The results show that increasing the electrolyte concentration reduces the cell Ohmic resistance, resulting in larger maximum currents and peak power densities. Increasing the flow rate delays the onset of mass transport and reduces Ohmic losses resulting in larger maximum currents and peak power densities. An average open circuit potential of 1.2 V is obtained with maximum current and power densities of 5.35 mA cm -2 and 2.8 mW cm -2, respectively (cell electrode area of 4.3 cm 2). At a flow rate of 100 μL min -1 a fuel utilization of 58% is obtained.

  8. Electrochemical oxidation of butein at glassy carbon electrodes.

    PubMed

    Tesio, Alvaro Yamil; Robledo, Sebastián Noel; Fernández, Héctor; Zon, María Alicia

    2013-06-01

    The electrochemical oxidation of flavonoid butein is studied at glassy carbon electrodes in phosphate and citrate buffer solutions of different pH values, and 1M perchloric acid aqueous solutions by cyclic and square wave voltammetries. The oxidation peak corresponds to the 2e(-), 2H(+) oxidation of the 3,4-dihydroxy group in B ring of butein, given the corresponding quinone species. The overall electrode process shows a quasi-reversible behavior and an adsorption/diffusion mixed control at high butein bulk concentrations. At low butein concentrations, the electrode process shows mainly an adsorption control. Butein surface concentration values were obtained from the charge associated with the adsorbed butein oxidation peaks, which are in agreement with those values expected for the formation of a monolayer of adsorbate in the concentration range from 1 to 5μM. Square wave voltammetry was used to perform a full thermodynamic and kinetics characterization of the butein surface redox couple. Therefore, from the combination of the "quasi-reversible maximum" and the "splitting of the net square wave voltammetric peak" methods, values of (0.386±0.003) V, (0.46±0.04), and 2.7×10(2)s(-1) were calculated for the formal potential, the anodic transfer coefficient, and the formal rate constant, respectively, of the butein overall surface redox process in pH4.00 citrate buffer solutions. These results will be then used to study the interaction of butein, and other flavonoids with the deoxyribonucleic acid, in order to better understand the potential therapeutic applications of these compounds. PMID:23434740

  9. Charge transport through a semiconductor quantum dot-ring nanostructure

    NASA Astrophysics Data System (ADS)

    Kurpas, Marcin; Kędzierska, Barbara; Janus-Zygmunt, Iwona; Gorczyca-Goraj, Anna; Wach, Elżbieta; Zipper, Elżbieta; Maśka, Maciej M.

    2015-07-01

    Transport properties of a gated nanostructure depend crucially on the coupling of its states to the states of electrodes. In the case of a single quantum dot the coupling, for a given quantum state, is constant or can be slightly modified by additional gating. In this paper we consider a concentric dot-ring nanostructure (DRN) and show that its transport properties can be drastically modified due to the unique geometry. We calculate the dc current through a DRN in the Coulomb blockade regime and show that it can efficiently work as a single-electron transistor (SET) or a current rectifier. In both cases the transport characteristics strongly depend on the details of the confinement potential. The calculations are carried out for low and high bias regime, the latter being especially interesting in the context of current rectification due to fast relaxation processes.

  10. Saturn's Spectacular Ring System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Saturn's beautiful rings have fascinated astronomers since they were first observed by Galileo in 1610. The main rings consist of solid particles mostly in the 1 cm - 10 m range, composed primarily of water ice. The ring disk is exceptionally thin - the typical local thickness of the bright rings is tens of meters, whereas the diameter of the main rings is 250,000 km! The main rings exhibit substantial radial variations "ringlets", many of which are actively maintained via gravitational perturbations from Saturn's moons. Exterior to the main rings lie tenuous dust rings, which have little mass but occupy a very large volume of space. This seminar will emphasize the physics of ring-moon interactions, recent advances in our understanding of various aspects of the rings obtained from observations taken during 1995 when the rings appeared edge-on to the Earth and then to the Sun, and observations in subsequent years from HST.

  11. Nuclear Rings in Galaxies - A Kinematic Perspective

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain

    2011-01-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  12. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  13. sensor electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Ma, Congcong; He, Lian; Zhu, Shijin; Hao, Xiaodong; Xie, Wanyi; Zhang, Wei; Zhang, Yuxin

    2014-11-01

    In this work, an ultrafast and facile method is developed to synthesize Au(I)-dodecanethiolate nanotubes (Au(I)NTs) with the assistance of glycyl-glycyl-glycine (G-G-G). Transmission electron microscopy (TEM) images reveal that the as-prepared Au(I)NTs can be obtained in a 2-h reaction instead of a previous 24-h reaction and are uniform with a hollow structure and smooth surface by virtue of the G-G-G peptide tubular template. According to structural analysis, a possible preparative mechanism is proposed that the G-G-G peptide could help to curl into tube-like morphology in alkaline situation spontaneously to accelerate the formation of Au(I)NTs. Meanwhile, PVDF-stabilized Au(I)NT-modified glassy carbon electrodes present their promising potential for Hg2+ detection.

  14. Actin Rings of Power.

    PubMed

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles. PMID:27326928

  15. New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring

    SciTech Connect

    de Pater, I; Hammel, H B; Gibbard, S G; Showalter, M R

    2006-02-02

    We compare near-infrared observations of the recently discovered outer rings of Uranus with HST results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced via impacts into the embedded moon Mab, which apparently orbits at a location where non-gravitational perturbations favor the survival and spreading of sub-micron sized dust. R/2003 U 2 more closely resembles Saturn's G ring.

  16. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  17. Enzyme nanoband electrodes

    SciTech Connect

    Wang, J.; Naser, N. ); Renschler, C.L. )

    1993-07-01

    Enzyme nanoelectrodes have been constructed by immobilizing glucose oxidase, alcohol oxidase or tyrosinase onto ultrathin carbon films (of 35-50 nm thickness). The enzyme immobilization is accomplished via entrapment within electropolymerized poly(o-phenylenediamine) coatings. Cyclic voltammetry and controlled-potential amperometry are used to characterize the performance of the new nanoscopic biosensors under different preparation and operation conditions. The resulting electrodes offer convenient and rapid measurements of millimolar substrate concentrations, and (to the best of the authors' knowledge) are the smallest enzyme probes reported to date. 10 refs., 7 figs.

  18. Stepped electrophoresis for movement and concentration of DNA

    DOEpatents

    Miles, Robin R.; Wang, Amy Wei-Yun; Mariella, Jr., Raymond P.

    2005-03-15

    A fluidic channel patterned with a series of thin-film electrodes makes it possible to move and concentrate DNA in a fluid passing through the fluidic channel. The DNA has an inherent negative charge and by applying a voltage between adjacent electrodes the DNA is caused to move. By using a series of electrodes, when one electrode voltage or charge is made negative with respect to adjacent electrodes, the DNA is repelled away from this electrode and attached to a positive charged electrode of the series. By sequentially making the next electrode of the series negative, the DNA can be moved to and concentrated over the remaining positive electrodes.

  19. resterilizable electrode for electrosurgery

    NASA Technical Reports Server (NTRS)

    Engstrom, E. R.; Houge, J. C.

    1979-01-01

    Required properties of flexibility, electrical conductivity, tensile strength, and tear resistance of electrosurgical electrodes is retained through utilization of flexible-polymer/conductive particle composites for electrodes.

  20. Pick-Up and Kicker Electrodes for the CR

    SciTech Connect

    Peschke, C.; Nolden, F.; Thorndahl, L.

    2006-03-20

    The collector ring (CR) of the proposed GSI project FAIR includes a fast stochastic cooling system for exotic nuclei and antiprotons. To reach a good signal to noise ratio of the pick-up even with a low number of particles, a novel pick-up and kicker electrode system based on slotlines is presented. The sensitivity and noise properties of electrode models are calculated. These are compared with other types of electrodes. Different options for signal processing and layout of a pick-up or kicker with many electrodes for different beam velocities are discussed.

  1. A topologically driven glass in ring polymers.

    PubMed

    Michieletto, Davide; Turner, Matthew S

    2016-05-10

    The static and dynamic properties of ring polymers in concentrated solutions remains one of the last deep unsolved questions in polymer physics. At the same time, the nature of the glass transition in polymeric systems is also not well understood. In this work, we study a novel glass transition in systems made of circular polymers by exploiting the topological constraints that are conjectured to populate concentrated solutions of rings. We show that such rings strongly interpenetrate through one another, generating an extensive network of topological interactions that dramatically affects their dynamics. We show that a kinetically arrested state can be induced by randomly pinning a small fraction of the rings. This occurs well above the classical glass transition temperature at which microscopic mobility is lost. Our work both demonstrates the existence of long-lived inter-ring penetrations and realizes a novel, topologically induced, glass transition. PMID:27118847

  2. A topologically driven glass in ring polymers

    NASA Astrophysics Data System (ADS)

    Michieletto, Davide

    2016-05-01

    The static and dynamic properties of ring polymers in concentrated solutions remains one of the last deep unsolved questions in polymer physics. At the same time, the nature of the glass transition in polymeric systems is also not well understood. In this work, we study a novel glass transition in systems made of circular polymers by exploiting the topological constraints that are conjectured to populate concentrated solutions of rings. We show that such rings strongly interpenetrate through one another, generating an extensive network of topological interactions that dramatically affects their dynamics. We show that a kinetically arrested state can be induced by randomly pinning a small fraction of the rings. This occurs well above the classical glass transition temperature at which microscopic mobility is lost. Our work both demonstrates the existence of long-lived inter-ring penetrations and realizes a novel, topologically induced, glass transition.

  3. Optimizing Thomson's jumping ring

    NASA Astrophysics Data System (ADS)

    Tjossem, Paul J. H.; Brost, Elizabeth C.

    2011-04-01

    The height to which rings will jump in a Thomson jumping ring apparatus is the central question posed by this popular lecture demonstration. We develop a simple time-averaged inductive-phase-lag model for the dependence of the jump height on the ring material, its mass, and temperature and apply it to measurements of the jump height for a set of rings made by slicing copper and aluminum alloy pipe into varying lengths. The data confirm a peak jump height that grows, narrows, and shifts to smaller optimal mass when the rings are cooled to 77 K. The model explains the ratio of the cooled/warm jump heights for a given ring, the reduction in optimal mass as the ring is cooled, and the shape of the mass resonance. The ring that jumps the highest is found to have a characteristic resistance equal to the inductive reactance of the set of rings.

  4. A new ring-shaped graphite monitor ionization chamber

    NASA Astrophysics Data System (ADS)

    Yoshizumi, M. T.; Caldas, L. V. E.

    2010-07-01

    A ring-shaped monitor ionization chamber was developed at the Instituto de Pesquisas Energéticas e Nucleares. This ionization chamber presents an entrance window of aluminized polyester foil. The guard ring and collecting electrode are made of graphite coated Lucite plates. The main difference between this new ionization chamber and commercial monitor chambers is its ring-shaped design. The new monitor chamber has a central hole, allowing the passage of the direct radiation beam without attenuation; only the penumbra radiation is measured by the sensitive volume. This kind of ionization chamber design has already been tested, but using aluminium electrodes. By changing the electrode material from aluminium to a graphite coating, an improvement in the chamber response stability was expected. The pre-operational tests, as saturation curve, recombination loss and polarity effect showed satisfactory results. The repeatability and the long-term stability tests were also evaluated, showing good agreement with international recommendations.

  5. Fast and precise positioning of single cells on planar electrode substrates.

    PubMed

    Thielecke, H; Stieglitz, T; Beutel, H; Matthies, T; Ruf, H H; Meyer, J U

    1999-01-01

    For cell biosensors and for studying neural networks using planar electrode substrates, a suitable technique for positioning single cells on electrodes was needed. We reported a new method for fast and efficient positioning of single cells on ring electrodes by controlled suction through holes. We described the microfabrication of electrode substrates with microholes and the cell positioning procedure. L929 cells and Neuro 2A cells could be positioned in parallel without cell damage. PMID:10576072

  6. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  7. On semi ring bornologies

    NASA Astrophysics Data System (ADS)

    Imran, A. N.; Rakhimov, I. S.; Husain, Sh. K. Said

    2016-06-01

    Our main focus in this work is to introduce new structure bornological semi rings. This generalizes the theory of algebraic semi rings from the algebraic setting to the framework of bornological sets. We give basic properties for this new structure. As well as, We study the fundamental construction of bornological semi ring as product, inductive limits and projective limits and their extensions on bornological semi ring. Additionally, we introduce the category of bornological semi rings and study product and pullback (fiber product) in the category of bornological semi rings.

  8. Ring wormholes via duality rotations

    NASA Astrophysics Data System (ADS)

    Gibbons, Gary W.; Volkov, Mikhail S.

    2016-09-01

    We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy-Voorhees-Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than -c4 / 4 G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  9. Bioanalysis with Potentiometric Membrane Electrodes.

    ERIC Educational Resources Information Center

    Rechnitz, G. A.

    1982-01-01

    Discusses major themes and interrelationships common to bioselective potentiometric membrane electrodes including the nature of bioselective electrodes, applications, and future prospects. Includes tables on traditional ion-selective membrane electrodes, nontraditional electrodes, and typical biocatalytic potentiometric electrodes. (Author/JN)

  10. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  11. Fundamental electrode kinetics

    NASA Technical Reports Server (NTRS)

    Elder, J. P.

    1968-01-01

    Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics.

  12. New dust belts of Uranus: one ring, two ring, red ring, blue ring.

    PubMed

    de Pater, Imke; Hammel, Heidi B; Gibbard, Seran G; Showalter, Mark R

    2006-04-01

    We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings. PMID:16601188

  13. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  14. Neptune - full ring system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This pair of Voyager 2 images (FDS 11446.21 and 11448.10), two 591-s exposures obtained through the clear filter of the wide angle camera, show the full ring system with the highest sensitivity. Visible in this figure are the bright, narrow N53 and N63 rings, the diffuse N42 ring, and (faintly) the plateau outside of the N53 ring (with its slight brightening near 57,500 km).

  15. Variability of electrode positions using electrode caps.

    PubMed

    Atcherson, Samuel R; Gould, Herbert Jay; Pousson, Monique A; Prout, Tina M

    2007-01-01

    We investigated the variability of electrode positions for a multi-channel, custom electrode cap placed onto participants' heads without taking scalp measurements. The electrode positions were digitized in a three-dimensional space for 10 young adult participants on three separate occasions. Positional variability was determined for 15 selected electrodes within the three-dimensional preauricular-nasion (PAN) coordinate system and from this system, angular coordinate variability was also determined. The standard deviations of the 15 selected electrodes ranged from 3.0 to 12.7 mm in the PAN system. These data resulted in a variability of 2.0 degrees to 10.4 degrees among the angular coordinates. The measurements indicated slightly greater variability of electrode positions compared to studies when electrodes were placed using scalp measurements. The implication of this study is that the use of electrode caps may not be appropriate when electroencephalographic (EEG) or evoked potential (EP) techniques depend on accurate electrode placement. Additionally, if a longitudinal study is performed, electrode locations should be checked to ensure that they conform with previous sessions. PMID:17929157

  16. Beam dynamics in a storage ring for neutral (polar) molecules

    SciTech Connect

    Lambertson, Glen R.

    2003-05-01

    The force from a non-uniform electric field on the electric dipole moment of a molecule may be used to circulate and focus molecules in a storage ring. The nature of the forces from multipole electrodes for bending and focusing are described for strong-field-seeking and for weak-field-seeking molecules. Fringe-field forces are analyzed. Examples of storage ring designs are presented; these include long straight sections and provide bunching and acceleration.

  17. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  18. Connectivity among sinkholes and complex networks: The case of Ring of Cenotes in northwest Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Gomez-Nicolas, Mariana; Rebolledo-Vieyra, Mario; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain

    2014-05-01

    A 180-km-diameter semicircular alignment of abundant karst sinkholes (locally known as cenotes) in northwestern Yucatán, México, coincides approximately with a concentric ring of the buried Chicxulub structure, a circular feature manifested in Cretaceous and older rocks, that has been identified as the product of the impact of a meteorite. The secondary permeability generated by the fracturing and faulting of the sedimentary sequence in the Chicxulub impact, has favored the karstification process and hence the development of genuine underground rivers that carry water from the continent to the sea. The study of the structure and morphology of the crater has allowed researchers to understand the key role of the crater in the Yucatán hydrogeology. It is generally accepted that the Ring of Cenotes, produced by the gravitational deformation of the Tertiary sedimentary sequence within the crater, controls the groundwater in northern Yucatán. However, today there is not solid evidence about the connectivity among cenotes, which is important because if established, public policies could be designed to manage sanitary infrastructure, septic control, regulation of agricultural and industrial activities and the protection of water that has not been compromised by anthropogenic pollution. All these directly affect more than half a million people whose main source of drinking water lies in the aquifer. In this contribution we investigated a set of 16 cenotes located in the vicinity of a gravimetric anomaly of Chicxulub crater ring, using complex networks to model the interconnectivity among them. Data from a geoelectrical tomography survey, collected with SuperSting R1/IP equipment, with multi-electrodes (72 electrodes), in a dipole-dipole configuration was used as input of our model. Since the total number of cenotes on the ring structure amounts to about 2000, the application of graph theoretic algorithms and Monte Carlo simulation to efficiently investigate network

  19. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  20. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 0.75 million km from Saturn on 12 November 1980. The kinks and braids of this tightly-constrained ring are visible along with the outer edge of the A Ring. JPL managed the Voyager Project for NASA's Office of Space Science.

  1. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  2. Jovian Ring System Mosaic

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Galileo spacecraft acquired this mosaic of Jupiter's ring system (top) when the spacecraft was in Jupiter's shadow looking back toward the Sun. Jupiter's ring system (inset diagram) is composed of three parts: an outermost gossamer ring, a flat main ring, and an innermost donut-shaped halo. These rings are made up of dust-sized particles that are blasted off of the nearby inner satellites by small impacts. This image was taken on November 9, 1996 at a distance of 2.3 million kilometers (1.4 million miles).

  3. Soldering-based easy packaging of thin polyimide multichannel electrodes for neuro-signal recording

    NASA Astrophysics Data System (ADS)

    Baek, Dong-Hyun; Han, Chang-Hee; Jung, Ha-Chul; Kim, Seon Min; Im, Chang-Hwan; Oh, Hyun-Jik; Jungho Pak, James; Lee, Sang-Hoon

    2012-11-01

    We propose a novel packaging method for preparing thin polyimide (PI) multichannel microelectrodes. The electrodes were connected simply by making a via-hole at the interconnection pad of a thin PI electrode, and a nickel (Ni) ring was constructed by electroplating through the via-hole to permit stable soldering with strong adhesion to the electrode and the printed circuit board. The electroplating conditions were optimized for the construction of a well-organized Ni ring. The electrical properties of the packaged electrode were evaluated by fabricating and packaging a 40-channel thin PI electrode. Animal experiments were performed using the packaged electrode for high-resolution recording of somatosensory evoked potential from the skull of a rat. The in vivo and in vitro tests demonstrated that the packaged PI electrode may be used broadly for the continuous measurement of bio-signals or for neural prosthetics.

  4. Controlled porosity in electrodes

    SciTech Connect

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  5. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  6. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  7. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus. PMID:19812546

  8. Raman spectra of rings in silicate material

    SciTech Connect

    Tallant, D.R.; Bunker, B.C.; Brinker, C.J.; Balfe, C.A.

    1986-01-01

    Raman spectroscopic studies on gel-derived silicates have confirmed that narrow bands near 607 cm-1 and 492 cm-1, first observed in the Raman spectrum of fused silica, are associated with three- and four-fold siloxane rings. Using these results, we have identified three- and four-fold siloxane rings in other high-surface-area silica materials, including leached glasses and Cab-O-Sil. This Raman spectroscopic evidence not only shows that small siloxane rings are a common characteristic of a number of silica materials but also suggests that they form preferentially at silica surfaces. This paper reviews the Raman spectroscopic evidence that led to the identification of the vibrational frequencies of the small siloxane rings and presents the results of Raman experiments on high-surface-area silica materials in which the concentration of small siloxane rings is enhanced compared to fused silica.

  9. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  10. O-ring sealing arrangements for ultra-high vacuum systems

    SciTech Connect

    Flaherty, R.; Kim, C.

    1981-08-04

    An all metal reusable o-ring sealing arrangement is disclosed for sealing two concentric tubes in an ultra-high vacuum system. An o-ring of a heat recoverable alloy such as nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The o-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the o-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.