Science.gov

Sample records for conceptual design activities

  1. Engineering Design Activities and Conceptual Change in Middle School Science

    ERIC Educational Resources Information Center

    Schnittka, Christine G.

    2009-01-01

    The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative…

  2. Engineering design activities and conceptual change in middle school science

    NASA Astrophysics Data System (ADS)

    Schnittka, Christine G.

    The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative groups. One eighth-grade physical science teacher and her students participated in a unit on heat transfer and thermal energy. One class served as the control while two others received variations of an engineering design treatment. Data were gathered from teacher and student entrance and exit interviews, audio recordings of student dialog during group work, video recordings and observations of all classes, pre- and posttests on science content and engineering attitudes, and artifacts and all assignments completed by students. Qualitative and quantitative data were collected concurrently, but analysis took place in two phases. Qualitative data were analyzed in an ongoing manner so that the researcher could explore emerging theories and trends as the study progressed. These results were compared to and combined with the results of the quantitative data analysis. Analysis of the data was carried out in the interpretive framework of analytic induction. Findings indicated that students overwhelmingly possessed alternative conceptions about heat transfer, thermal energy, and engineering prior to the interventions. While all three classes made statistically significant gains in their knowledge about heat and energy, students in the engineering design class with the targeted demonstrations made the most significant gains over the other two other classes. Engineering attitudes changed significantly in the two classes that received the engineering design intervention. Implications from this study can inform teachers' use of engineering design activities in science classrooms. These implications are: (1) Alternative conceptions will

  3. DDE-MURR Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2013-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2 (BR2). Revision 0 of this report was prepared at the end of government fiscal year 2012 when most of the resources for furthering DDE design work were expected to be postponed. Hence, the conceptual design efforts were summarized to provide the status of key objectives, notable results, and provisions for future design work. Revision 1 of this report was prepared at the end of fiscal year 2013 in order to include results from a neutronic study performed by BR2, to incorporate further details that had been achieved in the engineering sketches of the irradiation devices, and to provide an update of the DDE-MURR campaign in relation to program objectives and opportunities for its eventual irradiation. These updates were purposed to bring the DDE-MURR conceptual design to level of maturity similar to that of the other two DDE efforts (DDE-MITR and DDE-NBSR). This report demonstrates that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also puts forth several recommendations in order to facilitate success of the irradiation campaign.

  4. DDE-MITR Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; R.B. Nielson; J.D. Wiest; J.W. Nielsen; G.A. Roth; S.D. Snow

    2012-09-01

    The Design Demonstration Experiment for the Massachusetts Institute of Technology Reactor (DDE-MITR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MITR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MITR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MITR.

  5. DDE-MURR Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2012-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MURR.

  6. DDE-NBSR Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; R.B. Nielson; B.P. Durtschi; C.R. Glass; G.A. Roth; D.T. Clark

    2012-09-01

    The Design Demonstration Experiment for the National Bureau of Standard Reactor (DDE-NBSR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the NBSR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-NBSR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the NBSR.

  7. KJRR-FAI Status Report of Conceptual Design Activities

    SciTech Connect

    N.E. Woolstenhulme; B.P. Nielson; D.B. Chapman; J.W. Nielsen; P.E. Murray; D.S. Crawford; S.D. Snow

    2013-12-01

    The Korea Atomic Energy Research Institute has initiated the Ki-Jang Research Reactor (KJRR) project to construct a new dedicated radio-isotope production facility in the KiJang province of South Korea. The KJRR will employ a uranium-molybdenum dispersion plate-type fuel clad in aluminum. The KJRR fuel assembly design will undergo irradiation in the Advanced Test Reactor (ATR) as part of the regulatory qualification of the fuel. The Idaho National Laboratory performed a multi-disciplined conceptual design effort and found that one full-size KJRR fuel assembly can be irradiated in the ATR’s north east flux trap. The analyses accomplished during the conceptual design phase are sufficient to prove viability of the overall design and irradiation campaign. Requirements for fission power can be met. The desired burnup can be achieved well within 15% depending on reactor operating availability. Mechanical design and structural analysis show that structural integrity of the irradiation test is maintained. It is recommended that future detailed design efforts be based on the concept described in this report.

  8. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  9. Conceptual design of large-bore superconducting quadrupoles with active magnetic shielding for the AHF

    SciTech Connect

    Vladimir Kashikhin et al.

    2003-06-09

    The Advanced Hydrotest Facility, under study by LANL, uses large-bore superconducting quadrupole magnets. In the paper we discuss the conceptual design of such quadrupoles using active shielding. The magnets are specified to achieve gradients of up to 24 T/m with a 28-cm warm bore and to have 0.01% field quality. Concepts for quench protection and the magnet cryosystems are also briefly discussed to confirm the viability of the proposed design.

  10. SLC ir conceptual design

    SciTech Connect

    Keller, L.P.

    1982-06-21

    Work on a one interaction-region, push-pull conceptual design for the SLC is described. The concept which has received the most attention is described. It is a below-ground hall - a 15 m deep rectangular pit covered by a surface building which houses counting rooms, power supplies, cryogenics and other auxiliary equipment. (LEW)

  11. Rotorcraft Conceptual Design Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Sinsay, Jeffrey D.

    2010-01-01

    Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

  12. Rotorcraft Conceptual Design Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Sinsay, Jeffrey

    2009-01-01

    Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

  13. PRA and Conceptual Design

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Fuqua, Bryan; Wilson, Paul

    2013-01-01

    Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.

  14. Shuttle freezer conceptual design

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Russell, D. J.

    1975-01-01

    A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.

  15. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    SciTech Connect

    Rennich, M.J.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  16. Electronic aids to conceptual design

    NASA Technical Reports Server (NTRS)

    Bouchard, Eugene E.

    1990-01-01

    Presented in viewgraph form are techniques to improve the conceptual design of complex systems. The paper discusses theory of design, flexible software tools for computer aided design, and methods for enhancing communication among design teams.

  17. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.

    1992-01-01

    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.

  18. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward

    1989-01-01

    A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.

  19. PHENIX Conceptual Design Report

    SciTech Connect

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e[mu] coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study [pi][sup 0] and [eta] production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the [phi] meson (via K[sup +]K[sup [minus

  20. CONCEPTUAL DESIGN REPORT

    SciTech Connect

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.

  1. ERHIC Conceptual Design

    SciTech Connect

    Ptitsyn,V.; Beebe-Wang,J.; Ben-Zvi,I.; Fedotov, A.; Fischer, W.; Hao, Y.; Kayran, D.; Litvinenko, V.N.; MacKay, W.W.; Montag, C.; Pozdeyev, E.; Roser, T.; Trbojevic, D.; Tsoupas, N.; Tsentalovich, E.

    2008-08-25

    The conceptual design of the high luminosity electron-ion collider, eRHIC, is presented. The goal of eRHIC is to provide collisions of electrons (and possibly positrons) with ions and protons at the center-of-mass energy range from 25 to 140 GeV, and with luminosities exceeding 10{sup 33} cm{sup -2} s{sup -1}. A considerable part of the physics program is based on polarized electrons, protons and He3 ions with high degree of polarization. In eRHIC electron beam will be accelerated in an energy recovery linac. Major R&D items for eRHIC include the development of a high intensity polarized electron source, studies of various aspects of energy recovery technology for high power beams and the development of compact magnets for recirculating passes. In eRHIC scheme the beam-beam interaction has several specific features, which have to be thoroughly studied. In order to maximize the collider luminosity, several upgrades of the existing RHIC accelerator are required. Those upgrades may include the increase of intensity as well as transverse and longitudinal cooling of ion and proton beams.

  2. SP-100 system definition conceptual reference design activities: February through June 1983. Technical information report

    SciTech Connect

    Fortenberry, J.W.; Moore, D.M.; Petrick, S.W.; Smoak, R.H.

    1983-12-01

    The original SP-100 conceptual system design was examined from the mechanical design and integration viewpoint for the purpose of updating the design, identifying concerns, and providing recommendations for future work. Some of the findings were that: Integration of heat pipes into the radiator structure appears practical, but a number of problems remain to be addressed and resolved through development effort; thermal and structural interfacing of the shield and defining shield weight are key areas that need to be addressed; the radiator may be critical in shell buckling which would make beryllium a leading candidate material; material problems such as beryllium vs. shuttle fracture mechanics criteria need to be addressed.

  3. Conceptual design of lunar lander

    NASA Astrophysics Data System (ADS)

    Iwata, Tsutomu; Eto, Takao; Kaneko, Yutaka; Kawazoe, Takeshi; Kaneko, Kazuhisa; Tanaka, Toshiyuki; Yamamoto, Masaya

    Lunar exploration/development will be one of the most significant future space activities. In the initial phase of lunar exploration, various unmanned missions will be undertaken and effective transportation means will be required. This paper discusses the results of the conceptual design of a Japanese lunar lander to be used in such explorations. The lunar lander would be launched on a Japanese H-II launch vehicle and would transport a payload, such as a lunar mobile explorer or a lunar sample return vehicle, on to the Moon. Requirements definition, mission analysis, system and subsystem definition of a lunar lander were performed. Our analysis shows that it should be able to carry an 750 kg payload onto the lunar surface. This lunar lander features are summarized.

  4. MINIMARS conceptual design: Final report

    SciTech Connect

    Lee, J.D.

    1986-09-01

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate. (MOW)

  5. Changing Concepts in Activity: Descriptive and Design Studies of Consequential Learning in Conceptual Practices

    ERIC Educational Resources Information Center

    Hall, Rogers; Jurow, A. Susan

    2015-01-01

    Concepts and conceptual change have been studied extensively as phenomena of individual thinking and action, but changing circumstances of social or cultural groups using concepts are treated as external conditions. We describe research on consequential learning in conceptual practices, where concepts include representational infrastructure that…

  6. ESOPO: Conceptual Design

    NASA Astrophysics Data System (ADS)

    Gonzalez, J.; Cobos, F.; Echevarria, J.; Costero, R.; Farah, A.; Garfias, F.; Sierra, G.; Pedrayes, M.; Colorado, E.; Quiros, F.; Murillo, F.; Michel, R.

    2006-08-01

    The ESOPO spectrograph is a key project of the Instituto de Astronomía of the Universidad Nacional Autónoma de México to upgrade its 2.1m telescope as a competitive facility for the next decade. The science goals call for a high-efficiency general-purpose spectrograph that covers, in a single exposure, the whole 3500 - 9000 Å spectral interval with a R~ 4000 spectral resolution, for the study of stellar and extended galactic and extragalactic sources. The double arm spectrograph provides R< 4000 modes, for sky-limited observations, as well as high resolution (R>~5000) modes for detailed studies under limited wavelength ranges, with minimal moving parts. The instrument has a variable-width 10´-long slit, but the optical design was optimized also to for multi-object masks and direct imaging. This poster summarizes the ESOPO specifications and requirements, as well as some design details of this highly efficient and stable spectrograph, showing the capabilities that substantially increase the scientific grasp of a moderate aperture telescope.

  7. Conceptual design summary

    SciTech Connect

    Peretz, F.J.

    1992-09-01

    The Advanced Neutron Source (ANS) is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux for these experiments will be at least five times, and in some cases twenty times, more than is available at the world's best existing facilities. In addition, ANS will provide irradiation capabilities for the production of radioisotopes for medical applications, research, and industry and facilities for materials irradiation testing. The need for a new steady-state neutron research facility in the United States was emphasized by the 1984 National Academy Report and confirmed by the Department of Energy's (DOE's) Energy Research Advisory Board in 1985. These studies defined a minimum thermal neutron flux requirement of 5 {times} 10{sup 19} m{sup {minus}2} {center dot} s{sup {minus}1}. The National Steering Committee for an Advanced Neutron Source, with representation from the major fields of science that will use the facility, was established in 1986 and has continued to define the performance requirements and instrument layouts needed by the user community. To minimize technical risks and safety issues, the project adopted a policy of not relying upon new inventions to meet the minimum performance criteria, and the design presented in this report is built on technologies already used in other facilities and development programs: for example, the involute aluminum-clad fuel plates common to HFIR and ILL and the uranium silicide fuel developed in DOE's Reduced Enrichment for Research and Test Reactors program and tested in reactors worldwide. At the same time, every state-of-the-art technique has been implemented to optimize neutron beam delivery at the experiments.

  8. Conceptual design summary

    SciTech Connect

    Peretz, F.J.

    1992-09-01

    The Advanced Neutron Source (ANS) is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux for these experiments will be at least five times, and in some cases twenty times, more than is available at the world`s best existing facilities. In addition, ANS will provide irradiation capabilities for the production of radioisotopes for medical applications, research, and industry and facilities for materials irradiation testing. The need for a new steady-state neutron research facility in the United States was emphasized by the 1984 National Academy Report and confirmed by the Department of Energy`s (DOE`s) Energy Research Advisory Board in 1985. These studies defined a minimum thermal neutron flux requirement of 5 {times} 10{sup 19} m{sup {minus}2} {center_dot} s{sup {minus}1}. The National Steering Committee for an Advanced Neutron Source, with representation from the major fields of science that will use the facility, was established in 1986 and has continued to define the performance requirements and instrument layouts needed by the user community. To minimize technical risks and safety issues, the project adopted a policy of not relying upon new inventions to meet the minimum performance criteria, and the design presented in this report is built on technologies already used in other facilities and development programs: for example, the involute aluminum-clad fuel plates common to HFIR and ILL and the uranium silicide fuel developed in DOE`s Reduced Enrichment for Research and Test Reactors program and tested in reactors worldwide. At the same time, every state-of-the-art technique has been implemented to optimize neutron beam delivery at the experiments.

  9. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    SciTech Connect

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  10. Conceptual design report for waste incineration development activity. Internal technical report

    SciTech Connect

    Logan, J.A.; Maughan, R.Y.; Withers, S.R.

    1981-11-01

    This project consists of establishing the Waste Incineration Development Activity (WIDA) in the Waste Experimental Reduction Facility (WERF). The purpose of this project is to develop the capability to incinerate low-level beta/gamma contamination waste. After process development has been completed, and incineration system reliability has been proven, the incinerator will be used for volume reduction of the Idaho National Engineering Lab's (INEL) combustible contaminated waste. Future development activities to be performed within the WIDA include ash solidification, alternate off-gas treatment, nuclide migration studies, and remotization of the incineration and ash solidification processes. This project will include systems to characterize the waste and convey the waste to the incinerator, incinerate the waste, cool and drum the resulting ash, and condition and filter the off-gas. Equipment to be installed in support of this task include an x-ray system, conveyors, a controlled air incinerator, ash handling equipment, a heat-exchanger, high temperature ducting, a spark arrester, exhaust fans, HEPA filters and an auxiliary power supply. This project is estimated to cost $1,900,000. Design will be performed by EG and G Idaho, Inc. and construction by Morrison-Knudsen Co. utilizing fixed price subcontracts. Design is scheduled to be completed by the end of February 1982 and construction by the end of July 1982. This schedule assumes funding is and will remain available from the first day of fiscal year 82. Any funding deficiency will directly affect EG and G's ability to meet this schedule.

  11. Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

    NASA Astrophysics Data System (ADS)

    Barbera, Marco; Argan, A.; Bozzo, E.; Branduardi-Raymont, G.; Ciaravella, A.; Collura, A.; Cuttaia, F.; Gatti, F.; Jimenez Escobar, A.; Lo Cicero, U.; Lotti, S.; Macculi, C.; Mineo, T.; Nuzzo, F.; Paltani, S.; Parodi, G.; Piro, L.; Rauw, G.; Sciortino, L.; Sciortino, S.; Villa, F.

    2016-02-01

    ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe." One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T < 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal filters.

  12. Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

    NASA Astrophysics Data System (ADS)

    Barbera, Marco; Argan, A.; Bozzo, E.; Branduardi-Raymont, G.; Ciaravella, A.; Collura, A.; Cuttaia, F.; Gatti, F.; Jimenez Escobar, A.; Lo Cicero, U.; Lotti, S.; Macculi, C.; Mineo, T.; Nuzzo, F.; Paltani, S.; Parodi, G.; Piro, L.; Rauw, G.; Sciortino, L.; Sciortino, S.; Villa, F.

    2016-08-01

    ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe." One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T < 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal filters.

  13. Preliminary conceptual design of DEMO EC system

    SciTech Connect

    Garavaglia, S. Bin, W.; Bruschi, A.; Granucci, G.; Moro, A.; Rispoli, N.; Grossetti, G.; Strauss, D.; Jelonnek, J.; Tran, Q. M.; Franke, T.

    2015-12-10

    In the framework of EUROfusion Consortium the Work Package Heating and Current Drive addresses the engineering design and R&D for the electron cyclotron, ion cyclotron and neutral beam systems. This paper reports the activities performed in 2014, focusing on the work done regarding the input for the conceptual design of the EC system, particularly for the gyrotron, the transmission line and the launchers.

  14. Preliminary conceptual design of DEMO EC system

    NASA Astrophysics Data System (ADS)

    Garavaglia, S.; Bin, W.; Bruschi, A.; Granucci, G.; Grossetti, G.; Jelonnek, J.; Moro, A.; Rispoli, N.; Strauss, D.; Tran, Q. M.; Franke, T.

    2015-12-01

    In the framework of EUROfusion Consortium the Work Package Heating and Current Drive addresses the engineering design and R&D for the electron cyclotron, ion cyclotron and neutral beam systems. This paper reports the activities performed in 2014, focusing on the work done regarding the input for the conceptual design of the EC system, particularly for the gyrotron, the transmission line and the launchers.

  15. Conceptual design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1989-01-01

    The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near

  16. CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY

    EPA Science Inventory

    The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...

  17. Conceptual design of the National Ignition Facility

    SciTech Connect

    Paisner, J.A.; Kumpan, S.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.

    1995-08-02

    DOE commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KDO), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994.2 Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a Key Decision One (KD1) for the NIF, which approved the Project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. The Project will cost approximately $1.1 billion and will be completed at the end of FY 2002.

  18. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    SciTech Connect

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  19. Conceptual Design of an APT Reusable Spaceplane

    NASA Astrophysics Data System (ADS)

    Corpino, S.; Viola, N.

    Safety characteristics. Several applications of this conceptual design methodology have been carried out in order to validate it. Here we will show one of the most challenging case studies: the APT73 spaceplane. Today the demand for getting access to space is increasing and fully reusable launch vehicles are likely to play a key role in future space activities, but up until now this kind of space system has not been successfully developed. The ideal reusable launcher should be a vehicle able to maintain physical integrity during its mission, to takeoff and land at any conventional airport, to be operated with a minimum maintenance effort and to guarantee an adequate safety level. Thanks to its flexibility it should be able to enter the desired orbital plane and to abort its mission any time in case of mishap. Moreover considerable cost reduction could be expected only by having extremely high launch rates comparable to today's aircraft fleets in the commercial airlines business. In our opinion the solution which better meets these specifications is the Aerial Propellant Transfer spaceplane concept, the so called "one stage and a half" space vehicle, which takes off and climbs to meet a tanker aircraft to be aerially re-fuelled and then, after disconnecting from the tanker, it flies to reach the orbit. The APT73 has been designed to reach the Low Earth Orbit to perform two kinds of mission: 1) to release payloads; 2) to be flown as crew return vehicle from the ISS. The concept has emerged from a set of preliminary choices established at the beginning of the project: Possible variants to the basic plan have been investigated and a trade off analysis has been carried out in order to obtain the optimum configuration. Listed below are the options that have been evaluated: This paper provides a technical description of the APT73 and illustrates the design challenges encountered in the development of the project.

  20. Structural Analysis in a Conceptual Design Framework

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  1. Conceptual design of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Paisner, Jeffrey A.; Boyes, John D.; Kumpan, Steven A.; Lowdermilk, W. Howard; Sorem, Michael S.

    1995-12-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a conceptual design report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a key decision zero (KD0), justification of mission need. Motivated by the progress to date by the inertial confinement fusion (ICF) program in meeting the Nova technical contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 micrometer) of neodymium (Nd) glass. The participating ICF laboratories signed a memorandum of agreement in August 1993, and established a project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE defense program's site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a facilities requirements document, a conceptual design scope and plan, a target physics design document, a laser design cost basis document, a functional requirements document, an experimental plan for indirect drive ignition, and a preliminary hazards analysis (PHA) document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a key decision one (KD1) for the NIF, which approved the project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. In February 1995, the NIF Project was

  2. Conceptual design. Final report: TFE Verification Program

    SciTech Connect

    Not Available

    1994-03-01

    This report documents the TFE Conceptual Design, which provided the design guidance for the TFE Verification program. The primary goals of this design effort were: (1) establish the conceptual design of an in-core thermionic reactor for a 2 Mw(e) space nuclear power system with a 7-year operating lifetime; (2) demonstrate scalability of the above concept over the output power range of 500 kW(e) to 5 MW(e); and (3) define the TFE which is the basis for the 2 MW (e) reactor design. This TFE specification provided the basis for the test program. These primary goals were achieved. The technical approach taking in the conceptual design effort is discussed in Section 2, and the results are discussed in Section 3. The remainder of this introduction draws a perspective on the role that this conceptual design task played in the TFE Verification Program.

  3. Modular biowaste monitoring system conceptual design

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1974-01-01

    The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.

  4. Shuttle mission simulator software conceptual design

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.

  5. Mars orbiter conceptual systems design study

    NASA Technical Reports Server (NTRS)

    Dixon, W.; Vogl, J.

    1982-01-01

    Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.

  6. Toward Right-Fidelity Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Sinsay, Jeffrey D.; Johnson, Wayne

    2010-01-01

    The aviation Advanced Design Office (ADO) of the US Army Aeroflightdynamics Directorate (AMRDEC) performs conceptual design of advanced Vertical Takeoff and Landing (VTOL) concepts in support of the Army's development and acquisition of new aviation systems. In particular, ADO engages in system synthesis to assess the impact of new technologies and their application to satisfy emerging warfighter needs and requirements. Fundamental to ADO being successful in accomplishing its role; is the ability to evaluate a wide array of proposed air vehicle concepts, and independently synthesize new concepts to inform Army and DoD decision makers about the tradespace in which decisions will be made (Figure 1). ADO utilizes a conceptual design (CD) process in the execution of its role. Benefiting from colocation with NASA rotorcraft researchers at the Ames Research Center, ADO and NASA have engaged in a survey of the current rotorcraft PD practices and begun the process of improving those capabilities to enable effective design and development of the next generation of VTOL systems. A unique aspect of CD in ADO is the fact that actual designs developed in-house are not intended to move forward in the development process. Rather, they are used as reference points in discussions about requirements development and technology impact. The ultimate products of ADO CD efforts are technology impact assessments and specifications which guide industry design activity. The fact that both the requirement and design are variables in the tradespace adds to the complexity of the CD process. A frequent need is ability to assess the relative "cost" of variations in requirement for a diverse set of VTOL configurations. Each of these configurations may have fundamentally different response characteristics to this requirement variation, and such insight into how different requirements drive different designs is a critical insight ADO attempts to provide decision makers. The processes and tools

  7. Conceptual Design for Consolidation TCAP

    SciTech Connect

    Klein, J.E.

    1999-02-22

    Two alternate Thermal Cycling Absorption Process (TCAP) designs have been developed for the Tritium Facility Modernization and Consolidation (TFM and C) Project. The alternate designs were developed to improve upon the existing Replacement Tritium Facility (RTF) TCAP design and to eliminate the use of building distributed hot and cold nitrogen system.A brief description of TCAP theory and modeling is presented, followed by an overview of the design criteria for the Isotope Separation System (ISS). Both designs are described in detail, along with a generic description of the complete TCAP system. A design is recommend for the Consolidation Project, and a development plan for both designs is proposed.

  8. Conceptual design report for site drainage control

    SciTech Connect

    Hunter, M.R.

    1996-07-01

    The Mound Plant (Mound), located in Miamisburg, Ohio, is a Department of Energy (DOE) development and production facility performing support work for DOE`s weapons and energy-related programs. EG&G Mound Applied Technologies, Inc. (EG&G) is the Operating Contractor (OC) for this Government-Owned, Contractor-Operated (GOCO) facility. The work performed at Mound emphasizes nuclear energy and explosives technology. Mound is currently implementing an Environmental, Safety & Health (ES&H) Upgrades Program designed to protect its employees, the public, and the environment from adverse effects caused by facility activities. The first project of this multiphase program is now in the final stages of construction, and the second project is currently under design. Four additional projects, one of which is presented in this report, are in the conceptual design stage. At Mound, 22 soil zones have become contaminated with radioactive material. These zones cover approximately 20 percent of the total area of developed property at the site. During a storm event, the rainwater washes contaminated soil from these zones into the storm sewer system. These radioactive contaminants may then be discharged along with the stormwater into the Great Miami River via the Miami Erie Canal. This conceptual design report (CDR), Site Drainage Control, the fourth project in the ES&H program, describes a project that will provide improvements and much needed repairs to inadequate and deteriorating portions of the storm drainage system on the developed property. The project also will provide a stormwater retention facility capable of storing the stormwater runoff, from the developed property, resulting from a 100-year storm event. These improvements will permit the effective control and monitoring of stormwater to prevent the spread of radioactive contaminants from contaminated soil zones and will provide a means to collect and contain accidental spills of hazardous substances.

  9. Conceptual design of a data reduction system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A telemetry data processing system was defined of the Data Reduction. Data reduction activities in support of the developmental flights of the Space Shuttle were used as references against which requirements are assessed in general terms. A conceptual system design believed to offer significant throughput for the anticipated types of data reduction activities is presented. The design identifies the use of a large, intermediate data store as a key element in a complex of high speed, single purpose processors, each of which performs predesignated, repetitive operations on either raw or partially processed data. The recommended approach to implement the design concept is to adopt an established interface standard and rely heavily on mature or promising technologies which are considered main stream of the integrated circuit industry. The design system concept, is believed to be implementable without reliance on exotic devices and/or operational procedures. Numerical methods were employed to examine the feasibility of digital discrimination of FDM composite signals, and of eliminating line frequency noises in data measurements.

  10. Shuttle mission simulator hardware conceptual design report

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    The detailed shuttle mission simulator hardware requirements are discussed. The conceptual design methods, or existing technology, whereby those requirements will be fulfilled are described. Information of a general nature on the total design problem plus specific details on how these requirements are to be satisfied are reported. The configuration of the simulator is described and the capabilities for various types of training are identified.

  11. Aircraft Conceptual Design Using Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  12. Conceptual Design - Polar Drive Ignition Campaign

    SciTech Connect

    Hansen, R

    2012-04-05

    The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain

  13. Cockpit control system conceptual design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    The purpose of this project was to provide a means for operating the ailerons, elevator, elevator trim, rudder, nosewheel steering, and brakes in the Triton primary flight trainer. The main design goals under consideration were to illustrate system and subsystem integration, control function ability, and producibility. Weight and maintenance goals were addressed.

  14. MIUS community conceptual design study

    NASA Technical Reports Server (NTRS)

    Fulbright, B. E.

    1976-01-01

    The feasibility, practicality, and applicability of the modular integrated utility systems (MIUS) concept to a satellite new-community development with a population of approximately 100,000 were analyzed. Two MIUS design options, the 29-MIUS-unit (option 1) and the 8-MIUS-unit (option 2) facilities were considered. Each resulted in considerable resource savings when compared to a conventional utility system. Economic analyses indicated that the total cash outlay and operations and maintenance costs for these two options were considerably less than for a conventional system. Computer analyses performed in support of this study provided corroborative data for the study group. An environmental impact assessment was performed to determine whether the MIUS meets or will meet necessary environmental standards. The MIUS can provide improved efficiency in the conservation of natural resources while not adversely affecting the physical environment.

  15. Conceptual Design of a Prototype LSST Database

    SciTech Connect

    Nikolaev, S; Huber, M E; Cook, K H; Abdulla, G; Brase, J

    2004-10-07

    This document describes a preliminary design for Prototype LSST Database (LSST DB). They identify key components and data structures and provide an expandable conceptual schema for the database. The authors discuss the potential user applications and post-processing algorithm to interact with the database, and give a set of example queries.

  16. Conceptual Design of a Regional Information System.

    ERIC Educational Resources Information Center

    Denver Regional Council of Governments, CO.

    This report describes the conceptual design of a regional information system, developed in support of the Denver Regional Council of Government's established comprehensive planning work program. It includes a discussion of system objectives, available data sources, recommended system content, software and system maintenance requirements,…

  17. Recycler ring conceptual design study

    SciTech Connect

    Jackson, G.

    1995-07-18

    The Tevatron Collider provides the highest center of mass energy collisions in the world. To fully exploit this unique tool, Fermilab is committed to a program of accelerator upgrades for the purpose of increasing the Collider luminosity. Over the past 7 years the luminosity has been increased from a peak of 1.6{times}10{sup 30}cm{sup {minus}2}sec{sup {minus}1} in 1989 to over 3{times}10{sup 31}cm{sup {minus}2}sec{sup {minus}1} during 1995. The Main Injector will supply a larger flux of protons for antiproton production and more intense proton bunches for use in the Collider, and this is expected to increase the peak luminosity to close to 1{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}. Further increases in luminosity will require additional upgrades to the Fermilab accelerator complex. This report documents the design of a new fixed-energy storage ring to be placed in the Main Injector tunnel which will provide an initial factor of 2 increase to 2{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}, and ultimately provide the basis for an additional order of magnitude luminosity increase up to 1{times}10{sup 33}cm{sup {minus}2}sec{sup {minus}1}.

  18. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    SciTech Connect

    CARRO CA

    2010-03-09

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysis is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.

  19. Controlled air incinerator conceptual design study

    SciTech Connect

    Not Available

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location.

  20. Conceptual spacecraft systems design and synthesis

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.

  1. Conceptual design for PSP mounting bracket

    SciTech Connect

    Ransom, G.; Stein, R.

    1991-12-31

    Protective structural packages (PSP`s or overpacks) used to ship 2 1/2-ton UF{sub 6} product cylinders are bolted to truck trailers. All bolts penetrate two longitudinal rows of wooden planks. Removal and replacement is required at various intervals for maintenance and routine testing. A conceptual design is presented for mounting brackets which would securely attach PSP`s to trailer frames, reduce removal and replacement time, and minimize risk of personnel injury.

  2. Engineering report (conceptual design) PFP solution stabilization

    SciTech Connect

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  3. Conceptual design of a synchronous Mars telecommunications satellite

    NASA Technical Reports Server (NTRS)

    Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.

    1989-01-01

    Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.

  4. Conceptual design of a Disk Chopper Spectrometer

    SciTech Connect

    Copley, J.R.D.

    1997-09-01

    We describe methods that we have used for the conceptual design of the Disk Chopper Spectrometer at the Cold Neutron Research Facility, National Institute of Standards and Technology. Most of the discussion concerns the multiple chopper system. No single design method is best in every situation. We believe that an analytical approach is preferable, whenever possible. Graphical methods of expressing problems have been very instructive. We have also found it useful, and occasionally invaluable, to cross-check results obtained using different methods, such as analytical integration and ray-tracing.

  5. ATA diagnostic beam dump conceptual design

    SciTech Connect

    Not Available

    1981-09-01

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium.

  6. Structural analysis at aircraft conceptual design stage

    NASA Astrophysics Data System (ADS)

    Mansouri, Reza

    . Considering the strength and limitations of both methodologies, the question to be answered in this thesis is: How valuable and compatible are the classical analytical methods in today's conceptual design environment? And can these methods complement each other? To answer these questions, this thesis investigates the pros and cons of classical analytical structural analysis methods during the conceptual design stage through the following objectives: Illustrate structural design methodology of these methods within the framework of Aerospace Vehicle Design (AVD) lab's design lifecycle. Demonstrate the effectiveness of moment distribution method through four case studies. This will be done by considering and evaluating the strength and limitation of these methods. In order to objectively quantify the limitation and capabilities of the analytical method at the conceptual design stage, each case study becomes more complex than the one before.

  7. Plutonium Immobilization Can Loading Conceptual Design

    SciTech Connect

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  8. Conceptual Design Plan SM-43 Replacement Project

    SciTech Connect

    University of California, Los Alamos National Laboratory, SCC Project Office

    2000-11-01

    The Los Alamos National Laboratory Conceptual Design Plan for the SM-43 Replacement Project outlines plans for replacing the SM-43 Administration Building. Topics include the reasons that replacement is considered a necessity; the roles of the various project sponsors; and descriptions of the proposed site and facilities. Also covered in this proposal is preliminary information on the project schedule, cost estimates, acquisition strategy, risk assessment, NEPA strategy, safety strategy, and safeguards and security. Spreadsheets provide further detail on space requirements, project schedules, and cost estimates.

  9. LUX-ZEPLIN (LZ) Conceptual Design Report

    SciTech Connect

    Akerib, D. S.

    2015-03-09

    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.

  10. Propulsion System Models for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  11. Hot conditioning equipment conceptual design report

    SciTech Connect

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  12. Conceptual Design For Interplanetary Spaceship Discovery

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  13. Design Oriented Structural Modeling for Airplane Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1999-01-01

    The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.

  14. Control/structure interaction conceptual design tool

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1990-01-01

    The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.

  15. 100 MWe Baseload Molten Salt Plant Phase 1 & 2 Summary Report: Summary of Conceptual Design, Preliminary Design, Commercialization and Risk Reduction Activities

    SciTech Connect

    Tyner, Craig; Kraft, Dave; Moursund, Carter; Santelmann, Ken; Greaney, Andy; Zillmer, Andrew; Heap, Andy; Sakadjian, Bartev; Hannemann, Chris; Rogers, Dale; Gross, David; Wasyluk, David; Fondriest, Ed; Soni, Gaurav; Bindra, Hitesh; Marshall, Jason; Risner, Jeremy; Pacheco, Jim; Martin, Joe; Montesano, Kevin; Foder, Matt; Zavodny, Maximillian; Slack, Mike; Donnellan, Nathan; Sage, William

    2012-11-27

    This document describes steps taken to develop our conceptual and preliminary designs of a modular concept for deploying a 75% capacity factor, 100-MWe solar power plant. The modular approach consists of 14 solar power towers interconnected by hot and cold salt piping leading back to a central power block where the salt storage tanks and power generation systems are located. The plant is described in several sections. First, the overall plant is described, including the general arrangement, process and heat flow diagrams, system interface definitions, and electrical description. Next, each system is described in detail following the flow of energy from incident sunlight, through the plant, to the grid. These systems include the solar collector system (SCS), solar receiver system (SRS), thermal storage system (TSS), steam generator system (SGS), and power generation system (PGS). Then, the plant control system (PCS) and balance of plant (BOP) are discussed as supporting entities. Each system of the plant is described in sufficient detail to allow for the following to be developed: material cost, erection cost, project schedule, EPC bids, detailed performance modeling, and operations and maintenance cost. Cost, schedule, and performance estimates are not described in this document. Two approaches to demonstration of the technology are presented: a single tower integrated into an existing power block and a four tower stand alone 50 MWe power plant. Various demonstration partners have expressed interested in both approaches. The process by which a detailed plant performance model was developed is described to support the development of accurate LCOE data. Information on material and instrument testing is also provided for critical materials and instruments required for molten salt service.

  16. Conceptual design of the FRIB cryogenic system

    SciTech Connect

    Weisend II, J G; Bull, Brad; Burns, Chris; Fila, Adam; Kelley, Patrick; Laumer, Helmut; Mann, Thomas; McCartney, Allyn; Jones, S; Zeller, A

    2012-06-01

    The Facility for Rare Isotope Beams (FRIB) is a new nuclear science facility funded by the DOE Office of Science and Michigan State University (MSU). FRIB is currently under design and will be located on the MSU campus. The centerpiece of FRIB is a heavy ion linac utilizing superconducting RF cavities and magnets which in turn requires a large cryogenic system. The cryogenic system consists of a commercially produced helium refrigeration plant and an extensive distribution system. Superconducting components will operate at both 4.5 K and 2 K. This paper describes the conceptual design of the system including the expected heat loads and operating modes. The strategy for procuring a custom turnkey helium refrigeration plant from industry, an overview of the distribution system, the interface of the cryogenic system to the conventional facilities and the project schedule are also described.

  17. Conceptual designs for antiproton space propulsion systems

    SciTech Connect

    Cassenti, B.N.

    1989-01-01

    Five conceptual designs for antimatter space propulsion systems were compared in terms of their performance characteristics. The systems examined included solid-core liquid-propellant rockets; magnetically confined gaseous-core rockets using liquid or solid propellants; plasma-core rockets; pion rockets, which are driven directly by the mass annihilation products; and ram-augmented rockets, in which antiproton annihilation is used to heat hydrogen collected in interstellar space. It was found that, in general, as the specific impulse of the propulsion system increases, the thrust decreases. The comparison between designs showed that only fusion rockets have the capability to compete in performance with mass annihilation rockets. For very-high-speed interstellar missions, pion rockets, which can have a specific impulse of 20 million sec (although with a thrust-to-engine mass ratios of only 0.01 G) will offer best performance. 36 refs.

  18. ITER TCWS Conceptual Design Chit Resolution Report

    SciTech Connect

    Berry, Jan

    2012-02-01

    Design Chits resulted from the External Conceptual Design Review (CDR) held at Cadarache on July 21-23, 2009 (Reference [5.1.3]). Those Chits were categorized into 3 categories in accordance with the following rules: Category 1 - Chits to be resolved before proceeding with preliminary design; Category 2 - Chits to be resolved during preliminary design; and Category 3 - Chits already resolved or covered by higher category Chits such that no further action is required. Prior to the preliminary design, all the category 1 chits were resolved and the category chit 1 resolution report was approved (Reference [5.1.4]). However, as the design has been evolving, one of the category 1 chits needs to be re-addressed. The purpose of this report is to present the resolutions to one CDR Category 1 Chit (Cat 1 Chit No.5) and twenty-three CDR Category 2 Chits. The Category 2 Chit resolutions presented are listed in order from item number one to item number twenty-three.

  19. Advanced turbine systems program conceptual design and product development

    NASA Astrophysics Data System (ADS)

    1995-01-01

    This report describes progress made in the advanced turbine systems program conceptual design and product development. The topics of the report include selection of the Allison GFATS, castcool technology development for industrial engines test plan and schedule, code development and background gathering phase for the ultra low NOx combustion technology task, active turbine clearance task, and water vapor/air mixture cooling of turbine vanes task.

  20. Cryogenic Propellant Management Device: Conceptual Design Study

    NASA Technical Reports Server (NTRS)

    Wollen, Mark; Merino, Fred; Schuster, John; Newton, Christopher

    2010-01-01

    Concepts of Propellant Management Devices (PMDs) were designed for lunar descent stage reaction control system (RCS) and lunar ascent stage (main and RCS propulsion) missions using liquid oxygen (LO2) and liquid methane (LCH4). Study ground rules set a maximum of 19 days from launch to lunar touchdown, and an additional 210 days on the lunar surface before liftoff. Two PMDs were conceptually designed for each of the descent stage RCS propellant tanks, and two designs for each of the ascent stage main propellant tanks. One of the two PMD types is a traditional partial four-screen channel device. The other type is a novel, expanding volume device which uses a stretched, flexing screen. It was found that several unique design features simplified the PMD designs. These features are (1) high propellant tank operating pressures, (2) aluminum tanks for propellant storage, and (3) stringent insulation requirements. Consequently, it was possible to treat LO2 and LCH4 as if they were equivalent to Earth-storable propellants because they would remain substantially subcooled during the lunar mission. In fact, prelaunch procedures are simplified with cryogens, because any trapped vapor will condense once the propellant tanks are pressurized in space.

  1. Advanced turbine systems: Studies and conceptual design

    SciTech Connect

    van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

    1993-11-01

    The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

  2. ITER fuel storage system conceptual design description

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Bartlit, J.R.; Muller, M.E.

    1990-01-01

    Fuel, in the form of hydrogen isotopes Q{sub 2} (where Q is H, D, or T), is required to be stored and assayed in a safe manner at the proposed International Thermonuclear Experimental Reactor (ITER). Two subsystems are proposed for this task: Fuel Storage (FS) and Fuel Management (FM). The combined system, Fuel Storage and Management System (FSMS), will provide fuel storage, tritium inventory, gas analysis, transfer pumping, and flow measurements. Presented is a Conceptual Design Description (CDD) of only the FS portion of the FSMS. The proposed FS system permits tritium and its associated isotopes to be stored within ZrCo storage beds, as a solid metal-hydride, or as a gas stored in tanks. 10 refs., 4 figs., 3 tabs.

  3. Phonological and Conceptual Activation in Speech Comprehension

    ERIC Educational Resources Information Center

    Norris, Dennis; Cutler, Anne; McQueen, James M.; Butterfield, Sally

    2006-01-01

    We propose that speech comprehension involves the activation of token representations of the phonological forms of current lexical hypotheses, separately from the ongoing construction of a conceptual interpretation of the current utterance. In a series of cross-modal priming experiments, facilitation of lexical decision responses to visual target…

  4. MINIMARS conceptual design: Report I. Volume 2

    SciTech Connect

    Lee, J.D.

    1985-12-01

    This report contains separate articles of seven aspects of the MINIMARS programs. The areas discussed are Fusion Engineering Design Center, Halo Model and Computer Code, safety design, the University of Wisconsin blankets, activation product transport in a FLiBe-VANADIUM alloy HT-9 system, a halo scraper/direct converter system, and heat transport power conversion. The individual articles are cataloged separately. (WRF)

  5. Advanced heat receiver conceptual design study

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Saunders, Roger; Batchelder, Gary

    1988-01-01

    Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.

  6. Multidisciplinary Design Optimization on Conceptual Design of Aero-engine

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-bo; Wang, Zhan-xue; Zhou, Li; Liu, Zeng-wen

    2016-06-01

    In order to obtain better integrated performance of aero-engine during the conceptual design stage, multiple disciplines such as aerodynamics, structure, weight, and aircraft mission are required. Unfortunately, the couplings between these disciplines make it difficult to model or solve by conventional method. MDO (Multidisciplinary Design Optimization) methodology which can well deal with couplings of disciplines is considered to solve this coupled problem. Approximation method, optimization method, coordination method, and modeling method for MDO framework are deeply analyzed. For obtaining the more efficient MDO framework, an improved CSSO (Concurrent Subspace Optimization) strategy which is based on DOE (Design Of Experiment) and RSM (Response Surface Model) methods is proposed in this paper; and an improved DE (Differential Evolution) algorithm is recommended to solve the system-level and discipline-level optimization problems in MDO framework. The improved CSSO strategy and DE algorithm are evaluated by utilizing the numerical test problem. The result shows that the efficiency of improved methods proposed by this paper is significantly increased. The coupled problem of VCE (Variable Cycle Engine) conceptual design is solved by utilizing improved CSSO strategy, and the design parameter given by improved CSSO strategy is better than the original one. The integrated performance of VCE is significantly improved.

  7. Transportation node space station conceptual design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A number of recent studies have addressed the problem of a transportation node space station. How things would change or what addition facilities would be needed to support a major lunar or Mars initiative is a much often asked question. The support of a lunar base, requiring stacks on the order of 200 metric tons each to land 25 m tons on the lunar surface with reusable vehicles is addressed. The problem of maintaining and reusing large single stage Orbit Transfer Vehicles (OTVs) and single stage lander/launchers in space are examined. The required people and equipment needed, to maintain these vehicles are only vaguely known at present. The people and equipment needed depend on how well the OTV and lander/launcher can be designed for easy reuse. Since the OTV and lander/launcher are only conceptually defined at present, the real maintenance and refurbishment requirements are unobtainable. An estimate of what is needed, based on previous studies and obvious requirements was therefore made. An attempt was made to err on the conservative side.

  8. Conceptual design for a Mercury relativity satellite

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Ashby, N.; Wahr, J. M.; Vincent, M. A.

    1989-01-01

    It was shown earlier that 1 x 10 to the -14th Doppler data and 3 cm accuracy range measurements to a small Mercury Relativity Satellite in a polar orbit with four-hour period can give high-accuracy tests of gravitational theory. A particular conceptual design has been developed for such a satellite, which would take less than 10 percent of the approach mass for a possible future Mercury Orbiter Mission. The spacecraft is similar to the Pioneer Venus Orbiter, but scaled down by about a factor four in linear dimensions. A despun antenna 30 cm in diameter is used for tracking. The transmitted power is roughly 0.2 watts at K-band and 0.5 watts at X-band. The orbit parameters for individual eight-hour arcs and the gravity field of Mercury through degree and order 10 are determined mainly from the Doppler data. A 50 MHz K-band sidetone system provides the basic ranging accuracy. The spacecraft mass is 50 kg or less.

  9. Conceptual design of an orbital debris collector

    NASA Technical Reports Server (NTRS)

    Odonoghue, Peter (Editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas

    1991-01-01

    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.

  10. High performance APCS conceptual design and evaluation scoping study

    SciTech Connect

    Soelberg, N.; Liekhus, K.; Chambers, A.; Anderson, G.

    1998-02-01

    This Air Pollution Control System (APCS) Conceptual Design and Evaluation study was conducted to evaluate a high-performance (APC) system for minimizing air emissions from mixed waste thermal treatment systems. Seven variations of high-performance APCS designs were conceptualized using several design objectives. One of the system designs was selected for detailed process simulation using ASPEN PLUS to determine material and energy balances and evaluate performance. Installed system capital costs were also estimated. Sensitivity studies were conducted to evaluate the incremental cost and benefit of added carbon adsorber beds for mercury control, specific catalytic reduction for NO{sub x} control, and offgas retention tanks for holding the offgas until sample analysis is conducted to verify that the offgas meets emission limits. Results show that the high-performance dry-wet APCS can easily meet all expected emission limits except for possibly mercury. The capability to achieve high levels of mercury control (potentially necessary for thermally treating some DOE mixed streams) could not be validated using current performance data for mercury control technologies. The engineering approach and ASPEN PLUS modeling tool developed and used in this study identified APC equipment and system performance, size, cost, and other issues that are not yet resolved. These issues need to be addressed in feasibility studies and conceptual designs for new facilities or for determining how to modify existing facilities to meet expected emission limits. The ASPEN PLUS process simulation with current and refined input assumptions and calculations can be used to provide system performance information for decision-making, identifying best options, estimating costs, reducing the potential for emission violations, providing information needed for waste flow analysis, incorporating new APCS technologies in existing designs, or performing facility design and permitting activities.

  11. Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package

    NASA Technical Reports Server (NTRS)

    Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred

    1986-01-01

    The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.

  12. Project W-420 Stack Monitoring system upgrades conceptual design report

    SciTech Connect

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  13. Improving Conceptual Design for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.

  14. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    SciTech Connect

    1985-09-01

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs.

  15. Design-only conceptual design report: Plutonium Immobilization Plant

    SciTech Connect

    DiSabatino, A A

    2000-05-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The Plutonium Immobilization Plant will be located at the Savannah River Site pursuant to the Surplus Plutonium Disposition Final Environmental Impact Statement Record of Decision, January 4, 2000. This document reflects a new facility using the ceramic immobilization technology and the can-in-canister approach. The Plutonium Immobilization Plant accepts plutonium oxide from pit conversion and plutonium and plutonium oxide from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors; it must also be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses a new building, the Plutonium Immobilization Plant, which will receive and store feed materials, convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize the plutonium oxide in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister. The existing Defense Waste Processing Facility is used for the pouring of high-level waste glass into the canisters. The Plutonium Immobilization Plant uses existing Savannah River Site infrastructure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. This design-only conceptual design report also provides the cost for a Plutonium Immobilization Plant which would process

  16. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  17. Experiences performing conceptual design optimization of transport aircraft

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1984-01-01

    Optimum Preliminary Design of Transports (OPDOT) is a computer program developed at NASA Langley Research Center for evaluating the impact of new technologies upon transport aircraft. For example, it provides the capability to look at configurations which have been resized to take advantage of active controls and provide and indication of economic sensitivity to its use. Although this tool returns a conceptual design configuration as its output, it does not have the accuracy, in absolute terms, to yield satisfactory point designs for immediate use by aircraft manufacturers. However, the relative accuracy of comparing OPDOT-generated configurations while varying technological assumptions has been demonstrated to be highly reliable. Hence, OPDOT is a useful tool for ascertaining the synergistic benefits of active controls, composite structures, improved engine efficiencies and other advanced technological developments. The approach used by OPDOT is a direct numerical optimization of an economic performance index. A set of independent design variables is iterated, given a set of design constants and data. The design variables include wing geometry, tail geometry, fuselage size, and engine size. This iteration continues until the optimum performance index is found which satisfies all the constraint functions. The analyst interacts with OPDOT by varying the input parameters to either the constraint functions or the design constants. Note that the optimization of aircraft geometry parameters is equivalent to finding the ideal aircraft size, but with more degrees of freedom than classical design procedures will allow.

  18. Conceptual design for the ZEPHYR neutral-beam injection system

    SciTech Connect

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  19. Nuclear Cryogenic Propulsion Stage Conceptual Design and Mission Analysis

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Russell, Tiffany E.

    2014-01-01

    The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.

  20. Measuring Conceptual Gains and Benefits of Student Problem Designs

    NASA Astrophysics Data System (ADS)

    Mandell, Eric; Snyder, Rachel; Oswald, Wayne

    2011-10-01

    Writing assignments can be an effective way of getting students to practice higher-order learning skills in physics. One example of such an assignment is that of problem design. One version of the problem design assignment asks the student to evaluate the material from a chapter, after all instruction and other activities are complete. The student is to decide what concepts and ideas are most central, or critical in the chapter, and construct a problem that he or she feels best encompasses the major themes. Here, we use two concept surveys (FCI and EMCS) to measure conceptual gains for students completing the problem design assignment and present the preliminary results, comparing across several categories including gender, age, degree program, and class standing.

  1. Conceptual Design for SuperCDMS SNOLAB

    SciTech Connect

    Brink, P.L.; /SLAC

    2012-06-13

    Beyond the present dark matter direct detection experiment at the Soudan underground laboratory, the SuperCDMS Collaboration is engaged in R and D activities for a 100-kg scale germanium dark matter experiment nominally sited at SNOLAB (2070 m overburden of rock). The expected sensitivity after 3 years of running is 3 x 10{sup -46} cm{sup 2} for the spin-independent cross section, an order of magnitude improvement over present exclusion limits for WIMP masses {approx}80 GeV/c{sup 2}. At this depth, and appropriate design of shielding and cryostat, neutron backgrounds will be negligible. The baseline design is an expanded version of CDMS II with Ge substrates (100 x 33 mm discs) instrumented with the iZIP phonon sensor layout to achieve the electron surface-event rejection power required.

  2. Conceptual Design Oriented Wing Structural Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Lau, May Yuen

    1996-01-01

    Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.

  3. Conceptual design study for a teleoperator visual system, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.

    1972-01-01

    Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.

  4. Conceptual design of a measurement network of the global change

    NASA Astrophysics Data System (ADS)

    Hari, P.; Petäjä, T.; Bäck, J.; Kerminen, V.-M.; Lappalainen, H. K.; Vihma, T.; Laurila, T.; Viisanen, Y.; Vesala, T.; Kulmala, M.

    2016-01-01

    The global environment is changing rapidly due to anthropogenic emissions and actions. Such activities modify aerosol and greenhouse gas concentrations in the atmosphere, leading to regional and global climate change and affecting, e.g., food and fresh-water security, sustainable use of natural resources and even demography. Here we present a conceptual design of a global, hierarchical observation network that can provide tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. The philosophy behind the conceptual design relies on physical conservation laws of mass, energy and momentum, as well as on concentration gradients that act as driving forces for the atmosphere-biosphere exchange. The network is composed of standard, flux and/or advanced and flagship stations, each of which having specific and identified tasks. Each ecosystem type on the globe has its own characteristic features that have to be taken into consideration. The hierarchical network as a whole is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity. The most comprehensive observations are envisioned to occur in flagship stations, with which the process-level understanding can be expanded to continental and global scales together with advanced data analysis, Earth system modelling and satellite remote sensing. The denser network of the flux and standard stations allows application and up-scaling of the results obtained from flagship stations to the global level.

  5. Conceptual Learning in a Principled Design Problem Solving Environment

    ERIC Educational Resources Information Center

    Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.

    2013-01-01

    To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…

  6. Designing Public Library Websites for Teens: A Conceptual Model

    ERIC Educational Resources Information Center

    Naughton, Robin Amanda

    2012-01-01

    The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in…

  7. Development to integrate conceptual design tools and a CAD system

    NASA Astrophysics Data System (ADS)

    Torres, V. H.; Ríos, J.; Vizán, A.; Pérez, J. M.

    2012-04-01

    The information supported by PLM/CAD systems is mainly related to Embodiment and Detail Design Phases. Information related to the Conceptual Design Phase is mainly limited to requirement specification documents and system architecture diagram documents. This work aims helping in the integration of the Conceptual Design process and its associated information flow into a commercial software system. It proposes a development framework to integrate Quality Function Deployment, Axiomatic Design, and Failure Mode and Effects Analysis into a PLM/CAD system. This communication presents the methodology used in the development, the software development environment, the modeling of the proposed application and the first results of a pilot implementation.

  8. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  9. Site Characterization Plan (SCP) conceptual design criteria document

    SciTech Connect

    Naiknimbalkar, N.M.

    1986-05-19

    This SCP Conceptual Design Criteria Document was developed to guide engineering effort for Engineering Study No. 10, the supporting document for Chapter 6 of the SCP. The document provides regulatory design guidance, design rationale derived from the Generic Requirements for a Mined Geological Disposal System document, site-specific criteria, and design assumptions. Appendices were added to provide additional information on geology and seals design. 24 figs., 15 tabs.

  10. SCP (Site Characterization Plan) conceptual design criteria document

    SciTech Connect

    Naiknimbalkar, N.M.

    1985-05-01

    This SCP Conceptual Design Criteria Document was developed to guide engineering efforts for Engineering Study No. 10, the supporting document for Chapter 6 of the SCP. The document provides regulatory design guidance, design rationale derived from the Generic Requirements for a Mined Geological Disposal System document, site-specific criteria, and design assumptions. Appendices were added to provide additional information on geology and seals design.

  11. Conceptual design of flapping-wing micro air vehicles.

    PubMed

    Whitney, J P; Wood, R J

    2012-09-01

    Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail. PMID:22498507

  12. Graphic Design in Libraries: A Conceptual Process

    ERIC Educational Resources Information Center

    Ruiz, Miguel

    2014-01-01

    Providing successful library services requires efficient and effective communication with users; therefore, it is important that content creators who develop visual materials understand key components of design and, specifically, develop a holistic graphic design process. Graphic design, as a form of visual communication, is the process of…

  13. 800MHz Crab Cavity Conceptual Design For the LHC Upgrade

    SciTech Connect

    Xiao, Liling; Li, Zenghai; Ng, Cho-Kuen; Seryi, Andrei; /SLAC

    2009-05-26

    In this paper, we present an 800 MHz crab cavity conceptual design for the LHC upgrade. The cell shape is optimized for lower maximum peak surface fields as well as higher transverse R/Q. A compact coax-to-coax coupler scheme is proposed to damp the LOM/SOM modes. A two-stub antenna with a notch filter is used as the HOM coupler to damp the HOM modes in the horizontal plane and rejects the operating mode at 800MHz. Multipacting (MP) simulations show that there are strong MP particles at the disks. Adding grooves along the short axis without changing the operating mode's RF characteristics can suppress the MP activities. Possible input coupler configurations are discussed.

  14. Conceptual design for the space station Freedom modular combustion facility

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A definition study and conceptual design for a combustion science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module is being performed. This modular, user-friendly facility, called the Modular Combustion Facility, will be available for use by industry, academic, and government research communities in the mid-1990's. The Facility will support research experiments dealing with the study of combustion and its byproducts. Because of the lack of gravity-induced convection, research into the mechanisms of combustion in the absence of gravity will help to provide a better understanding of the fundamentals of the combustion process. The background, current status, and future activities of the effort are covered.

  15. A conceptual design of the 2+ MW LBNE beam absorber

    SciTech Connect

    Velev, G.; Childress, S.; Hurh, P.; Hylen, J.; Makarov, A.; Mohkhov, N.; Moore, C.D.; Novitski, I.; /Fermilab

    2011-03-01

    The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility will aim a beam of neutrinos, produced by 60-120 GeV protons from the Fermilab Main Injector, toward a detector placed at the Deep Underground Science and Engineering Laboratory (DUSEL) in South Dakota. Secondary particles that do not decay into muons and neutrinos as well as any residual proton beam must be stopped at the end of the decay region to reduce noise/damage in the downstream muon monitors and reduce activation in the surrounding rock. This goal is achieved by placing an absorber structure at the end of the decay region. The requirements and conceptual design of such an absorber, capable of operating at 2+ MW primary proton beam power, is described.

  16. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  17. U10.0 Undulator conceptual design report

    SciTech Connect

    Hoyer, E.

    1994-06-01

    The U10.0 Undulator described here is a 43 period, 10 cm period, 4.5 meter long insertion device. Designed for the Advanced Light Source (ALS) storage ring at the Lawrence Berkeley Laboratory. This insertion device will provide high brightness, quasi-monochromatic radiation in the 5-950 eV energy range. This conceptual design report includes sections on: parameter development, spectral performance, and accelerator requirements, physics specifications and the detailed conceptual design of the magnetic structure, the support/drive systems, the insertion device control system, the vacuum system, and installation for the U10.0 Undulator.

  18. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  19. Conceptual design of an Orbital Debris Defense System

    NASA Technical Reports Server (NTRS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-01-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  20. A Conceptual Design for a Reliable Optical Bus (ROBUS)

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.; Malekpour, Mahyar; Torres, Wilfredo

    2002-01-01

    The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is a new family of fault-tolerant architectures under development at NASA Langley Research Center (LaRC). The SPIDER is a general-purpose computational platform suitable for use in ultra-reliable embedded control applications. The design scales from a small configuration supporting a single aircraft function to a large distributed configuration capable of supporting several functions simultaneously. SPIDER consists of a collection of simplex processing elements communicating via a Reliable Optical Bus (ROBUS). The ROBUS is an ultra-reliable, time-division multiple access broadcast bus with strictly enforced write access (no babbling idiots) providing basic fault-tolerant services using formally verified fault-tolerance protocols including Interactive Consistency (Byzantine Agreement), Internal Clock Synchronization, and Distributed Diagnosis. The conceptual design of the ROBUS is presented in this paper including requirements, topology, protocols, and the block-level design. Verification activities, including the use of formal methods, are also discussed.

  1. Conceptual design of an Orbital Debris Defense System

    NASA Astrophysics Data System (ADS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-08-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  2. Conceptual design of a Mars transportation system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  3. Low Level Waste Conceptual Design Adaption to Poor Geological Conditions

    SciTech Connect

    Bell, J.; Drimmer, D.; Giovannini, A.; Manfroy, P.; Maquet, F.; Schittekat, J.; Van Cotthem, A.; Van Echelpoel, E.

    2002-02-26

    Since the early eighties, several studies have been carried out in Belgium with respect to a repository for the final disposal of low-level radioactive waste (LLW). In 1998, the Belgian Government decided to restrict future investigations to the four existing nuclear sites in Belgium or sites that might show interest. So far, only two existing nuclear sites have been thoroughly investigated from a geological and hydrogeological point of view. These sites are located in the North-East (Mol-Dessel) and in the mid part (Fleurus-Farciennes) of the country. Both sites have the disadvantage of presenting poor geological and hydrogeological conditions, which are rather unfavorable to accommodate a surface disposal facility for LLW. The underground of the Mol-Dessel site consists of neogene sand layers of about 180 m thick which cover a 100 meters thick clay layer. These neogene sands contain, at 20 m depth, a thin clayey layer. The groundwater level is quite close to the surface (0-2m) and finally, the topography is almost totally flat. The upper layer of the Fleurus-Farciennes site consists of 10 m silt with poor geomechanical characteristics, overlying sands (only a few meters thick) and Westphalian shales between 15 and 20 m depth. The Westphalian shales are tectonized and strongly weathered. In the past, coal seams were mined out. This activity induced locally important surface subsidence. For both nuclear sites that were investigated, a conceptual design was made that could allow any unfavorable geological or hydrogeological conditions of the site to be overcome. In Fleurus-Farciennes, for instance, the proposed conceptual design of the repository is quite original. It is composed of a shallow, buried concrete cylinder, surrounded by an accessible concrete ring, which allows permanent inspection and control during the whole lifetime of the repository. Stability and drainage systems should be independent of potential differential settlements an d subsidences

  4. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    SciTech Connect

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  5. Conceptual designs study for a Personnel Launch System (PLS)

    NASA Technical Reports Server (NTRS)

    Wetzel, E. D.

    1990-01-01

    A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.

  6. Shuttle/tethered satellite system conceptual design study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.

  7. WRAP 2A advanced conceptual design report comments

    SciTech Connect

    Lamberd, D.L.

    1994-10-04

    This report contains the compilation of the 393 comments that were submitted during the review of the Advanced Conceptual Design Report for the Waste Receiving and Processing Facility Module 2A. The report was prepared by Raytheon Engineers and Constructors, Inc. of Englewood, Colorado for the United States Department of Energy. The review was performed by a variety of organizations identified in the report. The comments were addressed first by the Westinghouse cognizant engineers and then by the Raytheon cognizant engineers, and incorporated into the final issue of the Advanced Conceptual Design Report.

  8. ENABLER Nuclear Propulsion System Conceptual Design

    NASA Astrophysics Data System (ADS)

    Pauley, Keith A.; Woodham, Kurt; Ohi, Don; Haga, Heath; Henderson, Bo

    2004-02-01

    The Titan Corporation conducted a systems engineering study to develop an overall architecture that meets both the articulated and unarticulated requirements on the Prometheus Program with the least development effort. Key elements of the Titan-designed ENABLER system include a thermal fission reactor, thermionic power converters, sodium heat pipes, ion thruster engines, and a radiation shield and deployable truss to protect the payload. The overall design is scaleable over a wide range of power requirements from 10s of kilowatts to 10s of megawatts.

  9. MINIMARS conceptual design: Report I. Volume 1

    SciTech Connect

    Lee, J.D.

    1985-12-01

    Engineering parameters and by features of MINIMARS are presented. Topics discussed are startup, halo physics, drift pumping, magnet design, shielding, injector systems, electrical systems, fueling systems, free electric laser, blankets, heat tansport, tritium systems, configuration, assembly and maintainence, and cost. 115 refs., 112 figs., 44 tabs. (WRF)

  10. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  11. Thermal analysis of NNWSI conceptual waste package designs

    SciTech Connect

    Stein, W.; Hockman, J.N.; O`Neal, W.C.

    1984-04-01

    Lawrence Livermore National Laboratory is involved in the design and testing of high-level nuclear waste packages. Many of the aspects of waste package design and testing (e.g., corrosion and leaching) depend in part on the temperature history of the emplaced packages. This report discusses thermal modeling and analysis of various emplaced waste package conceptual designs including the models used, the assumptions and approximations made, and the results obtained. 16 references.

  12. Plant Growth Module (PGM) conceptual design

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Rasmussen, Daryl

    1987-01-01

    The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.

  13. Conceptual design studies for surface infrastructure

    NASA Technical Reports Server (NTRS)

    Bufkin, Ann L.; Jones, William R., II

    1986-01-01

    The utimate design of a manned Mars base will be the result of considerable engineering analysis and many trade studies to optimize the configuration. Many options and scenarios are available and all need to be considered at this time. Initial base elements, two base configuration concepts, internal space architectural concerns, and two base set-up scenarios are discussed. There are many variables as well as many unknowns to be reckoned with before people set foot on the red planet.

  14. Transitioning from conceptual design to construction performance specification

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather

    2012-09-01

    On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.

  15. Research on conceptual/innovative design for the life cycle

    NASA Technical Reports Server (NTRS)

    Cagan, Jonathan; Agogino, Alice M.

    1990-01-01

    The goal of this research is developing and integrating qualitative and quantitative methods for life cycle design. The definition of the problem includes formal computer-based methods limited to final detailing stages of design; CAD data bases do not capture design intent or design history; and life cycle issues were ignored during early stages of design. Viewgraphs outline research in conceptual design; the SYMON (SYmbolic MONotonicity analyzer) algorithm; multistart vector quantization optimization algorithm; intelligent manufacturing: IDES - Influence Diagram Architecture; and 1st PRINCE (FIRST PRINciple Computational Evaluator).

  16. CONCEPTUAL DESIGN STUDY OF HORN POWER SUPPLY.

    SciTech Connect

    ZHANG,W.; SANDBERG,J.; WENG,W.T.

    2003-06-16

    A 250 kA pulsed power supply is required for the focusing horn of the proposed Brookhaven AGS Super Neutrino Beam Facility for long baseline neutrino oscillation experiment. It is expected to pulse at 2.5 Hz repetition rate. A preliminary study is being conducted to explore the key issues associated with the power supply system design. Advanced technologies used in similar systems as well as new ideas are being examined, simulated and evaluated. This power supply will be a very high stored energy, high average power, and high peak power system.

  17. Transmutation Fuel Performance Code Conceptual Design

    SciTech Connect

    Gregory K. Miller; Pavel G. Medvedev

    2007-03-01

    One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

  18. Creative Conceptual Design Based on Evolutionary DNA Computing Technique

    NASA Astrophysics Data System (ADS)

    Liu, Xiyu; Liu, Hong; Zheng, Yangyang

    Creative conceptual design is an important area in computer aided innovation. Typical design methodology includes exploration and optimization by evolutionary techniques such as EC and swarm intelligence. Although there are many proposed algorithms and applications for creative design by these techniques, the computing models are implemented mostly by traditional von Neumann’s architecture. On the other hand, the possibility of using DNA as a computing technique arouses wide interests in recent years with huge built-in parallel computing nature and ability to solve NP complete problems. This new computing technique is performed by biological operations on DNA molecules rather than chips. The purpose of this paper is to propose a simulated evolutionary DNA computing model and integrate DNA computing with creative conceptual design. The proposed technique will apply for large scale, high parallel design problems potentially.

  19. Small pipe characterization system (SPCS) conceptual design

    SciTech Connect

    Anderson, M.O.; Ferrante, T.A.; McKay, M.D.

    1995-01-01

    Throughout the Department of Energy (DOE) complex there are many facilities that have been identified for Decontamination and Decommissioning (D&D). As processes are terminated or brought off-line, facilities are placed on the inactive list, and facility managers and site contractors are required to assure a safe and reliable decommissioning and transition of these facilities to a clean final state. Decommissioning of facilities requires extensive reliable characterization, decontamination and in some cases dismantlement. Characterization of piping systems throughout the DOE complex is becoming more and more necessary. In addition to decommissioning activities, characterization activities are performed as part of surveillance and maintenance (S&M). Because of the extent of contamination, all inactive facilities require some type of S&M. These S&M activities include visual assessment, equipment and material accounting, and maintenance. The majority of the inactive facilities have piping systems 3 inches or smaller that are inaccessible because they are contaminated, imbedded in concrete, or run through hot cells. Many of these piping systems have been inactive for a number of years and there exists no current system condition information or the historical records are poor and/or missing altogether. Many of these piping systems are placed on the contaminated list, not because of known contamination, but because of the risk of internal contamination. Many of the piping systems placed on the contamination list may not have internal contamination. Because there is a potential however, they are treated as such. The cost of D&D can be greatly reduced by identifying and removing hot spot contamination, leaving clean piping to be removed using conventional methods. Accurate characterization of these piping systems is essential before, during and after all D&D activities.

  20. S-PRIME/TI-SNPS Conceptual Design Summary

    NASA Astrophysics Data System (ADS)

    Mills, Joseph C.; Determan, William R.; van Hagan, Tom H.

    1994-07-01

    A conceptual design for a 40-kWe thermionic space nuclear power system (TI-SNPS) known as the S-PRIME system is being developed by Rockwell and its subcontractors for the U.S. Department of Energy (DOE), United States Air Force (USAF), and Ballistic Missile Defense Organization (BMDO) under the TI-SNPS Program. Phase 1 of this program includes the development of a conceptual design of a 5- to 40-kWe range TI-SNPS and validation of key technologies supporting the design. All key technologies for the S-PRIME design have been identified along with six critical component demonstrations, which will be used to validate the S-PREME design features. Phase 1 is scheduled for completion in September 1994 culminating in a conceptual design review. Phase 2 of the contract, which is an option, provides for the development of a system preliminary design and demonstration of technology readiness with a preliminary design review (PDR) scheduled for September 1995.

  1. Designing Inductive Instructional Activities in a Teacher Training Program to Enhance Conceptual Understandings in Science for Thai Science and Non-Science Teachers

    ERIC Educational Resources Information Center

    Narjaikaew, Pattawan; Jeeravipoonvarn, Varanya; Pongpisanou, Kanjana; Lamb, Dennis

    2016-01-01

    Teachers are viewed as the most significant factor affecting student learning. However, research in science education showed that teachers often demonstrate misunderstandings of science very similar to students. The purpose of this research was to correct conceptual difficulties in science of Thai primary school science and non-science teachers…

  2. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  3. EURECA Conceptual Design Report. The EURECA Collaboration

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Armengaud, E.; Augier, C.; Benoit, A.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Chapellier, M.; Coron, N.; Cox, G. A.; Cuesta, C.; Danevich, F. A.; Jésus, M. De; Dumoulin, L.; Eitel, K.; Erb, A.; Ertl, A.; Feilitzsch, F. von; Filosofov, D.; Fourches, N.; García, E.; Gascon, J.; Gerbier, G.; Ginestra, C.; Gironnet, J.; Giuliani, A.; Gros, M.; Gütlein, A.; Hauff, D.; Henry, S.; Heuermann, G.; Jochum, J.; Jokisch, S.; Juillard, A.; Kister, C.; Kleifges, M.; Kluck, H.; Korolkova, E. V.; Kozlov, V. Y.; Kraus, H.; Kudryavtsev, V. A.; Lanfranchi, J.-C.; Loaiza, P.; Loebell, J.; Machulin, I.; Marnieros, S.; Martínez, M.; Menshikov, A.; Münster, A.; Navick, X.-F.; Nones, C.; Ortigoza, Y.; Pari, P.; Petricca, F.; Potzel, W.; Povinec, P. P.; Pröbst, F.; Puimedón, J.; Reindl, F.; Robinson, M.; Rolón, T.; Roth, S.; Rottler, K.; Rozov, S.; Sailer, C.; Salinas, A.; Sanglard, V.; Sarsa, M. L.; Schäffner, K.; Schmidt, B.; Scholl, S.; Schönert, S.; Seidel, W.; Siebenborn, B.; Sivers, M. v.; Strandhagen, C.; Strauß, R.; Tanzke, A.; Tretyak, V. I.; Turad, M.; Ulrich, A.; Usherov, I.; Veber, P.; Velazquez, M.; Villar, J. A.; Viraphong, O.; Walker, R. J.; Wawoczny, S.; Weber, M.; Willers, M.; Wüstrich, M.; Yakushev, E.; Zhang, X.; Zöller, A.

    2014-04-01

    The EURECA (European Underground Rare Event Calorimeter Array) project is aimed at searching for dark matter particles using cryogenic bolometers. The proponents of the present project have decided to pool their strengths and expertise to build a facility to house up to 1000 kg of detectors, EURECA, consisting in the first instance of germanium and CaWO4 crystals. The shielding will be provided through a large water tank in which the cryostat with detectors will be immersed. The EURECA infrastructure will be an essential tool for the community interested in using cryogenic detectors for dark matter searches. Beyond European detectors, it will be designed to host other types of similar cryogenic detectors, requiring millikelvin operating temperatures. In particular, this includes the germanium detectors currently in use by the SuperCDMS team, following the current collaborative work performed by the EURECA and SuperCDMS collaborations. EURECA will have two stages. The first phase aims at a sensitivity of 3 . 10-10 pb and will involve building the infrastructure, cryostat and shielding, and operating 150 kg of detectors. The second phase will be completed with 850 kg of additional detectors, the relative weight between the different detectors being decided by the collaboration according to the physics reach. A sensitivity of 2 . 10-11 pb is aimed for at the second stage. EURECA will ideally benefit from the planned extension of the deepest underground laboratory in Europe - LSM. With a site-independent design, it can also be hosted in other locations at similar or deeper sites such as SNOLAB.

  4. Common Lunar Lander (CLL) Conceptual Design and Mass Properties

    NASA Technical Reports Server (NTRS)

    Lawson, Shelby

    1991-01-01

    The conceptual design and mass properties are presented for the CLL in viewgraph format. The spacecraft structural mass is given for orbital assembly, thermal insulation, integrated propulsion, power generation, avionics, environment control, and pyrotechnics and landing system. The mass is given of the lander as well as the transfer stage.

  5. Cost and performance analysis of conceptual designs of physical protection systems

    SciTech Connect

    Hicks, M.J.; Snell, M.S.; Sandoval, J.S.; Potter, C.S.

    1998-06-01

    CPA -- Cost and Performance Analysis -- is a methodology that joins Activity Based Cost (ABC) estimation with performance based analysis of physical protection systems. CPA offers system managers an approach that supports both tactical decision making and strategic planning. Current exploratory applications of the CPA methodology are addressing analysis of alternative conceptual designs. To support these activities, the original architecture for CPA, is being expanded to incorporate results from a suite of performance and consequence analysis tools such as JTS (Joint Tactical Simulation), ERAD (Explosive Release Atmospheric Dispersion) and blast effect models. The process flow for applying CPA to the development and analysis conceptual designs is illustrated graphically.

  6. Shuttle Kit Freezer Refrigeration Unit Conceptual Design

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.

    1975-01-01

    The refrigerated food/medical sample storage compartment as a kit to the space shuttle orbiter is examined. To maintain the -10 F in the freezer kit, an active refrigeration unit is required, and an air cooled Stirling Cycle refrigerator was selected. The freezer kit contains two subsystems, the refrigeration unit, and the storage volume. The freezer must provide two basic capabilities in one unit. One requirement is to store 215 lbs of food which is consumed in a 30-day period by 7 people. The other requirement is to store 128.3 lbs of medical samples consisting of both urine and feces. The unit can be mounted on the lower deck of the shuttle cabin, and will occupy four standard payload module compartments on the forward bulkhead. The freezer contains four storage compartments.

  7. Conceptual design of a lunar colony

    NASA Technical Reports Server (NTRS)

    Dalton, C. (Editor); Hohmann, E. (Editor)

    1972-01-01

    A systems engineering study is presented for a proposed lunar colony. The lunar colony was to grow from an existent, 12-man, earth-dependent lunar surface base and was to utilize lunar resources, becoming as earth-independent as possible. An in-depth treatment of some of the aspects of the lunar colony was given. We have found that the use of lunar resources is feasible for oxygen production (both for breathing and for space tug fuel), food production, and building materials. A program is outlined for recycling waste materials developed at the colony as well as a full program for growth and research activity of the colony to a level of 180 colonists. Recommendations for the lunar colony are given.

  8. Conceptual design of a submerged power station

    SciTech Connect

    Herring, J.S.

    1992-08-01

    Providing safe and sustainable energy to the world`s increasing population will be one of the major challenges of the 21st century. At the INEL we are developing the concept of a passively safe submerged power station (SPS), shown. The reactor is located in the forward part of the vessel, while the turbine and generator are mounted in the middle section and the control and crew quarters are located at the opposite end of the vessel. The SPS would be operated in 20 to 100 m of water at a distance of 10 to 30 km from the shore and would generate 600 MWe. Power would be transmitted to shore by AC cables, similar to submarine cables in use today. The SPS would be manufactured in a central shipyard and towed or transported to its operational location. The reactor is designed to operate on a five-year cycle with a capacity factor of 70 percent, after which the station would be returned to a central facility for refueling and maintenance. Thus the SPS has the advantages of centralized fabrication and maintenance.

  9. Conceptual design of a submerged power station

    SciTech Connect

    Herring, J.S.

    1992-01-01

    Providing safe and sustainable energy to the world's increasing population will be one of the major challenges of the 21st century. At the INEL we are developing the concept of a passively safe submerged power station (SPS), shown. The reactor is located in the forward part of the vessel, while the turbine and generator are mounted in the middle section and the control and crew quarters are located at the opposite end of the vessel. The SPS would be operated in 20 to 100 m of water at a distance of 10 to 30 km from the shore and would generate 600 MWe. Power would be transmitted to shore by AC cables, similar to submarine cables in use today. The SPS would be manufactured in a central shipyard and towed or transported to its operational location. The reactor is designed to operate on a five-year cycle with a capacity factor of 70 percent, after which the station would be returned to a central facility for refueling and maintenance. Thus the SPS has the advantages of centralized fabrication and maintenance.

  10. Conceptual design of a two stage to orbit spacecraft

    NASA Technical Reports Server (NTRS)

    Armiger, Scott C.; Kwarta, Jennifer S.; Horsley, Kevin B.; Snow, Glenn A.; Koe, Eric C.; Single, Thomas G.

    1993-01-01

    This project, undertaken through the Advanced Space Design Program, developed a 'Conceptual Design of a Two Stage To Orbit Spacecraft (TSTO).' The design developed utilizes a combination of air breathing and rocket propulsion systems and is fully reusable, with horizontal takeoff and landing capability. The orbiter is carried in an aerodynamically designed bay in the aft section of the booster vehicle to the staging altitude. This TSTO Spacecraft design meets the requirements of replacing the aging Space Shuttle system with a more easily maintained vehicle with more flexible mission capability.

  11. Landing Gear Integration in Aircraft Conceptual Design. Revision

    NASA Technical Reports Server (NTRS)

    Chai, Sonny T.; Mason, William H.

    1997-01-01

    The design of the landing gear is one of the more fundamental aspects of aircraft design. The design and integration process encompasses numerous engineering disciplines, e.g., structure, weights, runway design, and economics, and has become extremely sophisticated in the last few decades. Although the design process is well-documented, no attempt has been made until now in the development of a design methodology that can be used within an automated environment. As a result, the process remains to be a key responsibility for the configuration designer and is largely experience-based and graphically-oriented. However, as industry and government try to incorporate multidisciplinary design optimization (MDO) methods in the conceptual design phase, the need for a more systematic procedure has become apparent. The development of an MDO-capable design methodology as described in this work is focused on providing the conceptual designer with tools to help automate the disciplinary analyses, i.e., geometry, kinematics, flotation, and weight. Documented design procedures and analyses were examined to determine their applicability, and to ensure compliance with current practices and regulations. Using the latest information as obtained from industry during initial industry survey, the analyses were in terms modified and expanded to accommodate the design criteria associated with the advanced large subsonic transports. Algorithms were then developed based on the updated analysis procedures to be incorporated into existing MDO codes.

  12. Conceptual design proposal: HUGO global range/mobility transport aircraft

    NASA Technical Reports Server (NTRS)

    Johnston, Tom; Perretta, Dave; Mcbane, Doug; Morin, Greg; Thomas, Greg; Woodward, Joe; Gulakowski, Steve

    1993-01-01

    With the collapse of the former Soviet Union and the emergence of the United Nations actively pursuing a peace keeping role in world affairs, the United States has been forced into a position as the world's leading peace enforcer. It is still a very dangerous world with seemingly never ending ideological, territorial, and economic disputes requiring the U.S. to maintain a credible deterrent posture in this uncertain environment. This has created an urgent need to rapidly transport large numbers of troops and equipment from the continental United States (CONUS) to any potential world trouble spot by means of a global range/mobility transport aircraft. The most recent examples being Operation Desert Shield/Storm and Operation Restore Hope. To meet this challenge head-on, a request for proposal (RFP) was developed and incorporated into the 1992/1993 AIAA/McDonnell Douglas Corporation Graduate Team Aircraft Design Competition. The RFP calls for the conceptual design and justification of a large aircraft capable of power projecting a significant military force without surface transportation reliance.

  13. Conceptual design of an RTG Facility Transportation System

    NASA Astrophysics Data System (ADS)

    Black, Stephen J.; Gentzlinger, Robert C.; Lujan, Richard E.

    1994-06-01

    The conceptual design of an Radioisotope Thermoelectric Generator (RTG) Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during loading and unloading sequences. The RTG Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a uniquely designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock limiting Transit Device Subsystem consists of a consumable honeycomb transit frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the unloading and loading of the RTG, of the Transport Trailer as well as meet ALARA radiation Package into and out exposure guidelines.

  14. Conceptual design of an RTG Facility Transportation System

    SciTech Connect

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1994-06-03

    The conceptual design of an Radioisotope Thermoelectric Generator (RTG) Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during loading and unloading sequences. The RTG Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a uniquely designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock limiting Transit Device Subsystem consists of a consumable honeycomb transit frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the unloading and loading of the RTG , of the Transport Trailer as well as meet ALARA radiation Package into and out exposure guidelines.

  15. A computer-assisted process for supersonic aircraft conceptual design

    NASA Technical Reports Server (NTRS)

    Johnson, V. S.

    1985-01-01

    Design methodology was developed and existing major computer codes were selected to carry out the conceptual design of supersonic aircraft. A computer-assisted design process resulted from linking the codes together in a logical manner to implement the design methodology. The process does not perform the conceptual design of a supersonic aircraft but it does provide the designer with increased flexibility, especially in geometry generation and manipulation. Use of the computer-assisted process for the conceptual design of an advanced technology Mach 3.5 interceptor showed the principal benefit of the process to be the ability to use a computerized geometry generator and then directly convert the geometry between formats used in the geometry code and the aerodynamics codes. Results from the interceptor study showed that a Mach 3.5 standoff interceptor with a 1000 nautical-mile mission radius and a payload of eight Phoenix missiles appears to be feasible with the advanced technologies considered. A sensitivity study showed that technologies affecting the empty weight and propulsion system would be critical in the final configuration characteristics with aerodynamics having a lesser effect for small perturbations around the baseline.

  16. Winged cargo return vehicle conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is committed to placing a permanent space station in Earth orbit in the 1990's. Space Station Freedom (SSF) will be located in a 220 n.m. orbit at 28.5 degrees inclination. The Winged Cargo Return Vehicle's (CRV) primary mission is to support SSF crew by flying regular resupply missions. The winged CRV is designed to be reusable, dry land recoverable, and unmanned. The CRV will be launched inline on three liquid hydrogen/oxygen rocket boosters with a payload capacity of 113,000 lbs. The three boosters will take the CRV to an orbit of 50 by 110 n.m. From this altitude the orbital manuevering engine will place the vehicle in synchronous orbit with the space station. The winged CRV will deliver cargo modules to the space station by direct docking or by remaining outside the SSF command zone and using the Orbital Maneuvering Vehicle (OMV) to transfer cargo. After unloading/loading, the CRV will deorbit and fly back to Kennedy Space Center. The CRV has a wing span of 57.8 feet, a length of 76.0 feet, and a dry weight of 61.5 klb. The cargo capacity of the vehicle is 44.4 klb. The vehicle has a lift-drag ratio of 1.28 (hypersonic) and 6.0 (subsonic), resulting in a 1351 n.m. cross range. The overall mission length ranges between 18.8 and 80.5 hr. The operational period will be the years 2000 to 2020.

  17. AFB/open cycle gas turbine conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickinson, T. W.; Tashjian, R.

    1983-01-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  18. Scenario for concurrent conceptual assembly line design: A case study

    NASA Astrophysics Data System (ADS)

    Mas, F.; Ríos, J.; Menéndez, J. L.

    2012-04-01

    The decision to design and build a new aircraft is preceded by years of research and study. Different disciplines work together throughout the lifecycle to ensure not only a complete functional definition of the product, but also a complete industrialization, a marketing plan, a maintenance plan, etc. This case study focuses on the conceptual design phase. During this phase, the design solutions that will meet the functional and industrial requirements are defined, i.e.: the basic requirements of industrialization. During this phase, several alternatives are studied, and the most attractive in terms of performance and cost requirements is selected. As a result of the study of these alternatives, it is possible to define an early conceptual design of the assembly line and its basic parameters. The plant needs, long cycle jigs & tools or industrial means and human resources with the necessary skills can be determined in advance.

  19. Conceptual design of liquid droplet radiator shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Pfeiffer, Shlomo L.

    1989-01-01

    The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.

  20. SDC conceptual design: Scintillating fiber outer tracker

    SciTech Connect

    Adams, D.; Baumbaugh, A.; Bird, F.; SDC Collaboration

    1992-01-22

    The authors propose an all-scintillating fiber detector for the purpose of outer tracking for the SDC. The objectives of this tracking system are to: (1) provide a first level trigger for {vert_bar}{eta}{vert_bar} < 2.3 with sharp p{sub T} threshold with the ability to resolve individual beam crossings; (2) provide pattern recognition capability and momentum resolution which complements and extends the capabilities of the inner silicon tracking system; (3) provide three dimensional linkage with outer detection systems including the shower maximum detector, muon detectors, and calorimetry; (4) provide robust tracking and track-triggering at the highest luminosities expected at the SSC. The many attractive features of a fiber tracker include good position resolution, low occupancy, low mass in the active volume, and excellent resistance to radiation damage. An additional important feature, especially at the SSC, is the intrinsically prompt response time of a scintillating fiber. This property is exploited in the construction of a level 1 trigger sensitive to individual beam crossings.

  1. Advanced Turbine Systems Program: Conceptual design and product development

    SciTech Connect

    1996-12-31

    Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

  2. Spent nuclear fuel canister storage building conceptual design report

    SciTech Connect

    Swenson, C.E.

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  3. Conceptual design for the NSTX Central Instrumentation and Control System

    SciTech Connect

    Bashore, D.; Oliaro, G. Roney, P.; Sichta, P.; Tindall, K.

    1997-09-01

    The design and construction phase for the National Spherical Torus Experiment (NSTX) is under way at the Princeton Plasma Physics Laboratory (PPPL). Operation is scheduled to begin on April 30, 1999. This paper describes the conceptual design for the NSTX Central Instrumentation and Control (I and C) System. Major elements of the Central I and C System include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System to support the NSTX experimental device.

  4. CONCEPTUAL DESIGN OF A CAPTURE RF SYSTEM FOR MUON COLLIDERS.

    SciTech Connect

    ROSE,J.

    2001-06-18

    A conceptual RF System design provides a basis for a more detailed engineering study to explore the technical issues involved in fabricating and testing a capture RF system in a proton-driver target experiment. A large-bore 71 MHz cavity design is detailed which is self-consistent with a proton-driver target experiment at BNL. Analysis of cell to cell coupling in a linac composed of a string of such cavitites is presented.

  5. The CLIC BDS Towards the Conceptual Design Report

    SciTech Connect

    Tomas, Rogelio; Dalena, Barbara; Marin, Eduardo; Schulte, Daniel; Zamudio, Guillermo; Angal-Kalinin, Deepa; Fernandez-Hernando, Juan; Jackson, Frank; Resta-Lopez, Javier; Seryi, Andrei; /SLAC

    2012-07-05

    The CLIC Conceptual Design Report (CDR) must be ready by 2010. This paper aims at addressing all the critical points of the CLIC Beam Delivery Systems (BDS) to be later implemented in the CDR. This includes risk evaluation and possible solutions to a number of selected points. The smooth and practical transition between the 500 GeV CLIC and the design energy of 3 TeV is also studied.

  6. Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben

    2014-01-01

    This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.

  7. Risk-based methods applicable to ranking conceptual designs

    SciTech Connect

    Breeding, R.J.; Ortiz, K.; Ringland, J.T.; Lim, J.J.

    1993-11-01

    In Ginichi Taguchi`s latest book on quality engineering, an emphasis is placed on robust design processes in which quality engineering techniques are brought ``upstream,`` that is, they are utilized as early as possible, preferably in the conceptual design stage. This approach was used in a study of possible future safety system designs for weapons. As an experiment, a method was developed for using probabilistic risk analysis (PRA) techniques to rank conceptual designs for performance against a safety metric for ultimate incorporation into a Pugh matrix evaluation. This represents a high-level UW application of PRA methods to weapons. As with most conceptual designs, details of the implementation were not yet developed; many of the components had never been built, let alone tested. Therefore, our application of risk assessment methods was forced to be at such a high level that the entire evaluation could be performed on a spreadsheet. Nonetheless, the method produced numerical estimates of safety in a manner that was consistent, reproducible, and scrutable. The results enabled us to rank designs to identify areas where returns on research efforts would be the greatest. The numerical estimates were calibrated against what is achievable by current weapon safety systems. The use of expert judgement is inescapable, but these judgements are explicit and the method is easily implemented on an spreadsheet computer program.

  8. Probabilistic Risk Assessment for Concurrent, Conceptual Design of Space Missions

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila

    2005-01-01

    NASA is expanding its capability to perform PRA. This capability gives insight into the links of a suggested design and drives the refinement of the design by identifying optimal areas for investments. Clearly, it is more viable and less expensive to refine a design at the time that it is being conceived. Hence the utility of conducting PRA at the conceptual design phase. Concurrent engineering teams greatly reduce the design time and costs. However, there is currently no standardized means for building probabilistic risk models to assess risks associated with a design produced by such teams. The capability to produce a consistent and valid risk metric associated with such designs would greatly enhance the value of such design teams. This paper explains the experimental results obtained to date from building probabilistic risk models for sample studies conducted at the concurrent engineering design team at the Jet Propulsion Laboratory (TeamX).

  9. Defining Support Requirements During Conceptual Design of Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; White, N. H.; Davis, W. T.; Ebeling, C. E.

    1995-01-01

    Current methods for defining the operational support requirements of new systems are data intensive and require significant design information. Methods are being developed to aid in the analysis process of defining support requirements for new launch vehicles during their conceptual design phase that work with the level of information available during this phase. These methods will provide support assessments based on the vehicle design and the operating scenarios. The results can be used both to define expected support requirements for new launch vehicle designs and to help evaluate the benefits of using new technologies. This paper describes the models, their current status, and provides examples of their use.

  10. Conceptual design for a lunar-base CELSS

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Cullingford, Hatice S.

    1990-01-01

    Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.

  11. Next Generation CANDU: Conceptual Design for a Short Construction Schedule

    SciTech Connect

    Hopwood, Jerry M.; Love, Ian J.W.; Elgohary, Medhat; Fairclough, Neville

    2002-07-01

    Atomic Energy of Canada Ltd. (AECL) has very successful experience in implementing new construction methods at the Qinshan (Phase III) twin unit CANDU 6 plant in China. This paper examines the construction method that must be implemented during the conceptual design phase of a project if short construction schedules are to be met. A project schedule of 48 months has been developed for the nth unit of NG (Next Generation) CANDU with a 42 month construction period from 1. Concrete to In-Service. An overall construction strategy has been developed involving paralleling project activities that are normally conducted in series. Many parts of the plant will be fabricated as modules and be installed using heavy lift cranes. The Reactor Building (RB), being on the critical path, has been the focus of considerable assessment, looking at alternative ways of applying the construction strategy to this building. A construction method has been chosen which will result in excess of 80% of internal work being completed as modules or as very streamlined traditional construction. This method is being further evaluated as the detailed layout proceeds. Other areas of the plant have been integrated into the schedule and new construction methods are being applied to these so that further modularization and even greater paralleling of activities will be achieved. It is concluded that the optimized construction method is a requirement, which must be implemented through all phases of design to make a 42 month construction schedule a reality. If the construction methods are appropriately chosen, the schedule reductions achieved will make nuclear more competitive. (authors)

  12. Forest fire advanced system technology (FFAST) conceptual design study

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Warren, John R.

    1987-01-01

    The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  13. Conceptual design of an aircraft automated coating removal system

    SciTech Connect

    Baker, J.E.; Draper, J.V.; Pin, F.G.; Primm, A.H.; Shekhar, S.

    1996-05-01

    Paint stripping of the U.S. Air Force`s large transport aircrafts is currently a labor-intensive, manual process. Significant reductions in costs, personnel and turnaround time can be accomplished by the judicious use of automation in some process tasks. This paper presents the conceptual design of a coating removal systems for the tail surfaces of the C-5 plane. Emphasis is placed on the technology selection to optimize human-automation synergy with respect to overall costs, throughput, quality, safety, and reliability. Trade- offs between field-proven vs. research-requiring technologies, and between expected gain vs. cost and complexity, have led to a conceptual design which is semi-autonomous (relying on the human for task specification and disturbance handling) yet incorporates sensor- based automation (for sweep path generation and tracking, surface following, stripping quality control and tape/breach handling).

  14. Prospective Secondary Teachers Repositioning by Designing, Implementing and Testing Mathematics Learning Objects: A Conceptual Framework

    ERIC Educational Resources Information Center

    Mgombelo, Joyce R.; Buteau, Chantal

    2009-01-01

    This article describes a conceptual framework developed to illuminate how prospective teachers' learning experiences are shaped by didactic-sensitive activities in departments of mathematics. We draw from the experiences of prospective teachers in the Department of Mathematics at our institution in designing, implementing (i.e. computer…

  15. Studying the Effectiveness of Conceptual Design in Secondary Design and Technology in England

    ERIC Educational Resources Information Center

    Trebell, Donna

    2013-01-01

    The purpose of the study reported here was to investigate the effectiveness of a conceptual design unit as part of the Design and Technology curriculum for 14 years old pupils in England. One research question drove this study: What sort of designing do pupils do when they design without having to make what they have designed? Data consisted of…

  16. PEP-II: An asymmetric B factory. Conceptual design report

    SciTech Connect

    Not Available

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e{sub +}e{sub {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings.

  17. Conceptual space Systems Design using Meta-Heuristic Algorithms

    NASA Astrophysics Data System (ADS)

    Kim, Byoungsoo; Morgenthaler, George W.

    2002-01-01

    easily and explicitly by new design-to-cost philosophy, "faster, better, cheaper" (fast-track, innovative, lower-cost, small-sat). The objective of the Space Systems Design has moved from maximizing space mission performance under weak time and cost constraints (almost regardless of cost) but with technology risk constraints, to maximizing mission goals under cost and schedule constraints but with prudent technology risk constraints, or maximizing space mission performance per unit cost. Within this mindset, Conceptual Space Systems Design models were formulated as constrained combinatorial optimization problems with estimated Total Mission Cost (TMC) as its objective function to be minimized and subsystems trade-offs as decision variables in its design space, using parametric estimating relationships (PERs) and cost estimating relationships (CERs).Here a constrained combinatorial optimized "solution" is defined as achieving the most favorable alternative for the system on the basis of the decision-making design criteria. Two non-traditional meta-heuristic optimization algorithms, Genetic Algorithms (GAs) and Simulated Annealing (SA), were used to solve the formulated combinatorial optimization model for the Conceptual Space Systems Design. GAs and SA were demonstrated on SAMPEX. The model simulation statistics show that the estimated TMCs obtained by GAs and SA are statistically equal and consistent. These statistics also show that Conceptual Space Systems Design Model can be used as a guidance tool to evaluate and validate space research proposals. Also, the non-traditional meta-heuristic constrained optimization techniques, GAs and SA, can be applied to all manner of space, civil or commercial design problems.

  18. Multistage aerospace craft. [perspective drawings of conceptual design

    NASA Technical Reports Server (NTRS)

    Kelly, D. L. (Inventor)

    1973-01-01

    A conceptual design of a multi-stage aerospace craft is presented. Two perspective views of the vehicle are developed to show the two component configuration with delta wing, four vertical tail surfaces, tricycle landing gear, and two rocket exhaust nozzles at the rear of the fuselage. Engines for propulsion in the atmosphere are mounted on the fuselage in front of the wing root attachment.

  19. UXO Engineering Design. Technical Specification and ConceptualDesign

    SciTech Connect

    Beche, J-F.; Doolittle, L.; Greer, J.; Lafever, R.; Radding, Z.; Ratti, A.; Yaver, H.; Zimmermann, S.

    2005-04-23

    The design and fabrication of the UXO detector has numerous challenges and is an important component to the success of this study. This section describes the overall engineering approach, as well as some of the technical details that brought us to the present design. In general, an array of sensor coils is measuring the signal generated by the UXO object in response to a stimulation provided by the driver coil. The information related to the location, shape and properties of the object is derived from the analysis of the measured data. Each sensor coil is instrumented with a waveform digitizer operating at a nominal digitization rate of 100 kSamples per second. The sensor coils record both the large transient pulse of the driver coil and the UXO object response pulse. The latter is smaller in amplitude and must be extracted from the large transient signal. The resolution required is 16 bits over a dynamic range of at least 140 dB. The useful signal bandwidth of the application extends from DC to 40 kHz. The low distortion of each component is crucial in order to maintain an excellent linearity over the full dynamic range and to minimize the calibration procedure. The electronics must be made as compact as possible so that the response of its metallic parts has a minimum signature response. Also because of a field system portability requirement, the power consumption of the instrument must be kept as low as possible. The theory and results of numerical and experimental studies that led to the proof-of-principle multitransmitter-multireceiver Active ElectroMagnetic (AEM) system, that can not only accurately detect but also characterize and discriminate UXO targets, are summarized in LBNL report-53962: ''Detection and Classification of Buried Metallic Objects, UX-1225''.

  20. Conceptual space systems design using meta-heuristic algorithms

    NASA Astrophysics Data System (ADS)

    Kim, Byoungsoo

    A recent tendency in designing Space Systems for a specific mission can be described easily and explicitly by the new design-to-cost philosophy, "faster, better, cheaper" (fast-track, innovative, lower-cost, small-sat). This means that Space Systems engineers must do more with less and in less time. This new philosophy can result in space exploration programs with smaller spacecraft, more frequent flights at a remarkably lower cost per flight (cost first, performance second), shorter development schedules, and more focused missions. Some early attempts at "faster, better, cheaper" possibly moved too fast and eliminated critical tests or did not "space-qualify" the innovations, causing failure. A new discipline of Constrained Optimization must be employed. With this new philosophy, Space Systems Design becomes a difficult problem to model in the new, more challenging environment. The objective of Space Systems Design has moved from maximizing space mission performance under weak time and weak cost constraints (accepting schedule slippage and cost growth) but with technology risk constraints, to maximizing mission goals under firm cost and schedule constraints but with prudent technology risk constraints, or, equivalently maximizing "expected" space mission performance per unit cost. Within this mindset, a complex Conceptual Space Systems Design Model was formulated as a (simply bounded) Constrained Combinatorial Optimization Problem with Estimated Total Mission Cost (ETMC) as its objective function to be minimized and subsystems trade-offs and design parameters as the decision variables in its design space, using parametric estimating relationships (PERs) and cost estimating relationships (CERs). Here, given a complex Conceptual Space Systems Design Problem, a (simply bounded) Constrained Combinatorial Optimization "solution" is defined as the process of achieving the most favorable alternative for the system on the basis of objective decision-making evaluation

  1. The PROactive innovative conceptual framework on physical activity

    PubMed Central

    Dobbels, Fabienne; de Jong, Corina; Drost, Ellen; Elberse, Janneke; Feridou, Chryssoula; Jacobs, Laura; Rabinovich, Roberto; Frei, Anja; Puhan, Milo A.; de Boer, Willem I.; van der Molen, Thys; Williams, Kate; Pinnock, Hillary; Troosters, Thierry; Karlsson, Niklas; Kulich, Karoly; Rüdell, Katja; Brindicci, Caterina; Higenbottam, Tim; Troosters, Thierry; Dobbels, Fabienne; Decramer, Marc; Tabberer, Margaret; Rabinovich, Roberto A; MacNee, William; Vogiatzis, Ioannis; Polkey, Michael; Hopkinson, Nick; Garcia-Aymerich, Judith; Puhan, Milo; Frei, Anja; van der Molen, Thys; de Jong, Corina; de Boer, Pim; Jarrod, Ian; McBride, Paul; Kamel, Nadia; Rudell, Katja; Wilson, Frederick J.; Ivanoff, Nathalie; Kulich, Karoly; Glendenning, Alistair; Karlsson, Niklas X.; Corriol-Rohou, Solange; Nikai, Enkeleida; Erzen, Damijan

    2014-01-01

    Although physical activity is considered an important therapeutic target in chronic obstructive pulmonary disease (COPD), what “physical activity” means to COPD patients and how their perspective is best measured is poorly understood. We designed a conceptual framework, guiding the development and content validation of two patient reported outcome (PRO) instruments on physical activity (PROactive PRO instruments). 116 patients from four European countries with diverse demographics and COPD phenotypes participated in three consecutive qualitative studies (63% male, age mean±sd 66±9 years, 35% Global Initiative for Chronic Obstructive Lung Disease stage III–IV). 23 interviews and eight focus groups (n = 54) identified the main themes and candidate items of the framework. 39 cognitive debriefings allowed the clarity of the items and instructions to be optimised. Three themes emerged, i.e. impact of COPD on amount of physical activity, symptoms experienced during physical activity, and adaptations made to facilitate physical activity. The themes were similar irrespective of country, demographic or disease characteristics. Iterative rounds of appraisal and refinement of candidate items resulted in 30 items with a daily recall period and 34 items with a 7-day recall period. For the first time, our approach provides comprehensive insight on physical activity from the COPD patients’ perspective. The PROactive PRO instruments’ content validity represents the pivotal basis for empirically based item reduction and validation. PMID:25034563

  2. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  3. Aircraft conceptual design - an adaptable parametric sizing methodology

    NASA Astrophysics Data System (ADS)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  4. Conceptual design study of a nuclear Brayton turboalternator-compressor

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A comprehensive analysis and conceptual design study of the turboalternator-compressor components using HeXe as the working fluid was performed. The study was conducted in three phases: general configuration analysis (Phase 1), design variations (Phase 2), and conceptual design study (Phase 3). During the Phase 1 analysis, individual turbine, alternator, compressor, and bearing and seal designs were evaluated. Six turboalternator-compressor (TAC) configurations were completed. Phase 2 consisted of evaluating one selected Phase 1 TAC configuration to calculate its performance when operating under new cycle conditions, namely, one higher and one lower turbine inlet temperature and one case with krypton as the working fluid. Based on the Phase 1 and 2 results, a TAC configuration that incorporated a radial compressor, a radial turbine, a Lundell alternator, and gas bearings was selected. During Phase 3 a new layout of the TAC was prepared that reflects the cycle state points necessary to accommodate a zirconium hydride moderated reactor and a 400 Hz alternator. The final TAC design rotates at 24,000 rpm and produces 160 kWe, 480 V, 3-phase, 400 hertz power.

  5. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  6. Conceptual design report, TWRS Privatization phase I, raw and potable water, subproject W-504

    SciTech Connect

    Singh, G.

    1997-06-05

    This document includes Conceptual Design Report (CDR) for extension of existing Raw and Potable systems from 200-East Area systems to two new private contractor facilities for immobilization and disposal of low-activity waste (LAW). The work will include design and installation of almost 3400 m (11,200 ft) of raw water pipe and 2200 in (7,300 ft) of potable water pipe.

  7. Conceptual Design of the Chornobyl New Safe Confinement - an Overview

    SciTech Connect

    Kulishenko, Valery N.; Hogg, Charles; Schmieman, Eric A.; Wrona, Matthew W.; Convert, Philippe; Nemchinov, Yuriy I.; Shenderovich, Victor; Shcherbin, Vladimir; Belicard, Pascal; Durst, Bruce M.

    2006-05-01

    The Object Shelter, constructed over the Chornobyl nuclear power plant that was destroyed by a 1986 accident, is at risk of collapse. The Consortium of Bechtel, Electricité De France, and Battelle, in cooperation with subcontractor КСК, recently completed the conceptual design for a New Safe Confinement (NSC) building to reduce Shelter corrosion, to mitigate the consequences of potential collapse, and to enable the safe deconstruction of unstable structures. The arch-shaped NSC will be constructed at a distance from the Shelter to minimize radiation exposure to construction workers, and then slid into place over the Shelter. After sliding, cranes and other tools inside the NSC will be remotely operated for deconstruction of the Shelter. The NSC is designed for a 100-year life. Bechtel designed the arch structure and was responsible for project management functions. Electricité De France designed the foundations and designed deconstruction of the Object Shelter unstable elements. Battelle performed safety analyses and environmental impact assessment. КСК (a consortium of КIЕЛ [KIEP], НДIБК [NIISK], and МНТЦ [ISTC]), as a working partner in all aspects of the design and analysis processes, was the Ukrainian licensed engineer for conceptual design. The design is currently being reviewed by Ukrainian regulatory authorities. An open international tender for detailed design and construction is anticipated to be announced by the European Bank for Reconstruction and Development in December, 2003, with two-stage bid evaluation beginning in April, 2004.

  8. Translating Vision into Design: A Method for Conceptual Design Development

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.

    2003-01-01

    One of the most challenging tasks for engineers is the definition of design solutions that will satisfy high-level strategic visions and objectives. Even more challenging is the need to demonstrate how a particular design solution supports the high-level vision. This paper describes a process and set of system engineering tools that have been used at the Johnson Space Center to analyze and decompose high-level objectives for future human missions into design requirements that can be used to develop alternative concepts for vehicles, habitats, and other systems. Analysis and design studies of alternative concepts and approaches are used to develop recommendations for strategic investments in research and technology that support the NASA Integrated Space Plan. In addition to a description of system engineering tools, this paper includes a discussion of collaborative design practices for human exploration mission architecture studies used at the Johnson Space Center.

  9. Conceptual design for scaled truss antenna flight experiment

    NASA Technical Reports Server (NTRS)

    Lee, W. H.

    1984-01-01

    The conceptual design for a scaled truss antenna structures experiment program (STASEP) is presented. The hardware analysis of the scaled truss antenna structure (STAS) was performed by interactive design and evaluation of advanced spacecraft (IDEAS) computer aided, interactive, design and analysis program. Four STAS's were designed to be launched by the Shuttle, tested by using the space technology experiments platform (STEP) and space transportation system (STS), and then free flown in short lifetime orbits. Data were gathered on deployment, structural characteristics, geometric accuracies, thermal performance, and drag and lifetime as an orbiting spacecraft. Structural and thermal properties were determined for the STAS, including mass properties, thermal loading, structural natural frequencies, and mode shapes. The necessary analysis, scaling, and ground testing are discussed.

  10. High (500X) concentration PV array conceptual design

    SciTech Connect

    Levy, S.L.

    1984-05-01

    A conceptual design of a high concentration PV array using the Stanford/EPRI 500X silicon cell is presented. Work objectives were to identify an array concept with promise for economic viability, develop prelimiary component (subsystem) designs for such an array, and identify key component developmental issues. Design criterion was minimum levelized busbar energy cost, BBEC. New methodology developed permitted meaningful trade studies based on variation of subsystem costs and a 15 /kWh current year dollars target for BBEC. Subsystem designs include the tracking support structure and the PV module. The module includes the Fresnel lens parquet, the cell package, the backplate heat rejector and the module housing. Estimated cost for the array is in the range of allowed costs established by BBEC target and balance-of-system cost estimates. Key developmental issues are attaching the cell to the cell mount, thermal transients, and panel lifetime.

  11. Conceptual Design Report for the Extreme Ecosystems Test Chambers

    SciTech Connect

    C. Barnes; J. Beller; K. Caldwell; K. Croft; R. Cherry; W. Landman

    1998-12-01

    This conceptual design supports the creation of Extreme Ecosystems Test Chambers, which will replicate deep subsurface and subocean environments characterized by high pressure (2,000 psi) and subfreezing to high temperature (-4 to 300 degrees F) with differing chemical and saturation conditions. The design provides a system to support research and development that includes heat transfer, phase change issues in porous media, microbiology in extreme environments, and carbon sequestration and extraction. The initial system design is based on the research needs to support the commercial production of methane hydrates from subsurface sediments. The design provides for three pressure vessels: a Down Hole Test Vessel, a Vertical Multi-phase Test Vessel, and a Horizontal Multi-phase Test Vessel.

  12. Winged cargo return vehicle. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).

  13. Conceptual designs for the AT-400MO package

    SciTech Connect

    Fischer, L.E.; Hafner, R.F.; Hovingh, J.; Keeton, S.C.; Russell, E.W.; Lemmings, J.

    1997-01-01

    Currently, Pantex handles and stores weapons pits in AT-400A packages. The Department of Energy currently plans to oversee the conversion of weapon pits into plutonium metal or oxide. These products will then be stored, and perhaps transported at a later time, to other DOE sites. If DOE assigns the pit conversion process to Pantex, it makes sense to store the resulting Pu metal or oxide at Pantex, utilizing existing facilities, equipment, processes, and personnel. The four conceptual designs presented herein substitute the current AT-400A containment vessel, designed for weapon pits, with a vessel designed to store and/or ship Pu metal or oxides. These new designs utilize the existing AT-400A overpack system consisting of the drum assembly and radial impact limiters and likewise employ existing AT-400A production operations.

  14. Conceptual design of a STOVL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Chin, Y. T.

    1988-01-01

    STOVL aircraft offer unique basing and operational advantages to improve the capabilities of military forces in future warfare. To develop a STOVL fighter design with supersonic capability requires the integration of an advanced propulsion system into the airframe design. A promising propulsion system for supersonic STOVL application is the relatively new Hybrid Fan Vectored Thrust (HFVT) concept. This advanced tandem fan concept incorporates a dual-cycle engine with front and rear fully vectorable nozzles of the three-poster type, to provide the required performance. In this paper, the HFVT STOVL design integration approaches for a conceptual fighter/attack aircraft, as well as some features of the resulting design, will be presented.

  15. Pre-conceptual design study of ASTRID core

    SciTech Connect

    Varaine, F.; Marsault, P.; Chenaud, M. S.; Bernardin, B.; Conti, A.; Sciora, P.; Venard, C.; Fontaine, B.; Devictor, N.; Martin, L.; Scholer, A. C.; Verrier, D.

    2012-07-01

    In the framework of the ASTRID project at CEA, core design studies are performed at CEA with the AREVA and EDF support. At the stage of the project, pre-conceptual design studies are conducted in accordance with GEN IV reactors criteria, in particularly for safety improvements. An improved safety for a sodium cooled reactor requires revisiting many aspects of the design and is a rather lengthy process in current design approach. Two types of cores are under evaluation, one classical derived from the SFR V2B and one more challenging called CFV (low void effect core) with a large gain on the sodium void effect. The SFR V2b core have the following specifications: a very low burn-up reactivity swing (due to a small cycle reactivity loss) and a reduced sodium void effect with regard to past designs such as the EFR (around 2$ minus). Its performances are an average burn-up of 100 GWd/t, and an internal conversion ratio equal to one given a very good behavior of this core during a control rod withdrawal transient). The CFV with its specific design offers a negative sodium void worth while maintaining core performances. In accordance of ASTRID needs for demonstration those cores are 1500 MWth power (600 MWe). This paper will focus on the CFV pre-conceptual design of the core and S/A, and the performances in terms of safety will be evaluated on different transient scenario like ULOF, in order to assess its intrinsic behavior compared to a more classical design like V2B core. The gap in term of margin to a severe accident due to a loss of flow initiator underlines the potential capability of this type of core to enhance prevention of severe accident in accordance to safety demonstration. (authors)

  16. Bottom/Side Lift Gantry Conceptual Design Rev. 01

    SciTech Connect

    Bair, P.S.

    2000-04-11

    The purpose of this task is to update the existing bottom/side lift gantry analysis so that the design is consistent with Enhanced Design Alternative II (EDA II) design constraints listed in the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999a, Section 2.2.1.1, p. 9a). This update is consistent with the requirements of the Technical Guidance Document for License Application Preparation (YMP 1999, Section 6.2.5.1). This update will also take into account the latest available equipment classification and Waste Emplacement/Retrieval System Description Document (SDD) (CRWMS M and O 2000c) requirements. The principal objective of this analysis is to verify that the newly developed bottom/side lift gantry concept continues to be a suitable design concept for the current Monitored Geologic Repository (MGR) design. This analysis includes an examination of the waste package (WP) transfer operation at the emplacement drift transfer dock. In addition, this analysis verifies that the gantry is compatible with the WP transporter, which has been redesigned to handle WPs sitting on pallets (CRWMS M and O 2000a). The scope of this work is to examine the existing analysis and to determine what, if any, modifications to the analysis may be required as a result of additional requirements imposed by the EDA II concept. Then, a revision will be made to the conceptual design accordingly. The analysis will also be revised to show the approximate sizes and locations of the electrical equipment and control cabinets, and to take into account the weight of that equipment in the total gantry weight. The analytical portions of the analysis are revised, as required, to address changes resulting from modifications to the conceptual design or from changes in classification and/or SDD requirements. Finally, the revised conceptual design is evaluated to verify that it continues to be a suitable method for handling the WPs within the emplacement drift. Except as noted

  17. Conceptual design for a laminar-flying-wing aircraft

    NASA Astrophysics Data System (ADS)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  18. Conceptual designs for modular OTEC SKSS. Final report

    SciTech Connect

    1980-02-29

    This volume presents the results of the first phase of the Station Keeping Subsystem (SKSS) design study for 40 MW/sub e/ capacity Modular Experiment OTEC Platforms. The objectives of the study were: (1) establishment of basic design requirements; (2) verification of technical feasibility of SKSS designs; (3) identification of merits and demerits; (4) estimates of sizes for major components; (5) estimates of life cycle costs; (6) deployment scenarios and time/cost/risk assessments; (7) maintenance/repair and replacement scenarios; (8) identifications of interface with other OTEC subsystems; (9) recommendations for and major problems in preliminary design; and (10) applicability of concepts to commercial plant SKSS designs. A brief site suitability study was performed with the objective of determining the best possible location at the Punta Tuna (Puerto Rico) site from the standpoint of anchoring. This involved studying the vicinity of the initial location in relation to the prevailing bottom slopes and distances from shore. All subsequent studies were performed for the final selected site. The two baseline OTEC platforms were the APL BARGE and the G and C SPAR. The results of the study are presented in detail. The overall objective of developing two conceptual designs for each of the two baseline OTEC platforms has been accomplished. Specifically: (1) a methodology was developed for conceptual designs and followed to the extent possible. At this stage, a full reliability/performance/optimization analysis based on a probabilistic approach was not used due to the numerous SKSS candidates to be evaluated. A deterministic approach was used. (2) For both of the two baseline platforms, the APL BARGE and the G and C SPAR, all possible SKSS candidate concepts were considered and matrices of SKSS concepts were developed.

  19. Hypersonic Arbitrary-Body Aerodynamics (HABA) for conceptual design

    SciTech Connect

    Salguero, D.E.

    1990-03-15

    The Hypersonic Arbitrary-Body Aerodynamics (HABA) computer program predicts static and dynamic aerodynamic derivatives at hypersonic speeds for any vehicle geometry. It is intended to be used during conceptual design studies where fast computational speed is required. It uses the same geometry and hypersonic aerodynamic methods as the Mark IV Supersonic/Hypersonic Arbitrary-Body Program (SHABP) developed under sponsorship of the Air Force Flight Dynamics Laboratory; however, the input and output formats have been improved to make it easier to use. This program is available as part of the Department 9140 CAE software.

  20. Conceptual design of a two-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A conceptual design study of a two-stage-to-orbit vehicle is presented. Three configurations were initially investigated with one configuration selected for further development. The major objective was to place a 20,000-lb payload into a low Earth orbit using a two-stage vehicle. The first stage used air-breathing engines and employed a horizontal takeoff, while the second stage used rocket engines to achieve a 250-n.m. orbit. A two-stage-to-orbit vehicle seems a viable option for the next-generation space shuttle.

  1. Plutonium Immobilization Can Loading Conceptual Design for 13 MT Case

    SciTech Connect

    Peterson, K.D.

    2001-01-31

    The Plutonium Immobilization Plant (PIP) will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization Can Loading conceptual design for the 13 Metric Ton (MT) PIP throughput case. This report includes a process block diagram, process description, and preliminary equipment specifications and documents the changes to the original can loading concept documented in previous reports.

  2. A Conceptual Design For A Spaceborne 3D Imaging Lidar

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2002-01-01

    First generation spaceborne altimetric approaches are not well-suited to generating the few meter level horizontal resolution and decimeter accuracy vertical (range) resolution on the global scale desired by many in the Earth and planetary science communities. The present paper discusses the major technological impediments to achieving few meter transverse resolutions globally using conventional approaches and offers a feasible conceptual design which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction.

  3. Conceptual design of pressure relief systems for cryogenic application

    NASA Astrophysics Data System (ADS)

    Grohmann, S.; Süßer, M.

    2014-01-01

    The conceptual design of pressure relief systems is an important aspect in the early phase of any cryogenic system design, because a prudent and responsible evaluation of relief systems involves much more than just relief devices. The conceptual design consists of various steps: At first, hazard scenarios must be considered and the worst-case scenario identified. Next, a staged interaction against pressure increase is to be defined. This is followed by the selection of the general type of pressure relief device for each stage, such as safety valve and rupture disc, respectively. Then, a decision concerning their locations, their capacities and specific features must be taken. Furthermore, it is mandatory to consider the inlet pressure drop and the back pressure in the exhaust line for sizing the safety devices. And last but not least, economic and environmental considerations must be made in case of releasing the medium to the atmosphere. The development of the system's safety concept calls for a risk management strategy based on identification and analysis of hazards, and consequent risk mitigation using a system-based approach in compliance with the standards.

  4. Conceptual design of pressure relief systems for cryogenic application

    SciTech Connect

    Grohmann, S.; Süßer, M.

    2014-01-29

    The conceptual design of pressure relief systems is an important aspect in the early phase of any cryogenic system design, because a prudent and responsible evaluation of relief systems involves much more than just relief devices. The conceptual design consists of various steps: At first, hazard scenarios must be considered and the worst-case scenario identified. Next, a staged interaction against pressure increase is to be defined. This is followed by the selection of the general type of pressure relief device for each stage, such as safety valve and rupture disc, respectively. Then, a decision concerning their locations, their capacities and specific features must be taken. Furthermore, it is mandatory to consider the inlet pressure drop and the back pressure in the exhaust line for sizing the safety devices. And last but not least, economic and environmental considerations must be made in case of releasing the medium to the atmosphere. The development of the system's safety concept calls for a risk management strategy based on identification and analysis of hazards, and consequent risk mitigation using a system-based approach in compliance with the standards.

  5. Mu2e production solenoid cryostat conceptual design

    SciTech Connect

    Nicol, T.H.; Kashikhin, V.V.; Page, T.M.; Peterson, T.J.; /Fermilab

    2011-06-01

    Mu2e is a muon-to-electron conversion experiment being designed by an international collaboration of more than 65 scientists and engineers from more than 20 research institutions for installation at Fermilab. The experiment is comprised of three large superconducting solenoid magnet systems, production solenoid (PS), transport solenoid (TS) and detector solenoid (DS). A 25 kW, 8 GeV proton beam strikes a target located in the PS creating muons from the decay of secondary particles. These muons are then focused in the PS and the resultant muon beam is transported through the TS towards the DS. The production solenoid presents a unique set of design challenges as the result of high radiation doses, stringent magnetic field requirements, and large structural forces. This paper describes the conceptual design of the PS cryostat and will include discussions of the vacuum vessel, thermal shield, multi-layer insulation, cooling system, cryogenic piping, and suspension system.

  6. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    SciTech Connect

    Stephanie Austad

    2010-06-01

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  7. Rapid Risk-Based Evaluation of Competing Conceptual Designs

    SciTech Connect

    Bott, T.F.; Butner, J.M.

    1999-08-22

    In this paper, the authors have shown how a qualitative analysis can provide good input to a risk reduction design problem. Traditionally qualitative analyses such as the FMEA can be supplemented by qualitative fault trees and event trees to produce logic models of the accident sequences for the different design options. These models can be compared using rule-based manipulations of qualitative branch point probabilities. A qualitative evaluation of other considerations such as collateral safety effects, operational impacts and worker-safety impacts can provide a more complete picture of the trade-off between options. The authors believe that their risk-reduction analysis approach that combines logic models with qualitative and possibility metrics provides an excellent tool for incorporating safety concerns rapidly and effectively into a conceptual design evaluation.

  8. Conceptual design of a neutron camera for MAST Upgrade

    SciTech Connect

    Weiszflog, M. Sangaroon, S.; Cecconello, M.; Conroy, S.; Ericsson, G.; Klimek, I.; Keeling, D.; Martin, R.; Turnyanskiy, M.

    2014-11-15

    This paper presents two different conceptual designs of neutron cameras for Mega Ampere Spherical Tokamak (MAST) Upgrade. The first one consists of two horizontal cameras, one equatorial and one vertically down-shifted by 65 cm. The second design, viewing the plasma in a poloidal section, also consists of two cameras, one radial and the other one with a diagonal view. Design parameters for the different cameras were selected on the basis of neutron transport calculations and on a set of target measurement requirements taking into account the predicted neutron emissivities in the different MAST Upgrade operating scenarios. Based on a comparison of the cameras’ profile resolving power, the horizontal cameras are suggested as the best option.

  9. Conceptual Design of a Z-Pinch Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Santarius, John; Percy, Thomas

    2010-01-01

    This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,

  10. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  11. Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant

    SciTech Connect

    Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.

    1996-09-01

    The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are the MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.

  12. Equivalent plate modeling for conceptual design of aircraft wing structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  13. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    SciTech Connect

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  14. Umatilla Satellite and Release Sites Project : Final Conceptual Design Report.

    SciTech Connect

    Montgomery, James M.

    1992-03-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  15. Optimization of entry-vehicle shapes during conceptual design

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Mooij, E.

    2014-01-01

    During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.

  16. Symptom cluster research: conceptual, design, measurement, and analysis issues.

    PubMed

    Barsevick, Andrea M; Whitmer, Kyra; Nail, Lillian M; Beck, Susan L; Dudley, William N

    2006-01-01

    Cancer patients may experience multiple concurrent symptoms caused by the cancer, cancer treatment, or their combination. The complex relationships between and among symptoms, as well as the clinical antecedents and consequences, have not been well described. This paper examines the literature on cancer symptom clusters focusing on the conceptualization, design, measurement, and analytic issues. The investigation of symptom clustering is in an early stage of testing empirically whether the characteristics defined in the conceptual definition can be observed in cancer patients. Decisions related to study design include sample selection, the timing of symptom measures, and the characteristics of symptom interventions. For self-report symptom measures, decisions include symptom dimensions to evaluate, methods of scaling symptoms, and the time frame of responses. Analytic decisions may focus on the application of factor analysis, cluster analysis, and path models. Studying the complex symptoms of oncology patients will yield increased understanding of the patterns of association, interaction, and synergy of symptoms that produce specific clinical outcomes. It will also provide a scientific basis and new directions for clinical assessment and intervention. PMID:16442485

  17. Developing Conceptual Hypersonic Airbreathing Engines Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Ferlemann, Shelly M.; Robinson, Jeffrey S.; Martin, John G.; Leonard, Charles P.; Taylor, Lawrence W.; Kamhawi, Hilmi

    2000-01-01

    Designing a hypersonic vehicle is a complicated process due to the multi-disciplinary synergy that is required. The greatest challenge involves propulsion-airframe integration. In the past, a two-dimensional flowpath was generated based on the engine performance required for a proposed mission. A three-dimensional CAD geometry was produced from the two-dimensional flowpath for aerodynamic analysis, structural design, and packaging. The aerodynamics, engine performance, and mass properties arc inputs to the vehicle performance tool to determine if the mission goals were met. If the mission goals were not met, then a flowpath and vehicle redesign would begin. This design process might have to be performed several times to produce a "closed" vehicle. This paper will describe an attempt to design a hypersonic cruise vehicle propulsion flowpath using a Design of' Experiments method to reduce the resources necessary to produce a conceptual design with fewer iterations of the design cycle. These methods also allow for more flexible mission analysis and incorporation of additional design constraints at any point. A design system was developed using an object-based software package that would quickly generate each flowpath in the study given the values of the geometric independent variables. These flowpath geometries were put into a hypersonic propulsion code and the engine performance was generated. The propulsion results were loaded into statistical software to produce regression equations that were combined with an aerodynamic database to optimize the flowpath at the vehicle performance level. For this example, the design process was executed twice. The first pass was a cursory look at the independent variables selected to determine which variables are the most important and to test all of the inputs to the optimization process. The second cycle is a more in-depth study with more cases and higher order equations representing the design space.

  18. Conceptual design of a mobile remote manipulator system

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Mikulas, M. M., Jr.; Wallsom, R. E.; Jensen, J. K.

    1984-01-01

    A mobile remote manipulator system has been identified as a necessary device for space station. A conceptual design for an MRMS is presented which features (1) tracks on the MRMS and guide pins only on the truss structure, (2) a push/pull drive mechanism which rotates to permit movement in four directions, and (3) spacecrane and mobile foot restraint manipulators (or arms). Operational and design features of the MRMS elements are described and illustrated. Concepts are also presented which permit rotating the operational plane of the MRMS through 90 deg. Such a system has been found to have great utility for initial space station construction, maintenance and repair, and to provide a construction capability for future station growth or large spacecraft assembly and/or servicing.

  19. Rare Isotope Accelerator - Conceptual Design of Target Areas

    SciTech Connect

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  20. Investigation into the impact of agility on conceptual fighter design

    NASA Technical Reports Server (NTRS)

    Engelbeck, R. M.

    1995-01-01

    The Agility Design Study was performed by the Boeing Defense and Space Group for the NASA Langley Research Center. The objective of the study was to assess the impact of agility requirements on new fighter configurations. Global trade issues investigated were the level of agility, the mission role of the aircraft (air-to-ground, multi-role, or air-to-air), and whether the customer is Air force, Navy, or joint service. Mission profiles and design objectives were supplied by NASA. An extensive technology assessment was conducted to establish the available technologies to industry for the aircraft. Conceptual level methodology is presented to assess the five NASA-supplied agility metrics. Twelve configurations were developed to address the global trade issues. Three-view drawings, inboard profiles, and performance estimates were made and are included in the report. A critical assessment and lessons learned from the study are also presented.

  1. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  2. Multi-Watt Small Radioisotope Thermoelectric Generator Conceptual Design Study

    NASA Astrophysics Data System (ADS)

    Determan, William R.; Otting, William; Frye, Patrick; Abelson, Robert; Ewell, Richard; Miyake, Bob; Synder, Jeff

    2007-01-01

    A need has been identified for a small, light-weight, reliable power source using a radioisotope heat source, to power the next generation of NASA's small surface rovers and exploration probes. Unit performance, development costs, and technical risk are key criteria to be used to select the best design approach. Because safety can be a major program cost and schedule driver, RTG designs should utilize the DOE radioisotope safety program's data base to the maximum extent possible. Other aspects important to the conceptual design include: 1) a multi-mission capable design for atmospheric and vacuum environments, 2) a module size based on one GPHS Step 2 module, 3) use of flight proven thermoelectric converter technologies, 4) a long service lifetime of up to 14 years, 5) maximize unit specific power consistent with all other requirements, and 6) be ready by 2013. Another critical aspect of the design is the thermal integration of the RTG with the rover or probe's heat rejection subsystem and the descent vehicle's heat rejection subsystem. This paper describes two multi-watt RTG design concepts and their integration with a MER-class rover.

  3. Engineering test facility conceptual design. Final technical report

    SciTech Connect

    Not Available

    1980-02-01

    Because of the close relationship between the ETF design work conducted under this contract, and the design work of Potential Early Commercial MHD Power Plants (PSPEC) conducted under a separate and parallel DOE/NASA study contract, (DEN 3-51), the ETF design work reported on here was coordinated as far as possible with the design information developed in the above-mentioned separate PSPEC study. The reference power system configuration originally specified for the ETF considered the use of a high-temperature-air preheater, separately fired initially with oil and subsequently with a LBtu gas produced in a coal gasifier integrated with the power plant. The potential attractiveness of using oxygen enrichment in combustion of the coal for early commercial MHD power plant applications was indicated in our original ETF Conceptual Design Document. This eliminates the need for a high-temperature-air preheater and its associated gasifier. The results from our initial parametric design analysis in the separate study of Early Commercial MHD Power Plants reinforced the potential attractiveness of the use of oxygen enrichment of the combustion air. Therefore, preliminary analysis of the use of oxygen enrichment for the ETF was included as part of the ETF contract amendment work reported on here.

  4. Student Perceptions of a Conceptual Physical Education Activity Course

    ERIC Educational Resources Information Center

    Jenkins, Jayne M.; Jenkins, Patience; Collums, Ashley; Werhonig, Gary

    2006-01-01

    Conceptual physical education (CPE) courses are typically included in university course work to provide students knowledge and skills to engage in physical activity for life. The purpose of this study was to identify CPE course characteristics that contributed to positive and negative student perceptions. Participants included 157 undergraduates…

  5. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  6. Conceptual design for a full-scale VAC*TRAX vacuum thermal desorption unit. Final report, September 1992--December 1995

    SciTech Connect

    Palmer, C.R.

    1996-04-01

    Rust Federal Services is pleased to present this topical report on the results of our Phase II conceptual design work of the PRDA VAC*TRAX{sup SM} mobile vacuum thermal desorption technology demonstration program. Through the present Phase II conceptual design activities, Rust has developed an equipment design and permitting strategy that retains the flexibility of a mobile treatment system with the long term value and ease of access of a central facility. The process is designed to remove volatile matter from solid matrices by thermal desorption. The system is also designed with superior emission controls, making it an ideal system for the treatment of radioactive wastes.

  7. Effect of Instruction Based on Conceptual Change Activities on Students' Understanding of Static Electricity Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa; Geban, Omer

    2007-01-01

    This study was conducted to investigate the effectiveness of learning activities based on conceptual change conditions and traditionally designed physics instruction on tenth-grade students' understanding of static electricity concepts and their attitudes toward physics as a school subject. Misconceptions related to static electricity concepts…

  8. Using Art-Based Chemistry Activities to Improve Students' Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Danipog, Dennis L.; Ferido, Marlene B.

    2011-01-01

    This study aimed to determine the effects of art-based chemistry activities (ABCA) on high school students' conceptual understanding in chemistry. The study used the pretest-posttest control group design. A total of 64 third-year high school students from two different chemistry classes participated in the study. One class was exposed to art-based…

  9. Scaling studies and conceptual experiment designs for NGNP CFD assessment

    SciTech Connect

    D. M. McEligot; G. E. McCreery

    2004-11-01

    The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary

  10. Improving Conceptual Design for Launch Vehicles. The Bimese Concept: A Study of Mission and Economic Options

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Tooley, Jeffrey

    1999-01-01

    This report summarizes key activities conducted in the third and final year of the cooperative agreement NCC1-229 entitled "Improving Conceptual Design for Launch Vehicles." This project has been funded by the Vehicle Analysis Branch at NASA's Langley Research Center in Hampton, VA. Work has been performed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology, Atlanta, GA. Accomplishments during the first and second years of this project have been previously reported in annual progress reports. This report will focus on the third and final year of the three year activity.

  11. New approaches to optimization in aerospace conceptual design

    NASA Technical Reports Server (NTRS)

    Gage, Peter J.

    1995-01-01

    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.

  12. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  13. SP-100 power system conceptual design for lunar base applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Bloomfield, Harvey S.; Hainley, Donald C.

    1989-01-01

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design.

  14. SP-100 power system conceptual design for lunar base applications

    NASA Astrophysics Data System (ADS)

    Mason, Lee S.; Bloomfield, Harvey S.; Hainley, Donald C.

    A conceptual design is presented for a nuclear power system utilizing an SP-100 reactor and multiple Stirling cycle engines for operation on the lunar surface. Based on the results of this study, it was concluded that this power plant could be a viable option for an evolutionary lunar base. The design concept consists of a 2500 kWt (kilowatt thermal) SP-100 reactor coupled to eight free-piston Stirling engines. Two of the engines are held in reserve to provide conversion system redundancy. The remaining engines operate at 91.7 percent of their rated capacity of 150 kWe. The design power level for this system is 825 kWe. Each engine has a pumped heat-rejection loop connected to a heat pipe radiator. Power system performance, sizing, layout configurations, shielding options, and transmission line characteristics are described. System components and integration options are compared for safety, high performance, low mass, and ease of assembly. The power plant was integrated with a proposed human lunar base concept to ensure mission compatibility. This study should be considered a preliminary investigation; further studies are planned to investigate the effect of different technologies on this baseline design.

  15. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  16. Conceptual designs for in situ analysis of Mars soil

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Zent, A. P.; Hartman, H.

    1991-01-01

    A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars.

  17. Truscott Brine Lake solar-pond system conceptual design

    SciTech Connect

    Leboeuf, C.M.; May, E.K.

    1982-08-01

    Discussed is a conceptual design study for a system of electricity-producing salt-gradient solar ponds that will provide power to a chloride control project under construction near Truscott, Tex. The chloride control project comprises a 1200-ha (3000-acre) brine impoundment lake to which brine will be pumped from several salty sources in the Wichita River basin. The solar ponds are formed by natural evaporation of the briny water pumped to Truscott. Heat is extracted from the solar ponds and used to drive organic Rankine-cycle (ORC) generators. Ponds were sized to provide the pumping needs of the chloride control project and the maintenance requirements of the solar ponds. The system includes six solar pond modules for a total area of 63.1 ha, and produces 1290 kW of base load electricity. Although sized for continuous power production, alternative operating scenarios involving production of peak power for shorter durations were also examined.

  18. Conceptual design of industrial free electron laser using superconducting accelerator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  19. Integrating O/S models during conceptual design, part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1994-01-01

    The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.

  20. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  1. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  2. Conceptual design of high power Ka-band radar transmitter

    NASA Technical Reports Server (NTRS)

    Bhanji, Alaudin; Hoppe, Daniel; Gillis, Peter

    1986-01-01

    A proposed conceptual design of a 400-kW CW Ka-band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter-wave tube, the gyroklystron, is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission-line components consisting of signal-monitoring devices, mode converter, and an overmoded corrugated feed are discussed. Finally, an assessment of the state-of-the-art technology to meet the system requirements is given, and possible areas of difficulty are summarized.

  3. CONCEPTUAL DESIGN OF A LOW-BETA SC PROTON LINAC

    SciTech Connect

    R. W. GARNETT; T. P WANGLER; ET AL

    2001-04-01

    In this paper we discuss the conceptual design of a low-{beta} superconducting proton linac based on multi-gap spoke resonator structures. We have demonstrated the feasibility of using superconducting accelerating structures throughout a proton linac for high-peak current applications. The injection energy for this linac is assumed to be 6.7 MeV, which equals the output energy of the CW RFQ built for the Low-Energy Demonstration Accelerator now operating at Los Alamos. The beam is accelerated to 109 MeV using multi-gap spoke resonators. Both 2-gap and 3-gap cavities are used in three accelerating sections with geometric-{beta} values of 0.175, 0.2, and 0.34. Higher beam energies can be achieved by transitioning to elliptical superconducting cavities to further accelerate the beam. Preliminary beam-dynamics simulation results are shown and discussed.

  4. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  5. A 5-GWe nuclear satellite power system conceptual design

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Thomson, W. B.

    1978-01-01

    This paper presents the results of a brief study performed for MSFC on the conceptual design of a nuclear satellite power station which delivers 5 GWe net power to earth by microwave transmission. The system contains 26 modules each consisting of a reactor, fuel processing plant, Brayton PCU, space radiator, and nuclear shield. A high-temperature, gas-cooled, pebble-bed plutonium breeder concept was selected which is resupplied with fertile U-238. Sections of this core are periodically replaced and the spent fuel is chemically processed, the radioactive wastes separated, and stored for eventual space disposal. Fresh fuel pellets, formed from the U-238 and the bred plutonium, are recycled back to the reactor. The hot (1317 C) helium gas exiting the reactor serves as the working fluid in a 30%-efficient Brayton PCU.

  6. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    SciTech Connect

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  7. Conceptual Design of a Supersonic Business Jet Propulsion System

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2002-01-01

    NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent

  8. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    SciTech Connect

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  9. Assessment and conceptual design of photovoltaic hybrid systems

    SciTech Connect

    Not Available

    1983-10-01

    This report documents the work done in developing designs of photovoltaic hybrid power systems for remote, stand-alone applications which require 10-1000 kWh/day of electrical energy. Section 1.0 of the report outlines the objectives of the study. Section 2.0 documents the preliminary evaluation conducted to select the candidate systems for a more detailed analysis. Application time frame is 1988-93. Hybrid systems selected were PV/wind, PV/diesel and gasoline generators, PV/hydro, PV/fuel cell and PV/closed cycle vapor turbogenerators. Section 3.0 describes the stochastic computer models developed to conduct hourly performance simulations. The simulations generate the optimal system configurations, levelized busbar costs and percent availability of electric power. Section 4.0 presents the results of the simulation runs which identified PV/diesel, PV/wind and PV/fuel cells as the most promising applications for more detailed design and evaluation. Section 5.0 provides detailed conceptual designs of the diesel, wind and fuel cell hybrid systems. Section 6.0 outlines additional development work that needs to be conducted to improve the costs, performance and reliability of the power systems.

  10. Conceptual design of a solar power beaming space system

    NASA Astrophysics Data System (ADS)

    Le, Tuyet N.

    The concept of Space-Based Solar Power (SBSP) is a global solution for the world energy crisis. SBSP has been discussed for decades; however, there still has not been a single watt transmitted down from orbit. A conceptual SBSP demonstration design has been developed for a system that will beam 300W of power to the Earth's surface. This demonstration is estimated to be at 25% efficiency due to atmospheric losses and laser conversion losses. A 2200W laser is a modular subsystem of the 100 kg payload flight demonstration. All of the technologies needed for this demonstration already exist. The demonstration includes the following modular subsystems: the laser system, the acquisition, tracking, and pointing system, the safety and control system, and the ground segment/receiver system. The ISS demonstration is estimated to cost approximately 12 million dollars. Tradeoff design studies and systems engineering evaluations were completed in order to demonstrate the feasibility of this system. An Excel database was developed to help calculate some basic dynamics, creating an SBSP preliminary systems design tool for the demonstration.

  11. Conceptual design of a solar electric advanced Stirling power system

    NASA Astrophysics Data System (ADS)

    White, M. A.; Brown, A. T.

    1987-02-01

    The objective is to develop a high confidence conceptual design for a free-piston Stirling engine based system designed to deliver 25 kW of three-phase electric power to a utility grid when coupled to the 11 meter Test Bed Concentrator (TBC) at SNLA. Further objectives include a design life of 60,000 hours, minimum life cycle cost and dynamic balancing. The approach used to achieve these objectives is to utilize a hermetically sealed Stirling hydraulic concept based on technology developed to an advanced level during the past 19 years for an artificial heart power source. Such engines and critical metal bellows components have demonstrated operating times in the desired range. This approach provides full film hydraulic lubrication of all sliding parts, simple construction with conventional manufacturing tolerances, proven hydraulically coupled counterbalancing, and simple but effective power control to follow insolation variations. Other advantages include use of commercially available hydraulic motors and rotary alternators which can be placed on the ground to minimize suspended weight. The output from several engine/concentrator modules can be directed to one large motor/alternator for further cost savings. Three monthly progress reports for the same period, January 1 to January 31, 1987, are compiled within this document.

  12. Conceptual design of an ascent-phase interceptor missile

    SciTech Connect

    Salguero, D.E.

    1994-11-01

    A conceptual design for an air-launched interceptor missile to defend against theater ballistic missiles is presented. The missile is designed to intercept the target while ascending, during Or just after the boost phase, before it reaches exo-atmospheric flight. The interceptor consists of a two-stage booster and a shrouded kinetic-kill vehicle. This report concentrates on the booster design required to achieve reasonable standoff ranges. The kinetic-kill vehicle and shroud (the payload) is assumed to weigh 80 lb{sub m} (36 kg) and assumed to contain guidance computers for both the kill vehicle and the booster. The interceptor missile is about 6 m long, .48 m in diameter and weighs about 900 kg. Allowing 25 sec for target detection, trajectory estimation, and interceptor launch, it can intercept 90 sec after target launch from a 220 km stand-off range at an altitude of 60 km. Trade-off studies show that the interceptor performance is most sensitive to the stage mass fractions (with the first-stage mass fraction the most important), the first-stage burn time and the payload weight.

  13. A conceptual design and implementation of the Lunar Biosphere

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Hu, Enzhu; Hu, Yunping; Rong, Long; Liu, Hong

    It is necessary for human beings to establish a lunar biosphere on the moon similar to the biosphere on the earth in order to realize long-term human habitation, which will make it possible to exploit the resources there. This paper analyzes the environmental factors on the lunar surface; selects the appropriate location on the moon to set up the lunar biosphere; and designs two conceptual architecture configurations. Moreover, after comprehensively con-sidering the functions and running mechanism of lunar biosphere, we designed the internal configuration of the lunar biosphere and divided the whole system into several parallel sub-systems. Each subsystem was mainly composed of six parts: human habitation, cultivation, resource storage, food and water processing, wastes treatment and wastes storage; these parts are mutually connected through mass exchange and run circularly. Being one system, these subsystems possess independence, i.e. they can be individually isolated and run independently when accidents happen. In space distribution, the highest efficiency is achieved with the op-timization of the system structure. As for the function, the extensibility of the system's scale was also considered and the processing of lunar soil using earth worm was designed.

  14. Conceptual design of the MOBIE imaging spectrograph for TMT

    NASA Astrophysics Data System (ADS)

    Bigelow, Bruce C.; Radovan, Matthew V.; Bernstein, Rebecca A.; Onaka, Peter M.; Yamada, Hubert; Isani, Sidik; Miyazaki, Satoshi; Ozaki, Shinobu

    2014-08-01

    The Multi-Object Broadband Imaging Echellette (MOBIE) is the seeing-limited, visible-wavelength imaging multiobject spectrograph (MOS) planned for first-light use on the Thirty Meter Telescope (TMT). The MOBIE project to date has been a collaboration lead by UC Observatories (CA), and including the UH Institute for Astronomy (HI), and the NAOJ (Tokyo, Japan). The current MOBIE optical design provides two color channels, spanning the 310-550nm and 550-1000nm passbands, and a combination of reflection gratings, prisms, and mirrors to enable direct imaging and three spectroscopic modes with resolutions (λ/triangle λ) of roughly 1000, 3000, and 8000 in both color channels, across a field of view that ranges from roughly 8x3 arcmin to 3x3 arcmin, depending on resolution mode. The conceptual design phase for the MOBIE instrument has been underway since 2008 and is expected to end in 2015. We report here on developments since 2010, including assembly of the current project team, instrument and camera optical designs, instrument control systems, atmospheric dispersion corrector, slit-mask exchange systems, collimator, dichroic and fold optics, dispersing and cross-dispersing optics, refracting cameras, shutters, filter exchange systems, science detector systems, and instrument structures.

  15. Conceptual Design of the Everglades Depth Estimation Network (EDEN) Grid

    USGS Publications Warehouse

    Jones, John W.; Price, Susan D.

    2007-01-01

    conceptual design of the EDEN grid spatial parameters and cell attribute-table content.

  16. Conceptual Design Method Developed for Advanced Propulsion Nozzles

    NASA Technical Reports Server (NTRS)

    Nadell, Shari-Beth; Barnhart, Paul J.

    1998-01-01

    As part of a contract with the NASA Lewis Research Center, a simple, accurate method of predicting the performance characteristics of a nozzle design has been developed for use in conceptual design studies. The Nozzle Performance Analysis Code (NPAC) can predict the on- and off-design performance of axisymmetric or two-dimensional convergent and convergent-divergent nozzle geometries. NPAC accounts for the effects of overexpansion or underexpansion, flow divergence, wall friction, heat transfer, and small mass addition or loss across surfaces when the nozzle gross thrust and gross thrust coefficient are being computed. NPAC can be used to predict the performance of a given nozzle design or to develop a preliminary nozzle system design for subsequent analysis. The input required by NPAC consists of a simple geometry definition of the nozzle surfaces, the location of key nozzle stations (entrance, throat, exit), and the nozzle entrance flow properties. NPAC performs three analysis "passes" on the nozzle geometry. First, an isentropic control volume analysis is performed to determine the gross thrust and gross thrust coefficient of the nozzle. During the second analysis pass, the skin friction and heat transfer losses are computed. The third analysis pass couples the effects of wall shear and heat transfer with the initial internal nozzle flow solutions to produce a system of equations that is solved at steps along the nozzle geometry. Small mass additions or losses, such as those resulting from leakage or bleed flow, can be included in the model at specified geometric sections. A final correction is made to account for divergence losses that are incurred if the nozzle exit flow is not purely axial.

  17. Designing for safety in the conceptual design of the Advanced Neutron Source

    SciTech Connect

    Harrington, R.M.; West, C.D.

    1993-06-01

    The Advanced Neutron Source is a major new research facility proposed by the Department of Energy for construction over the next six years. The unique set of nuclear safety features selected to give the recently completed conceptual design a high degree of safety are identified and discussed.

  18. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  19. Lunar surface transportation systems conceptual design lunar base systems study Task 5.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.

  20. Conceptual designs for a long term {sup 238}PuO{sub 2} storage vessel

    SciTech Connect

    Kwon, D.M.; Replogle, W.C.

    1996-08-01

    This is a report on conceptual designs for a long term, 250 years, storage container for plutonium oxide ([sup 238]PuO[sub 2]). These conceptual designs are based on the use of a quartz filter to release the helium generated during the plutonium decay. In this report a review of filter material selection, design concepts, thermal modeling, and filter performance are discussed.

  1. The effect of requirements prioritization on avionics system conceptual design

    NASA Astrophysics Data System (ADS)

    Lorentz, John

    This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the

  2. Conceptual Design of the Space Station Fluids Module

    NASA Technical Reports Server (NTRS)

    Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  3. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    NASA Astrophysics Data System (ADS)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  4. A conceptual design tool for RBCC engine performance analysis

    NASA Astrophysics Data System (ADS)

    Olds, John R.; Saks, Greg

    1997-01-01

    Future reusable launch vehicles will depend on new propulsion technologies to lower system operational costs while maintaining adequate performance. Recently, a number of vehicle systems utilizing rocket-based combined-cycle (RBCC) propulsion have been proposed as possible low-cost space launch solutions. Vehicles using RBCC propulsion have the potential to combine the best aspects of airbreathing propulsion (high average Isp) with the best aspects of rocket propulsion (high propellant bulk density and engine T/W). Proper conceptual assessment of each proposed vehicle will require computer-based tools that allow for quick and cheap, yet sufficiently accurate disciplinary analyses. At Georgia Tech, a spreadsheet-based tool has been developed that uses quasi-1D flow analysis with component efficiencies to parametrically model RBCC engine performance in ejector, fan-ramjet, ramjet and pure rocket modes. The technique is similar to an earlier RBCC modeling technique developed by the Marquardt Corporation in the mid-1960's. For a given sea-level static thrust requirement, the current tool generates engine weight and size data, as well as Isp and thrust data vs. altitude and Mach number. The latter is output in tabular form for use in a trajectory optimization program. This paper reviews the current state of the RBCC analysis tool and the effort to upgrade it from a Microsoft Excel spreadsheet to a design-oriented UNIX program in C suitable for integration into a multidisciplinary design optimization (MDO) framework.

  5. A conceptual design tool for RBCC engine performance analysis

    SciTech Connect

    Olds, J.R.; Saks, G.

    1997-01-01

    Future reusable launch vehicles will depend on new propulsion technologies to lower system operational costs while maintaining adequate performance. Recently, a number of vehicle systems utilizing rocket-based combined-cycle (RBCC) propulsion have been proposed as possible low-cost space launch solutions. Vehicles using RBCC propulsion have the potential to combine the best aspects of airbreathing propulsion (high average Isp) with the best aspects of rocket propulsion (high propellant bulk density and engine T/W). Proper conceptual assessment of each proposed vehicle will require computer-based tools that allow for quick and cheap, yet sufficiently accurate disciplinary analyses. At Georgia Tech, a spreadsheet-based tool has been developed that uses quasi-1D flow analysis with component efficiencies to parametrically model RBCC engine performance in ejector, fan-ramjet, ramjet and pure rocket modes. The technique is similar to an earlier RBCC modeling technique developed by the Marquardt Corporation in the mid-1960{close_quote}s. For a given sea-level static thrust requirement, the current tool generates engine weight and size data, as well as Isp and thrust data vs. altitude and Mach number. The latter is output in tabular form for use in a trajectory optimization program. This paper reviews the current state of the RBCC analysis tool and the effort to upgrade it from a Microsoft Excel spreadsheet to a design-oriented UNIX program in C suitable for integration into a multidisciplinary design optimization (MDO) framework. {copyright} {ital 1997 American Institute of Physics.}

  6. Spacecraft Conceptual Design for Returning Entire Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Oleson, Steve

    2012-01-01

    In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.

  7. Conceptual design study of an improved gas turbine powertrain

    NASA Technical Reports Server (NTRS)

    Chapman, W. I.

    1980-01-01

    The conceptual design for an improved gas turbine (IGT) powertrain and vehicle was investigated. Cycle parameters, rotor systems, and component technology were reviewed and a dual rotor gas turbine concept was selected and optimized for best vehicle fuel economy. The engine had a two stage centrifugal compressor with a design pressure ratio of 5.28, two axial turbine stages with advanced high temperature alloy integral wheels, variable power turbine nozzle for turbine temperature and output torque control, catalytic combustor, and annular ceramic recuperator. The engine was rated at 54.81 kW, using water injection on hot days to maintain vehicle acceleration. The estimated vehicle fuel economy was 11.9 km/l in the combined driving cycle, 43 percent over the 1976 compact automobile. The estimated IGT production vehicle selling price was 10 percent over the comparable piston engine vehicle, but the improved fuel economy and reduced maintenance and repair resulted in a 9 percent reduction in life cycle cost.

  8. Conceptual design of the Space Station combustion module

    NASA Technical Reports Server (NTRS)

    Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.

    1994-01-01

    The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.

  9. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    SciTech Connect

    1995-01-31

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project.

  10. Truscott brine lake solar pond system conceptual design

    SciTech Connect

    Leboeuf, C.M.

    1982-01-01

    This paper discusses a conceptual design study for a system of electricity-producing salt-gradient solar ponds that will provide power to a chloride control project under construction by the Army Corps of Engineers near Truscott, Tex. The chloride control project comprises a 1200-ha (3000-acre) brine impoundment lake to which brine will be pumped from several salty sources in the Wichita River basin. The solar ponds are formed by natural evaporation of the briny water pumped to Truscott. Heat is extracted from the solar ponds and used to drive organic Rankine-cycle (ORC) generators. Ponds were sized to provide the pumping needs of the chloride control project and the maintenance requirements of the solar ponds. The system includes six solar pond modules for a total area of 63.1 ha, and produces 1290 kW of base load electricity. Although sized for continuous power production, alternative operating scenarios involving production of peak power for shorter durations were also examined.

  11. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  12. Conceptual Design for Lower-Energy Primary Aluminum

    NASA Astrophysics Data System (ADS)

    Warner, N. A.

    2008-04-01

    Operating parameters have been identified such that slag melts typical of other carbothermic aluminum processes are thermodynamically unstable. This facilitates the direct reaction of carbon in carbon-saturated aluminum with alumina under dispersed-contact high-intensity conditions. A conceptual design for one million tonnes per annum (1 Mtpa) aluminum production from Bayer alumina is developed. Freestanding graphite reactors and an ancillary plant encapsulated by inert gas are totally unconstrained within refractory-lined shells. Electrical conductive heating and melt circulation in closed loops, employing a 10 vol pct dispersion of fine carbon particles in aluminum (slurry), transports sensible heat to a single pressurized metal-producing reactor (MPR) to satisfy the endothermicity. In the proposed plant, an MPR at 0.28 MPa (2.8 bar) and 2433 K (2160 °C) with a hearth 2-m-wide × 190-m-long leads the melt via a barometric leg back to essentially atmospheric pressure, for further in-line processing. The impeller-stirred assimilation of fine carbon particles is followed by multistage gas-lift pumping to provide a 5.4-m total head, as required by two parallel straight-line melt-conductive heaters 1 m in diameter × 226 m in length. Overall energy-consumption figures 28.7 pct lower than today’s more recently installed Hall Heroult electrolytic plants are predicted, with 51.3 pct less purchased electricity, supplemented with 1.10 times the stoichiometric elemental carbon.

  13. Conceptual design of a compact positron tomograph for prostateimaging

    SciTech Connect

    Huber, J.S.; Derenzo, S.E.; Qi, J.; Moses, W.W.; Huesman, R.H.; Budinger, T.F.

    2000-11-04

    We present a conceptual design of a compact positron tomograph for prostate imaging using a pair of external curved detector banks, one placed above and one below the patient. The lower detector bank is fixed below the patient bed, and the top bank adjusts vertically for maximum sensitivity and patient access. Each bank is composed of 40conventional block detectors, forming two arcs (44 cm minor, 60 cm major axis) that are tilted to minimize attenuation and positioned as close as possible to the patient to improve sensitivity. The individual detectors are angled to point towards the prostate to minimize resolution degradation in that region. Inter-plane septa extend 5 cm beyond the scintillator crystals to reduce random and scatter backgrounds. A patient is not fully encircled by detector rings in order to minimize cost,causing incomplete sampling due to the side gaps. Monte Carlo simulation (including random and scatter) demonstrates the feasibility of detecting a spherical tumor of 2.5 cm diameter with a tumor to background ratio of2:1, utilizing the number of events that should be achievable with a6-minute scan after a 10 mCi injection (e.g., carbon-11 choline or fluorine-18 fluorocholine).

  14. X-43D Conceptual Design and Feasibility Study

    NASA Technical Reports Server (NTRS)

    Johnson, Donald B.; Robinson, Jeffrey S.

    2005-01-01

    NASA s Next Generation Launch Technology (NGLT) Program, in conjunction with the office of the Director of Defense Research and Engineering (DDR&E), developed an integrated hypersonic technology demonstration roadmap. This roadmap is an integral part of the National Aerospace Initiative (NAI), a multi-year, multi-agency cooperative effort to invest in and develop, among other things, hypersonic technologies. This roadmap contains key ground and flight demonstrations required along the path to developing a reusable hypersonic space access system. One of the key flight demonstrations required for systems that will operate in the high Mach number regime is the X-43D. As currently conceived, the X-43D is a Mach 15 flight test vehicle that incorporates a hydrogen-fueled scramjet engine. The purpose of the X-43D is to gather high Mach number flight environment and engine operability information which is difficult, if not impossible, to gather on the ground. During 2003, the NGLT Future Hypersonic Flight Demonstration Office initiated a feasibility study on the X-43D. The objective of the study was to develop a baseline conceptual design, assess its performance, and identify the key technical issues. The study also produced a baseline program plan, schedule, and cost, along with a list of key programmatic risks.

  15. Optimizing conceptual aircraft designs for minimum life cycle cost

    NASA Technical Reports Server (NTRS)

    Johnson, Vicki S.

    1989-01-01

    A life cycle cost (LCC) module has been added to the FLight Optimization System (FLOPS), allowing the additional optimization variables of life cycle cost, direct operating cost, and acquisition cost. Extensive use of the methodology on short-, medium-, and medium-to-long range aircraft has demonstrated that the system works well. Results from the study show that optimization parameter has a definite effect on the aircraft, and that optimizing an aircraft for minimum LCC results in a different airplane than when optimizing for minimum take-off gross weight (TOGW), fuel burned, direct operation cost (DOC), or acquisition cost. Additionally, the economic assumptions can have a strong impact on the configurations optimized for minimum LCC or DOC. Also, results show that advanced technology can be worthwhile, even if it results in higher manufacturing and operating costs. Examining the number of engines a configuration should have demonstrated a real payoff of including life cycle cost in the conceptual design process: the minimum TOGW of fuel aircraft did not always have the lowest life cycle cost when considering the number of engines.

  16. Interactive flutter analysis and parametric study for conceptual wing design

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  17. A Conceptual Design of a Departure Planner Decision Aid

    NASA Technical Reports Server (NTRS)

    Anagnostakis, Ioannis; Idris, Husni R.; Clark, John-Paul; Feron, Eric; Hansman, R. John; Odoni, Amedeo R.; Hall, William D.

    2000-01-01

    Terminal area Air Traffic Management handles both arriving and departing traffic. To date, research work on terminal area operations has focused primarily on the arrival flow and typically departures are taken into account only in an approximate manner. However, arrivals and departures are highly coupled processes especially in the terminal airspace, with complex interactions and sharing of the same airport resources between arrivals and departures taking place in practically every important terminal area. Therefore, the addition of automation aids for departures, possibly in co-operation with existing arrival flow automation systems, could have a profound contribution in enhancing the overall efficiency of airport operations. This paper presents the conceptual system architecture for such an automation aid, the Departure Planner (DP). This architecture can be used as a core in the development of decision-aiding systems to assist air traffic controllers in improving the performance of departure operations and optimize runway time allocation among different operations at major congested airports. The design of such systems is expected to increase the overall efficiency of terminal area operations and yield benefits for all stakeholders involved in Air Traffic Management (ATM) operations, users as well as service providers.

  18. Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer; Zhen Fan

    2005-09-01

    sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall

  19. Conceptual Design of a Tiltrotor Transport Flight Deck

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of

  20. Block 2 Solid Rocket Motor (SRM) conceptual design study, volume 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Segmented and monolithic Solid Rocket Motor (SRM) design concepts were evaluated with emphasis on joints and seals. Particular attention was directed to eliminating deficiencies in the SRM High Performance Motor (HPM). The selected conceptual design is described and discussed.

  1. LCLS Ultrafast Science Instruments:Conceptual Design Report

    SciTech Connect

    Arthur, J.; Boutet, S.; Castagna, J-C.; Chapman, H.; Feng, Y.; Foyt, W.; Fritz, D.M.; Gaffney, K.J.; Gr|bel, G.; Hajdu, J.; Hastings, J.B.; Kurita, N.; Larsson, J.; Ludwig, K.; Messerschmidt, M.; Miao, J.; Reis, D.A.; Robert, A.; Stephenson, G.B.; Tschentscher, Th.; van Bakel, N.; /SLAC /LLNL, Livermore /DESY /Lund Inst. Tech. /Boston U. /UCLA /Michigan U. /Argonne

    2007-10-16

    The Stanford Linear Accelerator Center (SLAC), along with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) facility, which will operate in the wavelength range 1.5 nm - 0.15 nm. This FEL, the Linac Coherent Light Source (LCLS), utilizes the SLAC linac and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac will be used as the source of electrons for the LCLS. The high energy electrons will be transported across the SLAC Research Yard, into a tunnel which will house a long undulator. In passing through the undulator, the electrons will be bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength will be tunable from 1.5 nm to 0.15 nm. The LCLS will include two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing three X-ray instruments in order to exploit the unique scientific capability of this new LCLS facility. The technical objective of the LCLS Ultrafast Science Instruments (LUSI) project is to design, build, and install at the LCLS three hard X-ray instruments that will complement the initial instrument included in the LCLS construction. As the science programs advance and new technological challenges appear, instrumentation needs to be developed and ready to conquer these new opportunities. The LCLS instrument concepts have been developed in close consultation with the scientific community through a

  2. Whole-arm obstacle avoidance system conceptual design

    SciTech Connect

    Wintenberg, A.L.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.

    1993-04-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER&WM) Program. Typical industrial applications of robotics involve well-defined workspaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER&WM Program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. The conceptual design for a sensing system that will provide protection against such collisions is described herein. The whole-arm obstacle avoidance system consists of a set of sensor ``bracelets,`` which cover the surface area of the manipulator links to the maximum extent practical, and a host processor. The host processor accepts commands from the robot control system, controls the operation of the sensors, manipulates data received from the bracelets, and makes the data available to the manipulator control system. The bracelets consist of a subset of the sensors, associated sensor interface electronics, and a bracelet interface. Redundant communications links between the host processor and the bracelets are provided, allowing single-point failure protection. The system allows reporting of 8-bit data from up to 1000 sensors at a minimum of 50 Hz. While the initial prototype implementation of the system utilizes capacitance proximity sensor, the system concept allows multiple types of sensors. These sensors are uniquely addressable, allowing remote calibration, thresholding at the bracelet, and correlation of a sensor measurement with the associated sensor and its location on the manipulator. Variable resolution allows high-speed, single-bit sensing as well as lower-speed higher-resolution sensing, which is necessary for sensor calibration and potentially useful in control.

  3. Whole-arm obstacle avoidance system conceptual design

    SciTech Connect

    Wintenberg, A.L.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.

    1993-04-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER WM) Program. Typical industrial applications of robotics involve well-defined workspaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER WM Program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. The conceptual design for a sensing system that will provide protection against such collisions is described herein. The whole-arm obstacle avoidance system consists of a set of sensor bracelets,'' which cover the surface area of the manipulator links to the maximum extent practical, and a host processor. The host processor accepts commands from the robot control system, controls the operation of the sensors, manipulates data received from the bracelets, and makes the data available to the manipulator control system. The bracelets consist of a subset of the sensors, associated sensor interface electronics, and a bracelet interface. Redundant communications links between the host processor and the bracelets are provided, allowing single-point failure protection. The system allows reporting of 8-bit data from up to 1000 sensors at a minimum of 50 Hz. While the initial prototype implementation of the system utilizes capacitance proximity sensor, the system concept allows multiple types of sensors. These sensors are uniquely addressable, allowing remote calibration, thresholding at the bracelet, and correlation of a sensor measurement with the associated sensor and its location on the manipulator. Variable resolution allows high-speed, single-bit sensing as well as lower-speed higher-resolution sensing, which is necessary for sensor calibration and potentially useful in control.

  4. Conceptual Design of a Mars Surface Transportation System (MSTS)

    NASA Astrophysics Data System (ADS)

    Collins, Chad; Gomez, Alex; Muniz, Rick; Musson, Dave

    1999-01-01

    We have proposed a design for a Mars Surface Transportation System. The design will support multi-range and multi-purpose scientific/exploratory activities for extended periods. Several assumptions were made before developing a desiun: 1. This system is to be deployed early in a series of piloted landings on the planet surface. 2. A Mars surface base has already been established. 3. A transport system to and from Mars already exists. 4. The capacity to transport this proposed system exists within the current transport design. 5. Facilities exist at this base for the supply of fuel and other consumables. 6. Medical facilities are a component of the main base. 7. The surface conditions of Mars are known and are.accurate. It was decided that the transportation system design should support a crew of two for up to four weeks away from the primary base. In order to support multiple mission requirements, the system is modular and m multi-configurable, The main structural aspects of the design are: 1. An inflatable habitat module. 2. Independently powered and remotely controllable wheel trucks to allow multiple configurations and ease of system assembly. 3. Parabolic space trusses for hi-h structural stability with low overall system mass. In addition to these design aspects, new and existing concepts for control systems, power, radiation protection, and crew safety have been incorporated into the transportation system design.

  5. Conceptual capital-cost estimate and facility design of the Mirror-Fusion Technology Demonstration Facility

    SciTech Connect

    Not Available

    1982-09-01

    This report contains contributions by Bechtel Group, Inc. to Lawrence Livermore National Laboratory (LLNL) for the final report on the conceptual design of the Mirror Fusion Technology Demonstration Facility (TDF). Included in this report are the following contributions: (1) conceptual capital cost estimate, (2) structural design, and (3) plot plan and plant arrangement drawings. The conceptual capital cost estimate is prepared in a format suitable for inclusion as a section in the TDF final report. The structural design and drawings are prepared as partial inputs to the TDF final report section on facilities design, which is being prepared by the FEDC.

  6. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    NASA Astrophysics Data System (ADS)

    Iqbal, Liaquat Ullah

    An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in

  7. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    SciTech Connect

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  8. Conceptual design of an astronaut hand anthropometry device

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert

    1993-01-01

    In a microgravity environment, fluid equalizes throughout the body, causing the upper body to swell. This causes the hands to swell which can cause problems for astronauts trying to do work in pressurized EVA (extravehicular activity) gloves. To better design these gloves, accurate measurements of the astronauts swollen hands are needed. Five concepts were developed in this report from an original field of 972 possible concepts. These five concepts were based on mold impression, ultrasound, laser topography, white light photography, and video imaging. From a decision matrix based on nine weighted criteria, the video imaging technique was found to be the best design to pursue.

  9. CONCEPTUAL DESIGN REPORT FOR A FAST MUON TRIGGER

    SciTech Connect

    OBRIEN,E.; BASYE, A.; ISENHOWER, D.; JUMPER, D.; SPARKS, N.; TOWELL, R.; WATTS, C.; WOOD, J.; WRIGHT, R.; HAGGERTY, J.; LYNCH, D.; BARISH, K.; EYSER, K.O.; SETO, R.; HU, S.; LI, X.; ZHOU, S.; GLENN, A.; KINNEY, E.; KIRILUK, K.; NAGLE, J.; CHI, C.Y.; SIPPACH, W.; ZAJC. W.; BUTLER, C.; HE, X.; OAKLEY, C.; YING, J.; BLACKBURN, J.; CHIU, M.; PERDEKAMP, M.G.; KIM, Y.J.; KOSTER, J.; LAYTON, D.; MAKINS, N.; MEREDITH, B.; NORTHACKER, D.; PENG, J.-C.; SEIDL, R.; THORSLAND, E.; WADHAMS, S.; WILLIAMSON, S.; YANG, R.; HILL, J.; KEMPEL, T.; LAJOIE, J.; SLEEGE, G.; VALE, C.; WEI, F.; SAITO, N.; HONG, B.; KIM, B.; LEE, K.; LEE, K.S.; PARK, S.; SIM, K.-S.; AOKI, K.; DAIRAKU, S.; IMAI, K.; KARATSU, K.; MURAKAMI, T.; SATO, A.; SENZAKA, K.; SHOJI, K.; TANIDA, K.; BROOKS, M.; LEITCH, M.; ADAMS, J.; CARINGI, A.; FADEM, B.; IDE, J.; LICHTENWALNER, P.; FIELDS, D.; MAO, Y.; HAN, R.; BUNCE, G.; XIE, W.; FUKAO, Y.; TAKETANI, A.; KURITA, K.; MURATA, J.

    2007-08-01

    This document is a Conceptual Design Report for a fast muon trigger for the PHENIX experiment that will enable the study of flavor separated quark and anti-quark spin polarizations in the proton. A powerful way of measuring these polarizations is via single spin asymmetries for W boson production in polarized proton-proton reactions. The measurement is done by tagging W{sup +} and W{sup -} via their decay into high transverse momentum leptons in the forward directions. The PHENIX experiment is capable of measuring high momentum muons at forward rapidity, but the current online trigger does not have sufficient rejection to sample the rare leptons fromW decay at the highest luminosities at the Relativistic Heavy Ion Collider (RHIC). This Report details the goals, design, R&D, and schedule for building new detectors and trigger electronics to use the full RHIC luminosity to make this critical measurement. The idea for W boson measurements in polarized proton-proton collisions at RHIC was first suggested by Jacques Soffer and Claude Bourrely in 1995. This prompted the RIKEN institute in Japan to supply funds to build a second muon arm for PHENIX (south muon arm). The existence of both a north and south muon arm makes it possible to utilize a Z{sup 0} sample to study and control systematic uncertainties which arise in the reconstruction of high momentum muons. This document has its origins in recommendations made by a NSAC Subcommittee that reviewed the U.S. Heavy Ion Physics Program in June 2004. Part of their Recommendation 1 was to 'Invest in near-term detector upgrades of the two large experiments, PHENIX and STAR'. In Recommendation 2 the subcommittee stated '- detector improvements proceed at a rate that allows a timely determination of the flavor dependence of the quark-antiquark sea polarization through W-asymmetry measurements' as we are proposing here. On September 13, 2004 DOE requested from BNL a report articulating a research plan for the RHIC spin physics

  10. D0 Silicon Upgrade: Muon Shield Conceptual Design Report

    SciTech Connect

    Stredde, Herman J.; /Fermilab

    1996-05-14

    The nominal overall dimensions are 71-inch high x 71-inch wide x 144-inch long and has a 25-inch square hole throughout. The shield consists of three different materials, steel (inner most section), polycarbonate (central section) and lead (outer most section). The material thicknesses are, steel=15-inch, poly=6-inch and lead=2-inch. The estimated weight is {approx}69 tons. The shield is centered about the Tev beam line and the 25-inch square hole provides clearance to the low Beta quad, which is nominally 20-inch square. During beamline operation, the shield is in contact with Samus magnet core at the detector end and with the Main Ring shield wall on the MR side (with some small clearance {approx}2-inch-3-inch). The need for the clearance will be discussed later. The shield support structure consists steel structural members appropriately sized for loads encountered in the design. The structure must not only support the shield but, must be designed for rolling the entire assembly into position in the collision hall. It must provide for cylinders to lift the assembly, Hilman rollers and also connections for moving the entire assembly. The movement is considered to be similar to that with which the calorimeters were moved from the clean room to the sidewalk staging area, i.e. hydraulic cylinder and chain (see dwg. 3740.000-ME294017,3 sheets). This method will be used for the East to West motion and a hydraulic scheme will be used for any North-South motion. Since the shield is 144-inch long and the sidewalk structural support is {approx}96-inch, there is a section of the shield that is cantilevered (48-inch). Further, the EF toroid must open {approx}40+ inch for access to the detector during operations and this requires that the shield or some part of it must also move. This conceptual design suggests that the shield be designed in two pieces axially. These two pieces are identical in cross section but, the lengths are divided into 48-inch nearest EF and 96-inch

  11. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-01-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  12. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Astrophysics Data System (ADS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-06-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  13. Lunar base launch and landing facility conceptual design, 2nd edition

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.

  14. CLIC CDR - physics and detectors: CLIC conceptual design report.

    SciTech Connect

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H.

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  15. Fort Hood solar cogeneration facility conceptual design study. Volume 1. Technical report. Final technical report

    SciTech Connect

    Not Available

    1981-08-01

    A central receiver cogeneration facility is studied for a Texas military facility. A solar-heated heat-transfer salt provides heat to a steam generator and providing space heating and air conditioning and hot water for the complex. The site and its climate are described briefly. Candidate site-specific system configurations, technology assessments, system sizing, and the results of numerous trade studies leading toward the selection of the preferred system configuration are presented. A system level conceptual design of the cogeneration facility is presented, and the conceptual design of the major subsystems (heliostats, receiver, tower, energy transport and storage, fossil energy subsystem, electric power generation subsystem, control, space conditioning and domestic hot water subsystem) are described. Results of the economic analysis of the cogeneration facility are presented, including a description of analysis methods used, assumptions and rationale, simulation models used, a brief summary of capital and operations and maintenance costs, fuel savings, results of the economic evaluations and an economic scenario for future applications. The results of the development planning are presented, including all major activities required during the detailed design, construction, and initial operational phases. An assessment of the proposed facility by the Department of the Army at Fort Hood is presented. (LEW)

  16. The ILC Beam Delivery System - Conceptual Design and RD Plans

    SciTech Connect

    Seryi, Andrei; /SLAC

    2005-05-27

    The Beam Delivery System of the ILC has many stringent and sometimes conflicting requirements. To produce luminosity, the beams must be focused to nanometer size. To provide acceptable detector backgrounds, particles far from the beam core must be collimated. Unique beam diagnostics and instrumentation are required to monitor parameters of the colliding beams such as the energy spectrum and polarization. The detector and beamline components must be protected against errant beams. After collision, the beams must also be transported to the beam dumps safely and with acceptable losses. An international team is actively working on the design of the ILC Beam Delivery System in close collaboration. Details of the design, recent progress and remaining challenges will be summarized in this paper.

  17. The initial conceptualization and design of a meteorological satellite

    NASA Technical Reports Server (NTRS)

    Greenfield, S. M.

    1982-01-01

    The meteorological satellite had its substantive origin in the analytical process that helped initiate America's military satellite program. Its impetus lay in the desire to acquire current meteorological information in large areas for which normal meteorological observational data were not available on a day-to-day basis. Serious consideration was given to the feasibility of reconnaissance from meteorological satellites. The conceptualization of a meteorological satellite is discussed along with the early research which gave substance to that concept.

  18. Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps

    ERIC Educational Resources Information Center

    Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa

    2013-01-01

    Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…

  19. Review Committee report on the conceptual design of the Tokamak Physics Experiment

    SciTech Connect

    Not Available

    1993-04-01

    This report discusses the following topics on the conceptual design of the Tokamak Physics Experiment: Role and mission of TPX; overview of design; physics design assessment; engineering design assessment; evaluation of cost, schedule, and management plans; and, environment safety and health.

  20. The 3C3R Model: A Conceptual Framework for Designing Problems in PBL

    ERIC Educational Resources Information Center

    Hung, Woei

    2006-01-01

    Well-designed problems are crucial for the success of problem-based learning (PBL). Previous discussions about designing problems for PBL have been rather general and inadequate in guiding educators and practitioners to design effective PBL problems. This paper introduces the 3C3R PBL problem design model as a conceptual framework for…

  1. Conceptual design report, TWRS Privatization Phase I, Liquideffluent transfer systems, subproject W-506

    SciTech Connect

    Singh, G.

    1997-06-05

    This document includes Conceptual Design Report (CDR) for providing liquid effluent lines for routing waste from two Private Contractor (PC) facilities to existing storage, treatment, and disposal facilities in the 200-East Area.

  2. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    SciTech Connect

    Beddo, M.E.; Bielick, E.; Dawson, J.W.; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  3. Conceptual design report for tank farm restoration and safe operations, project W-314

    SciTech Connect

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  4. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    SciTech Connect

    Shank, D.R.

    1995-02-14

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  5. A conceptual design study for the secondary mirror drive of the shuttle infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Sager, R. E.; Cox, D. W.

    1983-01-01

    Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.

  6. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  7. A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2010-01-01

    Most jet airliner conceptual designs adhere to conventional takeoff and landing performance. Given this predominance, takeoff and landing performance has not been critical, since it has not been an active constraint in the design. Given that the demand for air travel is projected to increase dramatically, there is interest in operational concepts, such as Metroplex operations that seek to unload the major hub airports by using underutilized surrounding regional airports, as well as using underutilized runways at the major hub airports. Both of these operations require shorter takeoff and landing performance than is currently available for airliners of approximately 100-passenger capacity. This study examines the issues of modeling performance in this now critical flight regime as well as the impact of progressively reducing takeoff and landing field length requirements on the aircraft s characteristics.

  8. Analysis of the conceptual shielding design for the upflow Gas-Cooled Fast Breeder Reactor

    SciTech Connect

    Slater, C.O.; Reed, D.A.; Cramer, S.N.; Emmett, M.B.; Tomlinson, E.T.

    1981-01-01

    Conceptual Shielding Configuration III for the Gas-Cooled Fast Breeder Reactor (GCFR) was analyzed by performing global calculations of neutron and gamma-ray fluences and correcting the results as appropriate with bias factors from localized calculations. Included among the localized calculations were the radial and axial cell streaming calculations, plus extensive preliminary calculations and three final confirmation calculations of the plenum flow-through shields. The global calculations were performed on the GCFR mid-level and the lower and upper plenum regions. Calculated activities were examined with respect to the design constraint, if any, imposed on the particular activity. The spatial distributions of several activities of interest were examined with the aid of isoplots (i.e., symbols are used to describe a surface on which the activity level is everywhere the same). In general the results showed that most activities were below the respective design constraints. Only the total neutron fluence in the core barrel appeared to be marginal with the present reactor design. Since similar results were obtained for an earlier design, it has been proposed that the core barrel be cooled with inlet plenum gas to maintain it at a temperature low enough that it can withstand a higher fluence limit. Radiation levels in the prestressed concrete reactor vessel (PCRV) and liner appeared to be sufficiently below the design constraint that expected results from the Radial Shield Heterogeneity Experiment should not force any levels above the design constraint. A list was also made of a number of issues which should be examined before completion of the final shielding design.

  9. A Conceptual Design for a Small Deployer Satellite

    NASA Astrophysics Data System (ADS)

    Zumbo, S.

    2002-01-01

    In the last few years, the space scientific and industrial communities have demonstrated a renewed interest for small missions based on new categories of space platforms: micro &nano satellites. The cost reduction w.r.t. larger satellite missions, the shorter time from concept to launch, the risk distribution and the possibility to use this kind of bus both for stand-alone projects and as complementary to larger programs, are key factors that make this new kind of technology suitable for a wide range of space related activities. In particular it is now possible to conceive new mission philosophy implying the realisation of micro satellite constellations, with S/C flying in close formation to form a network of distributed sensors either for near-real time telecommunication or Earth remote sensing and disaster monitoring systems or physics and astronomical researches for Earth-Sun dynamics and high energy radiation studies. At the same time micro satellite are becoming important test- beds for new technologies that will eventually be used on larger missions, with relevant spin-offs potentialities towards other industrial fields. The foreseen social and economical direct benefits, the reduced mission costs and the possibility even for a small skilled team to manage all the project, represent very attractive arguments for universities and research institutes to invest funds and human resources to get first order technical and theoretical skills in the field of micro satellite design, with important influences on the training programs of motivated students that are directly involved in all the project's phases. In consideration of these space market important new trends and of the academic benefits that could be guaranteed by undertaking a micro satellite mission project, basing on its long space activities heritage, University of Rome "La Sapienza" - Aerospace and Astronautics Department, with the support of the Italian Space Agency, Alenia Spazio and of important

  10. Matter in Extreme Conditions Instrument - Conceptual Design Report

    SciTech Connect

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; Lee, R.W.; Nagler, B.; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is

  11. Conceptual design of a coal-fired MHD retrofit. Final technical report

    SciTech Connect

    1994-06-01

    Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.

  12. A Knowledge-Based and Model-Driven Requirements Engineering Approach to Conceptual Satellite Design

    NASA Astrophysics Data System (ADS)

    Dos Santos, Walter A.; Leonor, Bruno B. F.; Stephany, Stephan

    Satellite systems are becoming even more complex, making technical issues a significant cost driver. The increasing complexity of these systems makes requirements engineering activities both more important and difficult. Additionally, today's competitive pressures and other market forces drive manufacturing companies to improve the efficiency with which they design and manufacture space products and systems. This imposes a heavy burden on systems-of-systems engineering skills and particularly on requirements engineering which is an important phase in a system's life cycle. When this is poorly performed, various problems may occur, such as failures, cost overruns and delays. One solution is to underpin the preliminary conceptual satellite design with computer-based information reuse and integration to deal with the interdisciplinary nature of this problem domain. This can be attained by taking a model-driven engineering approach (MDE), in which models are the main artifacts during system development. MDE is an emergent approach that tries to address system complexity by the intense use of models. This work outlines the use of SysML (Systems Modeling Language) and a novel knowledge-based software tool, named SatBudgets, to deal with these and other challenges confronted during the conceptual phase of a university satellite system, called ITASAT, currently being developed by INPE and some Brazilian universities.

  13. Conceptual design for the Space Station Freedom fluid physics/dynamics facility

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.

    1993-01-01

    A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.

  14. Risk Evaluation in the Pre-Phase A Conceptual Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    Fabisinski, Leo L., III; Maples, Charlotte Dauphne

    2010-01-01

    Typically, the most important decisions in the design of a spacecraft are made in the earliest stages of its conceptual design the Pre-Phase A stages. It is in these stages that the greatest number of design alternatives is considered, and the greatest number of alternatives is rejected. The focus of Pre-Phase A conceptual development is on the evaluation and comparison of whole concepts and the larger-scale systems comprising those concepts. This comparison typically uses general Figures of Merit (FOMs) to quantify the comparative benefits of designs and alternative design features. Along with mass, performance, and cost, risk should be one of the major FOMs in evaluating design decisions during the conceptual design phases. However, risk is often given inadequate consideration in conceptual design practice. The reasons frequently given for this lack of attention to risk include: inadequate mission definition, lack of rigorous design requirements in early concept phases, lack of fidelity in risk assessment methods, and under-evaluation of risk as a viable FOM for design evaluation. In this paper, the role of risk evaluation in early conceptual design is discussed. The various requirements of a viable risk evaluation tool at the Pre-Phase A level are considered in light of the needs of a typical spacecraft design study. A technique for risk identification and evaluation is presented. The application of the risk identification and evaluation approach to the conceptual design process is discussed. Finally, a computational tool for risk profiling is presented and applied to assess the risk for an existing Pre-Phase A proposal. The resulting profile is compared to the risks identified for the proposal by other means.

  15. Conceptual engineering design studies of 1985-era commercial VTOL and STOL transports that utilize rotors

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R. D.; Widdison, C. A.

    1975-01-01

    Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.

  16. Decoding the "CoDe": A Framework for Conceptualizing and Designing Help Options in Computer-Based Second Language Listening

    ERIC Educational Resources Information Center

    Cardenas-Claros, Monica Stella; Gruba, Paul A.

    2013-01-01

    This paper proposes a theoretical framework for the conceptualization and design of help options in computer-based second language (L2) listening. Based on four empirical studies, it aims at clarifying both conceptualization and design (CoDe) components. The elements of conceptualization consist of a novel four-part classification of help options:…

  17. Conceptual design of hybrid-electric transport aircraft

    NASA Astrophysics Data System (ADS)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  18. Insightful Learning in the Laboratory: Some Experiences from 10 Years of Designing and Using Conceptual Labs

    ERIC Educational Resources Information Center

    Bernhard, J.

    2010-01-01

    This paper describes a series of projects on the design and implementation of "conceptual labs" aimed at developing insightful learning, following work that began in 1994/1995. The main focus has been on courses in mechanics and electric circuit theory. The approach taken in designing these innovative curricula can be described as "design-based…

  19. Fort Hood solar cogeneration facility conceptual design study. Volume II. System specification. Final technical report

    SciTech Connect

    Not Available

    1981-08-01

    The characteristics and design and the environmental requirements for a solar cogeneration facility at a Texas military facility are specified. In addition, the conceptual design and performance characteristics, cost and economic data and other information for the cogeneration facility designed to meet the requirements are summarized. (LEW)

  20. Fort Hood solar cogeneration facility conceptual design study. Volume 2: System specification

    NASA Astrophysics Data System (ADS)

    1981-08-01

    The characteristics and design and the environmental requirements for a solar cogeneration facility at a Texas military facility are specified. In addition, the conceptual design and performance characteristics, cost and economic data and other information for the cogeneration facility designed to meet the requirements are summarized.

  1. A Conceptual Approach to Inclusive Design of Online Learning Communities: Voices of Feminist Professors

    ERIC Educational Resources Information Center

    Lanter-Johnson, Yvonne Marie

    2010-01-01

    This grounded theory study provides a conceptual framework for inclusive design of online learning communities. Perspectives of 11 feminist professors were analyzed. Findings revealed that four broad aspects of online design were important to study participants. First, feminist perspectives influenced participants' online course design. Second, a…

  2. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  3. Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2013-01-01

    Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.

  4. New Methods in Design Education: The Systemic Methodology and the Use of Sketch in the Conceptual Design Stage

    ERIC Educational Resources Information Center

    Westermeyer, Juan Carlos Briede; Ortuno, Bernabe Hernandis

    2011-01-01

    This study describes the application of a new product concurrent design methodologies in the context in the education of industrial design. The use of the sketch has been utilized many times as a tool of creative expression especially in the conceptual design stage, in an intuitive way and a little out of the context of the reality needs that the…

  5. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    SciTech Connect

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  6. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  7. Thermal-hydraulic design of the target/blanket for the accelerator production of tritium conceptual design

    SciTech Connect

    Willcutt, G.J.E. Jr.; Kapernick, R.J.

    1997-11-01

    A conceptual design was developed for the target/blanket system of an accelerator-based system to produce tritium. The target/blanket system uses clad tungsten rods for a spallation target and clad lead rods as a neutron multiplier in a blanket surrounding the target. The neutrons produce tritium in {sup 3}He, which is contained in aluminum tubes located in the decoupler and blanket regions. This paper presents the thermal-hydraulic design of the target, decoupler, and blanket developed for the conceptual design of the Accelerator Production of Tritium Project, and demonstrates there is adequate margin in the design at full power operation.

  8. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  9. Facilitating Team-Based Course Designing with Conceptual Mapping

    ERIC Educational Resources Information Center

    Inglis, Alistair

    2003-01-01

    A method of rendering the design of a course visible for the purpose of discussion amongst the members of course development teams is described. The paper begins by examining the way in which design is manifested in the area of course materials development and the approaches that have been used in attempting to document designs. The strengths and…

  10. Designing Online Problem Representation Engine for Conceptual Change

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Ling, Keck Voon

    2012-01-01

    Purpose: This paper aims to describe the web-based scaffold dynamic simulation system (PRES-on) designed for pre-service teachers. Design/methodology/approach: The paper describes the initial design of a web-based scaffold dynamic simulation system (PRES-on) as a cognitive tool for learners to represent problems. For the widespread use of the…

  11. A knowledge-based design framework for airplane conceptual and preliminary design

    NASA Astrophysics Data System (ADS)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  12. Conceptual design of semi-automatic wheelbarrow to overcome ergonomics problems among palm oil plantation workers

    NASA Astrophysics Data System (ADS)

    Nawik, N. S. M.; Deros, B. M.; Rahman, M. N. A.; Sukadarin, E. H.; Nordin, N.; Tamrin, S. B. M.; Bakar, S. A.; Norzan, M. L.

    2015-12-01

    An ergonomics problem is one of the main issues faced by palm oil plantation workers especially during harvesting and collecting of fresh fruit bunches (FFB). Intensive manual handling and labor activities involved have been associated with high prevalence of musculoskeletal disorders (MSDs) among palm oil plantation workers. New and safe technology on machines and equipment in palm oil plantation are very important in order to help workers reduce risks and injuries while working. The aim of this research is to improve the design of a wheelbarrow, which is suitable for workers and a small size oil palm plantation. The wheelbarrow design was drawn using CATIA ergonomic features. The characteristic of ergonomics assessment is performed by comparing the existing design of wheelbarrow. Conceptual design was developed based on the problems that have been reported by workers. From the analysis of the problem, finally have resulting concept design the ergonomic quality of semi-automatic wheelbarrow with safe and suitable used for palm oil plantation workers.

  13. On the optimal design of experiments for conceptual and predictive discrimination of hydrologic system models

    NASA Astrophysics Data System (ADS)

    Kikuchi, C. P.; Ferré, T. P. A.; Vrugt, J. A.

    2015-06-01

    Experimental design and data collection constitute two main steps of the iterative research cycle (aka the scientific method). To help evaluate competing hypotheses, it is critical to ensure that the experimental design is appropriate and maximizes information retrieval from the system of interest. Scientific hypothesis testing is implemented by comparing plausible model structures (conceptual discrimination) and sets of predictions (predictive discrimination). This research presents a new Discrimination-Inference (DI) methodology to identify prospective data sets highly suitable for either conceptual or predictive discrimination. The DI methodology uses preposterior estimation techniques to evaluate the expected change in the conceptual or predictive probabilities, as measured by the Kullback-Leibler divergence. We present two case studies with increasing complexity to illustrate implementation of the DI for maximizing information withdrawal from a system of interest. The case studies show that highly informative data sets for conceptual discrimination are in general those for which between-model (conceptual) uncertainty is large relative to the within-model (parameter) uncertainty, and the redundancy between individual measurements in the set is minimized. The optimal data set differs if predictive, rather than conceptual, discrimination is the experimental design objective. Our results show that DI analyses highlight measurements that can be used to address critical uncertainties related to the prediction of interest. Finally, we find that the optimal data set for predictive discrimination is sensitive to the predictive grouping definition in ways that are not immediately apparent from inspection of the model structure and parameter values.

  14. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  15. Advanced conceptual design report: T Plant secondary containment and leak detection upgrades. Project W-259

    SciTech Connect

    Hookfin, J.D.

    1995-05-12

    The T Plant facilities in the 200-West Area of the Hanford site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. T Plant includes the 271-T facility, the 221-T facility, and several support facilities (eg, 2706-T), utilities, and tanks/piping systems. T Plant has been recommended as the primary interim decontamination facility for the Hanford site. Project W-259 will provide capital upgrades to the T Plant facilities to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. This document provides an advanced conceptual design concept that complies with functional requirements for the T Plant Secondary Containment and Leak Detection upgrades.

  16. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    SciTech Connect

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  17. Conceptual design of the AE481 Demon Remotely Piloted Vehicle (RPV)

    NASA Technical Reports Server (NTRS)

    Hailes, Chris; Kolver, Jill; Nestor, Julie; Patterson, Mike; Selow, Jan; Sagdeo, Pradip; Katz, Kenneth

    1994-01-01

    This project report presents a conceptual design for a high speed remotely piloted vehicle (RPV). The AE481 Demon RPV is capable of performing video reconnaissance missions and electronic jamming over hostile territory. The RPV cruises at a speed of Mach 0.8 and an altitude of 300 feet above the ground throughout its mission. It incorporates a rocket assisted takeoff and a parachute-airbag landing. Missions are preprogrammed, but in-flight changes are possible. The Demon is the answer to a military need for a high speed, low altitude RPV. The design methods, onboard systems, and avionics payload are discussed in this conceptual design report along with economic viability.

  18. SYSTEM DESIGN AND ANALYSIS FOR CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER

    SciTech Connect

    Zhen Fan; Andrew Seltzer

    2003-11-01

    The objective of the system design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the PC boiler plant by maximizing system efficiency. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 Mw plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.1% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 44% of the air-fired reference case. Compared to other CO{sub 2} sequestration technologies, the O{sub 2}-fired PC is substantially better than both natural gas combined cycles and post CO{sub 2} removal PCs and is slightly better than integrated gasification combined cycles.

  19. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  20. Computer-aided conceptual design of Air Cushion Vehicles

    NASA Astrophysics Data System (ADS)

    Band, E. G. U.; Lavis, D. R.

    This paper describes the development and use of a computer-aided design tool which has been used to explore preferred options for amphibious Air-Cushion Vehicle (ACV) and Surface-Effect Ship (SES) designs in support of U.S. Navy and U.S. Army programs. The tool, referred to as the ACV Design Synthesis Model (ADSM), is an interactive computer program which provides a description of feasible ACV or SES concepts that could be developed, by a competent design team, to perform the mission described by the input parameters. The paper discusses how the program was used to explore parametrically the design of a range of self-propelled hoverbarges to meet requirements of the U.S. Army Logistics Over the Shore (LOTS) phases of an amphibious landing. Examples of results are presented to illustrate the method used in determining design and performance trade-offs.

  1. Lean, Premixed-Prevaporized (LPP) combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.

    1979-01-01

    Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.

  2. Conceptual design of the INTOR first-wall system

    SciTech Connect

    Smith, D.L.; Majumdar, S.; Mattas, R.F.; Turner, L.; Jung, J.; Abdou, M.A.; Bowers, D.; Trachsel, C.; Merrill, B.

    1981-10-01

    The design concept and performance characteristics of the first-wall design for the phase-1 INTOR (International Tokamak Reactor) study is described. The reference design consists of a water-cooled stainless steel panel. The major uncertainty regarding the performance of the bare stainless steel wall relates to the response of a thin-melt layer predicted to form on limited regions during a plasma disruption. A more-complex backup design, which incorporates radiatively cooled graphite tiles on the inboard wall, is briefly described.

  3. Pyroelectric conversion in space: A conceptual design study

    NASA Technical Reports Server (NTRS)

    Olsen, R. B.

    1983-01-01

    Pyroelectric conversion is potentially a very lightweight means of providing electrical power generation in space. Two conceptualized systems approaches for the direct conversion of heat (from sunlight) into electrical energy using the pyroelectric effect of a new class of polar polymers were evaluated. Both of the approaches involved large area thin sheets of plastic which are thermally cycled by radiative input and output of thermal energy. The systems studied are expected to eventually achieve efficiencies of the order of 8% and may deliver as much as one half kilowatt per kilogram. In addition to potentially very high specific power, the pyroelectric conversion approaches outlined appear to offer low cost per watt in the form of an easily deployed, flexible, strong, electrically ""self-healing'', and high voltage sheet. This study assessed several potential problems such as plasma interactions and radiation degradation and suggests approaches to overcome them. The fundamental technological issues for space pyroelectric conversion are: (1) demonstration of the conversion cycle with the proposed class of polymers, (2) achievement of improved dielectric strength of the material, (3) demonstration of acceptable plasma power losses for low altitude, and (4) establishment of reasonable lifetime for the pyroelectric material in the space environment. Recommendations include an experimental demonstration of the pyroelectric conversion cycle followed by studies to improve the dielectric strength of the polymer and basic studies to discover additional pyroelectric materials.

  4. Conceptual design study of advanced acoustic-composite nacelles

    NASA Technical Reports Server (NTRS)

    Nordstrom, K. E.; Marsh, A. H.; Sargisson, D. F.

    1975-01-01

    Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits.

  5. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  6. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  7. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    SciTech Connect

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  8. Designing and Evaluating a Context-Based Lesson Sequence Promoting Conceptual Coherence in Biology

    ERIC Educational Resources Information Center

    Ummels, M. H. J.; Kamp, M. J. A.; de Kroon, H.; Boersma, K. Th.

    2015-01-01

    Context-based education, in which students deal with biological concepts in a meaningful way, is showing promise in promoting the development of students' conceptual coherence. However, literature gives little guidance about how this kind of education should be designed. Therefore, our study aims at designing and evaluating the practicability…

  9. High Energy Astronomy Observatory, Mission C, Phase A. Volume 2: Preliminary analyses and conceptual design

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.

  10. Rubber airplane: Constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.

  11. Conceptualization and nursing implications of self-imposed activity limitation among community-dwelling elders.

    PubMed

    Guo, Guifang; Phillips, Linda R

    2010-01-01

    The purposes of this paper are to explore, from a theoretical perspective, explanations for why some community-dwelling elders self-impose activity limitations (SIALs); to develop an integrated explanation for SIAL from a nursing perspective; and to identify some clinical implications of relevance to public health nursing practice. Activity limitation is an important risk factor for functional decline, morbidity, and mortality among community-dwelling elders. Many studies have focused on disease and environmental influences on activity limitations. The intrinsic processes associated with voluntary or SIAL in old age among otherwise physically and mentally capable elders are poorly understood and little studied. The conceptualization of SIAL provides nurses with an understanding of an understudied aging phenomenon and helps nurses understand how elders see activities related to their life priorities. The conceptual framework will facilitate future qualitative and quantitative study of SIAL, assist nurses in the development of a new gerontological nursing theory, and design of interventions for elders with activity limitations. Public health nurses with a better understanding of SIAL may be able to help elders improve or maintain their independence. PMID:20626836

  12. System Risk Assessment and Allocation in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Smith, Natasha L.; Zang, Thomas A. (Technical Monitor)

    2003-01-01

    As aerospace systems continue to evolve in addressing newer challenges in air and space transportation, there exists a heightened priority for significant improvement in system performance, cost effectiveness, reliability, and safety. Tools, which synthesize multidisciplinary integration, probabilistic analysis, and optimization, are needed to facilitate design decisions allowing trade-offs between cost and reliability. This study investigates tools for probabilistic analysis and probabilistic optimization in the multidisciplinary design of aerospace systems. A probabilistic optimization methodology is demonstrated for the low-fidelity design of a reusable launch vehicle at two levels, a global geometry design and a local tank design. Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system. Furthermore, decoupling strategies are introduced to reduce the computational effort required for multidisciplinary systems with feedback coupling.

  13. Conceptual design of the Topaz II anticriticality device

    SciTech Connect

    Trujillo, D.; Bultman, D.; Potter, R.C.; Sanchez, L.; Skobelev, V.E.

    1993-10-01

    The Topaz II Flight Safety team requires that the hardware for the Rusian-built reactor be modified to ensure that the reactor remains subcritical in the event of an inadvertent accident in which the reactor is submersed in wet sand or water. In April 1993, the American Flight safety team chose the fuel-out anticriticality device as the baseline for the hardware design. We describe the initial stages of the hardware design; show how the mechanism works; and describe its function, the functional and operational requirements, and the difficult design problems encountered. Also described, are the initial interactions between the Russian and American design teams. Because the effort is to add an American modification to a Russian flight reactor, this project has required unusual technical cooperation and consultation with the Russian design team.

  14. Common Lunar Lander vehicle propulsion system conceptual design

    NASA Technical Reports Server (NTRS)

    Hyatt, C. D.; Riccio, Joseph R.; Moore, Landon

    1993-01-01

    The Common Lunar Lander (CLL) is a concept for a small, unpiloted vehicle which would provide a low-cost capability to land any of a variety of payloads in the 200 kg class at any point on the surface of the moon. Initiated as a precursor mission for the First Lunar Outpost, it also has considerable potential for use by the scientific community at large. A series of studies has been conducted at the NASA Johnson Space Center to define initial requirements and to initiate the design process. This paper describes the propulsion subsystem design as it existed at the CLL System Design Review. The propulsion subsystem design is described in detail along with the planned operations concept, including the unique concept of using pulsing of main engines for thrust modulation. Design options and trades considered and the verification process philosophy which was being planned for the program are discussed.

  15. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  16. Parametric study of critical constraints for a canard configured medium range transport using conceptual design optimization

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1983-01-01

    Constrained parameter optimization was used to perform optimal conceptual design of both canard and conventional configurations of a medium range transport. A number of design constants and design constraints were systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main landing gear location and horizontal stabilizer high-lift performance were identified as critical design parameters for a statically stable, subsonic canard transport.

  17. Parametric study of a canard-configured transport using conceptual design optimization

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1985-01-01

    Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.

  18. Conceptual Launch Vehicle and Spacecraft Design for Risk Assessment

    NASA Technical Reports Server (NTRS)

    Motiwala, Samira A.; Mathias, Donovan L.; Mattenberger, Christopher J.

    2014-01-01

    One of the most challenging aspects of developing human space launch and exploration systems is minimizing and mitigating the many potential risk factors to ensure the safest possible design while also meeting the required cost, weight, and performance criteria. In order to accomplish this, effective risk analyses and trade studies are needed to identify key risk drivers, dependencies, and sensitivities as the design evolves. The Engineering Risk Assessment (ERA) team at NASA Ames Research Center (ARC) develops advanced risk analysis approaches, models, and tools to provide such meaningful risk and reliability data throughout vehicle development. The goal of the project presented in this memorandum is to design a generic launch 7 vehicle and spacecraft architecture that can be used to develop and demonstrate these new risk analysis techniques without relying on other proprietary or sensitive vehicle designs. To accomplish this, initial spacecraft and launch vehicle (LV) designs were established using historical sizing relationships for a mission delivering four crewmembers and equipment to the International Space Station (ISS). Mass-estimating relationships (MERs) were used to size the crew capsule and launch vehicle, and a combination of optimization techniques and iterative design processes were employed to determine a possible two-stage-to-orbit (TSTO) launch trajectory into a 350-kilometer orbit. Primary subsystems were also designed for the crewed capsule architecture, based on a 24-hour on-orbit mission with a 7-day contingency. Safety analysis was also performed to identify major risks to crew survivability and assess the system's overall reliability. These procedures and analyses validate that the architecture's basic design and performance are reasonable to be used for risk trade studies. While the vehicle designs presented are not intended to represent a viable architecture, they will provide a valuable initial platform for developing and demonstrating

  19. Conceptual design of a manned orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    With the advent of the manned space station, man now requires a spacecraft based on the space station with the ability to deploy, recover, and repair satellites quickly and economically. Such a craft would prolong and enhance the life and performance of many satellites. A basic design was developed for an orbital tansfer vehicle (OTV). The basic design criteria are discussed. The design of the OTV and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures. The basic concepts in each of the areas are summarized.

  20. Conceptual Design and Numerical Simulations of Hypersonic Waverider Vehicle

    NASA Astrophysics Data System (ADS)

    Cao, D. Y.; Zhang, J. B.; Lee, C. H.

    A modularized airframe/propulsion integrated model is established by oblique shock wave theory, engineering method and method of characteristics(MOC). Based on this method, a new design methodology for hypersonic waverider vehicle which integrated scramjets with waverider airframe derived from cone-wedge flow field is presented. Integrated aero-propulsion performance of the waverider vehicle under on-design and off-design conditions is predicted using Euler equations discretized by Harten-Yee non-MUSCL TVD scheme and the combustor flow field is approximated by a quasi-ID cycle analysis, skin friction of vehicle is calculated by reference temperature method.

  1. The Puzzle Design Activity.

    ERIC Educational Resources Information Center

    Meyer, Marc E.

    1983-01-01

    A sampling of puzzles and games produced by students at North Rockland High School (New York) are presented as an example of a way student-designed activities can be used to cover a specific unit within the health education curriculum. Produced by 9th and 10th graders, the unit on alcohol consists of puzzles and word games using related vocabulary…

  2. Design of experiments based variation mode and effect analysis of a conceptual air launched SLV

    NASA Astrophysics Data System (ADS)

    Rafique, Amer Farhan; Zeeshan, Qasim; Kamran, Ali

    2014-12-01

    Conceptual design stage is where the knowledge about the variation in system is still quite vague and herein we intend to analyze and compare various probable design concepts for Air Launched SLV by the use of basic variation mode and effect analysis. In this paper we present a methodology for the Variation Mode and Effect Analysis using Latin Hypercube Sampling based Design of Experiments for the conceptual Air launched Satellite Launch Vehicle. Variations are induced in the Control Variables based on knowledge and experience. The methodology is used to quantify the effect of Noise Factors on the performance of a conceptual Air Launched SLV. The insertion altitude of the Air Launched SLV is the Key Performance Indicator. Preliminary results of the performance and analysis for the simulated experiments are presented here. The performance of the proposed procedure has been tested and, thus, validated by the Air Launched SLV design problem. The Design of Experiment based Variation mode and effect analysis approach is intended for initial conceptual design purposes, thus, providing an immediate insight to the performance of the system in general and quantification of the sensitivity of the key performance indicator in particular, subject to the variations in noise factors prior to the detailed design phase.

  3. QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study

    NASA Astrophysics Data System (ADS)

    Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa

    2016-06-01

    Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.

  4. Cooling water for SSC experiments: Supplemental Conceptual Design Report (SCDR)

    SciTech Connect

    Doyle, R.E.

    1989-10-20

    This paper discusses the following topics on cooling water design on the superconducting super collider; low conductivity water; industrial cooling water; chilled water systems; and radioactive water systems. (LSP)

  5. Study for conceptual design of VEO, VTOL exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Bittrick, W. C.

    1980-01-01

    Design requirements for a VEO Wing V/STOL exhaust nozzle with a two dimensional shape and having the capability for upper surface blowing, spanwise blowing, and 90 deg turning of the exhaust flow for VTOL were established. A preliminary design of the nozzle that identified the actuation scheme, key dimensions, the flowpath, and the recommended materials were prepared. The airplane characteristics resulting from integrating the study nozzle were established.

  6. A Simple Method for High-Lift Propeller Conceptual Design

    NASA Technical Reports Server (NTRS)

    Patterson, Michael; Borer, Nick; German, Brian

    2016-01-01

    In this paper, we present a simple method for designing propellers that are placed upstream of the leading edge of a wing in order to augment lift. Because the primary purpose of these "high-lift propellers" is to increase lift rather than produce thrust, these props are best viewed as a form of high-lift device; consequently, they should be designed differently than traditional propellers. We present a theory that describes how these props can be designed to provide a relatively uniform axial velocity increase, which is hypothesized to be advantageous for lift augmentation based on a literature survey. Computational modeling indicates that such propellers can generate the same average induced axial velocity while consuming less power and producing less thrust than conventional propeller designs. For an example problem based on specifications for NASA's Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) flight demonstrator, a propeller designed with the new method requires approximately 15% less power and produces approximately 11% less thrust than one designed for minimum induced loss. Higher-order modeling and/or wind tunnel testing are needed to verify the predicted performance.

  7. The SSC dipole: Its conceptual origin and early design history

    SciTech Connect

    Dahl, P.F.

    1992-05-01

    The magnet system for the Superconducting Super Collider will likely remain the most ambitions-and challenging-application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winter in an early technical showdown that occupied the fledgling SSC project. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press and still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos {theta}) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG. Beyond that, the ongoing chronicle must be left for others to amplify and complete.

  8. The SSC dipole: Its conceptual origin and early design history

    SciTech Connect

    Dahl, P.F.

    1990-06-01

    The magnet system for the Superconducting Super Collider will likely remain the most ambitious -- and challenging -- application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winner in an early technical showdown that occupied the fledgling SSC project. However, some of its gross features can be traced back to three path-breaking superconducting accelerator initiatives under way a decade earlier -- on the East Coast, on the West Coast, and in the Midwest. Other features have a still earlier legacy. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press and still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos {theta}) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG.

  9. Conceptual Sound System Design for Clifford Odets' "GOLDEN BOY"

    NASA Astrophysics Data System (ADS)

    Yang, Yen Chun

    There are two different aspects in the process of sound design, "Arts" and "Science". In my opinion, the sound design should engage both aspects strongly and in interaction with each other. I started the process of designing the sound for GOLDEN BOY by building the city soundscape of New York City in 1937. The scenic design for this piece is designed in the round, putting the audience all around the stage; this gave me a great opportunity to use surround and specialization techniques to transform the space into a different sonic world. My specialization design is composed of two subsystems -- one is the four (4) speakers center cluster diffusing towards the four (4) sections of audience, and the other is the four (4) speakers on the four (4) corners of the theatre. The outside ring provides rich sound source localization and the inside ring provides more support for control of the specialization details. In my design four (4) lavalier microphones are hung under the center iron cage from the four (4) corners of the stage. Each microphone is ten (10) feet above the stage. The signal for each microphone is sent to the two (2) center speakers in the cluster diagonally opposite the microphone. With the appropriate level adjustment of the microphones, the audience will not notice the amplification of the voices; however, through my specialization system, the presence and location of the voices of all actors are preserved for all audiences clearly. With such vocal reinforcements provided by the microphones, I no longer need to worry about overwhelming the dialogue on stage by the underscoring. A successful sound system design should not only provide a functional system, but also take the responsibility of bringing actors' voices to the audience and engaging the audience with the world that we create on stage. By designing a system which reinforces the actors' voices while at the same time providing control over localization of movement of sound effects, I was able not

  10. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    SciTech Connect

    Crowley, Cory F.; Ammigan, K.; Anderson, K.; Hartsell, B.; Hurh, P.; Hylen, J.; Zwaska, R.

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  11. Conceptual Design for a High-Temperature Gas Loop Test Facility

    SciTech Connect

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  12. Conceptual design report, plutonium stabilization and handling,project W-460

    SciTech Connect

    Weiss, E.V.

    1997-03-06

    Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

  13. Concurrent materials and process selection in conceptual design

    SciTech Connect

    Kleban, Stephen D.; Knorovsky, Gerald A.

    2000-08-16

    A method for concurrent selection of materials and a joining process based on product requirements using a knowledge-based, constraint satisfaction approach facilitates the product design and manufacturing process. Using a Windows-based computer video display and a data base of materials and their properties, the designer can ascertain the preferred composition of two parts based on various operating/environmental constraints such as load, temperature, lifetime, etc. Optimum joinder of the two parts may simultaneously be determined using a joining process data base based upon the selected composition of the components as well as the operating/environmental constraints.

  14. Conceptual design of a hybrid-type elliptically polarizing undulator

    NASA Astrophysics Data System (ADS)

    Sasaki, Shigemi

    2002-03-01

    A hybrid-type planar undulator was designed to generate circularly polarized radiation. It is an APPLE-type design consisting of four rows of hybrid structures that can be shifted with respect to each other. The magnetic field on axis can thus be adjusted so it can have linear or circular polarization including intermediate (elliptical polarization) positions. A short-period device of this kind can provide 100% circularly polarized radiation in a hard x-ray region when it is installed in a high-energy storage ring, such as the Advanced Photon Source.

  15. Conceptual design of X band waveguide dual circular polarizer

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Tantawi, Sami; Wang, Juwen

    2016-06-01

    A new design of dual circular polarizer is presented in this paper. This innovative design converts radiofrequency (rf) energy from TE10 mode in a rectangular waveguide to two polarized TE11 modes in a circular waveguide. A reflection less than -20 db is achieved and breakdown field is less than 42 MV /m at input of 1 MW. Meanwhile, this polarizer has a megahertz bandwidth, and the thermal stability is also discussed. This device can be used for broadcasting and receiving the circular polarized signals.

  16. 18T resistive magnet development. Conceptual design second annual report

    SciTech Connect

    Agarwal, K.L.; Burgeson, J.E.; Gurol, H.; Mancuso, A.; Michels, P.H.

    1985-10-01

    This report documents the work performed on a normal conducting magnet during fiscal year 1985. Emphasis, during the study, was on refinement of the structural design and optimization of the coil current density distribution for either maximum field generation or minimum power consumption. The results have shown that one can generate a 4.4 tesla field using 6.14 megawatts or 3.1 tesla at 1.43 megawatts. The structural design has been modified to stiffen the outer turn of the conductor. The modification was confirmed to be structurally adequate by both analysis and test. 37 figs., 21 tabs.

  17. Automatic Conversion of Conceptual Geometry to CFD Geometry for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2007-01-01

    Conceptual aircraft design is usually based on simple analysis codes. Its objective is to provide an overall system performance of the developed concept, while preliminary aircraft design uses high-fidelity analysis tools such as computational fluid dynamics (CFD) analysis codes or finite element structural analysis codes. In some applications, such as low-boom supersonic concept development, it is important to be able to explore a variety of drastically different configurations while using CFD analysis to check whether a given configuration can be tailored to have a low-boom ground signature. It poses an extremely challenging problem of integrating CFD analysis in conceptual design. This presentation will discuss a computer code, called iPatch, for automatic conversion of conceptual geometry to CFD geometry. In general, conceptual aircraft geometry is not as well-defined as a CAD geometry model. In particular, a conceptual aircraft geometry model usually does not define the intersection curves for the connecting surfaces. The computer code iPatch eliminates the gap between conceptual geometry and CFD geometry by accomplishing the following three tasks automatically: (1) use bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometry components (such as wing and fuselage) can be intersected to form a watertight CFD geometry, (2) compute the intersection curves of surface patches at any resolution (up to 10-7 accuracy) specified by users, and (3) write the B-spline surface patches and the corresponding boundary points for the watertight CFD geometry in the format that can be directly exported to the meshing tool VGRID in the CFD software TetrUSS. As a result, conceptual designers can get quick feedback on the aerodynamic characteristics of their concepts, which will allow them to understand some subtlety in their concepts and to be able to assess their concepts with a higher degree of

  18. Progress in Conceptual Design and Analysis of Advanced Rotorcraft

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.

    2012-01-01

    This presentation will give information on Multi-Disciplinary Analysis and Technology Development, including it's objectives and how they will be met. In addition, it will also present recent highlights including the Lift-Offset Civil Design and it's study conclusions, as well as, the LCTR2 Propulsion Concept's study conclusions. Recent publications and future publications will also be discussed.

  19. Conceptual design of a hybrid Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    Parry, C. M.

    1984-01-01

    For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.

  20. Conceptual design of the ALADDIN Antarctic nulling interferometer

    NASA Astrophysics Data System (ADS)

    Barillot, Marc; Courteau, Pascal; Absil, Olivier; Coudé du Foresto, Vincent; Swain, Mark

    2006-06-01

    It is commonly accepted that highly challenging planet finding missions such as Darwin and TPF need precursors on the ground, for both technological demonstration and study of the exozodiacal clouds around potential targets. A first instrument, GENIE, designed to be implemented in the interferometric laboratory of the VLTI, was studied by ESA and scientific/industrial teams. In this paper we present a concept for ALADDIN, an operational nulling instrument to be implemented at Dome C in Antarctica, and discuss the comparison with GENIE from the instrumental point of view. Our preliminary design involves moderate ~1m size telescopes mounted on a 40m long rotating beam allowing baselines up to 30m and feeding a 2-arm nulling beam combiner. When compared to GENIE, the rotating beam design has the advantage of removing the need for both long-stroke delay line and dispersion control equipments. As a side effect, the instrumental arrangement of ALADDIN finds itself more representative of what Darwin will be. Furthermore, critical issues like phase control, photometric balance and instrumental background suppression are expected to be relaxed by the improved atmospheric conditions, lower temperature, and simpler optical trains. Calibration of geometrical stellar leakage will make advantage of the continuously adjustable baseline. As results, a simpler instrument showing improved performance is expected. In conclusion, we see our ALADDIN concept as a valuable alternative to GENIE, with a quite stronger scientific potential and a considerably simplified instrumental design.

  1. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  2. Concurrent materials and process selection in conceptual design

    SciTech Connect

    Kleban, S.D.

    1998-07-01

    The sequential manner in which materials and processes for a manufactured product are selected is inherently less than optimal. Designers` tendency to choose processes and materials with which they are familiar exacerbate this problem. A method for concurrent selection of materials and a joining process based on product requirements using a knowledge-based, constraint satisfaction approach is presented.

  3. Kacang Cerdik: A Conceptual Design of an Idea Management System

    ERIC Educational Resources Information Center

    Murah, Mohd Zamri; Abdullah, Zuraidah; Hassan, Rosilah; Bakar, Marini Abu; Mohamed, Ibrahim; Amin, Hazilah Mohd

    2013-01-01

    An idea management system is where ideas are stored and then can be evaluated and analyzed. It provides the structure and the platform for users to contribute ideas for innovation and creativity. Designing and developing an idea management system is a complex task because it involves many users and lot of ideas. Some of the critical features for…

  4. A new conceptual design approach for habitative space modules

    NASA Astrophysics Data System (ADS)

    Burattini, C.; Bisegna, F.; Gugliermetti, F.; Marchetti, M.

    2014-04-01

    Existing Space modules were designed to meet the standards established by NASA, basically oriented to functionality. In future Space environments a high level of habitability in long duration missions will become a priority: besides comfort and ergonomics, these habitats will require the application of criteria to address human needs for living in confined environments.

  5. Advanced wind turbine design studies: Advanced conceptual study. Final report

    SciTech Connect

    Hughes, P; Sherwin, R

    1994-08-01

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  6. Conceptual design for a high-concentration (500X) photovoltaic array

    SciTech Connect

    Levy, S.L.

    1984-12-01

    A conceptual design of a high concentration photovoltaic (PV) array using the Stanford/EPRI 500X silicon cell is presented. Work objectives were the following: to identify an array concept with promise for economic viability; to develop preliminary component (subsystem) designs for such an array; and to identify key component developmental issues. The design criterion was minimum levelized busbar energy cost, BBEC. Design trade studies were based on variation of subsystem costs and a 15 cent/kWh (current dollars) target for BBEC. Subsystems design included the tracking support structure and the PV module. The module includes the Fresnel lens parquet, the cell package, the backplate heat rejector, and the module housing. Estimated cost for the array is near the range of allowed costs established by BBEC target and balance-of-system cost estimates reported in Integrated Photovoltaic Central Station Conceptual Designs, EPRI AP-3264.

  7. Data base architecture for instrument characteristics critical to spacecraft conceptual design

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Allen, Cheryl L.

    1990-01-01

    Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.

  8. Conceptual design of a space-based multimegawatt MHD power system. Topical report

    SciTech Connect

    Barton, J.R.; Bernard, F.E.; Carrington, R.A.; Hanson, L.P.; Holman, R.R.

    1988-01-01

    This report presents the system requirements and design guidelines for the space based multimegawatt MHD power system conceptual design, and comprises Volume 2 of the topical report describing the Task 1 MHD Power System Conceptual Design and Development Plan. In the interest of completeness, this report includes a summary description of the MHD power system concept with the functional requirements, design scope and design objectives. Then subsequent sections present the system requirements including operational requirements, space platform/weapon system interfaces, subsystem interfaces, and design guidelines. The analytical methods used for system analysis and parametric studies are also included. A description of the MHD power system, in the standard data table format for multimegawatt space power systems, is included in the Appendices.

  9. Conceptual design of coal-fueled diesel system for stationary power applications

    SciTech Connect

    Not Available

    1989-05-01

    A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

  10. 7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report

    SciTech Connect

    Not Available

    1992-12-01

    In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R&D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R&D.

  11. 7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report

    SciTech Connect

    Not Available

    1992-12-01

    In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R D.

  12. Data management in an object-oriented distributed aircraft conceptual design environment

    NASA Astrophysics Data System (ADS)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the

  13. Development of an aggregation methodology for risk analysis in aerospace conceptual vehicle design

    NASA Astrophysics Data System (ADS)

    Chytka, Trina Marsh

    2003-10-01

    The growing complexity of technical systems has emphasized a need to gather as much information as possible regarding specific systems of interest in order to make robust, sound decisions about their design and deployment. Acquiring as much data as possible requires the use of empirical statistics, historical information and expert opinion. In much of the aerospace conceptual design environment, the lack of historical information and infeasibility of gathering empirical data relegates the data collection to expert opinion. The conceptual design of a space vehicle requires input from several disciplines (weights and sizing, operations, trajectory, etc.). In this multidisciplinary environment, the design variables are often not easily quantified and have a high degree of uncertainty associated with their values. Decision-makers must rely on expert assessments of the uncertainty associated with the design variables to evaluate the risk level of a conceptual design. Since multiple experts are often queried for their evaluation of uncertainty, a means to combine/aggregate multiple expert assessments must be developed. Providing decision-makers with a solitary assessment that captures the consensus of the multiple experts would greatly enhance the ability to evaluate risk associated with a conceptual design. The objective of this research has been to develop an aggregation methodology that efficiently combines the uncertainty assessments of multiple experts in multiple disciplines involved in aerospace conceptual design. Bayesian probability augmented by uncertainty modeling and expert calibration was employed in the methodology construction. Appropriate questionnaire techniques were used to acquire expert opinion; the responses served as input distributions to the aggregation algorithm. Application of the derived techniques were applied as part of a larger expert assessment elicitation and calibration study. Results of this research demonstrate that aggregation of

  14. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. ); Bittner, D.N.; Hendricks, C.D. )

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  15. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  16. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  17. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  18. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    SciTech Connect

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  19. Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT

    NASA Technical Reports Server (NTRS)

    Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.

    1988-01-01

    A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.

  20. Conceptual Design of the Aluminum Reflector Antenna for DATE5

    NASA Astrophysics Data System (ADS)

    Qian, Yuan; Kan, Frank W.; Sarawit, Andrew T.; Lou, Zheng; Cheng, Jing-Quan; Wang, Hai-Ren; Zuo, Ying-Xi; Yang, Ji

    2016-08-01

    DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the antenna when it is exposed to Antarctic weather conditions. Structural analysis shows that both machined aluminum and carbon fiber reinforced plastic (CFRP) panels can meet surface accuracy requirements. In this paper, one design concept based on aluminum panels is introduced. This includes panel layout, details on panel support, design of a CFRP backup structure, and detailed finite element analysis. Modal, gravity and thermal analysis are all performed and surface deformations of the main reflector are evaluated for all load cases. At the end of the paper, the manufacture of a prototype panel is also described. Based on these results, we found that using smaller aluminum reflector panels has the potential to meet the surface requirements in the harsh Dome A environment.

  1. Conceptual design of the advanced marine reactor MRX

    NASA Astrophysics Data System (ADS)

    1991-02-01

    Design studies on the advanced marine reactors have been done continuously since 1983 at the Japan Atomic Energy Research Institute (JAERI) in order to develop attractive marine reactors for the next generation. At present, two marine reactor concepts are being formulated. One is 100 MWt MRX (Marine Reactor X) for an icebreaker and the other is 300 kWe DRX (Deep-sea Reactor X) for a deep-sea research vessel. They are characterized by an integral type pressurized water reactor (PWR) built-in type control rod drive mechanisms, a water-filled container and a passive decay heat removal system, which realize highly passive safe and compact reactors. This paper is a detailed report including all major results of the MRX design study.

  2. Conceptual design of a beam steering lens through transformation electromagnetics.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; de Lustrac, André

    2015-05-18

    In this paper, based on transformation electromagnetics, the design procedure of a lens antenna, which steers the radiated beam of a patch array, is presented. Laplace's equation is adopted to construct the mapping between the virtual space and the physical space. The two dimensional (2D) design method can be extended to a potential three-dimensional (3D) realization, and with a proper parameter simplification, the lens can be further realized by common metamaterials or isotropic graded refractive index (GRIN) materials. Full wave simulations are performed to validate the proposed concept. It is observed that by placing the lens on a feeding source, we are able to steer the radiation emitted by the latter source. PMID:26074547

  3. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  4. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  5. Conceptual design of a black liquor gasification pilot plant

    SciTech Connect

    Kelleher, E. G.

    1987-08-01

    In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

  6. Conceptual Design of the TPF-O SC Bus

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    2007-01-01

    One option under current study for the Terrestrial Planet Finder-Occulter (TPF-O) observatory shares some key features of the Hubble Space Telescope (HST). Both are space telescopes with a primary mirror aperture of around 2.4 meters and designed to observe in the visible to near infrared range of wavelengths, with the major difference in science capability being that TPF-O has an areal FOV on the order of 100 times larger than that of HST. This larger FOV, whose science camera is also expected to provide fine guidance, and other mission differences, mean that most TPF-O SC bus subsystems will have very different requirements than those of HST. Unlike HST in LEO, TPF-O is designed to operate in an orbit around the Sun-Earth lagrange 2 (SEL2) point. The longer communications range to SEL2 and the large FOV require much higher performance data processing and communications than HST. Maintaining a SEL2 orbit requires TPF-O, unlike HST, to have a propulsion system. TPF-O will have a specialized tracking system that allows the formation flying occulter to maintain its required position. However, despite these additional features, the velocity required for reaching SEL2 and the limited capabilities of affordable launch vehicles require TPF-O to have a compact and low-mass design relative to HST. Finally, TPF-O may utilize a modular design to reduce development cost and, if it required, allow servicing using approaches different from those of HST.

  7. Conceptual Design of the TPF-O SC Buses

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    2007-01-01

    The Terrestrial Planet Finder - Occulter (TPF-O) mission has two Spacecraft (SC) buses, one for a space telescope and the other for a formation-flying occulter. SC buses typically supply the utilities (support structures, propulsion, attitude control, power, communications, etc) required by the payloads. Unique requirements for the occulter SC bus are to provide the large delta V required for the slewing maneuvers of the occulter, and comunications for formation flying. The TPF-O telescope SC bus shares some key features of the one for the Hubble Space Telescope (HST): both support space telescopes designed to observe in the visible to near infrared range of wavelengths with comparable primary mirror apertures (2.4 m for HST, 2.4 - 4.0 m for TPF-O). However, TPF-O is expected to have a Wide Field Camera (WFC) with a Field of View (FOV) much larger than that of HST. Ths WFC is also expected to provide fine guidance. TPF-O is designed to operate in an orbit around the Sun-Earth Lagrange 2 (SEL2) point. The longer communications range to SEL2 and the large science FOV require higher performance communications than HST. Maintaining a SEL2 orbit requires TPF-O, unlike HST, to have a propulsion system. The velocity required for reachng SEL2 and the limited capabilities of affordable launch vehicles require both TPF-O elements to have compact, low-mass designs. Finally, it is possible that TPF-O may utilize a modular design derived fiom that of HST to allow servicing in the SEL2 orbit.

  8. Conceptual design study of an improved automotive gas turbine powertrain

    NASA Technical Reports Server (NTRS)

    Wagner, C. E. (Editor); Pampreen, R. C. (Editor)

    1979-01-01

    Automotive gas turbine concepts with significant technological advantages over the spark ignition (SI) engine were assessed. Possible design concepts were rated with respect to fuel economy and near-term application. A program plan which outlines the development of the improved gas turbine (IGT) concept that best met the goals and objectives of the study identifies the research and development work needed to meet the goal of entering a production engineering phase by 1983. The fuel economy goal is to show at least a 20% improvement over a conventional 1976 SI engine/vehicle system. On the basis of achieving the fuel economy goal, of overall suitability to mechanical design, and of automotive mass production cost, the powertrain selected was a single-shaft engine with a radial turbine and a continuously variable transmission (CVT). Design turbine inlet temperature was 1150 C. Reflecting near-term technology, the turbine rotor would be made of an advanced superalloy, and the transmission would be a hydromechanical CVT. With successful progress in long-lead R&D in ceramic technology and the belt-drive CVT, the turbine inlet temperature would be 1350 C to achieve near-maximum fuel economy.

  9. Conceptual design for the National Water Information System

    USGS Publications Warehouse

    Edwards, M.D.; Putnam, A.L.; Hutchison, N.E.

    1986-01-01

    The Water Resources Division of the U.S. Geological Survey began the design and development of a National Water Information System (NWIS) in 1983. The NWIS will replace and integrate the existing data systems of the National Water Data Storage and Retrieval System, National Water Data Exchange, National Water-Use Information Program, and Water Resources Scientific Information Center. The NWIS has been designed as an interactive , distributed data system. The software system has been designed in a modular manner which integrates existing software functions and allows multiple use of software modules. The data of the existing water data, water use data, and water data indexing information by using a common relational data base management system. The NWIS will be operated on microcomputers located in each of the Water Resources Division 's District offices and many of its state, subdistrict, and field offices. The microcomputers will be linked together through a national telecommunication network maintained by the U.S. Geological Survey. The NWIS is scheduled to be placed in operation in 1990. (Author 's abstract)

  10. 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect

    Not Available

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  11. Conceptual Design of the Harbin Reconnection eXperiment (HRX)

    NASA Astrophysics Data System (ADS)

    Mao, Aohua; E, Peng; Wang, Xiaogang; Ji, Hantao; Ren, Yang

    2015-11-01

    A new terrella device, called the Space Environment Simulation and Research Infrastructure or SESRI, is under construction at Harbin Institute of Technology, in which the Harbin Reconnection eXperiment (HRX) system is one of the most important components. The goal of HRX reconnection experiment design is to provide a unique platform for studying reconnections relevant to those in magnetopause and magnetotail. Most of the currently existing terrella experiments have been focusing on global phenomena, e.g. bow shock, in either linear or toroidal geometry, which are typically very different in magnetosphere plasmas. The new HRX regimes explores both local and global reconnection dynamics by driving reconnection with a unique set of coils in a dipole magnetic field configuration which will be able to investigate a range of important reconnection issues in magnetosphere geometry. The design of the HRX device approximately follows the Vlasov similarity laws between the laboratory plasma of the device and the magnetosphere plasma to match local reconnection dynamics. Motivation, design criteria for the HRX experiments, and the preliminary experiment proposal will be discussed.

  12. Annotated outline for the SCP conceptual design report: Office of Geologic Repositories

    SciTech Connect

    Not Available

    1987-06-01

    The Nuclear Waste Policy Act of 1982 (NWPA) requires that site characterization plans (SCPs) be submitted to the Nuclear Regulatory Commission (NRC), affected States and Indian tribes, and the general public for review and comment prior to the sinking of shafts at a candidate repository site. The SCP is also required by the NRC licensing procedures for the disposal of high-level waste. An Annotated Outline (AO) for Site Characterization Plans (OGR/B-5) has been prepared to provide DOE's standard format and guidance for preparation of SCPs. Consistent with the AO for SCPs. Chapter 6 of the SCP is to provide the requirements and references the media-specific design data base, describe the current design concepts, and discuss design information needs. In order to develop this design information, the Office of Geologic Repositories program is planning a SCP conceptual design phase as part of the overall repository design process. This phase is the first step in the design process, and the result and design can be expected to change as the program moves through the site characterization phase. The Annotated Outline which follows provides the standard format and guidance for the preparation of the SCP Conceptual Design Reports. It is considered to meet the intent of NRC's proposed Generic Technical Position philosophy contained therein. The SCP Conceptual Design Report will be the primary basis for preparation of Chapter 6 of the SCP and will be stand-alone reference document for the SCP. Appendix 1 to this Annotated Outline provides a correlation between Chapter 6 of the SCP and SCP Conceptual Design Report for the information purposes.

  13. Rapid Assessment of Agility for Conceptual Design Synthesis

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.

    1996-01-01

    This project consists of designing and implementing a real-time graphical interface for a workstation-based flight simulator. It is capable of creating a three-dimensional out-the-window scene of the aircraft's flying environment, with extensive information about the aircraft's state displayed in the form of a heads-up-display (HUD) overlay. The code, written in the C programming language, makes calls to Silicon Graphics' Graphics Library (GL) to draw the graphics primitives. Included in this report is a detailed description of the capabilities of the code, including graphical examples, as well as a printout of the code itself

  14. Conceptual design of a Commercial Tokamak Hybrid Reactor (CTHR)

    NASA Astrophysics Data System (ADS)

    1980-12-01

    This design was developed as a first generation commercial plant for the production of fissile fuel to support a significant number of client light water reactor (LWR) plants. The study was carried out in sufficient depth of indicate no insurmountable technical problems exist, assuming the physics of the fusion driver is verified, and has provided a basis for deriving cost estimates of the hybrid plant as well as estimates of the hybrid/LWR symbiotic system busbar electricity costs. This energy system has the potential to be optimized such that the net cost of electricity becomes competitive with conventional LWR plants as the price of U308 exceeds $100 per pound.

  15. Conceptualization and design of a variable-gravity research facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.

  16. Free-flying teleoperator requirements and conceptual design.

    NASA Technical Reports Server (NTRS)

    Onega, G. T.; Clingman, J. H.

    1973-01-01

    A teleoperator, as defined by NASA, is a remotely controlled cybernetic man-machine system designed to augment and extend man's sensory, manipulative, and cognitive capabilities. Teleoperator systems can fulfill an important function in the Space Shuttle program. They can retrieve automated satellites for refurbishment and reuse. Cargo can be transferred over short or large distances and orbital operations can be supported. A requirements analysis is discussed, giving attention to the teleoperator spacecraft, docking and stowage systems, display and controls, propulsion, guidance, navigation, control, the manipulators, the video system, the electrical power, and aspects of communication and data management. Questions of concept definition and evaluation are also examined.

  17. Conceptual design of a quadrupole magnet for eRHIC

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  18. Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter

    NASA Technical Reports Server (NTRS)

    Russell, Carl; Johnson, Wayne

    2012-01-01

    A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.

  19. Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott; Kim, Tony; Cirtain, Jonathan

    2010-01-01

    This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,

  20. Switchyard in the Main Injector era conceptual design report

    SciTech Connect

    Brown, C.; Kobilarcik, T.; Lucas, P.; Malensek, A.; Murphy, C.T.; Yang, M.-J.

    1997-08-01

    This report presents elements of a design of the Switchyard and of the present fixed target beamlines in the era of the Main Injector (MI). It presumes that 800 GeV Tevatron beam will be transported to this area in the MI era, and permits it to share cycles with 120 GeV Main Injector beam if this option is desired. Geographically, the region discussed extends from the vicinity of AO to downstream points beyond which beam properties will be determined by the requirements of specific experiments. New neutrino lines not utilizing the present Switchyard (NuMI, BooNE) are not addressed. Similarly Main Injector beams upstream of AO are described fully in MI documentation and are unaffected by what is presented here. The timing both of the preparation of this report and of its recommendations for proceeding with construction relate to a desire to do required work in Transfer Hall and Enclosure B during the Main Injector construction shutdown (September 1997 - September 1998). As these areas are off-limits during any Tevatron operation, it is necessary for the fixed target program that work be completed here during this extended down period. The design presented here enables the operation of all beamlines in the manner specified in the current Laboratory plans for future fixed- target physics.

  1. Conceptual design report for the Solenoidal Tracker at RHIC

    SciTech Connect

    Not Available

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  2. Conceptual design report for the Solenoidal Tracker at RHIC

    SciTech Connect

    The STAR Collaboration

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it`s experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  3. Conceptual design of a massive aerometric tracer experiment (MATEX)

    SciTech Connect

    Hidy, G.M.

    1987-10-01

    A hypothetical field experiment is evaluated that relates, through tracer releases, reactive pollutant emissions to long range transport and deposition. The feasibility of such an approach is established provided certain requirements can be met. The experiment must: (a) trace emissions from several sources simultaneously and repetitively over an extended period to time, (b) link a tracer to the chemical behavior of emissions, and (c) apply a statistically sound method of guidance for deducing empirical source-receptor relationships (SRRs) while accounting for natural variability. One design approach would use perfluorocarbon tracers (PFTs), which are nonreactive in the atmosphere, to simulate the transport and dispersion of reactive species such as sulfur and nitrogen oxides. Conversion and loss factors would be calibrated using isotopic sulfur and nitrogen compounds with PFTs, in combination with aerometric and deposition observations. An experimental concept is described that determines SRRs for deposition from observations and their interpolation, synthesized by an empirical model. If implemented, the experiment would be very expensive and has high design risk for achieving its goals given present knowledge.

  4. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  5. THE JLAB AMPERE-CLASS CRYOMODULE CONCEPTUAL DESIGN

    SciTech Connect

    Robert Rimmer; Edward Daly; William Hicks; James Henry; Joseph Preble; Mircea Stirbet; Haipeng Wang; Katherine Wilson; Genfa Wu; Gianluigi Ciovati; Thomas Elliott; Peter Kneisel; Stephen Manning; Robert Manus; Karl Smith; Lynn Vogel; Larry Turlington

    2006-06-26

    For the next generation of compact high-power FELs a new cryomodule is required that is capable of accelerating up to Ampere levels of beam current. Challenges include strong HOM damping, high HOM power and high fundamental-mode power (in operating scenarios without full energy recovery). For efficient use of space a high real-estate gradient is desirable and for economic operation good fundamental-mode efficiency is important. The technology must also be robust and should be based on well-proven and reliable technologies. For Ampere-class levels of beam current both halo interception and beam break-up (BBU) are important considerations. These factors tend to drive the designs to lower frequencies where the apertures are larger and the transverse impedances are lower. To achieve these goals we propose to use a compact waveguide-damped multi-cell cavity packaged in an SNS-style cryomodule.

  6. Teaching engineering ethics by conceptual design: the somatic marker hypothesis.

    PubMed

    Kallenberg, Brad J

    2009-12-01

    In 1998, a lead researcher at a Midwestern university submitted as his own a document that had 64 instances of strings of 10 or more words that were identical to a consultant's masters thesis and replicated a data chart, all of whose 16 entries were identical to three and four significant figures. He was fired because his actions were wrong. Curiously, he was completely unable to see that his actions were wrong. This phenomenon is discussed in light of recent advances in neuroscience and used to argue for a change in the standard way engineering ethics is taught. I argue that engineering ethics is better taught in the form of a design course in order to maximize "somatic" learning. PMID:19360482

  7. Conceptual designs for lunar base life support systems

    NASA Technical Reports Server (NTRS)

    Dall-Bauman, Liese; Edeen, Marybeth; Brown, Mariann

    1991-01-01

    Three designs for lunar-base life support are described emphasizing the choices of individual processes for initial, intermediate, and advanced systems. Mass balances for the systems are employed to demonstrate the interactions of air, water, and waste loops, and several waste-treatment processes are considered for the initial life-support system. NASA space-station technologies are adopted for the start-up air, water, and waste treatment subsystems, and the intermediate subsystems provide enhanced capabilities. The intermediate waste-management subsystem permits the recovery of reusable waste, and the advanced system provides biological waste treatment. The reduction of resupply requirements and power use are identified as critical issues as is the ability to operate over extended periods.

  8. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  9. Conceptual design study of improved automotives gas turbine powertrain

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Twenty-two candidate engine concepts and nineteen transmission concepts. Screening of these concepts, predominantly for fuel economy, cost and technical risk, resulted in a recommended powertrain consisting of a single-shaft engine, with a ceramic radial turbine rotor, connected through a differential split-power transmission utilizing a variable stator torque converter and a four speed automatic gearbox. Vehicle fuel economy and performance projections, preliminary design analyses and installation studies in a were completed. A cost comparison with the conventional spark ignited gasoline engine showed that the turbine engine would be more expensive initially, however, lifetime cost of ownership is in favor of the gas turbine. A powertrain research and development plan was constructed to gain information on timing and costs to achieve the required level of technology and demonstrate the engine in a vehicle by the year 1983.

  10. Conceptual design study of an Improved Gas Turbine (IGT) powertrain

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1979-01-01

    Design concepts for an improved automotive gas turbine powertrain are discussed. Twenty percent fuel economy improvement (over 1976), competitive costs (initial and life cycle), high reliability/life, low emissions, and noise/safety compliance were among the factors considered. The powertrain selected consists of a two shaft gas turbine engine with variable geometry aerodynamic components and a single disk rotating regenerator. The regenerator disk, gasifier turbine rotor, and several hot section flowpath parts are ceramic. The powertrain utilizes a conventional automatic transmission. The closest competitor was a single shaft turbine engine matched to a continuously variable transmission (CVT). Both candidate powertrain systems were found to be similar in many respects; however, the CVT represented a significant increase in development cost, technical risk, and production start-up costs over the conventional automatic transmission. Installation of the gas turbine powertrain was investigated for a transverse mounted, front wheel drive vehicle.

  11. Lean, premixed, prevaporized fuel combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Fiorentino, A. J.; Greene, W.; Kim, J.

    1979-01-01

    Four combustor concepts, designed for the energy efficient engine, utilize variable geometry or other flow modulation techniques to control the equivalence ratio of the initial burning zone. Lean conditions are maintained at high power to control oxides of nitrogen while near stoichometric conditions are maintained at low power for low CO and THC emissions. Each concept was analyzed and ranked for its potential in meeting the goals of the program. Although the primary goal of the program is a low level of nitric oxide emissions at stratospheric cruise conditions, both the ground level EPA emission standards and combustor performance and operational requirements typical of advanced subsonic aircraft engines are retained as goals as well. Based on the analytical projections made, two of the concepts offer the potential of achieving the emission goals; however, the projected operational characteristics and reliability of any concept to perform satisfactorily over an entire aircraft flight envelope would require extensive experimental substantiation before engine adaptation can be considered.

  12. Conceptual design plans for the FY 1993 line items

    SciTech Connect

    1988-12-22

    This Facilities Capability Assurance Program (FCAP) project provides for the design and construction of a reconfigured production facility(ies) for Mound`s non-nuclear weapons components. Existing buildings would be rehabilitated in order to locate final production/assembly areas within close proximity and in a facility suitable to operations of this nature. Ancillary operations will be located in nearby buildings, also rehabilitated, in order to provide support to final production with minimal handling and travel-time. Benefits of this reconfiguration include: reduced labor, space requirements, and product cycle time; maximum flexibility to accommodate new mission assignments without new buildings; restores existing manufacturing facilities to a condition that is conducive to state-of-the-art operations. This project is mound`s top priority project for FY93.

  13. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect

    Burgard, K.C.

    1998-06-02

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  14. Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu; Campbell, Richard L.

    2014-01-01

    The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.

  15. Conceptual design report for the mechanical disassembly of Fort St. Vrain fuel elements

    SciTech Connect

    Lord, D.L.; Wadsworth, D.C.; Sekot, J.P.; Skinner, K.L.

    1993-04-01

    A conceptual design study was prepared that: (1) reviewed the operations necessary to perform the mechanical disassembly of Fort St. Vrain fuel elements; (2) contained a description and survey of equipment capable of performing the necessary functions; and (3) performed a tradeoff study for determining the preferred concepts and equipment specifications. A preferred system was recommended and engineering specifications for this system were developed.

  16. Conceptual design optimization of rectilinear building frames: A knapsack problem approach

    NASA Astrophysics Data System (ADS)

    Sharafi, Pezhman; Teh, Lip H.; Hadi, Muhammad N. S.

    2015-10-01

    This article presents an automated technique for preliminary layout (conceptual design) optimization of rectilinear, orthogonal building frames in which the shape of the building plan, the number of bays and the size of unsupported spans are variables. It adopts the knapsack problem as the applied combinatorial optimization problem, and describes how the conceptual design optimization problem can be generally modelled as the unbounded multi-constraint multiple knapsack problem. It discusses some special cases, which can be modelled more efficiently as the single knapsack problem, the multiple-choice knapsack problem or the multiple knapsack problem. A knapsack contains sub-rectangles that define the floor plan and the location of columns. Particular conditions or preferences for the conceptual design can be incorporated as constraints on the knapsacks and/or sub-rectangles. A bi-objective knapsack problem is defined with the aim of obtaining a conceptual design having minimum cost and maximum plan regularity (minimum structural eccentricity). A multi-objective ant colony algorithm is formulated to solve the combinatorial optimization problem. A numerical example is included to demonstrate the application of the present method and the robustness of the algorithm.

  17. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  18. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    EPA Science Inventory

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  19. A Conceptual Framework for Educational Design at Modular Level to Promote Transfer of Learning

    ERIC Educational Resources Information Center

    Botma, Yvonne; Van Rensburg, G. H.; Coetzee, I. M.; Heyns, T.

    2015-01-01

    Students bridge the theory-practice gap when they apply in practice what they have learned in class. A conceptual framework was developed that can serve as foundation to design for learning transfer at modular level. The framework is based on an adopted and adapted systemic model of transfer of learning, existing learning theories, constructive…

  20. Testing Conceptual Frameworks of Nonexperimental Program Evaluation Designs Using Structural Equation Modeling

    ERIC Educational Resources Information Center

    Adedokun, Omolola A.; Childress, Amy L.; Burgess, Wilella D.

    2011-01-01

    A theory-driven approach to evaluation (TDE) emphasizes the development and empirical testing of conceptual models to understand the processes and mechanisms through which programs achieve their intended goals. However, most reported applications of TDE are limited to large-scale experimental/quasi-experimental program evaluation designs. Very few…

  1. A Conceptual Design Model for CBT Development: A NATO Case Study

    ERIC Educational Resources Information Center

    Kok, Ayse

    2014-01-01

    CBT (computer-based training) can benefit from the modern multimedia tools combined with network capabilities to overcame traditional education. The objective of this paper is focused on CBT development to improve strategic decision-making with regard to air command and control system for NATO staff in virtual environment. A conceptual design for…

  2. Investigating the Efficacy of a Preschool Vocabulary Intervention Designed to Increase Vocabulary Size and Conceptual Knowledge

    ERIC Educational Resources Information Center

    Dwyer, Julie C.

    2010-01-01

    This dissertation study investigated the efficacy of a supplementary preschool embedded multimedia curriculum that was designed to increase one type of conceptual knowledge: taxonomic categories. Named the World of Words (WOW), this curriculum focused on teaching the properties and concepts associated with seven taxonomic categories and providing…

  3. Children's Understanding of Scientific Inquiry: Their Conceptualization of Uncertainty in Investigations of Their Own Design

    ERIC Educational Resources Information Center

    Metz, Kathleen E.

    2004-01-01

    The study examined children's understanding of scientific inquiry, through the lens of their conceptualization of uncertainty in investigations they had designed and implemented with a partner. These largely student-regulated investigations followed a unit about animal behavior that emphasized the scaffolding of independent inquiry. Participants…

  4. Conceptual design report, TWRS Privatization Phase I, site development and roads, subproject W-505

    SciTech Connect

    Singh, G.

    1997-06-05

    This document includes Conceptual Design Report (CDR) for the site development, construction of new roads and improvements at existing road intersections, habitat mitigation, roadway lighting, and construction power needed for the construction of two Private Contractor (PC) Facilities. Approximately 50 hectare (124 acres) land parcel, east of the Grout Facility, is planned for the PC facilities.

  5. Conceptual design study of a 1985 commercial STOL tilt rotor transport

    NASA Technical Reports Server (NTRS)

    Widdison, C. A.; Magee, J. P.; Alexander, H. R.

    1974-01-01

    Results of conceptual engineering design studies of a STOL tilt rotor commercial aircraft for the 1985 time frame are presented. The details of aircraft size, performance, flying qualities, noise, and cost are included. The savings in terms of fuel economy resulting from STOL operations compared with VTOL vehicles are determined.

  6. CONCEPTUAL DESIGN FOR A GULF COAST OXIDANT TRANSPORT AND TRANSFORMATION EXPERIMENT: WORKSHOP PROCEEDINGS AND RECOMMENDATIONS

    EPA Science Inventory

    Thirty atmospheric scientists from government, industry, academia, and the private research sector participated in a workshop in November 1983, in Durham, NC to develop a conceptual design for a study of ozone transport and transformation in the western Gulf coast area. The purpo...

  7. Wide area detection system: Conceptual design study. [using television and microelectronic technology

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.

    1978-01-01

    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.

  8. An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.

    2015-01-01

    During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues

  9. Active control of aerothermoelastic effects for a conceptual hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Gilbert, Michael G.; Pototzky, Anthony S.

    1990-01-01

    Procedures for and results of aeroservothermoelastic studies are described. The objectives of these studies were to develop the necessary procedures for performing an aeroelastic analysis of an aerodynamically heated vehicle and to analyze a configuration in the classical cold state and in a hot state. Major tasks include the development of the structural and aerodynamic models, open loop analyses, design of active control laws for improving dynamic responses and analyses of the closed loop vehicles. The analyses performed focused on flutter speed calculations, short period eigenvalue trends and statistical analyses of the vehicle response to controls and turbulence. Improving the ride quality of the vehicle and raising the flutter boundary of the aerodynamically-heated vehicle up to that of the cold vehicle were the objectives of the control law design investigations.

  10. Conceptual design of a lunar base thermal control system

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Debarro, Marc J.; Farmer, Jeffery T.

    1992-01-01

    Space station and alternate thermal control technologies were evaluated for lunar base applications. The space station technologies consisted of single-phase, pumped water loops for sensible and latent heat removal from the cabin internal environment and two-phase ammonia loops for the transportation and rejection of these heat loads to the external environment. Alternate technologies were identified for those areas where space station technologies proved to be incompatible with the lunar environment. Areas were also identified where lunar resources could enhance the thermal control system. The internal acquisition subsystem essentially remained the same, while modifications were needed for the transport and rejection subsystems because of the extreme temperature variations on the lunar surface. The alternate technologies examined to accommodate the high daytime temperatures incorporated lunar surface insulating blankets, heat pump system, shading, and lunar soil. Other heat management techniques, such as louvers, were examined to prevent the radiators from freezing. The impact of the geographic location of the lunar base and the orientation of the radiators was also examined. A baseline design was generated that included weight, power, and volume estimates.

  11. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    SciTech Connect

    Brown N. R.; Brown,N.R.; Baek,J.S; Hanson, A.L.; Cuadra,A.; Cheng,L.Y.; Diamond, D.J.

    2013-03-31

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. . The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). In addition, a summary of the methodology to obtain these results is presented.

  12. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R.; Lisauskas, R.A.; Dixit, V.J.; Morgan, M.E.; Johnson, S.A.; Boni, A.A.

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  13. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    SciTech Connect

    Brown, N. R.; Brown, N. R.; Baek, J. S; Hanson, A. L.; Cuadra, A.; Cheng, L. Y.; Diamond, D. J.

    2014-04-30

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.

  14. Conceptual Design of a European Space Surveillance System

    NASA Astrophysics Data System (ADS)

    Donath, T.; Michal, T.; Vanwijck, X.; Dugrosprez, B.; Flohrer, T.; Schildknecht, T.

    Space Surveillance denotes the task of systematically surveying and tracking all objects above a certain size and maintaining a catalogue with updated orbital and physical characteristics for these objects Space Surveillance is gaining increased importance as the operational safety of spacecraft is depending on it Presently Europe has no operational capability for Space Surveillance and is strongly dependant on external information from the USA and Russia Two design studies for a European Space Surveillance System ESSS were conducted for ESA since 2002 These studies have proposed a system covering the LEO MEO and GEO orbit regions This system associates dedicated sensors with the required survey strategies allowing for the autonomous maintenance of an orbital parameters catalogue including cold start capability Concerning the LEO surveillance system the main findings are the following begin itemize item For the surveillance of objects larger than 10 cm a survey strategy using a UHF bistatic radar with a large field of view 20 r in elevation and 180 r in azimuth and a long range 1500 km for a 10 cm sphere is proposed This proposition is based on the French experience with the GRAVES system development An interesting European location for this radar would be Spain item The optimal frequency for the detection of such objects is around 600 MHz UHF This option is very risky from the point of view of frequency allocation since it is reserved for TV broadcasting The 435 MHz frequency UHF also appears to be a good alternative in

  15. VISTA, a success story: from conceptual design to operation

    NASA Astrophysics Data System (ADS)

    Born, Andrew J.

    2010-07-01

    This paper considers the development and progression of the VISTA telescope, from conception to the point where it is now being operated by the scientific community (end user). It analyses and evaluates the value of effective project management and systems engineering practices with practical examples. The practical application of systems engineering is addressed throughout the requirement capture and management, design, manufacture, assembly, and installation, integration, verification and acceptance phases, highlighting the value gained by appropriate application of step-by-step procedures and tools. The special emphasis given to the importance of effective systems engineering during on-site installation, verification and validation will be illustrated. Project management aspects are covered from tendering and procurement through contractor management processes to final integration and commissioning, with great emphasis placed on the importance of a "win-win" approach and the benefits of effective, constructive customer/contractor liaison. Consideration is given to the details and practicalities of day-to-day site management, safety, housekeeping, and the management and support of site personnel and services. Recommendations are made to improve the effectiveness of UK ATC system engineering and project management so that future projects can benefit from the lessons learned on VISTA.

  16. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    SciTech Connect

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  17. Conceptual design of a gas turbine for PFBC applications

    SciTech Connect

    Bannister, R.L.; McGuigan, A.W.; Risley, T.P.; Smith, O.J.

    1992-12-31

    First generation pressurized fluidized bed (PFBC) technology has potential advantages which include: lower capital cost, Unproved environmental performance, shorter lead times, higher efficiency and enhanced fuel flexibility. Coal firing with combustion turbines experiments have been conducted for over forty years. These efforts have evolved to the point where commercial demonstrations are now feasible. The PFBC is one of these technologies. It will be demonstrated as part of the Clean Coal III initiative. PFBC technology is applicable for new installations, replacement of existing equipment as well as repower and retrofit. Included with these options is the opportunity to reduce dependency on fuel oil and well as enhancing environmental performance and increasing efficiency. The turbo-machinery will require design changes to meet the requirements for PFBC application. The major change to the combustion turbine take place in the center section. This section will include provisions to supply compressed air to the PFBC as well as receive vitiated air from the PFBC. These efforts also have the objective of reducing the degree of change from a standard unit. Under a clean coal program a first generation PFBC demonstration win take place at the Des Moines Energy Center. For this demonstration it will be necessary to remove two stages from the 251B12 compressor. This will make the air supplied by the compressor suitable for the PFBC system. The results from this program will be applicable to the DMEC-1 program.

  18. Conceptual design of a gas turbine for PFBC applications

    SciTech Connect

    Bannister, R.L.; McGuigan, A.W.; Risley, T.P.; Smith, O.J.

    1992-01-01

    First generation pressurized fluidized bed (PFBC) technology has potential advantages which include: lower capital cost, Unproved environmental performance, shorter lead times, higher efficiency and enhanced fuel flexibility. Coal firing with combustion turbines experiments have been conducted for over forty years. These efforts have evolved to the point where commercial demonstrations are now feasible. The PFBC is one of these technologies. It will be demonstrated as part of the Clean Coal III initiative. PFBC technology is applicable for new installations, replacement of existing equipment as well as repower and retrofit. Included with these options is the opportunity to reduce dependency on fuel oil and well as enhancing environmental performance and increasing efficiency. The turbo-machinery will require design changes to meet the requirements for PFBC application. The major change to the combustion turbine take place in the center section. This section will include provisions to supply compressed air to the PFBC as well as receive vitiated air from the PFBC. These efforts also have the objective of reducing the degree of change from a standard unit. Under a clean coal program a first generation PFBC demonstration win take place at the Des Moines Energy Center. For this demonstration it will be necessary to remove two stages from the 251B12 compressor. This will make the air supplied by the compressor suitable for the PFBC system. The results from this program will be applicable to the DMEC-1 program.

  19. Conceptual Design of an MTF Space Propulsion System

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Schmidt, G. R.; Kirkpatrick, R. C.; Turchi, P. J.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement separately, and are encumbered by the need for advanced drivers (e.g. laser) or steady-state magnetic confinement systems (e.g. superconductors) that have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion. MTF attempts to combine the favorable attributes of both inertially and magnetically confined fusion to achieve both efficient and low-cost compressional plasma heating and energy confinement. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, 5) very high Isp , specific power and thrust, and 6) relatively affordable R&D pathways. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. Isp greater than 50,000 seconds and specific powers greater than 20 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.

  20. Conceptual Design of an MTF Space Propulsion System

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, G. R.; Kirkpatrick, R. C.; Turchi, P. J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement separately, and are encumbered by the need for advanced drivers (e.g. laser) or steady-state magnetic confinement systems (e.g. superconductors) that have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion. MTF attempts to combine the favorable attributes of both inertially and magnetically confined fusion to achieve both efficient and low-cost compressional plasma heating and energy confinement. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) high gain and relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, and 5) very high I(sub sp), specific power and thrust. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. I(sub sp) greater than 50,000 seconds and specific powers greater than 20 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.

  1. Conceptual Design and Simulation of Forced Convection Micro Heat Spreaders

    NASA Astrophysics Data System (ADS)

    Sert, Cuneyt; Warburton, Tim; Beskok, Ali

    1999-11-01

    The micro heat spreader (MHS) is a closed loop single-phase microfluidic system for efficient dissipation of large, concentrated heat loads. The MHS connects two flow expansion chambers through a micro-channel. The bottom surfaces of the expansion chambers consist of electrostatically actuated micro-membranes. A continuous pumping action for the coolant fluid is generated by driving the membranes with a phase difference of π. Heat generated by the source located just above the micro-channel is rapidly conducted to the fluid due to the small micro-channel height. While the hot fluid is pumped towards the exit of the micro-channel, sudden expansion of the geometry in to the mixing chamber promotes flow separation and mixing of the exiting hot fluid with the colder fluid in the chamber. The pumping direction then reverses, and the procedure is repeated cyclically. The concept testing of the MHS is obtained by an h/p finite element simulation package Nektar, based on an arbitrary Lagrangian Eulerian formulation for solution of the Navier-Stokes and the heat transport equations. The simulations performed for water at Re=6 indicated a thermal energy removal rate of 60 W/cm^2, with a maximum temperature difference of 10 K on the MHS surface. This heat flux is an order of magnitude higher than that dissipated by the micro-heat-pipes used in electronic cooling. The proposed microfluidic design also allows closed-loop control strategies for efficient dissipation of time varying thermal loads.

  2. Conceptual design study for Infrared Limb Experiment (IRLE)

    NASA Technical Reports Server (NTRS)

    Baker, Doran J.; Ulwick, Jim; Esplin, Roy; Batty, J. C.; Ware, Gene; Tew, Craig

    1989-01-01

    The phase A engineering design study for the Infrared Limb Experiment (IRLE) instrument, the infrared portion of the Mesosphere-Lower Thermosphere Explorer (MELTER) satellite payload is given. The IRLE instrument is a satellite instrument, based on the heritage of the Limb Infrared Monitor of the Stratosphere (LIMS) program, that will make global measurements of O3, CO2, NO, NO2, H2O, and OH from earth limb emissions. These measurements will be used to provide improved understanding of the photochemistry, radiation, dynamics, energetics, and transport phenomena in the lower thermosphere, mesosphere, and stratosphere. The IRLE instrument is the infrared portion of the MELTER satellite payload. MELTER is being proposed to NASA Goddard by a consortium consisting of the University of Michigan, University of Colorado and NASA Langley. It is proposed that the Space Dynamics Laboratory at Utah State University (SDL/USU) build the IRLE instrument for NASA Langley. MELTER is scheduled for launch in November 1994 into a sun-synchronous, 650-km circular orbit with an inclination angle of 97.8 deg and an ascending node at 3:00 p.m. local time.

  3. Research on Product Conceptual Design Based on Integrated of TRIZ and HOQ

    NASA Astrophysics Data System (ADS)

    Xie, Jianmin; Tang, Xiaowo; Shao, Yunfei

    The conceptual design determines the success of the final product quality and competition of market. The determination of design parameters and the effective method to resolve parameters contradiction are the key to success. In this paper, the concept of HOQ products designed to determine the parameters, then using the TRIZ contradiction matrix and inventive principles of design parameters to solve the problem of contradictions. Facts have proved that the effective method is to obtain the product concept design parameters and to resolve contradictions line parameters.

  4. The potential of genetic algorithms for conceptual design of rotor systems

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Wells, Valana L.; Laananen, David H.

    1993-01-01

    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.

  5. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  6. Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Mavris, Dimitri N.

    2006-01-01

    An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.

  7. Conceptual Design for the Amphibian Research and Monitoring Initiative (ARMI)

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.; Langtimm, C. A.; Adams, M. J.; Gallant, A. L.; James, D. L.

    2001-12-01

    In 2000, the President of the United States (US) and Congress directed Department of Interior (DOI) agencies to develop a program for monitoring trends in amphibian populations on DOI lands and to conduct research into causes of declines. The U.S. Geological Survey (USGS) was given lead responsibility for planning and implementing the Amphibian Research and Monitoring Initiative (ARMI) in cooperation with the National Park Service (NPS), Fish and Wildlife Service, and Bureau of Land Management. The program objectives are to (1) establish a network for monitoring the status and distribution of amphibian species on DOI lands; (2) identify and monitor environmental conditions known to affect amphibian populations; (3) conduct research on causes of amphibian population change and malformations; and (4) provide information to resource managers, policy makers, and the public in support of amphibian conservation. The ARMI program will integrate research efforts of USGS, other Federal, and non-federal herpetologists, hydrologists, and geographers across the Nation. ARMI will conduct a small number (~20) of intensive research efforts (for example, studies linking amphibian population changes to hydrologic conditions) and a larger number (~50) of more generalized inventory and monitoring studies encompassing broader areas such as NPS units. ARMI will coordinate with and try to augment other amphibian inventory studies such as the National Amphibian Atlas and the North American Amphibian Monitoring Program. ARMI will develop and test protocols for the standardized collection of amphibian data and provide a centrally managed database designed to simplify data entry, retrieval, and analysis. ARMI pilot projects are underway at locations across the US.

  8. Coal slurry transportation alternatives: Conceptual design and economics: Final report

    SciTech Connect

    Mann, C.E.; Manning, S.H.

    1987-07-01

    The Coal Slurry Transportation Alternatives study provides utilities with a decisionmaking tool and necessary cost data to facilitate a systematic and rigorous comparison of slurry, rail, and barge transportation from the mine to the busbar for coal deliveries to both existing and new power plants. Volume 3 summarizes the methodology and results of examining operating and cost differences between slurry and run-of-mine coal. Two objectives of the study are to document the engineering costs and assumptions of the coal slurry pipeline system and to provide comparative estimates of costs and performance for power generation from slurry pipeline and run-of-mine coal. The results indicate that an increase in fuel moisture causes a decrease in boiler efficiency; that is, higher fuel burn rates and higher gas flows. For new plants, major equipment must be sized to accommodate higher fuel, ash, and flue gas flow rates associated with coal slurry. Other impacts include higher auxiliary power requirements, increased scrubber additive requirements, and potential increases in plant maintenance. For existing plants, a more serious concern may be the capability of current fuel transport systems to properly dry and transport the fuel. Flue gas flow rates for slurry should be within the design margins of run-of-mine, but where flue gas flow rates are increased, downstream FGD and particulate removal equipment may be impacted. Of the total levelized busbar costs for new plants, approximately 40 percent of differential costs are associated with capital, with the remaining 60 percent associated with consumables. For existing plants, replacement power costs due to limitations in fuel drying and conveyance may be up to 20 percent of the total generation cost. 40 figs., 62 tabs.

  9. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  10. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  11. Preclosure analysis of conceptual waste package designs for a nuclear waste repository in tuff

    SciTech Connect

    O`Neal, W.C.; Gregg, D.W.; Hockman, J.N.; Russell, E.W.; Stein, W.

    1984-11-01

    This report discusses the selection and analysis of conceptual waste package developed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for possible disposal of high-level nuclear waste at a candidate site at Yucca Mountain, Nevada. The design requirements that the waste package must conform to are listed, as are several desirable design considerations. Illustrations of the reference and alternative designs are shown. Four austenitic stainless steels (316L SS, 321 SS, 304L SS and Incoloy 825 high nickel alloy) have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and ecnonmic analyses supporting the selection of the conceptual waste package designs is included. Postclosure containment and release rates are not analyzed in this report.

  12. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect

    Not Available

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs.

  13. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  14. A Conceptual Design Study of a High Temperature Solar Thermal Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C. S.; Ehde, C. L.; Stacy, L. E.; Abujawdeh, S. S.; Narayanan, R.; Mccreight, L. R.; Gatti, A.; Rauch, H. W., Sr.

    1980-01-01

    A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production.

  15. A MHD channel study for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  16. Conceptual design of the Clinch River Breeder Reactor spent-fuel shipping cask

    SciTech Connect

    Pope, R B; Diggs, J M

    1982-04-01

    Details of a baseline conceptual design of a spent fuel shipping cask for the Clinch River Breeder Reactor (CRBR) are presented including an assessment of shielding, structural, thermal, fabrication and cask/plant interfacing problems. A basis for continued cask development and for new technological development is established. Alternates to the baseline design are briefly presented. Estimates of development schedules, cask utilization and cost schedules, and of personnel dose commitments during CRBR in-plant handling of the cask are also presented.

  17. Enhanced capabilities and modified users manual for axial-flow compressor conceptual design code CSPAN

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Lavelle, Thomas M.

    1995-01-01

    Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.

  18. Conceptual design review report for K Basin Dose Reduction Project clean and coat task

    SciTech Connect

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose originating from radionuclides absorbed in the concrete is to raise the pool water level to provide additional shielding. The concrete walls need to be coated to prevent future radionuclide absorption into the walls. This report documents a conceptual design review of equipment to clean and coat basin walls. The review concluded that the proposed concepts were and acceptable basis for proceeding with detailed final design.

  19. Conceptual design of a V/STOL lift fan commercial short haul transport

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conceptual designs of V/STOL lift-fan commercial short-haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. Engine concepts studied included both integral remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, aircraft mass properties, cruise performance noise, and ride qualities evaluation. Economic evaluation was also studied on a basis of direct operating cost and route structure.

  20. Conceptual design study of a V/STOL lift fan commercial short haul transport

    NASA Technical Reports Server (NTRS)

    Knight, R. G.; Powell, W. V., Jr.; Prizlow, J. A.

    1973-01-01

    Conceptual designs of V/STOL lift fan commercial short haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The engine concepts included both integral and remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, mass properties, cruise performance, noise and ride qualities evaluation. Economic evaluation was also studied on the basis of direct-operating costs and route structure.

  1. The use of COSMIC NASTRAN in an integrated conceptual design environment

    NASA Technical Reports Server (NTRS)

    White, Gil

    1989-01-01

    Changes in both software and hardware are rapidly bringing conceptual engineering tools like finite element analysis into mainstream mechanical design. Systems that integrate all phases of the manufacturing process provide the most cost benefits. The application of programming concepts like object oriented programming allow for the encapsulation of intelligent data within the design geometry. This combined with declining cost in per seat hardware bring new alternatives to the user.

  2. Solid rocket motor conceptual design - The development of a design optimization expert system with a hypertext user interface

    NASA Astrophysics Data System (ADS)

    Clegern, James B.

    1993-06-01

    Solid rocket motor (SRM) design prototypes can be rapidly formulated and evaluated by the use of advanced computer-based methodologies that apply expert system and artificial intelligence software to the SRM design optimization processes. The research program that was carried out, and is reported in this paper, was to formulate a computer-based SRM expert system for motor design and optimization, with the assistance of a hypertext software algorithm that provides a user-friendly interface. With this interface for parameter input, the design engineer can quickly obtain rocket motor designs that satisfy the performance mission of the SRM, as well as meet criteria for optimized (minimum) motor mass. The computer-based software has been designated as the Solid Rocket Motor Conceptual Design Optimization System (SRMCDOS). The main purpose of this SRM design system is to aid the SRM design engineer in making the best initial design selections and thereby reducing the overall 'design cycle time' of a project.

  3. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  4. Development of a conceptual flight vehicle design weight estimation method library and documentation

    NASA Astrophysics Data System (ADS)

    Walker, Andrew S.

    The state of the art in estimating the volumetric size and mass of flight vehicles is held today by an elite group of engineers in the Aerospace Conceptual Design Industry. This is not a skill readily accessible or taught in academia. To estimate flight vehicle mass properties, many aerospace engineering students are encouraged to read the latest design textbooks, learn how to use a few basic statistical equations, and plunge into the details of parametric mass properties analysis. Specifications for and a prototype of a standardized engineering "tool-box" of conceptual and preliminary design weight estimation methods were developed to manage the growing and ever-changing body of weight estimation knowledge. This also bridges the gap in Mass Properties education for aerospace engineering students. The Weight Method Library will also be used as a living document for use by future aerospace students. This "tool-box" consists of a weight estimation method bibliography containing unclassified, open-source literature for conceptual and preliminary flight vehicle design phases. Transport aircraft validation cases have been applied to each entry in the AVD Weight Method Library in order to provide a sense of context and applicability to each method. The weight methodology validation results indicate consensus and agreement of the individual methods. This generic specification of a method library will be applicable for use by other disciplines within the AVD Lab, Post-Graduate design labs, or engineering design professionals.

  5. Advanced conceptual design report for the Z-Beamlet laser backlighter

    SciTech Connect

    Caird, J

    1999-05-31

    The Z-accelerator facility at Sandia National Laboratories (SNL) in Albuquerque, New Mexico, performs critical experiments on the physics of matter at extremely high energy density as part of the Department of Energy's nuclear weapons Stockpile Stewardship Program. In order to augment and enhance the value of experiments performed at this facility, the construction of a new x-ray backlighting diagnostic system is required. New information would be obtained by recording images and/or spectra of x-ray radiation transmitted through target materials as they evolve during Z-accelerator-driven experiments (or ''shots''). In this application, we generally think of the diagnostic x-rays as illumination produced behind the target materials and detected after passing through the Z-target. Hence the x-ray source is commonly called a ''backlighter.'' The methodology is a specific implementation of the general science known as x-ray radiography and/or x-ray spectroscopy. X-ray backlighter experiments have been performed in inertial confinement fusion (ICF) facilities in many countries. On Nova, experience with backlighters has been obtained since about 1986. An intense source of x-rays is produced by focusing one of its beams on a backlighter target nearby, while the other beams are used to create the high-energy-density conditions to be studied in the experiment. This conceptual design report describes how a laser-backlighter similar to one beam of Nova could be constructed for use at Sandia's Z-accelerator facility. The development of such a facility at Sandia is timely for two major reasons. First, at LLNL the Beamlet laser was decommissioned in FY98, and the Nova laser will be decommissioned in FY99, in preparation for activation of the National Ignition Facility (NIF). This will provide several million dollars worth of subsystems and components from which to construct other lasers, such as the Z-backlighter. Second, the new diagnostic capability at Sandia will provide a

  6. The Atomic Intrinsic Integration Approach: A Structured Methodology for the Design of Games for the Conceptual Understanding of Physics

    ERIC Educational Resources Information Center

    Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra

    2012-01-01

    Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…

  7. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect

    Hobson, M. J.

    1981-11-01

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  8. Conceptual design of a direct-contact natural-gas-fired downhole steam generator

    SciTech Connect

    Moreno, J.B.

    1982-06-01

    Conceptual designs are presented for three natural gas fueled, 1500 to 2000 psi, downhole steam generators: a 4 MMBtu/h unit sized for 7-inch casing, an 18.4 MMBtu/h unit sized for 7-inch casing, and an 18.4 MMBtu/h unit sized for 9-5/8-inch casing. Specifications for the support system for each system are outlined, considering both 3650-foot and 7000-foot well depths. Costs for major components and confidence levels for each design are estimated. Design philosophy and procedures are given in sufficient detail to enable extrapolation of or interpolation between the three designs.

  9. Conceptual design of a direct-contact natural-gas-fired downhole steam generator

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.

    1982-06-01

    Conceptual designs are presented for three natural gas fueled, 1500 to 2000 psi, downhole steam generators: a 4 MMBtu/h unit sized for 7-inch casing, an 18.4 MMBtu/h unit sized for 7-inch casing, and an 18.4 MMBtu/h unit sized for 9-5/8 inch casing. Specifications for the support systems for each system are outlined, considering both 3650-foot and 7000-foot well depths. Costs for major components and confidence levels for each design are estimated. Design philosophy and procedures are given in sufficient detail to enable extrapolation of or interpolation between the three designs.

  10. Planning for a data base system to support satellite conceptual design

    NASA Technical Reports Server (NTRS)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  11. Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument

    NASA Astrophysics Data System (ADS)

    Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.

    2012-09-01

    We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.

  12. Conceptual Design of Passive Safety System for Lead-Bismuth Cooled Fast Reactor

    NASA Astrophysics Data System (ADS)

    Abdullah, A. G.; Nandiyanto, A. B. D.

    2016-04-01

    This paper presents the results of the conceptual design of passive safety systems for reactor power 225 MWth using Pb-Bi coolant. Main purpose of this research is to design of heat removal system from the reactor wall. The heat from the reactor wall is removed by RVACS system using the natural circulation from the atmosphere around the reactor at steady state. The calculation is performed numerically using Newton-Raphson method. The analysis involves the heat transfer systems in a radiation, conduction and natural convection. Heat transfer calculations is performed on the elements of the reactor vessel, outer wall of guard vessel and the separator plate. The simulation results conclude that the conceptual design is able to remove heat 1.33% to 4.67% from the thermal reactor power. It’s can be hypothesized if the reactor had an accident, the system can still overcome the heat due to decay.

  13. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  14. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  15. Conceptual design of an in-space cryogenic fluid management facility

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  16. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  17. Conceptual design of dedicated road lighting for city park and housing estate.

    PubMed

    Wu, Rengmao; Li, Kan; Liu, Peng; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2013-07-20

    We propose dedicated road lighting, which is significantly superior to the existing lighting technologies for the city park and housing estate. This dedicated lighting employs freeform surfaces to effectively control the optical field of the LED source to produce three kinds of illumination modes for the curved road, straight road, and the small public square, respectively, perfectly matching the road conditions of the city park and housing estate. A mathematical model of freeform illumination design is presented to achieve a conceptual design of this road lighting, and a numerical technology for solving this design problem is introduced for the first time, to our knowledge. An illumination model of this conceptual design is constructed. The experimental results of the conceptual design tally closely with the target. This dedicated road lighting, integrated with energy saving, healthy lighting and artistic beauty, provides a beautiful landscape for the city park and the housing estate at night, and will play an important role in improving quality of life of the urban inhabitants. PMID:23872776

  18. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  19. Design Activity Framework for Visualization Design.

    PubMed

    McKenna, Sean; Mazur, Dominika; Agutter, James; Meyer, Miriah

    2014-12-01

    An important aspect in visualization design is the connection between what a designer does and the decisions the designer makes. Existing design process models, however, do not explicitly link back to models for visualization design decisions. We bridge this gap by introducing the design activity framework, a process model that explicitly connects to the nested model, a well-known visualization design decision model. The framework includes four overlapping activities that characterize the design process, with each activity explicating outcomes related to the nested model. Additionally, we describe and characterize a list of exemplar methods and how they overlap among these activities. The design activity framework is the result of reflective discussions from a collaboration on a visualization redesign project, the details of which we describe to ground the framework in a real-world design process. Lastly, from this redesign project we provide several research outcomes in the domain of cybersecurity, including an extended data abstraction and rich opportunities for future visualization research. PMID:26356933

  20. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    SciTech Connect

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.