Science.gov

Sample records for concrete plants

  1. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  2. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  3. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    NASA Astrophysics Data System (ADS)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  4. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    PubMed

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. PMID:27478022

  5. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  6. Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2009-04-01

    In this study, we investigated the feasibility of using sludge water from a ready-mixed concrete plant as mixing water in concrete containing either fly ash as an additive or a superplasticizer admixture based on sulfonated naphthalene-formaldehyde condensates (SNF). The chemical and physical properties of the sludge water and the dry sludge were investigated. Cement pastes were mixed using sludge water containing various levels of total solids content (0.5, 2.5, 5, 7.5, 10, 12.5, and 15%) in order to determine the optimum content in the sludge water. Increasing the total solids content beyond 5-6% tended to reduce the compressive strength and shorten the setting time. Concrete mixes were then prepared using sludge water containing 5-6% total solids content. The concrete samples were evaluated with regard to water required, setting time, slump, compressive strength, permeability, and resistance to acid attack. The use of sludge water in the concrete mix tended to reduce the effect of both fly ash and superplasticizer. Sludge water with a total solids content of less than 6% is suitable for use in the production of concrete with acceptable strength and durability. PMID:19231063

  7. 11. Buttress rising above stream bed elevation. Concrete mixing plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Buttress rising above stream bed elevation. Concrete mixing plant is at right, west tower and placement tower boom are visible. Photographer unknown, November 24, 1926. Source: Ralph Pleasant. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  8. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. PMID:27016667

  9. Activities in support of continuing the service of nuclear power plant concrete structures

    SciTech Connect

    Naus, Dan J

    2012-01-01

    In general, nuclear power plant concrete structure s performance has been very good; however, aging of concrete structures occurs with the passage of time that can potentially result in degradation if is effects are not controlled. Safety-related nuclear power plant concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The interaction of the license renewal process and concrete structures is noted. A summary of operating experience related to aging of nuclear power plant concrete structures is provided. Several candidate areas are identified where additional research would be beneficial for aging management of nuclear power plant concrete structures. Finally, an update on recent activities at Oak Ridge National Laboratory related to aging management of nuclear power plant concrete structures is provided.

  10. Experience report on coating concrete containment structures in a maintenance environment in power plants

    SciTech Connect

    Poncio, S.; Hall, D.

    1997-12-01

    Work experiences for coatings and lining applications in power plants are used to provide guidelines and recommendations for future projects. It should be emphasized that some of the work experiences are applicable to other industries, but the scope of this paper is primarily for maintenance concrete coating for immersion service in power plants. Also the importance of preplanning and scheduling of the concrete coating project is discussed.

  11. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    SciTech Connect

    Naus, Dan J

    2007-02-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.

  12. Activities in Support of Continuing the Service of Nuclear Power Plant Safety-Related Concrete Structures

    SciTech Connect

    Naus, Dan J

    2014-01-01

    Nuclear power plant (NPP) concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status provided. Operating experience related to performance of the concrete structures is presented. Basic components of a program to manage aging of the concrete structures are identified and described: (1) Degradation mechanisms, damage models, and material performance; (2) Assessment and remediation: i.e., component selection, in- service inspection, non-destructive examinations, and remedial actions; and (3) Estimation of performance at present or some future point in time: i.e., application of structural reliability theory to the design and optimization of in-service inspection/maintenance strategies, and determination of the effects of degradation on plant risk. Finally, areas are noted where additional research would be of benefit to aging management of nuclear power plant concrete structures.

  13. Activities in Support of Continuing the Service of Nuclear Power Plant Safety-Related Concrete Structures

    SciTech Connect

    Naus, Dan J

    2010-01-01

    Nuclear power plant concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status provided. Operating experience related to performance of the concrete structures is presented. Basic components of a program to manage aging of the concrete structures are identified and described: degradation mechanisms, damage models, and material performance; assessment and remediation (i.e., component selection, in-service inspection, non-destructive examinations, and remedial actions); and estimation of performance at present or some future point in time (i.e., application of structural reliability theory to the design and optimization of in-service inspection/maintenance strategies, and determination of the effects of degradation on plant risk). Finally, areas are noted where additional research would be of benefit to aging management of nuclear power plant concrete structures.

  14. Concentrated coal plant wastes contained with concrete cutoff

    SciTech Connect

    Not Available

    1984-03-01

    A 3-mile concrete cutoff wall around a huge scrubber-waste-disposal basin is being constructed in southeastern Montana. The $25-million cutoff is designed to seal highly pervious layers of baked shale surrounding the pond, protecting scarce groundwater reserves from the scrubber slurry generated by a power station 3 miles away. Groundwater contamination concerns led to the decision for the cutoff, which is made from interlocking concrete panels.

  15. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    SciTech Connect

    Remec, Igor; Rosseel, Thomas M; Field, Kevin G; Pape, Yann Le

    2016-01-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete with a particular focus on radiation-induced effects. Based on the projected neutron fluence (E > 0.1 MeV) values in the concrete biological shields of the US PWR fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to assure reliable risk assessment for NPPs extended operation.

  16. Aging Management of Nuclear Power Plant Concrete Structures - Overview and Suggested Research Topics

    SciTech Connect

    Naus, Dan J

    2008-10-01

    Nuclear power plant concrete structures are described and their operating experience noted. Primary considerations related to management of their aging are noted and an indication of their status provided: degradation mechanisms, damage models, and material performance; assessment and remediation (i.e., component selection, in-service inspection, nondestructive examinations, and remedial actions); and estimation of performance at present or some future point in time (i.e., application of structural reliability theory to the design and optimization of in-service inspection/maintenance strategies, and determination of the effects of degradation on plant risk). Several activities are identified that provide background information and data on areas of concern with respect to nondestructive examination of nuclear power plant concrete structures: inspection of thick-walled, heavily-reinforced sections, basemats, and inaccessible areas of the containment metallic pressure boundary. Topics are noted where additional research would be of benefit to aging management of nuclear power plant concrete structures.

  17. Aging management of safety-related concrete structures in nuclear power plants

    SciTech Connect

    Naus, D.J.; Oland, C.B. ); Arndt, E.G. )

    1990-01-01

    The Structural Aging Program has the overall objective of providing the US Nuclear Regulatory Commission with an improved basis for evaluating nuclear power plants for continued service. In meeting this objective, a materials property data base is being developed as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, studies are well under way to review and assess inservice inspection techniques for concrete structures and to develop a methodology which can be used for performing current as well as reliability-based future conditions assessments of these structures. 16 refs., 2 tabs.

  18. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    SciTech Connect

    Mahadevan, Sankaran; Cai, Guowei; Agarwal, Vivek

    2015-03-01

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoring of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these

  19. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    PubMed

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste. PMID:19910181

  20. Overview of the use of prestressed concrete in US nuclear power plants. [PWR; BWR

    SciTech Connect

    Ashar, H.; Naus, D.J.

    1983-01-01

    In the United States it is required that the condition and functional capability of the ungrouted post-tensioning systems of prestressed-concrete nuclear-power-plant containments be periodically assessed. This is accomplished, in part, systematically through an inservice tendon inspection program which must be developed and implemented for each containment. An overview of the essential elements of the inservice inspection requirements is presented, and the effectiveness of these requirements is demonstrated through presentation of some of the potential problem areas which have been identified through the periodic assessments of the structural integrity of containments. Also, a summary of general problems which have been encountered with prestressed-concrete construction at nuclear-power-plant containments in the United States is presented: that is, dome delamination, cracking of anchorheads, settlement of bearing plates, etc. The paper will conclude with an assessment of the overall effectiveness of the prestressed-concrete containments.

  1. Specifications and Construction Methods for Asphalt Concrete and Other Plant-Mix Types, 3rd Edition.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The purpose of this publication is to assist engineers in the analysis, design and control of paving projects that use asphalt concrete and other asphalt plant-mixes. The scope of this new third edition has been enlarged, and changes necessitated by advances in asphalt technology have been incorporated. Chapters I and II and Appendices A and B…

  2. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    NASA Astrophysics Data System (ADS)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann

    2016-02-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  3. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs.

  4. Laser decontamination of epoxy painted concrete surfaces in nuclear plants

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Lippmann, W.; Hurtado, A.

    2014-04-01

    Laser technology offers an efficient decontamination of surfaces contaminated by polychlorinated biphenyls (PCB) by precise application of highly focused laser beam power. In the context of nuclear decommissioning all walls and floors of a reactor building have to be cleaned from chemical-toxic substances. State of the art is a manual and mechanic ablation and a subsequent treatment in a hazardous waste incinerator. In this study, alternatively, a laser-based system exhibiting, decontamination rates of up to 6.4 m2/h has been operated using a 10 kW diode laser in continuous wave (CW) mode with a spot size of 45×10 mm2 and a wavelength of 980-1030 nm. The system allows a rapid heating of the surfaces up to temperatures of more than 1000 °C leading to ablation and thermal decomposition of PCB in one process step. Thermal quenching prevents formation of polychlorinated dioxines (PCDD) and polychlorinate furans (PCDF) in the flue gas. Additionally, an in situ measurement system based on laser induced fluorescence (LIF) is developed to monitor the thermal decomposition of PCB. For initial experiments samples covered with epoxy paint were used to evaluate the process and to carry out finite element based simulations. In this paper, experimental results of ablation tests by laser irradiation of epoxy painted concrete are presented and discussed.

  5. Interactions between concrete and brine at the Waste Isolation Pilot Plant (WIPP) Site, New Mexico

    SciTech Connect

    Lambert, S.J.; Nowak, E.J. ); Wakeley, L.D.; Poole, T.S. . Structures Lab.)

    1992-05-01

    A concrete liner emplaced in 1984 in a shaft at the Waste Isolation Pilot Plant has served as a natural laboratory for observing interactions among concrete, evaporite rocks, and brine. During a routine inspection of the liner in the spring of 1990, discoloration, deposition of secondary salts, wet areas with exposed aggregate grains, softening of paste, surficial spalling, and cracking were observed locally on the concrete surface of the liner. Some construction joints showed apparent leakage of brine from behind the liner, which was nominally 50 cm thick. Seepage brines were nearly saturated relative to CaCI{sub 2} and contained lesser amounts of MgCI{sub 2} and KCI, and minor NaCl. The liner surface was locally altered to a 1-2 cm friable hygroscopic layer containing little cement paste; concrete cores (7 or 10 cm diameter) through the liner at depths of 248, 254, 255, and 271 m showed similar degrees of alteration at the liner/rock interface. The most profound alteration of concrete was developed in a {approximately}7 cm zone subparallel to and straddling the construction joint cored at a depth of {approximately}254.5 m. This zone was extensively microfractured, transected aggregate grains, and contained brucite, gypsum, magnesium hydroxychloride hydrate, and locally calcium chloroaluminate instead of the usual phases of hydrated portland cement. Several mechanisms of chemical degradation have been proposed, the most likely being attack by magnesium ions.

  6. Interactions between concrete and brine at the Waste Isolation Pilot Plant (WIPP) Site, New Mexico

    SciTech Connect

    Lambert, S.J.; Nowak, E.J.; Wakeley, L.D.; Poole, T.S.

    1991-12-31

    A concrete liner emplaced in 1984 in a shaft at the Waste Isolation Pilot Plant has served as a natural laboratory for observing interactions among concrete, evaporite rocks, and brine. During a routine inspection of the liner in the spring of 1990, discoloration, deposition of secondary salts, wet areas with exposed aggregate grains, softening of paste, surficial spalling, and cracking were observed locally on the concrete surface of the liner. Some construction joints showed apparent leakage of brine from behind the liner, which was nominally 50 cm thick. Seepage brines were nearly saturated relative to CaCl{sub 2} and contained lesser amounts of MgCl{sub 2} and KCl, and minor NaCl. The liner surface was locally altered to a 1--2 cm friable hygroscopic layer containing little cement paste; concrete cores (7 or 10 cm diameter) through the liner at depths of 248, 254, 255, and 271 m showed similar degrees of alteration at the liner/rock interface. The most profound alteration of concrete was developed in a {approximately}7 cm zone subparallel to and straddling the construction joint cored at a depth of {approximately}254.5 m. This zone was extensively microfractured, transected aggregate grains, and contained brucite, gypsum, magnesium hydroxychloride hydrate, and locally calcium chloroaluminate instead of the usual phases of hydrated portland cement. Several mechanisms of chemical degradation have been proposed, the most likely being attack by magnesium ions.

  7. PKI solar thermal plant evaluation at Capitol Concrete Products, Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.; Borton, D. N.

    1982-01-01

    A system feasibility test to determine the technical and operational feasibility of using a solar collector to provide industrial process heat is discussed. The test is of a solar collector system in an industrial test bed plant at Capitol Concrete Products in Topeka, Kansas, with an experiment control at Sandia National Laboratories, Albuquerque. Plant evaluation will occur during a year-long period of industrial utilization. It will include performance testing, operability testing, and system failure analysis. Performance data will be recorded by a data acquisition system. User, community, and environmental inputs will be recorded in logs, journals, and files. Plant installation, start-up, and evaluation, are anticipated for late November, 1981.

  8. Prestressed concrete barge with liquefaction plant and storage facility for l. n. g

    SciTech Connect

    Not Available

    1980-11-01

    A prestressed concrete barge installed with a combination of liquefaction plant and storage tank has been developed which will operate in order to economically gather the natural gas available of small-scale offshore gas wells in the world. A full design of a prototype has been completed through systematic works, namely, structural analysis, stability analysis, experiments of materials and structural members. The engineering data developed here will also be applicable to a larger scale barge.

  9. Overview of Activities in U.S. Related to Continued Service of Nuclear Power Plant Concrete Structures

    SciTech Connect

    Naus, Dan J

    2011-01-01

    Safety-related nuclear power plant concrete structures are described and commentary on continued service assessments of these structures is provided. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status noted. A summary of operating experience related to U.S. nuclear power plant concrete structures is presented. Several candidate areas are identified where additional research would be of benefit to aging management of NPP concrete structures. Finally current ORNL activities related to aging-management of concrete structures are outlined: development of operating experience database, application of structural reliability theory, and compilation of elevated temperature concrete material property data and information.

  10. Aging of concrete components and its significance relative to life extension of nuclear power plants

    SciTech Connect

    Naus, D.J.

    1987-01-01

    Nuclear power currently supplies about 16% of the US electricity requirements, with the percentage expected to rise to 20% by 1990. Despite the increasing role of nuclear power in energy production, cessation of orders for new nuclear plants in combination with expiration of operating licenses for several plants in the next 15 to 20 years results in a potential loss of electrical generating capacity of 50 to 60 gigawatts during the time period 2005 to 2020. A potential timely and cost-effective solution to the problem of meeting future energy demand is available through extension of the service life of existing nuclear plants. Any consideration of plant life extension, however, must consider the concrete components in these plants, since they play a vital safety role. Under the USNRC Nuclear Plant Aging Research (NPAR) Program, a study was conducted to review operating experience and to provide background that will lead to subsequent development of a methodology for assessing and predicting the effects of aging on the performance of concrete-based structures. The approach followed was in conformance with the NPAR strategy.

  11. ESTIMATES FOR RELEASE OF RADIONUCLIDES FROM POTENTIALLY CONTAMINATED CONCRETE AT THE HADDAM NECK NUCLEAR PLANT.

    SciTech Connect

    SULLIVAN, T.

    2004-09-15

    Decommissioning of the Haddam Neck Nuclear Power Plant operated by Connecticut Yankee is in progress. Figure 1 shows a schematic of the Containment Building and Spent Fuel Pool (SFP) Building. Consideration is being given to leaving some subsurface concrete from the Containment, Spent Fuel and certain other buildings in place following NRC license termination. Characterization data of most of these structures show small amounts of residual contamination. The In-Core Sump area of the Containment Building has shown elevated levels of tritium, Co-60, Fe-55, and Eu-152 and lesser quantities of other radionuclides due to neutron activation of the concrete in this area. This analysis is provided to determine levels of residual contamination that will not cause releases to the groundwater in excess of the acceptable dose limits. The objective is to calculate a conservative relationship between the radionuclide concentration of subsurface concrete and the maximum groundwater concentration (pCi/L) for the concrete that may remain following license termination at Connecticut Yankee.

  12. Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants.

    PubMed

    Bravo, Miguel; Santos Silva, António; de Brito, Jorge; Evangelista, Luís

    2016-02-01

    This paper intends to analyze the microstructure of concrete with recycled aggregates (RA) from construction and demolition waste from various Portuguese recycling plants. To that effect, several scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed. Various concrete mixes were evaluated in order to analyze the influence of the RA's collection point and consequently of their composition on the mixes' characteristics. Afterward all the mixes were subjected to the capillary water absorption test in order to quantitatively evaluate their porosity. Results from the SEM/EDS analysis were compared with those from capillary water absorption test. The SEM/EDS analysis showed that the bond capacity of aggregates to the new cement paste is greatly influenced by the RA's nature. On the other hand, there was an increase in porosity with the incorporation of RA. PMID:26700727

  13. Lessons to be learned from rehabilitation of concrete structures in bleach plants in pulp and paper mills

    SciTech Connect

    Nixon, R.

    1995-12-01

    The deterioration of concrete structures due to chloride induced reinforcing steel corrosion such as in elevated concrete floor slabs, columns, and beams in bleach plants is a constant and growing problem within the pulp and paper industry. In general, the condition analysis methods used for assessing the extent of bleach plant concrete degradation include physical testing of drilled concrete core samples, chloride ion concentration testing, half-cell potential measurements, and physical sounding of concrete surfaces, i.e. chain drag for topside surfaces and hammer sounding of soffit surfaces. While this paper does not promote any vastly different evaluative methods, it does share learnings relative to interpreting the data provided by these typical test methods. It further offers some recommendations on how to improve the use of these typical evaluation techniques and offers some other test methods which should be considered as valuable additions for such evaluations. One of the most common methods which has been used in the past for large scale bleach plant concrete restoration has been the application of site dry mixed shotcrete for rebuilding the soffits of floor slabs and the faces of columns and beams. More often than not, bulk mixed dry shotcrete repairs have not been cost-effective because they prematurely failed due to excessive hydration related shrinkage cracking, lack of sufficient adhesion to the parent concrete substrate or other problems related to poor durability or construction practice.

  14. Developing a Computerized Aging Management System for Concrete Structures in Finnish Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Al-Neshawy, F.; Piironen, J.; Sistonen, E.; Vesikari, E.; Tuomisto, M.; Hradil, P.; Ferreira, M.

    2013-07-01

    Finland has four nuclear reactors units in two power plants. The first unit started operation in 1977 and in the early 1980's all four units were in use. During the last few years the aging management of the Nuclear Power Plant's (NPP) concrete structures has grown an important issue because the existing structures are reaching the end of their licensed operating lifetime (about 40 years). Therefore the nuclear power companies are developing aging management systems to avoid premature degradation of NPP facilities and to be able to extend their operating lifetime. This paper is about the development of a computerized ageing management system for the nuclear power plants concrete structures. The computerized ageing management system is built upon central database and implementation applications. It will assist the personnel of power companies to implement the aging management activities at different phases of the lifetime of a power plant. It will provide systematic methods for planning, surveillance, inspection, monitoring, condition assessment, maintenance and repair of structures.

  15. Containment vs confinement trade study, small HTGR plant PCRV [prestressed concrete reactor vessel] concept

    SciTech Connect

    1985-03-01

    This trade study has been conducted to evaluate the differences between four different HTGR nuclear power plants. All of the plants use a prestressed concrete reactor vessel (PCRV) to house the core and steam generation equipment. The reactor uses LEU U/Th fuel in prismatic carbon blocks. All plant concepts meet the utility/user requirements established for small HTGR plants. All plants will be evaluated with regard to their ability to produce safe, economical power to satisfy Goals 1, 2, and 3 of the HTGR program and by meeting the MUST criteria established in the concept evaluation plan. Capital costs for each plant were evaluated on a differential cost basis. These costs were developed according to the ``NUS`` code of accounts as defined in the Cost Estimating and Control Procedure, HP-20901. Accounts that were identical in scope for all four plants were not used for the comparison. Table 1-1 is a list of capital cost accounts that were evaluated for each plant.

  16. Applications of high-strength concrete to the development of the prestressed concrete reactor vessel (PCRV) design for an HTGR-SC/C plant

    SciTech Connect

    Naus, D.J.

    1984-01-01

    The PCRV research and development program at ORNL consists of generic studies to provide technical support for ongoing PCRV-related studies, to contribute to the technological data base, and to provide independent review and evaluation of the relevant technology. Recent activities under this program have concentrated on the development of high-strength concrete mix designs for the PCRV of a 2240 MW(t) HTGR-SC/C plant, and the testing of models to both evaluate the behavior of high-strength concretes (plain and fibrous) and to develop model testing techniques. A test program to develop and evaluate high-strength (greater than or equal to 63.4 MPa) concretes utilizing materials from four sources which are in close proximity to potential sites for an HTGR plant is currently under way. The program consists of three phases. Phase I involves an evaluation of the cement, fly ash, admixtures and aggregate materials relative to their capability to produce concretes having the desired strength properties. Phase II is concerned with the evaluation of the effects of elevated temperatures (less than or equal to 316/sup 0/C) on the strength properties of mixes selected for detailed evaluation. Phase III involves a determination of the creep characteristics and thermal properties of the selected mixes. An overview of each of these phases is presented as well as results obtained to date under Phase I which is approximately 75% completed.

  17. Biologically induced concrete deterioration in a wastewater treatment plant assessed by combining microstructural analysis with thermodynamic modeling

    SciTech Connect

    Leemann, A.; Lothenbach, B.; Hoffmann, C.

    2010-08-15

    In the nitrification basins of wastewater treatment plants, deterioration of the concrete surface can occur due to acid attack caused by a nitrifying biofilm covering the concrete. To identify the mechanism of deterioration, concrete cubes of different composition were suspended in an aerated nitrification basin of a wastewater treatment plant for two years and analyzed afterwards. The microstructural investigation reveals that not only dissolution of hydrates takes place, but that calcite precipitation close to the surface occurs leading to the formation of a dense layer. The degree of deterioration of the different cubes correlates with the CaO content of the different cements used. Cements which contain a high fraction of CaO form more calcite offering a better protection against the acid attack. The presence of slag, which lowers the amount CaO in the cement, leads to a faster deterioration of the concrete than observed for samples produced with pure OPC.

  18. Evaluation of aged concrete structures for continued service in nuclear power plants

    SciTech Connect

    Naus, D.J.; Marchbanks, M.F.; Arndt, E.G.

    1988-01-01

    Results are summarized of a study on concrete component aging and its significance relative to continued service of nuclear power plants (NPPs) beyond the initial period for which they were granted operating licenses. Progress is presented of a second study being conducted to identify and provide acceptance criteria for structural safety issues which the USNRC staff will need to address when applications are submitted for continued service of NPPs. Major activities under this program include: development of a materials property data base, establishment of structural component assessment and repair procedures, and development of a methodology for determination of structural reliability. 19 refs., 5 figs., 3 tabs.

  19. Evaluation of aged concrete structures for continued service in nuclear power plants

    SciTech Connect

    Naus, D.J.; Marchbanks, M.F.; Arndt, E.G.

    1988-01-01

    Results are summarized of a study on concrete component aging and its significance relative to continued service of nuclear power plants (NPPs) beyond the initial period for which they were granted operating licenses. Progress is presented of a second study being conducted to identify and provide acceptance criteria for structural safety issues which the USNRC staff will need to address when applications are submitted for continued service of NPPs. Major activities under this program include: development of a materials property data base, establishment of structural component assessment and repair procedures, and development of a methodology for determination of structural reliability.

  20. Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548

    SciTech Connect

    Kim, HakSoo; Chung, SungHwan; Maeng, SungJun

    2013-07-01

    The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactive waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)

  1. Physical and mechanical properties of carbon fiber reinforced smart porous concrete for planting

    NASA Astrophysics Data System (ADS)

    Park, Seung-Bum; Kim, Jung-Hwan; Seo, Dae-Seuk

    2005-05-01

    The reinforcement strength of porous concrete and its applicability as a recycled aggregate was measured. Changes in physical and mechanical properties, subsequent to the mixing of carbon fiber and silica fume, were examined, and the effect of recycled aggregate depending on their mixing rate was evaluated. The applicability of planting to concrete material was also assessed. The results showed that there were not any remarkable change in the porosity and strength characteristics although its proportion of recycled aggregate increased. Also, the mixture of 10% of silica was found to be most effective for strength enforcement. In case of carbon fiber, the highest flexural strength was obtained with its mixing rate being 3%. It was also noticed that PAN-derived carbon fiber was superior to Pitch-derived ones in view of strength. The evaluation of its use for vegetation proved that the growth of plants was directly affected by the existence of covering soil, in case of having the similar size of aggregate and void.

  2. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    SciTech Connect

    Ellingwood, B.; Song, J.

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two.

  3. Management of the aging of critical safety-related concrete structures in light-water reactor plants

    SciTech Connect

    Naus, D.J.; Oland, C.B. ); Arndt, E.G. )

    1990-01-01

    The Structural Aging Program has the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant safety-related structures for continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued-service determinations. Objectives, accomplishments, and planned activities under each of these tasks are presented. Major program accomplishments include development of a materials property data base for structural materials as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, a review and assessment of inservice inspection techniques for concrete materials and structures has been complete, and work on development of a methodology which can be used for performing current as well as reliability-based future condition assessment of concrete structures is well under way. 43 refs., 3 tabs.

  4. Properties of salt-saturated concrete and grout after six years in situ at the Waste Isolation Pilot Plant

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Weiss, C.A. Jr.

    1993-06-01

    Samples of concrete and grout were recovered from short boreholes in the repository floor at the Waste Isolation Pilot Plant more than six years after the concrete and grout were placed. Plugs from the Plug Test Matrix of the Plugging and Sealing Program of Sandia National Laboratories were overcored to include a shell of host rock. The cores were analyzed at the Waterways Experiment Station to assess their condition after six years of service, having potentially been exposed to those aspects of their service environment (salt, brine, fracturing, anhydrite, etc.) that could cause deterioration. Measured values of compressive strength and pulse velocity of both the grout and the concrete equaled or exceeded values from tests performed on laboratory-tested samples of the same mixtures at ages of one month to one year after casting. The phase assemblages had changed very little. Materials performed as intended and showed virtually no chemical or physical evidence of deterioration. The lowest values for strength and pulse velocity were measured for samples taken from the Disturbed Rock Zone, indicating the influence of cracking in this zone on the properties of enclosed seal materials. There was evidence of movement of brine in the system. Crystalline phases containing magnesium, potassium, sulfate, and other ions had been deposited on free surfaces in fractures and pilot holes. There was a reaction rim in the anhydrite immediately surrounding each recovered borehole plug, suggesting interaction between grout or concrete and host rock. However, the chemical changes apparent in this reaction rim were not reflected in the chemical composition of the adjacent concrete or grout. The grout and concrete studied here showed no signs of the deterioration found to have occurred in some parts of the concrete liner of the Waste Isolation Pilot Plant waste handling shaft.

  5. LWR Sustainability: Assessment of Aging of Nuclear Power Plant Safety Related Concrete Strutures

    SciTech Connect

    Graves III, Herman; Naus, Dan J

    2013-01-01

    Current regulatory testing and inspection requirements are reviewed and a summary of degradation experience is presented. Techniques commonly used to inspect NPP concrete structures to assess and quantify age-related degradation are summarized. An approach for conduct of condition assessments of structures in NPPs is presented. Criteria, based primarily on visual indications, are provided for use in classification and assessment of concrete degradation. Materials and techniques for repair of degraded structures are generally discussed.

  6. How Concrete Is Concrete?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  7. Structural Aging Program to evaluate continued performance of safety-related concrete structures in nuclear power plants

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-03-01

    This report discusses the Structural Aging (SAG) Program which is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into three technical tasks: Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented.

  8. Applications for concrete offshore

    SciTech Connect

    Not Available

    1982-01-01

    The report collects and summarizes the various proposals for development offshore which have in common the use of concrete as the main structural material, and where possible, indicates their relative feasibility. A study encompassing such diverse schemes as offshore windmills, concrete LNG carriers, hydrocarbon production platforms and floating airports cannot be completely exhaustive on each subject, so references to sources of further information have been given wherever possible. Details of individual projects and proposals are included for Power plants, Hydrocarbon production platforms, Concrete ships, Storage systems and industrial plants, Subsea systems, Offshore islands, Coastal works and Other concrete structures.

  9. The French nuclear power plant reactor building containment contributions of prestressing and concrete performances in reliability improvements and cost savings

    SciTech Connect

    Rouelle, P.; Roy, F.

    1998-12-31

    The Electricite de France`s N4 CHOOZ B nuclear power plant, two units of the world`s largest PWR model (1450 Mwe each), has earned the Electric Power International`s 1997 Powerplant Award. This lead NPP for EDF`s N4 series has been improved notably in terms of civil works. The presentation will focus on the Reactor Building`s inner containment wall which is one of the main civil structures on a technical and safety point of view. In order to take into account the necessary evolution of the concrete technical specification such as compressive strength low creep and shrinkage, the HSC/HPC has been used on the last N4 Civaux 2 NPP. As a result of the use of this type of professional concrete, the containment withstands an higher internal pressure related to severe accident and ensures higher level of leak-tightness, thus improving the overall safety of the NPP. On that occasion, a new type of prestressing has been tested locally through 55 C 15 S tendons using a new C 1500 FE Jack. These updated civil works techniques shall allow EDF to ensure a Reactor Containment lifespan for more than 50 years. The gains in terms of reliability and cost saving of these improved techniques will be developed hereafter.

  10. Radiation effects in concrete for nuclear power plants, Part II:Perspective from micromechanical modeling

    DOE PAGESBeta

    Le Pape, Yann; Field, Kevin G; Remec, Igor

    2015-01-01

    The need to understand and characterize the effects of neutron irradiation on concrete has become urgentbecause of the possible extension of service life of many nuclear power generating stations. Currentknowledge is primarily based on a collection of data obtained in test reactors. These data are inher-ently difficult to interpret because materials and testing conditions are inconsistent. A micromechanicalapproach based on the Hashin composite sphere model is presented to derive a first-order separationof the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although thescarcity of available data limits the validation of the model, it appears that,more » without negating a possiblegamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominantrole on the overall concrete expansion and the damage of the cement paste. The radiation-induced volu-metric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cementpaste.« less

  11. State-of-the-art of non-destructive testing methods and technologies for application to nuclear power plant safety-related concrete structures

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, Herbert; Naus, Dan J.

    2014-02-01

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: •locating steel reinforcement and identification of its cover depth •locating tendon ducts and identification of the condition of the grout materials •detection of cracking, voids, delamination, and honeycombing in concrete structures •detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner •methods capable of identification of corrosion occurrence on the concrete side of the containment liner

  12. State-of-the-art of non-destructive testing methods and technologies for application to nuclear power plant safety-related concrete structures

    SciTech Connect

    Wiggenhauser, Herbert; Naus, Dan J.

    2014-02-18

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: •locating steel reinforcement and identification of its cover depth •locating tendon ducts and identification of the condition of the grout materials •detection of cracking, voids, delamination, and honeycombing in concrete structures •detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner •methods capable of identification of corrosion occurrence on the concrete side of the containment liner.

  13. State-of-the-Art of Non-Destructive Testing Methods and Technologies for Application to Nuclear Power Plant Safety-Related Concrete Structures

    SciTech Connect

    Wiggenhauser, Dr. Herbert; Naus, Dan J

    2014-01-01

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: locating steel reinforcement and identification of its cover depth locating tendon ducts and identification of the condition of the grout materials detection of cracking, voids, delamination, and honeycombing in concrete structures detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner methods capable of identification of corrosion occurrence on the concrete side of the containment liner

  14. Concrete decontamination scoping tests

    SciTech Connect

    Archibald, K.E.

    1995-01-01

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete.

  15. ELWIRA "Plants, wood, steel, concrete - a lifecycle as construction materials": University meets school - science meets high school education

    NASA Astrophysics Data System (ADS)

    Strauss-Sieberth, Alexandra; Strauss, Alfred; Kalny, Gerda; Rauch, Hans Peter; Loiskandl, Willibald

    2016-04-01

    The research project "Plants, wood, steel, concrete - a lifecycle as construction materials" (ELWIRA) is in the framework of the Sparkling Science programme performed by the University of Natural Resources and Life Sciences together with the Billroth Gymnasium in Vienna. The targets of a Sparkling Science project are twofold (a) research and scientific activities should already be transferred in the education methods of schools in order to fascinate high school students for scientific methods and to spark young people's interest in research, and (b) exciting research questions not solved and innovative findings should be addressed. The high school students work together with the scientists on their existing research questions improve the school's profile and the high school student knowledge in the investigated Sparkling Science topic and can lead to a more diverse viewing by the involvement of the high school students. In the project ELWIRA scientists collaborate with the school to quantify and evaluate the properties of classical building materials like concrete and natural materials like plants and woodlogs in terms of their life cycle through the use of different laboratory and field methods. The collaboration with the high school students is structured in workshops, laboratory work and fieldworks. For an efficient coordination/communication, learning and research progress new advanced electronic media like "Moodle classes/courses" have been used and utilized by the high school students with great interest. The Moodle classes are of high importance in the knowledge transfer in the dialogue with the high school students. The research project is structured into four main areas associated with the efficiencies of building materials: (a) the aesthetic feeling of people in terms of the appearance of materials and associated structures will be evaluated by means of jointly developed and collected questionnaires. The analysis, interpretation and evaluation are carried

  16. Radiation effects in concrete for nuclear power plants Part I: Quantification of radiation exposure and radiation effects

    SciTech Connect

    Field, Kevin G; Pape, Yann Le; Remec, Igor

    2015-01-01

    A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review of the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation.

  17. Methodology for reliability based condition assessment. Application to concrete structures in nuclear plants

    SciTech Connect

    Mori, Y.; Ellingwood, B.

    1993-08-01

    Structures in nuclear power plants may be exposed to aggressive environmental effects that cause their strength to decrease over an extended period of service. A major concern in evaluating the continued service for such structures is to ensure that in their current condition they are able to withstand future extreme load events during the intended service life with a level of reliability sufficient for public safety. This report describes a methodology to facilitate quantitative assessments of current and future structural reliability and performance of structures in nuclear power plants. This methodology takes into account the nature of past and future loads, and randomness in strength and in degradation resulting from environmental factors. An adaptive Monte Carlo simulation procedure is used to evaluate time-dependent system reliability. The time-dependent reliability is sensitive to the time-varying load characteristics and to the choice of initial strength and strength degradation models but not to correlation in component strengths within a system. Inspection/maintenance strategies are identified that minimize the expected future costs of keeping the failure probability of a structure at or below an established target failure probability during its anticipated service period.

  18. Results of detailed analyses performed on boring cores extracted from the concrete floors of the Fukushima Daiichi nuclear power plant reactor buildings

    SciTech Connect

    Maeda, Koji; Sasaki, S.; Kumai, M.; Sato, Isamu; Osaka, Masahiko; Fukushima, Mineo; Kawatsuma, Shinji; Goto, Tetsuo; Sakai, Hitoshi; Chigira, Takayuki; Murata, Hirotoshi

    2013-07-01

    Due to the massive earthquake and tsunami on March 11, 2011, and the following severe accident at the Fukushima Daiichi Nuclear Power Plant, concrete surfaces within the reactor buildings were exposed to radioactive liquid and vapor phase contaminants. In order to clarify the situation of this contamination in the reactor buildings of Units 1, 2 and 3, selected samples were transported to the Fuels Monitoring Facility in the Oarai Engineering Center of JAEA where they were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. In particular, penetration of radiocesium in the surface coatings layer and sub-surface concrete was evaluated. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. The localized penetration of contamination in the concrete floors was found to be confined within a millimeter of the surface of the coating layer of some millimeters. (authors)

  19. Colour and toxic characteristics of metakaolinite-hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    NASA Astrophysics Data System (ADS)

    Sadasivam, Sivachidambaram; Thomas, Hywel Rhys

    2016-07-01

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants.

  20. Development and field placement of an expansive salt-saturated concrete (ESC) for the Waste Isolation Pilot Plant (WIPP). Final report

    SciTech Connect

    Wakeley, L.D.; Walley, D.M.

    1986-09-01

    An expansive salt-saturated concrete (ESC) was proportioned for placement underground in halite rock at the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. Requirements for this concrete were: (1) to be chemically compatible with the host rock; (2) to remain pumpable for four hours: (3) to give net volume increase beginning at an early age, and continuing until creep closure of the salt assures sealing at the rock interface; and (4) to cure to a solid with extremely low permeability and fairly high strength. ESC was proportioned and placed underground at the WIPP in two successful field tests during FY 85 and FY 86. This report is the first of three reports about this concrete. It describes (1) the development of ESC in the laboratory, and (2) the mixture properties prior to final set. It summarizes field-placement activities in July 1985 and February 1986, when ESC was placed in test holes underground at the WIPP for two series of Small-Scale Seal Performance Tests (SSSPT). It gives data from tests of expansive behavior of the concrete at early ages and under simulated repository conditions. The second report will describe expansive behavior of ESC relative to several variables that could have an impact on its field performance and long-term stability, as determined during laboratory testing. It also will discuss possible explanations of the rather extraordinary suite of properties exhibited by ESC, as controlled by its chemical composition. The third report will describe laboratory studies of the mechanism of set retardation in a grout derived from this concrete.

  1. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  2. Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions.

    PubMed

    Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Gulyurtlu, Ibrahim; Mendes, Benilde

    2011-01-01

    Two combustion tests were performed in a fluidized bed combustor of a thermo-electric power plant: (1) combustion of coal; (2) co-combustion of coal (68.7% w/w), sewage sludge (9.2% w/w) and meat and bone meal (MBM) (22.1% w/w). Three samples of ashes (bottom, circulating and fly ashes) were collected in each combustion test. The ashes were submitted to the following assays: (a) evaluation of the leaching behaviour; (b) stabilization/solidification of fly ashes and evaluation of the leaching behaviour of the stabilized/solidified (s/s) materials; (c) production of concrete from bottom and circulating ashes. The eluates of all materials were submitted to chemical and ecotoxicological characterizations. The crude ashes have shown similar chemical and ecotoxicological properties. The s/s materials have presented compressive strengths between 25 and 40 MPa, low emission levels of metals through leaching and were classified as non-hazardous materials. The formulations of concrete have presented compressive strengths between 12 and 24 MPa. According to the Dutch Building Materials Decree, some concrete formulations can be used in both scenarios of limited moistening and without insulation, and with permanent moistening and with insulation. PMID:21605964

  3. Marine concrete

    SciTech Connect

    Marshall, A.L.

    1990-01-01

    This book examines how the chemical and physical properties of the oceans affect the durability, fatigue, and corrosion of structures. Structure types addressed include oil platforms, arctic structures, and sea walls. Reviews qualities of plain, reinforced, prestressed, and floating concrete. Discusses the inspection, maintenance, and repair of concrete structures.

  4. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  5. Concrete Mixing Methods and Concrete Mixers: State of the Art.

    PubMed

    Ferraris, C F

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029

  6. Concrete Mixing Methods and Concrete Mixers: State of the Art

    PubMed Central

    Ferraris, Chiara F.

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined.

  7. Techno-economic performance evaluation of direct steam generation solar tower plants with thermal energy storage systems based on high-temperature concrete and encapsulated phase change materials

    NASA Astrophysics Data System (ADS)

    Guédez, R.; Arnaudo, M.; Topel, M.; Zanino, R.; Hassar, Z.; Laumert, B.

    2016-05-01

    Nowadays, direct steam generation concentrated solar tower plants suffer from the absence of a cost-effective thermal energy storage integration. In this study, the prefeasibility of a combined sensible and latent thermal energy storage configuration has been performed from thermodynamic and economic standpoints as a potential storage option. The main advantage of such concept with respect to only sensible or only latent choices is related to the possibility to minimize the thermal losses during system charge and discharge processes by reducing the temperature and pressure drops occurring all along the heat transfer process. Thermodynamic models, heat transfer models, plant integration and control strategies for both a pressurized tank filled with sphere-encapsulated salts and high temperature concrete storage blocks were developed within KTH in-house tool DYESOPT for power plant performance modeling. Once implemented, cross-validated and integrated the new storage model in an existing DYESOPT power plant layout, a sensitivity analysis with regards of storage, solar field and power block sizes was performed to determine the potential impact of integrating the proposed concept. Even for a storage cost figure of 50 USD/kWh, it was found that the integration of the proposed storage configuration can enhance the performance of the power plants by augmenting its availability and reducing its levelized cost of electricity. As expected, it was also found that the benefits are greater for the cases of smaller power block sizes. Specifically, for a power block of 80 MWe a reduction in levelized electricity costs of 8% was estimated together with an increase in capacity factor by 30%, whereas for a power block of 126 MWe the benefits found were a 1.5% cost reduction and 16% availability increase.

  8. ASPHALTIC CONCRETE INDUSTRY PARTICULATE EMISSIONS: SOURCE CATEGORY REPORT

    EPA Science Inventory

    The report describes the development of particulate emission factors based on cutoff size for inhalable particles for the asphaltic concrete industry. After review of available information characterizing particulate emissions from asphalt concrete plants, the data were summarized...

  9. 2. LONGITUDINAL VIEW OF THE CONCRETE ARCH (ONEWAY BRIDGE), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LONGITUDINAL VIEW OF THE CONCRETE ARCH (ONE-WAY BRIDGE), LOOKING NORTHEAST. - Washington Water Power Company Post Falls Power Plant, Concrete Arch Bridge, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  10. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.

    PubMed

    Siriruang, Chaichan; Toochinda, Pisanu; Julnipitawong, Parnthep; Tangtermsirikul, Somnuk

    2016-04-01

    The utilization of fly ash as a solid sorbent material for CO2 capture via surface adsorption and carbonation reaction was evaluated as an economically feasible CO2 reduction technique. The results show that fly ash from a coal fired power plant can capture CO2 up to 304.7 μmol/g fly ash, consisting of 2.9 and 301.8 μmol/g fly ash via adsorption and carbonation, respectively. The CO2 adsorption conditions (temperature, pressure, and moisture) can affect CO2 capture performance of fly ash. The carbonation of CO2 with free CaO in fly ashes was evaluated and the results indicated that the reaction consumed most of free CaO in fly ash. The fly ashes after CO2 capture were further used for application as a mineral admixture for concrete. Properties such as water requirement, compressive strength, autoclave expansion, and carbonation depth of mortar and paste specimens using fly ash before and after CO2 capture were tested and compared with material standards. The results show that the expansion of mortar specimens using fly ash after CO2 capture was greatly reduced due to the reduction of free CaO content in the fly ash compared to the expansion of specimens using fresh fly ash. There were no significant differences in the water requirement and compressive strength of specimens using fly ash, before and after CO2 capture process. The results from this study can lead to an alternative CO2 capture technique with doubtless utilization of fly ash after CO2 capture as a mineral admixture for concrete. PMID:26803257

  11. Comparative testing of nondestructive examination techniques for concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.; Smith, Cyrus M.

    2014-03-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties, its inexpensiveness, its structural strength, and its ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include containment building, spent fuel pool, and cooling towers. Comparative testing of the various NDE concrete measurement techniques requires concrete samples with known material properties, voids, internal microstructure flaws, and reinforcement locations. These samples can be artificially created under laboratory conditions where the various properties can be controlled. Other than NPPs, there are not many applications where critical concrete structures are as thick and reinforced. Therefore, there are not many industries other than the nuclear power plant or power plant industry that are interested in performing NDE on thick and reinforced concrete structures. This leads to the lack of readily available samples of thick and heavily reinforced concrete for performing NDE evaluations, research, and training. The industry that typically performs the most NDE on concrete structures is the bridge and roadway industry. While bridge and roadway structures are thinner and less reinforced, they have a good base of NDE research to support their field NDE programs to detect, identify, and repair concrete failures. This paper will summarize the initial comparative testing of two concrete samples with an emphasis on how these techniques could perform on NPP concrete structures.

  12. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  13. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS.

    SciTech Connect

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-03-22

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits.

  14. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  15. Concrete Materials and Structures

    SciTech Connect

    Wilby, C.B.

    1991-12-31

    Concrete Materials and Structures provides one of the most comprehensive treatments on the topic of concrete engineering. The author covers a gamut of concrete subjects ranging from concrete mix design, basic reinforced concrete theory, prestressed concrete, shell roofs, and two-way slabs-including a through presentation of Hillerborg`s strip method. Prior to Wilby`s book, the scope of these topics would require at least four separate books to cover. With this new book he has succeeded, quite remarkably, in condensing a fairly complete knowledge of concrete engineering into one single easy-to-carry volume.

  16. Polymer concrete patching manual

    NASA Astrophysics Data System (ADS)

    Fontana, J. J.; Bartholomew, J.

    1982-06-01

    The practicality of using polymer concrete to repair deteriorated portland cement concrete bridge decks and pavements was demonstrated. This manual outlines the procedures for using polymer concrete as a rapid patching material to repair deteriorated concrete. The process technology, materials, equipment, and safety provisions used in manufacturing and placing polymer concrete are discussed. Potential users are informed of the various steps necessary to insure successful field applications of the material.

  17. An Investigation of Tendon Corrosion-Inhibitor Leakage into Concrete

    SciTech Connect

    Costello, J.F.; Naus, D.J.; Oland, C.B.

    1999-07-05

    During inspections performed at US nuclear power plants several years ago, some of the prestressed concrete containment had experienced leakage of the tendon sheathing filler. A study was conducted to indicate the extent of the leakage into the concrete and its potential effects on concrete properties. Concrete core samples were obtained from the Trojan Nuclear Plant. Examination and testing of the core samples indicated that the appearance of tendon sheathing filler on the surface was due to leakage of the filler from the conduits and its subsequent migration to the concrete surface through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks with no perceptible movement into the concrete. Results of compressive strength tests indicated that the concrete quality was consistent in the containment and that the strength had increased relative to the strength at 28 days age.

  18. 3. PORTAL VIEW OF THE CONCRETE ARCH (ONEWAY BRIDGE) THAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. PORTAL VIEW OF THE CONCRETE ARCH (ONE-WAY BRIDGE) THAT PROVIDES ACCESS TO THE MIDDLE CHANNEL DAM AND POWER PLANT, LOOKING WEST. - Washington Water Power Company Post Falls Power Plant, Concrete Arch Bridge, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  19. 1. CONTEXTUAL VIEW, LOOKING DOWNSTREAM (NORTHERLY) OF THE CONCRETE ARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW, LOOKING DOWNSTREAM (NORTHERLY) OF THE CONCRETE ARCH ('ONE-WAY BRIDGE') THAT PROVIDES PRIVATE (WWP) ACCESS TO THE MIDDLE CHANNEL OF THE POST FALLS POWER PLANT. - Washington Water Power Company Post Falls Power Plant, Concrete Arch Bridge, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  20. 4. PORTAL VIEW OF THE CONCRETE ARCH (ONEWAY BRIDGE) THAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PORTAL VIEW OF THE CONCRETE ARCH (ONE-WAY BRIDGE) THAT EXITS THE MIDDLE CHANNEL ISLAND AND POST FALLS POWER PLANT, LOOKING EAST. - Washington Water Power Company Post Falls Power Plant, Concrete Arch Bridge, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  1. 7. TRANSFORMER BANK. NOTE CONCRETE BARRIER WALL FROM WWII ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. TRANSFORMER BANK. NOTE CONCRETE BARRIER WALL FROM WWII ON LEFT TO PROTECT TRANSFORMERS FROM JAPANESE BOMBS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  2. Nondestructive evaluation of thick concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  3. Concrete Waste Recycling Process for High Quality Aggregate

    SciTech Connect

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-15

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  4. Lunar concrete for construction

    SciTech Connect

    Cullingford, H.S.; Keller, M.D.

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base. 10 refs., 3 figs., 2 tabs.

  5. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  6. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  7. Monte Carlo simulations for optimization of neutron shielding concrete

    NASA Astrophysics Data System (ADS)

    Piotrowski, Tomasz; Tefelski, Dariusz; Polański, Aleksander; Skubalski, Janusz

    2012-06-01

    Concrete is one of the main materials used for gamma and neutron shielding. While in case of gamma rays an increase in density is usually efficient enough, protection against neutrons is more complex. The aim of this paper is to show the possibility of using the Monte Carlo codes for evaluation and optimization of concrete mix to reach better neutron shielding. Two codes (MCNPX and SPOT — written by authors) were used to simulate neutron transport through a wall made of different concretes. It is showed that concrete of higher compressive strength attenuates neutrons more effectively. The advantage of heavyweight concrete (with barite aggregate), usually used for gamma shielding, over the ordinary concrete was not so clear. Neutron shielding depends on many factors e.g. neutron energy, barrier thickness and atomic composition. All this makes a proper design of concrete as a very important issue for nuclear power plant safety assurance.

  8. Salado mass concrete: Mixture development and preliminary characterization

    SciTech Connect

    Wakeley, L.D.; Ernzen, J.J.; Neeley, B.D.; Hansen, F.D.

    1994-06-01

    A salt-saturated concrete proportioned with Class H oilwell cement, Class F fly ash, and a shrinkage compensating component was developed to meet performance requirements for mass placement as seal components at the Waste Isolation Pilot Plant. Target properties of the concrete included 8-in. slump 3 hr after mixing, no aggregate segregation, heat rise of < 25{degrees}F 4 hr after mixing, compressive strength of 4,500 psi at 180 days, minimal volume change, and probable geochemical stability for repository conditions. Thermal and mechanical properties of promising candidate concrete mixtures were measured. Modulus of elasticity and creep behavior were similar to those of ordinary portland cement mass concretes. Thermal expansion for the salt-saturated concrete developed here was typical of ordinary concrete with similar silicate aggregates. Thermal conductivity, diffusivity, and specific heat approximated values measured for other mass concretes and were similar to values of the host salt rock.

  9. Predicting the remaining service life of concrete

    SciTech Connect

    Clifton, J.F.

    1991-11-01

    Nuclear power plants are providing, currently, about 17 percent of the U.S. electricity and many of these plants are approaching their licensed life of 40 years. The U.S. Nuclear Regulatory Commission and the Department of Energy`s Oak Ridge National Laboratory are carrying out a program to develop a methodology for assessing the remaining safe-life of the concrete components and structures in nuclear power plants. This program has the overall objective of identifying potential structural safety issues, as well as acceptance criteria, for use in evaluations of nuclear power plants for continued service. The National Institute of Standards and Technology (NIST) is contributing to this program by identifying and analyzing methods for predicting the remaining life of in-service concrete materials. This report examines the basis for predicting the remaining service lives of concrete materials of nuclear power facilities. Methods for predicting the service life of new and in-service concrete materials are analyzed. These methods include (1) estimates based on experience, (2) comparison of performance, (3) accelerated testing, (4) stochastic methods, and (5) mathematical modeling. New approaches for predicting the remaining service lives of concrete materials are proposed and recommendations for their further development given. Degradation processes are discussed based on considerations of their mechanisms, likelihood of occurrence, manifestations, and detection. They include corrosion, sulfate attack, alkali-aggregate reactions, frost attack, leaching, radiation, salt crystallization, and microbiological attack.

  10. Lunar concrete: Prospects and challenges

    NASA Astrophysics Data System (ADS)

    Khitab, Anwar; Anwar, Waqas; Mehmood, Imran; Kazmi, Syed Minhaj Saleem; Munir, Muhammad Junaid

    2016-02-01

    The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.

  11. ZETA-POTENTIAL OF CONCRETE IN PRESENCE OF CHELATING AGENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of concrete surfaces at Nuclear Power Plants (NPP) and reprocessing facilities by radionuclides/heavy metals is a significant and widespread problem throughout the world’s Nuclear Power Industries. The current study of the zeta-potentials (') of concrete particles in the presence of va...

  12. An investigation of tendon sheathing filler migration into concrete

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1998-03-01

    During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age.

  13. Monitoring of Concrete Structures Using Ofdr Technique

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  14. 7. VIEW OF BRINING TANK Newer, concrete model. After drying, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF BRINING TANK Newer, concrete model. After drying, skins were rolled in borax and packed into barrels, such as those seen in background. - Sealing Plant, St. George Island, Pribilof Islands, Saint George, Aleutians West Census Area, AK

  15. 18. TURBINE AND GENERATOR SHAFT IN CONCRETE HOUSING OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. TURBINE AND GENERATOR SHAFT IN CONCRETE HOUSING OF THE TURBINE FLUME. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  16. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  17. Concrete sample point: 304 Concretion Facility

    SciTech Connect

    Rollison, M.D.

    1995-03-10

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis.

  18. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  19. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  20. Effect of insulating concrete forms in concrete compresive strength

    NASA Astrophysics Data System (ADS)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  1. Electrokenitic Corrosion Treatment of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  2. Production of high strength concrete

    SciTech Connect

    Peterman, M.B.; Carrasquillo, R.L.

    1986-01-01

    The criteria for selection of concrete materials and their proportions to producer uniform, economical, high strength concrete are presented in this book. The recommendations provided are based on a study of the interactions among components of plain concrete and mix proportions, and of their contribution to the compressive strength of high strength concrete. These recommendations will serve as guidelines to practicing engineers, in the selection of materials and their proportions for the production of high strength concrete. Increasing demands for improved efficiency and reduced construction costs have resulted in engineers beginning to design large structures using higher strength concrete at higher stress levels. There are definite advantages, both technical and economical, in using high strength concrete. For example, for a given cross section, prestresses concrete bridge girders can carry greater service loads across longer spans if made using high strength concrete. In addition, cost comparisons have shown that the savings obtained are significantly greater than the added cost of the higher quality concrete.

  3. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  4. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  5. Concrete production floating platforms

    SciTech Connect

    Letourneur, O.; Falcimaigne, J.

    1981-01-01

    The floating production platforms operating in the North Sea are adapted from drilling semisubmersibles which allow only a limited payload capacity. Experience of concrete production platforms constructed for the North Sea has led Sea Tank Co. to propose a floating platform which offers large payload and oil storage capacities similar to those of existing fixed platforms. Sea Tank Co. and Institut Francais du Petrole joined forces in early 1976 to study the feasibility of a concrete floating production platform incorporating the structure and the production riser together. The results of this 3-yr program show that the concrete floating structure is economically attractive for permanent utilization on a production site. Furthermore, concrete has definite advantages over other materials, in its long term behavior.

  6. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    SciTech Connect

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-07-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  7. Evaluation of irradiation effects on concrete structure

    SciTech Connect

    Kontani, O.; Ishizawa, A.; Maruyama, I.; Takizawa, M.; Sato, O.

    2012-07-01

    In assessing the soundness of irradiated concrete of nuclear power plants operated for more than 30 years, reference levels are employed: 1x10{sup 20} n/cm{sup 2} for fast neutrons and 2x10{sup 10} rad (2x10{sup 5} kGy) for gamma rays. Concrete structures are regarded as sound when the estimated irradiance levels after 60 years of operation are less than the reference levels. The reference levels were obtained from a paper by Hilsdorf. It was found, however, that the test conditions in which data were obtained by the researchers referred in that paper are very different from the irradiation and heat conditions usually found in a Light Water Reactor (LWR), and therefore aren't appropriate for assessing the soundness of irradiated concrete of an LWR. This paper investigates the interactions between radiation and concrete and presents the results of gamma ray irradiation tests on cement paste samples in order to provide a better understanding of the irradiation effects on concrete. (authors)

  8. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  9. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  10. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    SciTech Connect

    Naus, Dan J

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  11. Advanced Numerical Model for Irradiated Concrete

    SciTech Connect

    Giorla, Alain B.

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  12. Petrography and microanalysis of Pennsylvanian coal-ball concretions (Herrin Coal, Illinois Basin, USA): Bearing on fossil plant preservation and coal-ball origins

    NASA Astrophysics Data System (ADS)

    Siewers, Fredrick D.; Phillips, Tom L.

    2015-11-01

    Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence

  13. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    SciTech Connect

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  14. Nondestructive Evaluation of Thick Concrete Structures

    SciTech Connect

    Clayton, Dwight A

    2015-01-01

    Materials issues are a key concern for the existing nuclear reactor fleet in the United States as material degradation can lead to increased maintenance, increased downtime, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of both known and new forms of degradation. A multitude of concrete-based structures are typically part of a light water reactor plant to provide foundation, support, shielding, and containment functions. The size and complexity of nuclear power plant containment structures and the heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. This paper examines the benefits of using time-frequency analysis with Synthetic Aperture Focusing Technique (SAFT). By using wavelet packet decomposition, the original ultrasound signals are decomposed into various frequency bands that facilitates highly selective analysis of the signal’s frequency content and can be visualized using the familiar SAFT image reconstruction algorithm.

  15. Hot Isostatic Press (HIP) vitrification of radwaste concretes

    SciTech Connect

    Siemer, D.D.; Scheetz, B.; Gougar, M.L.D.

    1995-12-01

    Properly formulated and properly ``canned`` radwaste concretes can be readily hot-isostatically-pressed (HIPed) into materials that exhibit performance equivalent to typical radwaste-type glasses. The HIPing conditions (temperature/pressure) required to turn a concrete waste form into a ``vitrified`` waste form are quite mild and therefore consistent with both safety and high productivity. This paper describes the process and its products with reference to its potential application to Idaho Chemical Processing Plant (ICPP) reprocessing wastes.

  16. Reinforced concrete offshore platform

    SciTech Connect

    Martyshenko, J.P.; Martyshenko, S.J.; Kotelnikov, J.S.; Kutukhtin, E.G.; Petrosian, M.S.; Ilyasova, N.I.; Volkov, J.S.; Vardanian, A.M.

    1987-10-20

    A reinforced concrete offshore platform is described comprising a honeycomb foundation (A), a supporting structure (B) and an above-surface section (C) carrying appropriate equipment. The honeycomb foundation (A) and the supporting structure (B) are made of prefabricated reinforced concrete elements which are polyhedral hollow prisms arranged with gaps between the external sides thereof and joined by a system of prestressed vertical diaphragm walls and horizontal diaphragm walls formed by pre-tensioning reinforcing bars placed in the gaps between the faces of the prisms and casting in-situ the gaps later on.

  17. Advance Organizers: Concret Versus Abstract.

    ERIC Educational Resources Information Center

    Corkill, Alice J.; And Others

    1988-01-01

    Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)

  18. High temperature polymer concrete

    DOEpatents

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  19. Heidrun concrete TLP: Update

    SciTech Connect

    Munkejord, T.

    1995-10-01

    This paper gives a summary of the Heidrun substructure including tethers and foundations. The focus will although be on the concrete substructure. The Heidrun Field is located in 345 m water depth in the northern part of the Haltenbanken area, approximately 100N miles from the west coast of mid-Norway. The field is developed by means of a concrete Tension Leg Platform (TLP) by Conoco Norway Inc. The TLP will be moored by 16 steel tethers, arranged in groups of four per corner, which secure the substructure (hull) to the concrete foundations. A general view of the TLP is shown. The Heidrun TLP will be the northern most located platform in the North Sea when installed at Haltenbanken in 1995. Norwegian Contractors a.s (NC) is undertaking the Engineering, Procurement, Construction and Installation (EPCI) contract for the Heidrun TLP substructure. This comprises the complete delivery of the hull with two module support beams (MSB), including all mechanical outfitting. Furthermore, NC will perform all marine operations related to the substructure. For the concrete foundations NC has performed the detailed engineering work and has been responsible for the two to field and installation of the foundations.

  20. Electroosmotic decontamination of concrete

    SciTech Connect

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of {sup 99}Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying <400 V and <1 A for 1--3 h (energy consumption of 0.4--12 kWh/ft{sup 2}).

  1. Non-destructive monitoring of curing process in precast concrete

    NASA Astrophysics Data System (ADS)

    Aparicio, S.; Ranz, J.; Fernández, R.; Albert, V.; Fuente, J. V.; Hernández, M. G.

    2012-12-01

    Currently, the use of precast concrete elements has gained importance because it offers many advantages over site-cast concrete. A disadvantage of site-cast concrete is that its properties vary according to the manufacturing method, the environment and even the operator who carried out the mixing, pouring and implementation of the concrete. Precast concrete elements are manufactured in a controlled environment (typically referred to as a precast plant) and this reduces the shrinkage and creep. One of the key properties of precast concrete is the capability to gain compressive strength rapidly under the appropriate conditions. The compressive strength determines if the precast can be stripped from the form or manipulated. This parameter is measured using destructive testing over cylindrical or cubic samples. The quality control of precast is derived from the fracture suffered by these elements, resulting in a "pass or fail" evaluation. In most cases, the solution to this problem is to allow the material to cure for a few hours until it acquires sufficient strength to handle the precast element. The focus of this paper is the description of the research project "CUREND". This project aims to design a non-destructive methodology to monitor the curing process in precast concrete. The monitoring will be performed using wireless sensor networks.

  2. Plastometry for the Self-Compacting Concrete Mixes

    NASA Astrophysics Data System (ADS)

    Lapsa, V. Ā.; Krasnikovs, A.; Lusis, V.; Lukasenoks, A.

    2015-11-01

    Operative determination of consistence of self-compacting concrete mixes at plant or in construction conditions is an important problem in building practice. The Abram's cone, the Vebe's device, the U-box siphon, L-box or funnel tests are used in solving this problem. However, these field methods are targeted at determination of some indirect parameters of such very complicated paste-like material like concrete mix. They are not physical characteristics suitable for the rheological calculations of the coherence between the stress and strains, flow characteristics and the reaction of the concrete mix in different technological processes. A conical plastometer having higher precision and less sensitive to the inaccuracy of the tests in construction condition has been elaborated at the Concrete Mechanics Laboratory of RTU. In addition, a new method was elaborated for the calculation of plasticity limit τ0 taking into account the buoyancy force of the liquid or non-liquid concrete mix. In the present investigation rheological test of the concrete mix by use the plastometer and the method mentioned earlier was conducted for different self-compacting and not self-compacting concrete mixes.

  3. Modeling of fracture of protective concrete structures under impact loads

    NASA Astrophysics Data System (ADS)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-10-01

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  4. Modeling of fracture of protective concrete structures under impact loads

    SciTech Connect

    Radchenko, P. A. Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-10-27

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  5. Penetration of concrete targets

    SciTech Connect

    Forrestal, M.J.; Cargile, J.D.; Tzou, R.D.Y.

    1993-08-01

    We developed penetration equations for ogive-nosed projectiles that penetrated concrete targets after normal impact. Our penetration equations predict axial force on the projectile nose, rigid-body motion, and final penetration depth. For target constitutive models, we conducted triaxial material experiments to confining pressures of 600 MPa and curve-fit these data with a linear pressure-volumetric strain relation and with a linear Mohr-Coulomb, shear strength-pressure relation. To verify our penetration equations, we conducted eleven penetration experiments with 0.90 kg, 26.9-mm-diameter, ogive-nosed projectiles into 1.37-m-diameter concrete targets with unconfined compressive strengths between 32-40 MPa. Predictions from our penetration equation are compared with final penetration depth measurements for striking velocities between 280--800 m/s.

  6. Micro Environmental Concrete

    NASA Astrophysics Data System (ADS)

    Lanez, M.; Oudjit, M. N.; Zenati, A.; Arroudj, K.; Bali, A.

    Reactive powder concretes (RPC) are characterized by a particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial as well as a final high physicomechanical performance. To achieve this, 15% by weight of the Portland cement have been substituted by materials rich in Silica (Slag and Dune Sand). The results obtained from the tests carried out on the RPC show that compressive and tensile strengths increase when incorporating the addition, thus improving the compactness of mixtures through filler and pozzolanic effects. With a reduction in the aggregate phase in the RPC and the abundance of the dune sand (southern of Algeria) and slag (industrial by-product of the blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

  7. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles

    1989-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.

  8. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  9. Use of POTW biosolids in bituminous concrete

    SciTech Connect

    Smith, R.C.; Angelbeck, D.I.

    1995-11-01

    Although wastewater treatment helps alleviate water pollution, it creates residual by-products that can pose a disposal dilemma. Four main practices are presently employed to dispose of wastewater treatment plant sludge: land application, composting, incineration, and landfilling. A fifth disposal method that may help to alleviate the sludge disposal problem in future years is the incorporation of sludge into useful end products such as fertilizer or construction materials. This research was designed to evaluate the properties of bituminous concrete mixes that had anaerobically digested sewage sludge incorporated into their design. In doing so, it was desired to verify the work of Wells concerning sludge incorporation into bituminous concrete mixes using today`s asphalts. Hot mix and cold mix designs were studied.

  10. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    SciTech Connect

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann; Remec, Igor; Giorla, Alain B; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.

  11. Numerical simulation of deformation and fracture of space protective shell structures from concrete and fiber concrete under pulse loading

    NASA Astrophysics Data System (ADS)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-11-01

    This paper presents results of numerical simulation of interaction between aircraft Boeing 747-400 and protective shell of nuclear power plant. The shell is presented as complex multilayered cellular structure comprising layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was held three-dimensionally using the author's algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. The dynamics of stress-strain state and fracture of structure were studied. Destruction is described using two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of shell cellular structure—cells start to destruct in unloading wave, originating after output of compression wave to the free surfaces of cells.

  12. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. PMID:26218450

  13. INTERIM REPORT ON CONCRETE DEGRADATION MECHANISMS AND ONLINE MONITORING TECHNIQUES

    SciTech Connect

    Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle; Kosson, David; Adams, Douglas

    2014-09-01

    The existing fleets of nuclear power plants in the United States have initial operating licenses of 40 years, though most these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The online monitoring of concrete structure conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, the structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University proposes to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  14. Prolong the life of concrete

    SciTech Connect

    Ilaria, J.E.

    1995-07-01

    The most widely used construction materials are concrete and related cement-based products, such as common building block. The excellent reputation of concrete as a durable material of construction has been questioned i modern times. The expanded use of Portland cement concrete, the increase in corrosive environments, and lack of understanding of the composition of concrete all indicate a need for methods to increase life expectancy. Chemical and mechanical factors can shorten service life. Understanding these properties will lead to the proper application of protective coatings.

  15. Microwave NDE for Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Melapudi, Vikram R.; Rothwell, Edward J.; Udpa, Lalita; Udpa, Satish S.

    2006-03-01

    Nondestructive assessment of the integrity of civil structures is of paramount importance for ensuring safety. In concrete imaging, radiography, ground penetrating radar and infrared thermography are some of the widely used techniques for health monitoring. Other emerging technologies that are gaining impetus for detecting and locating flaws in steel reinforcement bar include radioactive computed tomography, microwave holography, microwave and acoustic tomography. Of all the emerging techniques, microwave NDT is a promising imaging modality largely due to their ability to penetrate thick concrete structures, contrast between steel rebar and concrete and their non-radioactive nature. This paper investigates the feasibility of a far field microwave NDE technique for reinforced concrete structures.

  16. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  17. Corrosion of reinforced concrete in the Persian Gulf region

    SciTech Connect

    Novokshchenov, V.

    1995-01-01

    The Kuwait liquefied gas/sulfur (LGS) plant is located on a small island in the southern part of the Persian Gulf. The plant was built in phases between 1973 and 1977. Designed to manufacture liquefied natural and petroleum gas and to extract sulfur, the LGS plant consists of two similar process unit trains served by a common boiler and utility plant. The major reinforced-concrete structures at the plant include the cooling water outfall, the cooling water intake, the operations building, structures supporting elevated pipe and equipment, boiler stack foundations, bridge over the flume, the loading jetty, sulfur plant structures, substations, and storage tank foundations. The first signs of distress in the plant structures were reported in 1980: cracking, spalling, and delamination of concrete cover and corrosion of reinforcing steel. In some cases, deterioration had progressed to the extent that safety and life expectancy of the structures were at risk. Subsequently, several investigations were conducted on various structures from 1980 to 1987 to identify the causes of the deterioration. The principal cause of the deterioration was corrosion of reinforcing steel caused by the presence of chlorides; marine salts were the main source. Construction-related contributing factors included insufficient concrete cover, use of sulfate-resistant (ASTM Type V) portland cement, and an elevated water-to-cement ratio.

  18. 18. FOURTH FLOOR BLDG. 28, RAISED CONCRETE SLAB FLOOR WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. FOURTH FLOOR BLDG. 28, RAISED CONCRETE SLAB FLOOR WITH BLOCKS AND PULLEYS OVERHEAD LOOKING NORTHEAST. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  19. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect

    Clayton, Dwight; Smith, Cyrus

    2014-02-18

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  20. General view, highpressure gas tank on concrete mounts, north of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view, high-pressure gas tank on concrete mounts, north of Building 277, view to northeast - Charlestown Navy Yard, Oxygen Plant, Midway along northern boundary of Charlestown Navy Yard, on Little Mystic Channel, near junction of Eighteenth Street & Fourth Avenue, Boston, Suffolk County, MA

  1. 7. SAND FILTERS, CANAL TO LEFT. CONCRETE OVERFLOW AREA TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SAND FILTERS, CANAL TO LEFT. CONCRETE OVERFLOW AREA TO LEFT OF CANAL ORIGINALLY PLANNED AS A STORAGE LAKE. VIEW LOOKING DUE WEST OF HINDS COMPLEX IN BACKGROUND OF SAND FILTERS. - Hinds Pump Plant, East of Joshua Tree National Monument, 5 miles north of Route 10, Hayfield, Riverside County, CA

  2. 13. INTERIOR VIEW OF GATE OPERATOR ROOM, SHOWING UNFINISHED CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR VIEW OF GATE OPERATOR ROOM, SHOWING UNFINISHED CONCRETE WALLS AND SLIDE GATE OPERATORS, LOOKING NORTH. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  3. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  4. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-12-31

    The US Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. The primary objective was to demonstrate the feasibility of this approach as a means to achieve ``release levels`` which could be consistent with unrestricted use of a decontaminated building. The secondary objectives were: To establish process parameters; to quantify the economics; to ascertain the ALARA considerations; and to evaluate wasteform and waste volume. The work carried out to this point has achieved promising results to the extent that ISOTRON{reg_sign} has been authorized to expand the planned activity to include the fabrication of a prototype version of a commercial device.

  5. LASER ABLATION STUDIES OF CONCRETE

    EPA Science Inventory

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-s...

  6. Concrete Masonry Designs: Educational Issue.

    ERIC Educational Resources Information Center

    Hertzberg, Randi, Ed.

    2001-01-01

    This special journal issue addresses concrete masonry in educational facilities construction. The issue's feature articles are: (1) "It Takes a Village To Construct a Massachusetts Middle School," describing a middle school constructed almost entirely of concrete masonry and modeled after a typical small New England village; (2) "Lessons Learned,"…

  7. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  8. Molded Concrete Center Mine Wall

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  9. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  10. Overview of Activities in the U.S. Related to Continued Service of NPP Concrete Structures

    SciTech Connect

    Naus, Dan J

    2011-01-01

    Safety-related nuclear power plant concrete structures are described and commentary on continued service assessments of these structures is provided. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status noted. A summary of operating experience related to U.S. nuclear power plant concrete structures is presented. Several candidate areas are identified where additional research would be of benefit to aging management of NPP concrete structures. Finally current ORNL activities related to aging-management of concrete structures are outlined: development of operating experience database, application of structural reliability theory, and compilation of elevated temperature concrete material property data and information.

  11. The Puzzle of Septarian Concretions

    NASA Astrophysics Data System (ADS)

    John, C. M.; Dale, A.; Mozley, P.; Smalley, P. C.; Muggeridge, A. H.

    2014-12-01

    Carbonate concretions in clastic rocks and their septarian fracture fills act as 'time capsules', capturing the signatures of chemical and biological processes during diagenesis. However, many aspects of the formation of concretions and septarian fractures remain poorly understood, for although concretions occur in clastic rocks throughout the geological record, they are rarely documented in recent shallow-burial environments. Consequently, the depth and temperature at which concretion-forming processes occur are often poorly constrained. Carbonate clumped isotopes have recently been applied successfully to concretions and fracture fills that begin to unravel the conditions for the formation of concretions and septarian fractures. Here, we present carbonate clumped isotope results of fracture fills from eight different concretions from various locations, including multiple phases of fill in 4 concretions. Our results suggest that they precipitated over a range of temperatures (22°C - 85°C) from d18Oporewater values between -12‰ to 3‰ and within different d13Ccarbonate zones. The majority of fills precipitated at lower (<50°C) temperatures, although the fluids were not always meteoric. For 3 concretions containing fractures with multiple phases, the d18Oporewater becomes progressively heavier with each later phase and increasing temperature. The one exception to this is in the Barton Clay Formation (UK) where the fractures must have been continuously filled during exhumation as the latest cement phase is the coolest with a d18Oporewater more 18O-depleted than the earliest phase. Therefore, concretion growth must usually initiate early on (<~1 km burial), and subsequent fracturing is also usually early. However, the fracture infilling can occur over a range of depths and can record the diagenetic history of a formation. We gratefully acknowledge a BP and EPSRC Case Studentship for funding this project, and the Natural History Museum London for providing

  12. High-performance, high-volume fly ash concrete

    SciTech Connect

    2008-01-15

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  13. Sorptivity of fly ash concretes

    SciTech Connect

    Gopalan, M.K.

    1996-08-01

    A factorial experiment was designed to measure the sorptivity of cement and fly ash concretes in order to compare the durability of fly ash concrete against the cement concrete. Sorptivity measurements based on the capillary movement of water was made on three grades of cement concrete and six grades of fly ash mixes. The effect of curing was also studied by treating the samples in two curving conditions. A functional relationship of sorptivity against the strength, curing condition and fly ash content has been presented. The results were useful to analyze the factors influencing the durability of cement and fly ash concretes and to explain why some of the previously reported findings were contradictory. Curing conditions have been found to be the most important factor that affected the durability properties of fly ash concrete. When proper curing was provided, a mix with 40% fly ash was found to reduce the sorptivity by 37%. Under inadequate curing the sorptivity was found to increase by 60%. The influence of curing on cement concrete was found to be of much less importance.

  14. Concrete volute pumps: technology review and improvement

    NASA Astrophysics Data System (ADS)

    Prunières, R.; Longatte, F.; Catelan, F. X.; Philippot, J. M.

    2012-11-01

    When pumps need to deliver large water flow rates (typically more than 5 m3.s-1), concrete volute pumps (CVP) offer an interesting alternative to standard vertical wet-pit pumps. One of the major advantages of CVP is its simplicity in terms of design, manufacturability and maintainability. In addition, CVP geometrical arrangement allows to reach high performances in terms of hydraulic and mechanical behaviour. These advantages can be specifically appreciated when such pumps are used in the energy field for Power Plants which need high flow rate and reliability, and can lead to important financial savings over the Plant lifetime compared to vertical wet-pit pumps. Finally, as CVP was for a long time limited to total head rise lower than 30 mWC, it was established through CFD analysis that the addition of guide vanes between the impeller and the volute allows to achieve higher head rise without risk.

  15. The effect on slurry water as a fresh water replacement in concrete properties

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Shahidan, Shahiron; Hai Yee, Lau; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Concrete is the most widely used engineering material in the world and one of the largest water consuming industries. Consequently, the concrete manufacturer, ready mixed concrete plant is increased dramatically due to high demand from urban development project. At the same time, slurry water was generated and leading to environmental problems. Thus, this paper is to investigate the effect of using slurry water on concrete properties in term of mechanical properties. The basic wastewater characterization was investigated according to USEPA (Method 150.1 & 300.0) while the mechanical property of concrete with slurry water was compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentage of wastewater replaced in concrete mixing was ranging from 0% up to 50%. In addition, the resulted also suggested that the concrete with 20% replacement of slurry water was achieved the highest compressive strength and modulus of elasticity compared to other percentages. Moreover, the results also recommended that concrete with slurry water mix have better compressive strength compared to control mix concrete.

  16. Testing of concrete by laser ablation

    DOEpatents

    Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott

    1997-01-01

    A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.

  17. Testing of concrete by laser ablation

    DOEpatents

    Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.

    1997-01-07

    A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.

  18. Concrete density estimation by rebound hammer method

    NASA Astrophysics Data System (ADS)

    Ismail, Mohamad Pauzi bin; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  19. Migrating corrosion inhibitor protection of concrete

    SciTech Connect

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  20. Determining prestressing forces for inspection of prestressed concrete containments

    SciTech Connect

    Not Available

    1990-07-01

    General Design Criterion 53, Provisions for Containment Testing and Inspection,'' of Appendix A, General Design Criteria for Nuclear Power Plants,'' to 10 CFR Part 50, Domestic Licensing of Production and Utilization Facilities,'' requires, in part, that the reactor containment be designed to permit (1) periodic inspection of all important areas and (2) an appropriate surveillance program. Regulatory Guide 1.35, Inservice Inspection of Ungrouted Tendons in Prestressed Concrete Containment Structures,'' describes a basis acceptable to the NRC staff for developing an appropriate inservice inspection and surveillance program for ungrouted tendons in prestressed concrete containment structures of light-water-cooled reactors. This guide expands and clarifies the NRC staff position on determining prestressing forces to be used for inservice inspections of prestressed concrete containment structures.

  1. Electrically conductive polymer concrete overlays

    NASA Astrophysics Data System (ADS)

    Fontana, J. J.; Webster, R. P.

    1984-08-01

    The use of cathodic protection to prevent the corrosion of reinforcing steel in concrete structures has been well established. Application of a durable, skid-resistant electrically conductive polymer concrete overlay would advance the use of cathodic protection for the highway industry. Laboratory studies indicate that electrically conductive polymer concrete overlays using conductive fillers, such as calcined coke breeze, in conjunction with polyester or vinyl ester resins have resistivities of 1 to 10 ohm-cm. Both multiple-layer and premixed mortar-type overlays were made. Shear bond strengths of the conductive overlays to concrete substrates vary from 600 to 1300 psi, with the premixed overlays having bond strengths 50 to 100% higher than the multiple-layer overlays.

  2. Effects of fertilizer and pesticides on concrete

    SciTech Connect

    Broder, M.F.; Nguyen, D.T.; Harner, A.L.

    1994-12-31

    Concrete is the most common material of construction for secondary containment of fertilizers and pesticides because of its relative low cost and structural properties. Concrete, however, is porous to some products it is designed to contain and is subject to corrosion. In this paper, concrete deterioration mechanisms and corrosion resistant concrete formulation are discussed, as well as exposure tests of various concrete mixes to some common liquid fertilizers and herbicides.

  3. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  4. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  5. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  6. Concrete waterproofing in nuclear industry.

    PubMed

    Scherbyna, Alexander N; Urusov, Sergei V

    2005-01-01

    One of the main points of aggregate safety during the transportation and storage of radioactive materials is to supply waterproofing for all constructions having direct contact with radiating substances and providing strength, seismic shielding etc. This is the problem with all waterside structures in nuclear industry and concrete installations in the treatment and storage of radioactive materials. In this connection, the problem of developing efficient techniques both for the repair of operating constructions and the waterproofing of new objects of the specified assignment is genuine. Various techniques of concrete waterproofing are widely applied in the world today. However, in conditions of radiation many of these techniques can bring not a profit but irreparable damage of durability and reliability of a concrete construction; for instance, when waterproofing materials contain organic constituents, polymers etc. Application of new technology or materials in basic construction elements requires in-depth analysis and thorough testing. The price of an error might be very large. A comparative analysis shows that one of the most promising types of waterproofing materials for radiation loaded concrete constructions is "integral capillary systems" (ICS). The tests on radiation, thermal and strength stability of ICS and ICS-treated concrete samples were initiated and fulfilled in RFNC-VNIITF. The main result is--ICS applying is increasing of waterproofing and strength properties of concrete in conditions of readiation The paper is devoted to describing the research strategy, the tests and their results and also to planning of new tests. PMID:16604701

  7. Protective coatings for concrete

    SciTech Connect

    NAGY, KATHRYN L.; CYGAN, RANDALL T.; BRINKER, C. JEFFREY; SELLINGER, ALAN

    2000-05-01

    The new two-layer protective coating developed for monuments constructed of limestone or marble was applied to highway cement and to tobermorite, a component of cement, and tested in batch dissolution tests. The goal was to determine the suitability of the protective coating in retarding the weathering rate of concrete construction. The two-layer coating consists of an inner layer of aminoethylaminopropylsilane (AEAPS) applied as a 25% solution in methanol and an outer layer of A2** sol-gel. In previous work, this product when applied to calcite powders, had resulted in a lowering of the rate of dissolution by a factor of ten and was shown through molecular modeling to bind strongly to the calcite surface, but not too strongly so as to accelerate dissolution. Batch dissolution tests at 22 C of coated and uncoated tobermorite (1.1 nm phase) and powdered cement from Gibson Blvd. in Albuquerque indicated that the coating exhibits some protective behavior, at least on short time scales. However, the data suggest that the outer layer of sol-gel dissolves in the high-pH environment of the closed system of cement plus water. Calculated binding configuration and energy of AEAPS to the tobermorite surface suggests that AEAPS is well-suited as the inner layer binder for protecting tobermorite.

  8. Becoming Reactive by Concretization

    NASA Technical Reports Server (NTRS)

    Prieditis, Armand; Janakiraman, Bhaskar

    1992-01-01

    One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.

  9. Effects of the air–steam mixture on the permeability of damaged concrete

    SciTech Connect

    Medjigbodo, Sonagnon; Darquennes, Aveline; Khelidj, Abdelhafid; Loukili, Ahmed

    2013-12-15

    Massive concrete structures such as the containments of nuclear power plant must maintain their tightness at any circumstances to prevent the escape of radioactive fission products into the environment. In the event of an accident like a Loss of Coolant Accident (LOCA), the concrete wall is submitted to both hydric and mechanical loadings. A new experimental device reproducing these extreme conditions (water vapor transfer, 140 °C and 5 bars) is developed in the GeM Laboratory to determine the effect of the saturation degree, the mechanical loading and the flowing fluid type on the concrete transfer properties. The experimental tests show that the previous parameters significantly affect the concrete permeability and the gas leakage rate. Their evolution as a function of the mechanical loading is characterized by two phases that are directly related to concrete microstructure and crack development.

  10. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    SciTech Connect

    Clayton, Dwight A.; Hoegh, Kyle; Khazanovich, Lev

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and

  11. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    SciTech Connect

    Mahadevan, Sankaran; Agarwal, Vivek; Cai, Guowei; Nath, Paromita; Bao, Yanqing; Bru Brea, Jose Maria; Koester, David; Adams, Douglas; Kosson, David

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  12. The effects of sulfate ion on concrete and reinforced concrete

    SciTech Connect

    Yilmaz, A.B.; Yazici, B.; Erbil, M.

    1997-08-01

    The effects of the sulfate ions and the pH on the strength of concrete and reinforcement steel have been investigated. Concrete and reinforced concrete samples prepared by using mixing water having different sulfate ion concentrations (standard, 400 ppm and 3,500 ppm) were cured in a water bath containing the same ion concentrations of mixing water or distilled water at two different pH values (8 and 5). The samples were exposed to the environments for 90 days. The compressive strength of concrete, pH values of bath, galvanic current changes and potentials (vs. Ag/AgCl) of reinforcing steel were measured. It was observed that the compressive strength of the concrete decreases as the SO{sub 4}{sup {minus}2} ion concentration increases. The galvanic currents were high for the first 28 days and then these currents decreased steadily. It was found that the potentials have been rising up to the passive potential of the reinforcing steel where the SO{sub 4}{sup {minus}2} concentration is low.

  13. Multiscale Concrete Modeling of Aging Degradation

    SciTech Connect

    Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.

    2015-07-31

    In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].

  14. Structural properties of autoclaved aerated concrete masonry

    SciTech Connect

    Matthys, J.H.; Nelson, R.L.

    1999-07-01

    Autoclaved aerated concrete masonry units are manufactured from portland cement, quartz sand, water, lime, gypsum and a gas forming agent. The units are steam cured under pressure in an autoclave transforming the material into a hard calcium silicate. The autoclaved aerated concrete masonry units are large-size solid rectangular prisms which are laid using thin-bed mortar layers into masonry assemblages. The system and product are not new--patented in 1924 by Swedish architect Johan Eriksson. Over a period of 60 years this product has been used in all areas of residential and industrial construction and in virtually all climates. However, the principal locations of application have been generally outside the US Little information in the US is available on the structural properties of this product. Due to the interest in use of this product in the construction industry and the construction of production plants in the US, the Construction Research Center at the University of Texas at Arlington and Robert L. Nelson & Associates conducted a series of tests to determine some of the basic structural properties of this product. This paper presents the findings of those investigations.

  15. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  16. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  17. 27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, A SHORT DISTANCE WEST OF D STREET ABOUT ONE-QUARTER MILE SOUTH OF 9TH AVENUE (SECTION 26). - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  18. Light Water Reactor Sustainability Program: survey of models for concrete degradation

    SciTech Connect

    Spencer, Benjamin W; Huang, Hai

    2014-08-01

    Concrete has been used in the construction of nuclear facilities because of two primary properties: its structural strength and its ability to shield radiation. Concrete structures have been known to last for hundreds of years, but they are also known to deteriorate in very short periods of time under adverse conditions. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. The goal of this report is to review and document the main aging mechanisms of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.

  19. Study on Properties of Environment-friendly Concrete Containing Large Amount of Industrial by-products

    NASA Astrophysics Data System (ADS)

    Fujiwara, H.; Maruoka, M.; Sadayama, C.; Nemoto, M.; Yoshikawa, K.; Yamaji, M.

    2015-11-01

    This study aims to reduce CO2 discharged from the cement and concrete industries by effective use of industrial by-products, such as fly ash, blast furnace slag, and so on. In this paper, the properties of concrete containing large amount of industrial by-products and very small amount of alkaline activator including cement or sludge from ready mixed concrete plant are analyzed. As the result, it was confirmed that concretes containing large amount of industrial by-products can achieve sufficient compressive strength. However, these concretes showed poor frost resistance. It was thought that the reason was coarsening of air void system and this caused their poor frost resistance. Therefore, in order to micronize the air void system and improve frost resistance, the combination of air entraining agent and antifoaming agent was applied. By this method, it was confirmed that the frost resistance of some these concrete improved. In this study, other properties of these concretes, such as fresh properties and other durability were evaluated and it was confirmed that these concretes show sufficient properties.

  20. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    SciTech Connect

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.; Mahadevan, Sankaran

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  1. RECENT BIOGENIC PHOSPHORITE: CONCRETIONS IN MOLLUSK KIDNEYS

    EPA Science Inventory

    Phosphorite concretions have been detected in the kidneys of two widespread species of mollusks. Mercenaria mercenaria and Argopecten irradians, which have relatively high population densities. These concretions are the first documentation of the direct biogenic formation of phos...

  2. Carbonation and its effects in reinforced concrete

    SciTech Connect

    Broomfield, J.P.

    2000-01-01

    Carbonation is the result of interaction of carbon dioxide (CO{sub 2}) gas in the atmosphere with the alkaline hydroxides in the concrete. CO{sub 2} diffuses through the concrete and rate of movement of the carbonation front roughly follows Fick's law of diffusion. Carbonation depth can be measured by exposing fresh concrete and spraying it with phenolphthalein indicator solution. An example of the test on a reinforced concrete mullion is given.

  3. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  4. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  5. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  6. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  7. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  8. RADON GENERATION AND TRANSPORT IN AGED CONCRETE

    EPA Science Inventory

    The report gives results of a characterization of radon generation and transport in Florida concretes sampled from 12- to 45-year-old residential slabs. It also compares measurements from old concrete samples to previous measurements on newly poured Florida residential concretes....

  9. Molecular Survey of Concrete Biofilm Microbial Communities

    EPA Science Inventory

    Although several studies have shown that bacteria can deteriorate concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different microbial communities associated with concrete biofilms using 16S rRNA g...

  10. FIELD STUDIES OF IMPREGNATED CONCRETE PIPE

    EPA Science Inventory

    The follow-on study (initiated in June 1980) continued to monitor performance of 1,400 ft of impregnated concrete pipe installed in several Texas cities. The performance of concrete pipe has been compared with that of sulfur-impregnated concrete pipe; hydrofluoric acid (HF)-treat...

  11. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    NASA Astrophysics Data System (ADS)

    Abulfaraj, Waleed H.; Kamal, Salah M.

    1994-07-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concretes shielding. Multiattribute utility theory is selected to accommodate decision makers' preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Ilmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Ilmenite Serpentine concrete.

  12. Concrete Finisher Program. Apprenticeship Training.

    ERIC Educational Resources Information Center

    Alberta Learning, Edmonton. Apprenticeship and Industry Training.

    This document presents information about the apprenticeship training program of Alberta, Canada, in general and the concrete finishing program in particular. The first part of the document discusses the following items: Alberta's apprenticeship and industry training system; the apprenticeship and industry training committee structure; local…

  13. Early Reading and Concrete Operations.

    ERIC Educational Resources Information Center

    Polk, Cindy L. Howes; Goldstein, David

    1980-01-01

    Indicated that early readers are more likely to be advanced in cognitive development than are nonearly-reading peers. After one year of formal reading instruction, early readers maintained their advantage in reading achievement. Measures of concrete operations were found to predict reading achievement for early and nonearly readers. (Author/DB)

  14. Concrete platforms for Southeast Asia

    SciTech Connect

    Hoff, G.C.; Reusswig, G.H.

    1995-10-01

    The use of concrete offshore structures for hydrocarbon resource developments in SE Asia has, to-date, had little precedent but their potential across the region seems unlimited. The interest is continuing to grow because the structures can be built using local materials and local labor in the countries where the platforms are to be used. For many applications, they are cost competitive with steel structures. The concrete substructure requires little or no maintenance throughout the life of the structure, thus reducing operating costs. The concrete structures can be self-installing without the use of crane barges or heavy-lift vessels. They are re-floatable and can be used again in other locations. They also can be designed to include oil or condensate storage within the structure, thus eliminating the need for additional floating storage in areas where offshore pipelines do not exist. The paper describes a few concrete structure concepts that are applicable for Indonesia, Malaysia, Vietnam and Australia and considerations for their use.

  15. ASSESSMENT OF RELEASE RATES FOR RADIONUCLIDES IN ACTIVATED CONCRETE.

    SciTech Connect

    SULLIVAN,T.M.

    2003-08-23

    The Maine Yankee (MY) nuclear power plant is undergoing the process of decontamination and decommissioning (D&D). Part of the process requires analyses that demonstrate that any radioactivity that remains after D&D will not cause exposure to radioactive contaminants to exceed acceptable limits. This requires knowledge of the distribution of radionuclides in the remaining material and their potential release mechanisms from the material to the contacting groundwater. In this study the concern involves radionuclide contamination in activated concrete in the ICI Sump below the containment building. Figures 1-3 are schematic representations of the ICI Sump. Figure 2 and 3 contain the relevant dimensions needed for the analysis. The key features of Figures 2 and 3 are the 3/8-inch carbon steel liner that isolates the activated concrete from the pit and the concrete wall, which is between 7 feet and 7 feet 2 inches thick. During operations, a small neutron flux from the reactor activated the carbon steel liner and the concrete outside the liner. Current MY plans call for filling the ICI sump with compacted sand.

  16. Durability of concrete materials in high-magnesium brine

    SciTech Connect

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.

  17. More economical but equally effective internally sealed concrete

    NASA Astrophysics Data System (ADS)

    White, R. M.; Taylor, M. A.; Haxo, H. E., Jr.

    1981-12-01

    Wax beads of several lower melting, lower cost wax blends can seal concrete as effectively as the paraffin-montan wax beads currently used in internally sealed concrete bridge decks, without affecting other important properties of the concrete. Savings of 5% to 25% in raw material costs can be expected to lower the cost of wax beads by approximately 5% to 20%. Since the minimum temperature required for melting the wax beads is about 25 F (14 C) lower than for the current beads, the cost of heating a bridge deck to achieve effective sealing should be reduced by approximately 15%. Beads of two formulations: 10% montan wax, 15% firbark wax, 75% paraffin 140/142 (FMP), and 5% stearic acid, 20% hydrogenated tallow, 75% paraffin 150/152 (STP), were produced in pilot plant quantities and were evaluated on two field tests. Damage to the beads during extended mixing of the concrete was suspected to be one of the causes of low strength and poor resistance to scaling of the test slabs in the first test. Some blocking of the lower melting beads at temperatures between 100 and 110 F (38 and 43 C) occurred during production in hot weather or storage for long times in warm locations. Coating the beads with 10% cement restored them to a free-flowing condition.

  18. Optimizing the use of fly ash in concrete

    SciTech Connect

    Thomas, M.

    2007-07-01

    The optimum amount of fly ash varies not only with the application, but also with composition and proportions of all the materials in the concrete mixture (especially the fly ash), the conditions during placing (especially temperature), construction practices (for example, finishing and curing) and the exposure conditions. This document discusses issues related to using low to very high levels of fly ash in concrete and provides guidance for the use of fly ash without compromising the construction process or the quality of the finished product. The nature of fly ashes including their physical, mineralogical and chemical properties is covered in detail, as well as fly ash variability due to coal composition and plant operating conditions. A discussion on the effects of fly ash characteristics on fresh and hardened concrete properties includes; workability, bleeding, air entrainment, setting time, heat of hydration, compressive strength development, creep, drying shrinkage, abrasion resistance, permeability, resistance to chlorides, alkali-silica reaction (ASR), sulfate resistance, carbonation, and resistance to freezing and thawing and deicer salt scaling. Case studies were selected as examples of some of the more demanding applications of fly ash concrete for ASR mitigation, chloride resistance, and green building.

  19. [Removal of nitrogen in simulated rivers embanked by ecological concrete].

    PubMed

    Chen, Yang-hui; Lü, Xi-wu; Wu, Yi-feng

    2008-08-01

    The removal of nitrogen was studied in four types of pilot-scale rivers. The embankment for rivers No. 1, 2 and 3 consisted of respectively spheriform ecological-concrete prefab-bricks, rectangular ecological-concrete prefab-bricks and square ecological-concrete prefab-bricks with 4 hemispheroids. The embankment for river No. 4 was made of concrete C25. The results show that the removal rates of NH4+ -N, NO2- -N, NO3- -N and TN of river 1 are 83.6%, 75.2%, 37.1% and 47.5% under hydraulic retention time of 2 days, 83.4%, 53.0%, 30.6% and 40.4% for river 2, 88.1%, 72.4%, 33.0% and 40.9% for river 3. Under the same condition, NH4+ -N, TN of river 4 decreasesby 61.1%, 9.1%, while NO2- -N, NO3- -N increase by 7.4%, 3.4% due to the transformation of NH4+ -N. It indicates that ecological embankment rivers can effectively remove nitrogen. Besides, the addition of pore rate in embankment structure and more rate of plant coverage are good for the removal of nitrogen in ecological embankment rivers. PMID:18839568

  20. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Pullockaran, Jose D.; Knox, Lerry

    1997-01-01

    A method for producing quick setting concrete is provided comprising hydrng a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO.sub.3 of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring.

  1. Evaluation of ternary blended cements for use in transportation concrete structures

    NASA Astrophysics Data System (ADS)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  2. Microbiologically induced deterioration of concrete - A Review

    PubMed Central

    Wei, Shiping; Jiang, Zhenglong; Liu, Hao; Zhou, Dongsheng; Sanchez-Silva, Mauricio

    2013-01-01

    Microbiologically induced deterioration (MID) causes corrosion of concrete by producing acids (including organic and inorganic acids) that degrade concrete components and thus compromise the integrity of sewer pipelines and other structures, creating significant problems worldwide. Understanding of the fundamental corrosion process and the causal agents will help us develop an appropriate strategy to minimize the costs in repairs. This review presents how microorganisms induce the deterioration of concrete, including the organisms involved and their colonization and succession on concrete, the microbial deterioration mechanism, the approaches of studying MID and safeguards against concrete biodeterioration. In addition, the uninvestigated research area of MID is also proposed. PMID:24688488

  3. Estimation of Concrete's Porosity by Ultrasounds

    NASA Astrophysics Data System (ADS)

    Benouis, A.; Grini, A.

    Durability of concrete depends strongly on porosity; this conditions the intensity of the interactions of the concrete with the aggressive agents. The pores inside the concrete facilitate the process of damage, which is generally initiated on the surface. The most used measurement is undoubtedly the measurement of porosity accessible to water. The porosimetry by intrusion with mercury constitutes a tool for investigation of the mesoporosity. The relationship between concrete mixtures, porosity and ultrasonic velocity of concrete samples measured by ultrasonic NDT is investigated. This experimental study is interested in the relations between the ultrasonic velocity measured by transducers of 7.5 mm and 49.5 mm diameter and with 54 kHz frequency. Concrete specimens (160 mm diameter and 320 mm height) are fabricated with concrete of seven different mixtures (various W/C and S/S + G ratios), which gave porosities varying between 7% and 16%. Ultrasonic velocities in concrete were measured in longitudinal direction. Finally the results showed the influence of ratio W/C, where the porosity of the concretes of a ratio W/C _0,5 have correctly estimated by ultrasonic velocity. The integration of the concretes of a lower ratio, in this relation, caused a great dispersion. Porosity estimation of concretes with a ratio W/C lower than 0,5 became specific to each ratio.

  4. Diffusion of Radionuclides in Concrete and Soil

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Recknagle, Kurtis P.; Clayton, Libby N.; Wood, Marcus I.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.

  5. Performance of concrete under different curing conditions

    SciTech Connect

    Tan, K.; Gjorv, O.E.

    1996-03-01

    The effect of curing conditions on strength and permeability of concrete was studied. Test results showed that after 3 and 7 days moist curing only the concretes with w/c ratios equal to or less than 0.4 were accepted, while after 28 days of moist curing however, even the concrete with w/c of 0.6 could be accepted. Silica fume has a significant effect on the resistance to water penetration. For the concretes both with and without silica fume and with w/c + s of 0.5, the 28-day compressive strengths of 3 and 7 days moist curing were higher than those of 28 days moist curing, and the silica fume concrete seemed to be less sensitive to early drying. The curing temperatures did not affect the water penetration of concrete, but affected the chloride penetration and compressive strength of concrete significantly.

  6. Recycling of rubble from building demolition for low-shrinkage concretes.

    PubMed

    Corinaldesi, Valeria; Moriconi, Giacomo

    2010-04-01

    In this project concrete mixtures were prepared that were characterized by low ductility due to desiccation by using debris from building demolition, which after a suitable treatment was used as aggregate for partial replacement of natural aggregates. The recycled aggregate used came from a recycling plant, in which rubble from building demolition was selected, crushed, cleaned, sieved, and graded. Such aggregates are known to be more porous as indicated by the Saturated Surface Dry (SSD) moisture content. The recycled concrete used as aggregates were added to the concrete mixture in order to study their influence on the fresh and hardened concrete properties. They were added either after water pre-soaking or in dry condition, in order to evaluate the influence of moisture in aggregates on the performance of concrete containing recycled aggregate. In particular, the effect of internal curing, due to the use of such aggregates, was studied. Concrete behavior due to desiccation under dehydration was studied by means of both drying shrinkage test and German angle test, through which shrinkage under the restrained condition of early age concrete can be evaluated. PMID:20022737

  7. Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations

    SciTech Connect

    Lavergne, F.; Sab, K.; Sanahuja, J.; Bornert, M.; Toulemonde, C.

    2015-05-15

    Prestress losses due to creep of concrete is a matter of interest for long-term operations of nuclear power plants containment buildings. Experimental studies by Granger (1995) have shown that concretes with similar formulations have different creep behaviors. The aim of this paper is to numerically investigate the effect of size distribution and shape of elastic inclusions on the long-term creep of concrete. Several microstructures with prescribed size distribution and spherical or polyhedral shape of inclusions are generated. By using the 3D numerical homogenization procedure for viscoelastic microstructures proposed by Šmilauer and Bažant (2010), it is shown that the size distribution and shape of inclusions have no measurable influence on the overall creep behavior. Moreover, a mean-field estimate provides close predictions. An Interfacial Transition Zone was introduced according to the model of Nadeau (2003). It is shown that this feature of concrete's microstructure can explain differences between creep behaviors.

  8. CERL/ORNL research and development programs in support of prestressed concrete reactor vessel development

    SciTech Connect

    Hornby, I.W.; Naus, D.J.

    1984-01-01

    In support of the evolution of PCRV designs being developed both in the UK and USA, research and developments programmers are being conducted at the CEGB Central Electricity Research Laboratories (CERL) and the Oak Ridge National Laboratory (ORNL) respectively. In the UK, recent work has focused on elevated temperature effects on concrete properties and instrument systems for PCRVs. The concrete development program at ORNL consists of generic studies designed to provide technical support for ongoing prestressed concrete reactor vessel-related activities, to contribute to the technological data base, and to provide independent review and evaluation of the relevant technology. Recent activities have been related to the development of properties for high-strength concrete mix designs for the PCRV of a 2240 MW(t) HTGR-SC/C lead plant project, and the development of PCRV model testing techniques.

  9. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  10. Fracture properties of lightweight concrete

    SciTech Connect

    Chang, T.P.; Shieh, M.M.

    1996-02-01

    This study presents the experimental results of fracture properties of concrete incorporating two kinds of domestic lightweight aggregate (LWA) manufactured through either a cold-bonding or a sintering process. The cold-bonded aggregates were mainly made of pulverized fly-ash through a cold-pelletization process at ambient temperature, while the sintered aggregates were made of clay and shale expanded by heat at a temperature near 1,200 C. Experimental results show that the 28-day compressive strengths of {phi} 100 x 200 mm cylindrical concrete specimen made of those LWAs range from 30.1 (sintered) to 33.9 MPa (cold-bonded). By means of size effect law, it is found that the fracture energies, G{sub f}, were 34.42 N/m (sintered) and 37.2 N/m (cold-bonded), respectively.

  11. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  12. Quality evaluation of aged concrete by ultrasound

    NASA Astrophysics Data System (ADS)

    Tavossi, H. M.; Tittmann, Bernhard R.; Cohen-Tenoudji, Frederic

    1999-02-01

    The velocity, attenuation and scattering of ultrasonic waves measured in concrete, mortar and cement structures can be used to evaluate their quality with weathering and aging. In this investigation the hardening of concrete mixture with time is monitored by ultrasonic waves under different conditions of temperature and water to cement ratio. The measured ultrasonic parameters can then be utilized to determine the final quality of the completely cured concrete structure from initial measurement. The quality of a concrete structure is determined by its resistance to compression and its rigidity, which should be within the acceptable values required by the design specifications. The internal and external flaws that could lower its strength can also be detected by ultrasonic technique. Aging process of concrete by weathering can be simulated in the laboratory by subjecting the concrete to extremes of cold and hot cycles in the range of temperatures normally encountered in summer and winter. In this research ultrasonic sensors in low frequency range of 40 to 100 kHz are used to monitor the quality of concrete. Ultrasonic pulses transmitted through the concrete sample are recorded for analysis in time and frequency domains. ULtrasonic waves penetration in concrete of the order of few feet has been achieved in laboratory. Data analyses on ultrasonic signal velocity, spectral content, phase and attenuation, can be utilized to evaluate, in situ, the quality and mechanical strength of concrete.

  13. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  14. Structural effects of radiation-induced volumetric expansion on unreinforced concrete biological shields

    SciTech Connect

    Le Pape, Y.

    2015-11-22

    Limited literature (Pomaro et al., 2011, Mirhosseini et al., 2014, Salomoni et al., 2014 and Andreev and Kapliy, 2014) is available on the structural analysis of irradiated concrete biological shield (CBS), although extended operations of nuclear powers plants may lead to critical neutron exposure above 1.0 × 10+19 n cm₋2. To the notable exception of Andreev and Kapliy, available structural models do not account for radiation-induced volumetric expansion, although it was found to develop important linear dimensional change of the order of 1%, and, can lead to significant concrete damage (Le Pape et al., 2015). A 1D-cylindrical model of an unreinforced CBS accounting for temperature and irradiation effects is developed. Irradiated concrete properties are characterized probabilistically using the updated database collected by Oak Ridge National Laboratory (Field et al., 2015). The overstressed concrete ratio (OCR) of the CBS, i.e., the proportion of the wall thickness being subject to stresses beyond the resistance of concrete, is derived by deterministic and probabilistic analysis assuming that irradiated concrete behaves as an elastic materials. In the bi-axial compressive zone near the reactor cavity, the OCR is limited to 5.7%, i.e., 8.6 cm (3$_2^1$ in.), whereas, in the tension zone, the OCR extends to 72%, i.e., 1.08 m (42$_2^1$ in.). Finally, we find that these results, valid for a maximum neutron fluence on the concrete surface of 3.1 × 10+19 n cm₋2 (E > 0.1 MeV) and, obtained after 80 years of operation, give an indication of the potential detrimental effects of prolonged irradiation of concrete in nuclear power plants.

  15. Structural effects of radiation-induced volumetric expansion on unreinforced concrete biological shields

    DOE PAGESBeta

    Le Pape, Y.

    2015-11-22

    Limited literature (Pomaro et al., 2011, Mirhosseini et al., 2014, Salomoni et al., 2014 and Andreev and Kapliy, 2014) is available on the structural analysis of irradiated concrete biological shield (CBS), although extended operations of nuclear powers plants may lead to critical neutron exposure above 1.0 × 10+19 n cm₋2. To the notable exception of Andreev and Kapliy, available structural models do not account for radiation-induced volumetric expansion, although it was found to develop important linear dimensional change of the order of 1%, and, can lead to significant concrete damage (Le Pape et al., 2015). A 1D-cylindrical model of anmore » unreinforced CBS accounting for temperature and irradiation effects is developed. Irradiated concrete properties are characterized probabilistically using the updated database collected by Oak Ridge National Laboratory (Field et al., 2015). The overstressed concrete ratio (OCR) of the CBS, i.e., the proportion of the wall thickness being subject to stresses beyond the resistance of concrete, is derived by deterministic and probabilistic analysis assuming that irradiated concrete behaves as an elastic materials. In the bi-axial compressive zone near the reactor cavity, the OCR is limited to 5.7%, i.e., 8.6 cm (3$_2^1$ in.), whereas, in the tension zone, the OCR extends to 72%, i.e., 1.08 m (42$_2^1$ in.). Finally, we find that these results, valid for a maximum neutron fluence on the concrete surface of 3.1 × 10+19 n cm₋2 (E > 0.1 MeV) and, obtained after 80 years of operation, give an indication of the potential detrimental effects of prolonged irradiation of concrete in nuclear power plants.« less

  16. A comparison of concrete and formal science instruction upon science achievement and reasoning ability of sixth grade students

    NASA Astrophysics Data System (ADS)

    Saunders, Walter L.; Shepardson, Daniel

    Several recent studies suggest concrete learners make greater gains in student achievement and in cognitive development when receiving concrete instruction than when receiving formal instruction. This study examined the effect of concrete and formal instruction upon reasoning and science achievement of sixth grade students. Four intact classes of sixth grade students were randomly selected into two treatment groups; concrete and formal. The treatments were patterned after the operational definitions published by Schneider and Renner (1980). Pretest and posttest measures were taken on the two dependent variables; reasoning, measured with Lawson's Classroom Test of Formal Reasoning, and science achievement, measured with seven teacher made tests covering the following units in a sixth grade general science curriculum: Chemistry, Physics, Earth Science, Cells, Plants, Animals, and Ecology. Analysis of covariance indicated significantly higher levels (better than 0.05 and in some cases 0.01) of performance in science achievement and cognitive development favoring the concrete instruction group and a significant gender effect favoring males.

  17. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    SciTech Connect

    von Riesemann, W.A.; Parks, M.B.

    1993-11-01

    In the United States, concrete containment buildings for commercial nuclear power plants have steel liners that act as the intemal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented. This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions).

  18. Poisson's ratio of high-performance concrete

    SciTech Connect

    Persson, B.

    1999-10-01

    This article outlines an experimental and numerical study on Poisson's ratio of high-performance concrete subjected to air or sealed curing. Eight qualities of concrete (about 100 cylinders and 900 cubes) were studied, both young and in the mature state. The concretes contained between 5 and 10% silica fume, and two concretes in addition contained air-entrainment. Parallel studies of strength and internal relative humidity were carried out. The results indicate that Poisson's ratio of high-performance concrete is slightly smaller than that of normal-strength concrete. Analyses of the influence of maturity, type of aggregate, and moisture on Poisson's ratio are also presented. The project was carried out from 1991 to 1998.

  19. Sulfate attack on concrete with mineral admixtures

    SciTech Connect

    Irassar, E.F.; Di Maio, A.; Batic, O.R.

    1996-01-01

    The sulfate resistance of concretes containing fly ash, natural pozzolan and slag is investigated in a field test in which concrete specimens were half-buried in sulfate soil for five years. Mineral admixtures were used as a partial replacement for ordinary portland cement (C{sub 3}A = 8.5%), and the progress of sulfate attack was evaluated by several methods (visual rating, loss in mass, dynamic modulus, strength, X-ray analysis). Results of this study show that mineral admixtures improved the sulfate resistance when the concrete is buried in the soil. However, concretes with high content of mineral admixtures exhibit a greater surface scaling over soil level due to the sulfate salt crystallization. In this zone, capillary suction of concrete is the main mechanism of water and salt transportation. Concrete with 20% fly ash provides an integral solution for half-buried structures.

  20. Square concrete culvert and concrete retaining wall, 1/2 mile east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Square concrete culvert and concrete retaining wall, 1/2 mile east of Indigo Tunnel, milepost 128. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  1. Phase 2 microwave concrete decontamination results

    SciTech Connect

    White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

    1995-04-01

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm{sup 2}/s and 4.9 cm{sup 3}/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard.

  2. Design and fabrication of polymer concrete pipe

    SciTech Connect

    Schroeder, J.E.; Abdelgawad, A.T.

    1982-10-08

    Polymer concrete is a composite material which has strength and durability characteristics greatly superior to those of portland cement concrete and better durability in hot brine than steel. polymer concrete has been successfully tested in brine and steam at temperatures up to 260 C. Exposures were as long as 960 days. Glass filament wound polymer concrete pipe was developed with excellent strength, low weight, and a cost comparable to or less than schedule 40 steel. Connections can be made with slip joints for low pressure applications and flanged joints for high pressure applications.

  3. Economic analysis of recycling contaminated concrete

    SciTech Connect

    Stephen, A.; Ayers, K.W.; Boren, J.K.; Parker, F.L.

    1997-02-01

    Decontamination and Decommissioning activities in the DOE complex generate large volumes of radioactively contaminated and uncontaminated concrete. Currently, this concrete is usually decontaminated, the contaminated waste is disposed of in a LLW facility and the decontaminated concrete is placed in C&D landfills. A number of alternatives to this practice are available including recycling of the concrete. Cost estimates for six alternatives were developed using a spreadsheet model. The results of this analysis show that recycling alternatives are at least as economical as current practice.

  4. Pentek concrete scabbling system: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The Pentek concrete scabbling system consists of the MOOSE{reg_sign} scabbler, the SQUIRREL{reg_sign}-I and SQUIRREL{reg_sign}-III scabblers, and VAC-PAC. The scabblers are designed to scarify concrete floors and slabs using cross section, tungsten carbide tipped bits. The bits are designed to remove concrete in 3/8 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  5. Proceedings of the concrete decontamination workshop

    SciTech Connect

    Halter, J.M.; Sullivan, R.G.; Currier, A.J.

    1980-05-28

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors.

  6. Experimental needs of high temperature concrete

    SciTech Connect

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370/sup 0/C for operating reactor conditions and to about 900/sup 0/C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs.

  7. High temperature polymer concrete compositions

    DOEpatents

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  8. Polymer concrete lined pipe for use in geothermal applications

    SciTech Connect

    Kaeding, Albert O.

    1982-10-08

    A specific polymer concrete formulation was applied as a steel pipe liner in response to a need for durable, economical materials for use in contact with high temperature geothermal brine. Compressive strengths of up to 165.8 MPa and splitting tensile strengths of 23.5 MPa were measured at ambient temperature. Compressive strengths of 24 MPa and splitting tensile strengths of 2.5 MPa were measured at about 150 C. Cost of piping a geothermal plant with PC and PC-lined steel pipe is calculated to be $1.21 million, which compares favorably with a similar plant piped with alloy steel piping at a cost of $1.33 million. Life-cycle cost analysis indicates that the cost of PC-lined steel pipe would be 82% of that of carbon steel pipe over a 20-year plant operating life.

  9. Application of concrete in marine structures

    SciTech Connect

    Rashid, A.; Nygaard, C.

    1997-07-01

    The use of concrete in marine environment has gained tremendous popularity in the past decade and is continued to be a very popular material for marine industry in the world today. It has a very diversified use from large offshore platforms and floating structures in the North Sea, Canada and South America to offshore loading terminals and junction platforms in shallow waters in the marshes of southern Louisiana in the Gulf of Mexico. Also, precast concrete sections are extensively used all over the world in the construction of marine structures. Because of their large variety of shapes and sizes, they can be tailored to fit multiple applications in marine environment. The added quality control in the fabrication yard and the ease of installation by lifting makes them a very attractive option. The use of precast concrete sections is gaining a lot of popularity in South America. A lot of fabrication yards are manufacturing these sections locally. There are hundreds of offshore concrete platforms utilizing these sections in Lake Maracaibo, Venezuela. The paper discusses the use of concrete for offshore structures including floaters. It describes some general concepts and advantages to be gained by the use of concrete (precast and cast-in-place) in marine environment. It also discusses some general design considerations required for the use of different types of precast concrete sections that can be utilized for oil and gas platforms and loading terminals. Lastly the paper describes some typical examples of concrete platforms built out of concrete piles, precast concrete girders and beam sections and concrete decking.

  10. 36. VAL, DETAIL OF TYPICAL INTERIOR OF CONCRETE 'A' FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VAL, DETAIL OF TYPICAL INTERIOR OF CONCRETE 'A' FRAME STRUCTURE SHOWING PAINTED CONCRETE WALLS, CONCRETE STAIRS AND INTERIOR WOOD DOOR. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  11. Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete

    SciTech Connect

    Wang, Shuangzhen; Baxter, Larry

    2006-08-01

    Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

  12. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1997-04-29

    A method for producing quick setting concrete is provided comprising mixing a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring. 2 figs.

  13. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    SciTech Connect

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs.

  14. Inservice inspection of ungrouted tendons in prestressed concrete containments

    SciTech Connect

    Not Available

    1990-07-01

    General Design Criterion 53, Provisions for Containment Testing and Inspection,'' of Appendix A, General Design Criteria for Nuclear Power Plants,'' to 10 CFR Part 50, Domestic Licensing of Production and Utilization Facilities,'' requires, in part, that the reactor containment be designed to permit (1) periodic inspection of all important areas and (2) an appropriate surveillance program. This guide describes a basis acceptable to the NRC staff for developing an appropriate inservice inspection and surveillance program for ungrouted tendons in prestressed concrete containment structures of light-water-cooled reactors. The Advisory Committee on Reactor Safeguards has been consulted concerning this guide and has concurred in the regulatory position.

  15. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  16. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  17. Concrete and abstract Voronoi diagrams

    SciTech Connect

    Klein, R. )

    1989-01-01

    The Voronoi diagram of a set of sites is a partition of the plane into regions, one to each site, such that the region of each site contains all points of the plane that are closer to this site than to the other ones. Such partitions are of great importance to computer science and many other fields. The challenge is to compute Voronoi diagrams quickly. The problem is that their structure depends on the notion of distance and the sort of site. In this book the author proposes a unifying approach by introducing abstract Voronoi diagrams. These are based on the concept of bisecting curves which are required to have some simple properties that are actually possessed by most bisectors of concrete Voronoi diagrams. Abstract Voronoi diagrams can be computed efficiently and there exists a worst-case efficient algorithm of divide-and-conquer type that applies to all abstract Voronoi diagrams satisfying a certain constraint. The author shows that this constraint is fulfilled by the concrete diagrams based no large classes of metrics in the plane.

  18. Construction Cluster Volume IV: [Concrete Work].

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is the fourth of a series, to be integrated with a G.E.D. program, containing instructional materials for the construction cluster. The volume focuses on concrete work and consists of 20 instructional units which require a month of study. The units include: (1) uses of concrete and occupational information; (2) soils, drainage, and…

  19. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    EPA Science Inventory

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  20. SUSTAINABLE CONCRETE FILTRATION SYSTEM FOR DEVELOPING COMMUNITIES

    EPA Science Inventory

    The project will demonstrate that a non-traditional yet omnipresent material such as concrete can serve as an effective medium to remove harmful single celled organisms from water. Further, concrete can be fabricated and maintained with minimal environmental impact.

  1. Assessing the Concreteness of Relational Representation

    ERIC Educational Resources Information Center

    Rein, Jonathan R.; Markman, Arthur B.

    2010-01-01

    Research has shown that people's ability to transfer abstract relational knowledge across situations can be heavily influenced by the concrete objects that fill relational roles. This article provides evidence that the concreteness of the relations themselves also affects performance. In 3 experiments, participants viewed simple relational…

  2. "Concreteness Fading" Promotes Transfer of Mathematical Knowledge

    ERIC Educational Resources Information Center

    McNeil, Nicole M.; Fyfe, Emily R.

    2012-01-01

    Recent studies have suggested that educators should avoid concrete instantiations when the goal is to promote transfer. However, concrete instantiations may benefit transfer in the long run, particularly if they are "faded" into more abstract instantiations. Undergraduates were randomly assigned to learn a mathematical concept in one of three…

  3. Properties and uses of concrete, appendix B

    NASA Technical Reports Server (NTRS)

    Corley, Gene

    1992-01-01

    Concretes that can now be formed have properties which may make them valuable for lunar or space construction. These properties include high compressive strength, good flexural strength (when reinforced), and favorable responses to temperature extremes (even increased strength at low temperatures). These and other properties of concrete are discussed.

  4. RADON GENERATION AND TRANSPORT THROUGH CONCRETE FOUNDATIONS

    EPA Science Inventory

    The report gives results of an examination of radon generation and transport through Florida residential concretes for their contribution to indoor radon concentrations. Radium concentrations in the 11 concretes tested were all <2.5 pCi/g and radon emanation coefficients were all...

  5. Review of the Current State of Knowledge on the Effects of Radiation on Concrete

    DOE PAGESBeta

    Rosseel, Thomas M.; Maruyama, Ippei; Le Pape, Yann; Kontani, Osamu; Giorla, Alain B.; Remec, Igor; Wall, James J.; Sircar, Madhumita; Andrade, Carmen; Ordonez, Manuel

    2016-07-01

    A review of the current state of knowledge on the effects of radiation on concrete in nuclear applications is presented. Emphasis is placed on the effects of radiation damage as reflected by changes in engineering properties of concrete in the evaluation of the long-term operation (LTO) and for Plant Life or Aging Management of nuclear power plants (NPPs) in Japan, Spain, and the United States. National issues and concerns are described for Japan and the US followed by a discussion of the fundamental understanding of the effects radiation on concrete. Specifically, the effects of temperature, moisture content, and irradiation onmore » ordinary Portland cement paste and the role of temperature and neutron energy spectra on radiation induced volumetric expansion (RIVE) of aggregate-forming minerals are described. This is followed by a discussion of the bounding conditions for extended operation, the significance of accelerated irradiation conditions, the role of temperature, creep, and how these issues are being incorporated into numerical and meso-scale models. From these insights on radiation damage, analyses of these effects on concrete structures are reviewed and the current status of work in Japan and the US are described. Also discussed is the recent formation of a new international scientific and technical organization, the International Committee on Irradiated Concrete (ICIC), to provide a forum for timely information exchanges among organizations pursuing the identification, quantification, and modeling of the effects of radiation on concrete in commercial nuclear applications. Lastly, the paper concludes with a discussion of research gaps including: 1) interpreting test-reactor data, 2) evaluating service-irradiated concrete for aging management and to inform radiation damage models with the Zorita NPP (Spain) serving as the first comprehensive test case, 3) irradiated-assisted alkali-silica reactions, and 4) RIVE under constrained conditions.« less

  6. Improving synthetic aperture focusing technique for thick concrete specimens via frequency banding

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2016-04-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. While standard Synthetic Aperture Focusing Technique (SAFT) is adequate for many defects with shallow concrete cover, some defects located under deep concrete cover are not easily identified using the standard SAFT. For many defects, particularly defects under deep cover, the use of frequency banded SAFT improves the detectability over standard SAFT. In addition to the improved detectability, the frequency banded SAFT also provides improved scan depth resolution that can be important in determining the suitability of a particular structure to perform its designed safety function. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To validate the advantages of frequency banded SAFT on thick concrete, a 2.134 m x 2.134 m x 1.016 m concrete test specimen with twenty deliberately embedded defects was fabricated.

  7. Recent biogenic phosphorite: Concretions in mollusk kidneys

    USGS Publications Warehouse

    Doyle, L.J.; Blake, N.J.; Woo, C.C.; Yevich, P.

    1978-01-01

    Phosphorite concretions have been detected in the kidneys of two widespread species ofmollusks, Mercenaria mercenaria and Argopecten irradians, which have relatively high population densities. These concretions are thefirst documentation of the direct biogenic formation of phosphorite grains. The concretions are principally amorphous calcium phosphate, which upon being heated yields an x-ray diffraction pattern which is essentially that of chlorapatite. These concretions appear to be a normal formation of the excretory process of mollusks under reproductive, environmental, or pollutant-induced stress. Biogenic production of phosphorite concretions over long periods of time and diagenetic change from amorphous to crystalline structure, coupled with secondary enrichment, may account for the formation of some marine phosphorite desposits which are not easily explained by the chemical precipitation- replacement hypothesis. Copyright ?? 1978 AAAS.

  8. Autoclave foam concrete: Structure and properties

    NASA Astrophysics Data System (ADS)

    Mestnikov, Alexei; Semenov, Semen; Strokova, Valeria; Nelubova, Viktoria

    2016-01-01

    This paper describes the technology and properties of autoclaved foam concrete taking into account practical experience and laboratory studies. The results of study of raw materials and analysis of structure and properties of foam-concrete before and after autoclave treatment are basic in this work. Experimental studies of structure and properties of foam concrete are carried out according to up-to-date methods and equipment on the base of the shared knowledge centers. Results of experimental studies give a deep understanding of properties of raw materials, possible changes and new formations in inner layers of porous material providing the improvement of constructional and operational properties of autoclaved foam concrete. Principal directions of technology enhancement as well as developing of production of autoclave foam concretes under cold-weather conditions in Russia climate are justified.

  9. Aerated concrete with mineral dispersed reinforcing additives

    NASA Astrophysics Data System (ADS)

    Berdov, G. I.; Ilina, L. V.; Mukhina, I. N.; Rakov, M. A.

    2015-01-01

    To guarantee the production of aerated concrete with the lowest average density while ensuring the required strength it is necessary to use a silica component with a surface area of 250-300 m2 / kg. The article presents experimental data on grinding the silica component together with clinker to the optimum dispersion. This allows increasing the strength of non-autoclaved aerated concrete up to 33%. Furthermore, the addition to aerated concrete the mixture of dispersed reinforcing agents (wollastonite, diopside) and electrolytes with multiply charged cations and anions (1% Fe2 (SO4)3; Al2 (SO4)3) provides the growth of aerated concrete strength at 30 - 75%. As a cohesive the clinker, crushed together with silica and mineral supplements should be used. This increases the strength of aerated concrete at 65% in comparing with Portland cement.

  10. USINT. Heat and Mass Transfer In Concrete

    SciTech Connect

    Eyberger, L.R.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  11. USINT. Heat and Mass Transfer in Concrete

    SciTech Connect

    Beck, J.V.; Knight, R.L.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  12. Electrical Resistance Tomography imaging of concrete

    SciTech Connect

    Karhunen, Kimmo; Seppaenen, Aku; Lehikoinen, Anssi; Monteiro, Paulo J.M.; Kaipio, Jari P.

    2010-01-15

    We apply Electrical Resistance Tomography (ERT) for three dimensional imaging of concrete. In ERT, alternating currents are injected into the target using an array of electrodes attached to the target surface, and the resulting voltages are measured using the same electrodes. These boundary measurements are used for reconstructing the internal (3D) conductivity distribution of the target. In reinforced concrete, the metallic phases (reinforcing bars and fibers), cracks and air voids, moisture gradients, and the chloride distribution in the matrix carry contrast with respect to conductivity. While electrical measurements have been widely used to characterize the properties of concrete, only preliminary results of applying ERT to concrete imaging have been published so far. The aim of this paper is to carry out a feasibility evaluation with specifically cast samples. The results indicate that ERT may be a feasible modality for non-destructive evaluation of concrete.

  13. Requirements for construction of offshore concrete platforms

    SciTech Connect

    Gudmestad, O.T.; Pollard, N.

    1994-12-31

    For development of offshore fields, the operator must select production concepts. As several options like subsea templates, floating production and storage concepts, semisubmersibles and steel platforms etc. are available, this paper will review the specifics of one of the possible concepts, the concrete platform. The application of offshore concrete platforms is gaining renewed interest world wide. Several operators are presently carrying out comparisons between offshore concrete structures and jacket support structures. This evaluation includes considerations related to constructability incorporating studies of potential construction sites, and infrastructures as well as availability of materials. This paper summarizes requirements for carrying out an offshore concrete platform construction project and will be useful to those interested in concrete projects.

  14. Semi lightweight concretes produced by volcanic slags

    SciTech Connect

    Topcu, I.B.

    1997-01-01

    The properties of the semi-lightweight concretes produced by using volcanic slags as coarse aggregate were investigated. The volcanic slags were brought from the quarry crushed and then classified according to their aggregate sizes of 0--8, 0--16, 0--31.5, 4--8, and 8--16 mm. The concrete series of five different volcanic slag sizes were produced by addition of a specific cement paste in volume fractions of 0.15, 0.30, 0.45 and 0.60. The cubic, cylindrical and prismatic specimens were made from each of the concrete series. The physical and mechanical properties of the concrete series were determined by conducting unit weight, slump, ultrasound velocity, Schmidt hardness, cylindrical and cubic compressive, bending and splitting tensile strength tests. The results indicated that the volcanic slags can be safely used in the production of semi lightweight concrete.

  15. Evaluation of alternative concrete cutting techniques for massive concrete structures

    SciTech Connect

    Craig, K.; Boing, L.

    1994-12-31

    Various methods for removing massive concrete structures during decontamination and decommissioning (D&D), such as the map tube facility and waste storage vaults located in the 317 Area of Argonne National Laboratory, have been evaluated by NES, Inc./integrated Environmental Services. Five of the most feasible cutting technologies are described in terms of their ability to perform the required tasks; their performance characteristics; radiological, safety, and environmental impacts; and cost and schedule considerations. These cutting techniques are consequential in the D&D process for reducing the amount of radioactive waste requiring disposal and decreasing worker exposure to contamination. Table I lists the cutting technologies that were analyzed and the key parameters of each. This synopsis permits a rapid comparison of the techniques. For each cutting technique, the cutting speed is based on compilation of vendor information. Costs are given for the individual cutting system.

  16. Radiation Damage In Reactor Cavity Concrete

    SciTech Connect

    Field, Kevin G; Le Pape, Yann; Naus, Dan J; Remec, Igor; Busby, Jeremy T; Rosseel, Thomas M; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  17. Special concrete shield selection using the analytic hierarchy process

    SciTech Connect

    Abulfaraj, W.H. . Nuclear Engineering Dept.)

    1994-08-01

    Special types of concrete radiation shields that depend on locally available materials and have improved properties for both neutron and gamma-ray attenuation were developed by using plastic materials and heavy ores. The analytic hierarchy process (AHP) is implemented to evaluate these types for selecting the best biological radiation shield for nuclear reactors. Factors affecting the selection decision are degree of protection against neutrons, degree of protection against gamma rays, suitability of the concrete as building material, and economic considerations. The seven concrete alternatives are barite-polyethylene concrete, barite-polyvinyl chloride (PVC) concrete, barite-portland cement concrete, pyrite-polyethylene concrete, pyrite-PVC concrete, pyrite-portland cement concrete, and ordinary concrete. The AHP analysis shows the superiority of pyrite-polyethylene concrete over the others.

  18. Fatigue of concrete beams and slabs

    NASA Astrophysics Data System (ADS)

    Roesler, Jeffrey Raphael

    Traditionally, simply supported concrete beam (SSB) fatigue results have been used to characterize the fatigue resistance of fully supported concrete slabs (FSS). SSB concrete fatigue tests have been assumed to be equivalent to the fatigue resistance of concrete slabs in the field. The effect specimen size, boundary conditions, and loading configurations have on the fatigue of concrete beams and slabs have not been considered in the design of concrete pavements against fatigue. A laboratory study was undertaken to determine if the fatigue behavior of FSS and SSB were similar. A fully supported beam (FSB) was also tested under repeated loading, since it represented an intermediate specimen size and testing configuration between SSB and FSS. The best way to present fatigue results for all specimens was a stress ratio (S) to number of cycles to failure (N) curve (S-N curve). SSB fatigue behavior was similar to results obtained from the literature. FSB had similar fatigue behavior to SSB. The fatigue curve derived from repeated loading of FSS was 30 percent higher than the SSB fatigue curve. This suggested for a given number of cycles to failure, FSS could take a 30 percent higher bending stress as compared to SSB and FSB. The concrete modulus of rupture from a FSS test configuration was 30 percent greater than the concrete modulus of rupture from a SSB test setup. If the concrete modulus of rupture from a FSS test configuration was used in the slab's stress ratio, the slab's fatigue curve was the same as the SSB and FSB. This meant concrete behaved the same under fatigue loading, irrespective of specimen size and test configuration, as long as the correct concrete modulus of rupture was used in the stress ratio. Strain gages, attached to all specimens tested, indicated cracking in concrete occurred in a narrow band. Regions of high plastic strain were found in the plane of cracking, while adjacent areas experienced decreases in strain levels with cracking. Strain

  19. Examination of Behavior of Fresh Concrete Under Pressure

    NASA Astrophysics Data System (ADS)

    Yücel, K. T.

    2012-05-01

    Transporting fresh concrete constitutes a significant part of the production process. Transferring ready-mixed concrete on-site is done using concrete pumps. Recent developments in concrete technology, and in mineral and chemical additives, have resulted in new developments in pumping techniques and the use of different concrete mixtures and equipment. These developments required further knowledge of the behavior of fresh concrete under pressure. Two criteria were determined for the pumpability of concrete: the power required to move the concrete or of the repulsive force; and the cohesion of the fresh concrete. It would be insufficient to relate pumpability to these two criteria; the values of segregation pressure, diffusion ability, water retention capacity, and side friction of the mixture are significant parameters in ensuring that concrete is pumped freely along the pipe. To solve the pumpability problem, friction stresses should be determined as a function of the linear pressure gradient, the pressure leading to segregation of the fresh concrete should be determined, and tests for the bleeding of concrete under pressure should be examined. The scope of the research is the examination of the behavior of fresh concrete under pressure. To determine the segregation pressures, a test apparatus was designed for the bleeding of concrete under pressure. The main purpose of the study is to determine whether the concrete can be pumped easily and whether it will lose its cohesion during the pumping, based on tests of concrete workability and bleeding of concrete under pressure.

  20. Immobilization of iodine in concrete

    DOEpatents

    Clark, Walter E.; Thompson, Clarence T.

    1977-04-12

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.

  1. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  2. Modeling of anisotropic ablation of the concrete during Molten Core Concrete Interaction

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Min

    This work proposes a model to explain concrete anisotropic ablation by corium during a Molten Corium Concrete Interaction (MCCI). As a result of recent MCCI prototypic material experiments, CCI and VULCANO tests, one observes that concrete ablation behavior consistently depends on the concrete materials used in the experiments. Specifically, tests with Limestone-Common-Sand (LCS) concrete yielded isotropic concrete ablation; i.e., equal axial and radial concrete erosion. This is in comparison to anisotropic ablation in tests with Siliceous (SIL) concrete, where radial ablation was much larger than axial ablation. This was an unexpected result, because prior results of many MCCI simulant experiments indicated that nearly isotropic ablation was expected in prototypic material experiments regardless of concrete type. A new phenomenological model is proposed in this work based on a hypothesis that unifies the result of both previous simulant and prototypic material experiments; i.e., heat transfer area enhancement and delayed gas release caused by the presence of un-melted solid aggregate material that enters the molten pool. This model offers a logical and phenomenological explanation concerning anisotropic ablation as well as the capability to simulate anisotropic ablation. This model is implemented into the CORQUENCH code as part of this work. Comparisons of simulation results obtained with this new model to the CCI experiments for cases with siliceous concrete and anisotropic ablation show better agreement with the test data than the existing model.

  3. SA-based concrete seismic stress monitoring: a case study for normal strength concrete

    NASA Astrophysics Data System (ADS)

    Hou, S.; Zhang, H. B.; Ou, J. P.

    2016-09-01

    The stress history of concrete structures that have survived an earthquake can serve as a critical index to evaluate the health of the structure. There are currently few reliable monitoring methods to assess concrete stress after a seismic event. Piezoelectric-based smart aggregate (SA) provides an innovative experimental approach to monitor stress on concrete. The principle of SA-based concrete seismic stress monitoring is based on the assumption that concrete stress can be reliably predicted by the average output voltages of limited SAs with an acceptable margin of error. In this study, the meso-scale randomness of concrete was evaluated throughout the overall stress range of concrete and the influence of different load paths was considered. Four cylindrical specimens of normal strength concrete were embedded with a total of 24 SAs. The SA output sensitivity curve in the paths of loading–unloading with different amplitudes and monotonic loading up to failure was obtained. Monitoring errors were analyzed during pre- and post-peak stages from the experimental results. This research suggests that SA-based concrete seismic stress monitoring for normal strength concrete is reliable.

  4. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  5. The Apparent Thermal Conductivity of Pozzolana Concrete

    NASA Astrophysics Data System (ADS)

    Bessenouci, M. Z.; Triki, N. E. Bibi; Khelladi, S.; Draoui, B.; Abene, A.

    The recent development of some lightweight construction materials, such as light concrete, can play an important role as an insulator, while maintaining sufficient levels of mechanical performance. The quality of insulation to provide depends on the climate, the exposure of the walls and also the materials used in the construction. The choice of a material to be used as an insulator, obviously, depends on its availability and its cost. This is a study of natural pozzolanas as basic components in building materials. It is intended to highlight their thermal advantage. It is economically advantageous to use pozzolana in substitution for a portion of the clinker as hydraulically active additions, as well as in compositions of lightweight concretes in the form of pozzolanic aggregate mixtures, which provide mechanical strengths that comply with current standards. A theoretical study is conducted on the apparent thermal conductivity of building materials, namely concrete containing pozzolana. Thermal modeling, apparent to that commonly used for porous materials, has been applied to pozzolana concrete. Experimental results on measurements of the apparent thermal conductivity of pozzolana concrete are reported in this study, using an approach that considers that concrete is composed of two solid ingredients, a binding matrix (hydrated cement paste) and all aggregates. A second comparative theoretical approach is used for the case where concrete consists of a solid phase and a fluid phase (air).

  6. Monitoring durability of new concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Aktan, Haluk M.; Yaman, Ismail O.; Staton, John F.

    2001-08-01

    The ND durability monitoring procedure, which measures the soundness of field concrete, is based on the fundamental relationship between ultrasonic pulse velocity (UPV) and permeability of an elastic medium. An experimental study documented adequate sensitivity between UPV and concrete permeability. The durability monitoring procedure is based on a parameter developed as part of this study and called paste quality loss (PQL) which is computed from the probability density function parameters of ultrasonic pulse velocity measurements taken from standard and field concrete. For PQL computation, measurements taken on standard concrete specimens, which are made from field concrete mixture, are compared to field measurements. The verification tests on 1000 mm x 1500 mm x 230 mm lab-deck specimens indicated that the PQL parameter computed from the UPV measurements as early as the 28th day is a good predictor of soundness. The UPV measurements made at increasing age of concrete very clearly document the rapid loss of soundness of improperly cured concrete decks. Deck replacement projects on three NHS bridges were used in the implementation of durability monitoring by PQL (paste quality loss) evaluation. The respective 56-day PQL's were calculated as 15%, 31% and 9% indicating a significant variability in the three bridges.

  7. Self-cleaning geopolymer concrete - A review

    NASA Astrophysics Data System (ADS)

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  8. Damage detection in concrete using Lamb waves

    NASA Astrophysics Data System (ADS)

    Jung, Young-Chul; Na, Won-Bae; Kundu, Tribikram; Ehsani, Mohammad R.

    2000-06-01

    The feasibility of detecting defects in concrete beams using Lamb waves is investigated in this paper. The Lamb wave can propagate a long distance along the specimen as the guided wave and is sensitive to defects that are smaller than its wavelength. The traditional ultrasonic methods for inspecting defects in concrete use reflection, transmission and scattering of longitudinal waves by internal defects. In traditional techniques signal amplitude and time of flight measurements provide information about the internal defects in concrete. These methods are time consuming and often fail to detect a variety of defects, such as internal corrosion, honeycombs, closed cracks and small inclusions. In this paper Lamb waves are used to detect those defects in concrete beams with and without reinforcement. The Lamb wave technique is found to be reliable for detecting such defects. The effect of separation or delamination between concrete and reinforcing steel bars on the Lamb wave propagation characteristics is also investigated. Corrosion of rebars can cause this delamination. It is found that the cylindrical guided waves propagating along the steel rebars are very sensitive to the degree of delamination between the concrete and the rebars. This investigation shows that the Lamb wave inspection technique is an efficient and effective tool for health monitoring of concrete structures.

  9. Controlling chloride ions diffusion in concrete

    PubMed Central

    Zeng, Lunwu; Song, Runxia

    2013-01-01

    The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle. PMID:24285220

  10. Unbonded capping for concrete masonry units

    SciTech Connect

    Crouch, L.K.; Knight, M.L.; Henderson, R.C.; Sneed, W.A. Jr.

    1999-07-01

    Due to the manufacturing process, the bearing surfaces of concrete masonry units are often somewhat rough and uneven. Therefore, concrete masonry units must be capped when tested in compression according to ASTM C 140-96, Standard Test Methods of Sampling and Testing Concrete Masonry Units. Capping of concrete masonry units is time consuming and expensive. Several studies of compression tests on concrete cylinders indicate that use of elastic pads in rigid retaining caps give similar compressive strength results to approved capping methods.An unbonded capping system for concrete masonry units similar to that described in ASTM C 1231-93, Standard Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders, was developed. The average compressive strength results obtained when using the unbonded capping system ranged from 92--94% of the average compressive strength results obtained when using ASTM C 140-96 approved methods. Further, use of the unbonded capping system was found to increase productivity and substantially reduce testing cost.

  11. Propagation characteristics of electromagnetic waves in concrete

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Maser, Kenneth; Kausel, Eduardo

    1989-03-01

    This research develops models which can predict the velocity and attenuation of electromagnetic waves in concrete as a function of frequency, temperature, moisture content, chloride content and concrete mix constituents. These models were proposed to predict the electromagnetic properties of concrete by aggregating the electromagnetic properties of its constituents. Water and the dissolved salt are the constituents having the most prominent effect on the dielectric behavior of concrete. A comparative study of three existing three-phase mixture models was carried out. Numerical results were generated using the most representative Discrete model. These results have shown that the real part of complex concrete permittivity (and therefore the velocity of electromagnetic waves) is independent of salinity or frequency in the 0.6 to 3.0 GHz frequency range. On the other hand, these results show that the attenuation coefficient and dielectric conductivity vary almost linearly with frequency in this same frequency range. The real part of concrete permittivity and the attenuation coefficient also show a linear dependence with respect to the degree of saturation of water in the concrete mixture. This suggests that future research should focus on approximating the complex models presented in this research by simple equations.

  12. NONSAP-C. Nonlinear Stress Concrete Structures

    SciTech Connect

    Anderson, C.A.; Smith, P.D.; Carruthers, L.M.; Taylor, C.

    1992-01-13

    NONSAP-C is a finite element program for determining the static and dynamic response of three-dimensional reinforced concrete structures. Long-term, or creep, behavior of concrete structures can also be analyzed. Nonlinear constitutive relations for concrete under short-term loads are incorporated in two time-independent models, a variable-modulus approach with orthotropic behavior induced in the concrete due to the development of different tangent moduli in different directions and an elastic-plastic model in which the concrete is assumed to be a continuous, isotropic, and linearly elastic-plastic strain-hardening-fracture material. A viscoelastic constitutive model for long-term thermal creep of concrete is included. Three-dimensional finite elements available in NONSAP-C include a truss element, a multinode tendon element for prestressed and post tensioned concrete structures, an elastic-plastic membrane element to represent the behavior of cavity liners, and a general isoparametric element with a variable number of nodes for analysis of solids and thick shells.

  13. Investigation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Morgan, I.L.; Ally, M.R.

    1995-12-31

    Experiments have been conducted to investigate the capabilities of electrokinetic decontamination of concrete. Batch equilibration studies have determined that the loading of cesium and strontium on concrete may be decreased using electrolyte solutions containing competing cations, while solubilization of uranium and cobalt, that precipitate at high pH, will require lixiviants containing complexing agents. Dynamic electrokinetic experiments showed greater mobility of cesium than strontium, while some positive results were obtained for the transport of cobalt through concrete using EDTA and for uranium using carbonate.

  14. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  15. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    PubMed Central

    Carrión, Francisco; Montalbán, Laura; Real, Julia I.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  16. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  17. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  18. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  19. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  20. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural...

  1. Orthographic Neighborhood and Concreteness Effects in the Lexical Decision Task

    ERIC Educational Resources Information Center

    Samson, Dana; Pillon, Agnesa

    2004-01-01

    The experiment reported here investigated the sensitivity of concreteness effects to orthographic neighborhood density and frequency in the visual lexical decision task. The concreteness effect was replicated with a sample of concrete and abstract words that were not matched for orthographic neighborhood features and in which concrete words turned…

  2. Molecular Survey of Concrete Sewer Biofilm Microbial Communities

    EPA Science Inventory

    Although bacteria are implicated in deteriorating concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different concrete biofilms by performing sequence analysis of 16S rDNA concrete clone libraries. ...

  3. Concrete using waste oil palm shells as aggregate

    SciTech Connect

    Basri, H.B.; Mannan, M.A.; Zain, M.F.M.

    1999-04-01

    Concrete with oil palm shells (OPS) as coarse aggregate was investigated for its workability, density, and compressive strength development over 56 days under three curing conditions. The effect of fly ash as partial cement replacement was also studied. Fresh OPS concrete was found to have better workability while its 28-day air-dry density was 19--20% lower than ordinary concrete. Compressive strength after 56 days was found to be 41--50% lower than ordinary concrete. These results were still within the normal range for structural lightweight concrete. Fly ash was found to lower the compressive strength of OPS concrete, which was the opposite of its effect on normal concrete.

  4. The shakeout scenario: Meeting the needs for construction aggregates, asphalt, and concrete

    USGS Publications Warehouse

    Langer, W.H.

    2011-01-01

    An Mw 7.8 earthquake as described in the ShakeOut Scenario would cause significantdamage to buildings and infrastructure. Over 6 million tons of newly mined aggregate would be used for emergency repairs and for reconstruction in the five years following the event. This aggregate would be applied mostly in the form of concrete for buildings and bridges, asphalt or concrete for pavement, and unbound gravel for applications such as base course that goes under highway pavement and backfilling for foundations and pipelines. There are over 450 aggregate, concrete, and asphalt plants in the affected area, some of which would be heavily damaged. Meeting the increased demand for construction materials would require readily available permitted reserves, functioning production facilities, a supply of cement and asphalt, a source of water, gas, and electricity, and a trained workforce. Prudent advance preparations would facilitate a timely emergency response and reconstruction following such an earthquake. ?? 2011, Earthquake Engineering Research Institute.

  5. Insulating polymer concrete for LNG impounding dikes. [Polymer concretes

    SciTech Connect

    Fontana, J.J.; Steinberg, M.

    1986-03-01

    An insulating polymer concrete (IPC) composite has been developed under contract to the Gas Research Institute for possible use as a dike insulation material at Liquid Natural Gas (LNG) storage facilities. In the advent of an LNG spill into the impounding dike area, the boiloff rate of the LNG can be substantially reduced if the surfaces of the dike are insulated. This increased safety at the LNG facility will tend to reduce the hazardous explosive mixture with atmospheric air in the surrounding region. The dike insulation material must have a low thermal conductivity and be unaffected by environmental conditions. The IPC composites developed consist of perlite or glass nodule aggregates bound together as a closed cell structure with a polyester resin. In addition to low thermal conductivity and porosity, these composites have correspondingly high strengths and, therefore, can carry transient loads of workmen and maintenance equipment. Prefabricated IPC panels have been installed experimentally and at least one utility is currently considering a complete installation at its LNG facility. 5 refs., 5 tabs.

  6. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  7. Laboratory constitutive characterization of cellular concrete.

    SciTech Connect

    Hardy, Robert Douglas; Lee, Moo Yul; Bronowski, David R.

    2004-03-01

    To establish mechanical material properties of cellular concrete mixes, a series of quasi-static, compression and tension tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established failure criteria for the cellular concrete in terms of stress invariants I{sub 1} and J{sub 2}. {radical}J{sub 2} (MPa) = 297.2 - 278.7 exp{sup -0.000455 I}{sub 1}{sup (MPa)} for the 90-pcf concrete {radical}J{sub 2} (MPa) = 211.4 - 204.2 exp {sup -0.000628 I}{sub 1}{sup (MPa)} for the 60-pcf concrete

  8. Statistical analysis of ultrasonic measurements in concrete

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Chen, Po-Chih

    2002-05-01

    Stress wave techniques such as measurements of ultrasonic pulse velocity are often used to evaluate concrete quality in structures. For proper interpretation of measurement results, the dependence of pulse transit time on the average acoustic impedance and the material homogeneity along the sound path need to be examined. Semi-direct measurement of pulse velocity could be more convenient than through transmission measurement. It is not necessary to assess both sides of concrete floors or walls. A novel measurement scheme is proposed and verified based on statistical analysis. It is shown that Semi-direct measurements are very effective for gathering large amount of pulse velocity data from concrete reference specimens. The variability of measurements is comparable with that reported by American Concrete Institute using either break-off or pullout tests.

  9. Concrete hulls for tension-leg platforms

    SciTech Connect

    De Oliveira, J.G. ); Fjeld, S. )

    1990-06-01

    This paper describes the main features of a concrete-hull tension-leg-platform (TLP) concept developed for the Heidrun field in the Haltenbanken area of the Norwegian sector of the North Sea. The hydrodynamic response and the methods adopted to optimize the hull dimensions, as well as the mooring system and hull mechanical outfitting, are discussed first. Then construction methods are briefly described. Inspection, maintenance, and repair are also addressed. Finally, the advantages of the concrete-hull TLP concept are summarized, including the concrete hull's adaptability to a large range of design requirements, low cost, and short construction time. This paper shows that the concrete-hull TLP is a very cost-efficient solution for the development of deepwater fields.

  10. Sequestration of CO2 by concrete carbonation.

    PubMed

    Galan, Isabel; Andrade, Carmen; Mora, Pedro; Sanjuan, Miguel A

    2010-04-15

    Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. The characteristics of the concrete cover should ensure alkaline protection for the steel bars but should also be able to combine CO2 to a certain depth. This work attempts to advance the knowledge of the carbon footprint of cement. As it is one of the most commonly used materials worldwide, it is very important to assess its impact on the environment. In order to quantify the capacity of cement based materials to combine CO2 by means of the reaction with hydrated phases to produce calcium carbonate, Thermogravimetry and the phenolphthalein indicator have been used to characterize several cement pastes and concretes exposed to different environments. The combined effect of the main variables involved in this process is discussed. The moisture content of the concrete seems to be the most influential parameter. PMID:20225850

  11. Exploring Floating Concrete and Beam Design.

    ERIC Educational Resources Information Center

    Snell, Billie G.; Snell, Luke M.

    2002-01-01

    Presents two construction activities that address both state and federal science standards and encourage students to consider career options in mathematics and science. Includes floating concrete and paper bridge activities. (YDS)

  12. Use of incinerator bottom ash in concrete

    SciTech Connect

    Pera, J.; Coutaz, L.; Ambroise, J.; Chababbet, M.

    1997-01-01

    The aim of the present work was to show if municipal solid waste incinerator (MSWI) bottom ash could be an alternative aggregate for the production of building concrete presenting a characteristic 28-day compressive strength of 25 MPa. The aggregates passing the 20-mm sieve and retained on the 4-mm sieve were considered for investigation. They showed lower density, higher water absorption, and lower strength than natural gravel. They could be considered as average quality aggregates for use in concrete. When directly introduced in concrete, they led to swelling and cracking of specimens, due to the reaction between cement and metallic aluminium. Therefore, a treatment by sodium hydroxide was proposed to avoid such degradation, which made possible the partial replacement (up to 50%) of gravel in concrete without affecting the durability.

  13. Concrete "Waffle" Provides Laser Beam Accuracy

    ERIC Educational Resources Information Center

    Building Design and Construction, 1978

    1978-01-01

    A massive concrete "waffle," riding on a bed of specially treated gravel and sand inside another building, provides the structural rigidity needed by the University of Rochester's Laboratory for Laser Energetics. (Author)

  14. Seismic safety of high concrete dams

    NASA Astrophysics Data System (ADS)

    Chen, Houqun

    2014-08-01

    China is a country of high seismicity with many hydropower resources. Recently, a series of high arch dams have either been completed or are being constructed in seismic regions, of which most are concrete dams. The evaluation of seismic safety often becomes a critical problem in dam design. In this paper, a brief introduction to major progress in the research on seismic aspects of large concrete dams, conducted mainly at the Institute of Water Resources and Hydropower Research (IWHR) during the past 60 years, is presented. The dam site-specific ground motion input, improved response analysis, dynamic model test verification, field experiment investigations, dynamic behavior of dam concrete, and seismic monitoring and observation are described. Methods to prevent collapse of high concrete dams under maximum credible earthquakes are discussed.

  15. Pentek concrete scabbling system: Baseline report

    SciTech Connect

    1997-07-31

    The Pentek scabbling technology was tested at Florida International University (FIU) and is being evaluated as a baseline technology. This report evaluates it for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek concrete scabbling system consisted of the MOOSE{reg_sign}, SQUIRREL{reg_sign}-I, and SQUIRREL{reg_sign}-III scabblers. The scabblers are designed to scarify concrete floors and slabs using cross-section, tungsten carbide tipped bits. The bits are designed to remove concrete in 318 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  16. Façade Greening: High-rise apartment building in Milan using pre-stressed concrete slab

    NASA Astrophysics Data System (ADS)

    Sun, Wenning; Li, Mingxin; Han, Yinong; Wang, Moqi; Ansourian, Peter

    2016-08-01

    In this project, one single level of the Façade Greening was designed and modelled using finite element method in Strand7. A static analysis was performed in order to understand the deflection and the stress due to the extra loads imposed by the soil and plants. The results produced by the linear static solver are compared with the strength of the materials and the European limitations. The maximum tension stress which exceeds the tensile strength in concrete is found in the root of the cantilever balcony. An alternative design of the cantilevered balcony with pre-stressed concrete slab is modelled separately for the balcony. Decrease is found in the tension stress and the significant improvement of deflection of the balcony with pre-stressed concrete slab. The dynamic loads such as wind and earthquake did not suggest significant effect on the pre-stressed concrete slab.

  17. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed. PMID:16930831

  18. Assessment of permeation quality of concrete through mercury intrusion porosimetry

    SciTech Connect

    Kumar, Rakesh; Bhattacharjee, B

    2004-02-01

    Permeation quality of laboratory cast concrete beams was determined through initial surface absorption test (ISAT). The pore system characteristics of the same concrete beam specimens were determined through mercury intrusion porosimetry (MIP). Data so obtained on the measured initial surface absorption rate of water by concrete and characteristics of pore system of concrete estimated from porosimetry results were used to develop correlations between them. Through these correlations, potential of MIP in assessing the durability quality of concrete in actual structure is demonstrated.

  19. Pedogenic Carbonate Concretions in the Russian Chernozem

    SciTech Connect

    Mikhailova, E. A.; Post, C. J.; Magrini-Bair, K.; Castle, J. W.

    2006-12-01

    Pedogenic carbonate concretions are commonly found in grassland soils, but their origin is not fully understood. This study was conducted to determine the radiocarbon age, the stable isotope geochemistry, and chemical composition of carbonate concretions in the Russian Chernozem, one of the typical soils in grasslands. Three sites were sampled: a native grassland field (not cultivated for at least 300 years), an adjacent 50-year continuous fallow field in the V. V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. The mineralogical composition of concretions varies from low-magnesium calcite to pure calcite. The concretion contains 0.05% N, 6.4% C, and has [delta]13C and [delta]18O values of -10.9[per mille sign] (the per mill symbol, parts per thousand) and -7.8[per mille sign], respectively. The outside part of the carbonate concretion is 1909 +/- 40 14C age Before Present (B.P.) compared with 1693 +/- 40 14C age B.P. for the inside part of the same concretion, even though the concretion is found in the C horizon of much older age (10,902 +/- 63 14C age B.P.). Remnants of soil organic matter in concretions are closely associated with the cropped and fallow/plowed soils by pyrolysis molecular beam mass spectrometry.

  20. Strain rate effects for spallation of concrete

    NASA Astrophysics Data System (ADS)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  1. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.

    PubMed

    Acharya, Prasanna K; Patro, Sanjaya K

    2016-08-01

    Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test. PMID:27357563

  2. Electromagnetic Metrology on Concrete and Corrosion.

    PubMed

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S 11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  3. Damage detection in concrete and cementitious composites

    NASA Astrophysics Data System (ADS)

    Wu, Hwai-Chung; Pai, P. Frank

    2008-03-01

    Traditionally ultrasonic testing is used to estimate the extent of damage in a concrete structure. However Pulse-velocity and amplitude attenuation methods are not very reliable, and are difficult to reveal early damage of concrete. In a previous study, a new active modulation approach, Nonlinear Active Wave Modulation Spectroscopy, was developed and found promising for early detection of damage in concrete. In this procedure, a probe wave is passed through the system in a fashion similar to regular acoustic methods for inspection. Simultaneously, a second, low-frequency modulating wave is applied to the system to effectively change the size and stiffness of flaws microscopically and cyclically, thereby causing the frequency modulation to change cyclically as well. It has been also shown that it is advantageous to apply the Hilbert-Huang transform to decompose nonlinear non-stationary time-domain responses of plain concrete. Such procedure leads to improving the damage detection sensitivity of this modulation method in concrete. In this paper, further investigation on mortar and fiber reinforced concrete will be presented and discussed.

  4. Nonlinear NDE of Concrete Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Shkolnik, Iosif E.

    2006-05-01

    Obtained theoretical relationship shows that the strength of concrete increases if the nonlinear parameter decreases. Experimental data proved that modulus of elasticity, ultrasound pulse velocity and nonlinear parameter are independent characteristics of concrete. Two nondestructive patent methods based on the measurement of resonant frequency shift and phase shift are described. These nonlinear nondestructive methods can be used when conventional acoustic methods are not applicable for evaluating strength of concrete. The relationship between static and dynamic modulus is obtained from the thermofluctuation theory and nonlinear equation of state of concrete. Corresponding relationship shows that the ratio of the static to the dynamic modulus of elasticity depends on the strength of concrete, its temperature, ratio and rate of loading, and that dynamic modulus is greater than static modulus of elasticity. Comparative study illustrates substantial agreement between obtained relationships and existing experimental results as well as general equations given in standards. Presented data illustrate the potential of the nonlinear approach, and indicate a new direction for nonlinear nondestructive methods of evaluating mechanical properties of concrete.

  5. Ultrasonic testing of reactive powder concrete.

    PubMed

    Washer, Glenn; Fuchs, Paul; Graybeal, Benjamin A; Hartmann, Joseph Lawrence

    2004-02-01

    Concrete is a critical material for the construction of infrastructure facilities throughout the world. Traditional concretes consist of cement paste and aggregates ranging in size from 6 to 25 mm that form a heterogeneous material with substantial compressive strength and a very low tensile strength. Steel reinforcement is used to provide tensile strength for reinforced concrete structures and as a composite the material is useful for structural applications. A new material known as reactive powder concrete (RPC) is becoming available. It differs significantly from traditional concrete; RPC has no large aggregates, and contains small steel fibers that provide additional strength and, in some cases, can replace traditional steel reinforcement. Due to its high density and lack of aggregates, ultrasonic inspections at frequencies 10 to 20 times that of traditional concrete inspections are possible. This paper reports on the initial findings of research conducted to determine the applicability of ultrasonic testing techniques for the condition assessment of RPC. Pulse velocities for shear and longitudinal waves and ultrasonic measurement of the modulus of elasticity for RPC are reported. Ultrasonic crack detection for RPC also is investigated. PMID:15055809

  6. Electromagnetic Metrology on Concrete and Corrosion*

    PubMed Central

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  7. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work. PMID:26164853

  8. Concrete Nanoscience and Nanotechnology: Definitions and Applications

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.

    There are many improvements needed in concrete, especially for use in renewal and expansion of the world’s infrastructure. Nanomodification can help solve many of these problems. However, concrete has been slow to catch on to the nanotechnology revolution. There are several reasons for this lag in the nanoscience and nanotechnology of concrete (NNC). First is the lack of a complete basic understanding of chemical and physical mechanisms and structure at the nanometer length scale. Another reason is the lack of a broad understanding of what nanomodification means to concrete, which is a liquid-solid composite. NNC ideas need to profit from, but not be bound by, experience with other materials. As an illustration of these ideas, a specific application will be given of using nano-size molecules in solution to affect the viscosity of the concrete pore solution so that ionic diffusion is slowed. A molecular-based understanding would help move this project towards true nanotechnology. A final section of this paper lists some possibly fruitful focus areas for the nanoscience and nanotechnology of concrete.

  9. Moisture Transport Through Sprayed Concrete Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar; Geving, Stig

    2016-01-01

    Waterproofing of permanent sprayed concrete tunnel linings with sprayed membranes in a continuous sandwich structure has been attempted since 2000 and has seen increased use in some countries. The main function of a sprayed membrane from a waterproofing perspective is to provide crack bridging and hence prevent flow of liquid water into the tunnel through cracks and imperfections in the concrete material. However, moisture can migrate through the concrete and EVA-based membrane materials by capillary and vapor diffusion mechanisms. These moisture transport mechanisms can have an influence on the degree of saturation, and may influence the pore pressures in the concrete material as well as risk of freeze-thaw damage of the concrete and membrane. The paper describes a detailed study of moisture transport material parameters, moisture condition in tunnel linings and climatic conditions tunnels in hard rock in Norway. These data have been included in a hygrothermal simulation model in the software WUFI for moisture transport to substantiate moisture transport and long-term effects on saturation of the concrete and membrane material. The findings suggest that EVA-based membranes exhibit significant water absorption and vapor transport properties although they are impermeable to liquid water flow. State-of-the-art sprayed concrete material applied with the wet mix method exhibits very low hydraulic conductivities, lower than 10-14 m/s, thus saturated conductive water flow is a very unlikely dominant transport mechanism. Moisture transport through the lining structure by capillary flow and vapor diffusion are calculated to approximately 3 cm3/m2 per day for lining thicknesses in the range of 25-35 cm and seasonal Nordic climate variations. The calculated moisture contents in the tunnel linings from the hygrothermal simulations are largely in agreement with the measured moisture contents in the tunnel linings. The findings also indicate that the concrete material exhibits

  10. Curvature ductility of reinforced and prestressed concrete columns

    SciTech Connect

    Suprenant, B.A.

    1984-01-01

    Engineers are concerned with the survival of reinforced and prestressed concrete columns during earthquakes. The prediction of column survival can be deduced from moment-curvature curves of the column section. An analytical approach is incorporated into a computer model. The computer program is based on assumed stress-strain relations for confined and unconfined concrete, nonprestressed and prestressing steel. The results of studies on reinforced and prestressed concrete columns indicate that reinforced concrete columns may be designed to resist earthquakes, while prestressed concrete columns may not. The initial reduction in moment capacity, after concrete cover spalling, of a prestressed concrete column could be as much as 50%. Analyses indicate that the bond between concrete and prestressing strand after concrete cover spalling is not critical.

  11. Penetration analysis of projectile with inclined concrete target

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  12. Concrete shaver. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The US Department of Energy (DOE) is in the process of decontamination and decommissioning (D and D) for many of its nuclear facilities throughout the United States. These facilities must be dismantled and the demolition waste sized into manageable pieces for handling and disposal. The facilities undergoing D and D are typically chemically and/or radiologically contaminated. To facilitate this work, DOE requires a tool capable of removing the surface of radiologically contaminated concrete floors. Operating requirements for the tool include simple and economical operation, the capability of operating in ambient temperatures from 3 C to 40 C (37 F to 104 F), and the ability to be easily decontaminated. The tool also must be safe for workers. The Marcrist Industries Limited concrete shaver is an electrically driven, self-propelled concrete and coating removal system. This technology consists of a 25-cm (10-in.)-wide diamond impregnated shaving drum powered by an electric motor and contains a vacuum port for dust extraction. The concrete shaver is ideal for use on open, flat, floor areas. The shaver may also be used on slightly curved surfaces. This shaver is self-propelled and produces a smooth, even surface with little vibration. The concrete shaver is an attractive alternative to traditional pneumatic scabbling tools, which were considered the baseline in this demonstration. The use of this tool reduces worker fatigue (compared to the baseline) due to lower vibration. The shaver is more than five times faster than the five-piston pneumatic scabbler at removing contamination from concrete. Because of this increased productivity, the shaver is 50% less costly to operate than baseline technologies. The DOE has successfully demonstrated the concrete shaver for decontaminating floors for free-release surveys prior to demolition work.

  13. OECD 2-D Core Concrete Interaction (CCI) tests : CCI-2 test plan, Rev. 0 January 31, 2004.

    SciTech Connect

    Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. The first of these two tests, CCI-1, was conducted on December 19, 2003. This test investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % calcined siliceous concrete, with a specially designed two

  14. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2009-12-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  15. Technology for concrete pipe manipulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dan; Lin, Renzhi

    2010-01-01

    The pipe manipulator is a developing mechatronic system to enhance productivity and protects workers from cave-ins in the trench while excavating and laying pipe. The pipe manipulator is for installing concrete pipe into the trench. It is an optical-electro-mechanical system. The mechanism is make up of two parts, the upside and underside. The upside is for lifting the equipment by backhoe and rotating the underside mechanism. It includes rigidity lift beams, holding pad, four-bar linkages, hydraulic cylinder, rotating support, and rotating mechanism. Holding pad will press the bucket back to keep the bucket hooking the pipe man safely and stably. The underside mechanism is for lifting, holding and adjusting the pipe section's stance. The underside mechanism includes support trolley, and lift fork. The support trolley is driven by hydraulic cylinder for moving the fork forward or backward while laying a pipe into trench. The fork is with a self-lock mechanism for preventing the pipe from slide out of the prongs. A new photoelectric locating system is developed for auto-measuring the installing pipe section's stance within the work area. The laser target has been developed as a key part in the photoelectric locating systems. The photoelectric target is a rotating polar coordinate. Photodiodes are used for making the polar radius. There is an angular displacement sensor sitting on the heart-axis of the target for measuring angle of the target rotating. The pipe manipulator can be located by the system, and the locating methods have been presented at last of the paper.

  16. Radiation resistant concrete for applications in nuclear power and radioactive waste industries

    NASA Astrophysics Data System (ADS)

    Burnham, Steven Robert

    Elemental components of ordinary concrete contain a variety of metals and rare earth elements that are susceptible to neutron activation. This activation occurs by means of radiative capture, a neutron interaction that results in formation of radioisotopes such as Co-60, Eu-152, and Eu-154. Studies have shown that these three radioisotopes are responsible for the residual radioactivity found in nuclear power plant concrete reactor dome and shielding walls. Such concrete is classified as Low Level Radioactive Waste (LLRW) and Very Low Level Waste (VLLW) by International Atomic Energy Agency (IAEA) standards and requires disposal at appropriate disposal sites. There are only three such sites in the USA, and every nuclear power plant will produce at the time of decommissioning approximately 1,500 tonnes of activated concrete classified as LLRW and VLLW. NAVA ALIGA (ancient word for a new stone) is a new concrete mixture developed mainly by research as presented in this thesis. The purpose of NAVA ALIGA is to satisfy IAEA clearance levels if used as a material for reactor dome, spent fuel pool, or radioactive waste canisters. NAVA ALIGA will never be activated above the IAEA clearance level after long-term exposure to neutron radiation when used as a material for reactor dome, spent fuel pool, and radioactive waste canisters. Components of NAVA ALIGA were identified using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ISP-MS) to determine trace element composition. In addition, it was tested for compressive strength and permeability, important for nuclear infrastructure. The studied mixture had a high water to cement ratio of 0.56, which likely resulted in the high measured permeability, yet the mixture also showed a compressive strength greater than 6 000 psi after 28 days. In addition to this experimental analysis, which goal was to develop a standard approach to define the concrete mixtures in satisfying the IAEA

  17. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    SciTech Connect

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-07-01

    GE's latest evolution of the boiling water reactor, the ESBWR, has innovative passive design features that reduce the number and complexity of active systems, which in turn provide economic advantages while also increasing safety. These passive systems used for emergency cooling also mean that the primary containment system will experience elevated temperatures with longer durations than conventional plants in the event of design basis accidents. During a Loss of Coolant Accident (LOCA), the drywell in the primary containment structure for the ESBWR will be exposed to saturated steam conditions for up to 72 hours following the accident. A containment spray system may be activated that sprays the drywell area with water to condense the steam as part of the recovery operations. The liner back-pressure will build up gradually over the 72 hours as the concrete temperatures increase, and a sudden cool down could cause excessive differential pressure on the liner to develop. For this analysis, it is assumed that the containment spray is activated at the end of the 72-hour period. A back-pressure, acting between the liner and the concrete wall of the containment, can occur as a result of elevated temperatures in the concrete causing steam and saturated vapor pressures to develop from the free water remaining in the pores of the concrete. Additional pore pressure also develops under the elevated temperatures from the non-condensable gases trapped in the concrete pores during the concrete curing process. Any buildup of this pore pressure next to the liner, in excess of the drywell internal pressure, will act to push the liner away from the concrete with a potential for tearing at the liner anchorages. This paper describes the methods and analyses used to quantify this liner back-pressure so that appropriate measures are included in the design of the liner and anchorage system. A pore pressure model is developed that calculates the pressure distribution across the concrete

  18. Nondestructive inspection of corrosion and delamination at the concrete-steel reinforcement interface

    NASA Astrophysics Data System (ADS)

    Miller, Tri Huu

    The proposed study explores the feasibility of detecting and quantifying corrosion and delamination (physical separation) at the interface between reinforcing steel bars and concrete using ultrasonic guided waves. The problem of corrosion of the reinforcing steel in structures has increased significantly in recent years. The emergence of this type of concrete deterioration, which was first observed in marine structures and chemical manufacturing plants, coincided with the increased applications of deicing salts (sodium and calcium chlorides) to roads and bridges during winter months in those states where ice and snow are of major concern. Concrete is strengthened by the inclusion of the reinforcement steel such as deformed or corrugated steel bars. Bonding between the two materials plays a vital role in maximizing performance capacity of the structural members. Durability of the structure is of concern when it is exposed to aggressive environments. Corrosion of reinforcing steel has led to premature deterioration of many concrete members before their design life is attained. It is therefore, important to be able to detect and measure the level of corrosion in reinforcing steel or delamination at the interface. The development and implementation of damage detection strategies, and the continuous health assessment of concrete structures then become a matter of utmost importance. The ultimate goal of this research is to develop a nondestructive testing technique to quantify the amount of corrosion in the reinforcing steel. The guided mechanical wave approach has been explored towards the development of such methodology. The use of an embedded ultrasonic network for monitoring corrosion in real structures is feasible due to its simplicity. The ultrasonic waves, specifically cylindrical guided waves can p ropagate a long distance along the reinforcing steel bars and are found to be sensitive to the interface conditions between steel bars and concrete. Ultrasonic

  19. Nanomechanics and Multiscale Modeling of Sustainable Concretes

    NASA Astrophysics Data System (ADS)

    Zanjani Zadeh, Vahid

    The work presented in this dissertation is aimed to implement and further develop the recent advances in material characterization for porous and heterogeneous materials and apply these advances to sustainable concretes. The studied sustainable concretes were concrete containing fly ash and slag, Kenaf fiber reinforced concrete, and lightweight aggregate concrete. All these cement-based materials can be categorized as sustainable concrete, by achieving concrete with high strength while reducing cement consumption. The nanoindentation technique was used to infer the nanomechanical properties of the active hydration phases in bulk cement paste. Moreover, the interfacial transition zone (ITZ) of lightweight aggregate, normal aggregate, and Kenaf fibers were investigated using nanoindentation and imagine techniques, despite difficulties regarding characterizing this region. Samples were also tested after exposure to high temperature to evaluate the damage mechanics of sustainable concretes. It has been shown that there is a direct correlation between the nature of the nanoscale structure of a cement-based material with its macroscopic properties. This was addressed in two steps in this dissertation: (i) Nanoscale characterization of sustainable cementitious materials to understand the different role of fly ash, slag, lightweight aggregate, and Kenaf fibers on nanoscale (ii) Link the nanoscale mechanical properties to macroscale ones with multiscale modeling. The grid indentation technique originally developed for normal concrete was extended to sustainable concretes with more complex microstructure. The relation between morphology of cement paste materials and submicron mechanical properties, indentation modulus, hardness, and dissipated energy is explained in detail. Extensive experimental and analytical approaches were focused on description of the materials' heterogeneous microstructure as function of their composition and physical phenomenon. Quantitative

  20. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    SciTech Connect

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel

  1. Tailoring the fresh state properties of concrete

    NASA Astrophysics Data System (ADS)

    Tregger, Nathan Allen

    In this research, two types of concrete whose performance relies on their fresh-state abilities will be discussed. The first is self-consolidating concrete, which possesses high flowability without aggregate segregation. Quality control of flowability is typically predicted by the final diameter ( Df) of the slump-flow test, which in turn, has been related to yield stress of the fresh concrete. Currently, there are no reliable measures of viscosity from a field-friendly test such as the slump-flow test. It will be demonstrated that the viscosity can be related to the time to final diameter (Tf) from the minislump-flow tests for cement pastes. This relationship is extended to concrete systems where T f of the slump-flow test is correlated to dynamic segregation. For the concrete system, Tf was increased systematically using a viscosity modifying agent, while the Df was kept constant by adjusting the superplasticizer content. Segregation is determined by measuring the radial aggregate distribution from the slump-flow test. The results demonstrate that increasing the Tf improves dynamic segregation resistance. Furthermore, Tf was more indicative of viscosity than the time to reach a diameter of 50 cm (T50), which is currently used in the field as a measure of viscosity. Computational models are implemented to investigate these relationships for both cement and concrete systems. The second type of concrete is an improved slipform concrete with the ability to consolidate under minimal external energy yet maintain shape stability after being slipformed. This balance between flowability and shape stability is achieved through combination of fly ash and small dosages of micro and nano clays. A microstructural investigation of the effect of clays on the fresh state is carried out to relate macro behaviors with changes in the paste microstructure. Shear and compressive rheology techniques are used to measure how the solids volume fraction of the suspensions with different

  2. Boric Acid Corrosion of Concrete Rebar

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Yang, L.; Chiang, K.–T.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i) borated water flowing in a simulated concrete crack, (ii) borated water flowing over a concrete surface, (iii) borated water that has reacted with concrete, and (iv) 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS) and linear polarization resistance (LPR) probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or less)when the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  3. Studies on concrete containing ground waste glass

    SciTech Connect

    Shao, Y.; Lefort, T.; Moras, S.; Rodriguez, D.

    2000-01-01

    The possibility of using finely ground waste glass as partial cement replacement in concrete was examined through three sets of tests: the lime-glass tests to assess the pozzolanic activity of ground glass, the compressive strength tests of concrete having 30% cement replaced by ground glass to monitor the strength development, and the mortar bar tests to study the potential expansion. The results showed that ground glass having a particle size finer than 30 {mu}m did exhibit a pozzolanic behavior. The compressive strength from lime glass tests exceeded a threshold value of 4.1 MPa. The strength activity index was 91, 84, 96, and 108% at 3, 7, 28, and 90 days, respectively, exceeding 75% at al ages. The mortar bar tests demonstrated that the finely ground glass helped reduce the expansion by up to 50%. A size effect was observed; a smaller glass particle size led to a higher reactivity with lime, a higher compressive strength in concrete, and a lower expansion. Compared to fly ash concrete, concrete containing ground glass exhibited a higher strength at both early and late ages.

  4. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  5. Strain concentrations in pipelines with concrete coating

    SciTech Connect

    Ness, O.B.; Verley, R.

    1996-08-01

    This paper concerns the strain distribution, and in particular strain concentration in field joints, for concrete-covered pipelines during laying. A semi-analytical model, full-scale tests to verify the model, and results of a parameter study are described. The model is used to establish nonlinear moment-curvature curves at a number of cross sections on the concrete-coated pipe and in the field joint (FJ). These are used to establish a strain concentration factor (SCF) for the FJ, or characteristics for a varying stiffness model of a pipe for direct use in lay analyses. Constant moment, four-point bending tests have been conducted on 16-in and 20-in dia, concrete-coated pipes as well as material tests on the pipe steel, corrosion coating and concrete. The behavior of the pipe, and in particular the SCF at the field joints, is investigated and compared to predictions using the semi-analytical model. The model is found to give a good prediction of the SCF and strain distribution along the pipe joint, for both the steel and the concrete, and is suitable for use in lay analyses for the overbend of S-mode lay vessels.

  6. Concretion morphology, classification and genesis

    NASA Astrophysics Data System (ADS)

    Sellés-Martínez, J.

    1996-11-01

    , can grow while its host thins down by compaction. This overpressured-undercompacted model will be useful for the interpretation of an assemblage of features such as injection dikes, hydraulic breccias, cone-in-cone structures, among others that are thought to be representative of the former presence of overpressured horizons. These overpressured horizons could serve as detachment planes in paleotectonically active basins. Seals that could have controlled the movement of brines and hydrocarbons during the diagenetic evolution of the basin can also be assessed; this is relevant for the identification of maturation conditions. The potential development of secondary fracture permeability due to hydraulic fracturing in buried areas of the basin can also be evaluated based on the identification of formerly overpressured horizons in outcrops. "The origin of concretions is generally a geological puzzle" Clifton (1957).

  7. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-11-15

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  8. Nuclear Concrete Materials Database Phase I Development

    SciTech Connect

    Ren, Weiju; Naus, Dan J

    2012-05-01

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  9. Concrete decontamination by electro hydraulic scabbling

    SciTech Connect

    Goldfarb, V.; Gannon, R.; Woodroffe, J.

    1995-05-01

    TDS is developing an Electro Hydraulic device that has the potential of faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Control of the pulse energy, frequency and traverse speed control the depth of the scabbling action. performance thus far, has demonstrated the capability of the bench scale unit with a single pair of electrodes to scabble a swath 3 inches wide, up to 1 inch deep at a rate of up to 12 inches per minute. A unit with multiple electrodes will increase the width of the swath.

  10. Concrete decontamination by electro-hydraulic scabbling

    SciTech Connect

    Goldfarb, V.; Gannon, R.

    1995-12-01

    Textron Defense Systems (TDS) is developing an electro-hydraulic device that has the potential for faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Pulse energy, frequency, and traverse speed control the depth of the scabbling action. Performance thus far has demonstrated the capability of a prototype unit to process a swath 24 inches wide, up to 3/4 inches deep at a linear velocity of up to 6 feet per hour, i.e., at a scabbling rate of 12 sq. ft. per hour.

  11. Concrete Slump Classification using GLCM Feature Extraction

    NASA Astrophysics Data System (ADS)

    Andayani, Relly; Madenda, Syarifudin

    2016-05-01

    Digital image processing technologies have been widely applies in analyzing concrete structure because the accuracy and real time result. The aim of this study is to classify concrete slump by using image processing technique. For this purpose, concrete mix design of 30 MPa compression strength designed with slump of 0-10 mm, 10-30 mm, 30-60 mm, and 60-180 mm were analysed. Image acquired by Nikon Camera D-7000 using high resolution was set up. In the first step RGB converted to greyimage than cropped to 1024 x 1024 pixel. With open-source program, cropped images to be analysed to extract GLCM feature. The result shows for the higher slump contrast getting lower, but higher correlation, energy, and homogeneity.

  12. Nonlinear fracture of concrete and ceramics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.

    1989-01-01

    The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.

  13. Porosity estimation of concrete by ultrasonic NDE

    PubMed

    Hernandez; Izquierdo; Ibanez; Anaya; Ullate

    2000-03-01

    The increasing number of concrete structures with symptoms of premature deterioration due to environmental action demands procedures to estimate the durability of this type of component. Concrete durability is related to porosity, which determines the intensity of interactions of the material with aggressive agents. The pores and capillaries inside the structure facilitate the destructive processes that generally begin in the surface. In this work, an ultrasonic NDE technique to estimate the porosity of concrete is developed. The method is based on the analysis of the mechanical behaviour of mortar probes built with calibrated sand, in which the concentration of water-cement mixture has been varied. In this sense, data of sound velocity are correlated with data of porosity, which have been previously measured by destructive measurements. PMID:10829720

  14. Concrete decontamination by electro-hydraulic scabbling

    SciTech Connect

    Goldfarb, V.; Gannon, R.

    1995-10-01

    Textron Defense Systems (TDS) is developing an electro-hydraulic device that has the potential for faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Pulse energy, frequency, and traverse speed control the depth of the scabbling action. Performance thus far has demonstrated the capability of a prototype unit to process a swath 24 inches wide, up to 3/4 inch deep at a linear velocity of up to 6 feet per hour, i.e., at a scabbling rate of 12 sq. ft. per hour.

  15. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  16. Innovative technology summary report: Concrete grinder

    SciTech Connect

    1998-09-01

    The Flex concrete grinder is a lightweight, hand-held concrete and coating removal system used for decontaminating or stripping concrete surfaces. The US Department of Energy has successfully demonstrated it for decontaminating walls and floors for free release surveys prior to demolition work. The grinder is an electric-powered tool with a vacuum port for dust extraction and a diamond grinding wheel. The grinder is suitable for flat or slightly curved surfaces and results in a smooth surface, which makes release surveys more reliable. The grinder is lightweight and produces very little vibration, thus reducing worker fatigue. The grinder is more efficient than traditional baseline, tools at removing contamination from concrete surfaces (more than four times faster than hand-held pneumatic scabbling and scaling tools). Grinder consumables (i.e., replacement diamond grinding wheel) are more expensive than the replacement carbide parts for the scaler and scabbler. However, operating costs are outweighed by the lower purchase price of the grinder (50% of the price of the baseline scaler and 8% of the price of the baseline scabbler). Overall, the concrete grinder is an attractive alternative to traditional scabbling and scaling pneumatic tools. To this end, in July 1998, the outer rod room exposed walls of the Safe Storage Enclosure (SSE), an area measuring approximately 150 m{sup 2}, may be decontaminated with the hand-held grinder. This concrete grinder technology was demonstrated for the first time at the DOE`s Hanford Site. Decontamination of a sample room walls was performed at the C Reactor to free release the walls prior to demolition. The demonstration was conducted by onsite D and D workers, who were instructed by the vendor prior to and during the demonstration.

  17. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  18. Decontamination of concrete surfaces in Building 3019, Oak Ridge National Laboratory. [After Nov. 20, 1959 incident

    SciTech Connect

    Parrott, Sr, J R

    1980-01-01

    This building was built in 1943 to serve as a pilot plant for separating isotopes from irradiated fuels. A chemical explosion leading to widespread Pu contamination occurred on Nov. 20, 1959, and the steps taken to treat the building afterwards are discussed, in particular the floor and the cells. The experience shows how hard it is to decontaminate concrete; smooth coatings should be utilized. (DLC)

  19. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    NASA Astrophysics Data System (ADS)

    Winkel, B. V.

    1995-03-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  20. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  1. Shrinkage stress in concrete under dry-wet cycles: an example with concrete column

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Zhang, Jun; Luosun, Yiming

    2014-02-01

    This paper focuses on the simulation of shrinkage stress in concrete structures under dry-wet environments. In the modeling, an integrative model for autogenous and drying shrinkage predictions of concrete under dry-wet cycles is introduced first. Second, a model taking both cement hydration and moisture diffusion into account synchronously is used to calculate the distribution of interior humidity in concrete. Using the above two models, the distributions of shrinkage strain and stress in concrete columns made by normal and high strength concrete respectively under dry-wet cycles are calculated. The model results show that shrinkage gradient along the radial direction of the column from the center to outer surface increases with age as the outer circumference suffers to dry. The maximum and minimum shrinkage occur at the outer surface and the center of the column, respectively, under drying condition. As wetting starts, the shrinkage strain decreases with increase of interior humidity. The closer to the wetting face, the higher the humidity and the lower the shrinkage strain, as well as the lower the shrinkage stress. As results of the dry-wet cycles acting on the outer circumference of the column, cyclic stress status is developed within the area close to the outer surface of the column. The depth of the influencing zone of dry-wet cyclic action is influenced by concrete strength and dry-wet regime. For low strength concrete, relatively deeper influencing zone is expected compared with that of high strength concrete. The models are verified by concrete-steel composite ring tests and a good agreement between model and test results is found.

  2. Depositional and diagenetic records in the siderite concretions of the Llewellyn Formation from the anthracite field, PA

    SciTech Connect

    Greenleaf, J.; Yemane, K. . Dept. of Geology Bryn Mawr College, PA )

    1993-03-01

    The Llewellyn Formation is the major coal-bearing Pennsylvanian-age formation in the anthracite fields of eastern Pennsylvania. It comprises thick sandstones, mudstones, and anthracite-grade coals deposited on alluvial plains. In the abandoned Bear Valley Strip Mine of Shamokin, abundant siderite concretions with cm to m diameter are exposed along the bedding planes of folded beds. These concretions show structural elongation and flattening attributed to deformation during the Alleghenian orogeny. The prolific septarian cracks and abundant pyrite suggest early concretion growth, perhaps within the top 100 meters of sediment. In addition to the siderite, carbonate phases such as ankerite, calcite and dolomite occur in trace quantities in the concretions. Quartz and feldspars are abundant in the shales. Illite, kaolinite and chlorite occur in comparable quantities in both. Kerogen concentrates from the concretions contain yellow to light brown tissues, spores and reticulate pollen and spores. In contrast, those from shales comprise dark brown to black charred organic debris only. The difference in thermal alteration indices indicates that the organic matter in the concretions was preserved despite the high deformation temperatures (>200C) undergone by both the shales and concretions. This suggests that the early cementation may have completely sealed off the organic matter from chemical attack by volatiles. The data so far collected suggests that the clastic mineralogy and plant remains preserved in the concretions can be used to reconstruct the depositional history for the Llewellyn Formation, whereas the abundance of iron in the cement and its absence in the surrounding shales may be used to evaluate the rapid changes in pore water chemistry during diagenesis.

  3. Lasers for the radioactive decontamination of concrete

    SciTech Connect

    Cannon, N.S.; Flesher, D.J.

    1993-10-01

    The use of lasers for removing radioactive contamination from concrete surfaces is being investigated at the US Department of Energy`s Hanford Site. A major advantage of a laser decontamination process is that no additional waste is generated. Test results using 50- and 600-W YAG (yttrium-aluminum-garnet) lasers have been extrapolated to more powerful commercially available units. The minimum removal rate for concrete in air is estimated at 420 cm{sup 2}/h (0.45 ft{sup 2}/h) to a depth of 0.64 cm (0.25 in.); underwater rates would be considerably reduced.

  4. Use of cactus in mortars and concrete

    SciTech Connect

    Chandra, S.; Eklund, L.; Villarreal, R.R.

    1998-01-01

    Natural polymers have been used in ancient times to improve the durability of lime-based mortars and concretes. The natural polymers used were locally available. In this work, cactus extract from Mexico has been tested in a Portland cement mortar. It is seen that cactus extract increases the plasticity of the mortar and improves water absorption and freeze-salt resistance. Calcium hydroxide produced by Portland cement hydration interacts with the components of cactus extract, polysaccharides or proteins, and forms complexes. It affects the crystallization process. Painting of the concrete with this extract has also shown improved water resistance.

  5. Detection Of Concrete Deterioration By Staining

    DOEpatents

    Guthrie, Jr., George D.; Carey, J. William

    1999-09-21

    A method using concentrated aqueous solutions of sodium cobaltinitrite and a rhodamine dye is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR), and to identify degraded concrete which results in a porous or semi-permeable paste due to carbonation or leaching. These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  6. Prediction of creep of polymer concrete

    SciTech Connect

    Khristova, Yu.; Aniskevich, K.

    1995-11-01

    We studied the applicability of the phenomenological approach to the prediction of long-time creep of polymer concrete consisting of polyester binder with diabase filler and diabase aggregate. We discovered that the principles of temperature-time analogy, of moisture-time analogy, and of temperature-moisture-time analogy are applicable to the description of the diagrams of short-time creep and to the prediction of long-time creep of polymer concrete at different temperatures and constant moisture content of the material.

  7. Concrete crib blocks bolster longwall roof support

    SciTech Connect

    Mason, R.H.

    1982-10-01

    The US Bureau of Mines have investigated the use of steel-fibre-reinforced concrete blocks for the construction of chocks, as an alternative to wood. After initial development tests, a number of mining companies carried out experimental tests with underground installations, mostly in tailgate entries. These generated considerable interest and other companies, notably US Steel Mining Co. initiated experimental work. Details of a number of installations in a variety of mining situations are given. In general, the concrete chocks performed better than wood, they are cheaper and do not suffer form problems of deterioration and flammability.

  8. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  9. WEST FACADE. THREESTORY BRICK AND STEEL BUILDING WITH CONCRETE ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST FACADE. THREE-STORY BRICK AND STEEL BUILDING WITH CONCRETE ADDITION AT SOUTH FACE. NOTE OPENINGS INTO BUILDING ARE BOARDED OR BRICKED UP WITH WOODEN BOARDS OR CONCRETE BLOCK - National Can Company, 2566 East Grand Boulevard, Detroit, MI

  10. Cohesive fracture model for functionally graded fiber reinforced concrete

    SciTech Connect

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-06-15

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  11. Effect of exposure delay of concrete into aggressive environment

    NASA Astrophysics Data System (ADS)

    Abimouloud, Youcef; Kriker, Abdelouahed

    2016-07-01

    Some regions in the world suffered since several years from environmental problems such as underground level water rising. Water table effects durability of concrete implantation in the underground by the ease of luckless chemical elements ingress mainly through concrete the foundations of structures such as sulfate, chloride, and acids. For that reason a lot of foundations structures were made with SRPC (sulfate resisting Portland cement). This study is a contribution to assess the effect of exposure delay of concrete into aggressive fields, as a kind of cure which protects concrete from aggressive factors and allows it to acquire the needed strength. The study has shown that concrete exposure delay into aggressive environment is not a kind of cure mainly for concrete made with SRPC. Concrete with SRPC immediately exposed to aggressive environment shows a better mechanical resistance than concrete that has known exposure delay.

  12. 7. Detail view of reinforced concrete archrings comprising dam's upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of reinforced concrete arch-rings comprising dam's upstream face. Impressions of the wooden formwork used in construction are visible in the concrete. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  13. 31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. '1944 JOE LANDETA' SCRATCHED INTO FRESH CONCRETE. March 1987 - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  14. Evaluation of corrosion effect in reinforced concrete by chloride exposure

    NASA Astrophysics Data System (ADS)

    Loreto, G.; Di Benedetti, M.; Iovino, R.; Nanni, A.; Gonzalez, M. A.

    2011-04-01

    Durability is generally described as the ability of a material to maintain its physical and mechanical properties over time. In reinforced concrete (RC) structures, concrete is the ideal material to protect the steel reinforcement given its high alkalinity. In environments subjected to highly aggressive conditions, mostly due to the presence of chlorides, concrete may lose its protective characteristics and allow for accelerated ageing. Concrete degradation and steel reinforcement corrosion are phenomena closely connected. The aim of this research work is the characterization of the relationship between steel reinforcement corrosion and concrete degradation under accelerated ageing in a 3% sodium chloride solution. The method of linear polarization is used for identification of the corrosion rate of the steel bar. Additionally, the values of concrete residual strength are obtained, and correlated to both the corrosion rate and width of concrete cracks. Finally, the prediction of the concrete cover useful life is estimated.

  15. 1. VIEW SHOWING REMAINS OF CAMOUFLAGE COVERING CONCRETE FOOTING FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SHOWING REMAINS OF CAMOUFLAGE COVERING CONCRETE FOOTING FOR A GENERATOR PAD - Fort Cronkhite, Anti-Aircraft Battery No. 1, Concrete Footing-Generator Pad, Wolf Road, Sausalito, Marin County, CA

  16. 12. View underside of bridge, showing concrete tee beam deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View underside of bridge, showing concrete tee beam deck spans supported by concrete piles, looking southwest - Colonel Alexander Scammell Memorial Bridge, Spanning Bellamy River at U.S. Route 4, Dover, Strafford County, NH

  17. COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway

    NASA Astrophysics Data System (ADS)

    Cepuritis, Rolands; Willy Danielsen, Svein

    2014-05-01

    COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway Rolands Cepuritis, Norcem/NTNU and Svein Willy Danielsen, SINTEF Aggregate production is a mining operation where no purification of the "ore" is necessary. Still it is extremely rare that an aggregate production plant is operating on the basis of zero-waste concept. This is since historically the fine crushed aggregate (particles with a size of less than 2, 4 or sometimes 8 mm) has been regarded as a by-product or waste of the more valuable coarse aggregate production. The reason is that the crushed coarse aggregates can easily replace coarse rounded natural stones in almost any concrete composition; while, the situation with the sand is different. The production of coarse aggregate normally yields fine fractions with rough surface texture, flaky or elongated particles an inadequate gradation. When such a material replaces smooth and rounded natural sand grains in a concrete mix, the result is usually poor and much more water and cement has to be used to achieve adequate concrete flow. The consequences are huge stockpiles of the crushed fine fractions that can't be sold (mass balance problems) for the aggregate producers, sustainability problems for the whole industry and environmental issues for society due to dumping and storing of the fine co-generated material. There have been attempts of utilising the material in concrete before; however, they have mostly ended up in failure. There have been attempts to adjust the crushed sand to the properties of the natural sand, which would still give a lot of waste, especially if the grading would have to be adjusted and the high amounts of fines abundantly present in the crushed sand would have to be removed. Another fundamental reason for failure has been that historically such attempts have mainly ended up in a research carried out by people (both industrial and academic) with aggregate background (= parties willing to find market

  18. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  19. 8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING MACHINE USED BY VON SCHON IN EXPERIMENTS ON METHODS OF MIXING CONCRETE AND ON CONCRETE AGGREGATES WHICH USED LOCAL MATERIALS. (4) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  20. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  1. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  2. 7 CFR 2902.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused...

  3. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  4. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  5. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  6. 7 CFR 2902.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused...

  7. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  8. 7 CFR 3201.87 - Wood and concrete stains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wood and concrete stains. 3201.87 Section 3201.87... Designated Items § 3201.87 Wood and concrete stains. (a) Definition. Products that are designed to be applied as a finish for concrete and wood surfaces and that contain dyes or pigments to change the...

  9. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  10. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  11. 7 CFR 3201.87 - Wood and concrete stains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wood and concrete stains. 3201.87 Section 3201.87... Designated Items § 3201.87 Wood and concrete stains. (a) Definition. Products that are designed to be applied as a finish for concrete and wood surfaces and that contain dyes or pigments to change the...

  12. 13. VIEW EAST OF NORTHEAST CONCRETE PIER AND WING WALL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW EAST OF NORTHEAST CONCRETE PIER AND WING WALL. NOTE DETAIL OF 1920 CONCRETE PIER WHICH WAS CAST IN PLACE AROUND A VERTICAL POST, AND STOP LOCK NOTCH TO LEFT OF CONCRETE PIER. - Chesapeake & Ohio Canal, Conococheague Creek Aqueduct, Milepost 99.80, Williamsport, Washington County, MD

  13. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  14. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  15. Corrosion in prestressed concrete: Pipes, piles, and decks

    SciTech Connect

    Szeliga, M.

    1995-12-31

    This is the first compilation or book focusing on prestressed concrete. It features 21 classic NACE papers on prestressed concrete piping, piles, bridge decks, and cathodic protection. It includes basic corrosion mechanisms of prestressed concrete structures with detailed case histories of corrosion failures and corrective measures.

  16. Radiographic examination of prestressed concrete box girder bridges

    SciTech Connect

    Srvinivasan, S.; Saravanan, K.; Kapali, V.; Nayak, N.U.; Suresh Bapu, R.H.; Kalyanasundaram, R.M.; Madhavamayandi, A.; Mahadeva Iyer, Y.; Rengaswamy, N.S.

    1996-10-01

    Application of high energy x-radiography, using Betatron equipment to the box girders of prestressed concrete bridges, was conducted for the first time in India. The web thickness of the concrete box girders varied from 300 to 450 mm. Stringent safety measures were observed. The study gave information on the quality of the concrete, grout, and tensioned and untensioned steels.

  17. Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in concrete reinforcing to students who have chosen to explore careers in construction. It contains three units: concrete reinforcing materials, concrete reinforcing tools, and applied skills. Each instructional unit includes some or all of the…

  18. Introduction to Concrete Finishing. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in concrete finishing to students who have chosen to explore careers in construction. The following topics are covered in the course's three instructional units: concrete materials, concrete tools, and applied skills. Each unit contains some or…

  19. Patio Stone Project Gives Students a Concrete Learning Experience

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2005-01-01

    In this article, the author presents an overview of concrete as a building material and as an example of a particle composite, and discusses the origins of concrete in ancient Rome. He then describes an activity in which students can cast a concrete patio stone. Students can apply the technological design process, as well as the elements of…

  20. New Findings for Concreteness and Imagery Effects in Written Composition.

    ERIC Educational Resources Information Center

    Sadoski, Mark; Goetz, Ernest T.; Stricker, Andrew G.; Burdenski, Thomas K., Jr.

    2003-01-01

    Investigates the effects of word concreteness and either imagery, verbal, or control strategy instructions on the composition of written definitions. Reveals significant effects of word concreteness on several quantity and quality variables, but no significant effect of strategy instructions or interaction between concreteness and strategy…

  1. Acoustic emission monitoring of reinforced and prestressed concrete structures

    NASA Astrophysics Data System (ADS)

    Fowler, Timothy J.; Yepez, Luis O.; Barnes, Charles A.

    1998-03-01

    Acoustic emission is an important global nondestructive test method widely used to evaluate the structural integrity of metals and fiber reinforced plastic structures. However, in concrete, application of the technology is still at the experimental stage. Microcracking and crack growth are the principal sources of emission in concrete. Bond failure, anchor slippage, and crack rubbing are also sources of emission. Tension zone cracking in reinforced concrete is a significant source of emission and has made application of the technique to concrete structures difficult. The paper describes acoustic emission monitoring of full-scale prestressed concrete girders and a reinforced concrete frame during loading. The tests on the prestressed concrete girders showed three sources of emission: shear-induced cracking in the web, flexural cracking at the region of maximum moment, and strand slippage at the anchorage zone. The reinforced concrete frame was monitored with and without concrete shear panels. The research was directed to early detection of the cracks, signature analysis, source location, moment tensor analysis, and development of criteria for acoustic emission inspection of concrete structures. Cracking of concrete in the tension areas of the reinforced concrete sections was an early source of emission. More severe emission was detected as damage levels in the structure increased.

  2. CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS

    EPA Science Inventory

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...

  3. Floating production systems (FPS): Troll Oil and Kvaerner Concrete Semis

    SciTech Connect

    Loeset, O.

    1995-10-01

    This paper describes the main features of the Troll Oil concrete semi platform and the improvements and optimization carried further by the Kvaerner Concrete Semi. Significant elements contributing to marked cost reductions are pointed out, demonstrating the competitiveness of the concrete hull semi submersible platform.

  4. Intermediate-scale sodium-concrete reaction tests with basalt and limestone concrete

    SciTech Connect

    Hassberger, J.A.; Muhlestein, L.D.

    1981-01-01

    Ten tests were performed to investigate the chemical reactions and rate and extent of attack between sodium and basalt and limestone concretes. Test temperatures ranged from 510 to 870/sup 0/C (950 to 1600/sup 0/F) and test times from 2 to 24 hours. Sodium hydroxide was added to some of the tests to assess the impact of a sodium hydroxide-aided reaction on the overall penetration characteristics. Data suggest that the sodium penetration of concrete surfaces is limited. Penetration of basalt concrete in the presence of sodium hydroxide is shown to be less severe than attack by the metallic sodium alone. Presence of sodium hydroxide changes the characteristics of sodium penetration of limestone concrete, but no major differences in bulk penetration were observed as compared to penetration by metallic sodium.

  5. Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis.

    PubMed

    Tam, Vivian W Y; Wang, K; Tam, C M

    2008-04-01

    Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice. PMID:17764837

  6. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel

    NASA Astrophysics Data System (ADS)

    Siu, Sam; Ji, Qing; Wu, Wenhao; Song, Gangbing; Ding, Zhi

    2014-12-01

    In this paper, we explore the characteristics of a concrete block as a communication medium with piezoelectric transducers. Lead zirconate titanate (PZT) is a piezoceramic material used in smart materials intended for structural health monitoring (SHM). Additionally, a PZT based smart aggregate (SA) is capable of implementing stress wave communications which is utilized for investigating the properties of an SA based concrete channel. Our experiments characterize single-input single-output and multiple-input multiple-output (MIMO) concrete channels in order to determine the potential capacity limits of SAs for stress wave communication. We first provide estimates and validate the concrete channel response. Followed by a theoretical upper bound for data rate capacity of our two channels, demonstrating a near-twofold increase in channel capacity by utilizing multiple transceivers to form an MIMO system. Our channel modeling techniques and results are also helpful to researchers using SAs with regards to SHM, energy harvesting and stress wave communications.

  7. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Peyvandi, Amirpasha

    of exposure to chloride solutions, pointing at the benefits of nanoplatelets towards enhancement of concrete resistance to chloride ion diffusion. It was also found that the intensity of Thaumasite, a key species marking sulfate attack on cement hydrates, was lowered with the addition of graphite nanoplatelets in concrete exposed to sulfate solutions. Experimental evaluations were conducted on scaled-up production of concrete nanocomposite in precast concrete plants. Full-scale reinforced concrete pipes and beams were produced using concrete nanocomposites. Durability and structural tests indicated that the use of graphite nanoplatelets, alone or in combination with synthetic (PVA) fibers, produced significant gains in the durability characteristics, and also benefited the structural performance of precast reinforced concrete products. The material and scaled-up structural investigations conducted in the project concluded that lower-cost graphite nanomaterials (e.g., graphite nanoplatelets) offer significant potentials as multi-functional additives capable of enhancing the barrier, durability and mechanical performance of concrete materials. The benefits of graphite nanomaterials tend to be more pronounced in higher-performance concrete materials.

  8. A Concrete Situation for Learning Decimals

    ERIC Educational Resources Information Center

    Pramudiani, Puri; Zulkardi; Hartono, Yusuf; van Amerom, Barbara

    2011-01-01

    Learning about decimals is an important part in mathematics. However at the same time, decimals are known as the abstract numbers for students. Mostly in Indonesia, decimal is taught only as another notation for fractions or percentages. There are no meaningful references for them such as the use of concrete situations. This study aimed at…

  9. Self Healing Concrete: A Biological Approach

    NASA Astrophysics Data System (ADS)

    Jonkers, Henk M.

    Concrete can be considered as a kind of artificial rock with properties more or less similar to certain natural rocks. As it is strong, durable, and relatively cheap, concrete is, since almost two centuries, the most used construction material worldwide, which can easily be recognized as it has changed the physiognomy of rural areas. However, due to the heterogeneity of the composition of its principle components, cement, water, and a variety of aggregates, the properties of the final product can widely vary. The structural designer therefore must previously establish which properties are important for a specific application and must choose the correct composition of the concrete ingredients in order to ensure that the final product applies to the previously set standards. Concrete is typically characterized by a high-compressive strength, but unfortunately also by a rather low-tensile strength. However, through the application of steel or other material reinforcements, the latter can be compensated for as such reinforcements can take over tensile forces.

  10. Fractal characterization of fracture surfaces in concrete

    USGS Publications Warehouse

    Saouma, V.E.; Barton, C.C.; Gamaleldin, N.A.

    1990-01-01

    Fractal geometry is used to characterize the roughness of cracked concrete surfaces through a specially built profilometer, and the fractal dimension is subsequently correlated to the fracture toughness and direction of crack propagation. Preliminary results indicate that the fracture surface is indeed fractal over two orders of magnitudes with a dimension of approximately 1.20. ?? 1990.

  11. GPR measurements of attenuation in concrete

    SciTech Connect

    Eisenmann, David Margetan, Frank J. Pavel, Brittney

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  12. Improving Representational Competence with Concrete Models

    ERIC Educational Resources Information Center

    Stieff, Mike; Scopelitis, Stephanie; Lira, Matthew E.; DeSutter, Dane

    2016-01-01

    Representational competence is a primary contributor to student learning in science, technology, engineering, and math (STEM) disciplines and an optimal target for instruction at all educational levels. We describe the design and implementation of a learning activity that uses concrete models to improve students' representational competence and…

  13. Concrete Spatial Language: See What I Mean?

    ERIC Educational Resources Information Center

    Wallentin, M.; Ostergaard, S.; Lund, T.E.; Ostergaard, L.; Roepstorff, A.

    2005-01-01

    Conveying complex mental scenarios is at the heart of human language. Advances in cognitive linguistics suggest this is mediated by an ability to activate cognitive systems involved in non-linguistic processing of spatial information. In this fMRI-study, we compare sentences with a concrete spatial meaning to sentences with an abstract meaning.…

  14. Training Guidelines. Operatives-Precast Concrete.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    This manual is intended to provide guidelines for firms in the precast concrete industry in planning their training programs particularly with reference to new entrants into the industry. Details for preparing training syllabuses for various job specifications are given--mould makers in timber, steel, and glass fiber; makers; finishers; site…

  15. Salt-saturated concrete strength and permeability

    SciTech Connect

    Pfeifle, T.W.

    1996-11-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 {times} 10{sup {minus}22} m{sup 2} to 9.7 {times} 10{sup {minus}17} m{sup 2}. Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members.

  16. Concrete. Course in Carpentry. Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This workbook is one of a series of individually bound units of instruction for carpentry apprenticeship classes in a four-year apprenticeship program. It consists of two sections--the workbook section and a test section. The workbook section provides instructional materials on 10 topics: introduction to cement and concrete, specifications for…

  17. Concrete Practices & Procedures. Instructor Manual. Trainee Manual.

    ERIC Educational Resources Information Center

    Laborers-AGC Education and Training Fund, Pomfret Center, CT.

    This packet consists of the instructor and trainee manuals for a concrete practices and procedures course. The instructor manual contains a schedule for an 80-hour, 10-day course and instructor outline. The outline provides a step-by-step description of the instructor's activities and includes answer sheets to accompany questions on information…

  18. Content Differences for Abstract and Concrete Concepts

    ERIC Educational Resources Information Center

    Wiemer-Hastings, Katja Katja; Xu, Xu

    2005-01-01

    Concept properties are an integral part of theories of conceptual representation and processing. To date, little is known about conceptual properties of abstract concepts, such as idea. This experiment systematically compared the content of 18 abstract and 18 concrete concepts, using a feature generation task. Thirty-one participants listed…

  19. Sulfur 'Concrete' for Lunar Applications - Environmental Considerations

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2008-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. For the purpose of this Technical Memorandum, it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, bricks. With this stipulation, it is then noted that the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. The work presented here evaluates two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar simulant as an aggregate addition. One set was subjected to extended periods in high vacuum to evaluate sublimation issues, and the other was cycled between room and liquid nitrogen temperatures to investigate their subsequent mechanical integrity. Results are presented from both investigations, discussed, and put into the context of the lunar environment.

  20. Bridge concrete deteriorating diagnosis by infrared thermography

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Fukuyama, Nobuhiro; Sakuma, Joji; Mochizuki, Jun; Kimura, Yukinori

    2006-04-01

    Bridge is indispensable as social overhead capital. In the past, concrete construction was believed to be semi-permanent. Actually, however, concrete is deteriorated by various factors including seawater damage, annual temperature change, etc. Therefore, it is now obvious that maintenance and management are essential to keep performance of the bridge. In Japan, we had many reports of using infrared thermography for diagnosis of building, mainly for delamination of tile and mortar used for surface of the building for more than 10 years. In recent years, infrared thermogrephy is more actively used for delamination of surface of the bridge. Passive method is usually used for open-air concrete structure diagnosis, which utilizes intraday environmental temperature change and/or radiation energy emitted from the sun which create delta-T of delamination portion of the concrete structure. It is very important to take thermal image at right conditions. Otherwise, you may easily fall onto false diagnosis. In our presentation, many case examples and study of thermal data will be shown, which are taken at the right condition.

  1. Concrete Property and Radionuclide Migration Tests

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Powers, Laura; Parker, Kent E.; Clayton, Libby N.; Wood, Marcus I.

    2008-10-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the DOE Complex. Part of theses services includes safe disposal of LLW and MLLW at the Hanford Low-Level Waste Burial Grounds (LLBG) in accordance with the requirements listed in DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, a Performance Assessment (PA) analyses were completed and approved. DOE Order 435.1 also requires that continuing data collection be conducted to enhance confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied upon to satisfy the performance objectives identified in the Order. One critical assumption is that concrete will frequently be used as waste form or container material to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Data was collected to (1) quantify radionuclide migration through concrete materials similar to those used to encapsulate waste in the LLBG, (2) measure the properties of the concrete materials, especially those likely to influence radionuclide migration, and (3) quantify the stability of U-bearing solid phases of limited solubility in concrete.

  2. Hydraulic design of pervious concrete highway shoulders

    NASA Astrophysics Data System (ADS)

    Grahl, Nathan Andrew

    Stormwater drainage has been a factor in roadway design for years. Now stormwater quantity and quality are also becoming regulated for roadways. As regulations of stormwater management continue to increase so does the need for more viable and effect management practices. The research presented and discussed in this thesis presents the option of using pervious concrete in highway shoulders as a best management practice for stormwater management. Research focused on the hydraulic response of pervious concrete pavements exposed to sheet flowing water. Pervious concrete samples were placed in a hydraulic flume to determine capture discharges, infiltration rates, and by-pass flowrates for a broad range of void contents, across a broad range of pavement cross slopes. The results demonstrate that the capture discharge and infiltration rates are inversely related to the cross slope of the pavement. Results also showed the infiltration rate of the permeable pavement exposed to sheet flowing water, in the model, is significantly lower than the measured infiltration rate. Pervious concrete samples were also tested to determine hydraulic response when exposed to clogging associated with sand used in roadway de-icing. The results of the clogging of the permeable pavements followed similar trends as the unclogged samples, with the only difference being a more significant reduction in infiltration rates at higher applications of sand. Preliminary discussion of a design methodology is included with a design example.

  3. Investigations on electrochemical realkalization for carbonated concrete

    SciTech Connect

    Mietz, J.; Isecke, B.

    1994-12-31

    In steel reinforced and prestressed concrete structures depassivation of the reinforcing steel can take place due to carbonation of the concrete cover. Depending on humidity and oxygen availability subsequent corrosion reactions will be initiated. Such conditions require measures to exclude corrosion induced damages during the designed lifetime of the structure. In the last few years an electrochemical realkalization treatment has been proposed as adequate rehabilitation technique for carbonated concrete. This temporary treatment should increase the pH-value of the concrete pore water solution due to penetration of alkaline electrolyte from the surface as well as repassivating of the reinforcement due to electrochemical reactions at the steel surface. In order to clarify the different mechanisms taking place during electrochemical realkalization laboratory tests have been carried out using carbonated reinforced mortar specimens. The investigations were aimed at checking the influence of various parameters, e.g. treatment time or current density, as well as the efficiency and long-term durability of this new rehabilitation method.

  4. Concrete structure construction on the Moon

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shinji; Namba, Haruyuki; Kai, Yoshiro; Yoshida, Tetsuji

    1992-09-01

    This paper describes a precast prestressed concrete structure system on the Moon and erection methods for this system. The horizontal section of the structural module is hexagonal so that various layouts of the modules are possible by connecting the adjacent modules to each other. For erection of the modules, specially designed mobile cranes are used.

  5. The Structure of Concrete Operational Thought.

    ERIC Educational Resources Information Center

    Tomlinson-Keasey, C.: And Others

    1979-01-01

    In a four-year longitudinal study of the development of concrete operational thought, children were administered tests assessing seriation; numeration; class inclusion; hierarchical classification; and conservation of mass, weight, and volume. Levels of seriation and numeration skills in kindergarten were powerful predictors of the acquisition of…

  6. Identifying Concrete and Formal Operational Children.

    ERIC Educational Resources Information Center

    Docherty, Edward M.

    This paper presents a study designed to determine if groups of concrete and formal operational children can be identified through the technique of cluster analysis, using a battery of Piagetian tasks. A Total of 64 subjects, 8 boys and 8 girls from each of the second, fourth, sixth, and eighth grade levels, were selected from a public elementary…

  7. Inspection of prestressed concrete pressure pipe

    NASA Astrophysics Data System (ADS)

    Atherton, D. L.; Morton, K. J.; Mergelas, B. J.; Kong, X.

    2000-05-01

    A new electromagnetic technique for inspecting prestressed concrete pressure pipe (CPP) for broken prestressing wires is described. CPP is used for water supply lines, power station cooling loops and waste water force lines. The smaller lined cylinder pipes have diameters 400-1200 mm. They have a thin steel cylinder with an inner centrifugally cast concrete core 25-50 mm thick. After curing, high strength prestressing wire is spirally wound, under high tension, onto the steel cylinder. A protective mortar coating is then impacted. Embedded-cylinder pipes have diameters 1.2-7 m. Their construction is similar but they have an additional 80-130 mm layers of concrete cast outside the steel cylinder before the prestressing wire is wound on. The pitch and gage of the wire is chosen to ensure that the concrete is always under compression. The new inspection technique uses a combination of remote field eddy current and transformer coupling effects to detect broken prestressing wires. The tools can access large pipes through small diameter man holes. They can detect single or multiple breaks in the prestressing wire at any point on the circumference and are drawn through a pipe at walking speed. The principles of operation and inspection results are described.

  8. Sulfur "Concrete" for Lunar Applications - Sublimation Concerns

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    Melting sulfur and mixing it with an aggregate to form "concrete" is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  9. Concrete structure construction on the Moon

    NASA Technical Reports Server (NTRS)

    Matsumoto, Shinji; Namba, Haruyuki; Kai, Yoshiro; Yoshida, Tetsuji

    1992-01-01

    This paper describes a precast prestressed concrete structure system on the Moon and erection methods for this system. The horizontal section of the structural module is hexagonal so that various layouts of the modules are possible by connecting the adjacent modules to each other. For erection of the modules, specially designed mobile cranes are used.

  10. Anodes for cathodic protection of reinforced concrete

    SciTech Connect

    S.J. Bullard; B.S. Covino, Jr.; S.D. Cramer; G.R. Holcomb; J.H. Russell

    2000-03-01

    Consumable anodes were evaluated in the laboratory for use in cathodic protection systems for steel reinforced concrete bridges in coastal environments and in areas where de-icing salts are employed. The anode materials include Zn-hydrogel and thermal-sprayed Zn, Zn-15Al, and Al-12Zn-0.2In. These anodes were evaluated for service in both galvanic (GCP) and impressed current (ICCP) cathodic protection systems. ICCP anodes were electrochemically aged at a factor of 15 times greater than used by the Oregon Department of Transportation in typical coastal ICCP systems (2.2 mA/m{sup 2} based on anode area). Increasing moisture at the anode-concrete interface reduced the operating voltage of all the anodes. The pH at the anode-concrete interface fell to 7 to 8.5 with electrochemical age. Bond strength between the anodes and concrete decreased with electrochemical aging. Interfacial chemistry was the critical link between long-term anode performance and electrochemical age. Zn-hydrogel and the rmal-sprayed Zn and Al-12Zn-0.2In GCP anodes appear to supply adequate protection current to rebar in the Cape Perpetua Viaduct.

  11. Effective Young's modulus estimation of concrete

    SciTech Connect

    Li, G.; Zhao, Y.; Pang, S.S.; Li, Y.

    1999-09-01

    A two-step analytical procedure is proposed to evaluate the quantitative influence of the maximum aggregate size and aggregate gradation on the effective Young's modulus of concrete. In the first step, the effective Young's modulus of a specified basic element, which is composed of an aggregate coated with interfacial transition zone and again covered with cement paste, is obtained based on a proposed four-phase sphere model. The theory of elasticity and Eshelby's equivalent medium theory are used to achieve the goal. In the second step, the rule of mixture method is used to estimate the effective Young's modulus of concrete. Following the two-step procedure, the maximum aggregate size and aggregate gradation are included in the formulations for the effective Young's modulus of concrete. The calculated results are compared with experimental results from the literature. The comparison results show a reasonable agreement when isostrain is assumed for every basic element in the second step. Parameters influencing the effective Young's modulus of concrete are discussed via calculated results.

  12. Bond slip detection of steel plate and concrete beams using smart aggregates

    NASA Astrophysics Data System (ADS)

    Qin, Feng; Kong, Qingzhao; Li, Mo; Mo, Y. L.; Song, Gangbing; Fan, Feng

    2015-11-01

    The newly emerged steel plate concrete (SC), benefited from a composite effect of steel and concrete materials, has been applied to shield building and internal structures of AP1000 nuclear power plants. The detection of bond-slip between steel plate and concrete is of great importance to provide early warnings of steel plate and concrete debonding and to ensure the safety of SC structures. In this paper, an active sensing approach using smart aggregates (SAs) is developed to detect the initiation and to monitor the development of bond-slip. A SA, designed by sandwiching a fragile piezoceramic patch between protection materials, can be utilized as both actuator and sensor by taking advantage of the piezoelectricity of piezoceramic material. Two SC beams with distinct shear reinforcement ratios ≤ft({ρ }t\\right) were experimentally investigated. Based on the wavelet packet decomposition of the received signals from SAs, the initiation of bond-slip is detected, and the development of bond-slip is quantitatively monitored to better understand the structural performance of SC beams, including the stiffness and capacity. The bond-slip severities of the two SC beams are compared to study the improvement of bond-slip condition rendered by providing more shear reinforcement.

  13. Cast-concrete products made with FBC ash and wet-collected coal-ash

    SciTech Connect

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D.

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  14. Mechanical Properties and Durability of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  15. Mechanism of frost damage to concrete

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhua

    We studied several topics that are important to explain the mechanisms of frost damage to concrete, including the volume change of concrete during freezing, the role of air voids in protecting concrete from frost damage, the pore structure of concrete, and the nucleation and propagation of ice in concrete. By combining calorimetric measurements with dilatometry, we were able to calculate the contributions of thermal expansion, pore pressure, and crystallization pressure of ice to the strain observed in a mortar during freezing/thawing cycles. Air-entrained mortars contract upon freezing due to the cryo-suction effect, while non-air-entrained mortars expand primarily due to hydraulic pressure. Based on the theory originally proposed by Powers and Helmuth, we show that the poromechanical calculations account quantitatively for the contraction of samples with air entrainment, which is shown to quantitatively account for a reduction of salt scaling damage based on the glue-spall theory. The method of thermoporometry (TPM) that we used to study the pore structure of concrete is also discussed. In a study of ice propagation inside concrete, we re-examined experiments by Helmuth [Proc. 4th Int. Cong. Chem. Cement, NBS Monog. 43, Vol. II (National Bureau of Standards, Washington, D.C., 1962) pp. 855--869] from which he concluded that ice grows in the pores of cement paste under heat-flow control, and that the internal temperature rises to the melting point given by the Gibbs-Thomson equation. Using experimental and computational methods, we find that his conclusions are correct, but the growth rates he reports are misleading. Our experiment reveals the true growth rate, which is about three times smaller than found by Helmuth. The dendritic morphology explains how fast constant growth rates can occur when the interior temperature of the sample is very near the melting point: the temperature at the tip of the dendrite is a few degrees below the melting point, but the liquid

  16. Does Mathematical Learning Occur in Going from Concrete to Abstract or in Going from Abstract to Concrete?

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael; Hwang, SungWon

    2006-01-01

    The notions of "abstract "and "concrete" are central to the conceptualization of mathematical knowing and learning. It is generally accepted that development goes from concrete toward the abstract; but dialectical theorists maintain just the opposite: development consists of an ascension from the abstract to the concrete. In this article, we…

  17. Life cycle CO{sub 2} evaluation on reinforced concrete structures with high-strength concrete

    SciTech Connect

    Tae, Sungho; Baek, Cheonghoon Shin, Sungwoo

    2011-04-15

    The purpose of this study is to evaluate the environment performance of high-strength concrete used in super tall buildings as material of environmental load reduction. To this end, this study proposed a plan for the evaluation of energy consumption and CO{sub 2} emission throughout the life cycle of the building, and calculated the energy consumption and CO{sub 2} emission throughout the life cycle of tall apartment building that was actually constructed using this plan. Then, we evaluated the energy consumption and CO{sub 2} emission reduction performance for the life cycle of the building by the decrease of concrete and reinforced rebar quantities and the increase of building lifespan obtained through conversion of existing building's concrete compressive strength to 40 MPa high-strength concrete. As a result, the life cycle energy consumption in case 3, a high-strength concrete building, decreased 15.53% and 2.95% respectively compared with cases 1 and 2. The evaluation of the general strength concrete buildings and the life cycle CO{sub 2} emission also decreased 16.70% and 3.37% respectively, compared with cases 1 and 2.

  18. Diagnosing delayed ettringite formation in concrete structures

    SciTech Connect

    Thomas, Michael Folliard, Kevin Drimalas, Thano Ramlochan, Terry

    2008-06-15

    There has been a number of cases involving deteriorated concrete structures in North America where there has been considerable controversy surrounding the respective contributions of alkali-silica reaction (ASR) and delayed ettringite formation (DEF) to the observed damage. The problem arises because the macroscopic symptoms of distress are not unequivocal and microscopical examinations of field samples often reveal evidence of both processes making it difficult to separate the individual contributions. This paper presents the results of an investigation of a number of concrete columns carrying a raised expressway in North America; prior studies had implicated both DEF and ASR as possible causes of deterioration. Although the columns were not deliberately heat-cured, it is estimated that the peak internal temperature would have exceeded 70 deg. C and perhaps even 80 deg. C, in some cases. The forensic investigation included scanning electron microscopy with energy-dispersive X-ray analysis and expansion testing of cores extracted from the structure. Small-diameter cores stored in limewater expanded significantly (0.3 to 1.3%) and on the basis of supplementary tests on laboratory-produced concrete specimens it was concluded that expansion under such conditions is caused by DEF as the conditions of the test will not sustain ASR. In at least one column, DEF was diagnosed as the sole contributory cause of damage with no evidence of any contribution from ASR or any other deterioration process. In other cases, both ASR and DEF were observed to have contributed to the apparent damage. Of the columns examined, only concrete containing fly ash appeared to be undamaged. The results of this study confirm that, under certain conditions, the process of DEF (acting in isolation of other processes) can result in significant deterioration of cast-in-place reinforced concrete structures.

  19. Electrical resistance tomography for imaging concrete structures

    SciTech Connect

    Buettner, M.; Ramirez, A.; Daily, W.

    1995-11-08

    Electrical Resistance Tomography (ERT) has been used to non-destructively examine the interior of reinforced concrete pillars in the laboratory during a water infiltration experiment. ERT is a technique for determining the electrical resistivity distribution within a volume from measurement of injected currents and the resulting electrical potential distribution on the surface. The transfer resistance (ratio of potential to injected current) data are inverted using an algorithm based on a finite element forward solution which is iteratively adjusted in a least squares sense until the measured and calculated transfer resistances agree to within some predetermined value. Laboratory specimens of concrete pillars, 61.0 cm (24 in) in length and 20.3 cm (8 in) on a side, were prepared with various combinations of steel reinforcing bars and voids (1.27 cm diameter) which ran along the length of the pillars. An array of electrodes was placed around the pillar to allow for injecting current and measuring the resulting potentials. After the baseline resistivity distribution was determined, water was added to a void near one comer of the pillar. ERT was used to determine the resistivity distribution of the pillar at regular time intervals as water was added. The ERT images show very clearly that the water was gradually imbibed into the concrete pillar during the course of the experiment. The resistivity decreased by nearly an order of magnitude near the point of water addition in the first hour, and by nearly two orders of magnitude by the end of the experiment. Other applications for this technology include monitoring of curing in concrete structures, detecting cracks in concrete structures, detecting rebar location and corrosion state, monitoring slope stability and the stability of footings, detecting and monitoring leaks from storage tanks, monitoring thermal processes during environmental remediation, and for detecting and monitoring contaminants in soil and groundwater.

  20. The use of concrete-filled steel structures for modular construction of advanced reactors

    SciTech Connect

    Braverman, J.; Morante, R.; Hofmayer, C.; Graves, H.

    1997-04-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. This paper presents the results of a research program which evaluated the use of modular construction for safety-related structures in advanced nuclear power plant designs. The research program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules.

  1. CORCON-MOD3: An integrated computer model for analysis of molten core-concrete interactions. User`s manual

    SciTech Connect

    Bradley, D.R.; Gardner, D.R.; Brockmann, J.E.; Griffith, R.O.

    1993-10-01

    The CORCON-Mod3 computer code was developed to mechanistically model the important core-concrete interaction phenomena, including those phenomena relevant to the assessment of containment failure and radionuclide release. The code can be applied to a wide range of severe accident scenarios and reactor plants. The code represents the current state of the art for simulating core debris interactions with concrete. This document comprises the user`s manual and gives a brief description of the models and the assumptions and limitations in the code. Also discussed are the input parameters and the code output. Two sample problems are also given.

  2. Foam concrete with porous mineral and organic additives

    NASA Astrophysics Data System (ADS)

    Kudiakov, A.; Prischepa, I.; Tolchennickov, M.

    2015-01-01

    The article presents results of studies of structural heat insulating foam concrete with porous mineral and organic additives. By mixing additives with the concrete the speed of the initial structure formation increases. The additives of ash loss and thermal-modified peat TMT 600 provide a stable increase of strength by compression and bending of foam concrete. In the dried foam concrete with the addition of TMT and ash loss thermal conductivity decreases by 20% and 7% respectively. The regularities of changes in the thermal conductivity at various moisture of foam concrete have been investigated.

  3. Workability and mechanical properties of alkali activated slag concrete

    SciTech Connect

    Collins, F.G.; Sanjayan, J.G.

    1999-03-01

    This paper reports the results of an investigation on concrete containing alkali activated slag (AAS) as the binder, with emphasis on achievement of reasonable workability and equivalent one-day strength to portland cement concrete at normal curing temperatures. Two types of activators were used: sodium hydroxide in combination with sodium carbonate and sodium silicate in combination with hydrated lime. The fresh concrete properties reported include slump and slump loss, air content, and bleed. Mechanical properties of AAS concrete, including compressive strength, elastic modulus, flexural strength, drying shrinkage, and creep are contrasted with those of portland cement concrete.

  4. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    SciTech Connect

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  5. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    SciTech Connect

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references.

  6. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    SciTech Connect

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  7. Innovative process routes for a high-quality concrete recycling.

    PubMed

    Menard, Y; Bru, K; Touze, S; Lemoign, A; Poirier, J E; Ruffie, G; Bonnaudin, F; Von Der Weid, F

    2013-06-01

    This study presents alternative methods for the processing of concrete waste. The mechanical stresses needed for the embrittlement of the mortar matrix and further selective crushing of concrete were generated by either electric impulses or microwaves heating. Tests were carried out on lab-made concrete samples representative of concrete waste from concrete mixer trucks and on concrete waste collected on a French demolition site. The results obtained so far show that both techniques can be used to weaken concrete samples and to enhance aggregate selective liberation (that is the production of cement paste-free aggregates) during crushing and grinding. Electric pulses treatment seems to appear more efficient, more robust and less energy consuming (1-3 kWh t(-1)) than microwave treatment (10-40 kWh t(-1)) but it can only be applied on samples in water leading to a major drawback for recycling aggregates or cement paste in the cement production process. PMID:23490359

  8. Surface treated polypropylene (PP) fibres for reinforced concrete

    SciTech Connect

    López-Buendía, Angel M.; Romero-Sánchez, María Dolores; Climent, Verónica

    2013-12-15

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  9. Recycling of PET bottles as fine aggregate in concrete

    SciTech Connect

    Frigione, Mariaenrica

    2010-06-15

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365 days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility.

  10. Durability of styrene-butadiene latex modified concrete

    SciTech Connect

    Shaker, F.A.; El-Dieb, A.S.; Reda, M.M.

    1997-05-01

    The durability of reinforced concrete structures represents a major concern to many investigators. The use of latex modified concrete (LMC) in construction has urged researchers to review and investigate its different properties. This study is part of a comprehensive investigation carried on the use of polymers in concrete. The main objective of this study to investigate and evaluate the main durability aspects of Styrene-Butadiene latex modified concrete (LMC) compared to those of conventional concrete. Also, the main microstructural characteristics of LMC were studied using a Scanning Electron Microscope (SEM). The SEM investigation of the LMC showed major differences in its microstructure compared to that of the conventional concrete. The LMC proved to be superior in its durability compared to the durability of conventional concrete especially its water tightness (measured by water penetration, absorption, and sorptivity tests), abrasion, corrosion, and sulphate resistance.

  11. Relating Fresh Concrete Viscosity Measurements from Different Rheometers

    PubMed Central

    Ferraris, Chiara F.; Martys, Nicos S.

    2003-01-01

    Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to “scientifically” improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis.

  12. Molecular survey of concrete sewer biofilm microbial communities.

    PubMed

    Santo Domingo, Jorge W; Revetta, Randy P; Iker, Brandon; Gomez-Alvarez, Vicente; Garcia, Jarissa; Sullivan, John; Weast, James

    2011-10-01

    The microbial composition of concrete biofilms within wastewater collection systems was studied using molecular assays. SSU rDNA clone libraries were generated from 16 concrete surfaces of manholes, a combined sewer overflow, and sections of a corroded sewer pipe. Of the 2457 sequences analyzed, α-, β-, γ-, and δ-Proteobacteria represented 15%, 22%, 11%, and 4% of the clones, respectively. β-Proteobacteria (47%) sequences were more abundant in the pipe crown than any of the other concrete surfaces. While 178 to 493 Operational Taxonomic Units (OTUs) were associated with the different concrete samples, only four sequences were shared among the different clone libraries. Bacteria implicated in concrete corrosion were found in the clone libraries while archaea, fungi, and several bacterial groups were also detected using group-specific assays. The results showed that concrete sewer biofilms are more diverse than previously reported. A more comprehensive molecular database will be needed to better study the dynamics of concrete biofilms. PMID:21981064

  13. Recycling of PET bottles as fine aggregate in concrete.

    PubMed

    Frigione, Mariaenrica

    2010-06-01

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility. PMID:20176466

  14. Multiscale Constitutive Modeling of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Underwood, Benjamin Shane

    Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also

  15. Investigation of the use of fly-ash based autoclaved cellular concrete blocks in coal mines for air duct work. Final report, January 25, 1993--December 31, 1994

    SciTech Connect

    Horvath, M.L.

    1995-06-19

    Coal mines are required to provide ventilation to occupied portions of underground mines. Concrete block is used in this process to construct air duct walls. However, normal concrete block is heavy and not easy to work with and eventually fails dramatically after being loaded due to mine ceiling convergence and/or floor heave. Autoclaved cellular concrete block made from (70{plus_minus}%) coal fly ash is lightweight and less rigid when loaded. It is lighter and easier to use than regular concrete block for underground mine applications. It has also been used in surface construction around the world for over 40 years. Ohio Edison along with eight other electric utility companies, the Electric Power Research Institute (EPRI), and North American Cellular Concrete constructed a mobile demonstration plant to produce autoclaved cellular concrete block from utility fly ash. To apply this research in Ohio, Ohio Edison also worked with the Ohio Coal Development Office and CONSOL Inc. to produce autoclaved cellular concrete block not only from coal ash but also from LIMB ash, SNRB ash, and PFBC ash from various clean coal technology projects sponsored by the Ohio Coal Development Office. The purpose of this project was to demonstrate the potential for beneficial use of fly ash and clean coal technology by-products in the production of lightweight block.

  16. Numerical Study Of The Effects Of Preloading, Axial Loading And Concrete Shrinkage On Reinforced Concrete Elements Strengthened By Concrete Layers And Jackets

    SciTech Connect

    Lampropoulos, A. P.; Dritsos, S. E.

    2008-07-08

    In this study, the technique of seismic strengthening existing reinforced concrete columns and beams using additional concrete layers and jackets is examined. The finite element method and the finite element program ATENA is used in this investigation. When a reinforced jacket or layer is being constructed around a column it is already preloaded due to existing service loads. This effect has been examined for different values of the axial load normalized to the strengthened column. The techniques of strengthening with a concrete jacket or a reinforced concrete layer on the compressive side of the column are examined. Another phenomenon that is examined in this study is the shrinkage of the new concrete of an additional layer used to strengthen an existing member. For this investigation, a simply supported beam with an additional reinforced concrete layer on the tensile side is examined. The results demonstrate that the effect of preloading is important when a reinforced concrete layer is being used with shear connectors between the old and the new reinforcement. It was also found that the shrinkage of the new concrete reduces the strength of the strengthened beam and induces an initial sliding between the old and the new concrete.

  17. Retention of Lead and Total Suspended Solids in Pervious Concrete

    NASA Astrophysics Data System (ADS)

    Nolin, Spring

    Pervious concrete, an alternative to conventional concrete, is a material with an increased amount of void space that allows water to pass through the concrete versus ponding and/or running off into catchment systems. This study examines the retention capabilities of lead and Total Suspended Solids (TSS) within an entire pervious concrete system and the effects of different fly ash compositions for pervious concrete along with two different types of crushed stones and a soil layer. A complete pervious concrete system consisted of one formulation of pervious concrete along with one type of crushed stone and the soil layer used in the individual trials of TSS removal and lead retention to determine if a complete pervious concrete system would equal the sum of its parts. The retention of lead by the complete pervious concrete system was compared against the individual results from the parts of the complete pervious concrete system. Among the different formulations of pervious concrete, the specimens with a high loss on ignition showed a higher removal rate of lead but not TSS than those with low loss on ignition, yet the difference in the percentage of fly ash did not show an effect on the removal or retention of either lead or TSS. Of the two types of crushed stone tested, the 3/8" crushed stone retained more TSS than the #57 crushed stone. The amount of lead retained by the #57 crushed stone was not significantly different from the 3/8" crushed stone after the crushed stone was flushed. The dirt layer showed a complete removal rate of lead as did the complete pervious concrete system. The sum of the parts of the pervious concrete system indicate that for maximum removal of TSS and lead, a high loss on ignition fly ash pervious concrete cylinder should be used in conjunction with a 3/8" crushed stone layer.

  18. A perspective on OTEC plants

    NASA Astrophysics Data System (ADS)

    Zelby, L. W.

    An ocean thermal energy conversion plant (OTEC) concept is analyzed with a view to economic and environmental constraints, positive net energy yield, and the quantities of construction materials used. It is noted that many such materials are not renewable. The plant discussed is a 240 MWe plant consisting of a partially submerged floating platform housing four power modules, each containing two 30 MWe generators. The plant is expected to have a lifespan of 100 years for the platform and 35 years for the power modules and to deliver 1.13 billion kWhe per year. The projected OTEC plant seems to satisfy environmental, net energy, and economic criteria but requires very large quantities of concrete, steel and titanium. It is concluded that OTEC expansion should be deferred until more information can be gathered by a small pilot plant.

  19. Simulating distributed reinforcement effects in concrete analysis

    SciTech Connect

    Marchertas, A.H.

    1985-01-01

    The effect of the bond slip is brought into the TEMP-STRESS finite element code by relaxing the equal strain condition between concrete and reinforcement. This is done for the elements adjacent to the element which is cracked. A parabolic differential strain variation is assumed along the reinforcement from the crack, which is taken to be at the centroid of the cracked element, to the point where perfect bonding exists. This strain relationship is used to increase the strain of the reinforcement in the as yet uncracked elements located adjacent to a crack. By the same token the corresponding concrete strain is decreased. This estimate is made assuming preservation of strain energy in the element. The effectiveness of the model is shown by examples. Comparison of analytical results is made with structural test data. The influence of the bonding model on cracking is portrayed pictorially. 5 refs., 6 figs.

  20. Composite binders for concrete with reduced permeability

    NASA Astrophysics Data System (ADS)

    Fediuk, R.; Yushin, A.

    2016-02-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m2, it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa).

  1. Isolation and Identification of Concrete Environment Bacteria

    NASA Astrophysics Data System (ADS)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  2. Engineering properties of inorganic polymer concretes (IPCs)

    SciTech Connect

    Sofi, M.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au; Mendis, P.A. . E-mail: pamendis@unimelb.edu.au; Lukey, G.C.

    2007-02-15

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures.

  3. Electrical resistance tomography of concrete structures

    SciTech Connect

    Daily, W.; Ramirez, A.; Binley, A.; Henry-Poulter, S.

    1993-10-01

    The purpose of this work is to determine the feasibility of using Electrical resistance tomography (ERT) to nondestructively examine the interior of concrete structures such as bridge pillars and roadways. We report the results of experiments wherein ERT is used to image the two concrete specimens in the laboratory. Each specimen is 5 inches square and 12 inches long and contained steel reinforcing rods along its length. Twenty electrodes were placed on each sample and an-image of electrical resistivity distribution was generated from current and voltage measurements. We found that the images show the general location of the reinforcing steel and, what`s more important, delineate the absence of the steel. The method may therefore be useful for determining if such steel has been destroyed by corrosion, however to make it useful, the technique must have better resolution so that individual reinforcing steel units are resolved.

  4. CP systems for steel reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Soltesz, Steven M.

    2004-01-01

    Thermal-sprayed zinc anodes are used for cathodic protection (CP) systems in Oregon?s reinforced concrete coastal bridges to prevent chloride-induced corrosion damage. Thermal-sprayed zinc performs well as an ICCP anode but the service life of the zinc anode is directly related to the average current density used to operate the systems. Oregon Department of Transportation (DOT) is investigating ways of monitoring the rebar corrosion in reinforced concrete bridges to identify conditions when protection of the rebar is needed. This approach reflects the fact that external protection may not be needed for all environmental conditions, leading Oregon DOT to examine the use of intermittent, galvanic, and constant voltage cathodic protection systems. Results from these types of systems are reported.

  5. Brittle failure kinetics model for concrete

    SciTech Connect

    Silling, S.A.

    1997-03-01

    A new constitutive model is proposed for the modeling of penetration and large stress waves in concrete. Rate effects are incorporated explicitly into the damage evolution law, hence the term brittle failure kinetics. The damage variable parameterizes a family of Mohr-Coulomb strength curves. The model, which has been implemented in the CTH code, has been shown to reproduce some distinctive phenomena that occur in penetration of concrete targets. Among these are the sharp spike in deceleration of a rigid penetrator immediately after impact. Another is the size scale effect, which leads to a nonlinear scaling of penetration depth with penetrator size. This paper discusses the theory of the model and some results of an extensive validation effort.

  6. Concrete sandwich construction for energy conservation

    NASA Astrophysics Data System (ADS)

    Keeton, J. R.

    1980-03-01

    An abbreviated research study on use of shrinkage-compensating expansive concrete in sandwich-type wall and roof panels containing insulation at mid-thickness is described. The use of expansive concrete is shown to be a technically viable concept for eliminating shrinkage cracking, thus preventing moisture penetration which can reduce insulation effectiveness, cause deterioration of the insulating material, and accelerate steel corrosion. Embeddable resistance strain gages proved to be reliable for measuring expansion and subsequent shrinkage of the experimental panels. As a result of this study, a comprehensive research program is proposed for experimental verification of design and field control measures that will permit the use of shrinkage-compensating cement mortars in sandwich panel construction.

  7. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    NASA Astrophysics Data System (ADS)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  8. Environmental evaluation of green concretes versus conventional concrete by means of LCA.

    PubMed

    Turk, Janez; Cotič, Zvonko; Mladenovič, Ana; Šajna, Aljoša

    2015-11-01

    A number of green concrete mixes having similar basic properties were evaluated from the environmental point of view by means of the Life Cycle Assessment method, and compared with a corresponding conventional concrete mix. The investigated green concrete mixes were prepared from three different types of industrial by-products, i.e. (1) foundry sand, and (2) steel slag, both of which were used as manufactured aggregates, and (3) fly ash, which was used as a mineral admixture. Some green concrete mixes were also prepared from a recycled aggregate, which was obtained from reinforced concrete waste. In some of the green concrete mixes the recycled aggregate was used in combination with the above-mentioned types of manufactured aggregate and fly ash. All of these materials are able, to some extent, to replace natural aggregate or Portland cement in concrete mixes, thus providing an environmental benefit from the point of view of the saving of natural resources. Taking into account consequential modelling, the credit related to the avoidance of the need to dispose of the waste materials is considered as a benefit. In case of the recycling of waste concrete into aggregate, credit is attributed to the recovery of scrap iron from the steel reinforcement. In the case of the use of steel slag, credit is attributed to the recovery of metals, which are extracted from the slag before being used as an alternative material. The disadvantage of using alternative materials and recycled aggregates can sometimes be their relatively long delivery distance. For this reason, a transport sensitivity analysis was carried out. The results indicate that the use of the discussed alternative and recycled materials is beneficial in the concrete production industry. Preference is given to the fly ash and foundry sand scenarios, and especially to those scenarios which are based on the combined use of recycled aggregate with these two alternative materials. It was found that longer delivery

  9. Transverse Reinforcement in Reinforced Concrete Columns

    NASA Astrophysics Data System (ADS)

    Gramblička, Štefan; Veróny, Peter

    2013-11-01

    In the article we are dealing with the influence of transverse reinforcement to the resistance of a cross-section of the reinforced concrete columns and also with the effective detailing of the column reinforcement. We are verifying the correctness of design guides for detailing of transverse reinforcement. We are also taking into account the diameter of stirrups and its influence over transverse deformation of column.

  10. Production of Lunar Concrete Using Molten Sulfur

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1993-01-01

    The United States has made a commitment to go back to the moon to stay in the early part of the next century. In order to achieve this objective it became evident to NASA that a Lunar Outpost will be needed to house scientists and astronauts who will be living on the moon for extended periods of time. A study has been undertaken by the authors and supported by NASA to study the feasibility of using lunar regolith with different binders such as molten sulfur, epoxy or hydraulic cement as a construction material for different lunar structures. The basic premise of this study is that it will be more logical and cost effective to manufacture lunar construction materials utilizing indigenous resources rather than transporting needed materials from earth. Lunar concrete (made from Hydraulic Cement and lunar soil) has been studied and suggested as the construction material of choice for some of the lunar projects. Unfortunately, its hydration requires water which is going to be a precious commodity on the moon. Therefore this study explores the feasibility of using binders other than hydraulic cement such as sulfur or epoxy with lunar regolith as a construction material. This report describes findings of this study which deals specifically with using molten sulfur as a binder for Lunar concrete. It describes laboratory experiments in which the sulfur to lunar soil simulant ratios by weight were varied to study the minimum amount of sulfur required to produce a particular strength. The compressive and tensile strengths of these mixes were evaluated. Metal and fiber glass fibers were added to some of the mixes to study their effects on the compressive and tensile strengths. This report also describes experiments where the sulfur is melted and mixed with the lunar regolith in a specially designed vacuum chamber. The properties of the produced concrete were compared to those of concrete produced under normal pressure.

  11. Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces

    NASA Astrophysics Data System (ADS)

    Moghaddasi B., Nasim S.; Zhang, Yunfeng; Hu, Xiaobin

    2012-03-01

    This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program — OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.

  12. A creep-damage model for mesoscale simulations of concrete expansion-degradation phenomena

    SciTech Connect

    Giorla, Alain B; Le Pape, Yann

    2015-01-01

    Long-term performance of aging concrete in nuclear power plants (NPPs) requires a careful examination of the physical phenomena taking place in the material. Concrete under high neutron irradiation is subjected to large irreversible deformations as well as mechanical damage, caused by a swelling of the aggregates. However, these results, generally obtained in accelerated conditions in test reactors, cannot be directly applied to NPP irradiated structures, i.e., the biological shield, operating conditions due to difference in time scale and environmental conditions (temperature, humidity). Mesoscale numerical simulations are performed to separate the underlying mechanisms and their interactions. The cement paste creep-damage model accounts for the effect of the loading rate on the apparent damage properties of the material and uses an event-based approach to capture the competition between creep and damage. The model is applied to the simulation of irradiation experiments from the literature and shows a good agreement with the experimental data.

  13. Experimental study of a macrocrack propagation in a concrete specimen subjected to creep loading

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Boulay, C.; Tailhan, J.-L.; Martin, E.

    2013-07-01

    Structures managers need a better prediction of the delayed failure of concrete structures, especially for very important structures like nuclear power plant encasement. Sustained loadings at high level (above 75% of loading capacity of the structure), can lead to structure failure after some time. In this study, a series of 4-point bending tests were performed in order to characterize the creep behaviour of pre-cracked beams under high load level. The specimens were made of normal strength concrete. A power law relationship is observed between the secondary deflection creep rate and the failure time. It is also shown that when crack propagation occurs during the creep loading, the creep deflection rate increases with the creep loading level and with the crack propagation rate.

  14. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    PubMed

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics. PMID:16243703

  15. Seismic fragility of reinforced concrete structures and components for application to nuclear facilities

    SciTech Connect

    Gergely, P.

    1984-09-01

    The failure and fragility analyses of reinforced concrete structures and elements in nuclear reactor facilities within the Seismic Safety Margins Research Program (SSMRP) at the Lawrence Livermore National Laboratory are evaluated. Uncertainties in material modeling, behavior of low shear walls, and seismic risk assessment for nonlinear response receive special attention. Problems with ductility-based spectral deamplification and prediction of the stiffness of reinforced concrete walls at low stress levels are examined. It is recommended to use relatively low damping values in connection with ductility-based response reductions. The study of static nonlinear force-deflection curves is advocated for better nonlinear dynamic response predictions. Several details of the seismic risk analysis of the Zion plant are also evaluated. 73 references.

  16. DETERMINING THE EFFECTS OF RADIATION ON AGING CONCRETE STRUCTURES OF NUCLEAR REACTORS

    SciTech Connect

    Serrato, M.

    2010-01-29

    The U.S. Department of Energy Office of Environmental Management (DOE-EM) is responsible for the Decontamination and Decommissioning (D&D) of nuclear facilities throughout the DOE Complex. Some of these facilities will be completely dismantled, while others will be partially dismantled and the remaining structure will be stabilized with cementitious fill materials. The latter is a process known as In-Situ Decommissioning (ISD). The ISD decision process requires a detailed understanding of the existing facility conditions, and operational history. System information and material properties are need for aged nuclear facilities. This literature review investigated the properties of aged concrete structures affected by radiation. In particular, this review addresses the Savannah River Site (SRS) isotope production nuclear reactors. The concrete in the reactors at SRS was not seriously damaged by the levels of radiation exposure. Loss of composite compressive strength was the most common effect of radiation induced damage documented at nuclear power plants.

  17. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    NASA Astrophysics Data System (ADS)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  18. Methods for ultimate load analysis of concrete containments

    SciTech Connect

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.; Lu, Y.M.

    1985-06-01

    The objective of the research project described in this interim report is to develop a qualified methodology for the ultimate load analysis of concrete containment structures. The EPRI-sponsored nonlinear finite element code ABAQUS-EPGEN, which has recently been modified to incorporate a constitutive model for plain concrete and modeling capabilities for reinforced and prestressed concrete containments, is utilized as the structural analysis tool in this development. The ABAQUS-EPGEN concrete modeling and analysis capabilities are first evaluated by comparing measured data with code predictions for full-scale reinforced concrete slab specimens tested under uniaxial and biaxial tension. These specimen tests simulate the behavior of the cylindrical wall of a typical concrete containment structure under internal pressure. The calculated and measured strain comparisons are used to improve the constitutive model and to qualify the code for concrete containment analysis. The second part of this effort deals with the ultimate load analysis of reinforced and prestressed containments to determine bounds on the global overpressure capacities of typical concrete containment structures. The third part of this effort further examines such local effects through a substructural analysis of the liner-concrete interaction at major concrete cracks.

  19. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-05-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio (w/c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  20. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  1. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  2. Review of concrete biodeterioration in relation to nuclear waste.

    PubMed

    Turick, Charles E; Berry, Christopher J

    2016-01-01

    Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. PMID:26397745

  3. Shock and Release Properties of Concrete

    NASA Astrophysics Data System (ADS)

    Grady, D. E.

    1996-03-01

    Structural concrete is a composite of rock aggregate and cement-based grout, and is representative of a complex brittle solid material for which current activities in material response research and computational modeling is extensive. The present investigation has focused on dynamic equation-of-state properties and modeling studies of aggregate concrete. Unique shock compression experiments have been developed and pursued which yield material test data on dynamic strength, pore crush, shock Hugoniot and adiabatic decompression properties of concrete. Experimental data have been obtained which range from relatively low impact stresses to nearly 25 GPa, and encompass a wide range of dynamic response. New analytic studies have been pursued to infer equation-of-state properties from dynamic test data. Experimental adiabatic release data reveal unexpectedly shallow paths and low residual strains. Both thermal expansion and decompression dilatancy could contribute to the observed ! behavior and modeling of these eff ects has been pursued. This work performed at Sandia National Laboratories supported by the U. S. Department of Energy under contract DE-AC04-94AL85000.

  4. Radionuclide Retention in Concrete Waste Forms

    SciTech Connect

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  5. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  6. The NKOSSA concrete oil production barge

    SciTech Connect

    Valenchon, C.; Nagel, R.; Viallon, J.P.; Belbeoc`h, H.; Rouillon, J.

    1995-12-31

    This paper gives a presentation of the NKOSSA Production Barge. Most attention is, however, paid to the concrete hull. As part of the development of the NKOSSA hydrocarbon field located off the Congolese coast, West Africa, ELF CONGO will use a prestressed concrete barge as the main production facility to carry the equipment for oil and gas treatment. Once operational at the KNOSSA field, the barge and its 30,000 tons of equipment will house 160 people, serve as control center for the other field installations and provide oil treatment, LPG production, gas reinjection and water injection functions together with all utilities. The hull of the barge is of rectangular shape, 220 m long, 46 m wide and 16 m high. The bottom is 45 cm thick, the sides 50 cm and the deck 40 cm thick. High performance concrete, with a 70 MPa compressive cylinder strength is used for the construction of the hull, for both strength and durability purposes. The barge will be permanently anchored in 170 m water depth by twelve 4.5 inch chains in group of three at each corner of the vessel.

  7. Improved synthetic aperture focusing technique results of thick concrete specimens through frequency banding

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Barker, Alan; Albright, Austin; Santos-Villalobos, Hector

    2016-02-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on ultrasonic data collected from thick, complex concrete structures such as in NPPs. Towards these goals, we apply the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply this enhanced SAFT technique to a 2.134 m × 2.134 m × 1.016 m concrete

  8. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability.

    PubMed

    Wang, Jianyun; Ersan, Yusuf Cagatay; Boon, Nico; De Belie, Nele

    2016-04-01

    The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined. PMID:26896159

  9. Retrieval of concrete words involves more contextual information than abstract words: multiple components for the concreteness effect.

    PubMed

    Xiao, Xin; Zhao, Di; Zhang, Qin; Guo, Chun-yan

    2012-03-01

    The current study used the directed forgetting paradigm in implicit and explicit memory to investigate the concreteness effect. Event-related potentials (ERPs) were recorded to explore the neural basis of this phenomenon. The behavioral results showed a clear concreteness effect in both implicit and explicit memory tests; participants responded significantly faster to concrete words than to abstract words. The ERP results revealed a concreteness effect (N400) in both the encoding and retrieval phases. In addition, behavioral and ERP results showed an interaction between word concreteness and memory instruction (to-be-forgotten vs. to-be-remembered) in the late epoch of the explicit retrieval phase, revealing a significant concreteness effect only under the to-be-remembered instruction condition. This concreteness effect was realized as an increased P600-like component in response to concrete words relative to abstract words, likely reflecting retrieval of contextual details. The time course of the concreteness effect suggests advantages of concrete words over abstract words due to greater contextual information. PMID:22041121

  10. Long-term strength properties of HVFA concretes

    NASA Astrophysics Data System (ADS)

    Špak, M.; Bašková, R.

    2015-01-01

    Fly ash from coal burning is used as active addition for concrete in Middle-Europe region for several decades. The intensity of its utilization increases still. In the role of supplementary cement addition it serves as binder, whereby it helps to reduce final price of concrete as well as improves both the rheological properties of fresh concrete and several characteristics of hardened concrete. Fly ash presents the co-product of energetic industry. Its production increases together with growth of energy consumption. These factors bring the opportunity and requirement of production of concretes with high volume of fly ash based addition. Thus, significant economic, environmental, technological and technical benefits can be achieved by using of high amount of fly ash for concrete production.

  11. Modeling and assessment of concrete and the energy infrastructure

    SciTech Connect

    Guthrie, G.; Carey, J.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Concrete is an essential component of the energy infrastructure. The characteristics of concrete that determine its effectiveness in any application--be it construction (e.g., roads, bridges, dams) or waste isolation--result from the chemical and structural evolution of the particular concrete structure. Geochemical and mineralogical factors are among the most important, yet most overlooked, controls of this evolutionary process. This project is geared at using a combination of advanced geochemical and mineralogical experimentation, characterization, and modeling (much of which was developed to understand geological systems such as Yucca Mountain) to understand the evolution of concrete in a mechanistic way. The goal was to develop a systematic approach to problems ranging from premature degradation of concrete to the design of next-generation concretes.

  12. Improvement of cement concrete strength properties by carbon fiber additives

    NASA Astrophysics Data System (ADS)

    Nevsky, Andrey; Kudyakov, Konstantin; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The paper presents the results of studies of fiber-reinforced concrete with carbon fibers. The effectiveness of carbon fibers uniform distribution in the concrete was obtained as a result of its preliminary mechanical mixing in water solution with chemical additives. Additives are to be used in the concrete technology as modifiers at initial stage of concrete mix preparing. The technology of preparing of fiber-reinforced concrete mix with carbon fibers is developed. The superplasticizer is based on ether carboxylates as a separator for carbon fibers. The technology allows increasing of concrete compressive strength up to 43.4% and tensile strength up to 17.5% as well as improving stability of mechanical properties.

  13. Concrete decontamination by Electro-Hydraulic Scabbling (EHS). Topical report

    SciTech Connect

    1996-03-30

    Electro-Hydraulic Scabbling (EHS) technology and equipment for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals is being developed by Textron Systems Division (TSD). This wet scabbling technique involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface. The high pressure impulse results in stresses which crack and peel off a concrete layer of a controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. This new technology is being developed under Contract No. DE-AC21-93MC30164. The project objective is to develop and demonstrate a cost-efficient, rapid, controllable process to remove the surface layer of contaminated concrete while generating minimal secondary waste. The primary target of this program is uranium-contaminated concrete floors which constitute a substantial part of the contaminated area at DOE weapon facilities.

  14. Relationship between liquid sorptivity and capillarity in concrete

    SciTech Connect

    Hanzic, L.; Ilic, R

    2003-09-01

    Neutron radiography (NR) was applied to study liquid transport processes in concrete. With this method, it is possible to monitor the liquid distribution inside specimens and to measure the height of the liquid front for liquids of high hydrogen content inside concrete. The experiment was performed with water and fuel oil for three different types of concrete. The results are compared with the sorptivity measured by the gravimetric method. It is shown that the ratio between the capillarity coefficient and sorptivity depends upon the combination of liquid and solid phases. For water, this value was found to be 5.5{+-}0.6, 5.8{+-}0.6 and 7.1{+-}0.7 in concrete without additives, concrete with an air-entraining agent and concrete with a plasticizer, respectively. For fuel oil, the value is about 50% higher than that for water.

  15. Modelling the electrical properties of concrete for shielding effectiveness prediction

    NASA Astrophysics Data System (ADS)

    Sandrolini, L.; Reggiani, U.; Ogunsola, A.

    2007-09-01

    Concrete is a porous, heterogeneous material whose abundant use in numerous applications demands a detailed understanding of its electrical properties. Besides experimental measurements, material theoretical models can be useful to investigate its behaviour with respect to frequency, moisture content or other factors. These models can be used in electromagnetic compatibility (EMC) to predict the shielding effectiveness of a concrete structure against external electromagnetic waves. This paper presents the development of a dispersive material model for concrete out of experimental measurement data to take account of the frequency dependence of concrete's electrical properties. The model is implemented into a numerical simulator and compared with the classical transmission-line approach in shielding effectiveness calculations of simple concrete walls of different moisture content. The comparative results show good agreement in all cases; a possible relation between shielding effectiveness and the electrical properties of concrete and the limits of the proposed model are discussed.

  16. Effective field use of high range water reduced concrete

    NASA Astrophysics Data System (ADS)

    Sprinkel, M. M.

    1981-11-01

    The experience of the Virginia Department of Highways and Transportation with the use of high range water reduced (HRWR) concrete is described as well as the installation of the HRWR concrete in two pavements and four bridge decks. The results of evaluative tests are included along with recommendations concerning the further use of HRWR concrete. On the average the HRWR concrete placed in the field with conventional equipment was properly consolidated and controlled. However, because of the unanticipated variability of the concrete, portions of the concrete exhibited inadequate consolidation, segregated mixture components, improperly entrained air, shrinkage cracks, and poor finishes. Specimens subjected to cycles of freezing and thawing showed low durability factors that were attributed to an unsatisfactory air void system. Subsequent laboratory work revealed that HRWR admixtures satisfied the requirements of ASTM C494.

  17. 19. Virginia Route 605 grade separation structure. This reinforced concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Virginia Route 605 grade separation structure. This reinforced concrete rigid frame structure. This reinforced concrete rigid frame structure was built in 1950. It is an example of the most common ornament used on the parkway where the headwall, wingwalls, and railing is faced rusticated stone, but not the interior abutment walls and the bottom of the arch are plain concrete. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  18. Failure of underground concrete structures subjected to blast loadings

    NASA Technical Reports Server (NTRS)

    Ross, C. A.; Nash, P. T.; Griner, G. R.

    1979-01-01

    The response and failure of two edges of free reinforced concrete slabs subjected to intermediate blast loadings are examined. The failure of the reinforced concrete structures is defined as a condition where actual separation or fracture of the reinforcing elements has occurred. Approximate theoretical methods using stationary and moving plastic hinge mechanisms with linearly varying and time dependent loadings are developed. Equations developed to predict deflection and failure of reinforced concrete beams are presented and compared with the experimental results.

  19. 7. SHOSHONE HYDROELECTRIC PLANT, WEST ELEVATION OF MAIN BUILDING TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SHOSHONE HYDROELECTRIC PLANT, WEST ELEVATION OF MAIN BUILDING TO THE LEFT, NORTH ELEVATION OF OFFICE BUILDING TO THE RIGHT, VIEW TO THE EAST. CONCRETE 'PATH' IN FOREGROUND IS THE CONDUIT THROUGH WHICH POWER CABLES RUN FROM THE TRANSFORMERS TO THE 115 KV SUBSTATION. - Shoshone Hydroelectric Plant Complex, 60111 U.S. Highway 6, Garfield County, CO

  20. Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638

    SciTech Connect

    Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2013-07-01

    Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas while the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)

  1. Neutron imaging of water penetration into cracked steel reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Wittmann, F. H.; Zhao, T.; Lehmann, E. H.

    2010-04-01

    Service life and durability of reinforced concrete structures have become a crucial issue because of the economical and ecological implications. Service life of reinforced concrete structures is often limited by penetration of water and chemical compounds dissolved in water into the porous cement-based material. By now it is well-known that cracks in reinforced concrete are preferential paths for ingress of aggressive substances. Neutron radiography was successfully applied to study the process of water penetration into cracked steel reinforced concrete. In addition, the effectiveness of integral water repellent concrete to prevent ingress of water and salt solutions was investigated. Results are described in detail in this contribution. It will be shown that neutron radiography is a powerful method to visualize the process of water penetration into cracked and uncracked cement-based materials. On the basis of the obtained experimental data, it is possible to quantify the time-dependent water distributions in concrete with high accuracy and spatial resolution. It is of particular interest that penetration of water and salt solutions into damaged interfaces between concrete and steel can be visualized by means of neutron radiography. Deteriorating processes in cracked reinforced concrete structures can be studied in a completely new way. This advanced technology will help and find adequate ways to improve durability and service life of reinforced concrete structures. This will mean at the same time an essential contribution to improved sustainability.

  2. Prestressed concrete for the storage of liquefied gases

    SciTech Connect

    Bruggeling, A.S.G.

    1981-01-01

    Both concrete and prestressing-steel materials retain their strengths at cryogenic temperatures, making them ideal for LNG storage tanks and similar structures. Prestressed concrete lends itself to a wide variety of configurations, from containment dikes to integrated tank systems in which the steel, insulation, and concrete must interact efficiently. Of major importance in building prestressed-concrete storage tanks are the design loads and load factors to be adopted, especially the so-called special loads that depend on the nature and quantity of the product to be stored, the type of installation involved, the siting of the storage facilities, and the tank construction (flexible or rigid).

  3. Delamination detection in reinforced concrete using thermal inertia

    SciTech Connect

    Del Grande, N K; Durbin, P F

    1998-11-30

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  4. Moisture dependence of radon transport in concrete: measurements and modeling.

    PubMed

    Cozmuta, I; van der Graaf, E R; de Meijer, R J

    2003-10-01

    The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release rate decreases very steeply. It is demonstrated that this dependence can be successfully modeled on basis of the multi-phase radon-transport equation in which values for various input parameters (porosity, diffusion coefficient, emanation factor, etc.) were obtained from independent measurements. Furthermore, a concrete structure development model was used to predict at any moment in time the values of input parameters that depend on the evolution of the concrete microstructure. Information on the concrete manufacturing recipe and curing conditions (temperature, relative humidity) was used as input for the concrete structure model. The combined radon transport and concrete structure model supplied sufficient information to assess the influence of relative humidity on the radon source and barrier aspects of concrete. More specifically, the model has been applied to estimate the relative contributions to the radon exhalation rate of a 20-cm-thick concrete slab of radon produced in the concrete slab itself and due to diffusive transport through the slab of radon from soil gas. PMID:13678285

  5. MOISTURE CONTENT AND POROSITY OF CONCRETE RUBBLE STUDY.

    SciTech Connect

    Phifer, M

    2005-10-07

    Tritium contaminated concrete rubble from the 232-F Tritium Facility was disposed in the Slit 1 Trenches 1 and 2 in 1997. A Special Analysis (SA) has been performed to evaluate any impact this disposal may have on the groundwater. The SA assumed that the disposed concrete rubble was fully saturated at the time of disposal, however if the concrete was less than fully saturated, migration of tritium out of the concrete would be slower than under fully saturated conditions. Therefore if the concrete at disposal was less than fully saturated, the PA assumption of full saturation would be a conservative assumption. In order to evaluate whether the PA assumption resulted in a conservative analysis from the standpoint of the concrete saturation, concrete rubble samples were collected from various facilities being demolished at the Savannah River Site (SRS) and evaluated for in-field moisture content, absorbable moisture, and water exchangeable porosity. The purpose of this task was to collect concrete rubble samples from various demolished SRS facilities for the purpose of determining in-field moisture content, absorbable moisture, and water exchangeable porosity. Since moisture content testing for concrete rubble is not typical, existing ASTM Standards were reviewed for method and procedure development.

  6. Polymer concrete pipe for high-temperature corrosive environments

    SciTech Connect

    Kukacka, L.E.; Schroeder, J.E.

    1981-01-01

    Polymer concrete is a composite material which has strength and durability characteristics greatly superior to those of Portland cement concrete and better durability than steel. Polymer concrete has been successfully tested in brine, flashing brine and steam at temperatures up to 260/sup 0/C. Exposures were as long as 960 days. Glass filament wound polymer concrete pipe was developed with excellent strength, low weight, and a cost comparable to or less than schedule 40 steel. Connections can be made with slip joints for low pressure applications and flanged joints for high pressure applications.

  7. Connotative Evaluation and Concreteness Shifts in Short-Term Memory

    ERIC Educational Resources Information Center

    Goedel, George D.

    1974-01-01

    Encoding processes were investigated using the release from proactive inhibition (PI) paradigm with word triades derived from the factorial Manipulation of evaluative connotation (E) and concreteness (C). (Editor)

  8. Shock characterization of an ultra-high strength concrete

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-05-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete.

  9. Development of ultrasonic methods for the nondestructive inspection of concrete

    NASA Astrophysics Data System (ADS)

    Claytor, T. M.; Ellingson, W. A.

    1983-08-01

    Nondestructive inspection of Portland cement and refractory concrete is conducted to determine strength, thickness, presence of voids or foreign matter, presence of cracks, amount of degradation due to chemical attack, and other properties without the necessity of coring the structure (which is usually accomplished by destructively removing a sample). The state of the art of acoustic nondestructive testing methods for Portland cement and refractory concrete is reviewed. Most nondestructive work on concrete has concentrated on measuring acoustic velocity by through transmission methods. Development of a reliable pitch-catch or pulse-echo system would provide a method of measuring thickness with access from only one side of the concrete.

  10. Protecting steel in concrete in the Persian Gulf

    SciTech Connect

    Matta, Z.G. )

    1994-06-01

    The climate and geomorphology of the Persian Gulf make it one of the world's most severe environments for reinforced concrete. The concrete mix ingredients are usually contaminated with chloride, and the environment around reinforced concrete structures also contains salts, both under- and above-ground. Prevailing high temperatures also promote rapid rates of corrosion. Fusion-bonded epoxy-coated rebar, polyvinyl butyral-based coated rebar, calcium nitrile corrosion-inhibiting admixture, and microsilica are reviewed as corrosion prevention measures for steel in concrete for Persian Gulf service. Detrimental effects and user-friendliness are discussed.

  11. Carbonate concretions: an ideal sedimentary host for microfossils.

    USGS Publications Warehouse

    Blome, C.D.; Albert, N.R.

    1985-01-01

    Enhanced preservation correlates with early diagenetic concretion formation at or near the sediment-water interface and with higher carbonate, organic material, and metallic cation content than in surrounding rocks. Early diagenetic growth is inferred by diverging sedimentary laminations and small-scale sedimentary structures in fossiliferous carbonate concretions. High initial concentration of microorganisms or fecal pellets may commonly be responsible for incipient carbonate-concretion growth. Excellent preservation is demonstrated by radiolarians and palynomorphs extracted from a carbonate concretion from the Middle Jurassic Shelikof Formation, S Alaska.-from Authors

  12. Research progress of microbial corrosion of reinforced concrete structure

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Li, Dawang; Jiang, Nan; Wang, Dongwei

    2011-04-01

    Microbial corrosion of reinforce concrete structure is a new branch of learning. This branch deals with civil engineering , environment engineering, biology, chemistry, materials science and so on and is a interdisciplinary area. Research progress of the causes, research methods and contents of microbial corrosion of reinforced concrete structure is described. The research in the field is just beginning and concerted effort is needed to go further into the mechanism of reinforce concrete structure and assess the security and natural life of reinforce concrete structure under the special condition and put forward the protective methods.

  13. Breaking/cracking and seating concrete pavements. Final report

    SciTech Connect

    Thompson, M.R.

    1989-03-01

    This synthesis will be of interest to pavement designers, maintenance engineers, and others interested in reducing reflection cracking of asphalt overlays on portland cement concrete (PCC) pavement. Information is presented on the technique of breaking or cracking of the concrete pavement into small segments before overlaying with asphalt concrete. Asphalt concrete overlays on existing PCC pavements are subject to reflection cracking induced by thermal movements of PCC pavement. The report of the Transportation Research Board discusses the technique of breaking/cracking and seating of the existing PCC before an overlay as a means to reduce or eliminate reflection cracking.

  14. Durability of high performance concrete in magnesium brine

    SciTech Connect

    Tumidajski, P.J.; Chan, G.W.

    1996-04-01

    The durability of six concretes exposed to magnesium brine was monitored for 24 months. These concretes incorporated ground granulated blast furnace slag, silica fume, and fly ash. The Young`s moduli, chloride penetrations, and median pore diameters were measured. There was a cyclic nature to these properties due to the complicated interaction of hydration with magnesium, chloride and sulfate attack. Mineral admixtures, in combination with a long initial cure, provided the most durable concrete. Concrete with 65% slag had the best overall durability to the brines tested.

  15. Radiation shielding for lunar bases using lunar concrete

    NASA Astrophysics Data System (ADS)

    Huston, S. L.; Oishi, K.; Saito, T.

    1992-08-01

    The radiation shielding requirements for an advanced lunar base concept which uses concrete made from lunar resources are evaluated. Some of the features of this lunar base concept are discussed. The results of radiation transport calculations are presented to determine the radiation dose as a function of shielding depth. The shielding effectiveness of concrete is compared with that of aluminum, lunar regolith, and water. It is shown that lunar concrete is a fairly effective radiation shield, and that the concrete lunar base concept can provide a significant amount of intrinsic shielding without requiring additional parasitic shielding.

  16. EXTERIOR VIEW, LOOKING TOWARDS TUSCALOOSA, WITH CONCRETE PIERS AND CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING TOWARDS TUSCALOOSA, WITH CONCRETE PIERS AND CENTER SPAN. - Gulf, Mobile & Ohio Railroad Bridge, Spans Black Warrior River between Northport & Tuscaloosa, Tuscaloosa, Tuscaloosa County, AL

  17. EXTERIOR VIEW, LOOKING TOWARDS TUSCALOOSA, WITH APPROACH, CONCRETE PIERS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING TOWARDS TUSCALOOSA, WITH APPROACH, CONCRETE PIERS AND CENTER SPAN. - Gulf, Mobile & Ohio Railroad Bridge, Spans Black Warrior River between Northport & Tuscaloosa, Tuscaloosa, Tuscaloosa County, AL

  18. Evaluating the strength of concrete structure on terrace houses

    NASA Astrophysics Data System (ADS)

    Hasbullah, Mohd. Amran; Yusof, Rohana; Rahman, Mohd Nazaruddin Yusoff @ Abdul

    2016-08-01

    The concrete structure is the main component to support the structure of the building, but when concrete has been used for an extended period hence, it needs to be evaluated to determine the current strength, durability and how long it can last. The poor quality of concrete structures will cause discomfort to the user and, the safety will be affected due to lack of concrete strength. If these issues are not monitored or not precisely known performance, and no further action done then, the concrete structure will fail and eventually it will collapse. Five units of terrace houses that are built less than 10 years old with extension or renovations and have cracks at Taman Samar Indah, Samarahan, Sarawak have been selected for this study. The instrument used in this research is Ultrasonic Pulse Velocity (UPV), with the objective to determine the current strength and investigate the velocity of a pulse at the concrete cracks. The data showed that the average velocity of the pulse is less than 3.0 km/s and has shown that the quality of the concrete in the houses too weak scale / doubt in the strength of concrete. It also indicates that these houses need to have an immediate repair in order to remain secure other concrete structures.

  19. Properties of Refractory Concrete in Tension and Compression

    NASA Technical Reports Server (NTRS)

    Sampson, Jeffrey

    2009-01-01

    Refractory concrete on the LC-39A Flame Deflector has been damaged during multiple Space Shuttle launches (e.g. STS-124, STS-126, STS-119, and STS-125, STS-127). These events have prompted a better understanding of the system via an analytical model of the Flame Deflector assembly to include the Fondu Fyre refractory concrete. This model requires test data inputs of the refractory concrete's mechanical properties, which include stress versus strain curves in tension and compression, modulus of elasticity, and Poisson's ratio. Sections of Fondu Fyre refractory concrete removed from the LC-39A Flame Deflector were provided for this testing.

  20. Microstructural characterization of concrete prepared with recycled aggregates.

    PubMed

    Guedes, Mafalda; Evangelista, Luís; de Brito, Jorge; Ferro, Alberto C

    2013-10-01

    Several authors have reported the workability, mechanical properties, and durability of concrete produced with construction waste replacing the natural aggregate. However, a systematic microstructural characterization of recycled aggregate concrete has not been reported. This work studies the use of fine recycled aggregate to replace fine natural aggregate in the production of concrete and reports the resulting microstructures. The used raw materials were natural aggregate, recycled aggregate obtained from a standard concrete, and Portland cement. The substitution extent was 0, 10, 50, and 100 vol%; hydration was stopped at 9, 24, and 96 h and 28 days. Microscopy was focused on the cement/aggregate interfacial transition zone, enlightening the effect of incorporating recycled aggregate on the formation and morphology of the different concrete hydration products. The results show that concretes with recycled aggregates exhibit typical microstructural features of the transition zone in normal strength concrete. Although overall porosity increases with increasing replacement, the interfacial bond is apparently stronger when recycled aggregates are used. An addition of 10 vol% results in a decrease in porosity at the interface with a corresponding increase of the material hardness. This provides an opportunity for development of increased strength Portland cement concretes using controlled amounts of concrete waste. PMID:23673273