Science.gov

Sample records for conditional double knockout

  1. Generation of conditional knockout mice.

    PubMed

    Sakamoto, Kazuhito; Gurumurthy, Channabasavaiah B; Wagner, Kay-Uwe

    2014-01-01

    Conditional knockout mouse models are powerful tools to examine the biological and molecular function(s) of genes in specific tissues. The general procedure to generate such genetically engineered mouse models consists of three main steps. The first step is to find the appropriate genomic clone of the gene of interest and to design the cloning and Southern blot strategies. The second step is the cloning of the gene-targeting vector with all its essential components including positive and negative selection cassettes and the insertion of LoxP sites. Although conventional methods are still being widely used for DNA cloning, we describe in this book chapter the use of λ Red phage-based homologous recombination in Escherichia coli to capture the genomic DNA of the gene of interest and to assemble the gene-targeting vector. This new method provides several advantages as it does not require the presence of restriction sites within the gene of interest to insert LoxP-flanked DNA fragments. In the final step, the gene-targeting vector is transferred into embryonic stem (ES) cells, and successfully targeted ES cell clones are injected into mouse blastocysts to generate conditional knockout mice. PMID:25064096

  2. Impaired conditioned taste aversion learning in spinophilin knockout mice.

    PubMed

    Stafstrom-Davis, C A; Ouimet, C C; Feng, J; Allen, P B; Greengard, P; Houpt, T A

    2001-01-01

    Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is a form of associative learning in which an animal rejects a food that has been paired previously with a toxic effect (e.g., a sucrose solution paired with a malaise-inducing injection of lithium chloride). Acquisition and extinction of CTA was tested in spinophilin knockout and wild-type mice using taste solutions (sucrose or sodium chloride) or flavors (Kool-Aid) paired with moderate or high doses of LiCl (0.15 M, 20 or 40 mL/kg). When sucrose or NaCl solutions were paired with a moderate dose of LiCl, spinophilin knockout mice were unable to learn a CTA. At the higher dose, knockout mice acquired a CTA but extinguished more rapidly than wild-type mice. A more salient flavor stimulus (taste plus odor) revealed similar CTA learning at both doses of LiCl in both knockouts and wild types. Sensory processing in the knockouts appeared normal because knockout mice and wild-type mice expressed identical unconditioned taste preferences in two-bottle tests, and identical lying-on-belly responses to acute LiCl. We conclude that spinophilin is a candidate molecule required for normal CTA learning. PMID:11584074

  3. Beyond knockouts: cre resources for conditional mutagenesis

    PubMed Central

    Murray, Stephen A.; Eppig, Janan T.; Smedley, Damian; Simpson, Elizabeth M.; Rosenthal, Nadia

    2013-01-01

    With the effort of the International Phenotyping Consortium (IMPC) to produce thousands of strains with conditional potential gathering steam, there is growing recognition that it must be supported by a rich toolbox of cre driver strains. The approaches to build cre strains have evolved in both sophistication and reliability, replacing first generation strains with tools that can target individual cell populations with incredible precision and specificity. The modest set of cre drivers generated by individual labs over the past 15+ years is now growing rapidly, thanks to a number of large-scale projects to produce new cre strains for the community. The power of this growing resource, however, depends upon the proper deep characterization of strain function, as even the best designed strain can display a variety of undesirable features that must be considered in experimental design. This must be coupled with the parallel development of informatics tools to provide functional data to the user, and facilitated access to the strains through public repositories. We will discuss the current progress on all of these fronts and the challenges that remain to ensure the scientific community can capitalize on the tremendous number of mouse resources at their disposal. PMID:22926223

  4. Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice

    PubMed Central

    Jeoung, Nam Ho; Rahimi, Yasmeen; Wu, Pengfei; Lee, W. N. Paul; Harris, Robert A.

    2015-01-01

    The importance of PDHK (pyruvate dehydrogenase kinase) 2 and 4 in regulation of the PDH complex (pyruvate dehydrogenase complex) was assessed in single- and double-knockout mice. PDHK2 deficiency caused higher PDH complex activity and lower blood glucose levels in the fed, but not the fasted, state. PDHK4 deficiency caused similar effects, but only after fasting. Double deficiency intensified these effects in both the fed and fasted states. PDHK2 deficiency had no effect on glucose tolerance, PDHK4 deficiency produced only a modest effect, but double deficiency caused a marked improvement and also induced lower insulin levels and increased insulin sensitivity. In spite of these beneficial effects, the double-knockout mice were more sensitive than wild-type and single-knockout mice to long-term fasting, succumbing to hypoglycaemia, ketoacidosis and hypothermia. Stable isotope flux analysis indicated that hypoglycaemia was due to a reduced rate of gluconeogenesis and that slightly more glucose was converted into ketone bodies in the double-knockout mice. The findings establish that PDHK2 is more important in the fed state, PDHK4 is more important in the fasted state, and survival during long-term fasting depends upon regulation of the PDH complex by both PDHK2 and PDHK4. PMID:22360721

  5. Preaxial Polydactyly in Sost/Sostdc1 Double Knockouts

    SciTech Connect

    Yee, C M; Collette, N M; Loots, G G

    2011-07-29

    In the United States, {approx}5% are born with congenital birth defects due to abnormal function of cellular processes and interactions. Sclerosteosis, a rare autosomal recessive disease, causes hyperostosis of the axial and appendicular skeleton, and patients present radial deviation, digit syndactyly, nail dysplasia, and overall high bone mineral density. Sclerosteosis is due to a loss of function of sclerostin (Sost). Sost is a Wnt (abbrev.) antagonist; when mutated, nonfunctional Sost results in hyperactive osteoblast activity which leads to abnormal high bone mass. Previous studies have shown that Sost overexpression in transgenic mice causes reduced bone mineral density and a variety of limb phenotypes ranging from lost, fused, and split phalanges. Consistent with clinical manifestations of Sclerosteosis, Sost knockout mice exhibit increased generalized bone mineral density and syndactyly of the digits. Sostdc1 is a paralog of Sost that has also been described as an antagonist of Wnt signaling, in developing tooth buds. Unlike Sost knockouts, Sostdc1 null mice do not display any limb abnormalities. To determine if Sost and Sostdc1 have redundant functions during limb patterning, we examined Sost; Sostdc1 mice determined that they exhibit a novel preaxial polydactyly phenotype with a low penetrance. LacZ staining, skeletal preparations, and in situ hybridization experiments were used to help characterize this novel phenotype and understand how this phenotype develops. We find Sost and Sostdc1 to have complementary expression patterns during limb development, and the loss of their expression alters the transcription of several key limb regulators, such as Fgf8, Shh and Grem.

  6. Atherosclerosis, inflammation and lipoprotein glomerulopathy in kidneys of apoE-/-/LDL-/- double knockout mice

    PubMed Central

    2010-01-01

    Background The apoE-/-/LDL-/- double knockout mice are bearing considerable structural homology to human atherosclerosis. We hypothesized, that advanced lesion formation in the renal artery is associated with kidney alterations in these mice. Methods Kidneys from apoE-/-/LDL-/- double knockout mice at the age of 80 weeks (n = 6) and C57/BL control mice (n = 5) were infused with Microfil, harvested and scanned with micro-CT (12 μm cubic voxels) and Nano-CT (900 nm cubic voxels). We quantitated the total vascular volume using micro-CT. Number and cross-sectional area (μm2) of glomeruli were measured using histology. Results At the age of 80 weeks, the renal total vascular volume fraction decreased significantly (p < 0.001) compared to controls. Moreover, the renal artery showed advanced atherosclerotic lesions with adventitial Vasa vasorum neovascularization. Perivascular inflammation was present in kidneys of apoE-/-/LDL-/- double knockout mice, predominantly involved are plasma cells and leucocytes. Glomeruli cross-sectional area (9959 ± 1083 μm2) and number (24.8 ± 4.5) increased in apoE-/-/LDL-/- double knockout mice compared to controls (3533 ± 398 μm2; 17.6 ± 3, respectively), whereas 41% of the total number of glomeruli showed evidence for lipoprotein associated glomerulopathy (LPG). Moreover, immunohistochemistry demonstrated capillary aneurysms of the glomeruli filled with factor 8 containing emboli. Conclusion The reduced intra-renal total vascular volume is associated with systemic atherosclerosis and glomeruli alterations in the apoE-/-/LDL-/- double knockout mouse model. PMID:20727187

  7. A Conditional Knockout Mouse Line of the Oxytocin Receptor

    PubMed Central

    Lee, Heon-Jin; Caldwell, Heather K.; Macbeth, Abbe H.; Tolu, Selen G.; Young, W. Scott

    2008-01-01

    Oxytocin plays important roles in reproductive physiology and various behaviors, including maternal behavior and social memory. Its receptor (Oxtr) is present in peripheral tissues and brain, so a conditional knockout (KO, −/−) would be useful to allow elimination of the receptor in specific sites at defined times. We created a line of mice in which loxP sites flank Oxtr coding sequence (floxed) enable Cre recombinase-mediated inactivation of the receptor. We expressed Cre recombinase in these mice either in all tissues (Oxtr−/−) or the forebrain (OxtrFB/FB) using the Ca2+/calmodulin-dependent protein kinase IIα promoter. The latter KO has reduced Oxtr binding beginning 21–28 d postnatally, leading to prominent reductions in the lateral septum, hippocampus, and ventral pallidum. The medial amygdala is spared, and there is significant retention of binding within the olfactory bulb and nucleus and neocortex. We did not observe any deficits in the general health, sensorimotor functions, anxiety-like behaviors, or sucrose intake in either Oxtr−/− or OxtrFB/FB mice. Females of both KO types deliver pups, but only the OxtrFB/FB mice are able to eject milk. Oxtr−/− males show impaired social memory for familiar females, whereas the OxtrFB/FB males appear to recognize their species but not individuals. Our results confirm the importance of oxytocin in social recognition and demonstrate that spatial and temporal inactivation of the Oxtr will enable finer understanding of the physiological, behavioral, and developmental roles of the receptor. PMID:18356275

  8. Nitrotyrosinylation, Remodeling and Endothelial-Myocyte Uncoupling in iNOS, Cystathionine Beta Synthase (CBS) Knockouts and iNOS/CBS Double Knockout Mice

    PubMed Central

    Kundu, Soumi; Kumar, Munish; Sen, Utpal; Mishra, Paras K.; Tyagi, Neetu; Metreveli, Naira; Lominadze, David; Rodriguez, Walter; Tyagi, Suresh C.

    2009-01-01

    Increased levels of homocysteine (Hcy), recognized as hyperhomocysteinemia (HHcy), were associated with cardiovascular diseases. There was controversy regarding the detrimental versus cardio protective role of inducible nitric oxide synthase (iNOS) in ischemic heart disease. The aim of this study was to test the hypothesis that the Hcy generated nitrotyrosine by inducing the endothelial nitric oxide synthase, causing endothelial-myocyte (E–M) coupling. To differentiate the role of iNOS versus constitutive nitric oxide synthase (eNOS and nNOS) in Hcy-mediated nitrotyrosine generation and matrix remodeling in cardiac dysfunction, left ventricular (LV) tissue was analyzed from cystathionine beta synthase (CBS) heterozygote knockout, iNOS homozygote knockout, CBS−/+/iNOS−/− double knockout, and wild-type (WT) mice. The levels of nitrotyrosine, MMP-2 and -9 (zymographic analysis), and fibrosis (by trichrome stain) were measured. The endothelial-myocyte function was determined in cardiac rings. In CBS−/+ mice, homocysteine was elevated and in iNOS−/− mice, nitric oxide was significantly reduced. The nitrotyrosine and matrix metalloproteinase-9 (MMP-9) levels were elevated in double knockout and CBS−/+ as compared to WT mice. Although MMP-2 levels were similar in CBS−/+, iNOS−/−, and CBS−/+/iNOS−/−, the levels were three- to fourfold higher than WT. The levels of collagen were similar in CBS−/+ and iNOS−/−, but they were threefold higher than WT. Interesting, the levels of collagen increased sixfold in double knockouts, compared to WT, suggesting synergism between high Hcy and lack of iNOS. Left ventricular hypertrophy was exaggerated in the iNOS−/− and double knockout, and mildly increased in the CBS−/+, compared to WT mice. The endothelial-dependent relaxation was attenuated to the same extent in the CBS−/+ and iNOS−/−, compared to WT, but it was robustly blunted in double knockouts. The results concluded that homocysteine

  9. Intragastric fat self-administration is impaired in GPR40/120 double knockout mice

    PubMed Central

    Sclafani, Anthony; Touzani, Khalid; Ackroff, Karen

    2015-01-01

    Mice acquire strong preferences for flavors paired with intragastric (IG) fat infusions. This IG fat conditioning is attenuated in double knockout (DoKO) mice missing GPR40 and GPR120 fatty acid receptors. Here we determined if GPR40/120 DoKO mice are also impaired in IG fat self-administration in an operant lick task. In daily 1-h sessions the mice were trained with a sipper spout that contained dry food pellets; licks on the spout triggered infusions of IG fat (Intralipid). The training sessions were followed by test sessions with an empty spout. GPR40/120 DoKO mice self-infused more 20% fat than wild type (WT) C57BL/6 mice in training with a food-baited spout (2.4 vs. 2.0 kcal/h) but self-infused less 20% fat than WT mice in empty spout tests (1.2 vs. 1.7 kcal/h). The DoKO mice also self-infused less 5% fat than WT mice (0.6 vs. 1.3 kcal/h) although both groups emitted more licks for 5% fat than 20% fat. The DoKO and WT mice did not differ, however, in their self-infusion of 12.5% glucose (1.5 vs. 1.6 kcal/h), which is isocaloric to 5% fat. A second 5% IL test showed that the DoKO mice reverted to a reduced self-infusion compared to WT mice. When the infusion was shifted to water, WT mice reduced licking in the first extinction session, whereas DoKO mice were less sensitive to the absence of infused fat. Our results indicate that post-oral GPR40/120 signaling is not required to process IG fat infusions in food-baited spout training sessions but contributes to post-oral fat reinforcement in empty spout tests and flavor conditioning tests. PMID:25911263

  10. Intragastric fat self-administration is impaired in GPR40/120 double knockout mice.

    PubMed

    Sclafani, Anthony; Touzani, Khalid; Ackroff, Karen

    2015-08-01

    Mice acquire strong preferences for flavors paired with intragastric (IG) fat infusions. This IG fat conditioning is attenuated in double knockout (DoKO) mice missing GPR40 and GPR120 fatty acid receptors. Here we determined if GPR40/120 DoKO mice are also impaired in IG fat self-administration in an operant lick task. In daily 1-h sessions the mice were trained with a sipper spout that contained dry food pellets; licks on the spout triggered infusions of IG fat (Intralipid). The training sessions were followed by test sessions with an empty spout. GPR40/120 DoKO mice self-infused more 20% fat than wild type (WT) C57BL/6 mice in training with a food-baited spout (2.4 vs. 2.0kcal/h) but self-infused less 20% fat than WT mice in empty spout tests (1.2 vs. 1.7kcal/h). The DoKO mice also self-infused less 5% fat than WT mice (0.6 vs. 1.3kcal/h) although both groups emitted more licks for 5% fat than 20% fat. The DoKO and WT mice did not differ, however, in their self-infusion of 12.5% glucose (1.5 vs. 1.6kcal/h), which is isocaloric to 5% fat. A second 5% IL test showed that the DoKO mice reverted to a reduced self-infusion compared to WT mice. When the infusion was shifted to water, WT mice reduced licking in the first extinction session, whereas DoKO mice were less sensitive to the absence of infused fat. Our results indicate that post-oral GPR40/120 signaling is not required to process IG fat infusions in food-baited spout training sessions but contributes to post-oral fat reinforcement in empty spout tests and flavor conditioning tests. PMID:25911263

  11. Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans.

    PubMed

    Chavali, Vishalakshi; Nandi, Shyam Sundar; Singh, Shree Ram; Mishra, Paras Kumar

    2014-01-01

    Diabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans. However, the genetic intervention to ameliorate diabetic cardiomyopathy in these mice often requires creating double knockout (DKO). In order to assess the therapeutic potential of a gene, that specific gene is either overexpressed (transgenic expression) or abrogated (knockout) in the diabetic mice. If the genetic mice model for diabetes is used, it is necessary to create DKO with transgenic/knockout of the target gene to investigate the specific role of that gene in pathological cardiac remodeling in diabetics. One of the important genes involved in extracellular matrix (ECM) remodeling in diabetes is matrix metalloproteinase-9 (Mmp9). Mmp9 is a collagenase that remains latent in healthy hearts but induced in diabetic hearts. Activated Mmp9 degrades extracellular matrix (ECM) and increases matrix turnover causing cardiac fibrosis that leads to heart failure. Insulin2 mutant (Ins2+/-) Akita is a genetic model for T1D that becomes diabetic spontaneously at the age of 3-4 weeks and show robust hyperglycemia at the age of 10-12 weeks. It is a chronic model of T1D. In Ins2+/- Akita, Mmp9 is induced. To investigate the specific role of Mmp9 in diabetic hearts, it is necessary to create diabetic mice where Mmp9 gene is deleted. Here, we describe the method to generate Ins2+/-/Mmp9-/- (DKO) mice to determine whether the abrogation of Mmp9 ameliorates diabetic cardiomyopathy. PMID:25064116

  12. Normal Maternal Behavior, But Increased Pup Mortality, in Conditional Oxytocin Receptor Knockout Females

    PubMed Central

    Macbeth, Abbe H.; Stepp, Jennifer E.; Lee, Heon-Jin; Young, W. Scott; Caldwell, Heather K.

    2011-01-01

    Oxytocin (Oxt) and the Oxt receptor (Oxtr) are implicated in the onset of maternal behavior in a variety of species. Recently, we developed two Oxtr knockout lines: a total body knockout (Oxtr−/−) and a conditional Oxtr knockout (OxtrFB/FB) in which the Oxtr is lacking only in regions of the forebrain, allowing knockout females to potentially nurse and care for their biological offspring. In the current study, we assessed maternal behavior of postpartum OxtrFB/FB females toward their own pups and maternal behavior of virgin Oxtr−/− females toward foster pups and compared knockouts of both lines to wildtype (Oxtr+/+) littermates. We found that both Oxtr−/− and OxtrFB/FB females appear to have largely normal maternal behaviors. However, with first litters, approximately 40% of the OxtrFB/FB knockout dams experienced high pup mortality, compared to fewer than 10% of the Oxtr+/+ dams. We then went on to test whether or not this phenotype occurred in subsequent litters or when the dams were exposed to an environmental disturbance. We found that regardless of the degree of external disturbance, OxtrFB/FB females lost more pups on their first and second litters compared to wildtype females. Possible reasons for higher pup mortality in OxtrFB/FB females are discussed. PMID:20939667

  13. Exacerbated neuronal ceroid lipofuscinosis phenotype in Cln1/5 double-knockout mice

    PubMed Central

    Blom, Tea; Schmiedt, Mia-Lisa; Wong, Andrew M.; Kyttälä, Aija; Soronen, Jarkko; Jauhiainen, Matti; Tyynelä, Jaana; Cooper, Jonathan D.; Jalanko, Anu

    2013-01-01

    SUMMARY Both CLN1 and CLN5 deficiencies lead to severe neurodegenerative diseases of childhood, known as neuronal ceroid lipofuscinoses (NCLs). The broadly similar phenotypes of NCL mouse models, and the potential for interactions between NCL proteins, raise the possibility of shared or convergent disease mechanisms. To begin addressing these issues, we have developed a new mouse model lacking both Cln1 and Cln5 genes. These double-knockout (Cln1/5 dko) mice were fertile, showing a slight decrease in expected Mendelian breeding ratios, as well as impaired embryoid body formation by induced pluripotent stem cells derived from Cln1/5 dko fibroblasts. Typical disease manifestations of the NCLs, i.e. seizures and motor dysfunction, were detected at the age of 3 months, earlier than in either single knockout mouse. Pathological analyses revealed a similar exacerbation and earlier onset of disease in Cln1/5 dko mice, which exhibited a pronounced accumulation of autofluorescent storage material. Cortical demyelination and more pronounced glial activation in cortical and thalamic regions was followed by cortical neuron loss. Alterations in lipid metabolism in Cln1/5 dko showed a specific increase in plasma phospholipid transfer protein (PLTP) activity. Finally, gene expression profiling of Cln1/5 dko cortex revealed defects in myelination and immune response pathways, with a prominent downregulation of α-synuclein in Cln1/5 dko mouse brains. The simultaneous loss of both Cln1 and Cln5 genes might enhance the typical pathological phenotypes of these mice by disrupting or downregulating shared or convergent pathogenic pathways, which could potentially include interactions of CLN1 and CLN5. PMID:23065637

  14. Molecular signatures of neurodegeneration in the cortex of PS1/PS2 double knockout mice

    PubMed Central

    Mirnics, Károly; Norstrom, Eric M; Garbett, Krassimira; Choi, Se Hoon; Zhang, Xiaoqiong; Ebert, Philip; Sisodia, Sangram S

    2008-01-01

    Background Familial Alzheimer's disease-linked variants of presenilin (PSEN1 and PSEN2) contribute to the pathophysiology of disease by both gain-of-function and loss-of-function mechanisms. Deletions of PSEN1 and PSEN2 in the mouse forebrain result in a strong and progressive neurodegenerative phenotype which is characterized by both anatomical and behavioral changes. Results To better understand the molecular changes associated with these morphological and behavioral phenotypes, we performed a DNA microarray transcriptome profiling of the hippocampus and the frontal cortex of the PSEN1/PSEN2 double knock-out mice and littermate controls at five different ages ranging from 2–8 months. Our data suggest that combined deficiencies of PSEN1 and PSEN2 results in a progressive, age-dependent transcriptome signature related to neurodegeneration and neuroinflammation. While these events may progress differently in the hippocampus and frontal cortex, the most critical expression signatures are common across the two brain regions, and involve a strong upregulation of cathepsin and complement system transcripts. Conclusion The observed neuroinflammatory expression changes are likely to be causally linked to the neurodegenerative phenotype observed in mice with compound deletions of PSEN1 and PSEN2. Furthermore, our results suggest that the evaluation of inhibitors of PS/γ-secretase activity for treatment of Alzheimer's Disease must include close monitoring for signs of calpain-cathepsin system activation. PMID:18834536

  15. Impaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout mice

    PubMed Central

    Smith, Karen Müller; Williamson, Theresa L.; Schwartz, Michael L.

    2012-01-01

    Fibroblast growth factor receptor (FGFR) signaling determines the size of the cerebral cortex by regulating the amplification of radial glial stem cells, and participates in the formation of midline glial structures. We show that Fgfr1 and Fgfr2 double knockouts (FGFR DKO) generated by Cre mediated recombination driven by the human GFAP promoter (hGFAP) have reduced cerebellar size due to reduced proliferation of radial glia and other glial precursors in late embryonic and neonatal FGFR DKO mice. The proliferation of granule cell progenitors (GCPs) in the EGL was also reduced, leading to reduced granule cell numbers. Furthermore, both inward migration of granule cells into the inner granule cell layer (IGL) and outward migration of GABA interneurons into the molecular layer (ML) were arrested, disrupting layer and lobular morphology. Purkinje neurons and their dendrites, which were not targeted by Cre mediated recombination of Fgf receptors, were also misplaced in FGFR DKO mice, possibly as a consequence of altered Bergmann glia orientation or reduced granule cell number. Our findings indicate a dual role for FGFR signaling in cerebellar morphogenesis. The first role is to amplify the number of granule neuron precursors in the external granular layer and glial precursor cells throughout the cerebellum. The second is to establish the correct Bergmann glia morphology, which is crucial for granule cell migration. The disrupted cerebellar size and laminar architecture resulting from loss of FGFR signaling impairs motor learning and coordination in FGFR DKO mice. PMID:22578469

  16. Directionality Effect in Double Conditionals.

    PubMed

    Espino, Orlando; Sánchez-Curbelo, Isana; Bolaños-Medina, Alicia

    2015-01-01

    Directionality effect in deductive reasoning is a very well-known phenomenon that shows that the percentage of forward or backward inferences that participants make depends on the conditional form used. A new extension of the semantic hypothesis (Oberauer & Wilhelm, 2000) is presented to explain the directionality effect in double conditionals with different directionality. This hypothesis claims that the directional effect depends on which term plays the role of relatum. It also makes several novel claims which have been confirmed in three experiments: Experiments 1 and 2 showed there were more forward than backward inferences when the end-term that played the role of relatum was in the first premise, experiment 1: t (45) = 2.73, p < .01, experiment 2: t (38) = 12.06, p < .05, but there were more backward than forward inferences when the end-term that played the role of relatum was in the second premise, experiment 1: t (45) = 2.84, p < .01, experiment 2: t (38) = 2.21, p < .04. Experiment 3 showed that there was no directional effect when both end-terms played the role of relatum, t (34) = 1.39, p = .17, or when both middle-terms (or neither of the end-terms) played the role of relatum, t (34) = .78, p = .44. These experiments confirmed the predictions of the new extension of the semantic hypothesis. PMID:26239471

  17. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development.

    PubMed

    Shen, Zhongfu; Zhang, Xianliang; Chai, Yongping; Zhu, Zhiwen; Yi, Peishan; Feng, Guoxin; Li, Wei; Ou, Guangshuo

    2014-09-01

    Conditional gene knockout animals are valuable tools for studying the mechanisms underlying cell and developmental biology. We developed a conditional knockout strategy by spatiotemporally manipulating the expression of an RNA-guided DNA endonuclease, CRISPR-Cas9, in Caenorhabditis elegans somatic cell lineages. We showed that this somatic CRISPR-Cas9 technology provides a quick and efficient approach to generate conditional knockouts in various cell types at different developmental stages. Furthermore, we demonstrated that this method outperforms our recently developed somatic TALEN technique and enables the one-step generation of multiple conditional knockouts. By combining these techniques with live-cell imaging, we showed that an essential embryonic gene, Coronin, which is associated with human neurobehavioral dysfunction, regulates actin organization and cell morphology during C. elegans postembryonic neuroblast migration and neuritogenesis. We propose that the somatic CRISPR-Cas9 platform is uniquely suited for conditional gene editing-based biomedical research. PMID:25155554

  18. Perseverative instrumental and Pavlovian responding to conditioned stimuli in serotonin transporter knockout rats.

    PubMed

    Nonkes, Lourens J P; Homberg, Judith R

    2013-02-01

    Environmental stimuli can influence behavior via the process of Pavlovian conditioning. Recent genetic research suggests that some individuals are more sensitive to environmental stimuli for behavioral guidance than others. One important mediator of this effect is serotonin transporter (5-HTT) genetic variance, which increases sensitivity to Pavlovian conditioned stimuli through changes in the build-up of corticolimbic circuits. As these stimuli can have reinforcing effects on instrumental responding, we here investigated their effects on instrumental behavior in 5-HTT knockout rats and their wild-type counterparts by means of the signal attenuation paradigm. In this paradigm animals acquired a Pavlovian association between a stimulus and food reward, and subsequently they had to lever press in order to gain access to this food reward-associated stimulus. Thereafter, half of the animals underwent extinction training during which extinction of the primary Pavlovian association was induced via non-reinforced stimulus presentations, whereas the other half did not receive this training. During a final test session all animals were tested for instrumental responding for the non-reinforced Pavlovian conditioned stimulus, as well as instrumental and Pavlovian responding to the stimulus after an initial lever-press. No genotype differences were observed during the training and extinction sessions. However, during the test session 5-HTT knockout rats that had not received prior extinction training displayed excessive instrumental responding. This was specifically observed during presentation of the stimulus (induced by the first lever press) and was accompanied by an increased number of feeder visits after termination of the stimulus presentation. An additionally performed c-Fos immunohistochemistry study revealed that the behaviors in these animals were associated with abnormal c-Fos immunoreactivity in the orbitofrontal cortex and basolateral amygdala, regions important

  19. Sub-optimal phenotypes of double-knockout mutants of Escherichia coli depend on the order of gene deletions.

    PubMed

    Gawand, Pratish; Said Abukar, Fatumina; Venayak, Naveen; Partow, Siavash; Motter, Adilson E; Mahadevan, Radhakrishnan

    2015-08-01

    Metabolic networks are characterized by multiple redundant reactions that do not have a clear biological function. The redundancies in the metabolic networks are implicated in adaptation to random mutations and survival under different environmental conditions. Reactions that are not active under wild-type growth conditions, but get transiently activated after a mutation event such as gene deletion are known as latent reactions. Characterization of multiple-gene knockout mutants can identify the physiological roles of latent reactions. In this study, we characterized double-gene deletion mutants of E. coli with the aim of investigating the sub-optimal physiology of the mutants and the possible roles of latent reactions. Specifically, we investigated the effects of the deletion of the glyoxylate-shunt gene aceA (encoding a latent reaction enzyme, isocitrate lyase) on the growth characteristics of the mutant E. coli Δpgi. The deletion of aceA reduced the growth rate of E. coli Δpgi, indicating that the activation of the glyoxylate shunt plays an important role in adaptation of the mutant E. coli Δpgi when no other latent reactions are concurrently inactivated. We also investigated the effect of the order of the gene deletions on the growth rates and substrate uptake rates of the double-gene deletion mutants. The results indicate that the order in which genes are deleted determines the phenotype of the mutants during the sub-optimal growth phase. To elucidate the mechanism behind the difference between the observed phenotypes, we carried out transcriptomic analysis and constraint-based modeling of the mutants. Transcriptomic analysis showed differential expression of the gene aceK (encoding the protein isocitrate dehydrogenase kinase) involved in controlling the isocitrate flux through the TCA cycle and the glyoxylate shunt. Higher acetate production in the E. coli ΔaceA1 Δpgi2 mutant was consistent with the increased aceK expression, which limits the TCA cycle

  20. Transcriptomic profiling comparison of YAP over-expression and conditional knockout mouse tooth germs

    PubMed Central

    Liu, Ming; Wang, Xiu-Ping

    2015-01-01

    To identify the downstream target genes of YAP, we used RNA-Seq technology to compare the transcriptomic profilings of Yap conditional knockout (Yap CKO) and YAP over-expression mouse tooth germs. Our results showed that some Hox, Wnt and Laminin family genes had concurrent changes with YAP transcripts, indicating that the expression of these genes may be regulated by YAP. Here, we provide the detailed experimental procedure for the transcriptomic profiling results (NCBI GEO accession number GSE65524). The associated study on the regulation of Hoxa1 and Hoxc13 genes by YAP was published in Molecular Cellular Biology in 2015 [Liu et al., 2015]. PMID:26484260

  1. Conditional knockout of retinal determination genes in differentiating cells in Drosophila.

    PubMed

    Jin, Meng; Eblimit, Aiden; Pulikkathara, Merlyn; Corr, Stuart; Chen, Rui; Mardon, Graeme

    2016-08-01

    Conditional gene knockout in postmitotic cells is a valuable technique which allows the study of gene function with spatiotemporal control. Surprisingly, in contrast to its long-term and extensive use in mouse studies, this technology is lacking in Drosophila. Here, we use a novel method for generating complete loss of eyes absent (eya) or sine oculis (so) function in postmitotic cells posterior to the morphogenetic furrow (MF). Specifically, genomic rescue constructs with flippase recognition target (FRT) sequences flanking essential exons are used to generate conditional null alleles. By removing gene function in differentiating cells, we show that eya and so are dispensable for larval photoreceptor differentiation, but are required for differentiation during pupal development. Both eya and so are necessary for photoreceptor survival and the apoptosis caused by loss of eya or so function is likely a secondary consequence of inappropriate differentiation. We also confirm their requirement for cone cell development and reveal a novel role in interommatidial bristle (IOB) formation. In addition, so is required for normal eye disc morphology. This is the first report of a knockout method to study eya and so function in postmitotic cells. This technology will open the door to a large array of new functional studies in virtually any tissue and at any stage of development or in adults. PMID:27257739

  2. Downregulation of Glutamate Transporter EAAT4 by Conditional Knockout of Rheb1 in Cerebellar Purkinje Cells.

    PubMed

    Jiang, Nan-Wei; Wang, De-Juan; Xie, Ya-Jun; Zhou, Liang; Su, Li-Da; Li, Huashun; Wang, Qin-Wen; Shen, Ying

    2016-06-01

    Excitatory amino acid transporter 4 (EAAT4) is believed to be critical to the synaptic activity of cerebellar Purkinje cells by limiting extracellular glutamate concentrations and facilitating the induction of long-term depression. However, the modulation of EAAT4 expression has not been elucidated. It has been shown that Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) signaling plays essential roles in the regulation of protein translation, cell size, and cell growth. In addition, we previously found that a cascade including mTOR suppression and Akt activation induces increased expression of EAAT2 in astrocytes. In the present work, we explored whether Rheb/mTOR signaling is involved in the regulation of EAAT4 expression using conditional Rheb1 knockout mice. Our results demonstrated that Rheb1 deficiency resulted in the downregulation of EAAT4 expression, as well as decreased activity of mTOR and increased activity of Akt. The downregulation of EAAT4 was also confirmed by reduced EAAT4 currents and slowed kinetics of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor-mediated currents. On the other hand, conditional knockout of Rheb1 did not alter the morphology of Purkinje cell layer and the number of Purkinje cells. Overall, our findings suggest that small GTPase Rheb1 is a modulator in the expression of EAAT4 in Purkinje cells. PMID:26194056

  3. Generation of a conditional knockout allele for the NFAT5 gene in mice.

    PubMed

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2014-01-01

    The osmosensitive transcription factor nuclear factor of activated T-cells 5 (NFAT5), also known as tonicity enhancer element binding protein (TonEBP) plays a crucial role in protection of renal medullary cells against hyperosmotic stress, urinary concentration, the adaptive immune response, and other physiological systems. Since it is also important for development, conventional homozygous-null mutations result in perinatal death, which hinders the analysis of NFAT5 function in specific tissues in vivo. Here we describe the generation of mice with a conditional-null allele, in which loxP sites are inserted around exon 4. Mice harboring the floxed allele (NFAT5(flx) ) were mated to a strain expressing a tamoxifen-inducible derivative of the Cre-recombinase (Cre (+)) under the control of the ubiqitinC promoter. The resultant homozygous conditional knockout mice (Cre (+) NFAT5 (flx/flx) ) are viable, fertile, and show normal expression of NFAT5 and NFAT5 target genes, indicating that the conditional alleles retain their wild-type function. Induction of Cre-mediated recombination by administration of tamoxifen in 8-week-old mice resulted in a decrease in NFAT5 expression of about 70-90% in all tested tissues (renal cortex, renal outer medulla, renal inner medulla, heart, lung, spleen, skeletal muscle). Accordingly, the expression of the NFAT5 target genes aldose reductase and heat shock protein 70 in the renal medulla was also significantly decreased. Mice harboring this conditional knockout allele should be useful in future studies for gaining a better understanding of tissue and cell-type specific functions of NFAT5 in adult animals under physiological and pathophysiological conditions. PMID:25601839

  4. Metabolomic analysis reveals hepatic metabolite perturbations in citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice, a model of human citrin deficiency.

    PubMed

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Tushima, Anmi; Katsura, Natsumi; Yokogawa, Mana; Yoshidumi, Yukari; Kuhara, Tomiko; Ohse, Morimasa; Eto, Kazuhiro; Kadowaki, Takashi; Sinasac, David S; Kobayashi, Keiko

    2011-12-01

    The citrin/mitochondrial glycerol-3-phosphate dehydrogenase (mGPD) double-knockout mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis and adult-onset type II citrullinemia, making it a suitable model of human citrin deficiency. In the present study, we investigated metabolic disturbances in the livers of wild-type, citrin (Ctrn) knockout, mGPD knockout, and Ctrn/mGPD double-knockout mice following oral sucrose versus saline administration using metabolomic approaches. By using gas chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry, we found three general groupings of metabolite changes in the livers of the double-knockout mice following sucrose administration that were subsequently confirmed using liquid chromatography/mass spectrometry or enzymatic methods: a marked increase of hepatic glycerol 3-phosphate, a generalized decrease of hepatic tricarboxylic acid cycle intermediates, and alterations of hepatic amino acid levels related to the urea cycle or lysine catabolism including marked increases in citrulline and lysine. Furthermore, concurrent oral administration of sodium pyruvate with sucrose ameliorated the hyperammonemia induced by sucrose, as had been shown previously, as well as almost completely normalizing the hepatic metabolite perturbations found. Overall, we have identified additional metabolic disturbances in double-KO mice following oral sucrose administration, and provided further evidence for the therapeutic use of sodium pyruvate in our mouse model of citrin deficiency. PMID:21908222

  5. The effects of cannabinoids on contextual conditioned fear in CB1 knockout and CD1 mice.

    PubMed

    Mikics, Eva; Dombi, Timea; Barsvári, Beáta; Varga, Balázs; Ledent, Catherine; Freund, Tamás F; Haller, József

    2006-05-01

    We studied the effects of cannabinoids on contextual conditioned fear responses. CB1 knockout and wild-type (CD1) mice were exposed to a brief session of electric shocks, and their behavior was studied in the same context 24 h later. In wild-type mice, shock exposure increased freezing and resting, and decreased locomotion and exploration. The genetic disruption of the CB1 receptor abolished the conditioned fear response. The CB1 antagonist AM-251 reduced the peak of the conditioned fear response when applied 30 min before behavioral testing (i.e. 24 h after shocks) in CD1 (wild-type) mice. The cannabinoid agonist WIN-55,212-2 markedly increased the conditioned fear response in CD1 mice, the effect of which was potently antagonized by AM-251. Thus, cannabinoid receptor activation appears to strongly promote the expression of contextual conditioned fear. In earlier experiments, cannabinoids did not interfere with the expression of cue-induced conditioned fear but strongly promoted its extinction. Considering the primordial role of the amygdala in simple associative learning (e.g. in cue-induced fear) and the role of the hippocampus in learning more complex stimulus relationships (e.g. in contextual fear), the present and earlier findings are not necessarily contradictory, but suggest that cannabinoid signaling plays different roles in the two structures. Data are interpreted in terms of the potential involvement of cannabinoids in trauma-induced behavioral changes. PMID:16572000

  6. Does murine spermatogenesis require WNT signalling? A lesson from Gpr177 conditional knockout mouse models.

    PubMed

    Chen, Su-Ren; Tang, J-X; Cheng, J-M; Hao, X-X; Wang, Y-Q; Wang, X-X; Liu, Y-X

    2016-01-01

    Wingless-related MMTV integration site (WNT) proteins and several other components of the WNT signalling pathway are expressed in the murine testes. However, mice mutant for WNT signalling effector β-catenin using different Cre drivers have phenotypes that are inconsistent with each other. The complexity and overlapping expression of WNT signalling cascades have prevented researchers from dissecting their function in spermatogenesis. Depletion of the Gpr177 gene (the mouse orthologue of Drosophila Wntless), which is required for the secretion of various WNTs, makes it possible to genetically dissect the overall effect of WNTs in testis development. In this study, the Gpr177 gene was conditionally depleted in germ cells (Gpr177(flox/flox), Mvh-Cre; Gpr177(flox/flox), Stra8-Cre) and Sertoli cells (Gpr177(flox/flox), Amh-Cre). No obvious defects in fertility and spermatogenesis were observed in these three Gpr177 conditional knockout (cKO) mice at 8 weeks. However, late-onset testicular atrophy and fertility decline in two germ cell-specific Gpr177 deletion mice were noted at 8 months. In contrast, we did not observe any abnormalities of spermatogenesis and fertility, even in 8-month-old Gpr177(flox/flox), Amh-Cre mice. Elevation of reactive oxygen species (ROS) was detected in Gpr177 cKO germ cells and Sertoli cells and exhibited an age-dependent manner. However, significant increase in the activity of Caspase 3 was only observed in germ cells from 8-month-old germ cell-specific Gpr177 knockout mice. In conclusion, GPR177 in Sertoli cells had no apparent influence on spermatogenesis, whereas loss of GPR177 in germ cells disrupted spermatogenesis in an age-dependent manner via elevating ROS levels and triggering germ cell apoptosis. PMID:27362799

  7. Conditional N-WASP knockout in mouse brain implicates actin cytoskeleton regulation in hydrocephalus pathology.

    PubMed

    Jain, Neeraj; Lim, Lee Wei; Tan, Wei Ting; George, Bhawana; Makeyev, Eugene; Thanabalu, Thirumaran

    2014-04-01

    Cerebrospinal fluid (CSF) is produced by the choroid plexus and moved by multi-ciliated ependymal cells through the ventricular system of the vertebrate brain. Defects in the ependymal layer functionality are a common cause of hydrocephalus. N-WASP (Neural-Wiskott Aldrich Syndrome Protein) is a brain-enriched regulator of actin cytoskeleton and N-WASP knockout caused embryonic lethality in mice with neural tube and cardiac abnormalities. To shed light on the role of N-WASP in mouse brain development, we generated N-WASP conditional knockout mouse model N-WASP(fl/fl); Nestin-Cre (NKO-Nes). NKO-Nes mice were born with Mendelian ratios but exhibited reduced growth characteristics compared to their littermates containing functional N-WASP alleles. Importantly, all NKO-Nes mice developed cranial deformities due to excessive CSF accumulation and did not survive past weaning. Coronal brain sections of these animals revealed dilated lateral ventricles, defects in ciliogenesis, loss of ependymal layer integrity, reduced thickness of cerebral cortex and aqueductal stenosis. Immunostaining for N-cadherin suggests that ependymal integrity in NKO-Nes mice is lost as compared to normal morphology in the wild-type controls. Moreover, scanning electron microscopy and immunofluorescence analyses of coronal brain sections with anti-acetylated tubulin antibodies revealed the absence of cilia in ventricular walls of NKO-Nes mice indicative of ciliogenesis defects. N-WASP deficiency does not lead to altered expression of N-WASP regulatory proteins, Fyn and Cdc42, which have been previously implicated in hydrocephalus pathology. Taken together, our results suggest that N-WASP plays a critical role in normal brain development and implicate actin cytoskeleton regulation as a vulnerable axis frequently deregulated in hydrocephalus. PMID:24462670

  8. A conditional knockout resource for the genome–wide study of mouse gene function

    PubMed Central

    Skarnes, William C.; Rosen, Barry; West, Anthony P.; Koutsourakis, Manousos; Bushell, Wendy; Iyer, Vivek; Mujica, Alejandro O.; Thomas, Mark; Harrow, Jennifer; Cox, Tony; Jackson, David; Severin, Jessica; Biggs, Patrick; Fu, Jun; Nefedov, Michael; de Jong, Pieter J.; Stewart, A. Francis; Bradley, Allan

    2013-01-01

    Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome. PMID:21677750

  9. Generation of α1,3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs

    PubMed Central

    MIYAGAWA, Shuji; MATSUNARI, Hitomi; WATANABE, Masahito; NAKANO, Kazuaki; UMEYAMA, Kazuhiro; SAKAI, Rieko; TAKAYANAGI, Shuko; TAKEISHI, Toki; FUKUDA, Tooru; YASHIMA, Sayaka; MAEDA, Akira; EGUCHI, Hiroshi; OKUYAMA, Hiroomi; NAGAYA, Masaki; NAGASHIMA, Hiroshi

    2015-01-01

    Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs. PMID:26227017

  10. Generation of α1,3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs.

    PubMed

    Miyagawa, Shuji; Matsunari, Hitomi; Watanabe, Masahito; Nakano, Kazuaki; Umeyama, Kazuhiro; Sakai, Rieko; Takayanagi, Shuko; Takeishi, Toki; Fukuda, Tooru; Yashima, Sayaka; Maeda, Akira; Eguchi, Hiroshi; Okuyama, Hiroomi; Nagaya, Masaki; Nagashima, Hiroshi

    2015-01-01

    Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs. PMID:26227017

  11. Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice.

    PubMed

    De Gendt, Karel; Verhoeven, Guido

    2012-04-16

    This review aims to evaluate the contribution of individual cell-selective knockout models to our current understanding of androgen action. Cre/loxP technology has allowed the generation of cell-selective knockout models targeting the androgen receptor (AR) in distinct putative target cells in a wide variety of organs and tissues including: testis, ovary, accessory sex tissues, muscle, bone, fat, liver, skin and myeloid tissue. In some androgen-regulated processes such as spermatogenesis and folliculogenesis this approach has lead to the identification of a key cellular mediator of androgen action (Sertoli and granulosa cells, respectively). In many target tissues, however, the final response to androgens appears to be more complex. Here, cell-selective knockout technology offers a platform upon which we can begin to unravel the more complex interplay and signaling pathways of androgens. A prototypic example is the analysis of mesenchymal-epithelial interactions in many accessory sex glands. Furthermore, for some actions of testosterone, in which part of the effect is mediated by the active metabolite 17β-estradiol, conditional knockout technology offers a novel strategy to study the relative contribution of AR and estrogen receptor-mediated signaling. The latter approach has already resulted in a better understanding of androgen action in brain and bone. Finally, cell-selective knockout technology has generated valuable models to search for AR-controlled molecular mediators of androgen action, a strategy that has successfully been applied to the study of androgen action in the testis and in the epididymis. Although some conditional knockout models have provided clear answers to physiologic questions, it should be noted that others have pointed to unexpected complexities or technical limitations confounding interpretation of the results. PMID:21871526

  12. Generation and characterization of a mouse model of the metabolic syndrome: apolipoprotein E and aromatase double knockout mice.

    PubMed

    Scott, Nicola J A; Cameron, Vicky A; Raudsepp, Sara; Lewis, Lynley K; Simpson, Evan R; Richards, A Mark; Ellmers, Leigh J

    2012-03-01

    The aim of this study was to create a comprehensive mouse model of the metabolic syndrome by crossing aromatase-deficient (ArKO) mice with apolipoprotein E-deficient (ApoE(-/-)) mice. Successive crossbreeding of ArKO with ApoE(-/-)-deficient mice generated double knockout, MetS-Tg mice. The phenotypic characteristics of the MetS-Tg mice were assessed at 3, 6, and 12 mo of age and compared with age- and sex-matched wild-type (WT) controls. Blood pressure and heart rate were recorded by a noninvasive, computerized tail-cuff system. Oral glucose and intraperitoneal insulin tolerance tests were performed. Serum cholesterol levels were measured by a combined quantitative colorimetric assay. Plasma adiponectin, C-reactive protein (CRP), insulin, interleukin-6 (IL-6), leptin, resistin, and tumor necrosis factor-α (TNF-α) were measured by multiplexed ELISA. MetS-Tg mice displayed significantly increased body weight, central obesity, and elevated blood pressure at all three ages compared with WT mice. Elevated serum cholesterol was associated with higher triglycerides and LDL/VLDL cholesterol particles and was accompanied by a decrease in HDL and histological evidence of fatty liver. MetS-Tg mice of all ages showed impaired glucose tolerance. At 12 mo, MetS-Tg mice had elevated plasma levels of CRP, IL-6, leptin, and TNF-α, but resistin levels were largely unchanged. We now report that this combination of gene knockouts produces a novel strain of mice that display the diverse clinical features of the metabolic syndrome, including central obesity, progressive hypertension, an adverse serum lipid profile, fatty liver, glucose intolerance, insulin resistance, and evidence of an inflammatory state. PMID:22185842

  13. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption

    PubMed Central

    Ghosal, Abhisek; Lambrecht, Nils; Subramanya, Sandeep B.; Kapadia, Rubina

    2013-01-01

    The Slc5a6 gene expresses a plasma membrane protein involved in the transport of the water-soluble vitamin biotin; the transporter is commonly referred to as the sodium-dependent multivitamin transporter (SMVT) because it also transports pantothenic acid and lipoic acid. The relative contribution of the SMVT system toward carrier-mediated biotin uptake in the native intestine in vivo has not been established. We used a Cre/lox technology to generate an intestine-specific (conditional) SMVT knockout (KO) mouse model to address this issue. The KO mice exhibited absence of expression of SMVT in the intestine compared with sex-matched littermates as well as the expected normal SMVT expression in other tissues. About two-thirds of the KO mice died prematurely between the age of 6 and 10 wk. Growth retardation, decreased bone density, decreased bone length, and decreased biotin status were observed in the KO mice. Microscopic analysis showed histological abnormalities in the small bowel (shortened villi, dysplasia) and cecum (chronic active inflammation, dysplasia) of the KO mice. In vivo (and in vitro) transport studies showed complete inhibition in carrier-mediated biotin uptake in the intestine of the KO mice compared with their control littermates. These studies provide the first in vivo confirmation in native intestine that SMVT is solely responsible for intestinal biotin uptake. These studies also provide evidence for a casual association between SMVT function and normal intestinal health. PMID:23104561

  14. Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons

    PubMed Central

    Jiang, Haisong; Zhang, Shuran; Karuppagounder, Senthilkumar; Xu, Jinchong; Pletnikova, Olga; Troncoso, Juan C.; Pirooznia, Shelia; Andrabi, Shaida A.

    2016-01-01

    Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder. Recent studies have implicated a role for peroxisome proliferator-activated receptor γ coactivator protein-1α (PGC-1α) in PD and in animal or cellular models of PD. The role of PGC-1α in the function and survival of substantia nigra pars compacta (SNpc) dopamine neurons is not clear. Here we find that there are four different PGC-1α isoforms expressed in SH-SY5Y cells, and these four isoforms are expressed across subregions of mouse brain. Adult conditional PGC-1α knock-out mice show a significant loss of dopaminergic neurons that is accompanied by a reduction of dopamine in the striatum. In human PD postmortem tissue from the SNpc, there is a reduction of PGC-1α isoforms and mitochondria markers. Our findings suggest that all four isoforms of PGC-1α are required for the proper expression of mitochondrial proteins in SNpc DA neurons and that PGC-1α is essential for SNpc DA neuronal survival, possibly through the maintenance of mitochondrial function. PMID:27622213

  15. Conditional Knockout of Telomerase Reverse Transcriptase in Mesenchymal Cells Impairs Mouse Pulmonary Fibrosis

    PubMed Central

    Liu, Tianju; Yu, Hongfeng; Ding, Lin; Wu, Zhe; Gonzalez De Los Santos, Francina; Liu, Jianhua; Ullenbruch, Matthew; Hu, Biao; Martins, Vanessa; Phan, Sem H.

    2015-01-01

    Telomerase is typically expressed in cellular populations capable of extended replication, such as germ cells, tumor cells, and stem cells, but is also induced in tissue injury, repair and fibrosis. Its catalytic component, telomerase reverse transcriptase (TERT) is induced in lung fibroblasts from patients with fibrotic interstitial lung disease and in rodents with bleomycin-induced pulmonary fibrosis. To evaluate the fibroblast specific role of TERT in pulmonary fibrosis, transgenic mice bearing a floxed TERT allele were generated, and then crossed with an inducible collagen α2(I)-Cre mouse line to generate fibroblast specific TERT conditional knockout mice. TERT-specific deficiency in mesenchymal cells caused attenuation of pulmonary fibrosis as manifested by reduced lung hydroxyproline content, type I collagen and α-smooth muscle actin mRNA levels. The TERT-deficient mouse lung fibroblasts displayed decreased cell proliferative capacity and higher susceptibility to induced apoptosis compared with control cells. Additionally TERT deficiency was associated with heightened α-smooth muscle actin expression indicative of myofibroblast differentiation. However the impairment of cell proliferation and increased susceptibility to apoptosis would cause a reduction in the myofibroblast progenitor population necessary to mount a successful myofibroblast-dependent fibrotic response. These findings identified a key role for TERT in fibroblast proliferation and survival essential for pulmonary fibrosis. PMID:26555817

  16. Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons.

    PubMed

    Jiang, Haisong; Kang, Sung-Ung; Zhang, Shuran; Karuppagounder, Senthilkumar; Xu, Jinchong; Lee, Yong-Kyu; Kang, Bong-Gu; Lee, Yunjong; Zhang, Jianmin; Pletnikova, Olga; Troncoso, Juan C; Pirooznia, Shelia; Andrabi, Shaida A; Dawson, Valina L; Dawson, Ted M

    2016-01-01

    Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder. Recent studies have implicated a role for peroxisome proliferator-activated receptor γ coactivator protein-1α (PGC-1α) in PD and in animal or cellular models of PD. The role of PGC-1α in the function and survival of substantia nigra pars compacta (SNpc) dopamine neurons is not clear. Here we find that there are four different PGC-1α isoforms expressed in SH-SY5Y cells, and these four isoforms are expressed across subregions of mouse brain. Adult conditional PGC-1α knock-out mice show a significant loss of dopaminergic neurons that is accompanied by a reduction of dopamine in the striatum. In human PD postmortem tissue from the SNpc, there is a reduction of PGC-1α isoforms and mitochondria markers. Our findings suggest that all four isoforms of PGC-1α are required for the proper expression of mitochondrial proteins in SNpc DA neurons and that PGC-1α is essential for SNpc DA neuronal survival, possibly through the maintenance of mitochondrial function. PMID:27622213

  17. Conditional knockout of pik3c3 causes a murine muscular dystrophy.

    PubMed

    Reifler, Aaron; Li, Xingli; Archambeau, Ashley J; McDade, Joel R; Sabha, Nesrin; Michele, Daniel E; Dowling, James J

    2014-06-01

    Abnormalities in phosphoinositide metabolism are an emerging theme in human neurodegenerative disease. Myotubular myopathy is a prototypical disorder of phosphoinositide dysregulation that is characterized by profound muscle pathology and weakness and that is caused by mutations in MTM1, which encodes a phosphatase that targets 3-position phosphoinositides, including phosphatidylinositol 3-phosphate. Although the association between MTM1 and muscle disease has become increasingly clarified, the normal role(s) of phosphatidylinositol 3-phosphate metabolism in muscle development and homeostasis remain poorly understood. To begin to address the function of phosphatidylinositol 3-phosphate in skeletal muscle, we focused on the primary kinase responsible for its production, and created a muscle-specific conditional knockout of the class III phosphatidylinositol 3-kinase, Pik3c3. Muscle-specific deletion of Pik3c3 did not disturb embryogenesis or early postnatal development, but resulted in progressive disease characterized by reduced activity and death by 2 months of age. Histopathological analysis demonstrated changes consistent with a murine muscular dystrophy. Examination for cellular mechanism(s) responsible for the dystrophic phenotype revealed significant alterations in the autophagolysosomal pathway with mislocation of known dystrophy proteins to the lysosomal compartment. In all, we present the first analysis of Pik3c3 in skeletal muscle, and report a novel association between deletion of Pik3c3 and muscular dystrophy. PMID:24726497

  18. Functional interplay between cylindromatosis and histone deacetylase 6 in ciliary homeostasis revealed by phenotypic analysis of double knockout mice.

    PubMed

    Ran, Jie; Yu, Fan; Qin, Juan; Zhang, Yijun; Yang, Yunfan; Li, Dengwen; Zhou, Jun; Liu, Min

    2016-05-10

    Cilia are present in most vertebrate tissues with a wide variety of functions, and abnormalities of cilia are linked to numerous human disorders. However, the molecular events underlying ciliary homeostasis are poorly understood. In this study, we generated double knockout (DKO) mice for the deubiquitinase cylindromatosis (CYLD) and histone deacetylase 6 (HDAC6), two critical ciliary regulators. The Cyld/Hdac6 DKO mice were phenotypically normal and showed no obvious variances in weight or behavior compared with their wild-type littermates. Strikingly, Cyld loss-induced ciliary defects in the testis, trachea, and kidney were abrogated in the Cyld/Hdac6 DKO mice. In addition, the diminished α-tubulin acetylation and impaired sonic hedgehog signaling caused by loss of Cyld were largely restored by simultaneous deletion of Hdac6. We further found by immunofluorescence microscopy a colocalization of CYLD and HDAC6 at the centrosome/basal body and, interestingly, loss of Cyld promoted the localization of HDAC6 at the centrosome/basal body. These findings provide physiological insight into the ciliary role of the CYLD/HDAC6 axis and suggest a functional interplay between these two proteins in ciliary homeostasis. PMID:27028867

  19. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis.

    PubMed

    Kondo, Yoshitaka; Masutomi, Hirofumi; Noda, Yoshihiro; Ozawa, Yusuke; Takahashi, Keita; Handa, Setsuko; Maruyama, Naoki; Shimizu, Takahiko; Ishigami, Akihito

    2014-01-01

    Superoxide dismutase 1 (SOD1) is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30) is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA) biosynthesis. SMP30 also participates in Ca(2+) efflux by activating the calmodulin-dependent Ca(2+)-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO) mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15-24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1) higher plasma levels of triglyceride and aspartate aminotransferase; (2) severe accumulation of hepatic triglyceride and total cholesterol; (3) higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4) decreased mRNA and protein levels of Apolipoprotein B (ApoB) in livers - ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion. PMID:25003023

  20. CD24 knockout prevents colorectal cancer in chemically induced colon carcinogenesis and in APC(Min)/CD24 double knockout transgenic mice.

    PubMed

    Naumov, Inna; Zilberberg, Alona; Shapira, Shiran; Avivi, Doran; Kazanov, Dina; Rosin-Arbesfeld, Rina; Arber, Nadir; Kraus, Sarah

    2014-09-01

    Increased expression of CD24 is seen in a large variety of solid tumors, including up to 90% of gastrointestinal (GI) tumors. Stable derivatives of SW480 colorectal cancer (CRC) cells that overexpress CD24 proliferate faster, and increase cell motility, saturation density, plating efficiency, and growth in soft agar. They also produce larger tumors in nude mice as compared to the parental SW480 cells. Most significantly, even depletion of one copy of the CD24 allele in the APC(Min/+) mice of a transgenic mouse model led to a dramatic reduction in tumor burden in all sections of the small intestine. Homozygous deletion of both CD24 alleles resulted in complete abolishment of tumor formation. Moreover, CD24 knockout mice exhibited resistance to chemically induced inflammation-associated CRC. Finally, a new signal transduction pathway is suggested: namely, CD24 expression downstream to COX2 and PGE2 synthesis, which is directly regulated by β-catenin. CD24 is shown in vitro and in vivo as being an important oncogene in the gut, and one that plays a critical role in the initiation and progression of carcinogenesis. PMID:24500912

  1. The hGFAP-driven conditional TSPO knockout is protective in a mouse model of multiple sclerosis

    PubMed Central

    Daugherty, Daniel J.; Chechneva, Olga; Mayrhofer, Florian; Deng, Wenbin

    2016-01-01

    The mitochondrial translocator protein (TSPO) has been implicated in CNS diseases. Here, we sought to determine the specific role of TSPO in experimental autoimmune encephalomyelitis (EAE), the most studied animal model of multiple sclerosis (MS). To fundamentally elucidate the functions of TSPO, we first developed a viable TSPO knockout mouse. A conditional TSPO knockout mouse was generated by utilizing the Cre-Lox system. We generated a TSPO floxed mouse, and then crossed this mouse with a Cre recombinase expressing mouse driven by the human glial fibrillary acidic protein (hGFAP) promoter. The resultant mouse was a neural linage line specific TSPO knockout. The loss of TSPO in the CNS did not result in overt developmental defects or phenotypes. The TSPO−/− mouse showed a decrease in GFAP expression, correlating with a decrease in astrogliosis in response to neural injury during EAE. This decrease in astrogliosis was also witnessed in the lessening of severity of EAE clinical scoring, indicating an in vivo functional role for TSPO in suppressing EAE. The TSPO−/− mouse could be a useful tool in better understanding the role of TSPO in CNS disease, and our results implicate TSPO as a potential therapeutic target in MS. PMID:26925573

  2. Induction of Fatal Inflammation in LDL Receptor and ApoA-I Double-Knockout Mice Fed Dietary Fat and Cholesterol

    PubMed Central

    Zabalawi, Manal; Bhat, Shaila; Loughlin, Tara; Thomas, Michael J.; Alexander, Eric; Cline, Mark; Bullock, Bill; Willingham, Mark; Sorci-Thomas, Mary G.

    2003-01-01

    Atherogenic response to dietary fat and cholesterol challenge was evaluated in mice lacking both the LDL receptor (LDLr−/−) and apoA-I (apoA-I−/−) gene, LDLr−/−/apoA-I−/− or double-knockout mice. Gender- and age-matched LDLr−/−/apoA-I−/− mice were fed a diet consisting of 0.1% cholesterol and 10% palm oil for 16 weeks and compared to LDLr−/− mice or single-knockout mice. The LDLr−/− mice showed a 6- to 7-fold increase in total plasma cholesterol (TPC) compared to their chow-fed mice counterparts, while LDLr−/−/apoA-I−/− mice showed only a 2- to 3-fold increase in TPC compared to their chow-fed controls. This differential response to the atherogenic diet was unanticipated, since chow-fed LDLr−/− and LDLr−/−/apoA-I−/− mice began the study with similar LDL levels and differed primarily in their HDL concentration. The 6-fold diet-induced increase in TPC observed in the LDLr−/− mice occurred mainly in VLDL/LDL and not in HDL. Mid-study plasma samples taken after 8 weeks of diet feeding showed that LDLr−/− mice had TPC concentrations approximately 60% of their 16-week level, while the LDLr−/−/apoA-I−/− mice had reached 100% of their 16-week TPC concentration after only 8 weeks of diet. Male LDLr−/− mice showed similar aortic cholesterol levels to male LDLr−/−/apoA-I−/− mice despite a 4-fold higher VLDL/LDL concentration in the LDLr−/− mice. A direct comparison of the severity of aortic atherosclerosis between female LDLr−/− and LDLr−/−/apoA-I−/− mice was compromised due to the loss of female LDLr−/−/apoA-I−/− mice between 10 and 14 weeks into the study. Diet-fed female and, with time, male LDLr−/−/apoA-I−/− mice suffered from severe ulcerated cutaneous xanthomatosis. This condition, combined with a complete depletion of adrenal cholesterol, manifested in fatal wasting of the affected mice. In conclusion, LDLr−/− and LDLr−/−/apoA-I−/− mice showed

  3. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    SciTech Connect

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  4. Rapid Knockout and Reporter Mouse Line Generation and Breeding Colony Establishment Using EUCOMM Conditional-Ready Embryonic Stem Cells: A Case Study

    PubMed Central

    Coleman, James L. J.; Brennan, Karen; Ngo, Tony; Balaji, Poornima; Graham, Robert M.; Smith, Nicola J.

    2015-01-01

    As little as a decade ago, generation of a single knockout mouse line was an expensive and time-consuming undertaking available to relatively few researchers. The International Knockout Mouse Consortium, established in 2007, has revolutionized the use of such models by creating an open-access repository of embryonic stem (ES) cells that, through sequential breeding with first FLP1 recombinase and then Cre recombinase transgenic mice, facilitates germline global or conditional deletion of almost every gene in the mouse genome. In this Case Study, we describe our experience using the repository to create mouse lines for a variety of experimental purposes. Specifically, we discuss the process of obtaining germline transmission of two European Conditional Mouse Mutagenesis Program (EUCOMM) “knockout-first” gene targeted constructs and the advantages and pitfalls of using this system. We then outline our breeding strategy and the outcomes of our efforts to generate global and conditional knockouts and reporter mice for the genes of interest. Line maintenance, removal of recombinase transgenes, and cryopreservation are also considered. Our approach led to the generation of heterozygous knockout mice within 6 months of commencing breeding to the founder mice. By describing our experiences with the EUCOMM ES cells and subsequent breeding steps, we hope to assist other researchers with the application of this valuable approach to generating versatile knockout mouse lines. PMID:26175717

  5. Altered mnemonic functions and resistance to NMDA receptor antagonism by forebrain conditional knockout of glycine transporter 1

    PubMed Central

    Singer, Philipp; Yee, Benjamin K.; Feldon, Joram; Iwasato, Takuji; Itohara, Shigeyoshi; Grampp, Thomas; Prenosil, George; Benke, Dietmar; Möhler, Hanns; Boison, Detlev

    2009-01-01

    Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-D-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remains to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 down-regulation in the brain on behaviour and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated EPSC was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated. PMID:19332109

  6. Conditional Knockout in Mice Reveals the Critical Roles of Ppp2ca in Epidermis Development

    PubMed Central

    Fang, Chao; Li, Lei; Li, Jianmin

    2016-01-01

    The epidermis is an important tissue in Homo sapines and other animals, and an abnormal epidermis will cause many diseases. Phosphatase 2A (PP2A) is an important serine and threonine phosphatase. The α isoform of the PP2A catalytic subunit (Ppp2ca gene encoding PP2Acα) is critical for cell proliferation, growth, metabolism and tumorigenesis. However, to date, no study has revealed its roles in epidermis development. To specifically investigate the roles of PP2Acα in epidermis development, we first generated Ppp2caflox/flox transgenic mice, and conditionally knocked out Ppp2ca in the epidermis driven by Krt14-Cre. Our study showed that Ppp2caflox/flox; Krt14-Cre mice had significant hair loss. In addition, histological analyses showed that the morphogenesis and hair regeneration cycle of hair follicles were disrupted in these mice. Moreover, Ppp2caflox/flox; Krt14-Cre mice had smaller size, melanin deposition and hyperproliferation at the base of the claws. Accordingly, our study demonstrates that PP2Acα plays important roles in both hair follicle and epidermis development. Additionally, the Ppp2caflox/flox mice generated in this study can serve as a useful transgene model to study the roles of PP2Acα in other developmental processes and diseases. PMID:27213341

  7. Conditional Knockout in Mice Reveals the Critical Roles of Ppp2ca in Epidermis Development.

    PubMed

    Fang, Chao; Li, Lei; Li, Jianmin

    2016-01-01

    The epidermis is an important tissue in Homo sapines and other animals, and an abnormal epidermis will cause many diseases. Phosphatase 2A (PP2A) is an important serine and threonine phosphatase. The α isoform of the PP2A catalytic subunit (Ppp2ca gene encoding PP2Acα) is critical for cell proliferation, growth, metabolism and tumorigenesis. However, to date, no study has revealed its roles in epidermis development. To specifically investigate the roles of PP2Acα in epidermis development, we first generated Ppp2ca(flox/flox) transgenic mice, and conditionally knocked out Ppp2ca in the epidermis driven by Krt14-Cre. Our study showed that Ppp2ca(flox/flox); Krt14-Cre mice had significant hair loss. In addition, histological analyses showed that the morphogenesis and hair regeneration cycle of hair follicles were disrupted in these mice. Moreover, Ppp2ca(flox/flox); Krt14-Cre mice had smaller size, melanin deposition and hyperproliferation at the base of the claws. Accordingly, our study demonstrates that PP2Acα plays important roles in both hair follicle and epidermis development. Additionally, the Ppp2ca(flox/flox) mice generated in this study can serve as a useful transgene model to study the roles of PP2Acα in other developmental processes and diseases. PMID:27213341

  8. Generation of a Tph2 Conditional Knockout Mouse Line for Time- and Tissue-Specific Depletion of Brain Serotonin

    PubMed Central

    Migliarini, Sara; Pacini, Giulia; Pasqualetti, Massimo

    2015-01-01

    Serotonin has been gaining increasing attention during the last two decades due to the dual function of this monoamine as key regulator during critical developmental events and as neurotransmitter. Importantly, unbalanced serotonergic levels during critical temporal phases might contribute to the onset of neuropsychiatric disorders, such as schizophrenia and autism. Despite increasing evidences from both animal models and human genetic studies have underpinned the importance of serotonin homeostasis maintenance during central nervous system development and adulthood, the precise role of this molecule in time-specific activities is only beginning to be elucidated. Serotonin synthesis is a 2-step process, the first step of which is mediated by the rate-limiting activity of Tph enzymes, belonging to the family of aromatic amino acid hydroxylases and existing in two isoforms, Tph1 and Tph2, responsible for the production of peripheral and brain serotonin, respectively. In the present study, we generated and validated a conditional knockout mouse line, Tph2flox/flox, in which brain serotonin can be effectively ablated with time specificity. We demonstrated that the Cre-mediated excision of the third exon of Tph2 gene results in the production of a Tph2null allele in which we observed the near-complete loss of brain serotonin, as well as the growth defects and perinatal lethality observed in serotonin conventional knockouts. We also revealed that in mice harbouring the Tph2null allele, but not in wild-types, two distinct Tph2 mRNA isoforms are present, namely Tph2Δ3 and Tph2Δ3Δ4, with the latter showing an in-frame deletion of amino acids 84–178 and coding a protein that could potentially retain non-negligible enzymatic activity. As we could not detect Tph1 expression in the raphe, we made the hypothesis that the Tph2Δ3Δ4 isoform can be at the origin of the residual, sub-threshold amount of serotonin detected in the brain of Tph2null/null mice. Finally, we set up

  9. Isoform and Splice-Variant Specific Functions of Dynamin-2 Revealed by Analysis of Conditional Knock-Out Cells

    PubMed Central

    Liu, Ya-Wen; Surka, Mark C.; Schroeter, Thomas; Lukiyanchuk, Vasyl

    2008-01-01

    Dynamin (Dyn) is a multifunctional GTPase implicated in several cellular events, including endocytosis, intracellular trafficking, cell signaling, and cytokinesis. The mammalian genome encodes three isoforms, Dyn1, Dyn2, and Dyn3, and several splice variants of each, leading to the suggestion that distinct isoforms and/or distinct splice variants might mediate distinct cellular functions. We generated a conditional Dyn2 KO cell line and performed knockout and reconstitution experiments to explore the isoform- and splice variant specific cellular functions of ubiquitously expressed Dyn2. We find that Dyn2 is required for clathrin-mediated endocytosis (CME), p75 export from the Golgi, and PDGF-stimulated macropinocytosis and cytokinesis, but not for other endocytic pathways. Surprisingly, CME and p75 exocytosis were efficiently rescued by reintroduction of Dyn2, but not Dyn1, suggesting that these two isoforms function differentially in vesicular trafficking in nonneuronal cells. Both isoforms rescued macropinocytosis and cytokinesis, suggesting that dynamin function in these processes might be mechanistically distinct from its role in CME. Although all four Dyn2 splice variants could equally restore CME, Dyn2ba and -bb were more effective at restoring p75 exocytosis. This splice variant specificity correlated with their differential targeting to the Golgi. These studies reveal isoform and splice-variant specific functions for Dyn2. PMID:18923138

  10. Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells.

    PubMed

    Liu, Ya-Wen; Surka, Mark C; Schroeter, Thomas; Lukiyanchuk, Vasyl; Schmid, Sandra L

    2008-12-01

    Dynamin (Dyn) is a multifunctional GTPase implicated in several cellular events, including endocytosis, intracellular trafficking, cell signaling, and cytokinesis. The mammalian genome encodes three isoforms, Dyn1, Dyn2, and Dyn3, and several splice variants of each, leading to the suggestion that distinct isoforms and/or distinct splice variants might mediate distinct cellular functions. We generated a conditional Dyn2 KO cell line and performed knockout and reconstitution experiments to explore the isoform- and splice variant specific cellular functions of ubiquitously expressed Dyn2. We find that Dyn2 is required for clathrin-mediated endocytosis (CME), p75 export from the Golgi, and PDGF-stimulated macropinocytosis and cytokinesis, but not for other endocytic pathways. Surprisingly, CME and p75 exocytosis were efficiently rescued by reintroduction of Dyn2, but not Dyn1, suggesting that these two isoforms function differentially in vesicular trafficking in nonneuronal cells. Both isoforms rescued macropinocytosis and cytokinesis, suggesting that dynamin function in these processes might be mechanistically distinct from its role in CME. Although all four Dyn2 splice variants could equally restore CME, Dyn2ba and -bb were more effective at restoring p75 exocytosis. This splice variant specificity correlated with their differential targeting to the Golgi. These studies reveal isoform and splice-variant specific functions for Dyn2. PMID:18923138

  11. Virally-expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice

    PubMed Central

    Yu, Qing; Wang, Yunfeng; Chang, Qing; Wang, Jianjun; Gong, Shushen; Li, Huawei; Lin, Xi

    2013-01-01

    Mutations in GJB2, which codes for the gap junction protein connexin26, are the most common causes of human nonsyndromic hereditary deafness. We inoculated modified adeno-associated viral vectors into the scala media of early postnatal conditional Gjb2 knockout mice to drive exogenous connexin26 expression. We found extensive virally-expressed connexin26 in cells lining the scala media, and intercellular gap junction network was re-established in the organ of Corti of mutant mouse cochlea. Widespread ectopic connexin26 expression neither formed ectopic gap junctions nor affected normal hearing thresholds in wild type mice, suggesting that autonomous cellular mechanisms regulate proper membrane trafficking of exogenously-expressed connexin26 and govern the functional manifestation of them. Functional recovery of gap-junction-mediated coupling among the supporting cells was observed. We found that both cell death in the organ of Corti and degeneration of spiral ganglion neurons in the cochlea of mutant mice were substantially reduced, although auditory brainstem responses did not show significant hearing improvement. This is the first report demonstrating that virally-mediated gene therapy restored extensive gap junction intercellular network among cochlear non-sensory cells in vivo. Such a treatment performed at early postnatal stages resulted in a partial rescue of disease phenotypes in the cochlea of the mutant mice. PMID:24225640

  12. Imbalanced lipid homeostasis in the conditional Dicer1 knockout mouse epididymis causes instability of the sperm membrane.

    PubMed

    Björkgren, Ida; Gylling, Helena; Turunen, Heikki; Huhtaniemi, Ilpo; Strauss, Leena; Poutanen, Matti; Sipilä, Petra

    2015-02-01

    During epididymal sperm maturation, the lipid content of the sperm membrane is modified, which facilitates sperm motility and fertility. However, little is known about the mechanisms regulating the maturation process. By generating a conditional knockout (cKO) of Dicer1 in the proximal part of the mouse epididymis, we studied the role of RNA interference in epididymal functions. The Dicer1 cKO epididymis displayed an altered lipid homeostasis associated with a 0.6-fold reduction in the expression of the gene elongation of very long chain fatty acids-like 2, an enzyme needed for production of long-chain polyunsaturated fatty acids (PUFAs). Furthermore, the expression of several factors involved in cholesterol synthesis was up-regulated. Accordingly, the Dicer1 cKO sperm membrane showed a 0.7-fold decrease in long-chain PUFAs, whereas the amount of cholesterol in acrosome-reacted sperm displayed a 1.7-fold increase. The increased cholesterol:PUFA ratio of the sperm membrane caused breakage of the neck and acrosome region and immotility of sperm. Dicer1 cKO mice sperm also displayed reduced ability to bind to and fertilize the oocyte in vitro. This study thus shows that Dicer1 is critical for lipid synthesis in the epididymis, which directly affects sperm membrane integrity and male fertility. PMID:25366345

  13. Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments.

    PubMed

    Liang, J; Xu, W; Hsu, Y-T; Yee, A X; Chen, L; Südhof, T C

    2015-07-01

    Abnormal activity in the medial prefrontal cortex (mPFC) is consistently observed in neuropsychiatric disorders, but the mechanisms involved remain unclear. Chronic aberrant excitation and/or inhibition of mPFC neurons were proposed to cause cognitive impairments. However, direct evidence for this hypothesis is lacking because it is technically challenging to control synaptic properties in a chronic and locally restricted, yet specific, manner. Here, we generated conditional knockout (cKO) mice of neuroligin-2 (Nlgn2), a postsynaptic cell-adhesion molecule of inhibitory synapses linked to neuropsychiatric disorders. cKO of Nlgn2 in adult mPFC rendered Nlgn2 protein undetectable after already 2-3 weeks, but induced major reductions in synaptic inhibition after only 6-7 weeks, and caused parallel impairments in anxiety, fear memory and social interaction behaviors. Moreover, cKO of Nlgn2 severely impaired behavioral stimulation of immediate-early gene expression in the mPFC, suggesting that chronic reduction in synaptic inhibition uncoupled the mPFC from experience-dependent inputs. Our results indicate that Nlgn2 is required for continuous maintenance of inhibitory synapses in the adult mPFC, and that chronic impairment of local inhibition disengages the mPFC from its cognitive functions by partially uncoupling the mPFC from experience-induced inputs. PMID:25824299

  14. An Altered Phenotype in a Conditional Knockout of Pitx2 in Extraocular Muscle

    PubMed Central

    Zhou, Yuefang; Cheng, Georgiana; Dieter, Lisa; Hjalt, Tord A.; Andrade, Francisco H.; Stahl, John S.; Kaminski, Henry J.

    2015-01-01

    Purpose To determine the temporal and spatial expression of Pitx2, a bicoid-like homeobox transcription factor, during postnatal development of mouse extraocular muscle and to evaluate its role in the growth and phenotypic maintenance of postnatal extraocular muscle. Methods Mouse extraocular muscles of different ages were examined for the expression of Pitx2 by RT-PCR, q-PCR, and immunostaining. A conditional mutant mouse strain, in which Pitx2 function is inactivated at postnatal day (P)0, was generated with a Cre-loxP strategy. Histology, immunostaining, realtime PCR, in vitro muscle contractility, and in vivo ocular motility were used to study the effect of Pitx2 depletion on extraocular muscle. Results All three Pitx2 isoforms were expressed by extraocular muscle and at higher levels than in other striated muscles. Immunostaining demonstrated the presence of Pitx2 mainly in extraocular muscle myonuclei. However, no obvious expression patterns were observed in terms of anatomic region (orbital versus global layer), innervation zone, or muscle fiber types. The mutant extraocular muscle had no obvious pathology but had altered muscle fiber sizes. Expression levels of myosin isoforms Myh1, Myh6, Myh7, and Myh13 were reduced, whereas Myh2, Myh3, Myh4, and Myh8 were not affected by postnatal loss of Pitx2. In vitro, Pitx2 loss made the extraocular muscles stronger, faster, and more fatigable. Eye movement recordings found saccades to have a lower peak velocity. Conclusions Pitx2 is important in maintaining the mature extraocular muscle phenotype and regulating the expression of critical contractile proteins. Modulation of Pitx2 expression can influence extraocular muscle function with long-term therapeutic implications. PMID:19407022

  15. Aged neuronal nitric oxide knockout mice show preserved olfactory learning in both social recognition and odor-conditioning tasks

    PubMed Central

    James, Bronwen M.; Li, Qin; Luo, Lizhu; Kendrick, Keith M.

    2015-01-01

    There is evidence for both neurotoxic and neuroprotective roles of nitric oxide (NO) in the brain and changes in the expression of the neuronal isoform of NO synthase (nNOS) gene occur during aging. The current studies have investigated potential support for either a neurotoxic or neuroprotective role of NO derived from nNOS in the context of aging by comparing olfactory learning and locomotor function in young compared to old nNOS knockout (nNOS−/−) and wildtype control mice. Tasks involving social recognition and olfactory conditioning paradigms showed that old nNOS−/− animals had improved retention of learning compared to similar aged wildtype controls. Young nNOS−/− animals showed superior reversal learning to wildtypes in a conditioned learning task, although their performance was weakened with age. Interestingly, whereas young nNOS−/− animals were impaired in long term memory for social odors compared to wildtype controls, in old animals this pattern was reversed, possibly indicating beneficial compensatory changes influencing olfactory memory may occur during aging in nNOS−/− animals. Possibly such compensatory changes may have involved increased NO from other NOS isoforms since the memory deficit in young nNOS−/− animals could be rescued by the NO-donor, molsidomine. Both nNOS−/− and wildtype animals showed an age-associated decline in locomotor activity although young nNOS−/− animals were significantly more active than wildtypes, possibly due to an increased interest in novelty. Overall our findings suggest that lack of NO release via nNOS may protect animals to some extent against age-associated cognitive decline in memory tasks typically involving olfactory and hippocampal regions, but not against declines in reversal learning or locomotor activity. PMID:25870540

  16. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis.

    PubMed

    Valenzuela, Nicolas; Fan, Qiying; Fa'ak, Faisal; Soibam, Benjamin; Nagandla, Harika; Liu, Yu; Schwartz, Robert J; McConnell, Bradley K; Stewart, M David

    2016-03-01

    HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defects. Because terminally differentiated cardiomyocytes have exited the cell cycle, histone variants should be utilized for the bulk of chromatin remodeling. Thus, HIRA is likely to play an important role in epigenetically defining the cardiac gene expression program. In this study, we determined the consequence of HIRA deficiency in cardiomyocytes in vivo by studying the phenotype of cardiomyocyte-specific Hira conditional-knockout mice. Loss of HIRA did not perturb heart development, but instead resulted in cardiomyocyte hypertrophy and susceptibility to sarcolemmal damage. Cardiomyocyte degeneration gave way to focal replacement fibrosis and impaired cardiac function. Gene expression was widely altered in Hira conditional-knockout hearts. Significantly affected pathways included responses to cellular stress, DNA repair and transcription. Consistent with heart failure, fetal cardiac genes were re-expressed in the Hira conditional knockout. Our results suggest that transcriptional regulation by HIRA is crucial for cardiomyocyte homeostasis. PMID:26935106

  17. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis

    PubMed Central

    Valenzuela, Nicolas; Fan, Qiying; Fa'ak, Faisal; Soibam, Benjamin; Nagandla, Harika; Liu, Yu; Schwartz, Robert J.; McConnell, Bradley K.; Stewart, M. David

    2016-01-01

    ABSTRACT HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defects. Because terminally differentiated cardiomyocytes have exited the cell cycle, histone variants should be utilized for the bulk of chromatin remodeling. Thus, HIRA is likely to play an important role in epigenetically defining the cardiac gene expression program. In this study, we determined the consequence of HIRA deficiency in cardiomyocytes in vivo by studying the phenotype of cardiomyocyte-specific Hira conditional-knockout mice. Loss of HIRA did not perturb heart development, but instead resulted in cardiomyocyte hypertrophy and susceptibility to sarcolemmal damage. Cardiomyocyte degeneration gave way to focal replacement fibrosis and impaired cardiac function. Gene expression was widely altered in Hira conditional-knockout hearts. Significantly affected pathways included responses to cellular stress, DNA repair and transcription. Consistent with heart failure, fetal cardiac genes were re-expressed in the Hira conditional knockout. Our results suggest that transcriptional regulation by HIRA is crucial for cardiomyocyte homeostasis. PMID:26935106

  18. Application of the double absorbing boundary condition in seismic modeling

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Xiang-Yang; Chen, Shuang-Quan

    2015-03-01

    We apply the newly proposed double absorbing boundary condition (DABC) (Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference (FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer (PML), the complexity decreases, and the stability and flexibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton-Engquist boundary condition and nearly the same as that in the PML.

  19. A facile one-step strategy for the generation of conditional knockout mice to explore the role of Notch1 in oroesophageal tumorigenesis.

    PubMed

    Mandasari, Masita; Sawangarun, Wanlada; Katsube, Ken-ichi; Kayamori, Kou; Yamaguchi, Akira; Sakamoto, Kei

    2016-01-15

    NOTCH1 plays an important role in epithelial differentiation and carcinogenesis. To investigate the impact of Notch1 inactivation in oroesophageal epithelium, we generated conditional knockout (cKO) mice, using a combined construct which induces the expression of single guide RNA targeting Notch1 and Cas9 by the KRT14 promoter. The cKO mice exhibited patchy hair loss and multiple NOTCH1-negative areas in the tongue epithelium, indicative of heterogeneous knockout. The cKO mice showed susceptibility to esophageal tumorigenesis, underscoring Notch1 as a tumor suppressor. Our one-step strategy for generation of cKO mice provides a versatile method to examine a gene function in vivo. PMID:26682927

  20. AAV-Mediated Gene Therapy in the Guanylate Cyclase (RetGC1/RetGC2) Double Knockout Mouse Model of Leber Congenital Amaurosis

    PubMed Central

    Boye, Sanford L.; Peshenko, Igor V.; Huang, Wei Chieh; Min, Seok Hong; McDoom, Issam; Kay, Christine N.; Liu, Xuan; Dyka, Frank M.; Foster, Thomas C.; Umino, Yumiko; Karan, Sukanya; Jacobson, Samuel G.; Baehr, Wolfgang; Dizhoor, Alexander; Hauswirth, William W.

    2013-01-01

    Mutations in GUCY2D are associated with recessive Leber congenital amaurosis-1 (LCA1). GUCY2D encodes photoreceptor-specific, retinal guanylate cyclase-1 (RetGC1). Reports of retinal degeneration in LCA1 are conflicting; some describe no obvious degeneration and others report loss of both rods and cones. Proof of concept studies in models representing the spectrum of phenotypes is warranted. We have previously demonstrated adeno-associated virus (AAV)-mediated RetGC1 is therapeutic in GC1ko mice, a model exhibiting loss of cones only. The purpose of this study was to characterize AAV-mediated gene therapy in the RetGC1/RetGC2 double knockout (GCdko) mouse, a model lacking rod and cone function and exhibiting progressive loss of both photoreceptor subclasses. Use of this model also allowed for the evaluation of the functional efficiency of transgenic RetGC1 isozyme. Subretinal delivery of AAV8(Y733F) vector containing the human rhodopsin kinase (hGRK1) promoter driving murine Gucy2e was performed in GCdko mice at various postnatal time points. Treatment resulted in restoration of rod and cone function at all treatment ages and preservation of retinal structure in GCdko mice treated as late as 7 weeks of age. Functional gains and structural preservation were stable for at least 1 year. Treatment also conferred cortical- and subcortical-based visually-guided behavior. Functional efficiency of transgenic RetGC1 was indistinguishable from that of endogenous isozyme in congenic wild-type (WT) mice. This study clearly demonstrates AAV-mediated RetGC1 expression restores function to and preserves structure of rod and cone photoreceptors in a degenerative model of retinal guanylate cyclase deficiency, further supporting development of an AAV-based vector for treatment of LCA1. PMID:23210611

  1. Distribution of selected elements in atherosclerotic plaques of apoE/LDLR-double knockout mice subjected to dietary and pharmacological treatments

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Kowalska, Joanna; Banaś, Agnieszka; Banaś, Krzysztof; Kwiatek, Wojciech M.; Kostogrys, Renata B.; Mateuszuk, łukasz; ChŁopicki, Stefan; Litwin, Jan A.; Appel, Karen

    2011-10-01

    Gene-targeted, apolipoprotein E and LDL receptor-double knockout (apoE/LDLR -/-) mice represent a new animal model that displays severe hyperlipidemia and atherosclerosis. The aim of the present study was to show changes in histomorphology and in distribution of selected elements in atherosclerotic plaques of apoE/LDLR -/- mice fed egg-rich proatherosclerotic diet (5% egg-yolk lyophilisate) supplemented or not with perindopril (inhibitor of angiotensin converting enzyme; 2 mg/kg b.w.). Synchrotron radiation micro-X-ray fluorescence spectrometry was combined with histological stainings to determine distribution and concentration of trace and essential elements in atherosclerotic lesions. More advanced atherosclerotic lesions expressed by total area occupied by lipids (oil red-O staining) and by macrophages (CD68 immunohistochemistry) were observed in animals fed egg-rich diet. The perindopril treatment attenuated these effects. No significant differences were observed in the number of intimal smooth muscle cells (smooth muscle actin immunohistochemistry). In animals fed egg-rich diet significantly higher concentrations of Ca and significantly lower contents of S, Cl, , Fe, Cu, Zn and Se in atheromas were seen in comparison to chow diet-fed animals. After pharmacological treatment, concentrations of S, Cl, Fe, Cu, Zn and Se showed the tendency to achieve levels like in animals fed normal diet. K level differed only in group treated with perindopril. Concentration of P did not significantly vary in all experimental groups. Perindopril showed its potency to reduce atherosclerosis, as estimated by the size of the atheroma and content of pro- and antiatherogenic elements.

  2. Skeletal Mineralization Deficits and Impaired Biogenesis and Function of Chondrocyte-Derived Matrix Vesicles in Phospho1(-/-) and Phospho1/Pi t1 Double-Knockout Mice.

    PubMed

    Yadav, Manisha C; Bottini, Massimo; Cory, Esther; Bhattacharya, Kunal; Kuss, Pia; Narisawa, Sonoko; Sah, Robert L; Beck, Laurent; Fadeel, Bengt; Farquharson, Colin; Millán, José Luis

    2016-06-01

    We have previously shown that ablation of either the Phospho1 or Alpl gene, encoding PHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) respectively, lead to hyperosteoidosis, but that their chondrocyte-derived and osteoblast-derived matrix vesicles (MVs) are able to initiate mineralization. In contrast, the double ablation of Phospho1 and Alpl completely abolish initiation and progression of skeletal mineralization. We argued that MVs initiate mineralization by a dual mechanism: PHOSPHO1-mediated intravesicular generation of inorganic phosphate (Pi ) and phosphate transporter-mediated influx of Pi . To test this hypothesis, we generated mice with col2a1-driven Cre-mediated ablation of Slc20a1, hereafter referred to as Pi t1, alone or in combination with a Phospho1 gene deletion. Pi t1(col2/col2) mice did not show any major phenotypic abnormalities, whereas severe skeletal deformities were observed in the [Phospho1(-/-) ; Pi t1(col2/col2) ] double knockout mice that were more pronounced than those observed in the Phospho1(-/-) mice. Histological analysis of [Phospho1(-/-) ; Pi t1(col2/col2) ] bones showed growth plate abnormalities with a shorter hypertrophic chondrocyte zone and extensive hyperosteoidosis. The [Phospho1(-/-) ; Pi t1(col2/col2) ] skeleton displayed significant decreases in BV/TV%, trabecular number, and bone mineral density, as well as decreased stiffness, decreased strength, and increased postyield deflection compared to Phospho1(-/-) mice. Using atomic force microscopy we found that ∼80% of [Phospho1(-/-) ; Pi t1(col2/col2) ] MVs were devoid of mineral in comparison to ∼50% for the Phospho1(-/-) MVs and ∼25% for the WT and Pi t1(col2/col2) MVs. We also found a significant decrease in the number of MVs produced by both Phospho1(-/-) and [Phospho1(-/-) ; Pi t1(col2/col2) ] chondrocytes. These data support the involvement of phosphate transporter 1, hereafter referred to as Pi T-1, in the initiation of skeletal mineralization and

  3. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    PubMed

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. PMID:26980143

  4. Similar phenotypes of Girdin germ-line and conditional knockout mice indicate a crucial role for Girdin in the nestin lineage.

    PubMed

    Asai, Masato; Asai, Naoya; Murata, Ayana; Yokota, Hirofumi; Ohmori, Kenji; Mii, Shinji; Enomoto, Atsushi; Murakumo, Yoshiki; Takahashi, Masahide

    2012-10-01

    Girdin is an Akt substrate and actin-binding protein. Mice with germ-line deletions of Girdin (a non-conditional knockout, (ncKO)) exhibit complete postnatal lethality accompanied by growth retardation and neuronal cell migration defects, which results in hypoplasia of the olfactory bulb and granule cell dispersion in the dentate gyrus. However, the physiological and molecular abnormalities in Girdin ncKO mice are not fully understood. In this study, we first defined the distribution of Girdin in neonates (P1) and adults (6months or older) using β-galactosidase activity in tissues from ncKO mice. The results indicate that Girdin is expressed throughout the nervous system (brain, spinal cord, enteric and autonomic nervous systems). In addition, β-galactosidase activity was detected in non-neural tissues, particularly in tissues with high tensile force, such as tendons, heart valves, and skeletal muscle. In order to identify the cellular population where the Girdin ncKO phenotype originates, newly generated Girdin flox mice were crossed with nestin promoter-driven Cre transgenic mice to obtain Girdin conditional knockout (cKO) mice. The phenotype of Girdin cKO mice was almost identical to ncKO mice, including postnatal lethality, growth retardation and decreased neuronal migration. Our findings indicate that loss of Girdin in the nestin cell lineage underlies the phenotype of Girdin ncKO mice. PMID:22974978

  5. Junction conditions in quadratic gravity: thin shells and double layers

    NASA Astrophysics Data System (ADS)

    Reina, Borja; Senovilla, José M. M.; Vera, Raül

    2016-05-01

    The junction conditions for the most general gravitational theory with a Lagrangian containing terms quadratic in the curvature are derived. We include the cases with a possible concentration of matter on the joining hypersurface—termed as thin shells, domain walls or braneworlds in the literature—as well as the proper matching conditions where only finite jumps of the energy-momentum tensor are allowed. In the latter case we prove that the matching conditions are more demanding than in general relativity. In the former case, we show that generically the shells/domain walls are of a new kind because they possess, in addition to the standard energy-momentum tensor, a double layer energy-momentum contribution which actually induces an external energy flux vector and an external scalar pressure/tension on the shell. We prove that all these contributions are necessary to make the entire energy-momentum tensor divergence-free, and we present the field equations satisfied by these energy-momentum quantities. The consequences of all these results are briefly analyzed.

  6. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts.

    PubMed

    Morán-Salvador, Eva; López-Parra, Marta; García-Alonso, Verónica; Titos, Esther; Martínez-Clemente, Marcos; González-Périz, Ana; López-Vicario, Cristina; Barak, Yaacov; Arroyo, Vicente; Clària, Joan

    2011-08-01

    Peroxisome proliferator-activated receptor (PPAR) γ is a nuclear receptor central to glucose and lipid homeostasis. PPARγ role in nonalcoholic fatty liver disease is controversial because PPARγ overexpression is a general property of steatotic livers, but its activation by thiazolidinediones reduces hepatic steatosis. Here, we investigated hepatic PPARγ function by using Cre-loxP technology to generate hepatocyte (PPARγ(Δhep))- and macrophage (PPARγ(Δmac))-specific PPARγ-knockout mice. Targeted deletion of PPARγ in hepatocytes, and to a lesser extent in macrophages, protected mice against high-fat diet-induced hepatic steatosis. Down-regulated expression of genes involved in lipogenesis (SCD1, SREBP-1c, and ACC), lipid transport (CD36/FAT, L-FABP, and MTP), and β-oxidation (PPARα and ACO) was observed in PPARγ(Δhep) mice. Moreover, PPARγ(Δhep) mice showed improved glucose tolerance and reduced PEPCK expression without changes in Pcx, Fbp1, and G6Pc expression and CREB and JNK phosphorylation. In precision-cut liver slices (PCLSs) and hepatocytes, rosiglitazone either alone or in combination with oleic acid increased triglyceride accumulation, an effect that was blocked by the PPARγ antagonist biphenol A diglycidyl ether (BADGE). PCLSs and hepatocytes from PPARγ(Δhep) mice showed blunted responses to rosiglitazone and oleic acid, whereas the response to these compounds remained intact in PCLSs from PPARγ(Δmac) mice. Collectively, these findings establish PPARγ expression in hepatocytes as a prosteatotic factor in fatty liver disease. PMID:21507897

  7. Altered mnemonic functions and resistance to N-METHYL-d-Aspartate receptor antagonism by forebrain conditional knockout of glycine transporter 1.

    PubMed

    Singer, P; Yee, B K; Feldon, J; Iwasato, T; Itohara, S; Grampp, T; Prenosil, G; Benke, D; Möhler, H; Boison, D

    2009-06-30

    Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-d-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remain to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 downregulation in the brain on behavior and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated excitatory postsynaptic currents (EPSC) was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated. PMID:19332109

  8. Knockout of p11 attenuates the acquisition and reinstatement of cocaine conditioned place preference in male but not in female mice.

    PubMed

    Thanos, Panayotis K; Malave, Lauren; Delis, Foteini; Mangine, Paul; Kane, Katie; Grunseich, Adam; Vitale, Melissa; Greengard, Paul; Volkow, Nora D

    2016-07-01

    Cocaine's enhancement of dopamine signaling is crucial for its rewarding effects but its serotonergic effects are also relevant. Here we examined the role of the protein p11, which recruits serotonin 5HT1B and 5HT4 receptors to the cell surface, in cocaine reward. For this purpose we tested wild-type (WT) and p11 knockout (KO) male and female mice for cocaine conditioned place preference (CPP) and its cocaine-induced reinstatement at different abstinence times, after 8 days of extinction and 28 days of being home-caged. All mice showed significant cocaine CPP. Among males, p11KO showed lower CPP than WT; this difference was also evident after 28 days of home-cage abstinence. In contrast, in females there were no CPP differences between p11KO and WT mice at any time point tested. Cocaine priming after the 28-day home-cage abstinence period also resulted in lower cocaine conditioned motor activity in both male and female p11KO mice. These results suggest that cocaine CPP and its persistence during extinction and reinstatement are modulated in a sex-differentiated manner by p11. The lack of protein p11 confers protection from CPP on male, but not female mice, immediately after cocaine conditioning as well as after prolonged abstinence, but not after short-term withdrawal. Synapse 70:293-301, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990537

  9. Monitoring of Double-Stud Wall Moisture Conditions in the Northeast

    SciTech Connect

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.

  10. Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice.

    PubMed

    Ehrman, L A; Williams, M T; Schaefer, T L; Gudelsky, G A; Reed, T M; Fienberg, A A; Greengard, P; Vorhees, C V

    2006-10-01

    Mice lacking phosphodiesterase 1B (PDE1B) exhibit an exaggerated locomotor response to D-methamphetamine and increased in vitro phosphorylation of DARPP32 (dopamine- and cAMP-regulated phosphoprotein, M r 32 kDa) at Thr34 in striatal brain slices treated with the D1 receptor agonist, SKF81297. These results indicated a possible regulatory role for PDE1B in pathways involving DARPP32. Here, we generated PDE1B x DARPP32 double-knockout (double-KO) mice to test the role of PDE1B in DARPP32-dependent pathways in vivo. Analysis of the response to d-methamphetamine on locomotor activity showed that the hyperactivity experienced by PDE1B mutant mice was blocked in PDE1B-/- x DARPP32-/- double-KO mice, consistent with participation of PDE1B and DARPP32 in the same pathway. Further behavioral testing in the elevated zero-maze revealed that DARPP32-/- mice showed a less anxious phenotype that was nullified in double-mutant mice. In contrast, in the Morris water maze, double-KO mice showed deficits in spatial reversal learning not observed in either single mutant compared with wild-type mice. The data suggest a role for PDE1B in locomotor responses to psychostimulants through modulation of DARPP32-dependent pathways; however, this modulation does not necessarily impact other behaviors, such as anxiety or learning. Instead, the phenotype of double-KOs observed in these latter tasks may be mediated through independent pathways. PMID:17010100

  11. Conditional Knockout of Tumor Overexpressed Gene in Mouse Neurons Affects RNA Granule Assembly, Granule Translation, LTP and Short Term Habituation

    PubMed Central

    Barbarese, Elisa; Ifrim, Marius F.; Hsieh, Lawrence; Guo, Caiying; Tatavarty, Vedakumar; Maggipinto, Michael J.; Korza, George; Tutolo, Jessica W.; Giampetruzzi, Anthony; Le, Hien; Ma, Xin-Ming; Levine, Eric; Bishop, Brian; Kim, Duck O.; Kuwada, Shigeyuki; Carson, John H.

    2013-01-01

    In neurons, specific RNAs are assembled into granules, which are translated in dendrites, however the functional consequences of granule assembly are not known. Tumor overexpressed gene (TOG) is a granule-associated protein containing multiple binding sites for heterogeneous nuclear ribonucleoprotein (hnRNP) A2, another granule component that recognizes cis-acting sequences called hnRNP A2 response elements (A2REs) present in several granule RNAs. Translation in granules is sporadic, which is believed to reflect monosomal translation, with occasional bursts, which are believed to reflect polysomal translation. In this study, TOG expression was conditionally knocked out (TOG cKO) in mouse hippocampal neurons using cre/lox technology. In TOG cKO cultured neurons granule assembly and bursty translation of activity-regulated cytoskeletal associated (ARC) mRNA, an A2RE RNA, are disrupted. In TOG cKO brain slices synaptic sensitivity and long term potentiation (LTP) are reduced. TOG cKO mice exhibit hyperactivity, perseveration and impaired short term habituation. These results suggest that in hippocampal neurons TOG is required for granule assembly, granule translation and synaptic plasticity, and affects behavior. PMID:23936366

  12. Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii.

    PubMed

    Rommereim, Leah M; Bellini, Valeria; Fox, Barbara A; Pètre, Graciane; Rak, Camille; Touquet, Bastien; Aldebert, Delphine; Dubremetz, Jean-François; Cesbron-Delauw, Marie-France; Mercier, Corinne; Bzik, David J

    2016-01-01

    Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection. PMID:27458822

  13. Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii

    PubMed Central

    Fox, Barbara A.; Pètre, Graciane; Rak, Camille; Touquet, Bastien; Aldebert, Delphine; Dubremetz, Jean-François; Cesbron-Delauw, Marie-France; Mercier, Corinne; Bzik, David J.

    2016-01-01

    Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection. PMID:27458822

  14. Conditional knockout of the leptin receptor in the colonic epithelium revealed the local effects of leptin receptor signaling in the progression of colonic tumors in mice.

    PubMed

    Higurashi, Takuma; Endo, Hiroki; Uchiyama, Takashi; Uchiyama, Shiori; Yamada, Eiji; Ohkubo, Hidenori; Sakai, Eiji; Takahashi, Hirokazu; Maeda, Shin; Wada, Koichiro; Natsumeda, Yutaka; Hippo, Yoshitaka; Nakajima, Atsushi; Nakagama, Hitoshi

    2014-09-01

    Leptin, secreted by the adipose tissue and known to be related to obesity, is considered to be involved in the onset and progression of colorectal cancer. However, the exact role of leptin in colorectal carcinogenesis is still unclear, as several controversial reports have been published on the various systemic effects of leptin. The aim of this study was to clarify the local and precise roles of leptin receptor (LEPR)-mediated signaling in colonic carcinogenesis using intestinal epithelium-specific LEPRb conditional knockout (cKO) mice. We produced and used colonic epithelium-specific LEPRb cKO mice to investigate the carcinogen-induced formation of aberrant crypt foci (ACF) and tumors in the colon, using their littermates as control. There were no differences in the body weight or systemic condition between the control and cKO mice. The tumor sizes and number of large-sized tumors were significantly lower in the cKO mice as compared with those in the control mice. On the other hand, there was no significant difference in the proliferative activity of the normal colonic epithelial cells or ACF formation between the control and cKO mice. In the control mice, marked increase of the LEPRb expression level was observed in the colonic tumors as compared with that in the normal epithelium; furthermore, signal transducer and activator of transcription (STAT3) was activated in the tumor cells. These findings suggest that STAT3 is one of the important molecules downstream of LEPRb, and LEPRb/STAT3 signaling controls tumor cell proliferation. We demonstrated the importance of local/regional LEPR-mediated signaling in colorectal carcinogenesis. PMID:24958593

  15. Mu Opioid Receptors on Primary Afferent Nav1.8 Neurons Contribute to Opiate-Induced Analgesia: Insight from Conditional Knockout Mice

    PubMed Central

    Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A. J.; Wood, John N.; Kieffer, Brigitte L.; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund’s Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain. PMID:24069332

  16. Host Susceptibility to Brucella abortus Infection Is More Pronounced in IFN-γ knockout than IL-12/β2-Microglobulin Double-Deficient Mice

    PubMed Central

    Brandão, Ana Paula M. S.; Oliveira, Fernanda S.; Carvalho, Natalia B.; Vieira, Leda Q.; Azevedo, Vasco; Macedo, Gilson C.; Oliveira, Sergio C.

    2012-01-01

    Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. IFN-γ, IL-12, and CD8+ T lymphocytes are important components of host immune responses against B. abortus. Herein, IFN-γ and IL-12/β2-microglobulin (β2-m) knockout mice were used to determine whether CD8+ T cells and IL-12-dependent IFN-γ deficiency would be more critical to control B. abortus infection compared to the lack of endogenous IFN-γ. At 1 week after infection, IFN-γ KO and IL-12/β2-m KO mice showed increased numbers of bacterial load in spleens; however, at 3 weeks postinfection (p.i.), only IFN-γ KO succumbed to Brucella. All IFN-γ KO had died at 16 days p.i. whereas death within the IL-12/β2-m KO group was delayed and occurred at 32 days until 47 days postinfection. Susceptibility of IL-12/β2-m KO animals to Brucella was associated to undetectable levels of IFN-γ in mouse splenocytes and inability of these cells to lyse Brucella-infected macrophages. However, the lack of endogenous IFN-γ was found to be more important to control brucellosis than CD8+ T cells and IL-12-dependent IFN-γ deficiencies. PMID:22194770

  17. Establishment of Immortalized BMP2/4 Double Knock-Out Osteoblastic Cells Is Essential for Study of Osteoblast Growth, Differentiation, and Osteogenesis.

    PubMed

    Wu, Li-An; Wang, Feng; Donly, Kevin J; Baker, Andrew; Wan, Chunyan; Luo, Daoshu; MacDougall, Mary; Chen, Shuo

    2016-06-01

    Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock-out ((ko/ko)) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4(ko/ko) cells were verified by green immunofluorescence and PCR. BMP2/4(ko/ko) osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4(ko/ko) cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4(ko/ko) osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages. PMID:26595646

  18. How to impose initial conditions for QCD evolution of double parton distributions?

    NASA Astrophysics Data System (ADS)

    Golec-Biernat, Krzysztof; Lewandowska, Emilia

    2014-07-01

    Double parton distribution functions are used in the QCD description of double parton scattering. The double parton distributions evolve with hard scales through QCD evolution equations which obey nontrivial momentum and valence quark number sum rules. We describe an attempt to construct initial conditions for the evolution equations which exactly fulfill these sum rules and discuss its shortcomings. We also discuss the factorization of the double parton distributions into a product of two single parton distribution functions at small values of the parton momentum fractions.

  19. Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated chloride current in mouse vomeronasal sensory neurons.

    PubMed

    Amjad, Asma; Hernandez-Clavijo, Andres; Pifferi, Simone; Maurya, Devendra Kumar; Boccaccio, Anna; Franzot, Jessica; Rock, Jason; Menini, Anna

    2015-04-01

    Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca(2+) concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca(2+) in isolated mouse vomeronasal sensory neurons in the absence of intracellular K(+). In whole-cell recordings, the average current in 1.5 µM Ca(2+) and symmetrical Cl(-) was -382 pA at -100 mV. Ion substitution experiments and partial blockade by commonly used Cl(-) channel blockers indicated that Ca(2+) activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca(2+)-activated Cl(-) channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/anoctamin1 or TMEM16B/anoctamin2 Ca(2+)-activated Cl(-) channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre-loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca(2+)-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca(2+)-activated Cl(-) currents in mouse vomeronasal sensory neurons. PMID:25779870

  20. Double-Shell Tank Construction: Extent of Condition

    SciTech Connect

    Venetz, Theodore J.; Gunter, Jason R.

    2014-05-13

    This presentation covers: quick recap of Hanford DSTs and the contribution of construction difficulties which led to the leak in tank AY-102; approach to Extent of Condition reviews; typical DST construction sequence; presentation of construction information resulting from extent of condition reviews of other DST farms with comparison to tank AY-102; and overall conclusion and impact of issues on the other DST tank farms.

  1. C-Terminal-Truncated Microdystrophin Recruits Dystrobrevin and Syntrophin to the Dystrophin-Associated Glycoprotein Complex and Reduces Muscular Dystrophy in Symptomatic Utrophin/Dystrophin Double-Knockout Mice

    PubMed Central

    Yue, Yongping; Liu, Mingju; Duan, Dongsheng

    2007-01-01

    C-terminal-truncated (ΔC) microdystrophin is being developed for Duchenne muscular dystrophy gene therapy. Encouraging results have been achieved in the mdx mouse model. Unfortunately, mdx mice do not display the same phenotype as human patients. Evaluating ΔC microdystrophin in a symptomatic model will be of significant relevance to human trials. Utrophin/dystrophin double-knockout (u-dko) mice were developed to model severe dystrophic changes in human patients. In this study we evaluated the therapeutic effect of the ΔR4-R23/ΔC microdystrophin gene (ΔR4/ΔC) after serotype-6 adeno-associated virus-mediated gene transfer in neonatal u-dko muscle. At 2 months after gene transfer, the percentage of centrally nucleated myofiber was reduced from 89.2 to 3.4% and muscle weight was normalized. Furthermore, we have demonstrated for the first time that ΔC microdystrophin can eliminate interstitial fibrosis and macrophage infiltration and restore dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex. Interestingly neuronal nitric oxide synthase was not restored. The most impressive results were achieved in muscle force measurement. Neonatal gene therapy increased twitch- and tetanic-specific force. It also brought the response to eccentric contraction-induced injury to the normal range. In summary, our results suggest that the ΔR4/ΔC microgene holds great promise in preventing muscular dystrophy. PMID:16563874

  2. 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum.

    PubMed Central

    Ferain, T; Schanck, A N; Delcour, J

    1996-01-01

    We have examined the metabolic consequences of knocking out the two ldh genes in Lactobacillus plantarum using 13C nuclear magnetic resonance. Unlike its wild-type isogenic progenitor, which produced lactate as the major metabolite under all conditions tested, ldh null strain TF103 mainly produced acetoin. A variety of secondary end products were also found, including organic acids (acetate, succinate, pyruvate, and lactate), ethanol, 2,3-butanediol, and mannitol. PMID:8955418

  3. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    PubMed Central

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  4. Mechanisms in Knockout Reactions

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Charity, R. J.; de Souza, R. T.; Famiano, M. A.; Gade, A.; Henzl, V.; Henzlova, D.; Hudan, S.; Lee, J.; Lukyanov, S.; Lynch, W. G.; McDaniel, S.; Mocko, M.; Obertelli, A.; Rogers, A. M.; Sobotka, L. G.; Terry, J. R.; Tostevin, J. A.; Tsang, M. B.; Wallace, M. S.

    2009-06-01

    We report the first detailed study of the relative importance of the stripping and diffraction mechanisms involved in nucleon knockout reactions, by the use of a coincidence measurement of the residue and fast proton following one-proton knockout reactions. The measurements used the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results for the reactions Be9(C9,B8+X)Y and Be9(B8,Be7+X)Y are presented and compared with theoretical predictions for the two reaction mechanisms calculated using the eikonal model. The data show a clear distinction between the stripping and diffraction mechanisms and the measured relative proportions are very well reproduced by the reaction theory. This agreement adds support to the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes.

  5. Boundary conditions and the generalized metric formulation of the double sigma model

    NASA Astrophysics Data System (ADS)

    Ma, Chen-Te

    2015-09-01

    Double sigma model with strong constraints is equivalent to the ordinary sigma model by imposing a self-duality relation. The gauge symmetries are the diffeomorphism and one-form gauge transformation with the strong constraints. We consider boundary conditions in the double sigma model from three ways. The first way is to modify the Dirichlet and Neumann boundary conditions with a fully O (D, D) description from double gauge fields. We perform the one-loop β function for the constant background fields to find low-energy effective theory without using the strong constraints. The low-energy theory can also have O (D, D) invariance as the double sigma model. The second way is to construct different boundary conditions from the projectors. The third way is to combine the antisymmetric background field with field strength to redefine an O (D, D) generalized metric. We use this generalized metric to reconstruct a consistent double sigma model with the classical and quantum equivalence.

  6. Inhibition of intestinal absorption of cholesterol by ezetimibe or bile acids by SC-435 alters lipoprotein metabolism and extends the lifespan of SR-BI/apoE double knockout mice.

    PubMed

    Braun, Anne; Yesilaltay, Ayce; Acton, Susan; Broschat, Kay O; Krul, Elaine S; Napawan, Nida; Stagliano, Nancy; Krieger, Monty

    2008-05-01

    SR-BI/apoE double knockout (dKO) mice exhibit many features of human coronary heart disease (CHD), including hypercholesterolemia, occlusive coronary atherosclerosis, cardiac hypertrophy, myocardial infarctions, cardiac dysfunction and premature death. Ezetimibe is a FDA-approved, intestinal cholesterol absorption inhibitor that lowers plasma LDL cholesterol in humans and animals and inhibits aortic root atherosclerosis in apoE KO mice, but has not been proven to reduce CHD. Three-week-ezetimibe treatment of dKO mice (0.005% (w/w) in standard chow administered from weaning) resulted in a 35% decrease in cholesterol in IDL/LDL-size lipoproteins, but not in VLDL- and HDL-size lipoproteins. Ezetimibe treatment significantly reduced aortic root (57%) and coronary arterial (68%) atherosclerosis, cardiomegaly (24%) and cardiac fibrosis (57%), and prolonged the lives of the mice (27%). This represents the first demonstration of beneficial effects of ezetimibe treatment on CHD. The dKO mice were similarly treated with SC-435 (0.01% (w/w)), an apical sodium codependent bile acid transporter (ASBT) inhibitor, that blocks intestinal absorption of bile acids, lowers plasma cholesterol in animals, and reduces aortic root atherosclerosis in apoE KO mice. The effects of SC-435 treatment were similar to those of ezetimibe: 37% decrease in ILD/LDL-size lipoprotein cholesterol and 57% prolongation in median lifespan. Thus, inhibition of intestinal absorption of either cholesterol (ezetimibe) or bile acids (SC-435) significantly reduced plasma IDL/LDL-size lipoprotein cholesterol levels and improved survival of SR-BI/apoE dKO mice. The SR-BI/apoE dKO murine model of atherosclerotic occlusive, arterial CHD appears to provide a useful system to evaluate compounds that modulate cholesterol homeostasis and atherosclerosis. PMID:18054357

  7. Technology Solutions Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts

    SciTech Connect

    2015-03-01

    Double stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. In this project, Building Science Corporation monitored moisture conditions in double-stud walls from 2011 through 2014 at a new production house located in Devens, Massachusetts. The builder, Transformations, Inc., has been using double-stud walls insulated with 12 in. of open cell polyurethane spray foam (ocSPF); however, the company has been considering a change to netted and blown cellulose insulation for cost reasons. Cellulose is a common choice for double-stud walls because of its lower cost (in most markets). However, cellulose is an air-permeable insulation, unlike spray foams, which increases interior moisture risks. The team compared three double-stud assemblies: 12 in. of ocSPF, 12 in. of cellulose, and 5-½ in. of ocSPF at the exterior of a double-stud wall (to approximate conventional 2 × 6 wall construction and insulation levels, acting as a control wall). These assemblies were repeated on the north and south orientations, for a total of six assemblies.

  8. Conditions for establishing quasistable double layers in the Earth's auroral upward current region

    SciTech Connect

    Main, D. S.; Newman, D. L.; Ergun, R. E.

    2010-12-15

    The strength and stability of simulated double layers at the ionosphere-auroral cavity boundary have been studied as a function of cold ionospheric electron temperature and density. The simulations are performed with an open boundary one-dimensional particle-in- cell (PIC) simulation and are initialized by imposing a density cavity within the simulation domain. The PIC simulation includes H{sup +} and O{sup +} ion beams, a hot H{sup +} background population, cold ionospheric electrons, and a hot electron population. It is shown that a double layer remains quasistable for a variety of initial conditions and plasma parameters. The average potential drop of the double layer is found to increase as the cold electron temperature decreases. However, in terms of cold electron density, the average potential drop of the double layer is found to increase up to some critical cold electron density and decreases above this value. Comparisons with FAST observations are made and agreement is found between simulation results and observations in the shape and width of the double layer. This study helps put a constraint on the plasma conditions in which a DL can be expected to form and remain quasistable.

  9. Double Dissociation of Conditioning and Declarative Knowledge Relative to the Amygdala and Hippocampus in Humans

    NASA Astrophysics Data System (ADS)

    Bechara, Antoine; Tranel, Daniel; Damasio, Hanna; Adolphs, Ralph; Rockland, Charles; Damasio, Antonio R.

    1995-08-01

    A patient with selective bilateral damage to the amygdala did not acquire conditioned autonomic responses to visual or auditory stimuli but did acquire the declarative facts about which visual or auditory stimuli were paired with the unconditioned stimulus. By contrast, a patient with selective bilateral damage to the hippocampus failed to acquire the facts but did acquire the conditioning. Finally, a patient with bilateral damage to both amygdala and hippocampal formation acquired neither the conditioning nor the facts. These findings demonstrate a double dissociation of conditioning and declarative knowledge relative to the human amygdala and hippocampus.

  10. Building America Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts (Fact Sheet)

    SciTech Connect

    Not Available

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  11. Mechanisms in knockout reactions

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Charity, R. J.; de Souza, R. T.; Famiano, M. A.; Gade, A.; Henzl, V.; Henzlova, D.; Hudan, S.; Lee, J.; Lukyanov, S.; Lynch, W. G.; McDaniel, S.; Mocko, M.; Obertelli, A.; Rogers, A. M.; Sobotka, L. G.; Terry, J. R.; Tostevin, J. A.; Tsang, M. B.; Wallace, M. S.

    2009-10-01

    We report on the first detailed study of the mechanisms involved in knockout reactions, via a coincidence measurement of the residue and fast proton in one-proton knockout reactions, using the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results on the reactions ^9Be(^9C,^8B+X)Y and ^9Be(^8B,^7Be+X)Y are presented. They are compared with theoretical predictions for both the diffraction (elastic breakup) and stripping (inelastic breakup) reaction mechanisms, as calculated in the eikonal model. The data shows a clear distinction between the two reaction mechanisms, and the observed respective proportions are very well reproduced by the reaction theory. This agreement supports the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes. In particular, this add considerable support to the use of the eikonal model as a quantitative tool, able, for example, to determine single-particle spectroscopic strengths in rare isotopes.

  12. Effects of D-4F on Vasodilation and Vessel Wall Thickness in Hypercholesterolemic LDL Receptor Null and LDL receptor/ApoA-I Double Knockout Mice on Western Diet

    PubMed Central

    Ou, Jingsong; Wang, Jingli; Xu, Hao; Ou, Zhijun; Sorci-Thomas, Mary G.; Jones, Deron W.; Signorino, Paul; Densmore, John C.; Kaul, Sushma; Oldham, Keith T.; Pritchard, Kirkwood A.

    2005-01-01

    Previously we showed L-4F, a novel apolipoprotein A-I (apoA-I) mimetic, improved vasodilation in two dissimilar models of vascular disease; hypercholesterolemic low-density lipoprotein (LDL) receptor null (Ldlr −/−) mice and transgenic sickle cell disease mice. Here we determine the mechanisms by which D-4F improves vasodilation and arterial wall thickness in hypercholesterolemic Ldlr −/− mice and Ldlr −/−/apoA-I null (apoA-I −/−), double knockout mice. Ldlr −/− and Ldlr −/−/apoA-I −/− mice were fed western diet (WD) ± D-4F. Oral D-4F restored endothelium- and eNOS-dependent vasodilation in direct relationship to duration of treatments and reduced wall thickness in as little as 2 weeks in vessels with pre-existing disease in Ldlr −/− mice. D-4F had no effect on total or HDL cholesterol concentrations but reduced proinflammatory HDL levels. D-4F had no effect on plasma myeloperoxidase (MPO) concentrations but reduced MPO association with apoA-I as well as 3-nitrotyrosine in apoA-I. D-4F increased endothelium- and eNOS-dependent vasodilation in Ldlr −/−/apoA-I −/− mice but did not reduce wall thickness as it had in Ldlr −/− mice. Vascular endothelial cells were treated with 22-hydroxycholesterol (22-OHC) ± L-4F. 22-OHC decreased nitric oxide (•NO) and increased superoxide anion (O2 •−) production and increased ABCA-1 and collagen expression. L-4F restored •NO and O2 •− balance, had little effect on ABCA-1 expression but reduced collagen expression. These data demonstrate that although D-4F restores vascular endothelial cell and eNOS function to increase vasodilation, HDL containing apoA-I, or at least some critical concentration of the anti-atherogenic lipoprotein, is required for D-4F to decrease vessel wall thickness. PMID:16224061

  13. The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions.

    PubMed

    Lind, Olle; Chavez, Johanna; Kelber, Almut

    2014-03-01

    Bird colour vision is mediated by single cones, while double cones and rods mediate luminance vision in bright and dim light, respectively. In daylight conditions, birds use colour vision to discriminate large objects such as fruit and plumage patches, and luminance vision to detect fine spatial detail and motion. However, decreasing light intensity favours achromatic mechanisms and eventually, in dim light, luminance vision outperforms colour vision in all visual tasks. We have used behavioural tests in budgerigars (Melopsittacus undulatus) to investigate how single cones, double cones and rods contribute to spectral sensitivity for large (3.4°) static monochromatic stimuli at light intensities ranging from 0.08 to 63.5 cd/m². We found no influences of rods at any intensity level. Single cones dominate the spectral sensitivity function at intensities above 1.1 cd/m², as predicted by a receptor noise-limited colour discrimination model. Below 1.1 cd/m², spectral sensitivity is lower than expected at all wavelengths except 575 nm, which corresponds to double cone function. We suggest that luminance vision mediated by double cones restores visual sensitivity when single cone sensitivity quickly decreases at light intensities close to the absolute threshold of colour vision. PMID:24366429

  14. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.

    PubMed

    Ma, Shaohua; Huck, Wilhelm T S; Balabani, Stavroula

    2015-11-21

    Water-in-oil-in-water (w/o/w) microfluidics double emulsions offer a new route to compartmentalise reagents into isolated aqueous microenvironments while maintaining an aqueous carrier fluid phase; this enables compatibility with commercial flow cytometry systems such as fluorescence-activated cell sorting (FACS). Double emulsion (inner core) deformation under hydrodynamic focusing conditions that mimic the environment double emulsions experience in flow cytometry applications is of particular importance for droplet stability and cell viability. This paper reports on an experimental study of the dynamic deformation of aqueous cores of w/o/w double emulsions under hydrodynamic focusing, with the sheath flow directed at 45° to the sample flow. A number of factors affecting the inner core deformation and recovery were examined. Deformation was found to depend significantly on the core or shell viscosity, the droplet-to-sheath flow velocity ratio, and core and shell sizes. Core deformation was found to depend more on the type of surfactant rather concentration with high molecular weight surfactant exhibiting a negligible effect on deformation whereas low molecular weight surfactant enhancing deformation at low concentrations due to their lateral mobility at the interface. PMID:26394745

  15. TransOmic analysis of forebrain sections in Sp2 conditional knockout embryonic mice using IR-MALDESI imaging of lipids and LC-MS/MS label-free proteomics.

    PubMed

    Loziuk, Philip; Meier, Florian; Johnson, Caroline; Ghashghaei, H Troy; Muddiman, David C

    2016-05-01

    Quantitative methods for detection of biological molecules are needed more than ever before in the emerging age of "omics" and "big data." Here, we provide an integrated approach for systematic analysis of the "lipidome" in tissue. To test our approach in a biological context, we utilized brain tissue selectively deficient for the transcription factor Specificity Protein 2 (Sp2). Conditional deletion of Sp2 in the mouse cerebral cortex results in developmental deficiencies including disruption of lipid metabolism. Silver (Ag) cationization was implemented for infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) to enhance the ion abundances for olefinic lipids, as these have been linked to regulation by Sp2. Combining Ag-doped and conventional IR-MALDESI imaging, this approach was extended to IR-MALDESI imaging of embryonic mouse brains. Further, our imaging technique was combined with bottom-up shotgun proteomic LC-MS/MS analysis and western blot for comparing Sp2 conditional knockout (Sp2-cKO) and wild-type (WT) cortices of tissue sections. This provided an integrated omics dataset which revealed many specific changes to fundamental cellular processes and biosynthetic pathways. In particular, step-specific altered abundances of nucleotides, lipids, and associated proteins were observed in the cerebral cortices of Sp2-cKO embryos. Graphical abstract TransOmic Analysis of Dorsolateral cortices of Sp2 conditional Knockout mouse embryos. Target tissue was extracted by laser microdissection and analyzed by LC-MS/MS label- free quantitative proteomics. In parallel, lipid imaging of these tissues was performed by conventional IR-MALDESI and Agdoped IR-MALDESI imaging. These data were then integrated to obtain insight into lipid pathways altered by presence or absence of transcription factor Specificity Protein 2. PMID:26942738

  16. Risk assessment under current and double CO{sub 2} conditions for United States wheat yields

    SciTech Connect

    Barry, T.A.; Geng, S.

    1995-03-01

    There are at least two problems in quantifying weather related risks associated with crop yields. First, long-term data are generally not available. Second, even if the data were available, they were frequently confounded with factors other than weather conditions. In this study the authors have used a simulation approach to quantify two types of risks associated with cropping systems under current and double CO{sub 2} scenarios. The first order risk is defined as the probability of crop failure in a particular environment. The second order risk is the degree of uncertainty of maintaining the mean yield for a growing condition (variance of yield). Results show that, overall, with the present cropping systems the first order risk increased by 20% with doubling of CO{sub 2}. Second order risk increased at locations that presently have the highest mean wheat yields in the Great Plains. Second order risk decreased at locations that currently produce the majority of wheat in the Great Plains. However, at those locations the mean yields greatly decrease and first order risk increases substantially with doubling of CO{sub 2}. The commonly suggested mitigation methods such as adjusting cultivars and planting dates did not alleviate the weather impact and associated risk sufficiently to lead to a productive, alternative cropping system.

  17. Mechanical reliability of double clad fibers in typical fiber laser deployment conditions

    NASA Astrophysics Data System (ADS)

    Walorny, Michael; Abramczyk, Jaroslaw; Jacobson, Nick; Tankala, Kanishka

    2016-03-01

    With the rapid acceptance of fiber lasers and amplifiers for various materials processing and defense applications the long term optical and mechanical reliability of the fiber laser, and therefore the components that make up the laser, is of significant interest to the industrial and defense communities. The double clad fiber used in a fiber laser is a key component whose lifetime in typical deployment conditions needs to be understood. The optical reliability of double clad fiber has recently been studied and a predictive model of fiber lifetime has been published. In contrast, a rigorous model for the mechanical reliability of the fiber and an analysis of the variables affecting the lifetime of the fiber in typical deployment conditions has not been studied. This paper uses the COST-218 model which is widely used for analyzing the mechanical lifetime of fiber used in the telecom industry. The factors affecting lifetime are analyzed to make the reader aware of the design choices a laser manufacturer can make, and the information they must seek from fiber suppliers, to ensure excellent lifetime for double clad fiber and consequently for the fiber laser. It is shown that the fiber's stress corrosion susceptibility, its proof strength, the coil diameter and the length of fiber coiled to achieve good beam quality all have important implications on fiber lifetime.

  18. Conditions for double layers in the earth's magnetosphere and perhaps in other astrophysical objects

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1987-01-01

    It is suggested that the features which govern the formation of the double layers are: (1) the divergence of the magnetospheric electric field, (2) the ionospheric conductivity, and (3) the current-voltage characteristics of auroral magnetic field lines. Also considered are conditions in other astrophysical objects that could lead to the formation of DLs in a manner analogous to what occurs in the earth's auroral zones. It is noted that two processes can drive divergent Pedersen currents within a collisional conducting layer: (1) sheared plasma flow applied anywhere along the magnetic field lines connected to the conducting layer and (2) a neutral flow with shear within the conducting layer.

  19. Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function

    NASA Astrophysics Data System (ADS)

    Katori, Makoto; Izumi, Minami; Kobayashi, Naoki

    2008-06-01

    It is known that the moments of the maximum value of a one-dimensional conditional Brownian motion, the three-dimensional Bessel bridge with duration 1 started from the origin, are expressed using the Riemann zeta function. We consider a system of two Bessel bridges, in which noncolliding condition is imposed. We show that the moments of the maximum value is then expressed using the double Dirichlet series, or using the integrals of products of the Jacobi theta functions and its derivatives. Since the present system will be provided as a diffusion scaling limit of a version of vicious walker model, the ensemble of 2-watermelons with a wall, the dominant terms in long-time asymptotics of moments of height of 2-watermelons are completely determined. For the height of 2-watermelons with a wall, the average value was recently studied by Fulmek by a method of enumerative combinatorics.

  20. Mechanisms of Steady and Oscillatory Double-component Convection Due To Different Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Tsitverblit, Naftali

    The effects of different boundary conditions on the behavior of double-component fluid are of basic significance for the ocean processes up to the scales of the global ocean thermohaline circulation [Walin, Palaeogeogr. Palaeoclimatol. Palaeoecol. 50, 323 (1985)]. One major aspect of such flows is that the effect of different boundary conditions can be conceptually analogous to that of different diffusivities in the classi- cal double-diffusion [Welander, Tellus, Ser. A 41, 66 (1989); Tsitverblit, Phys. Fluids 9, 2458 (1997); ibid. 11, 2516 (1999); Phys. Rev. E 62, R7591 (2000)]. This work reports the existence of a novel mechanism of double-component convection resulting from different boundary conditions, whose nature is unrelated to differential diffu- sion. This mechanism emerges in a horizontal layer of Boussinesq fluid as a stable stratification due to flux boundary conditions is added to an unstable gradient speci- fied by fixed boundary values. A large enough perturbation substantially decreases the stable flux gradient but fails to mix the unstable fixed-value gradient. Steady finite- amplitude flows reminiscent of Rayleigh--Benard convection then arise even as the net background stratification is stable. At sufficiently large Rayleigh numbers, con- tinuation of such flows into the finite-amplitude states in Tsitverblit (2000) exhibits a hysteresis region in the slot inclination angle, due to the dissimilar nature of these two convective flows. Welander's (1989) oscillatory instability is also analyzed with the focus on the compensating across-slot gradients. In the inviscid fluid, k = 0 is the most unstable wave number, with the perturbation frequency c = 0. The long- wavelength expansion yields the critical (joint) Rayleigh number, Rac, and group ve- locity, k (c/k), for k = 0 as Rac = 12(k) and k = c c 2 c 60/7. [Generally, at k = 0, the critical (fixed-value) Rayleigh number Rac = (2Ras + 5040)/51 and 12(k) = Ras; Ras being the flux Rayleigh number

  1. Knockout beyond the dripline

    SciTech Connect

    Bonaccorso, A.; Charity, R. J.; Kumar, R.; Salvioni, G.

    2015-02-24

    In this contribution, we will describe neutron and proton removal from {sup 9}C and {sup 7}Be which are two particularly interesting nuclei entering the nucleo-synthesis pp-chain [1, 2]. Neutron and proton removal reactions have been used in the past twenty years to probe the single-particle structure of exotic nuclei. The core parallel-momentum distribution can give information on the angular momentum and spin of the nucleon initial state while the total removal cross section is sensitive to the asymptotic part of the initial wave function and also to the reaction mechanism. Because knockout is a peripheral reaction from which the Asymptotic Normalization Constant (ANC) of the single-particle wave function can be extracted, it has been used as an indirect method to obtain the rate of reactions like {sup 8}B(p,γ){sup 9}C or {sup 7}Be(p,γ){sup 8}B. Nucleon removal has recently been applied by the HiRA collaboration [3] to situations in which the remaining “core” is beyond the drip line, such as {sup 8}C and {sup 6}Be, unbound by one or more protons, and whose excitation-energy spectrum can be obtained by the invariant-mass method. By gating on the ground-state peak, “core” parallel-momentum distributions and total knockout cross sections have been obtained similar to previous studies with well-bound “cores”. In addition for each projectile, knock out to final bound states has also been obtained in several cases. We will report on the theoretical description and comparison to this experimental data for a few cases for which advances in the accuracy of the transfer-to-the continuum model [4, 5] have been made [6]. These include the use, when available, of “ab-initio” overlaps for the initial state [7] and in particular their ANC values [8]. Also, the construction of a nucleus-target folding potential for the treatment of the core-target S-matrix [9] using for the cores “ab-initio” densities [10] and state-of-the-art n−{sup 9}Be optical

  2. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    SciTech Connect

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.; Boomer, K. D.; Gunter, J. R.; Venetz, T. J.

    2014-11-19

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’s remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.

  3. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    SciTech Connect

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.; Barnes, Travis J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the first three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.

  4. Modified and double-clad large mode-area leakage channel fibers for extreme temperature conditions

    NASA Astrophysics Data System (ADS)

    Thavasi Raja, G.; Varshney, Shailendra K.

    2015-03-01

    Recently large-mode-area hybrid leakage channel fibers (HLCFs) were reported to overcome the limitation on mode area with single-mode (SM) operation for the practical bending radius of 7.5 cm at the preferred wavelength of 1064 nm. In this paper, we present the effects of a thermally induced refractive index change on the mode area of bend-compensated extremely LMA modified HLCFs (M-HLCFs) and double-clad M-HLCFs. A full-vectorial finite-element method-based modal solver is used to obtain the modal characteristics of M-HLCFs in various heat load conditions. Numerical simulations reveal that the effective mode area of M-HLCFs is ˜1433 μm2 at room temperature, which marginally decreases to ˜1387 μm2 while SM operation is maintained when the temperature distribution rises to ˜125 °C over the fiber geometry during high-power operations. We have also investigated a double-clad M-HLCF design exhibiting a mode area > ˜ 1000 μm2 for all heat load density variations up to a maximum of 12 × 109 W m-3, corresponding to a 250 °C temperature in the center of the fiber core region.

  5. Gal knockout and beyond.

    PubMed

    Zhong, R

    2007-01-01

    Recently, Galalpha1-3Galbeta1-4GlcNAc (Gal) knockout (k/o) pigs have been developed using genetic cloning technologies. This remarkable achievement has generated great enthusiasm in xenotransplantation studies. This review summarizes the current status of nonhuman primate experiments using Gal k/o pig organs. Briefly, when Gal k/o pig organs are transplanted into primates, hyperacute rejection does not occur. Although graft survival has been prolonged up to a few months in some cases, the overall results were not better than those using Gal-positive pig organs with human complement regulatory protein transgenes. Gal k/o pig kidneys rapidly developed rejection which was associated with increased anti-non-Gal antibodies. Although the precise mechanisms of Gal k/o pig organ rejection are not clear, it could result from incomplete deletion of Gal, up-regulation of new antigen (non-Gal antigen) and/or production of non-Gal antibodies. Future work in xenotransplantation should place emphasis on further modification of donors, such as combining human complement regulatory genes with Gal k/o, deleting non-Gal antigens and adding protective/surviving genes or a gene that inhibits coagulation. Induction of donor-specific T- and B-cell tolerance and promotion of accommodation are also warranted. PMID:17227553

  6. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene.

    PubMed

    Corpas, Francisco J; Aguayo-Trinidad, Simeón; Ogawa, Takahisa; Yoshimura, Kazuya; Shigeoka, Shigeru

    2016-03-15

    NADPH is an important cofactor in cell growth, proliferation and detoxification. Arabidopsis thaliana Nudix hydrolase 19 (AtNUDX19) belongs to a family of proteins defined by the conserved amino-acid sequence GX5-EX7REUXEEXGU which has the capacity to hydrolyze NADPH as a physiological substrate in vivo. Given the importance of NADPH in the cellular redox homeostasis of plants, the present study compares the responses of the main NADPH-recycling systems including NADP-isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and NADP-malic enzyme (ME) in the leaves and roots of Arabidopsis wild-type (Wt) and knock-out (KO) AtNUDX19 mutant (Atnudx19) plants under physiological and arsenic-induced stress conditions. Two major features were observed in the behavior of the main NADPH-recycling systems: (i) under optimal conditions in both organs, the levels of these activities were higher in nudx19 mutants than in Wt plants; and, (ii) under 500μM AsV conditions, these activities increase, especially in nudx19 mutant plants. Moreover, G6PDH activity in roots was the most affected enzyme in both Wt and nudx19 mutant plants, with a 4.6-fold and 5.0-fold increase, respectively. In summary, the data reveals a connection between the absence of chloroplastic AtNUDX19 and the rise in all NADP-dehydrogenase activities under physiological and arsenic-induced stress conditions, particularly in roots. This suggests that AtNUDX19 could be a key factor in modulating the NADPH pool in plants and consequently in redox homeostasis. PMID:26878367

  7. Conditional Knockout of Src Homology 2 Domain-containing Protein Tyrosine Phosphatase-2 in Myeloid Cells Attenuates Renal Fibrosis after Unilateral Ureter Obstruction

    PubMed Central

    Teng, Jing-Fei; Wang, Kai; Li, Yao; Qu, Fa-Jun; Yuan, Qing; Cui, Xin-Gang; Wang, Quan-Xing; Xu, Dan-Feng

    2015-01-01

    Background: Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is a kind of intracellular protein tyrosine phosphatase. Studies have revealed its roles in various disease, however, whether SHP-2 involves in renal fibrosis remains unclear. The aim of this study was to explore the roles of myeloid cells SHP-2 in renal interstitial fibrosis. Methods: Myeloid cells SHP-2 gene was conditionally knocked-out (CKO) in mice using loxP-Cre system, and renal interstitial fibrosis was induced by unilateral ureter obstruction (UUO). The total collagen deposition in the renal interstitium was assessed using picrosirius red stain. F4/80 immunostaing was used to evaluate macrophage infiltration in renal tubular interstitium. Quantitative real-time polymerase chain reaction and enzyme linked immunosorbent assay were used to analyze the production of cytokines in the kidney. Transferase-mediated dUTP nick-end labeling stain was used to assess the apoptotic renal tubular epithelial cells. Results: Src homology 2 domain-containing protein tyrosine phosphatase-2 gene CKO in myeloid cells significantly reduced collagen deposition in the renal interstitium after UUO. Macrophage infiltration was evidently decreased in renal tubular interstitium of SHP-2 CKO mice. Meanwhile, the production of pro-inflammatory cytokines was significantly suppressed in SHP-2 CKO mice. However, no significant difference was observed in the number of apoptotic renal tubular epithelial cells between wild-type and SHP-2 CKO mice. Conclusions: Our observations suggested that SHP-2 in myeloid cells plays a pivotal role in the pathogenesis of renal fibrosis, and that silencing of SHP-2 gene in myeloid cells may protect renal from inflammatory damage and prevent renal fibrosis after renal injury. PMID:25947403

  8. Double torsion fracture mechanics testing of shales under chemically reactive conditions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Callahan, O. A.; Holder, J. T.; Olson, J. E.; Eichhubl, P.

    2015-12-01

    Fracture properties of shales is vital for applications such as shale and tight gas development, and seal performance of carbon storage reservoirs. We analyze the fracture behavior from samples of Marcellus, Woodford, and Mancos shales using double-torsion (DT) load relaxation fracture tests. The DT test allows the determination of mode-I fracture toughness (KIC), subcritical crack growth index (SCI), and the stress-intensity factor vs crack velocity (K-V) curves. Samples are tested at ambient air and aqueous conditions with variable ionic concentrations of NaCl and CaCl2, and temperatures up to 70 to determine the effects of chemical/environmental conditions on fracture. Under ambient air condition, KIC determined from DT tests is 1.51±0.32, 0.85±0.25, 1.08±0.17 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. Tests under water showed considerable change of KIC compared to ambient condition, with 10.6% increase for Marcellus, 36.5% decrease for Woodford, and 6.7% decrease for Mancos shales. SCI under ambient air condition is between 56 and 80 for the shales tested. The presence of water results in a significant reduction of the SCI from 70% to 85% compared to air condition. Tests under chemically reactive solutions are currently being performed with temperature control. K-V curves under ambient air conditions are linear with stable SCI throughout the load-relaxation period. However, tests conducted under water result in an initial cracking period with SCI values comparable to ambient air tests, which then gradually transition into stable but significantly lower SCI values of 10-20. The non-linear K-V curves reveal that crack propagation in shales is initially limited by the transport of chemical agents due to their low permeability. Only after the initial cracking do interactions at the crack tip lead to cracking controlled by faster stress corrosion reactions. The decrease of SCI in water indicates higher crack propagation velocity due to

  9. IAP gene deletion and conditional knockout models.

    PubMed

    Silke, John; Vaux, David L

    2015-03-01

    Gene deletion studies have helped reveal the unique and overlapping roles played by IAP proteins. Crossing IAP mutant mice has helped unravel the complex feed-back regulatory circuits in which cIAP1, cIAP2 and XIAP allow innate defensive responses to microbial pathogens, without the development of auto-inflammatory syndromes. Deletion of genes for Survivin and its homologs in yeasts, invertebrates and mammals has shown that it functions differently, as it is not a regulator of innate immunity or apoptosis, but acts together with INCENP, aurora kinase B and Borealin to allow chromosome segregation during mitosis. PMID:25545814

  10. De novo inbred heterozygous Zeb2/Sip1 mutant mice uniquely generated by germ-line conditional knockout exhibit craniofacial, callosal and behavioral defects associated with Mowat-Wilson syndrome.

    PubMed

    Takagi, Tsuyoshi; Nishizaki, Yuriko; Matsui, Fumiko; Wakamatsu, Nobuaki; Higashi, Yujiro

    2015-11-15

    Mowat-Wilson syndrome (MOWS) is caused by de novo heterozygous mutation at ZEB2 (SIP1, ZFHX1B) gene, and exhibit moderate to severe intellectual disability (ID), a characteristic facial appearance, epilepsy and other congenital anomalies. Establishing a murine MOWS model is important, not only for investigating the pathogenesis of this disease, but also for identifying compounds that may improve the symptoms. However, because the heterozygous Zeb2 knockout mouse could not be maintained as a mouse line with the inbred C57BL/6 background, it was difficult to use those mice for the study of MOWS. Here, we systematically generated de novo Zeb2 Δex7/+ mice by inducing the Zeb2 mutation in the germ cells using conditional recombination system. The de novo Zeb2 Δex7/+ mice with C57BL/6 background developed multiple defects relevant to MOWS, including craniofacial abnormalities, defective corpus callosum formation and the decreased number of parvalbumin interneurons in the cortex. In behavioral analyses, these mice showed reduced motor activity, increased anxiety and impaired sociability. Notably, during the Barnes maze test, immobile Zeb2 mutant mice were observed over repeated trials. In contrast, neither the mouse line nor the de novo Zeb2 Δex7/+ mice with the closed colony ICR background showed cranial abnormalities or reduced motor activities. These results demonstrate the advantages of using de novo Zeb2 Δex7/+ mice with the C57BL/6 background as the MOWS model. To our knowledge, this is the first time an inducible de novo mutation system has been applied to murine germline cells to produce an animal model of a human congenital disease. PMID:26319231

  11. Ambient-temperature Conditioning as a Probe of Double-C Transformation Mechanisms in Pu-2.0 at. % Ga

    SciTech Connect

    Jeffries, J R; Blobaum, K M; Wall, M A; Schwartz, A J

    2008-04-02

    The gallium-stabilized Pu-2.0 at. % Ga alloy undergoes a partial or incomplete low-temperature martensitic transformation from the metastable {delta} phase to the gallium-containing, monoclinic {alpha}{prime} phase near -100 C. This transformation has been shown to occur isothermally and it displays anomalous double-C kinetics in a time-temperature-transformation (TTT) diagram, where two nose temperatures anchoring an upper- and lower-C describe minima in the time for the initiation of transformation. The underlying mechanisms responsible for the double-C behavior are currently unresolved, although recent experiments suggest that a conditioning treatment--wherein, following an anneal at 375 C, the sample is held at a sub-anneal temperature for a period of time--significantly influences the upper-C of the TTT diagram. As such, elucidating the effects of the conditioning treatment upon the {delta} {yields} {alpha}{prime} transformation can provide valuable insights into the fundamental mechanisms governing the double-C kinetics of the transition. Following a high-temperature anneal, a differential scanning calorimeter (DSC) was used to establish an optimal conditioning curve that depicts the amount of {alpha}{prime} formed during the transformation as a function of conditioning temperature for a specified time. With the optimal conditioning curve as a baseline, the DSC was used to explore the circumstances under which the effects of the conditioning treatment were destroyed, resulting in little or no transformation.

  12. Conditions for double layers in the Earth's magnetosphere and perhaps in other astrophysical objects

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1987-01-01

    Double layers form along auroral field lines in the Earth's magnetosphere. They form in order to maintain current continuity in the ionosphere in the presence of a magnetospheric electric field E with nabla x E is not equal to 0. Features which govern the formation of the double layers are: (1) the divergence of E, (2) the conductivity of the ionosphere, and (3) the current-voltage characteristics of auroral magnetic field lines. Astrophysical situations where nabla x E is not equal to 0 is applied to a conducting plasma similar to the Earth's ionosphere are potential candidates for the formation of double layers. The region with nabla x E is not equal to 0 can be generated within, or along field lines connected to, the conducting plasma. In addition to nabla x E, shear neutral flow in the conducting plasma can also form double layers.

  13. Laboratory studies of kinetic instabilities under double plasma resonance condition in a mirror-confined non-equilibrium plasma

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander; Zaitsev, Valery

    2016-04-01

    Plasma instabilities in magnetic traps on the Sun are the sources of powerful broadband radio emission (the so-called type IV bursts) which is interpreted as the excitation of plasma waves by fast electrons in the upper hybrid resonance frequency followed by transformation in electromagnetic waves. In the case of double plasma resonance condition when the frequency of the upper hybrid resonance coincides with one of the electron gyrofrequency harmonics the instability increment of plasma waves is greatly increased. This leads to the appearance of bright narrow-band radio emission near the harmonics of the electron gyrofrequency - the so-called zebra patterns. With the use of non-equilibrium mirror-confined plasma produced by the electron cyclotron resonance (ECR) discharge we provide the possibility to study plasma instabilities under double plasma resonance condition in the laboratory. In the experiment such conditions are fulfilled just after ECR heating switch-off, i.e. in the very beginning of a dense plasma decay phase. The observed instability is accompanied by a pulse-periodic generation of a powerful electromagnetic radiation at a frequency close to the upper hybrid resonance frequency and a second harmonic of the electron gyrofrequency, and synchronous precipitations of fast electrons from the trap ends. It is shown that the observed instability is due to the excitation of plasma waves at a double plasma resonance in decaying plasma of the ECR discharge. Possible manifestations of double plasma resonance effect are not rare in astrophysical plasmas. The phenomenon of zebra pattern is observed not only on the Sun, but in the decametric radiation of the Jupiter, kilometric radiation of the Earth and even in the radio emissions of pulsars. Thus, verification of the effect of double plasma resonance in a laboratory plasma experiments is a very relevant task.

  14. Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice

    PubMed Central

    Belizário, José; Vieira-Cordeiro, Luiz; Enns, Sylvia

    2015-01-01

    Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents) or intracellular (DNA damage and Ca2+ overload) stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER), cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identified caspase-8, flip, and fadd genes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1), RIPK3, and the mixed kinase domain-like (MLKL) for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice. PMID:26491219

  15. Knockout of Extracytoplasmic Function Sigma Factor ECF-10 Affects Stress Resistance and Biofilm Formation in Pseudomonas putida KT2440

    PubMed Central

    Tettmann, Beatrix; Dötsch, Andreas; Armant, Olivier; Fjell, Christopher D.

    2014-01-01

    Pseudomonas putida is a Gram-negative soil bacterium which is well-known for its versatile lifestyle, controlled by a large repertoire of transcriptional regulators. Besides one- and two-component regulatory systems, the genome of P. putida reveals 19 extracytoplasmic function (ECF) sigma factors involved in the adaptation to changing environmental conditions. In this study, we demonstrate that knockout of extracytoplasmic function sigma factor ECF-10, encoded by open reading frame PP4553, resulted in 2- to 4-fold increased antibiotic resistance to quinolone, β-lactam, sulfonamide, and chloramphenicol antibiotics. In addition, the ECF-10 mutant exhibited enhanced formation of biofilms after 24 h of incubation. Transcriptome analysis using Illumina sequencing technology resulted in the detection of 12 genes differentially expressed (>2-fold) in the ECF-10 knockout mutant strain compared to their levels of expression in wild-type cells. Among the upregulated genes were ttgA, ttgB, and ttgC, which code for the major multidrug efflux pump TtgABC in P. putida KT2440. Investigation of an ECF-10 and ttgA double-knockout strain and a ttgABC-overexpressing strain demonstrated the involvement of efflux pump TtgABC in the stress resistance and biofilm formation phenotypes of the ECF-10 mutant strain, indicating a new role for this efflux pump beyond simple antibiotic resistance in P. putida KT2440. PMID:24907323

  16. Designer Nuclease-Mediated Generation of Knockout THP1 Cells.

    PubMed

    Schmidt, Tobias; Schmid-Burgk, Jonathan L; Ebert, Thomas S; Gaidt, Moritz M; Hornung, Veit

    2016-01-01

    Recent developments in the field of designer nucleases allow the efficient and specific manipulation of genomic architectures in eukaryotic cell lines. To this end, it has become possible to introduce DNA double strand breaks (DSBs) at user-defined genomic loci. If located in critical coding regions of genes, thus induced DSBs can lead to insertions or deletions (indels) that result in frameshift mutations and thereby the knockout of the target gene. In this chapter, we describe a step-by-step workflow for establishing knockout cell clones of the difficult-to-transfect suspension cell line THP1. The here described protocol encompasses electroporation, cell cloning, and a deep sequencing-based genotyping step that allows the in-parallel analysis of 96 cell clones per gene of interest. Furthermore, we describe the use of the analysis tool OutKnocker that allows rapid identification of cell clones with all-allelic frameshift mutations. PMID:26443227

  17. Ppp2ca knockout in mice spermatogenesis.

    PubMed

    Pan, Xiaoyun; Chen, Xia; Tong, Xin; Tang, Chao; Li, Jianmin

    2015-04-01

    Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase involved in meiosis, mitosis, sperm capacitation, and apoptosis. Abberant activity of PP2A has been associated with a number of diseases. The homolog PPP2CA and PPP2CB can each function as the phosphatase catalytic subunit generally referred to as PP2AC. We generated a Ppp2ca conditional knockout (CKO) in C57BL/6J mice. Exon 2 of Ppp2ca was knocked out in a spatial or temporal-specific manner in primordial germ cells at E12.5. This Ppp2ca-null mutation caused infertility in male C57BL/6J mice. These CKO mice provide a powerful tool to study the mechanisms of Ppp2ca in development and disease. PMID:25628439

  18. Graphene-like Two-Dimensional Ionic Boron with Double Dirac Cones at Ambient Condition.

    PubMed

    Ma, Fengxian; Jiao, Yalong; Gao, Guoping; Gu, Yuantong; Bilic, Ante; Chen, Zhongfang; Du, Aijun

    2016-05-11

    Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [ Nature 2009 , 457 , 863 ]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs with the P6/mmm space group and six atoms in the unit cell and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac Fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 × 10(6) m/s, which is even higher than that of graphene (0.82 × 10(6) m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics. PMID:27050491

  19. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Chen, Sherry Xi; Zhang, David Yu; Seelig, Georg

    2013-09-01

    Small variations in nucleic acid sequences can have far-reaching phenotypic consequences. Reliably distinguishing closely related sequences is therefore important for research and clinical applications. Here, we demonstrate that conditionally fluorescent DNA probes are capable of distinguishing variations of a single base in a stretch of target DNA. These probes use a novel programmable mechanism in which each single nucleotide polymorphism generates two thermodynamically destabilizing mismatch bubbles rather than the single mismatch formed during typical hybridization-based assays. Up to a 12,000-fold excess of a target that contains a single nucleotide polymorphism is required to generate the same fluorescence as one equivalent of the intended target, and detection works reliably over a wide range of conditions. Using these probes we detected point mutations in a 198 base-pair subsequence of the Escherichia coli rpoB gene. That our probes are constructed from multiple oligonucleotides circumvents synthesis limitations and enables long continuous DNA sequences to be probed.

  20. Comparison between dexmedetomidine and fentanyl on intubation conditions during awake fiberoptic bronchoscopy: A randomized double-blind prospective study

    PubMed Central

    Mondal, Sudeshna; Ghosh, Sarmila; Bhattacharya, Susmita; Choudhury, Brojen; Mallick, Suchismita; Prasad, Anu

    2015-01-01

    Background and Aims: Various drugs are used for providing favorable intubation conditions during awake fiberoptic intubation (AFOI). However, most of them cause respiratory depression and airway obstruction leading to hypoxemia. The aim of this study was to compare intubation conditions, and incidence of desaturation between dexmedetomidine and fentanyl group during AFOI. Material and Methods: This randomized double-blind prospective study was conducted on a total of 60 patients scheduled for elective laparotomies who were randomly allocated into two groups: Group A received dexmedetomidine 1 mcg/kg and Group B received fentanyl 2 mcg/kg over 10 min. Patients in both groups received glycopyrrolate 0.2 mg intravenous, nebulization with 2% lidocaine 4 ml over 20 min and 10% lidocaine spray before undergoing AFOI. Adequacy of intubation condition was evaluated by cough score and post-intubation score. Incidence of desaturation, hemodynamic changes and sedation using Ramsay sedation scale (RSS) were noted and compared between two groups. Results: Cough Score (1-4), post-intubation Score (1-3) and RSS (1-6) were significantly favorable (P < 0.0001) along with minimum hemodynamic responses to intubation (P < 0.05) and less oxygen desaturation (P < 0.0001) in Group A than Group B. Conclusion: Dexmedetomidine is more effective than fentanyl in producing better intubation conditions, sedation along with hemodynamic stability and less desaturation during AFOI. PMID:25948903

  1. A review of current large-scale mouse knockout efforts.

    PubMed

    Guan, Chunmei; Ye, Chao; Yang, Xiaomei; Gao, Jiangang

    2010-02-01

    After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research. PMID:20095055

  2. Marginal and Conditional Distribution Estimation from Double-Sampled Semi-Competing Risks Data

    PubMed Central

    Yu, Menggang; Yiannoutsos, Constantin T

    2015-01-01

    Informative dropout is a vexing problem for any biomedical study. Most existing statistical methods attempt to correct estimation bias related to this phenomenon by specifying unverifiable assumptions about the dropout mechanism. We consider a cohort study in Africa that uses an outreach program to ascertain the vital status for dropout subjects. These data can be used to identify a number of relevant distributions. However, as only a subset of dropout subjects were followed, vital status ascertainment was incomplete. We use semi-competing risk methods as our analysis framework to address this specific case where the terminal event is incompletely ascertained and consider various procedures for estimating the marginal distribution of dropout and the marginal and conditional distributions of survival. We also consider model selection and estimation efficiency in our setting. Performance of the proposed methods is demonstrated via simulations, asymptotic study, and analysis of the study data. PMID:26924877

  3. A Double Blind Randomized Clinical Trial of Remote Ischemic Conditioning in Live Donor Renal Transplantation

    PubMed Central

    Nicholson, Michael L.; Pattenden, Clare J.; Barlow, Adam D.; Hunter, James P.; Lee, Gwyn; Hosgood, Sarah A.

    2015-01-01

    Abstract Ischemic conditioning involves the delivery of short cycles of reversible ischemic injury in order to induce protection against subsequent more prolonged ischemia. This randomized controlled trial was designed to determine the safety and efficacy of remote ischemic conditioning (RC) in live donor kidney transplantation. This prospective randomized clinical trial, 80 patients undergoing live donor kidney transplantation were randomly assigned in a 1:1 ratio to either RC or to a control group. RC consisted of cycles of lower limb ischemia induced by an arterial tourniquet cuff placed around the patient's thigh. In the RC treatment group, the cuff was inflated to 200 mm Hg or systolic pressure +25 mm Hg for 4 cycles of 5 min ischemia followed by 5 min reperfusion. In the control group, the blood pressure cuff was inflated to 25 mm Hg. Patients and medical staff were blinded to treatment allocation. The primary end-point was renal function measured by estimated glomerular filtration rate (eGFR) at 1 and 3 months posttransplant. Donor and recipient demographics were similar in both groups (P < 0.05). There were no significant differences in eGFR at 1 month (control 52 ± 14 vs RC 54 ± 17 mL/min; P = 0.686) or 3 months (control 50 ± 14 vs RC 49 ± 18 mL/min; P = 0.678) between the control and RC treatment groups. The RC technique did not cause any serious adverse effects. RC, using the protocol described here, did not improve renal function after live donor kidney transplantation. PMID:26252316

  4. Conditions for observing emergent SU(4) symmetry in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Nishikawa, Yunori; Curtin, Oliver J.; Hewson, Alex C.; Crow, Daniel J. G.; Bauer, Johannes

    2016-06-01

    We analyze conditions for the observation of a low-energy SU(4) fixed point in capacitively coupled quantum dots. One problem, due to dots with different couplings to their baths, has been considered by L. Tosi, P. Roura-Bas, and A. A. Aligia, J. Phys.: Condens. Matter 27, 335601 (2015), 10.1088/0953-8984/27/33/335601. They showed how symmetry can be effectively restored via the adjustment of individual gates voltages, but they make the assumption of infinite on-dot and interdot interaction strengths. A related problem is the difference in the magnitudes between the on-dot and interdot strengths for capacitively coupled quantum dots. Here we examine both factors, based on a two-site Anderson model, using the numerical renormalization group to calculate the local spectral densities on the dots and the renormalized parameters that specify the low-energy fixed point. Our results support the conclusions of Tosi et al. that low-energy SU(4) symmetry can be restored, but asymptotically achieved only if the interdot interaction U12 is greater than or of the order of the bandwidth of the coupled conduction bath D , which might be difficult to achieve experimentally. By comparing the SU(4) Kondo results for a total dot occupation ntot=1 and 2, we conclude that the temperature dependence of the conductance is largely determined by the constraints of the Friedel sum rule rather than the SU(4) symmetry and suggest that an initial increase of the conductance with temperature is a distinguishing characteristic feature of an ntot=1 universal SU(4) fixed point.

  5. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.

    PubMed

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-07-16

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement. PMID:24919471

  6. Electric Double Layer Capacitor (EDLC) based Mismatching Losses Reduction under Fast-Shaded Conditions of PV Modules

    NASA Astrophysics Data System (ADS)

    Syafaruddin; Tanaka, Yasuyuki; Karatepe, Engin; Hiyama, Takashi

    Fast-moving irradiance condition is one of problems that need to be solved in the non-stationary conventional maximum power point (MPP) trackers of PV system. Under sudden irradiance changes, the output power is changed drastically that leads to the shifting in MPP voltage. Conventional MPP algorithms may start continuously to search for finding the optimum point. However, suddenly another shadow can occur prior to complete removing of previous shadow. Continuing the tracking process under this condition will cause to lose energy. This paper presents the electric double layer capacitor (EDLC) as the power compensation method for improving the maximum power transfer of PV system under short-term period of shading. Several scenarios are tested in this work by measurement the percentage of power compensation, for instance the effect of capacitor size to the period of shading, the effects of shading period to the level shading intensity and cell temperature. This paper is directly purposed to reduce the power losses for moving objects powered by solar energy, such as solar car and solar boat systems.

  7. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    SciTech Connect

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-01-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett., 106, 046102, 2011). Under very large charging currents, the cell potential shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface, allowing the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. Keywords: ionic

  8. Merger Rates of Double Neutron Stars and Stellar Origin Black Holes: The Impact of Initial Conditions on Binary Evolution Predictions

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; Belczynski, K.

    2015-11-01

    The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor of 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10–100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.

  9. Synthesis of [Zn-Al-CO 3] layered double hydroxides by a coprecipitation method under steady-state conditions

    NASA Astrophysics Data System (ADS)

    Chang, Z.; Evans, D. G.; Duan, X.; Vial, C.; Ghanbaja, J.; Prevot, V.; de Roy, M.; Forano, C.

    2005-09-01

    A continuous co-precipitation method under steady-state conditions has been investigated for the preparation of nanometer-size layered double hydroxide (LDH) particles using Zn 2Al(OH) 6(CO 3) 0.5·2H 2O as a prototype. The objective was to shorten the preparation time by working without an aging step, using a short and controlled residence time in order to maintain a constant supersaturation level in the reactor and constant particle properties in the exit stream over time. The effects of varying the operating conditions on the structural and textural properties of the LDHs have been studied, including total cation concentration, solvent, residence time, pH and intercalation anion. The products have been characterized using ICP, XRD, FTIR, BET, SEM and TEM. The LDHs prepared by the continuous coprecipitation method have a poorer crystallinity and lower crystallite sizes than those synthesized by the conventional batch method. The results have shown that increasing either cation concentration or the fraction of monoethylene glycol (MEG) in MEG/H 2O mixtures up to 80% (v/v) affect salt solubility and supersaturation, which gives rise to smaller crystallites, larger surface areas and more amorphous compounds. This increase is however limited by the precipitation of zinc and aluminum hydroxides occurring around a total cation concentration of 3.0×10 -1 M in pure water and 3.0×10 -2 M in H 2O/EtOH mixtures. Crystallite size increases with residence time, suggesting a precipitation process controlled by growth. Finally, the continuous coprecipitation method under steady-state conditions has been shown to be a promising alternative to the traditional coprecipitation technique in either pure water or mixed H 2O/MEG solvents.

  10. Impact of ATG-containing reduced-intensity conditioning after single- or double-unit allogeneic cord blood transplantation.

    PubMed

    Pascal, Laurent; Tucunduva, Luciana; Ruggeri, Annalisa; Blaise, Didier; Ceballos, Patrice; Chevallier, Patrice; Cornelissen, Jan; Maillard, Natacha; Tabrizi, Reza; Petersen, Eefke; Linkesch, Werner; Sengeloev, Henrik; Kenzey, Chantal; Pagliuca, Antonio; Holler, Ernst; Einsele, Hermann; Gluckman, Eliane; Rocha, Vanderson; Yakoub-Agha, Ibrahim

    2015-08-20

    We analyzed 661 adult patients who underwent single-unit (n = 226) or double-unit (n = 435) unrelated cord blood transplantation (UCBT) following a reduced-intensity conditioning (RIC) consisting of low-dose total body irradiation (TBI), cyclophosphamide, and fludarabine (Cy/Flu/TBI200). Eighty-two patients received rabbit antithymocyte globulin (ATG) as part of the conditioning regimen (ATG group), whereas 579 did not (non-ATG group). Median age at UCBT was 54 years, and diagnoses were acute leukemias (51%), myelodysplastic syndrome/myeloproliferative neoplasm (19%), and lymphoproliferative diseases (30%). Forty-four percent of patients were transplanted with advanced disease. All patients received ≥4 antigens HLA-matched UCBT. Median number of collected total nucleated cells was 4.4 × 10(7)/kg. In the ATG group, on 64 evaluable patients, ATG was discontinued 1 (n = 27), 2 (n = 20), or > 2 days before the graft infusion (n = 17). In multivariate analyses, the use of ATG was associated with decreased incidence of acute graft-versus-host disease (hazard ratio [HR], 0.31; 95% confidence interval [CI], 0.17-0.55; P < .0001), higher incidence of nonrelapse mortality (HR, 1.68; 95% CI, 1.16-2.43; P = .0009), and decreased overall survival (HR, 1.69; 95% CI, 1.19-2.415; P = .003). Collectively, our results suggest that the use of ATG could be detrimental, especially if given too close to graft infusion in adults undergoing UCBT following Cy/Flu/TBI200 regimen. PMID:26160301

  11. Crack growth behavior under creep-fatigue conditions using compact and double edge notch tension-compression specimens

    NASA Astrophysics Data System (ADS)

    Narasimha Chary, Santosh Balaji

    The American Society for Testing and Materials (ASTM) has recently developed a new standard for creep-fatigue crack growth testing, E 2760-10, that supports testing compact specimens, C(T), under load controlled conditions. C(T) specimens are commonly used for fatigue and creep-fatigue crack growth testing under constant-load-amplitude conditions. The use of these specimens is limited to positive load ratios. They are also limited in the amount of crack growth data that can be developed at high stress intensity values due to accumulation of plastic and/or creep strains leading to ratcheting in the specimen. Testing under displacement control can potentially address these shortcomings of the load-controlled tests for which the C(T) geometry is unsuitable. A double edge notch tension-compression, DEN(T-C), specimen to perform displacement controlled creep-fatigue crack growth testing is developed and optimized with the help of finite element and boundary element analyses. Accurate expressions for estimating the fracture mechanics crack tip parameters such as the stress intensity parameter, K, the crack mouth opening displacement (CMOD), and the load-line displacement (LLD) are developed over a wide range of crack sizes for the DEN(T-C) specimen. A new compliance relationship for use in experimental testing has been developed by using the compliance form available in ASTM E-647 standard. Experimentally determined compliance value compared well with the new relation for C15 steel (AISI 1015) and P91 steel tested at room and elevated temperature conditions respectively. Fatigue crack growth rate data generated using the DEN(T-C) specimens on the two metallic materials are in good agreement with the data generated using standard compact specimens; thus validating the stress-intensity factor and the compliance equation for the double edge notch tension-compression specimen. The testing has shown that the DEN(T-C) specimen is prone to crack asymmetry issues. Through

  12. Effects of D1 receptor knockout on fear and reward learning.

    PubMed

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-09-01

    Dopamine signaling is involved in a variety of neurobiological processes that contribute to learning and memory. D1-like dopamine receptors (including D1 and D5 receptors) are thought to be involved in memory and reward processes, but pharmacological approaches have been limited in their ability to distinguish between D1 and D5 receptors. Here, we examine the effects of a specific knockout of D1 receptors in associative learning tasks involving aversive (shock) or appetitive (cocaine) unconditioned stimuli. We find that D1 knockout mice show similar levels of cued and contextual fear conditioning to WT controls following conditioning protocols involving one, two, or four shocks. D1 knockout mice show increased generalization of fear conditioning and extinction across contexts, revealed as increased freezing to a novel context following conditioning and decreased freezing to an extinguished cue during a contextual renewal test. Further, D1 knockout mice show mild enhancements in extinction following an injection of SKF81297, a D1/D5 receptor agonist, suggesting a role for D5 receptors in extinction enhancements induced by nonspecific pharmacological agonists. Finally, although D1 knockout mice show decreased locomotion induced by cocaine, they are able to form a cocaine-induced conditioned place preference. We discuss these findings in terms of the role of dopamine D1 receptors in general learning and memory processes. PMID:27423521

  13. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice

    PubMed Central

    Niksch, Paul D.; Webber, Roxanna M.; Garcia-Gonzalez, Miguel; Watnick, Terry; Zhou, Jing; Vollrath, Melissa A.; Corey, David P.

    2016-01-01

    Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction. PMID:27196058

  14. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice.

    PubMed

    Wu, Xudong; Indzhykulian, Artur A; Niksch, Paul D; Webber, Roxanna M; Garcia-Gonzalez, Miguel; Watnick, Terry; Zhou, Jing; Vollrath, Melissa A; Corey, David P

    2016-01-01

    Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction. PMID:27196058

  15. Double-component convection due to different boundary conditions in an infinite slot diversely oriented to the gravity

    NASA Astrophysics Data System (ADS)

    Tsitverblit, N.

    2007-08-01

    Onset of small-amplitude oscillatory and both small- and finite-amplitude steady double-component convection arising due to component different boundary conditions in an infinite slot is studied for various slot orientations to the gravity. The main focus is on two compensating background gradients of the components. The physical mechanisms underlying steady and oscillatory convection are analyzed from the perspective of a universally consistent understanding of the effects of different boundary conditions. In a horizontal slot with inviscid fluid addressed by Welander [P. Welander, Tellus Ser. A 41 (1989) 66], oscillatory convection sets in with the most unstable wave number and oscillation frequency being zero. Exact expressions for the critical fixed-value background gradient and the respective group velocity at zero wave number are derived from the long-wavelength expansion both for the horizontal slot with independently varying background gradients and for the inclined slot with the compensating gradients. In the horizontal slot with viscous fluid, the dissipation of along-slot perturbation-cell motion reduces efficiency of the oscillatory instability feedback and thus prevents the most unstable wavelength from being infinite. Based on this interpretation, the oscillatory instability of a three-dimensional (3D) nature is predicted for an interval of long two-dimensional (2D) wavelengths in an inclined slot, and such 3D instability is indeed shown to arise. Related general conditions for three-dimensionality of most unstable disturbances are also formulated. As the slot orientation changes from the horizontal by angle θ (⩾π/2), the oscillatory 2D marginal-stability boundaries in inviscid and viscous fluid are expected to eventually transform into respective steady ones. Oscillatory instability in the vertical slot with viscous fluid, first reported by Tsitverblit [N. Tsitverblit, Phys. Rev. E 62 (2000) R7591], is of a quasi-steady nature. Its (new

  16. Double-component convection due to different boundary conditions in an infinite slot diversely oriented to the gravity

    SciTech Connect

    Tsitverblit, N. . E-mail: naftali@eng.tau.ac.il

    2007-08-15

    Onset of small-amplitude oscillatory and both small- and finite-amplitude steady double-component convection arising due to component different boundary conditions in an infinite slot is studied for various slot orientations to the gravity. The main focus is on two compensating background gradients of the components. The physical mechanisms underlying steady and oscillatory convection are analyzed from the perspective of a universally consistent understanding of the effects of different boundary conditions. In a horizontal slot with inviscid fluid addressed by Welander [P. Welander, Tellus Ser. A 41 (1989) 66], oscillatory convection sets in with the most unstable wave number and oscillation frequency being zero. Exact expressions for the critical fixed-value background gradient and the respective group velocity at zero wave number are derived from the long-wavelength expansion both for the horizontal slot with independently varying background gradients and for the inclined slot with the compensating gradients. In the horizontal slot with viscous fluid, the dissipation of along-slot perturbation-cell motion reduces efficiency of the oscillatory instability feedback and thus prevents the most unstable wavelength from being infinite. Based on this interpretation, the oscillatory instability of a three-dimensional (3D) nature is predicted for an interval of long two-dimensional (2D) wavelengths in an inclined slot, and such 3D instability is indeed shown to arise. Related general conditions for three-dimensionality of most unstable disturbances are also formulated. As the slot orientation changes from the horizontal by angle {theta} ({>=}{pi}/2), the oscillatory 2D marginal-stability boundaries in inviscid and viscous fluid are expected to eventually transform into respective steady ones. Oscillatory instability in the vertical slot with viscous fluid, first reported by Tsitverblit [N. Tsitverblit, Phys. Rev. E 62 (2000) R7591], is of a quasi-steady nature. Its (new

  17. Conditional cash transfers and the double burden of malnutrition among children in Colombia: a quasi-experimental study.

    PubMed

    Lopez-Arana, Sandra; Avendano, Mauricio; Forde, Ian; van Lenthe, Frank J; Burdorf, Alex

    2016-05-28

    Conditional cash-transfer (CCT) programmes have been shown to improve the nutritional and health status of children from poor families. However, CCT programmes may have unintended and not fully known consequences by increasing the risk of overweight and obesity. We examined the impact of Familias en Acción (FA), a large CCT programme in Colombia, on the double burden of malnutrition among pre-school and school-aged children. Height and weight were measured before programme enrolment and during follow-ups in 1290 children from thirty-one treatment municipalities, being compared with 1584 children from sixty-two matched control municipalities. We used a difference-in-differences approach to evaluate the effect of FA on children's stunting, BMI z-scores, thinness, overweight and obesity, controlling for individual and municipality-level confounders. At baseline, the prevalences of stunting and overweight were 30·3 and 15·4 %, respectively, in treatment municipalities and 27·9 and 17·4 % in control municipalities. FA was associated with reduced odds of thinness (OR 0·26; 95 % CI 0·09, 0·75) and higher BMI-for-age z-scores (BMI z-scores) (β 0·14; 95 % CI 0·00, 0·27; P<0·05), although the latter was of small clinical significance. The prevalence of stunting, overweight and obesity decreased over time, but the effect of FA on these outcomes was not significant. The CCT programme in Colombia reduced the odds of thinness, but had no effect on stunting, a more prevalent outcome. The FA programme had no effect on overweight or obesity, although BMI z-scores were higher for children under treatment, raising the possibility of an increase of small clinical significance on BMI among pre-school and school-aged children. PMID:26988836

  18. Proton Knock-Out in Hall A

    SciTech Connect

    Kees de Jager

    2002-06-01

    Proton knock-out is studied in a broad program in Hall A at Jefferson Lab. The first experiment performed in Hall A studied the {sup 16}O(e,e'p) reaction. Since then proton knock-out experiments have studied a variety of aspects of that reaction, from single-nucleon properties to its mechanism, such as final-state interactions and two-body currents, in nuclei from {sup 2}H to {sup 16}O. In this review the results of this program will be summarized and an outlook given of future accomplishments.

  19. A Deep Quench Approach to the Optimal Control of an Allen–Cahn Equation with Dynamic Boundary Conditions and Double Obstacles

    SciTech Connect

    Colli, Pierluigi; Farshbaf-Shaker, M. Hassan Sprekels, Jürgen

    2015-02-15

    In this paper, we investigate optimal control problems for Allen-Cahn variational inequalities with a dynamic boundary condition involving double obstacle potentials and the Laplace-Beltrami operator. The approach covers both the cases of distributed controls and of boundary controls. The cost functional is of standard tracking type, and box constraints for the controls are prescribed. We prove existence of optimal controls and derive first-order necessary conditions of optimality. The general strategy is the following: we use the results that were recently established by two of the authors for the case of (differentiable) logarithmic potentials and perform a so-called “deep quench limit”. Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (non-differentiable) double obstacle potentials.

  20. Comparison of nociceptive behavior in prostaglandin E, F, D, prostacyclin and thromboxane receptor knockout mice.

    PubMed

    Popp, Laura; Häussler, Annett; Olliges, Anke; Nüsing, Rolf; Narumiya, Shuh; Geisslinger, Gerd; Tegeder, Irmgard

    2009-08-01

    Antagonist at specific prostaglandin receptors might provide analgesia with a more favourable toxicity profile compared with cyclooxygenase inhibitors. We analyzed nociceptive responses in prostaglandin D, E, F, prostacyclin and thromboxane receptor knockout mice and mice deficient of cyclooxygenase 1 or 2 to evaluate the contribution of individual prostaglandin receptors for heat, mechanical and formalin-evoked pain. None of the knockouts was uniformly protected from all of these pain stimuli but COX-1 and EP4 receptor knockouts presented with reduced heat pain and EP3 receptor and COX-2 knockout mice had reduced licking responses in the 2nd phase of the formalin assay. This was accompanied with reduced c-Fos immunoreactivity in the spinal cord dorsal horn in EP3 knockouts. Oppositely, heat pain sensitivity was increased in FP, EP1 and EP1+3 double mutant mice possibly due to a loss of FP or EP1 receptor mediated central control of thermal pain sensitivity. Deficiency of either EP2 or DP1 was associated with increased formalin-evoked flinching responses and c-Fos IR in dorsal horn neurons suggesting facilitated spinal cord pain reflex circuity. Thromboxane and prostacyclin receptor knockout mice showed normal pain behavior in all tests. The results suggest a differential, pain-stimulus and site-specific contribution of specific PG-receptors for the processing of the nociceptive stimuli, a differential modulation of nociceptive responses by COX-1 and COX-2 derived prostaglandins and compensatory and/or developmental adaptations in mice lacking specific PG receptors. PMID:18938093

  1. Quantifying the role of immobile water on pollutant fluxes in double-permeable media under dynamic flow conditions

    NASA Astrophysics Data System (ADS)

    Knorr, Bastian; Krämer, Florian; Stumpp, Christine; Maloszewski, Piotr

    2014-05-01

    Sustainable use of water resources and their protection against pollution requires fundamental understanding of filter, buffer and storage functions of groundwater systems. Of particular importance are heterogeneous porous aquifers including zones with mobile and immobile water. Pollutants diffuse from high permeable areas into immobile zones with low permeability. Consequently, pollutants can be stored in such immobile water regions and their residence time in double-permeable aquifers is much longer compared to water residence times. However, it still remains unknown how the heterogeneity of an aquifer and time-dependent variability of the water flow influences the pollutant fate in such systems. The objective of this study was to develop experimental and mathematical methods to understand the role of immobile water zones on the pollutant retention, kinetic ad-/desorption and degradation. In saturated column experiments at three different flow rates multitracer experiments were conducted and 4-Chloronitrobenzene (intermediate in the production of explosives) was used as pollutant. The columns were packed with an outer cylinder of clay containing mainly immobile water whereas the centre was filled with coarse quartz sand containing mobile water. In the resulting breakthrough curves of the conservative tracers characterized by different diffusion properties, differences were observed in peak concentration and tailing. These differences indicated a mass exchange with immobile water zones driven by diffusion and were depended on the tracers' molecular diffusion coefficient. The mass exchange increased with decreasing flow rates and was quantified for conservative tracers applying a Single-Fissure Dispersion Model (SFDM) to porous media for the first time. The observed concentrations of the reactive solute 4-Chloronitronbenzen indicated that sorption onto clay minerals enhanced the mass exchange into the immobile water zone. On the other hand sorption and degradation

  2. Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice

    PubMed Central

    Nakagawa, Yoshiko; Nishimichi, Norihisa; Yokosaki, Yasuyuki; Yanaka, Noriyuki; Takeo, Toru; Nakagata, Naomi; Yamamoto, Takashi

    2016-01-01

    ABSTRACT Current advances in producing genetically modified mice using genome-editing technologies have indicated the need for improvement of limiting factors including zygote collection for microinjection and their cryopreservation. Recently, we developed a novel superovulation technique using inhibin antiserum and equine chorionic gonadotropin to promote follicle growth. This method enabled the increased production of fertilized oocytes via in vitro fertilization compared with the conventional superovulation method. Here, we verify that the ultra-superovulation technique can be used for the efficient generation of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated knockout mice by microinjection of plasmid vector or ribonucleoprotein into zygotes. We also investigated whether single-amino-acid-substituted mice and conditional knockout mice could be generated. Founder mice bearing base substitutions were generated more efficiently by co-microinjection of Cas9 protein, a guide RNA and single-stranded oligodeoxynucleotide (ssODN) than by plasmid microinjection with ssODN. The conditional allele was successfully introduced by the one-step insertion of an ssODN designed to carry an exon flanked by two loxP sequences and homology arms using a double-cut CRISPR-Cas9 strategy. Our study presents a useful method for the CRISPR-Cas9-based generation of genetically modified mice from the viewpoints of animal welfare and work efficiency. PMID:27387532

  3. Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice.

    PubMed

    Nakagawa, Yoshiko; Sakuma, Tetsushi; Nishimichi, Norihisa; Yokosaki, Yasuyuki; Yanaka, Noriyuki; Takeo, Toru; Nakagata, Naomi; Yamamoto, Takashi

    2016-01-01

    Current advances in producing genetically modified mice using genome-editing technologies have indicated the need for improvement of limiting factors including zygote collection for microinjection and their cryopreservation. Recently, we developed a novel superovulation technique using inhibin antiserum and equine chorionic gonadotropin to promote follicle growth. This method enabled the increased production of fertilized oocytes via in vitro fertilization compared with the conventional superovulation method. Here, we verify that the ultra-superovulation technique can be used for the efficient generation of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated knockout mice by microinjection of plasmid vector or ribonucleoprotein into zygotes. We also investigated whether single-amino-acid-substituted mice and conditional knockout mice could be generated. Founder mice bearing base substitutions were generated more efficiently by co-microinjection of Cas9 protein, a guide RNA and single-stranded oligodeoxynucleotide (ssODN) than by plasmid microinjection with ssODN. The conditional allele was successfully introduced by the one-step insertion of an ssODN designed to carry an exon flanked by two loxP sequences and homology arms using a double-cut CRISPR-Cas9 strategy. Our study presents a useful method for the CRISPR-Cas9-based generation of genetically modified mice from the viewpoints of animal welfare and work efficiency. PMID:27387532

  4. Search for optimal conditions for exploring double-parton scattering in four-jet production: kT -factorization approach

    NASA Astrophysics Data System (ADS)

    Kutak, Krzysztof; Maciuła, Rafał; Serino, Mirko; Szczurek, Antoni; van Hameren, Andreas

    2016-07-01

    In the present paper, we discuss how to maximize the double-parton scattering (DPS) contribution in four-jet production by selecting kinematical cuts. Here both single-parton and double-parton scattering effects are calculated in the kT -factorization approach, following our recent developments of relevant methods and tools. Several differential distributions are shown and discussed in the context of future searches for DPS effects, such as rapidity of jets, rapidity distance, and azimuthal correlations between jets. The dependence of the relative DPS amount is studied as a function of those observables. The regions with an enhanced DPS contribution are identified. Future experimental explorations could extract more precise values of σeff and its potential dependence on kinematical variables.

  5. Male contraception via simultaneous knockout of α1A-adrenoceptors and P2X1-purinoceptors in mice.

    PubMed

    White, Carl W; Choong, Yan-Ting; Short, Jennifer L; Exintaris, Betty; Malone, Daniel T; Allen, Andrew M; Evans, Richard J; Ventura, Sabatino

    2013-12-17

    Therapeutic targets for male contraception are associated with numerous problems due to their focus on disrupting spermatogenesis or hormonal mechanisms to produce dysfunctional sperm. Here we describe the dual genetic deletion of α1A-adrenergic G protein-coupled receptors (adrenoceptors) and P2X1-purinoceptor ligand gated ion channels in male mice, thereby blocking sympathetically mediated sperm transport through the vas deferens during the emission phase of ejaculation. This modification produced 100% infertility without effects on sexual behavior or function. Sperm taken from the cauda epididymides of double knockout mice were microscopically normal and motile. Furthermore, double knockout sperm were capable of producing normal offspring following intracytoplasmic sperm injection into wild-type ova and implantation of the fertilized eggs into foster mothers. Blood pressure and baroreflex function was reduced in double knockout mice, but no more than single knockout of α1A-adrenoceptors alone. These results suggest that this autonomic method of male contraception appears free of major physiological and behavioral side effects. In addition, they provide conclusive proof of concept that pharmacological antagonism of the P2X1-purinoceptor and α1A-adrenoceptor provides a safe and effective therapeutic target for a nonhormonal, readily reversible male contraceptive. PMID:24297884

  6. Male contraception via simultaneous knockout of α1A-adrenoceptors and P2X1-purinoceptors in mice

    PubMed Central

    White, Carl W.; Choong, Yan-Ting; Short, Jennifer L.; Exintaris, Betty; Malone, Daniel T.; Allen, Andrew M.; Evans, Richard J.; Ventura, Sabatino

    2013-01-01

    Therapeutic targets for male contraception are associated with numerous problems due to their focus on disrupting spermatogenesis or hormonal mechanisms to produce dysfunctional sperm. Here we describe the dual genetic deletion of α1A-adrenergic G protein-coupled receptors (adrenoceptors) and P2X1-purinoceptor ligand gated ion channels in male mice, thereby blocking sympathetically mediated sperm transport through the vas deferens during the emission phase of ejaculation. This modification produced 100% infertility without effects on sexual behavior or function. Sperm taken from the cauda epididymides of double knockout mice were microscopically normal and motile. Furthermore, double knockout sperm were capable of producing normal offspring following intracytoplasmic sperm injection into wild-type ova and implantation of the fertilized eggs into foster mothers. Blood pressure and baroreflex function was reduced in double knockout mice, but no more than single knockout of α1A-adrenoceptors alone. These results suggest that this autonomic method of male contraception appears free of major physiological and behavioral side effects. In addition, they provide conclusive proof of concept that pharmacological antagonism of the P2X1-purinoceptor and α1A-adrenoceptor provides a safe and effective therapeutic target for a nonhormonal, readily reversible male contraceptive. PMID:24297884

  7. Glycogen storage disease type III: A novel Agl knockout mouse model.

    PubMed

    Pagliarani, Serena; Lucchiari, Sabrina; Ulzi, Gianna; Violano, Raffaella; Ripolone, Michela; Bordoni, Andreina; Nizzardo, Monica; Gatti, Stefano; Corti, Stefania; Moggio, Maurizio; Bresolin, Nereo; Comi, Giacomo P

    2014-11-01

    Glycogen storage disease type III is an autosomal recessive disease characterized by a deficiency in the glycogen debranching enzyme, encoded by AGL. Essential features of this disease are hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Progressive skeletal myopathy, neuropathy, and/or cardiomyopathy become prominent in adults. Currently, there is no available cure. We generated an Agl knockout mouse model by deletion of the carboxy terminus of the protein, including the carboxy end of the glucosidase domain and the glycogen-binding domain. Agl knockout mice presented serious hepatomegaly, but we did not observe signs of cirrhosis or adenomas. In affected tissues, glycogen storage was higher than in wild-type mice, even in the central nervous system which has never been tested in GSDIII patients. The biochemical findings were in accordance with histological data, which clearly documented tissue impairment due to glycogen accumulation. Indeed, electron microscopy revealed the disruption of contractile units due to glycogen infiltrations. Furthermore, adult Agl knockout animals appeared less prompt to move, and they exhibited kyphosis. Three-mo-old Agl knockout mice could not run, and adult mice showed exercise intolerance. In addition, older affected animals exhibited an accelerated respiratory rate even at basal conditions. This observation was correlated with severe glycogen accumulation in the diaphragm. Diffuse glycogen deposition was observed in the tongues of affected mice. Our results demonstrate that this Agl knockout mouse is a reliable model for human glycogenosis type III, as it recapitulates the essential phenotypic features of the disease. PMID:25092169

  8. 8He cluster structure studied by recoil proton tagged knockout reaction

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Cao, Z.; Xiao, J.; Jiang, D.; Zheng, T.; Hua, H.; Ge, Y.; Li, X.; Lou, J.; Li, Q.; Lv, L.; Qiao, R.; You, H.; Chen, R.; Sakurai, H.; Otsu, H.; Li, Z.; Nishimura, M.; Sakaguchi, S.; Baba, H.; Togano, Y.; Yoneda, K.; Li, C.; Wang, S.; Wang, H.; Li, K.; Nakayama, Y.; Kondo, Y.; Deguchi, S.; Sato, Y.; Tshoo, K.

    2013-04-01

    Knockout reaction experiment for 8He at 82.3 MeV/u on Hydrogen target was carried out at the RIPS beam line in RIKEN. Recoil protons were detected in coincidence with the forward moving core fragments and neutrons. The quasi-free knockout mechanism is identified through the polar angle correlation and checked by various kinematics conditions. The absolute differential cross sections for 6He core cluster are obtained and compared with the simple Glauber model calculations. The extracted spectroscopic factor is close to unity and a shrinking of the cluster size is evidenced.

  9. Functional consequences of hippocampal neuronal ectopia in the apolipoprotein E receptor-2 knockout mouse

    PubMed Central

    Fish, Kenneth. N.; Krucker, Thomas

    2008-01-01

    Little is known about the impact ectopically located neurons have on the functional connectivity of local circuits. The ApoER2 knockout mouse has subtle cytoarchitectural disruptions, altered prepulse inhibition, and memory abnormalities. We evaluated this mouse mutant as a model to study the role ectopic neurons play in the manifestation of symptoms associated with brain diseases. We found that ectopic CA1 pyramidal and inhibitory neurons in the ApoER2 knockout hippocampus are organized into two distinct stratum pyramidale layers. In vitro analyses found that ApoER2 is not required for neurons to reach maturity in regards to dendritic arborization and synaptic structure density, and electrophysiological testing determined that neurons in both strata pyramidale are integrated into the hippocampal network. However, the presence of these two layers alters the spatiotemporal pattern of hippocampal activity, which may explain why ApoER2 knockout mice have selective cognitive dysfunctions that are revealed only under challenging conditions. PMID:18778775

  10. BDNF restricted knockout mice as an animal model for aggression

    PubMed Central

    Ito, Wataru; Chehab, Mahmoud; Thakur, Siddarth; Li, Jiayang; Morozov, Alexei

    2011-01-01

    Mice with global deletion of one BDNF allele, or with forebrain-restricted deletion of both alleles show elevated aggression, but this phenotype is accompanied by other behavioral changes, including increases in anxiety and deficits in cognition. Here, we performed behavioral characterization of conditional BDNF knockout mice generated using a Cre recombinase driver line, KA1-Cre, which expresses Cre in few areas of brain: highly at hippocampal area CA3, moderately in dentate gyrus, cerebellum and facial nerve nucleus. The mutant animals exhibited elevated conspecific aggression and social dominance, but did not show changes in anxiety-like behaviors assessed using the elevated plus maze and open field test. There were no changes in depression like behaviors tested in the forced swim test, but small increase in immobility in the tail suspension test. In cognitive tasks, mutants showed normal social recognition and normal spatial and fear memory, but exhibited a deficit in object recognition. Thus, this knockout can serve as a robust model of BDNF-dependent aggression and object recognition deficiency. PMID:21255268

  11. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates by a phaZ-knockout strain of Pseudomonas putida KT2440.

    PubMed

    Vo, Minh Tri; Ko, Kenton; Ramsay, Bruce

    2015-04-01

    A medium-chain-length poly-3-hydroxyalkanote (MCL-PHA) depolymerase knockout mutant of Pseudomonas putida KT2440 was produced by double homologous recombination. A carbon-limited shake-flask study confirmed that depolymerase activity was eliminated. Lysis of both mutant and wild-type strains occurred under these conditions. In carbon-limited, fed-batch culture, the yield of unsaturated monomers from unsaturated substrate averaged only 0.62 mol mol(-1) for the phaZ minus strain compared to 0.72 mol mol(-1) for the wild type. The mutant strain also produced more CO2 and less residual biomass from the same amount of carbon substrate. However, most results indicated that elimination of PHA depolymerase activity had little impact on the overall yield of biomass and PHA. PMID:25563970

  12. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias

    PubMed Central

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-01-01

    SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917

  13. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli.

    PubMed

    Tamae, Cindy; Liu, Anne; Kim, Katherine; Sitz, Daniel; Hong, Jeeyoon; Becket, Elinne; Bui, Ann; Solaimani, Parrisa; Tran, Katherine P; Yang, Hanjing; Miller, Jeffrey H

    2008-09-01

    We have tested the entire Keio collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to one of seven different antibiotics (ciprofloxacin, rifampin, vancomycin, ampicillin, sulfamethoxazole, gentamicin, or metronidazole). We used high-throughput screening of several subinhibitory concentrations of each antibiotic and reduced more than 65,000 data points to a set of 140 strains that display significantly increased sensitivities to at least one of the antibiotics, determining the MIC in each case. These data provide targets for the design of "codrugs" that can potentiate existing antibiotics. We have made a number of double mutants with greatly increased sensitivity to ciprofloxacin, and these overcome the resistance generated by certain gyrA mutations. Many of the gene knockouts in E. coli are hypersensitive to more than one antibiotic. Together, all of these data allow us to outline the cell's "intrinsic resistome," which provides innate resistance to antibiotics. PMID:18621901

  14. Behavior training reverses asymmetry in hippocampal transcriptome of the cav3.2 knockout mice.

    PubMed

    Chung, Ni-Chun; Huang, Ying-Hsueh; Chang, Chuan-Hsiung; Liao, James C; Yang, Chih-Hsien; Chen, Chien-Chang; Liu, Ingrid Y

    2015-01-01

    Homozygous Cav3.2 knockout mice, which are defective in the pore-forming subunit of a low voltage activated T-type calcium channel, have been documented to show impaired maintenance of late-phase long-term potentiation (L-LTP) and defective retrieval of context-associated fear memory. To investigate the role of Cav3.2 in global gene expression, we performed a microarray transcriptome study on the hippocampi of the Cav3.2-/- mice and their wild-type littermates, either naïve (untrained) or trace fear conditioned. We found a significant left-right asymmetric effect on the hippocampal transcriptome caused by the Cav3.2 knockout. Between the naive Cav3.2-/- and the naive wild-type mice, 3522 differentially expressed genes (DEGs) were found in the left hippocampus, but only 4 DEGs were found in the right hippocampus. Remarkably, the effect of Cav3.2 knockout was partially reversed by trace fear conditioning. The number of DEGs in the left hippocampus was reduced to 6 in the Cav3.2 knockout mice after trace fear conditioning, compared with the wild-type naïve mice. To our knowledge, these results demonstrate for the first time the asymmetric effects of the Cav3.2 and its partial reversal by behavior training on the hippocampal transcriptome. PMID:25768289

  15. Characterization of Kidney and Skeleton Phenotypes of Mice Double Heterozygous for Foxc1 and Foxc2.

    PubMed

    Motojima, Masaru; Tanimoto, Sho; Ohtsuka, Masato; Matsusaka, Taiji; Kume, Tsutomu; Abe, Koichiro

    2016-01-01

    Foxc1 and Foxc2 play key roles in mouse development. Foxc1 mutant mice develop duplex kidneys with double ureters, and lack calvarial and sternal bones. Foxc2 null mice have been reported to have glomerular abnormalities in the kidney and axial skeletal anomalies. Expression patterns of Foxc1 and Foxc2 overlap extensively and are believed to have interactive roles. However, cooperative roles of these factors in glomerular and skeletal development are unknown. Therefore, we examined the kidneys and skeleton of mice that were double heterozygous for Foxc1 and Foxc2. Double heterozygotes were generated by mating single heterozygotes for Foxc1 and Foxc2. Newborn double heterozygous mice showed many anomalies in the kidney and urinary tract resembling Foxc1 phenotypes, including duplex kidneys, double ureters, hydronephrosis and mega-ureter. Some mice had hydronephrosis alone. In addition to these macroscopic anomalies, some mice had abnormal glomeruli and disorganized glomerular capillaries observed in Foxc2 phenotypes. Interestingly, these mice also showed glomerular cysts not observed in the single-gene knockout of either Foxc1 or Foxc2 but observed in conditional knockout of Foxc2 in the kidney. Serial section analysis revealed that all cystic glomeruli were connected to proximal tubules, precluding the possibility of atubular glomeruli resulting in cyst formation. Dorsally opened vertebral arches and malformations of sternal bones in the double heterozygotes were phenotypes similar to Foxc1 null mice. Absent or split vertebral bodies in the double heterozygotes were phenotypes similar to Foxc2 null mice, whilst hydrocephalus noted in the Foxc1 phenotype was not observed. Thus, Foxc1 and Foxc2 have a role in kidney and axial skeleton development. These transcription factors might interact in the regulation of the embryogenesis of these organs. PMID:27193493

  16. Universal statistics of the knockout tournament

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun

    2013-11-01

    We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness.

  17. Clues to VIP function from knockout mice.

    PubMed

    Hamidi, S A; Szema, A M; Lyubsky, S; Dickman, K G; Degene, A; Mathew, S M; Waschek, J A; Said, S I

    2006-07-01

    We have taken advantage of the availability of vasoactive intestinal polypeptide (VIP) knockout (KO) mice to examine the possible influence of deletion of the VIP gene on: (a) airway reactivity and airway inflammation, as indicators of bronchial asthma; (b) mortality from endotoxemia, a model of septic shock; and (c) the pulmonary circulation. VIP KO mice showed: (a) airway hyperresponsiveness to the cholinergic agonist methacholine, as well as peribronchial and perivascular inflammation; (b) a greater susceptibility to death from endotoxemia; and (c) evidence suggestive of pulmonary hypertension. PMID:16888146

  18. Germ line knockout of IGFBP-3 reveals influences of the gene on mammary gland neoplasia.

    PubMed

    Blouin, Marie-José; Bazile, Miguel; Birman, Elena; Zakikhani, Mahvash; Florianova, Livia; Aleynikova, Olga; Powell, David R; Pollak, Michael

    2015-02-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) is an important carrier protein for insulin-like growth factors (IGFs) in the circulation. IGFBP-3 antagonizes the growth-promoting and anti-apoptotic activities of IGFs in experimental systems, but in certain contexts can increase IGF bioactivity, probably by increasing its half-life. The goal of this study was to investigate the role of IGFBP-3 in breast carcinogenesis and breast cancer metastasis. In the first part of the study, we exposed IGFBP-3 knockout and wild-type female mice to dimethylbenz[a]anthracene (DMBA) and followed them for appearance of primary tumors for up to 13 months. In the second part, mice of each genotype received an IV injection of 4T1 mammary carcinoma cells and then lung nodules were counted. Our results show that IGFBP-3 knockout mice developed breast tumors significantly earlier than the wild-type (13.9 ± 1.1 versus 22.5 ± 3.3 weeks, respectively, P = 0.0144), suggesting tumor suppression activity of IGFBP-3. In tumors of IGFBP-3 knockout mice, levels of phospho-AKT(Ser473) were increased compared to wild-type mice. The lung metastasis assay showed significantly more and larger lung nodules in IGFBP-3 knockout mice than in wild-type mice. While we observed increased levels of IGFBP-5 protein in the IGFBP-3 knockout mice, our findings suggest that this was not sufficient to completely compensate for the absence of IGFBP-3. Even though knockout of IGFBP-3 is associated with only a subtle phenotype under control conditions, our results reveal that loss of this gene has measurable effects on breast carcinogenesis and breast cancer metastasis. PMID:25614235

  19. Neuregulin 3 Knockout Mice Exhibit Behaviors Consistent with Psychotic Disorders.

    PubMed

    Hayes, Lindsay N; Shevelkin, Alexey; Zeledon, Mariela; Steel, Gary; Chen, Pei-Lung; Obie, Cassandra; Pulver, Ann; Avramopoulos, Dimitrios; Valle, David; Sawa, Akira; Pletnikov, Mikhail V

    2016-07-01

    Neuregulin 3 (NRG3) is a paralog of NRG1. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, and several intronic single nucleotide polymorphisms in NRG3 are associated with delusions in patients with schizophrenia. In order to gain insights into the biological function of the gene, we generated a novel Nrg3 knockout (KO) mouse model and tested for neurobehavioral phenotypes relevant to psychotic disorders. KO mice displayed novelty-induced hyperactivity, impaired prepulse inhibition of the acoustic startle response, and deficient fear conditioning. No gross cytoarchitectonic or layer abnormalities were noted in the brain of KO mice. Our findings suggest that deletion of the Nrg3 gene leads to alterations consistent with aspects of schizophrenia. We propose that KO mice will provide a valuable animal model to determine the role of the NRG3 in the molecular pathogenesis of schizophrenia and other psychotic disorders. PMID:27606322

  20. Altered Reward Circuitry in the Norepinephrine Transporter Knockout Mouse

    PubMed Central

    Hall, F. Scott; Uhl, George R.; Bearer, Elaine L.; Jacobs, Russell E.

    2013-01-01

    Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET), using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT) knockout mouse, but dissimilar from work with serotonin transporter (SERT) knockout mice where Mn2+ tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely indicative of

  1. Rapid induction of single donor chimerism after double umbilical cord blood transplantation preceded by reduced intensity conditioning: results of the HOVON 106 phase II study

    PubMed Central

    Somers, Judith A.E.; Braakman, Eric; van der Holt, Bronno; Petersen, Eefke J.; Marijt, Erik W.A.; Huisman, Cynthia; Sintnicolaas, Kees; Oudshoorn, Machteld; Groenendijk-Sijnke, Marlies E.; Brand, Anneke; Cornelissen, Jan J.

    2014-01-01

    Double umbilical cord blood transplantation is increasingly applied in the treatment of adult patients with high-risk hematological malignancies and has been associated with improved engraftment as compared to that provided by single unit cord blood transplantation. The mechanism of improved engraftment is, however, still incompletely understood as only one unit survives. In this multicenter phase II study we evaluated engraftment, early chimerism, recovery of different cell lineages and transplant outcome in 53 patients who underwent double cord blood transplantation preceded by a reduced intensity conditioning regimen. Primary graft failure occurred in one patient. Engraftment was observed in 92% of patients with a median time to neutrophil recovery of 36 days (range, 15–102). Ultimate single donor chimerism was established in 94% of patients. Unit predominance occurred by day 11 after transplantation and early CD4+ T-cell chimerism predicted for unit survival. Total nucleated cell viability was also associated with unit survival. With a median follow up of 35 months (range, 10–51), the cumulative incidence of relapse and non-relapse mortality rate at 2 years were 39% and 19%, respectively. Progressionfree survival and overall survival rates at 2 years were 42% (95% confidence interval, 28–56) and 57% (95% confidence interval, 43–70), respectively. Double umbilical cord blood transplantation preceded by a reduced intensity conditioning regimen using cyclophosphamide/fludarabine/4 Gy total body irradiation results in a high engraftment rate with low non-relapse mortality. Moreover, prediction of unit survival by early CD4+ lymphocyte chimerism might suggest a role for CD4+ lymphocyte mediated unit-versus-unit alloreactivity. www.trialregister.nl NTR1573. PMID:25107890

  2. Proteomic Analysis of Loricrin Knockout Mouse Epidermis.

    PubMed

    Rice, Robert H; Durbin-Johnson, Blythe P; Ishitsuka, Yosuke; Salemi, Michelle; Phinney, Brett S; Rocke, David M; Roop, Dennis R

    2016-08-01

    The crosslinked envelope of the mammalian epidermal corneocyte serves as a scaffold for assembly of the lipid barrier of the epidermis. Thus, deficient envelope crosslinking by keratinocyte transglutaminase (TGM1) is a major cause of the human autosomal recessive congenital ichthyoses characterized by barrier defects. Expectations that loss of some envelope protein components would also confer an ichthyosis phenotype have been difficult to demonstrate. To help rationalize this observation, the protein profile of epidermis from loricrin knockout mice has been compared to that of wild type. Despite the mild phenotype of the knockout, some 40 proteins were incorporated into envelope material to significantly different extents compared to those of wild type. Nearly half were also incorporated to similarly altered extents into the disulfide bonded keratin network of the corneocyte. The results suggest that loss of loricrin alters their incorporation into envelopes as a consequence of protein-protein interactions during cell maturation. Mass spectrometric protein profiling revealed that keratin 1, keratin 10, and loricrin are prominent envelope components and that dozens of other proteins are also components. This finding helps rationalize the potential formation of functional envelopes, despite loss of a single component, due to the availability of many alternative transglutaminase substrates. PMID:27418529

  3. The butyrylcholinesterase knockout mouse a research tool in the study of drug sensitivity, bio-distribution, obesity and Alzheimer's disease.

    PubMed

    Duysen, Ellen G; Li, Bin; Lockridge, Oksana

    2009-05-01

    Butyrylcholinesterase (BChE) mutations common in the human population may result in complete or partial BChE deficiency, making the BChE knockout (KO) mouse a model for human deficiencies. The BChE KO mouse cannot tolerate standard doses of the muscle relaxant succinylcholine or the Alzheimer's disease drugs huperzine A and donepezil. It is resistant to the asthma drug bambuterol. The importance of BChE in detoxication of cocaine has been demonstrated by hepatotoxicity and cardiotoxicity in cocaine-challenged BChE KO mice. The BChE KO mouse becomes obese on a high-fat diet, suggesting a role for BChE in fat metabolism. BChE serves as a backup for acetylcholinesterase by hydrolyzing the neurotransmitter acetylcholine in acetylcholinesterase knockout mice. Imaging studies show that BChE injected intrathecally crosses the blood-brain barrier. Mice, but not humans, have carboxylesterase in their blood. Carboxylesterase obscures the role of BChE in detoxication of organophosphorus pesticides. Future studies will make a double knockout that has neither BChE nor carboxylesterase. The double knockout is expected to be unusually sensitive to the toxicity of organophosphorus pesticides. Knowledge of drug sensitivities in the mouse model of human BChE deficiency will aid in understanding adverse drug effects in humans. PMID:19416087

  4. Fatty acid composition in double and multilayered microcapsules of ω-3 as affected by storage conditions and type of emulsions.

    PubMed

    Jiménez-Martín, Estefanía; Antequera Rojas, Teresa; Gharsallaoui, Adem; Ruiz Carrascal, Jorge; Pérez-Palacios, Trinidad

    2016-03-01

    Spray-dried microcapsules from double (DM) and multilayered (MM) fish oil emulsions were produced to evaluate the effect of type of emulsion on the fatty acid composition during the microencapsulation process and after one month of storage at refrigeration (4°C) and room (20°C) temperature. Encapsulation efficiency, loading and loading efficiency were significantly higher in MM than in DM. C20:5 n-3 (EPA) and C22:6 n-3 (DHA) showed higher proportions in MM than in DM. Some differences in microstructural features were detected, with DM showing cracks and pores. The influence of the storage was significant, decreasing the content of polyunsaturated fatty acids in both MM and DM, above all at 20°C. This decrease was more notable in DM. Multilayered emulsions are more suitable to encapsulate fish oil in terms of quantity of encapsulated oil, microstructure of the microcapsules and protection of fatty acids, especially EPA and DHA, during storage. PMID:26471582

  5. A NEW MODEL FOR MIXING BY DOUBLE-DIFFUSIVE CONVECTION (SEMI-CONVECTION). I. THE CONDITIONS FOR LAYER FORMATION

    SciTech Connect

    Mirouh, G. M.; Garaud, P.; Traxler, A. L.; Wood, T. S.; Stellmach, S.

    2012-05-01

    The process referred to as 'semi-convection' in astrophysics and 'double-diffusive convection in the diffusive regime' in Earth and planetary sciences occurs in stellar and planetary interiors in regions which are stable according to the Ledoux criterion but unstable according to the Schwarzschild criterion. In this series of papers, we analyze the results of an extensive suite of three-dimensional (3D) numerical simulations of the process, and ultimately propose a new 1D prescription for heat and compositional transport in this regime which can be used in stellar or planetary structure and evolution models. In a preliminary study of the phenomenon, Rosenblum et al. showed that, after saturation of the primary instability, a system can evolve in one of two possible ways: the induced turbulence either remains homogeneous, with very weak transport properties, or transitions into a thermo-compositional staircase where the transport rate is much larger (albeit still smaller than in standard convection). In this paper, we show that this dichotomous behavior is a robust property of semi-convection across a wide region of parameter space. We propose a simple semi-analytical criterion to determine whether layer formation is expected or not, and at what rate it proceeds, as a function of the background stratification and of the diffusion parameters (viscosity, thermal diffusivity, and compositional diffusivity) only. The theoretical criterion matches the outcome of our numerical simulations very adequately in the computationally accessible 'planetary' parameter regime and can be extrapolated to the stellar parameter regime. Subsequent papers will address more specifically the question of quantifying transport in the layered case and in the non-layered case.

  6. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders

    PubMed Central

    Wurzman, Rachel; Forcelli, Patrick A.; Griffey, Christopher J.; Kromer, Lawrence F.

    2014-01-01

    EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms. PMID:25281279

  7. Bending of Protonema Cells in a Plastid Glycolate/Glycerate Transporter Knockout Line of Physcomitrella patens

    PubMed Central

    Nakahara, Jin; Takechi, Katsuaki; Myouga, Fumiyoshi; Moriyama, Yasuko; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2015-01-01

    Arabidopsis LrgB (synonym PLGG1) is a plastid glycolate/glycerate transporter associated with recycling of 2-phosphoglycolate generated via the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We isolated two homologous genes (PpLrgB1 and B2) from the moss Physcomitrella patens. Phylogenetic tree analysis showed that PpLrgB1 was monophyletic with LrgB proteins of land plants, whereas PpLrgB2 was divergent from the green plant lineage. Experiments with PpLrgB–GFP fusion proteins suggested that both PpLrgB1 and B2 proteins were located in chloroplasts. We generated PpLrgB single (∆B1 and ∆B2) and double (∆B1/∆B2)-knockout lines using gene targeting of P. patens. The ∆B1 plants showed decreases in growth and photosynthetic activity, and their protonema cells were bent and accumulated glycolate. However, because ∆B2 and ∆B1/∆B2 plants showed no obvious phenotypic change relative to the wild-type or ∆B1 plants, respectively, the function of PpLrgB2 remains unclear. Arabidopsis LrgB could complement the ∆B1 phenotype, suggesting that the function of PpLrgB1 is the same as that of AtLrgB. When ∆B1 was grown under high-CO2 conditions, all novel phenotypes were suppressed. Moreover, protonema cells of wild-type plants exhibited a bending phenotype when cultured on media containing glycolate or glycerate, suggesting that accumulation of photorespiratory metabolites caused P. patens cells to bend. PMID:25793376

  8. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders.

    PubMed

    Wurzman, Rachel; Forcelli, Patrick A; Griffey, Christopher J; Kromer, Lawrence F

    2015-02-01

    EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms. PMID:25281279

  9. Bending of protonema cells in a plastid glycolate/glycerate transporter knockout line of Physcomitrella patens.

    PubMed

    Nakahara, Jin; Takechi, Katsuaki; Myouga, Fumiyoshi; Moriyama, Yasuko; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2015-01-01

    Arabidopsis LrgB (synonym PLGG1) is a plastid glycolate/glycerate transporter associated with recycling of 2-phosphoglycolate generated via the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We isolated two homologous genes (PpLrgB1 and B2) from the moss Physcomitrella patens. Phylogenetic tree analysis showed that PpLrgB1 was monophyletic with LrgB proteins of land plants, whereas PpLrgB2 was divergent from the green plant lineage. Experiments with PpLrgB-GFP fusion proteins suggested that both PpLrgB1 and B2 proteins were located in chloroplasts. We generated PpLrgB single (∆B1 and ∆B2) and double (∆B1/∆B2)-knockout lines using gene targeting of P. patens. The ∆B1 plants showed decreases in growth and photosynthetic activity, and their protonema cells were bent and accumulated glycolate. However, because ∆B2 and ∆B1/∆B2 plants showed no obvious phenotypic change relative to the wild-type or ∆B1 plants, respectively, the function of PpLrgB2 remains unclear. Arabidopsis LrgB could complement the ∆B1 phenotype, suggesting that the function of PpLrgB1 is the same as that of AtLrgB. When ∆B1 was grown under high-CO2 conditions, all novel phenotypes were suppressed. Moreover, protonema cells of wild-type plants exhibited a bending phenotype when cultured on media containing glycolate or glycerate, suggesting that accumulation of photorespiratory metabolites caused P. patens cells to bend. PMID:25793376

  10. Methylphenidate improves the behavioral and cognitive deficits of neurogranin knockout mice

    PubMed Central

    Huang, Freesia L.; Huang, Kuo-Ping

    2012-01-01

    Neurogranin (Ng), a brain-specific calmodulin-binding protein, is expressed highly in hippocampus, and is important for cognitive function. Deletion of the Ng gene from mice caused attenuation of signal reaction cascade in hippocampus, impairments in learning and memory and high frequency stimulation-induced long-term potentiation. Environmental enrichment alone failed to improve cognitive function. In the present study, behavioral testing revealed that Ng knockout mice were both hyperactive and socially withdrawn. Methylphenidate (MPH) was given to mice while they were also kept under an enrichment condition. MPH treatment reduced the hyperactivity of Ng knockout mice tested in both the open field and forced swim chamber. MPH improved their social abilities such that mice recognized and interacted better with novel subjects. The cognitive memories of MPH-treated mutants were improved in both water maze and contextual fear conditioning tests. High frequency stimulation-induced long-term potentiation of Ng knockout mice was also improved by MPH. The present treatment regimen, however, did not fully reverse the deficits of the mutant mice. In contrast, MPH exerted only a minimal effect on the wild type mice. At the cellular level, MPH increased the number of glial fibrillary acidic protein-positive cells in hippocampus, particularly within the dentate gyrus of Ng knockout mice. Therefore it will be of interest to determine the nature of MPH-mediated astrocyte activation and how it may modulate behavior in future studies. Taken together these Ng knockout mice may be useful for the development of better drug treatment to improve cognitive and behavioral impairments. PMID:22809330

  11. Universal statistics of the knockout tournament

    PubMed Central

    Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun

    2013-01-01

    We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness. PMID:24217406

  12. Successful second transplantation with non-myeloablative conditioning using haploidentical donors for young patients after graft failure following double umbilical cord cell transplantation.

    PubMed

    Liu, Huilan; Wang, Xingbing; Geng, Liangquan; Tang, Baolin; Tong, Juan; Yao, Wen; Wang, Zuyi; Sun, Zimin

    2010-06-01

    GF is a common and life-threatening complication of UCBT. Here, we report that successful second transplantation of five patients using G-CSF-mobilized maternal stem cells with non-myeloablative conditioning after GF following double UCBT. The median interval between the two transplants were 38 days. The first transplantation was administered after myeloablative conditioning for hematologic malignancies (n=3), and rabbit ATG in combination with cyclophosphamide for SAA (n=2). The second conditioning consisted of Flu and ATG-based non-myeloablative regimen. All five patients acquired quick and sustained engraftment after the second transplant. Treatment-related toxicity was minimal. Three patients developed acute GVHD (>grade II=1). Three patients developed chronic GVHD (limited=1, extensive=2). Severe infectious episodes were significant but manageable. With a median follow-up of 713 days (592-1127), all patients have currently had an event-free survival. These results indicate that a second transplant with non-myeloablative conditioning using mother as the donor for young patient after GF is feasible. PMID:19732379

  13. Finite-amplitude double-component convection due to different boundary conditions for two compensating horizontal gradients

    PubMed

    Tsitverblit

    2000-12-01

    Finite-amplitude convective steady flows that do not bifurcate from the respective conduction state are discovered. They arise as the compensating horizontal gradients of two density-affecting components with equal diffusivities but different boundary conditions are applied to the Boussinesq fluid at rest with and without stable vertical stratification. These flows emanate from convection in a laterally heated stably stratified slot. Their relevance to convective states in a horizontal slot with two vertical gradients, emphasizing universality of the underlying type of convection, is discussed. PMID:11138108

  14. Double Diffusive Magnetohydrodynamic (MHD) Mixed Convective Slip Flow along a Radiating Moving Vertical Flat Plate with Convective Boundary Condition

    PubMed Central

    Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360

  15. Human Knockout Carriers: Dead, Diseased, Healthy, or Improved?

    PubMed Central

    Narasimhan, Vagheesh M.; Xue, Yali; Tyler-Smith, Chris

    2016-01-01

    Whole-genome and whole-exome sequence data from large numbers of individuals reveal that we all carry many variants predicted to inactivate genes (knockouts). This discovery raises questions about the phenotypic consequences of these knockouts and potentially allows us to study human gene function through the investigation of homozygous loss-of-function carriers. Here, we discuss strategies, recent results, and future prospects for large-scale human knockout studies. We examine their relevance to studying gene function, population genetics, and importantly, the implications for accurate clinical interpretations. PMID:26988438

  16. Theoretical knock-outs on biological networks.

    PubMed

    Miranda, Pedro J; de S Pinto, Sandro E; Baptista, Murilo S; La Guardia, Giuliano G

    2016-08-21

    In this work we redefine the concept of biological importance and how to compute it, based on a model of complex networks and random walk. We call this new procedure, theoretical knock-out (KO). The proposed method generalizes the procedure presented in a recent study about Oral Tolerance. To devise this method, we make two approaches: algebraically and algorithmically. In both cases we compute a vector on an asymptotic state, called flux vector. The flux is given by a random walk on a directed graph that represents a biological phenomenon. This vector gives us the information about the relative flux of walkers on a vertex which represents a biological agent. With two vector of this kind, we can calculate the relative mean error between them by averaging over its coefficients. This quantity allows us to assess the degree of importance of each vertex of a complex network that evolves in time and has experimental background. We find out that this procedure can be applied in any sort of biological phenomena in which we can know the role and interrelationships of its agents. These results also provide experimental biologists to predict the order of importance of biological agents on a mounted complex network. PMID:27188251

  17. Effect of fuel zoning and fuel nozzle design on pollution emissions at ground idle conditions for a double-annular ram-induction combustor

    NASA Technical Reports Server (NTRS)

    Clements, T. R.

    1973-01-01

    An exhaust emission survey was conducted on a double-annular ram induction combustor at simulated ground idle conditions. The combustor was designed for a large augmented turbofan engine capable of sustained flight speeds up to Mach 3.0. The emission levels of total hydrocarbon (THC), carbon monoxide, carbon dioxide, and nitric oxide were measured. The effects of fuel zoning, fuel nozzle design, and operating conditions (inlet temperature and reference Mach number) on the level of these emissions were determined. At an overall combustor fuel/air ratio of 0.007, fuel zoning reduced THC emissions by a factor of 5 to 1. The reduction in THC emissions is attributed to the increase in local fuel/air ratio provided by the fuel zoning. An alternative method of increasing fuel/air ratio would be to operate with larger-than-normal compressor overboard bleed; however, analysis on this method indicated an increase in idle fuel consumption of 20 percent. The use of air-atomizing nozzles reduced the THC emissions by 2 to 1.

  18. Knockout of the Host Resistance Gene Pkr Fully Restores Replication of Murine Cytomegalovirus m142 and m143 Mutants In Vivo

    PubMed Central

    Ostermann, Eleonore; Warnecke, Gabriele; Waibler, Zoe

    2015-01-01

    Murine cytomegalovirus (MCMV) proteins m142 and m143 are essential for viral replication. They bind double-stranded RNA and prevent protein kinase R-induced protein synthesis shutoff. Whether the two viral proteins have additional functions such as their homologs in human cytomegalovirus do remained unknown. We show that MCMV m142 and m143 knockout mutants attain organ titers equivalent to those attained by wild-type MCMV in Pkr knockout mice, suggesting that these viral proteins do not encode additional PKR-independent functions relevant for pathogenesis in vivo. PMID:26512090

  19. SU-C-BRE-07: Sensitivity Analysis of the Threshold Energy for the Creation of Strand Breaks and of Single and Double Strand Break Clustering Conditions

    SciTech Connect

    Pater, P

    2014-06-15

    Purpose: To analyse the sensitivity of the creation of strand breaks (SB) to the threshold energy (Eth) and thresholding method and to quantify the impact of clustering conditions on single strand break (SSB) and double strand break (DSB) yields. Methods: Monte Carlo simulations using Geant4-DNA were conducted for electron tracks of 280 eV to 220 keV in a geometrical DNA model composed of nucleosomes of 396 phospho-diester groups (PDGs) each. A strand break was created inside a PDG when the sum of all energy deposits (method 1) or energy transfers (method 2) was higher than Eth or when at least one interaction deposited (method 3) or transferred (method 4) an energy higher than Eth. SBs were then clustered into SSBs and DSBs using clustering scoring criteria from the literature and compared to our own. Results: The total number of SBs decreases as Eth is increased. In addition, thresholding on the energy transfers (methods 2 and 4) produces a higher SB count than when thresholding on energy deposits (methods 1 and 3). Method 2 produces a step-like function and should be avoided when attempting to optimize Eth. When SBs are grouped into damage patterns, clustering conditions can underestimated SSBs by up to 18 % and DSBs can be overestimated by up to 12 % compared to our own implementation. Conclusion: We show that two often underreported simulation parameters have a non-negligible effect on overall DNA damage yields. First more SBs are counted when using energy transfers to the PDG rather than energy deposits. Also, SBs grouped according to different clustering conditions can influence reported SSB and DSB by as much as 20%. Careful handling of these parameters is required when trying to compare DNA damage yields from different authors. Research funding from the governments of Canada and Quebec. PP acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)

  20. Have gene knockouts caused evolutionary reversals in the mammalian first arch?

    PubMed

    Smith, K K; Schneider, R A

    1998-03-01

    Many recent gene knockout experiments cause anatomical changes to the jaw region of mice that several investigators claim are evolutionary reversals. Here we evaluate these mutant phenotypes and the assertions of atavism. We argue that following the knockout of Hoxa-2, Dlx-2, MHox, Otx2, and RAR genes, ectopic cartilages arise as secondary consequences of disruptions in normal processes of cell specification, migration, or differentiation. These disruptions cause an excess of mesenchyme to accumulate in a region through which skeletal progenitor cells usually migrate, and at a site of condensation that is normally present in mammals but that is too small to chondrify. We find little evidence that these genes, when disrupted, cause a reversion to any primitive condition and although changes in their expression may have played a role in the evolution of the mammalian jaw, their function during morphogenesis is not sufficiently understood to confirm such hypotheses. PMID:9631652

  1. Audiograms, gap detection thresholds, and frequency difference limens in cannabinoid receptor 1 knockout mice.

    PubMed

    Toal, Katrina L; Radziwon, Kelly E; Holfoth, David P; Xu-Friedman, Matthew A; Dent, Micheal L

    2016-02-01

    The cannabinoid receptor 1 (CB1R) is found at several stages in the auditory pathway, but its role in hearing is unknown. Hearing abilities were measured in CB1R knockout mice and compared to those of wild-type mice. Operant conditioning and the psychophysical Method of Constant Stimuli were used to measure audiograms, gap detection thresholds, and frequency difference limens in trained mice using the same methods and stimuli as in previous experiments. CB1R knockout mice showed deficits at frequencies above 8 kHz in their audiograms relative to wild-type mice. CB1R knockouts showed enhancements for detecting gaps in low-pass noisebursts relative to wild-type mice, but were similar for other noise conditions. Finally, the two groups of mice did not differ in their frequency discrimination abilities as measured by the frequency difference limens task. These experiments suggest that the CB1R is involved in auditory processing and lay the groundwork for future physiological experiments. PMID:26427583

  2. Establishment and phenotypic analysis of an Mstn knockout rat.

    PubMed

    Gu, Hao; Cao, Yong; Qiu, Bin; Zhou, Zhiqiang; Deng, Ran; Chen, Zhuang; Li, Rongfeng; Li, Xueling; Wei, Qiang; Xia, Xianzhu; Yong, Weidong

    2016-08-12

    Myostatin (Mstn) is an inhibitor of myogenesis, regulating the number and size of skeletal myocytes. In addition to its myogenic regulatory function, Mstn plays important roles in the development of adipose tissues and in metabolism. In the present study, an Mstn knockout rat model was generated using the zinc finger nuclease (ZFN) technique in order to further investigate the function and mechanism of Mstn in metabolism. The knockout possesses a frame shift mutation resulting in an early termination codon and a truncated peptide of 109 amino acids rather than the full 376 amino acids. The absence of detectable mRNA confirmed successful knockout of Mstn. Relative to wild-type (WT) littermates, Knockout (KO) rats exhibited significantly greater body weight, body circumference, and muscle mass. However, no significant differences in grip force was observed, indicating that Mstn deletion results in greater muscle mass but not greater muscle fiber strength. Additionally, KO rats were found to possess less body fat relative to WT littermates, which is consistent with previous studies in mice and cattle. The aforementioned results indicate that Mstn knockout increases muscle mass while decreasing fat content, leading to observed increases in body weight and body circumference. The Mstn knockout rat model provides a novel means to study the role of Mstn in metabolism and Mstn-related muscle hypertrophy. PMID:27289021

  3. Protein Degradation and Quality Control in Cells from Laforin and Malin Knockout Mice*

    PubMed Central

    Garyali, Punitee; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.

    2014-01-01

    Lafora disease is a progressive myoclonus epilepsy caused by mutations in the EPM2A or EPM2B genes that encode a glycogen phosphatase, laforin, and an E3 ubiquitin ligase, malin, respectively. Lafora disease is characterized by accumulation of insoluble, poorly branched, hyperphosphorylated glycogen in brain, muscle, heart, and liver. The laforin-malin complex has been proposed to play a role in the regulation of glycogen metabolism and protein quality control. We evaluated three arms of the protein degradation/quality control process (the autophago-lysosomal pathway, the ubiquitin-proteasomal pathway, and the endoplasmic reticulum (ER) stress response) in mouse embryonic fibroblasts from Epm2a−/−, Epm2b−/−, and Epm2a−/− Epm2b−/− mice. The levels of LC3-II, a marker of autophagy, were decreased in all knock-out cells as compared with wild type even though they still showed a slight response to starvation and rapamycin. Furthermore, ribosomal protein S6 kinase and S6 phosphorylation were increased. Under basal conditions there was no effect on the levels of ubiquitinated proteins in the knock-out cells, but ubiquitinated protein degradation was decreased during starvation or stress. Lack of malin (Epm2b−/− and Epm2a−/− Epm2b−/− cells) but not laforin (Epm2a−/− cells) decreased LAMP1, a lysosomal marker. CHOP expression was similar in wild type and knock-out cells under basal conditions or with ER stress-inducing agents. In conclusion, both laforin and malin knock-out cells display mTOR-dependent autophagy defects and reduced proteasomal activity but no defects in the ER stress response. We speculate that these defects may be secondary to glycogen overaccumulation. This study also suggests a malin function independent of laforin, possibly in lysosomal biogenesis and/or lysosomal glycogen disposal. PMID:24914213

  4. Modeling fragile X syndrome in the Fmr1 knockout mouse

    PubMed Central

    Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.

    2014-01-01

    Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362

  5. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice.

    PubMed

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M; Fröhlich, Esther E; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-01-01

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for "enviromimetics", therapeutics which reproduce the beneficial effects of enhanced environmental stimulation. PMID:27305846

  6. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice

    PubMed Central

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M.; Fröhlich, Esther E.; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-01-01

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for “enviromimetics”, therapeutics which reproduce the beneficial effects of enhanced environmental stimulation. PMID:27305846

  7. Conditions required for the appearance of double responses in hippocampal field CA1 to application of single stimuli to Shäffer collaterals in freely moving rats.

    PubMed

    Zosimovskii, V A; Korshunov, V A; Markevich, V A

    2008-03-01

    Stimulation of Shäffer collaterals with single current impulses could evoke double responses in hippocampal field CA1 in freely moving rats. The late response - the population excitatory postsynaptic potential with a preceding transient potential, often biphasic - occurred only after an early population spike and was time-locked to it. The shape characteristics of the late response, its polarity, and its latent period relative to the early population spike suggest that stimulation of Shäffer collaterals gives rise, in CA1, to a wave of excitation which passes through the entorhinal cortex and returns to CA1 directly via fibers of the perforant path. In conscious rats, medium-strength stimulation of Shäffer collaterals, sufficient to evoke a quite early population spike in CA1, did not usually lead to the appearance of a late response; the same stimulation became effective after tetanization of Shäffer collaterals in conditions of long-term potentiation of the early population spike. Furthermore, the appearance of the late response was facilitated in rats falling asleep on the background of high-amplitude, low-frequency EEG oscillations in CA1 characteristic of slow-wave sleep, as well as in sleeping rats, regardless of the EEG pattern. PMID:18264779

  8. [Conditions required for appearance of a double response to a single-shock stimulation of Schaffer collaterals in hippocampal field CA1 in freely moving rats].

    PubMed

    Zosimovskiĭ, V A; Korshunov, V A; Markevich, V A

    2007-01-01

    Schaffer collateral stimulation with a single current impulse can evoke a double response in hippocampal field CA1 of freely moving rats. The late response appears as a population excitatory postsynaptic potential with a preceding short-term potential (frequently biphasic) only after the early population spike and is time-locked to it. The wave shape and polarity of the late response, its latency with respect to the peak of the early population spike suggest that the excitation wave produced in the CA1 field by the stimulation of Schaffer collaterals passes across the entorhinal cortex and returns to the CA1 directly via the perforant path fibers. In waking rat, the medium-intensity stimulation of Schaffer collaterals (able to evoke in the CA1 an early population spike of sufficiently high amplitude) usually does not result in the appearance of the late response. However, similar stimulation becomes efficient after the tetanization of Schaffer collaterals, under conditions of the long-term potentiation of the early population spike. Moreover, the late response occurrence is facilitated in a rat falling asleep after the development in the CA1 of high-amplitude low-frequency EEG oscillations typical for the slow-wave sleep and in a sleeping rat independently of the EEG pattern. PMID:17596017

  9. Skin-whitening and skin-condition-improving effects of topical oxidized glutathione: a double-blind and placebo-controlled clinical trial in healthy women

    PubMed Central

    Watanabe, Fumiko; Hashizume, Erika; Chan, Gertrude P; Kamimura, Ayako

    2014-01-01

    Purpose Glutathione is a tripeptide consisting of cysteine, glycine, and glutamate and functions as a major antioxidant. It is synthesized endogenously in humans. Glutathione protects thiol protein groups from oxidation and is involved in cellular detoxification for maintenance of the cell environment. Reduced glutathione (GSH) has a skin-whitening effect in humans through its tyrosinase inhibitory activity, but in the case of oxidized glutathione (GSSG) this effect is unclear. We examined the skin-whitening and skin-condition effects of topical GSSG in healthy women. Subjects and methods The subjects were 30 healthy adult women aged 30 to 50 years. The study design was a randomized, double-blind, matched-pair, placebo-controlled clinical trial. Subjects applied GSSG 2% (weight/weight [w/w]) lotion to one side of the face and a placebo lotion to the other side twice daily for 10 weeks. We objectively measured changes in melanin index values, moisture content of the stratum corneum, smoothness, wrinkle formation, and elasticity of the skin. The principal investigator and each subject also used subjective scores to investigate skin whitening, wrinkle reduction, and smoothness. Analysis of variance was used to evaluate differences between groups. Results The skin melanin index was significantly lower with GSSG treatment than with placebo from the early weeks after the start of the trial through to the end of the study period (at 10 weeks, P<0.001). In addition, in the latter half of the study period GSSG-treated sites had significant increases in moisture content of the stratum corneum, suppression of wrinkle formation, and improvement in skin smoothness. There were no marked adverse effects from GSSG application. Conclusion Topical GSSG is safe and effectively whitens the skin and improves skin condition in healthy women. PMID:25378941

  10. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences

    SciTech Connect

    Cai, Yuping; Wolk, C.P. )

    1990-06-01

    Use of the sacB gene provides a simple, effective, positive selection for double recombinants in Anabaena sp. strain PCC 7120, a filamentous cyanobacterium. This gene, which encodes the secretory levansucrase of Bacillus subtilis, was inserted into the vector portion of a suicide plasmid bearing a mutant version of a chromosomal gene. Cells of colonies in which such a plasmid had integrated into the Anabaena chromosome through single recombination were plated on solid medium containing 5% sucrose. Under this condition, the presence of the sacB gene is lethal. A small fraction of the cells from initially sucrose-sensitive colonies became sucrose resistant; the majority of these sucrose-resistant derivatives had undergone a second recombinational event in which the sacB-containing vector had been lost and the wild-type form of the chromosomal gene had been replaced by the mutant form. By the use of this technique, they mutated two selected genes in the chromosome of Anabaena sp. strain PCC 7120. The conditionally lethal nature of the sacB gene was also used to detect insertion sequences from this Anabaena strain. Sucrose-resistant colonies derived from cells bearing a sacB-containing autonomously replicating plasmid were analyzed. Five different, presumed insertion sequences were found to have inserted into the sacB gene of the plasmids in these colonies. One of them, denoted IS892, was characterized by physical mapping. It is 1.7 kilobases in size and is present in at least five copies in the genome of Anabaena sp. strain PCC 7120.

  11. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G

    PubMed Central

    VanWert, Adam L.; Bailey, Rachel M.; Sweet, Douglas H.

    2010-01-01

    The interaction of renal basolateral organic anion transporter 3 (Oat3) with commonly used pharmacotherapeutics (e.g., NSAIDs, β-lactams, and methotrexate) has been studied extensively in vitro. However, the in vivo role of Oat3 in drug disposition, in the context of other transporters, glomerular filtration, and metabolism, has not been established. Moreover, recent investigations have identified inactive human OAT3 polymorphisms. Therefore, this investigation was designed to elucidate the in vivo role of Oat3 in the disposition of penicillin G and prototypical substrates using an Oat3 knockout mouse model. Oat3 deletion resulted in a doubling of penicillin’s half-life (P < 0.05) and a reduced volume of distribution (P < 0.01), together yielding a plasma clearance that was one-half (P < 0.05, males) to one-third (P < 0.001, females) of that in wild-type mice. Inhibition of Oat3 abolished the differences in penicillin G elimination between genotypes. Hepatic accumulation of penicillin was 2.3 times higher in male knockouts (P < 0.05) and 3.7 times higher in female knockouts (P < 0.001). Female knockouts also exhibited impaired estrone-3-sulfate clearance. Oat3 deletion did not impact p-aminohippurate elimination, providing correlative evidence to studies in Oat1 knockout mice that suggest Oat1 governs tubular uptake of p-aminohippurate. Collectively, these findings are the first to indicate that functional Oat3 is necessary for proper elimination of xenobiotic and endogenous compounds in vivo. Thus Oat3 plays a distinct role in determining the efficacy and toxicity of drugs. Dysfunctional human OAT3 polymorphisms or instances of polypharmacy involving OAT3 substrates may result in altered systemic accumulation of β-lactams and other clinically relevant compounds. PMID:17686950

  12. GeneKnockout by Targeted Mutagenesis in a Hemimetabolous Insect, the Two-Spotted Cricket Gryllus bimaculatus, using TALENs.

    PubMed

    Watanabe, Takahito; Noji, Sumihare; Mito, Taro

    2016-01-01

    Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms. PMID:26443220

  13. Single, double, and triple Auger decay probabilities of C+(1 s 2 s22 p22 D ,2 P ) resonances

    NASA Astrophysics Data System (ADS)

    Zhou, Fuyang; Ma, Yulong; Qu, Yizhi

    2016-06-01

    Single, double, and triple Auger decay rates of C+(1 s 2 s22 p22 D ,2 P ) resonances were calculated in the framework of perturbation theory. The direct double Auger decay probabilities were calculated by using the approximate formulas according to the knockout and shakeoff mechanisms, in which the knockout mechanism was found to be dominant. Then the knockout mechanism was employed to investigate the complex triple Auger decay process, and the calculated rates have good agreement with the available experimental values.

  14. Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease- (TALEN)-mediated gene inactivation

    PubMed Central

    Ferguson, Carolyn; McKay, Matthew; Harris, R. Adron; Homanics, Gregg E.

    2013-01-01

    Genetically engineered mice are a valuable resource for studies of the behavioral effects of ethanol. However, for some behavioral tests of ethanol action, the rat is a superior model organism. Production of genetically engineered rats has been severely hampered due to technical limitations. Here we utilized a promising new technique for efficient site-specific gene modification to create a novel gene knockout rat line. This approach is based on Transcriptional Activator-Like Effector Nucleases (TALENs). TALENs function in pairs and bind DNA in a sequence-specific manner. Upon binding to the target sequence, a functional nuclease is reconstituted that creates double-stranded breaks in the DNA that are efficiently repaired by non-homologous end joining. This error-prone process often results in deletions of varying lengths at the targeted locus. The toll-like receptor 4 (Tlr4) gene was selected for TALEN-mediated gene inactivation. Tlr4 has been implicated in ethanol-induced neuroinflammation and neurodegeneration, as well as multiple ethanol-induced behavioral effects. To generate Tlr4 knockout rats, a pair of TALEN constructs was created that specifically target Exon 1 immediately downstream of the start of translation. TALEN mRNAs were microinjected into the cytoplasm of one-cell Wistar rat embryos. Of 13 live-born pups that resulted, one harbored a mutation in Exon 1 of Tlr4. The mutated allele consisted of a 13 base-pair deletion that was predicted to create a frameshift mutation after amino acid 25. This founder rat successfully transmitted the mutation to F1 offspring. Heterozygous F1 offspring were interbred to produce homozygous F2 animals. Homozygous mutants expressed the 13-bp deletion in Tlr4 mRNA. In contrast to control rats that produced a robust increase in plasma tumor necrosis factor alpha in response to a lipopolysaccharide challenge, homozygous rats had a markedly attenuated response. Thus, the mutant Tlr4 allele generated by TALEN-mediated gene

  15. The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice.

    PubMed

    Jerlhag, Elisabet; Landgren, Sara; Egecioglu, Emil; Dickson, Suzanne L; Engel, Jörgen A

    2011-06-01

    Ghrelin, the first endogenous ligand for the type 1A growth hormone secretagogue receptor (GHS-R1A), plays a role in energy balance, feeding behavior, and reward. Previously, we showed that pharmacologic and genetic suppression of the GHS-R1A attenuates the alcohol-induced stimulation, accumbal dopamine release, and conditioned place preference as well as alcohol consumption in mice, implying that the GHS-R1A is required for alcohol reward. The present study further elucidates the role of ghrelin for alcohol-induced dopamine release in nucleus accumbens and locomotor stimulation by means of ghrelin knockout mice. We found that the ability of alcohol to increase accumbal dopamine release in wild-type mice is not observed in ghrelin knockout mice. Furthermore, alcohol induced a locomotor stimulation in the wild-type mice and ghrelin knockout mice; however, the locomotor stimulation in homozygote mice was significantly lower than in the wild-type mice. The present series of experiments suggest that endogenous ghrelin may be required for the ability of alcohol to activate the mesolimbic dopamine system. PMID:21145690

  16. Knockout Mice Challenge our Concepts of Glucose Homeostasis and the Pathogenesis of Diabetes

    PubMed Central

    2003-01-01

    A central component of type 2 diabetes and the metabolic syndrome is insulin resistance. Insulin exerts a multifaceted and highly integrated series of actions via its intracellular signaling systems. Generation of mice carrying null mutations of the genes encoding proteins in the insulin signaling pathway provides a unique approach to determining the role of individual proteins in the molecular mechanism of insulin action and the pathogenesis of insulin resistance and diabetes. The role of the four major insulin receptor substrates (IRS1-4) in insulin and IGF-1 signaling have been examined by creating mice with targeted gene knockouts. Each produces a unique phenotype, indicating the complementary role of these signaling components. Combined heterozygous defects often produce synergistic or epistatic effects, although the final severity of the phenotype depends on the genetic background of the mice. Conditional knockouts of the insulin receptor have also been created using the Cre-lox system. These tissue specific knockouts have provide unique insights into the control of glucose homeostasis and the pathogenesis of type 2 diabetes, and have led to development of new hypotheses about the nature of the insulin action and development of diabetes. PMID:15061645

  17. Cathepsin K knockout alleviates aging-induced cardiac dysfunction

    PubMed Central

    Hua, Yinan; Robinson, Timothy J; Cao, Yongtao; Shi, Guo-Ping; Ren, Jun; Nair, Sreejayan

    2015-01-01

    Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload-induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age-dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca2+ properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura-2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24-month-old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross-sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca2+ release compared to young (6-month-old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged-cathepsin K knockout mice compared to their wild-type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age-induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin-induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age-related decline in cardiac function via suppressing caspase-dependent and caspase-independent apoptosis. PMID:25692548

  18. Vibroacoustical behaviour of multilayered heterogeneous plates with elastic support and interface condition: Application to the case of the double-deck French high- speed train

    NASA Astrophysics Data System (ADS)

    Chabaud, Thierry Rene

    1998-10-01

    Mass Transit has to meet specifications of increasing difficulty which put in the forefront areas which were before considered as secondary. In particular, passengers acoustic comfort has become a major criterion, reflecting the requirements for quality transportation. The present work has its origin in this specific context and more specially in the intention of FAIVELEY TRANSPORT, a Railway equipment supplier, to improve the acoustic behaviour of its products. The aim of this study is the comprehension of the physical phenomena of the noise transmission through the doors of the transport vehicles, from outside to inside. The Railway access doors are the main application of this work. The considered frequency range is low frequencies below 500 Hz. The final objective is to notably reduce the transmitted noise in order to improve the passengers' acoustic comfort inside the transport vehicles. To do this, we developed a model based on an analytical integro-modal approach, associated with a Rayleigh-Ritz approximation. The original aspect of this work is to develop a model of a vibrating structure which take into account its multilayered and heterogeneous aspects and its complex boundary and interface conditions (linear and punctual elastic stiffness). This model is the basis of a specific software for preliminary design studies (VANTAIL) which is able to indicate, with a parametric study, the contribution of each different part of the doors to the global vibroacoustic behaviour. An experimental study on an industrial structure (the access door of the double deck French high speed train) permits us to validate the developed software, to define its limits and to validate the proposed vibroacoustic treatments.

  19. Effects of extreme thermal conditions on plasticity in breeding phenology and double-broodedness of Great Tits and Blue Tits in central Poland in 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Glądalski, Michał; Bańbura, Mirosława; Kaliński, Adam; Markowski, Marcin; Skwarska, Joanna; Wawrzyniak, Jarosław; Zieliński, Piotr; Bańbura, Jerzy

    2016-03-01

    Many avian species in Europe breed earlier as a result of higher temperatures caused by global climate changes. Climate change means not only higher temperatures but also more frequent extreme weather events, sometimes contrasting with the long-term trends. It was suggested that we should look closely at every extreme phenomenon and its consequences for the phenology of organisms. Examining the limits of phenotypic plasticity may be an important goal for future research. Extremely low spring temperatures in 2013 (coldest spring in 40 years) resulted in birds laying unusually late, and it was followed in 2014 by the earliest breeding season on record (warmest spring in 40 years). Here, we present results concerning breeding phenology and double-broodedness in the Great Tit (Parus major) and the Blue Tit (Cyanistes caeruleus) in 2013 and 2014 in an urban parkland and a deciduous forest in central Poland. Great Tits started laying eggs 18.2 days later in 2013 than in 2014 in the parkland, whereas the analogous difference was 21.1 days in the forest. Blue Tits started laying eggs in the parkland 18.5 days later in 2013 than in 2014, while the analogous difference was 21.6 days in the forest. The difference in the proportion of second clutches in Great Tits between 2013 (fewer second clutches) and 2014 (more second clutches) was highly significant in the parkland and in the forest. This rather large extent of breeding plasticity has developed in reaction to challenges of irregular inter-annual variability of climatic conditions. Such a buffer of plasticity may be sufficient for Blue Tits and Great Tits to adjust the timing of breeding to the upcoming climate changes.

  20. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation

    PubMed Central

    Shinmyo, Yohei; Tanaka, Satoshi; Tsunoda, Shinichi; Hosomichi, Kazuyoshi; Tajima, Atsushi; Kawasaki, Hiroshi

    2016-01-01

    The CRISPR/Cas9 system has recently been adapted for generating knockout mice to investigate physiological functions and pathological mechanisms. Here, we report a highly efficient procedure for brain-specific disruption of genes of interest in vivo. We constructed pX330 plasmids expressing humanized Cas9 and single-guide RNAs (sgRNAs) against the Satb2 gene, which encodes an AT-rich DNA-binding transcription factor and is responsible for callosal axon projections in the developing mouse brain. We first confirmed that these constructs efficiently induced double-strand breaks (DSBs) in target sites of exogenous plasmids both in vitro and in vivo. We then found that the introduction of pX330-Satb2 into the developing mouse brain using in utero electroporation led to a dramatic reduction of Satb2 expression in the transfected cerebral cortex, suggesting DSBs had occurred in the Satb2 gene with high efficiency. Furthermore, we found that Cas9-mediated targeting of the Satb2 gene induced abnormalities in axonal projection patterns, which is consistent with the phenotypes previously observed in Satb2 mutant mice. Introduction of pX330-NeuN using our procedure also resulted in the efficient disruption of the NeuN gene. Thus, our procedure combining the CRISPR/Cas9 system and in utero electroporation is an effective and rapid approach to achieve brain-specific gene knockout in vivo. PMID:26857612

  1. Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice

    PubMed Central

    Hiebert, P R; Wu, D; Granville, D J

    2013-01-01

    Chronic inflammation and excessive protease activity have a major role in the persistence of non-healing wounds. Granzyme B (GzmB) is a serine protease expressed during chronic inflammation that, in conjunction with perforin, has a well-established role in initiating apoptotic cell death. GzmB is also capable of acting extracellularly, independent of perforin and can degrade several extracellular matrix (ECM) proteins that are critical during wound healing. We used apolipoprotein E (ApoE) knockout (AKO) mice as a novel model of chronic inflammation and impaired wound healing to investigate the role of GzmB in chronic wounds. Wild-type and AKO mice were grown to 7 weeks (young) or 37 weeks (old) of age on a regular chow or high-fat diet (HFD), given a 1-cm diameter full thickness wound on their mid dorsum and allowed to heal for 16 days. Old AKO mice fed a HFD exhibited reduced wound closure, delayed contraction, chronic inflammation and altered ECM remodeling. Conversely, GzmB/ApoE double knockout mice displayed improved wound closure and contraction rates. In addition, murine GzmB was found to degrade both fibronectin and vitronectin derived from healthy mouse granulation tissue. In addition, GzmB-mediated degradation of fibronectin generated a fragment similar in size to that observed in non-healing mouse wounds. These results provide the first direct evidence that GzmB contributes to chronic wound healing in part through degradation of ECM. PMID:23912712

  2. Generation and characterization of RAG2 knockout pigs as animal model for severe combined immunodeficiency.

    PubMed

    Suzuki, Shunichi; Iwamoto, Masaki; Hashimoto, Michiko; Suzuki, Misae; Nakai, Michiko; Fuchimoto, Daiichiro; Sembon, Shoichiro; Eguchi-Ogawa, Tomoko; Uenishi, Hirohide; Onishi, Akira

    2016-10-01

    Pigs with severe combined immunodeficiency (SCID) are versatile animal models for human medical research because of their biological similarities to humans, suitable body size, and longevity for practical research. SCID pigs with defined mutation(s) can be an invaluable tool for research on porcine immunity. In this study, we produced RAG2-knockout pigs via somatic cell nuclear transfer and analyzed their phenotype. The V(D)J recombination processes were confirmed as being inactivated. They consistently lacked mature T and B cells but had substantial numbers of cells considered to be T- or B-cell progenitors as well as NK cells. They also lacked thymic medulla and lymphoid aggregations in the spleen, mesenteric lymph nodes, and ileal Peyer's patches. We showed more severe immunological defects in the RAG2 and IL2RG double-knockout pig through this study. Thus, SCID pigs could be promising animal models not only for translational medical research but also for immunological studies of pigs themselves. PMID:27496741

  3. A new ecamsule-containing SPF 40 sunscreen cream for the prevention of polymorphous light eruption: a double-blind, randomized, controlled study in maximized outdoor conditions.

    PubMed

    DeLeo, Vincent A; Clark, Scott; Fowler, Joseph; Poncet, Michel; Loesche, Christian; Soto, Pascale

    2009-02-01

    Polymorphous light eruption (PMLE) is an idiopathic photodermatosis elicited by UV radiation (UVR). The objective of this double-blind, randomized, controlled, intraindividual, bilateral comparison was to determine the efficacy of the UVA filters (ecamsule, avobenzone) present in the new sun protection factor (SPF) 40 sunscreen cream in preventing PMLE in maximized outdoor conditions (ie, exaggerated sun exposure). Safety also was assessed. Each participant was treated with SPF 40 sunscreen cream containing ecamsule 3%, octocrylene 10%, avobenzone 2%, and titanium dioxide 5% (tetrad) on one side of the body and either an ecamsule-deprived (triad-E) or avobenzone-deprived (triad-A) cream on the other side. Participants were subsequently exposed to incremental doses of sunlight for up to 6 days. The primary efficacy assessment was a composite relative success rate with 3 components. Success was defined as either a delayed time to onset of PMLE or a lower global severity of PMLE comparing one side of the body to the other side in the same participant. Safety evaluations included systemic adverse events (AEs). Of the 144 participants enrolled and randomized, 22 did not experience PMLE during the study duration under these maximized sun exposure conditions. A significantly greater number of successes were detected on the tetrad-treated side compared with either triad: 41 of 73 participants (56%) versus 8 of 73 participants (11%; P<.001) in the triad-E treatment group and 26 of 71 participants (36%) versus 11 of 71 participants (16%; P=.02) in the triad-A treatment group. Polymorphous light eruption appeared later with the tetrad than with either triad. The global severity of the PMLE flares was significantly lower with the tetrad than with both triads at end point (P<.001 and P=.02 for tetrad vs triad-E and tetrad vs triad-A, respectively). In this study, the SPF 40 sunscreen cream containing ecamsule 3%, octocrylene 10%, avobenzone 2%, and titanium dioxide 5% prevented

  4. Monocular Elevation Deficiency - Double Elevator Palsy

    MedlinePlus

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? ...

  5. An analysis of T cell intrinsic roles of E2A by conditional gene disruption in the thymus.

    PubMed

    Pan, Lihua; Hanrahan, Jenifer; Li, Jie; Hale, Laura P; Zhuang, Yuan

    2002-04-15

    The importance of E2A transcription factors in T cell development has been demonstrated in studies of E2A-deficient mice, which display abnormal T cell development and a high frequency of T cell lymphomas. Because E2A expression is not restricted to the T cell lineage, the primary cause of the T cell phenotype in E2A-deficient mice was not fully determined. To further investigate the role of E2A in T cell lineage, we generated mice with the E2A gene disrupted exclusively during thymocyte development using the Cre-lox system. We show that this system allows E2A gene disruption to occur throughout the double-negative stage of thymocyte development. E2A deletion appears to be completed before development reaches the double-positive stage. Consistent with the gene disruption, these mice reveal a T cell intrinsic role for E2A during the transition from the double-negative stage to the double-positive stage of thymocyte development. In contrast to germline E2A knockout mice, conditional E2A knockout mice do not develop T cell lymphoma. This work establishes a new model for further investigating E2A function in T cell development and leukemiogenesis. PMID:11937548

  6. Maximal Oxygen Consumption Is Reduced in Aquaporin-1 Knockout Mice.

    PubMed

    Al-Samir, Samer; Goossens, Dominique; Cartron, Jean-Pierre; Nielsen, Søren; Scherbarth, Frank; Steinlechner, Stephan; Gros, Gerolf; Endeward, Volker

    2016-01-01

    We have measured maximal oxygen consumption ([Formula: see text]O2,max) of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9, and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that [Formula: see text]O2,max as determined by the Helox technique is reduced by ~16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of [Formula: see text]O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2) by pulse oximetry. Neither under normoxic (inspiratory O2 21%) nor under hypoxic conditions (11% O2) is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of [Formula: see text]O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of [Formula: see text]O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced [Formula: see text]O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced [Formula: see text]O2,max, which constitutes a new phenotype of these mice. PMID:27559317

  7. Maximal Oxygen Consumption Is Reduced in Aquaporin-1 Knockout Mice

    PubMed Central

    Al-Samir, Samer; Goossens, Dominique; Cartron, Jean-Pierre; Nielsen, Søren; Scherbarth, Frank; Steinlechner, Stephan; Gros, Gerolf; Endeward, Volker

    2016-01-01

    We have measured maximal oxygen consumption (V˙O2,max) of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9, and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that V˙O2,max as determined by the Helox technique is reduced by ~16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of V˙O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2) by pulse oximetry. Neither under normoxic (inspiratory O2 21%) nor under hypoxic conditions (11% O2) is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of V˙O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of V˙O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced V˙O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced V˙O2,max, which constitutes a new phenotype of these mice. PMID:27559317

  8. Salty taste deficits in CALHM1 knockout mice.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212

  9. Comprehensive Behavioral Analysis of Cluster of Differentiation 47 Knockout Mice

    PubMed Central

    Koshimizu, Hisatsugu; Takao, Keizo; Matozaki, Takashi; Ohnishi, Hiroshi; Miyakawa, Tsuyoshi

    2014-01-01

    Cluster of differentiation 47 (CD47) is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein α (SIRPα), a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRPα fulfill various functions in the central nervous system (CNS), such as the modulation of synaptic transmission and neuronal cell survival. We previously reported that CD47 is involved in the regulation of depression-like behavior of mice in the forced swim test through its modulation of tyrosine phosphorylation of SIRPα. However, other potential behavioral functions of CD47 remain largely unknown. In this study, in an effort to further investigate functional roles of CD47 in the CNS, CD47 knockout (KO) mice and their wild-type littermates were subjected to a battery of behavioral tests. CD47 KO mice displayed decreased prepulse inhibition, while the startle response did not differ between genotypes. The mutants exhibited slightly but significantly decreased sociability and social novelty preference in Crawley’s three-chamber social approach test, whereas in social interaction tests in which experimental and stimulus mice have direct contact with each other in a freely moving setting in a novel environment or home cage, there were no significant differences between the genotypes. While previous studies suggested that CD47 regulates fear memory in the inhibitory avoidance test in rodents, our CD47 KO mice exhibited normal fear and spatial memory in the fear conditioning and the Barnes maze tests, respectively. These findings suggest that CD47 is potentially involved in the regulation of sensorimotor gating and social behavior in mice. PMID:24586890

  10. P2X6 Knockout Mice Exhibit Normal Electrolyte Homeostasis

    PubMed Central

    Viering, Daan H. H. M.; Bos, Caro; Bindels, René J. M.; Hoenderop, Joost G. J.

    2016-01-01

    ATP-mediated signaling is an important regulator of electrolyte transport in the kidney. The purinergic cation channel P2X6 has been previously localized to the distal convoluted tubule (DCT), a nephron segment important for Mg2+ and Na+ reabsorption, but its role in ion transport remains unknown. In this study, P2x6 knockout (P2x6-/-) mice were generated to investigate the role of P2X6 in renal electrolyte transport. The P2x6-/- animals displayed a normal phenotype and did not differ physiologically from wild type mice. Differences in serum concentration and 24-hrs urine excretion of Na+, K+, Mg2+ and Ca2+ were not detected between P2x6+/+, P2x6+/- and P2x6-/- mice. Quantitative PCR was applied to examine potential compensatory changes in renal expression levels of other P2x subunits and electrolyte transporters, including P2x1-5, P2x7, Trpm6, Ncc, Egf, Cldn16, Scnn1, Slc12a3, Slc41a1, Slc41a3, Cnnm2, Kcnj10 and Fxyd2. Additionally, protein levels of P2X2 and P2X4 were assessed in P2x6+/+ and P2x6-/- mouse kidneys. However, significant changes in expression were not detected. Furthermore, no compensatory changes in gene expression could be demonstrated in heart material isolated from P2x6-/- mice. Except for a significant (P<0.05) upregulation of P2x2 in the heart of P2x6-/- mice compared to the P2x6+/+ mice. Thus, our data suggests that purinergic signaling via P2X6 is not significantly involved in the regulation of renal electrolyte handling under normal physiological conditions. PMID:27254077

  11. Construction of Deletion-knockout Mutant Fowlpox Virus (FWPV)

    PubMed Central

    Laidlaw, Stephen M.; Skinner, Michael A.

    2016-01-01

    The construction of deletion-knockout poxviruses is a useful approach to determining the function of specific virus genes. This protocol is an adaptation of the transient dominant knockout selection protocol published by Falkner and Moss (1990) for use with vaccinia virus. The protocol makes use of the dominant selectable marker Escherichia coli guanine phosphoribosyltransferase (gpt) gene (Mulligan and Berg, 1981), under the control of an early/late poxvirus promoter. The deletion viruses that are produced no longer contain a selectable marker, which may be preferable for the production of vaccines.

  12. Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology

    PubMed Central

    Zuo, Qisheng; Wang, Yinjie; Cheng, Shaoze; Lian, Chao; Tang, Beibei; Wang, Fei; Lu, Zhenyu; Ji, Yanqing; Zhao, Ruifeng; Zhang, Wenhui; Jin, Kai; Song, Jiuzhou; Zhang, Yani; Li, Bichun

    2016-01-01

    The present study established an efficient genome editing approach for the construction of stable transgenic cell lines of the domestic chicken (Gallus gallus domesticus). Our objectives were to facilitate the breeding of high-yield, high-quality chicken strains, and to investigate gene function in chicken stem cells. Three guide RNA (gRNAs) were designed to knockout the C2EIP gene, and knockout efficiency was evaluated in DF-1 chicken fibroblasts and chicken ESCs using the luciferase single-strand annealing (SSA) recombination assay, T7 endonuclease I (T7EI) assay, and TA clone sequencing. In addition, the polyethylenimine-encapsulated Cas9/gRNA plasmid was injected into fresh fertilized eggs. At 4.5 d later, frozen sections of the embryos were prepared, and knockout efficiency was evaluated by the T7EI assay. SSA assay results showed that luciferase activity of the vector expressing gRNA-3 was double that of the control. Results of the T7EI assay and TA clone sequencing indicated that Cas9/gRNA vector-mediated gene knockdown efficiency was approximately 27% in both DF-1 cells and ESCs. The CRISPR/Cas9 vector was also expressed in chicken embryos, resulting in gene knockdown in three of the 20 embryos (gene knockdown efficiency 15%). Taken together, our results indicate that the CRISPR/Cas9 system can mediate stable gene knockdown at the cell and embryo levels in domestic chickens. PMID:27172204

  13. Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology.

    PubMed

    Zuo, Qisheng; Wang, Yinjie; Cheng, Shaoze; Lian, Chao; Tang, Beibei; Wang, Fei; Lu, Zhenyu; Ji, Yanqing; Zhao, Ruifeng; Zhang, Wenhui; Jin, Kai; Song, Jiuzhou; Zhang, Yani; Li, Bichun

    2016-01-01

    The present study established an efficient genome editing approach for the construction of stable transgenic cell lines of the domestic chicken (Gallus gallus domesticus). Our objectives were to facilitate the breeding of high-yield, high-quality chicken strains, and to investigate gene function in chicken stem cells. Three guide RNA (gRNAs) were designed to knockout the C2EIP gene, and knockout efficiency was evaluated in DF-1 chicken fibroblasts and chicken ESCs using the luciferase single-strand annealing (SSA) recombination assay, T7 endonuclease I (T7EI) assay, and TA clone sequencing. In addition, the polyethylenimine-encapsulated Cas9/gRNA plasmid was injected into fresh fertilized eggs. At 4.5 d later, frozen sections of the embryos were prepared, and knockout efficiency was evaluated by the T7EI assay. SSA assay results showed that luciferase activity of the vector expressing gRNA-3 was double that of the control. Results of the T7EI assay and TA clone sequencing indicated that Cas9/gRNA vector-mediated gene knockdown efficiency was approximately 27% in both DF-1 cells and ESCs. The CRISPR/Cas9 vector was also expressed in chicken embryos, resulting in gene knockdown in three of the 20 embryos (gene knockdown efficiency 15%). Taken together, our results indicate that the CRISPR/Cas9 system can mediate stable gene knockdown at the cell and embryo levels in domestic chickens. PMID:27172204

  14. The Impact of Remote Ischemic Pre-Conditioning on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography and Angioplasty: A Double-Blind Randomized Clinical Trial

    PubMed Central

    Gholoobi, Arash; Sajjadi, Seyyed Masoud; Shabestari, Mahmoud Mohammadzadeh; Eshraghi, Ali; Shamloo, Alireza Sepehri

    2015-01-01

    Background and objective Contrast-induced nephropathy (CIN) is an acute major complication following intravascular administration of iodinated contrast agents; however, the best approach for preventing CIN is not clear. Remote ischemic pre-conditioning (RIPC) is a new, non-pharmacological method that has been considered for the prevention of CIN following coronary angiography. This study assessed the effects of RIPC with four brief episodes of upper limb ischemia and reperfusion in the prevention of contrast-induced nephropathy (CIN) after coronary angiography and/or angioplasty. Methods In this double-blind randomized clinical trial, we enrolled 51 patients with chronic stable angina and non-ST elevation acute coronary syndrome (NSTE.ACS), and they underwent coronary angiography and/or angioplasty. Standard fluid therapy with normal saline was prescribed for all patients before and after the procedure. The patients were divided into two groups, i.e., a study group of patients who had undergone RIPC intervention and a control group of patients who had not undergone RIPC. One hour before the procedure, a sphygmomanometer cuff was placed around one arm and inflated up to 50 mmHg above the systolic pressure for five minutes; then, the cuff was deflated for another five minutes, and this cycle was repeated four times. The patients’ serum creatinine levels were measured at baseline and 48 hours after the procedure, and the incidence of CIN was calculated. Results Twenty-one males and 30 females were studied in two groups, i.e., an RIPC intervention group (n = 25) and a control group (n = 26) that were homogenous considering baseline characteristics. No significant difference was observed in the mean level of serum creatinine between the two groups at a post-intervention time of 48 hours (RICP: 1.74 ± 0.70 mg/dL vs. Control: 1.75 ± 0.87 mg/dL; P = 0.64). However, a lower incidence rate of CIN was observed 48 hours after the administration of the contrast medium in

  15. [A comparison of the knockout efficiencies of two codon-optimized Cas9 coding sequences in zebrafish embryos].

    PubMed

    Fenghua, Zhang; Houpeng, Wang; Siyu, Huang; Feng, Xiong; Zuoyan, Zhu; Yonghua, Sun

    2016-02-01

    Recent years have witnessed the rapid development of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas9)system. In order to realize gene knockout with high efficiency and specificity in zebrafish, several labs have synthesized distinct Cas9 cDNA sequences which were cloned into different vectors. In this study, we chose two commonly used zebrafish-codon-optimized Cas9 coding sequences (zCas9_bz, zCas9_wc) from two different labs, and utilized them to knockout seven genes in zebrafish embryos, including the exogenous egfp and six endogenous genes (chd, hbegfa, th, eef1a1b, tyr and tcf7l1a). We compared the knockout efficiencies resulting from the two zCas9 coding sequences, by direct sequencing of PCR products, colony sequencing and phenotypic analysis. The results showed that the knockout efficiency of zCas9_wc was higher than that of zCas9_bz in all conditions. PMID:26907778

  16. CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18.

    PubMed

    Chu, H W; Rios, C; Huang, C; Wesolowska-Andersen, A; Burchard, E G; O'Connor, B P; Fingerlin, T E; Nichols, D; Reynolds, S D; Seibold, M A

    2015-10-01

    Targeted knockout of genes in primary human cells using CRISPR-Cas9-mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a proinflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9-mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a proinflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli. PMID:26043872

  17. One-neutron knockout from 51-55 Sc

    NASA Astrophysics Data System (ADS)

    Schwertel, S.; Maierbeck, P.; Krücken, R.; Gernhäuser, R.; Kröll, T.; Alvarez-Pol, H.; Aksouh, F.; Aumann, T.; Behr, K.; Benjamim, E. A.; Benlliure, J.; Bildstein, V.; Böhmer, M.; Boretzky, K.; Borge, M. J. G.; Brünle, A.; Bürger, A.; Caamaño, M.; Casarejos, E.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Enders, J.; Eppinger, K.; Faestermann, T.; Friese, J.; Fabbietti, L.; Gascón, M.; Geissel, H.; Gerl, J.; Gorska, M.; Hansen, P. G.; Jonson, B.; Kanungo, R.; Kiselev, O.; Kojouharov, I.; Klimkiewicz, A.; Kurtukian, T.; Kurz, N.; Larsson, K.; Le Bleis, T.; Mahata, K.; Maier, L.; Nilsson, T.; Nociforo, C.; Nyman, G.; Pascual-Izarra, C.; Perea, A.; Perez, D.; Prochazka, A.; Rodriguez-Tajes, C.; Rossi, D.; Schaffner, H.; Schrieder, G.; Simon, H.; Sitar, B.; Stanoiu, M.; Sümmerer, K.; Tengblad, O.; Weick, H.; Winkler, S.; Brown, B. A.; Otsuka, T.; Tostevin, J. A.; Rae, W. D. M.

    2012-12-01

    Results are presented from a one-neutron knockout experiment at relativistic energies of ≈ 420 A MeV on 51-55Sc using the GSI Fragment Separator as a two-stage magnetic spectrometer and the MINIBALL array for gamma-ray detection. Inclusive longitudinal momentum distributions and cross-sections were measured enabling the determination of the contributions corresponding to knockout from the ν p_{1/2} , ν p_{3/2} , ( L = 1 and ν f_{7/2} , ν f_{5/2} ( L = 3 neutron orbitals. The observed L = 1 and L = 3 contributions are compared with theoretical cross-sections using eikonal knockout theory and spectroscopic factors from shell model calculations using the GXPF1A interaction. The measured inclusive knockout cross-sections generally follow the trends expected theoretically and given by the spectroscopic strength predicted from the shell model calculations. However, the deduced L = 1 cross-sections are generally 30-40% higher while the L = 3 contributions are about a factor of two smaller than predicted. This points to a promotion of neutrons from the ν f_{7/2} to the ν p_{3/2} orbital indicating a weakening of the N = 28 shell gap in these nuclei. While this is not predicted for the phenomenological GXPF1A interaction such a weakening is predicted by recent calculations using realistic low-momentum interactions V_{low k} obtained by evolving a chiral N3LO nucleon-nucleon potential.

  18. Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions.

    PubMed

    Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho

    2014-06-25

    We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation. PMID:24827163

  19. Hepatic changes in metabolic gene expression in old ghrelin and ghrelin receptor knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin knockout (GKO) and ghrelin receptor (growth hormone secretagogue receptor) knockout (GHSRKO) mice exhibit enhanced insulin sensitivity, but the mechanism is unclear. Insulin sensitivity declines with age and is inversely associated with accumulation of lipid in liver, a key glucoregulatory ...

  20. Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice.

    PubMed

    Liu, Yan; Sun, Jiandong; Wang, Yubin; Lopez, Dulce; Tran, Jennifer; Bi, Xiaoning; Baudry, Michel

    2016-08-01

    Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation- (TBS) induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression impairs hippocampus-dependent learning. We previously showed that TBS-induced LTP was associated with calpain-1 mediated truncation of PHLPP1.To better understand the roles of these 2 genes in synaptic plasticity and learning and memory, we generated a double knockout (DKO) mouse by crossing the parent strains. Surprisingly, DKO mice exhibit normal TBS-induced LTP, and the learning impairments in fear conditioning and novel object or novel location recognition were absent in the DKO mice. Moreover, TBS-induced ERK activation in field CA1 of hippocampal slices, which is impaired in both single deletion mice, was restored in the DKO mice. These results further strengthen the roles of both CANP1 and PHLPP1 in synaptic plasticity and learning and memory, and illustrate the complexities of the interactions between multiple pathways participating in synaptic plasticity. PMID:27421891

  1. Behavioral characterization of P311 knockout mice

    PubMed Central

    Taylor, Gregory A.; Rodriguiz, Ramona M.; Greene, Robert I.; Daniell, Xiaoju; Henry, Stanley C.; Crooks, Kristy R.; Kotloski, Robert; Tessarollo, Lino; Phillips, Lindsey E.; Wetsel, William C.

    2013-01-01

    P311 is an 8-kDa protein that is expressed in many brain regions, particularly the hippocampus, cerebellum and olfactory lobes, and is under stringent regulation by developmental, mitogenic and other physiological stimuli. P311 is thought to be involved in the transformation and motility of neural cells; however, its role in normal brain physiology is undefined. To address this point, P311-deficient mice were developed through gene targeting and their behaviors were characterized. Mutants displayed no overt abnormalities, bred normally and had normal survival rates. Additionally, no deficiencies were noted in motor co-ordination, balance, hearing or olfactory discrimination. Nevertheless, P311-deficient mice showed altered behavioral responses in learning and memory. These included impaired responses in social transmission of food preference, Morris water maze and contextual fear conditioning. Additionally, mutants displayed altered emotional responses as indicated by decreased freezing in contextual and cued fear conditioning and reduced fear-potentiated startle. Together, these data establish P311 as playing an important role in learning and memory processes and emotional responses. PMID:18616608

  2. Spectroscopy of 23F by quasi-free proton knockout reaction

    NASA Astrophysics Data System (ADS)

    Tang, Tsz Leung

    2014-09-01

    The separation energy of quasi-free proton knockout reactioncan be a good probe for the single particle energy of each orbit inside a nucleus. The spectroscopic factor can also bededuced from the measured cross section. The effective single particle energy (ESPE)can then be calculated as a spectroscopic factor weighted mean of single particle energy. The ESPE can reveal the strength of spin-orbit splitting. This splitting is further related to the effects of tensor force, 3N force and spin-orbit coupling of nuclear force. Florine has 1 proton on the s-d shell. The single particle picture should be suitable to explain its behavior. However, in the neutron rich isotopes, this picture may be broken due to the effect of excessive neutrons on the s-d shell. The possible effects are s-d shell mixing and reduction of shell gap energy. We are going to present the experimental setup and condition, data analysis process and the latest data analysis result for exclusive measurement of F(p,2p)O* knockout reaction. The excitation energy spectrum of residual nucleus will be discussed. The yield will be compared with the theoretical calculation of the cross section by code THREEDEE. The separation energy of quasi-free proton knockout reactioncan be a good probe for the single particle energy of each orbit inside a nucleus. The spectroscopic factor can also bededuced from the measured cross section. The effective single particle energy (ESPE)can then be calculated as a spectroscopic factor weighted mean of single particle energy. The ESPE can reveal the strength of spin-orbit splitting. This splitting is further related to the effects of tensor force, 3N force and spin-orbit coupling of nuclear force. Florine has 1 proton on the s-d shell. The single particle picture should be suitable to explain its behavior. However, in the neutron rich isotopes, this picture may be broken due to the effect of excessive neutrons on the s-d shell. The possible effects are s-d shell mixing and

  3. Appetitively motivated instrumental learning in SynGAP heterozygous knockout mice.

    PubMed

    Muhia, Mary; Feldon, Joram; Knuesel, Irene; Yee, Benjamin K

    2009-10-01

    The synaptic Ras/Rap-GTPase-activating protein (SynGAP) regulates specific intracellular events following N-methyl-d-aspartate receptor (NMDAR) activation. Here, the impact of SynGAP heterozygous knockout (SG+/-) on NMDAR-dependent functions was assessed using different positive reinforcement schedules in instrumental conditioning. The knockout did not affect the temporal control of operant responding under a fixed interval (FI) schedule, but led to a putative enhancement in response vigor and/or disinhibition. When examined on differential reinforcement of low rates of response (DRL) schedules, SG+/- mice showed increased responding under DRL-4s and DRL-8s, without impairing the response efficiency (total rewards/total lever presses) because both rewarded and nonrewarded presses were elevated. Motivation was unaffected as evaluated using a progressive ratio (PR) schedule. Yet, SG+/- mice persisted in responding during extinction at the end of PR training, although an equivalent phenotype was not evident in extinction learning following FI-20s training. This extinction phenotype is therefore schedule-specific and cannot be generalized to Pavlovian conditioning. In conclusion, constitutive SynGAP reduction increases vigor in the execution of learned operant behavior without compromising its temporal control, yielding effects readily distinguishable from NMDAR blockade. PMID:19824778

  4. [From alcohol to liquid ecstasy (GHB)--a survey of old and modern knockout agents. Part 1: historic and classic knockout agents].

    PubMed

    Schütz, Harald; Jansen, Malin; Dettmeyer, Reinhard; Verhoff, Marcel A

    2011-01-01

    Alcohol has been the most important knockout drug in history and literature and continues to play an essential role up to now. Blunt force to the head in the form of a knockout punch is another mechanism leading to a transient loss of consciousness. Diethyl ether and chloroform are among the classical knockout substances. Although they have meanwhile been replaced by modern sedatives and hypnotics, their use is still observed in isolated cases. PMID:22039694

  5. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study.

    PubMed

    Chen, Yanyan; Xu, Yuanyuan; Zheng, Hongzhi; Fu, Jingqi; Hou, Yongyong; Wang, Huihui; Zhang, Qiang; Yamamoto, Masayuki; Pi, Jingbo

    2016-09-01

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. PMID:27453341

  6. Development of pyrF-based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica.

    PubMed

    Liu, Hailong; Han, Jing; Liu, Xiaoqing; Zhou, Jian; Xiang, Hua

    2011-06-20

    The haloarchaea Haloferax mediterranei and Haloarcula hispanica are both polyhydroxyalkanoate producers in the domain Archaea, and they are becoming increasingly attractive for research and biotechnology due to their unique genetic and metabolic features. To accelerate their genome-level genetic and metabolic analyses, we have developed specific and highly efficient gene knockout systems for these two haloarchaea. These gene knockout systems consist of a suicide plasmid vector with the pyrF gene as the selection marker and a uracil auxotrophic haloarchaeon (ΔpyrF) as the host. For in-frame deletion of a target gene, the suicide plasmid carrying the flanking region of the target gene was transferred into the corresponding ΔpyrF host. After positive selection of the single-crossover integration recombinants (pop-in) on AS-168SY medium without uracil and counterselection of the double-crossover pyrF-excised recombinants (pop-out) with 5-fluoroorotic acid (5-FOA), the target gene knockout mutants were confirmed by PCR and Southern blot analysis. We have demonstrated the effectiveness of these systems by knocking out the crtB gene which encodes a phytoene synthase in these haloarchaea. In conclusion, these well-developed knockout systems would greatly accelerate the functional genomic research of these halophilic archaea. PMID:21703550

  7. Creation and Preliminary Characterization of a Leptin Knockout Rat

    PubMed Central

    Vaira, Sergio; Yang, Chang; McCoy, Aaron; Keys, Kelly; Xue, Shurong; Weinstein, Edward J.; Novack, Deborah V.

    2012-01-01

    Leptin, a cytokine-like hormone secreted mainly by adipocytes, regulates various pathways centered on food intake and energy expenditure, including insulin sensitivity, fertility, immune system, and bone metabolism. Here, using zinc finger nuclease technology, we created the first leptin knockout rat. Homozygous leptin null rats are obese with significantly higher serum cholesterol, triglyceride, and insulin levels than wild-type controls. Neither gender produced offspring despite of repeated attempts. The leptin knockout rats also have depressed immune system. In addition, examination by microcomputed tomography of the femurs of the leptin null rats shows a significant increase in both trabecular bone mineral density and bone volume of the femur compared with wild-type littermates. Our model should be useful for many different fields of studies, such as obesity, diabetes, and bone metabolism-related illnesses. PMID:22948215

  8. Targeted gene knockout in chickens mediated by TALENs.

    PubMed

    Park, Tae Sub; Lee, Hong Jo; Kim, Ki Hyun; Kim, Jin-Soo; Han, Jae Yong

    2014-09-01

    Genetically modified animals are used for industrial applications as well as scientific research, and studies on these animals contribute to a better understanding of biological mechanisms. Gene targeting techniques have been developed to edit specific gene loci in the genome, but the conventional strategy of homologous recombination with a gene-targeted vector has low efficiency and many technical complications. Here, we generated specific gene knockout chickens through the use of transcription activator-like effector nuclease (TALEN)-mediated gene targeting. In this study, we accomplished targeted knockout of the ovalbumin (OV) gene in the chicken primordial germ cells, and OV gene mutant offspring were generated through test-cross analysis. TALENs successfully induced nucleotide deletion mutations of ORF shifts, resulting in loss of chicken OV gene function. Our results demonstrate that the TALEN technique used in the chicken primordial germ cell line is a powerful strategy to create specific genome-edited chickens safely for practical applications. PMID:25139993

  9. Pauli blocking and medium effects in nucleon knockout reactions

    SciTech Connect

    Bertulani, C. A.; De Conti, C.

    2010-06-15

    We study medium modifications of the nucleon-nucleon (NN) cross sections and their influence on the nucleon knockout reactions. Using the eikonal approximation, we compare the results obtained with free NN cross sections with those obtained with a purely geometrical treatment of Pauli blocking and with NN obtained with more elaborated Dirac-Bruecker methods. The medium effects are parametrized in terms of the baryon density. We focus on symmetric nuclear matter, although the geometrical Pauli blocking also allows for the treatment of asymmetric nuclear matter. It is shown that medium effects can change the nucleon knockout cross sections and momentum distributions up to 10% in the energy range E{sub lab}=50-300 MeV/nucleon. The effect is more evident in reactions involving halo nuclei.

  10. Knockout driven reactions in complex molecules and their clusters

    NASA Astrophysics Data System (ADS)

    Gatchell, Michael; Zettergren, Henning

    2016-08-01

    Energetic ions lose some of their kinetic energy when interacting with electrons or nuclei in matter. Here, we discuss combined experimental and theoretical studies on such impulse driven reactions in polycyclic aromatic hydrocarbons (PAHs), fullerenes, and pure or mixed clusters of these molecules. These studies show that the nature of excitation is important for how complex molecular systems respond to ion/atom impact. Rutherford-like nuclear scattering processes may lead to prompt atom knockout and formation of highly reactive fragments, while heating of the molecular electron clouds in general lead to formation of more stable and less reactive fragments. In this topical review, we focus on recent studies of knockout driven reactions, and present new calculations of the angular dependent threshold (displacement) energies for such processes in PAHs. The so-formed fragments may efficiently form covalent bonds with neighboring molecules in clusters. These unique molecular growth processes may be important in astrophysical environments such as low velocity shock waves.

  11. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    PubMed Central

    2014-01-01

    Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs. PMID:25126564

  12. Targeted gene knockout in chickens mediated by TALENs

    PubMed Central

    Park, Tae Sub; Lee, Hong Jo; Kim, Ki Hyun; Kim, Jin-Soo; Han, Jae Yong

    2014-01-01

    Genetically modified animals are used for industrial applications as well as scientific research, and studies on these animals contribute to a better understanding of biological mechanisms. Gene targeting techniques have been developed to edit specific gene loci in the genome, but the conventional strategy of homologous recombination with a gene-targeted vector has low efficiency and many technical complications. Here, we generated specific gene knockout chickens through the use of transcription activator-like effector nuclease (TALEN)-mediated gene targeting. In this study, we accomplished targeted knockout of the ovalbumin (OV) gene in the chicken primordial germ cells, and OV gene mutant offspring were generated through test-cross analysis. TALENs successfully induced nucleotide deletion mutations of ORF shifts, resulting in loss of chicken OV gene function. Our results demonstrate that the TALEN technique used in the chicken primordial germ cell line is a powerful strategy to create specific genome-edited chickens safely for practical applications. PMID:25139993

  13. Murine mentors: transgenic and knockout models of surgical disease.

    PubMed Central

    Arbeit, J M; Hirose, R

    1999-01-01

    OBJECTIVE: Transgenic and knockout technologies have emerged from the "molecular biology revolution" as unprecedented techniques for manipulating gene function in intact mice. The goals of this review are to outline the techniques of creating transgenic and knockout mice, and to demonstrate their use in elucidation of the molecular mechanisms underlying common surgical diseases. SUMMARY BACKGROUND DATA: Gain of gene function is created by transgenic technology, whereas gene function is ablated using gene knockouts. Each technique has distinctive applications and drawbacks. A unique feature of genetically manipulated mice is that combinatorial genetic experiments can be executed that precisely define the functional contribution of a gene to disease progression. Transgenic and knockout mouse models of wound healing, cardiovascular disease, transplant immunology, gut motility and inflammatory bowel disease, and oncology are beginning to illuminate the precise molecular regulation of these diseases. Transgenic technology has also been extended to larger mammals such as pigs, with the goal of using genetic manipulation of the xenogenic immune response to increase the availability of transplant organs. Continual refinements in gene manipulation technology in mice offer the opportunity to turn genes on or off at precise time intervals and in particular tissues, according to the needs of the investigator. Ultimately, investigation of disease development and progression in genetically manipulated mammals may delineate new molecular targets for drug discovery and provide novel platforms for drug efficacy screens. CONCLUSIONS: Emulation of human disease and therapy using genetically manipulated mammals fulfills a promise of molecular medicine: fusion of molecular biochemistry with "classical" biology and physiology. Surgeons have unique skills spanning both worlds that can facilitate their success in this expanding arena. PMID:9923797

  14. Generation of Gene Knockout Mice by ES Cell Microinjection

    PubMed Central

    Longenecker, Glenn; Kulkarni, Ashok B

    2009-01-01

    This unit lists and describes protocols used in the production of chimeric mice leading to the generation of gene knockout mice. These protocols include the collection of blastocyst embryos, ES cell injection, and uterine transfer of injected blastocysts. Support protocols in the superovulation of blastocyst donor mice, generation of pseudopregnant recipients, fabrication of glass pipettes, and generation of germline mice are also included. Practical tips and solutions are mentioned to help troubleshoot problems that may occur. PMID:19731226

  15. Effect of arylamine acetyltransferase Nat3 gene knockout on N-acetylation in the mouse.

    PubMed

    Sugamori, K S; Brenneman, D; Wong, S; Gaedigk, A; Yu, V; Abramovici, H; Rozmahel, R; Grant, D M

    2007-07-01

    Arylamine N-acetyltransferases (NAT) catalyze the biotransformation of many important arylamine drugs and procarcinogens. NAT can either detoxify or activate procarcinogens, complicating the manner in which these enzymes may participate in enhancing or preventing toxic responses to particular agents. Mice possess three NAT isoenzymes: Nat1, Nat2, and Nat3. Whereas Nat1 and Nat2 can efficiently acetylate many arylamines, few substrates appear to be appreciably metabolized by Nat3. We generated a Nat3 knockout mouse strain and used it along with our double Nat1/2(-/-) knockout strain to further investigate the functional role of Nat3. Nat3(-/-) mice showed normal viability and reproductive capacity. Nat3 expression was very low in wild-type animals and completely undetectable in Nat3(-/-) mice. In contrast, greatly elevated expression of Nat3 transcript was observed in Nat1/2(-/-) mice. We used a transcribed marker polymorphism approach to establish that the increased expression of Nat3 in Nat1/2(-/-) mice is a positional artifact of insertion of the phosphoglycerate kinase-neomycin resistance cassette in place of the Nat1/Nat2 gene region and upstream of the intact Nat3 gene, rather than a biological compensatory mechanism. Despite the increase in Nat3 transcript, the N-acetylation of p-aminosalicylate, sulfamethazine, 2-aminofluorene, and 4-aminobiphenyl was undetectable either in vivo or in vitro in Nat1/2(-/-) animals. In parallel, no difference was observed in the in vivo clearance or in vitro metabolism of any of these substrates between wild-type and Nat3(-/-) mice. Thus, Nat3 is unlikely to play a significant role in the N-acetylation of arylamines either in wild-type mice or in mice lacking Nat1 and Nat2 activities. PMID:17403913

  16. The evolution of thymic lymphomas in p53 knockout mice.

    PubMed

    Dudgeon, Crissy; Chan, Chang; Kang, Wenfeng; Sun, Yvonne; Emerson, Ryan; Robins, Harlan; Levine, Arnold J

    2014-12-01

    Germline deletion of the p53 gene in mice gives rise to spontaneous thymic (T-cell) lymphomas. In this study, the p53 knockout mouse was employed as a model to study the mutational evolution of tumorigenesis. The clonality of the T-cell repertoire from p53 knockout and wild-type thymic cells was analyzed at various ages employing TCRβ sequencing. These data demonstrate that p53 knockout thymic lymphomas arose in an oligoclonal fashion, with tumors evolving dominant clones over time. Exon sequencing of tumor DNA revealed that all of the independently derived oligoclonal mouse tumors had a deletion in the Pten gene prior to the formation of the TCRβ rearrangement, produced early in development. This was followed in each independent clone of the thymic lymphoma by the amplification or overexpression of cyclin Ds and Cdk6. Alterations in the expression of Ikaros were common and blocked further development of CD-4/CD-8 T cells. While the frequency of point mutations in the genome of these lymphomas was one per megabase, there were a tremendous number of copy number variations producing the tumors' driver mutations. The initial inherited loss of p53 functions appeared to delineate an order of genetic alterations selected for during the evolution of these thymic lymphomas. PMID:25452272

  17. Knock-out models reveal new aquaporin functions.

    PubMed

    Verkman, Alan S

    2009-01-01

    Knockout mice have been informative in the discovery of unexpected biological functions of aquaporins. Knockout mice have confirmed the predicted roles of aquaporins in transepithelial fluid transport, as in the urinary concentrating mechanism and glandular fluid secretion. A less obvious, though predictable role of aquaporins is in tissue swelling under stress, as in the brain in stroke, tumor and infection. Phenotype analysis of aquaporin knockout mice has revealed several unexpected cellular roles of aquaporins whose mechanisms are being elucidated. Aquaporins facilitate cell migration, as seen in aquaporin-dependent tumor angiogenesis and tumor metastasis, by a mechanism that may involve facilitated water transport in lamellipodia of migrating cells. The ' aquaglyceroporins', aquaporins that transport both glycerol and water, regulate glycerol content in epidermis, fat and other tissues, and lead to a multiplicity of interesting consequences of gene disruption including dry skin, resistance to skin carcinogenesis, impaired cell proliferation and altered fat metabolism. An even more surprising role of a mammalian aquaporin is in neural signal transduction in the central nervous system. The many roles of aquaporins might be exploited for clinical benefit by modulation of aquaporin expression/function - as diuretics, and in the treatment of brain swelling, glaucoma, epilepsy, obesity and cancer. PMID:19096787

  18. Monocular Elevation Deficiency - Double Elevator Palsy

    MedlinePlus

    ... Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? Monocular Elevation Deficiency, also known by the ...

  19. Double layers without current

    SciTech Connect

    Perkins, F.W.; Sun, Y.C.

    1980-11-01

    The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a nonlinear eigenvalue problem for the case of double-layer (potential drop) boundary conditions. Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed. Suggestions for creating these states in experiments and computer simulations are offered.

  20. Immune malfunction in the GPR39 zinc receptor of knockout mice: Its relationship to depressive disorder.

    PubMed

    Młyniec, Katarzyna; Trojan, Ewa; Ślusarczyk, Joanna; Głombik, Katarzyna; Basta-Kaim, Agnieszka; Budziszewska, Bogusława; Skrzeszewski, Jakub; Siwek, Agata; Holst, Birgitte; Nowak, Gabriel

    2016-02-15

    Depression is a serious psychiatric disorder affecting not only the monaminergic, glutamatergic, and GABAergic neurosystems, but also the immune system. Patients suffering from depression show disturbance in the immune parameters as well as increased susceptibility to infections. Zinc is well known as an anti-inflammatory agent, and its link with depression has been proved, zinc deficiency causing depression- and anxiety-like behavior with immune malfunction. It has been discovered that trace-element zinc acts as a neurotransmitter in the central nervous system via zinc receptor GPR39. In this study we investigated whether GPR39 knockout would cause depressive-like behavior as measured by the forced swim test, and whether these changes would coexist with immune malfunction. In GPR39 knockout mice versus a wild-type control we found: i) depressive-like behavior; ii) significantly reduced thymus weight; (iii) reduced cell viability of splenocytes; iv) reduced proliferative response of splenocytes; and v) increased IL-6 production of splenocytes after ConA stimulation and decreased IL-1b and IL-6 release after LPS stimulation. The results indicate depressive-like behavior in GPR39 KO animals with an immune response similar to that observed in depressive disorder. Here for the first time we show immunological changes under GPR39-deficient conditions. PMID:26857489

  1. Epithelial-specific knockout of the Rac1 gene leads to enamel defects

    PubMed Central

    Huang, Zhan; Kim, Jieun; Lacruz, Rodrigo; Bringas, Pablo; Kaartinen, Vesa M.; Snead, Malcolm L.

    2015-01-01

    Rac1 encodes a 21kDa GTP-binding protein belonging to the RAS superfamily. RAS members play important roles in controlling focal adhesion complex formation and cytoskeleton contraction; activities with consequences to cell growth, adhesion, migration, and differentiation. To examine the role(s) played by Rac1 protein in cell-to-matrix interaction and in enamel matrix biomineralization we used the Cre/loxP binary recombination system to characterize enamel matrix proteins expression and enamel formation in Rac1 knockout mice. Mating between mice bearing the floxed Rac1 allele with mice bearing a keratin14-Cre transgene generate animals in which Rac1 is absent from epithelial organs. The enamel of Rac1 conditional knockout mouse was characterized by computerized tomography (microCT), light microscopy, histochemistry, and back-scatter electron microscopy. Enamel matrix protein expression was analyzed by Western blotting. Major findings showed that the Tomes’ processes of Rac1−/− ameloblasts loose contact with the forming enamel matrix in un-erupted teeth. The abundance of amelogenin and ameloblastin was reduced in the Rac1−/− ameloblasts. After eruption, the enamel from the Rac1−/− mice displayed severe structural defects with the complete loss of enamel. These results support an essential role for Rac1 function in the dental epithelium involving cell-matrix interaction and matrix biomineralization. PMID:22243243

  2. An IPTG Inducible Conditional Expression System for Mycobacteria

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Ramu, Haripriya; Mudugal, Naina Vinay; Tunduguru, Ragadeepthi; Anbarasu, Anand; Sharma, Umender K.; Sambandamurthy, Vasan K.; Ramaiah, Sudha

    2015-01-01

    Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression

  3. An IPTG Inducible Conditional Expression System for Mycobacteria.

    PubMed

    Ravishankar, Sudha; Ambady, Anisha; Ramu, Haripriya; Mudugal, Naina Vinay; Tunduguru, Ragadeepthi; Anbarasu, Anand; Sharma, Umender K; Sambandamurthy, Vasan K; Ramaiah, Sudha

    2015-01-01

    Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression

  4. Double layers and electrostatic shocks

    NASA Technical Reports Server (NTRS)

    Hershkowitz, N.

    1981-01-01

    It is shown that it is useful to define double layers and shocks so that the ion phase spaces of double layers are the mirror image (about zero ion velocity) of the ion phase spaces for laminar electrostatic shocks. The distinguishing feature is the direction of the free ion velocity. It is also shown that double layers can exist without the presence of trapped ions. The Bohm condition for double layers, that the ion drift velocity on the high potential side must be greater than the ion sound velocity, is shown to be related to a requirement of a lower limit on the Mach number of laminar electrostatic shocks

  5. Outer-shell double photoionization of CH2Cl2

    NASA Astrophysics Data System (ADS)

    Alcantara, K. F.; Gomes, A. H. A.; Wolff, W.; Sigaud, L.; Santos, A. C. F.

    2014-01-01

    In this work the roles of the shake-off and knockout processes in the double photoionization of the CH2Cl2 molecule have been studied. The probabilities for both mechanisms accompanying valence-shell photoionization have been estimated as a function of incident photon energy using Samson's (1990) [5] and Thomas's (1994) [3] models, respectively. The experimental results are in qualitative accord with the models.

  6. Pre-Equilibrium Cluster Emission with Pickup and Knockout

    SciTech Connect

    Betak, E.

    2005-05-24

    We present a generalization of the Iwamoto-Harada-Bisplinghoff pre-equilibrium model of light cluster formation and emission, which is enhanced by allowing for possible admixtures of knockout for strongly coupled ejectiles, like {alpha}'s. The model is able to attain the Weisskopf-Ewing formula for compound-nucleus decay at long-time limit; it keeps the philosophy of pre-equilibrium decay during the equilibration stage and it describes the initial phase of a reaction as direct process(es) expressed using the language of the exciton model.

  7. Loss of oocytes due to conditional ablation of Murine double minute 2 (Mdm2) gene is p53-dependent and results in female sterility.

    PubMed

    Livera, Gabriel; Uzbekov, Rustem; Jarrier, Peggy; Fouchécourt, Sophie; Duquenne, Clotilde; Parent, Anne-Simone; Marine, Jean-Christophe; Monget, Philippe

    2016-08-01

    Murine double minute 2 and 4 (Mdm2, Mdm4) are major p53-negative regulators, preventing thus uncontrolled apoptosis induction in numerous cell types, although their function in the female germ line has received little attention. In the present work, we have generated mice with specific invalidation of Mdm2 and Mdm4 genes in the mouse oocyte (Mdm2(Ocko) and Mdm4(Ocko) mice), to test their implication in survival of these germ cells. Most of the Mdm2(Ocko) but not Mdm4(Ocko) mice were sterile, with a dramatic reduction of the weight of ovaries and genital tract, a strong increase in follicle-stimulating hormone and luteinizing hormone serum levels, and a reduction of anti-mullerian hormone serum levels. Histological analyses revealed an obvious decrease of the number of growing follicles beyond the primary stage in Mdm2(Ocko) ovaries in comparison to controls, with a pronounced increase in the apparition of primary atretic follicles, most being devoid of oocyte. Similar phenotypes were observed with Mdm2(Ocko) Mdm4(Ocko) ovaries, with no worsening of the phenotype. However, we failed to detect any increase in p53 level in mutant oocytes, nor any other apoptotic marker, introgression of this targeted invalidation in p53-/- mice restored the fertility of females. This study is the first to show that Mdm2, but not Mdm4, has a critical role in oocyte survival and would be involved in premature ovarian insufficiency phenotype. PMID:27364741

  8. Fenoverine: smooth muscle synchronizer for the management of gastro-intestinal conditions. II. A trimebutine-controlled, double-blind, crossover clinical evaluation.

    PubMed

    Camarri, E

    1986-01-01

    A double-blind, crossover trial was carried out in 40 in-patients with gastro-intestinal spasmodic syndromes to compare the effectiveness and tolerance of fenoverine and trimebutine. Patients were allocated at random to receive either 100 mg fenoverine or 150 mg trimebutine 3-times daily for 20 days and were then crossed over, without a wash-out period, to the alternative medication for a further 20 days. After the first dose, pain severity was monitored over 4 hours and changes in intensity compared between groups. During the two 20-day periods, the proportion of patients in complete or almost complete remission was monitored at 10-day intervals, and the pooled data similarly compared. At the end of the 40-day trial period, patients stated their preference for one or other treatment, and the relevant data were processed by sequential analysis. Subjective signs of adverse effects were monitored by questioning every 10 days, and haematology and haematochemistry before and after each phase of the study. The results showed that fenoverine produced significantly greater pain relief after a single dose in comparison with trimebutine over the 4 hours of observation. Similarly, it gave significantly more favourable clinical results after both the 10th and 20th day of treatment. Finally, according to the patients' preference, fenoverine was significantly preferred (p less than 0.05) in comparison with trimebutine. Neither treatment was associated with the onset of signs of possible adverse reactions, either subjective or objective. PMID:3516580

  9. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  10. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice.

    PubMed

    Chen, Ting; Chen, Chang; Zhang, Zongze; Zou, Yufeng; Peng, Mian; Wang, Yanlin

    2016-08-01

    Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism