Science.gov

Sample records for conditioned fear memories

  1. [Mechanisms for regulation of fear conditioning and memory].

    PubMed

    Kida, Satoshi

    2014-11-01

    Pavlovian fear conditioning is a model of fear learning and memory. The mechanisms regulating fear conditioning and memory have been investigated in humans and rodents. In this paradigm, animals learn and memorize an association between a conditioned stimulus (CS), such as context, and an unconditioned stimulus (US), such as an electrical footshock that induces fear. Fear memory generated though fear conditioning is stabilized via a memory consolidation process. Moreover, recent studies have shown the existence of memory processes that control fear memory following the retrieval of consolidated memory. Indeed, when fear memory is retrieved by re-exposure to the CS, the retrieved memory is re-stabilized via the reconsolidation process. On the other hand, the retrieval of fear memory by prolonged re-exposure to the CS also leads to fear memory extinction, new inhibitory learning against the fear memory, in which animals learn that they do not need to respond to the CS. Importantly, the reinforcement of fear memory after retrieval (i.e., re-experience such as flashbacks or nightmares) has been thought to be associated with the development of emotional disorders such as post-traumatic stress disorder (PTSD). In this review, I summarize recent progress in studies on the mechanism of fear conditioning and memory consolidation, reconsolidation and extinction, and furthermore, introduce our recent establishment of a mouse PTSD model that shows enhancement of fear memory after retrieval. PMID:25536762

  2. Fear Memory.

    PubMed

    Izquierdo, Ivan; Furini, Cristiane R G; Myskiw, Jociane C

    2016-04-01

    Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general. PMID:26983799

  3. Hippocampal Structural Plasticity Accompanies the Resulting Contextual Fear Memory Following Stress and Fear Conditioning

    ERIC Educational Resources Information Center

    Giachero, Marcelo; Calfa, Gaston D.; Molina, Victor A.

    2013-01-01

    The present research investigated the resulting contextual fear memory and structural plasticity changes in the dorsal hippocampus (DH) following stress and fear conditioning. This combination enhanced fear retention and increased the number of total and mature dendritic spines in DH. Intra-basolateral amygdala (BLA) infusion of midazolam prior to…

  4. Effects of sleep on memory for conditioned fear and fear extinction

    PubMed Central

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. REM may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep’s effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. PMID:25894546

  5. Cotinine enhances the extinction of contextual fear memory and reduces anxiety after fear conditioning.

    PubMed

    Zeitlin, Ross; Patel, Sagar; Solomon, Rosalynn; Tran, John; Weeber, Edwin J; Echeverria, Valentina

    2012-03-17

    Posttraumatic stress disorder (PTSD) is an anxiety disorder triggered by traumatic events. Symptoms include anxiety, depression and deficits in fear memory extinction (FE). PTSD patients show a higher prevalence of cigarette smoking than the general population. The present study investigated the effects of cotinine, a tobacco-derived compound, over anxiety and contextual fear memory after fear conditioning (FC) in mice, a model for inducing PTSD-like symptoms. Two-month-old C57BL/6J mice were separated into three experimental groups. These groups were used to investigate the effect of pretreatment with cotinine on contextual fear memory and posttreatment on extinction and stability or retrievability of the fear memory. Also, changes induced by cotinine on the expression of extracellular signal-regulated kinase (ERK)1/2 were assessed after extinction in the hippocampus. An increase in anxiety and corticosterone levels were found after fear conditioning. Cotinine did not affect corticosterone levels but enhanced the extinction of contextual fear, decreased anxiety and the stability and/or retrievability of contextual fear memory. Cotinine-treated mice showed higher levels of the active forms of ERK1/2 than vehicle-treated mice after FC. This evidence suggests that cotinine is a potential new pharmacological treatment to reduce symptoms in individuals with PTSD. PMID:22137886

  6. Topiramate diminishes fear memory consolidation and extinguishes conditioned fear in rats

    PubMed Central

    do Prado-Lima, Pedro Antônio Schmidt; Perrenoud, Myriam Fortes; Kristensen, Christian Haag; Cammarota, Martin; Izquierdo, Ivan

    2011-01-01

    Background Topiramate has been recognized as a drug that can induce memory and cognitive impairment. Using the one-trial inhibitory avoidance task, we sought to verify the effect of topiramate on consolidation and extinction of aversive memory. Our hypothesis was that topiramate inhibits the consolidation and enhances the extinction of this fear memory. Methods In experiment 1, which occured immediately or 3 hours after training, topiramate was administered to rats, and consolidation of memory was verified 18 days after the conditioning session. In experiment 2, which occured 18–22 days after the training session, rats were submitted to the extinction protocol. Rats received topiramate 14 days before or during the extinction protocol. Results Topiramate blocked fear memory retention (p < 0.01) and enhanced fear memory extinction (p < 0.001) only when administered during the extinction protocol. Limitations This experimental design did not allow us to determine whether topiramate also blocked the reconsolidation of fear memory. Conclusion Topiramate diminishes fear memory consolidation and promotes extinction of inhibitory avoidance memory. PMID:21392483

  7. Effects of sleep on memory for conditioned fear and fear extinction.

    PubMed

    Pace-Schott, Edward F; Germain, Anne; Milad, Mohammed R

    2015-07-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning, and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. Rapid eye movement (REM) may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction, and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep's effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. (PsycINFO Database Record PMID:25894546

  8. Brain Region-Specific Activity Patterns after Recent or Remote Memory Retrieval of Auditory Conditioned Fear

    ERIC Educational Resources Information Center

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-01-01

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…

  9. Influence of stress on fear memory processes in an aversive differential conditioning paradigm in humans.

    PubMed

    Bentz, Dorothée; Michael, Tanja; Wilhelm, Frank H; Hartmann, Francina R; Kunz, Sabrina; von Rohr, Isabelle R Rudolf; de Quervain, Dominique J-F

    2013-07-01

    It is widely assumed that learning and memory processes play an important role in the pathogenesis, expression, maintenance and therapy of anxiety disorders, such as phobias or post-traumatic stress disorder (PTSD). Memory retrieval is involved in symptom expression and maintenance of these disorders, while memory extinction is believed to be the underlying mechanism of behavioral exposure therapy of anxiety disorders. There is abundant evidence that stress and stress hormones can reduce memory retrieval of emotional information, whereas they enhance memory consolidation of extinction training. In this study we aimed at investigating if stress affects these memory processes in a fear conditioning paradigm in healthy human subjects. On day 1, fear memory was acquired through a standard differential fear conditioning procedure. On day 2 (24h after fear acquisition), participants either underwent a stressful cold pressor test (CPT) or a control condition, 20 min before memory retrieval testing and extinction training. Possible prolonged effects of the stress manipulation were investigated on day 3 (48 h after fear acquisition), when memory retrieval and extinction were tested again. On day 2, men in the stress group showed a robust cortisol response to stress and showed lower unconditioned stimulus (US) expectancy ratings than men in the control group. This reduction in fear memory retrieval was maintained on day 3. In women, who showed a significantly smaller cortisol response to stress than men, no stress effects on fear memory retrieval were observed. No group differences were observed with respect to extinction. In conclusion, the present study provides evidence that stress can reduce memory retrieval of conditioned fear in men. Our findings may contribute to the understanding of the effects of stress and glucocorticoids on fear symptoms in anxiety disorders and suggest that such effects may be sex-specific. PMID:23333200

  10. Noradrenergic Blockade of Memory Reconsolidation: A Failure to Reduce Conditioned Fear Responding

    PubMed Central

    Bos, Marieke Geerte Nynke; Beckers, Tom; Kindt, Merel

    2014-01-01

    Upon recall, a memory can enter a labile state in which it requires new protein synthesis to restabilize. This two-phased reconsolidation process raises the prospect to directly target excessive fear memory as opposed to the formation of inhibitory memory following extinction training. In our previous studies, we convincingly demonstrated that 40 mg propranolol HCl administration before or after memory reactivation eliminated the emotional expression of fear memory indexed by the fear potentiated startle reflex. To apply this procedure in clinical practice it is important to understand the optimal and boundary conditions of this procedure. As part of a large project aimed at unraveling putative boundary conditions of disrupting reconsolidation of associative fear memory with propranolol HCl, we again tested our memory reconsolidation procedure. Participants (N = 44) underwent a three-day differential fear conditioning procedure. Twenty-four hours after fear acquisition, participants received 40 mg propranolol HCl prior to memory reactivation. The next day, participants were subjected to extinction training and reinstatement testing. In sharp contrast to our previous findings, propranolol HCl before memory reactivation did not attenuate the startle fear response. Remarkably, the startle fear response even persisted during extinction training and did not show the usually observed gradual decline in conditioned physiological responding (startle potentiation and skin conductance) upon repeated unreinforced trials. We discuss these unexpected findings and propose some potential explanations. It remains, however, unclear why we observed a resistance to reduce conditioned fear responding by either disrupting reconsolidation or extinction training. The present results underscore that the success of human fear conditioning research may depend on subtle manipulations and instructions. PMID:25506319

  11. Brain region-specific activity patterns after recent or remote memory retrieval of auditory conditioned fear.

    PubMed

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-01-01

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or retrieval. To investigate this possibility, we systematically imaged the brain activity patterns in the lateral amygdala, MGm/PIN, and AuV/TeA using activity-dependent induction of immediate early gene zif268 after recent and remote memory retrieval of auditory conditioned fear. Consistent with the critical role of the amygdala in fear memory, the zif268 activity in the lateral amygdala was significantly increased after both recent and remote memory retrieval. Interesting, however, the density of zif268 (+) neurons in both MGm/PIN and AuV/TeA, particularly in layers IV and VI, was increased only after remote but not recent fear memory retrieval compared to control groups. Further analysis of zif268 signals in AuV/TeA revealed that conditioned tone induced stronger zif268 induction compared to familiar tone in each individual zif268 (+) neuron after recent memory retrieval. Taken together, our results support that the lateral amygdala is a key brain site for permanent fear memory storage and suggest that MGm/PIN and AuV/TeA might play a role for remote memory storage or retrieval of auditory conditioned fear, or, alternatively, that these auditory brain regions might have a different way of processing for familiar or conditioned tone information at recent and remote time phases. PMID:22993170

  12. Relationship between Fear Conditionability and Aversive Memories: Evidence from a Novel Conditioned-Intrusion Paradigm

    PubMed Central

    Wegerer, Melanie; Blechert, Jens; Kerschbaum, Hubert; Wilhelm, Frank H.

    2013-01-01

    Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed. PMID:24244407

  13. Altered resting-state brain activity at functional MRI during automatic memory consolidation of fear conditioning.

    PubMed

    Feng, Tingyong; Feng, Pan; Chen, Zhencai

    2013-07-26

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of automatic memory consolidation of fear conditioning is still unclear. To address this question, we measured brain activity following fear acquisition using resting-state functional magnetic resonance imaging (rs-fMRI). In the current study, we used a marker of fMRI, amplitude of low-frequency (0.01-0.08Hz) fluctuation (ALFF) to quantify the spontaneous brain activity. Brain activity correlated to fear memory consolidation was observed in parahippocampus, insula, and thalamus in resting-state. Furthermore, after acquired fear conditioning, compared with control group some brain areas showed ALFF increased in ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) in the experimental group, whereas some brain areas showed decreased ALFF in striatal regions (caudate, putamen). Moreover, the change of ALFF in vmPFC was positively correlated with the subjective fear ratings. These findings suggest that the parahippocampus, insula, and thalamus are the neural substrates of fear memory consolidation. The difference in activity could be attributed to a homeostatic process in which the vmPFC and ACC were involved in the fear recovery process, and change of ALFF in vmPFC predicts subjective fear ratings. PMID:23726994

  14. Inhibition of prefrontal protein synthesis following recall does not disrupt memory for trace fear conditioning

    PubMed Central

    Blum, Sonja; Runyan, Jason D; Dash, Pramod K

    2006-01-01

    Background The extent of similarity between consolidation and reconsolidation is not yet fully understood. One of the differences noted is that not every brain region involved in consolidation exhibits reconsolidation. In trace fear conditioning, the hippocampus and the medial prefrontal cortex (mPFC) are required for consolidation of long-term memory. We have previously demonstrated that trace fear memory is susceptible to infusion of the protein synthesis inhibitor anisomycin into the hippocampus following recall. In the present study, we examine whether protein synthesis inhibition in the mPFC following recall similarly results in the observation of reconsolidation of trace fear memory. Results Targeted intra-mPFC infusions of anisomycin or vehicle were performed immediately following recall of trace fear memory at 24 hours, or at 30 days, following training in a one-day or a two-day protocol. The present study demonstrates three key findings: 1) trace fear memory does not undergo protein synthesis dependent reconsolidation in the PFC, regardless of the intensity of the training, and 2) regardless of whether the memory is recent or remote, and 3) intra-mPFC inhibition of protein synthesis immediately following training impaired remote (30 days) memory. Conclusion These results suggest that not all structures that participate in memory storage are involved in reconsolidation. Alternatively, certain types of memory-related information may reconsolidate, while other components of memory may not. PMID:17026758

  15. Revealing Context-Specific Conditioned Fear Memories with Full Immersion Virtual Reality

    PubMed Central

    Huff, Nicole C.; Hernandez, Jose Alba; Fecteau, Matthew E.; Zielinski, David J.; Brady, Rachael; LaBar, Kevin S.

    2011-01-01

    The extinction of conditioned fear is known to be context-specific and is often considered more contextually bound than the fear memory itself (Bouton, 2004). Yet, recent findings in rodents have challenged the notion that contextual fear retention is initially generalized. The context-specificity of a cued fear memory to the learning context has not been addressed in the human literature largely due to limitations in methodology. Here we adapt a novel technology to test the context-specificity of cued fear conditioning using full immersion 3-D virtual reality (VR). During acquisition training, healthy participants navigated through virtual environments containing dynamic snake and spider conditioned stimuli (CSs), one of which was paired with electrical wrist stimulation. During a 24-h delayed retention test, one group returned to the same context as acquisition training whereas another group experienced the CSs in a novel context. Unconditioned stimulus expectancy ratings were assayed on-line during fear acquisition as an index of contingency awareness. Skin conductance responses time-locked to CS onset were the dependent measure of cued fear, and skin conductance levels during the interstimulus interval were an index of context fear. Findings indicate that early in acquisition training, participants express contingency awareness as well as differential contextual fear, whereas differential cued fear emerged later in acquisition. During the retention test, differential cued fear retention was enhanced in the group who returned to the same context as acquisition training relative to the context shift group. The results extend recent rodent work to illustrate differences in cued and context fear acquisition and the contextual specificity of recent fear memories. Findings support the use of full immersion VR as a novel tool in cognitive neuroscience to bridge rodent models of contextual phenomena underlying human clinical disorders. PMID:22069384

  16. Memory consolidation of fear conditioning: bi-stable amygdala connectivity with dorsal anterior cingulate and medial prefrontal cortex.

    PubMed

    Feng, Pan; Feng, Tingyong; Chen, Zhencai; Lei, Xu

    2014-11-01

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of memory consolidation of fear conditioning is not well understood. To address this question, we measured brain activity and the changes in functional connectivity following fear acquisition using resting-state functional magnetic resonance imaging. The amygdala-dorsal anterior cingulate cortex (dACC) and hippocampus-insula functional connectivity were enhanced, whereas the amygdala-medial prefrontal cortex (mPFC) functional coupling was decreased during fear memory consolidation. Furthermore, the amygdala-mPFC functional connectivity was negatively correlated with the subjective fear ratings. These findings suggest the amygdala functional connectivity with dACC and mPFC may play an important role in memory consolidation of fear conditioning. The change of amygdala-mPFC functional connectivity could predict the subjective fear. Accordingly, this study provides a new perspective for understanding fear memory consolidation. PMID:24194579

  17. Memory consolidation of fear conditioning: Bi-stable amygdala connectivity with dorsal anterior cingulate and medial prefrontal cortex

    PubMed Central

    Feng, Pan; Chen, Zhencai; Lei, Xu

    2014-01-01

    Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms of fear acquisition and extinction. However, the neural mechanism of memory consolidation of fear conditioning is not well understood. To address this question, we measured brain activity and the changes in functional connectivity following fear acquisition using resting-state functional magnetic resonance imaging. The amygdala–dorsal anterior cingulate cortex (dACC) and hippocampus–insula functional connectivity were enhanced, whereas the amygdala–medial prefrontal cortex (mPFC) functional coupling was decreased during fear memory consolidation. Furthermore, the amygdala–mPFC functional connectivity was negatively correlated with the subjective fear ratings. These findings suggest the amygdala functional connectivity with dACC and mPFC may play an important role in memory consolidation of fear conditioning. The change of amygdala-mPFC functional connectivity could predict the subjective fear. Accordingly, this study provides a new perspective for understanding fear memory consolidation. PMID:24194579

  18. Eye Movements Index Implicit Memory Expression in Fear Conditioning

    PubMed Central

    Hopkins, Lauren S.; Schultz, Douglas H.; Hannula, Deborah E.; Helmstetter, Fred J.

    2015-01-01

    The role of contingency awareness in simple associative learning experiments with human participants is currently debated. Since prior work suggests that eye movements can index mnemonic processes that occur without awareness, we used eye tracking to better understand the role of awareness in learning aversive Pavlovian conditioning. A complex real-world scene containing four embedded household items was presented to participants while skin conductance, eye movements, and pupil size were recorded. One item embedded in the scene served as the conditional stimulus (CS). One exemplar of that item (e.g. a white pot) was paired with shock 100 percent of the time (CS+) while a second exemplar (e.g. a gray pot) was never paired with shock (CS-). The remaining items were paired with shock on half of the trials. Participants rated their expectation of receiving a shock during each trial, and these expectancy ratings were used to identify when (i.e. on what trial) each participant became aware of the programmed contingencies. Disproportionate viewing of the CS was found both before and after explicit contingency awareness, and patterns of viewing distinguished the CS+ from the CS-. These observations are consistent with “dual process” models of fear conditioning, as they indicate that learning can be expressed in patterns of viewing prior to explicit contingency awareness. PMID:26562298

  19. Eye Movements Index Implicit Memory Expression in Fear Conditioning.

    PubMed

    Hopkins, Lauren S; Schultz, Douglas H; Hannula, Deborah E; Helmstetter, Fred J

    2015-01-01

    The role of contingency awareness in simple associative learning experiments with human participants is currently debated. Since prior work suggests that eye movements can index mnemonic processes that occur without awareness, we used eye tracking to better understand the role of awareness in learning aversive Pavlovian conditioning. A complex real-world scene containing four embedded household items was presented to participants while skin conductance, eye movements, and pupil size were recorded. One item embedded in the scene served as the conditional stimulus (CS). One exemplar of that item (e.g. a white pot) was paired with shock 100 percent of the time (CS+) while a second exemplar (e.g. a gray pot) was never paired with shock (CS-). The remaining items were paired with shock on half of the trials. Participants rated their expectation of receiving a shock during each trial, and these expectancy ratings were used to identify when (i.e. on what trial) each participant became aware of the programmed contingencies. Disproportionate viewing of the CS was found both before and after explicit contingency awareness, and patterns of viewing distinguished the CS+ from the CS-. These observations are consistent with "dual process" models of fear conditioning, as they indicate that learning can be expressed in patterns of viewing prior to explicit contingency awareness. PMID:26562298

  20. THE IκB KINASE REGULATES CHROMATIN STRUCTURE DURING RECONSOLIDATION OF CONDITIONED FEAR MEMORIES

    PubMed Central

    Lubin, Farah D.; Sweatt, J. David

    2007-01-01

    Summary Previously formed memories are susceptible to disruption immediately after recall due to a necessity to be reconsolidated after retrieval. Protein translation mechanisms have been widely implicated as being necessary for memory reconsolidation, but gene transcription mechanisms have been much less extensively studied in this context. We found that retrieval of contextual conditioned fear memories activates the NF-κB pathway to regulate histone H3 phosphorylation and acetylation at specific gene promoters in hippocampus, specifically via IKKα and not the NF-κB DNA-binding complex. Behaviorally, we found that inhibition of IKKα regulation of either chromatin structure or NF-κB DNA-binding complex activity leads to impairments in fear memory reconsolidation, and that elevating histone acetylation rescues this memory deficit in the face of IKK blockade. These data provide novel insights into IKK-regulated transcriptional mechanisms in hippocampus that are necessary for memory reconsolidation. PMID:17880897

  1. Low levels of estradiol are associated with elevated conditioned responding during fear extinction and with intrusive memories in daily life.

    PubMed

    Wegerer, Melanie; Kerschbaum, Hubert; Blechert, Jens; Wilhelm, Frank H

    2014-12-01

    Posttraumatic stress disorder (PTSD) can be conceptualized as a disorder of emotional memory showing strong (conditioned) responses to trauma reminders and intrusive memories among other symptoms. Women are at greater risk of developing PTSD than men. Recent studies have demonstrated an influence of ovarian steroid hormones in both fear conditioning and intrusive memory paradigms. However, although intrusive memories are considered non-extinguished emotional reactions to trauma reminders, none of the previous studies has investigated effects of ovarian hormones on fear conditioning mechanisms and intrusive memories in conjunction. This may have contributed to an overall inconsistent picture of the role of these hormones in emotional learning and memory. To remedy this, we exposed 37 healthy women with a natural menstrual cycle (during early follicular or luteal cycle phase) to a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with short violent film clips as unconditioned stimuli. Intrusive memories about the film clips were assessed ambulatorily on subsequent days. Women with lower levels of estradiol displayed elevated differential conditioned skin conductance responding during fear extinction and showed stronger intrusive memories. The inverse relationship between estradiol and intrusive memories was at least partially accounted for by the conditioned responding observed during fear extinction. Progesterone levels were not associated with either fear acquisition/extinction or with intrusive memories. This suggests that lower levels of estradiol might promote stronger symptoms of PTSD through associative processes. PMID:25463649

  2. Low levels of estradiol are associated with elevated conditioned responding during fear extinction and with intrusive memories in daily life

    PubMed Central

    Wegerer, Melanie; Kerschbaum, Hubert; Blechert, Jens; Wilhelm, Frank H.

    2014-01-01

    Posttraumatic stress disorder (PTSD) can be conceptualized as a disorder of emotional memory showing strong (conditioned) responses to trauma reminders and intrusive memories among other symptoms. Women are at greater risk of developing PTSD than men. Recent studies have demonstrated an influence of ovarian steroid hormones in both fear conditioning and intrusive memory paradigms. However, although intrusive memories are considered non-extinguished emotional reactions to trauma reminders, none of the previous studies has investigated effects of ovarian hormones on fear conditioning mechanisms and intrusive memories in conjunction. This may have contributed to an overall inconsistent picture of the role of these hormones in emotional learning and memory. To remedy this, we exposed 37 healthy women with a natural menstrual cycle (during early follicular or luteal cycle phase) to a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with short violent film clips as unconditioned stimuli. Intrusive memories about the film clips were assessed ambulatorily on subsequent days. Women with lower levels of estradiol displayed elevated differential conditioned skin conductance responding during fear extinction and showed stronger intrusive memories. The inverse relationship between estradiol and intrusive memories was at least partially accounted for by the conditioned responding observed during fear extinction. Progesterone levels were not associated with either fear acquisition/extinction or with intrusive memories. This suggests that lower levels of estradiol might promote stronger symptoms of PTSD through associative processes. PMID:25463649

  3. Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning

    USGS Publications Warehouse

    Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.

    2006-01-01

    Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.

  4. Retrieving fear memories, as time goes by….

    PubMed

    Do Monte, F H; Quirk, G J; Li, B; Penzo, M A

    2016-08-01

    Research in fear conditioning has provided a comprehensive picture of the neuronal circuit underlying the formation of fear memories. In contrast, our understanding of the retrieval of fear memories is much more limited. This disparity may stem from the fact that fear memories are not rigid, but reorganize over time. To bring some clarity and raise awareness about the time-dependent dynamics of retrieval circuits, we review current evidence on the neuronal circuitry participating in fear memory retrieval at both early and late time points following auditory fear conditioning. We focus on the temporal recruitment of the paraventricular nucleus of the thalamus (PVT) for the retrieval and maintenance of fear memories. Finally, we speculate as to why retrieval circuits change with time, and consider the functional strategy of recruiting structures not previously considered as part of the retrieval circuit. PMID:27217148

  5. Pre-test metyrapone impairs memory recall in fear conditioning tasks: lack of interaction with β-adrenergic activity

    PubMed Central

    Careaga, Mariella B. L.; Tiba, Paula A.; Ota, Simone M.; Suchecki, Deborah

    2015-01-01

    Cognitive processes, such as learning and memory, are essential for our adaptation to environmental changes and consequently for survival. Numerous studies indicate that hormones secreted during stressful situations, such as glucocorticoids (GCs), adrenaline and noradrenaline, regulate memory functions, modulating aversive memory consolidation and retrieval, in an interactive and complementary way. Thus, the facilitatory effects of GCs on memory consolidation as well as their suppressive effects on retrieval are substantially explained by this interaction. On the other hand, low levels of GCs are also associated with negative effects on memory consolidation and retrieval and the mechanisms involved are not well understood. The present study sought to investigate the consequences of blocking the rise of GCs on fear memory retrieval in multiple tests, assessing the participation of β-adrenergic signaling on this effect. Metyrapone (GCs synthesis inhibitor; 75 mg/kg), administered 90 min before the first test of contextual or tone fear conditioning (TFC), negatively affected animals’ performances, but this effect did not persist on a subsequent test, when the conditioned response was again expressed. This result suggested that the treatment impaired fear memory retrieval during the first evaluation. The administration immediately after the first test did not affect the animals’ performances in contextual fear conditioning (CFC), suggesting that the drug did not interfere with processes triggered by memory reactivation. Moreover, metyrapone effects were independent of β-adrenergic signaling, since concurrent administration with propranolol (2 mg/kg), a β-adrenergic antagonist, did not modify the effects induced by metyrapone alone. These results demonstrate that pre-test metyrapone administration led to negative effects on fear memory retrieval and this action was independent of a β-adrenergic signaling. PMID:25784866

  6. Facilitation of contextual fear memory extinction and anti-anxiogenic effects of AM404 and cannabidiol in conditioned rats.

    PubMed

    Bitencourt, Rafael M; Pamplona, Fabrício A; Takahashi, Reinaldo N

    2008-12-01

    The present study investigated the central effects of the eCB uptake/metabolism inhibitor AM404 and the phytocannabinoid cannabidiol (CBD) on the extinction of contextual fear memories in rats. Rats were conditioned and 24 h later subjected to three consecutive 9-min non-reinforced exposures to the conditioning context (extinction sessions, 24 h intervals). AM404 or CBD was injected i.c.v. 5 min before each extinction session and a 3-min drug-free test of contextual memory was performed 24 h after the last extinction session. AM404 (1.0 microg/microl, i.c.v.) and CBD (2.0 microg/microl, i.c.v.) facilitated extinction of contextual fear memory, with persistent effects. These responses were antagonized by the CB1-selective antagonist SR141716A (0.2 mg/kg, i.p.), but not by the TRPV1-selective antagonist capsazepine (5.0 microg/microl, i.c.v.). The effect of the anxiolytic drug Diazepam (DZP) on the extinction of contextual fear memory was also investigated. In contrast with the CBD and AM404 results, DZP induced a general reduction in the expression of conditioned freezing. Both AM404 and CBD induced anti-anxiogenic effect in the fear-potentiated plus-maze test, whereas DZP was anxiolytic in conditioned and unconditioned rats. In conclusion, CBD, a non-psychoactive phytocannabinoid could be an interesting pharmacological approach to reduce the anxiogenic effects of stress and promote the extinction of fear memories. PMID:18706790

  7. Effects of sleep deprivation on different phases of memory in the rat: dissociation between contextual and tone fear conditioning tasks

    PubMed Central

    Rossi, Vanessa Contatto; Tiba, Paula Ayako; Moreira, Karin Di Monteiro; Ferreira, Tatiana Lima; Oliveira, Maria Gabriela Menezes; Suchecki, Deborah

    2014-01-01

    Numerous studies show that sleep deprivation (SD) impacts negatively on cognitive processes, including learning and memory. Memory formation encompasses distinct phases of which acquisition, consolidation and retrieval are better known. Previous studies with pre-training SD induced by the platform method have shown impairment in fear conditioning tasks. Nonetheless, pre-training manipulations do not allow the distinction between effects on acquisition and/or consolidation, interfering, ultimately, on recall of/performance in the task. In the present study, animals were first trained in contextual and tone fear conditioning (TFC) tasks and then submitted to SD with the purpose to evaluate the effect of this manipulation on different stages of the learning process, e.g., in the uptake of (new) information during learning, its encoding and stabilization, and the recall of stored memories. Besides, we also investigated the effect of SD in the extinction of fear memory and a possible state-dependent learning induced by this manipulation. For each task (contextual or TFC), animals were trained and then distributed into control, not sleep-deprived (CTL) and SD groups, the latter being submitted to the modified multiple platform paradigm for 96 h. Subsets of eight rats in each group/experiment were submitted to the test of the tasks, either immediately or at different time intervals after SD. The results indicated that (a) pre- but not post-training SD impaired recall in the contextual and TFC; (b) this impairment was not state-dependent; and (c) in the contextual fear conditioning (CFC), pre-test SD prevented extinction of the learned task. Overall, these results suggest that SD interferes with acquisition, recall and extinction, but not necessarily with consolidation of emotional memory. PMID:25426040

  8. Prefrontal neuronal circuits of contextual fear conditioning.

    PubMed

    Rozeske, R R; Valerio, S; Chaudun, F; Herry, C

    2015-01-01

    Over the past years, numerous studies have provided a clear understanding of the neuronal circuits and mechanisms involved in the formation, expression and extinction phases of conditioned cued fear memories. Yet, despite a strong clinical interest, a detailed understanding of these memory phases for contextual fear memories is still missing. Besides the well-known role of the hippocampus in encoding contextual fear behavior, growing evidence indicates that specific regions of the medial prefrontal cortex differentially regulate contextual fear acquisition and storage in both animals and humans that ultimately leads to expression of contextual fear memories. In this review, we provide a detailed description of the recent literature on the role of distinct prefrontal subregions in contextual fear behavior and provide a working model of the neuronal circuits involved in the acquisition, expression and generalization of contextual fear memories. PMID:25287656

  9. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer's disease patients.

    PubMed

    Nakagawa, Toshiyuki; Itoh, Masanori; Ohta, Kazunori; Hayashi, Yuichi; Hayakawa, Miki; Yamada, Yasushi; Akanabe, Hiroshi; Chikaishi, Tokio; Nakagawa, Kiyomi; Itoh, Yoshinori; Muro, Takato; Yanagida, Daisuke; Nakabayashi, Ryo; Mori, Tetsuya; Saito, Kazuki; Ohzawa, Kaori; Suzuki, Chihiro; Li, Shimo; Ueda, Masashi; Wang, Miao-Xing; Nishida, Emika; Islam, Saiful; Tana; Kobori, Masuko; Inuzuka, Takashi

    2016-06-15

    Patients with Alzheimer's disease (AD) experience a wide array of cognitive deficits, which typically include the impairment of explicit memory. In previous studies, the authors reported that a flavonoid, quercetin, reduces the expression of ATF4 and delays memory deterioration in an early-stage AD mouse model. In the present study, the effects of long-term quercetin intake on memory recall were assessed using contextual fear conditioning in aged wild-type mice. In addition, the present study examined whether memory recall was affected by the intake of quercetin-rich onion (a new cultivar of hybrid onion 'Quergold') powder in early-stage AD patients. In-vivo analysis indicated that memory recall was enhanced in aged mice fed a quercetin-containing diet. Memory recall in early-stage AD patients, determined using the Revised Hasegawa Dementia Scale, was significantly improved by the intake of quercetin-rich onion (Quergold) powder for 4 weeks compared with the intake of control onion ('Mashiro' white onion) powder. These results indicate that quercetin might influence memory recall. PMID:27145228

  10. Differences in Memory Development among C57BL/6NCrl, 129S2/SvPasCrl, and FVB/NCrl Mice after Delay and Trace Fear Conditioning

    PubMed Central

    March, Amelia; Borchelt, David; Golde, Todd; Janus, Christopher

    2014-01-01

    Fear-conditioning testing paradigms have been used to study differences in memory formation between inbred mouse strains, including numerous mouse models of human diseases. In this study, we characterized the conditioned fear memory of 3 inbred strains: C57BL/6NCrl, 129S2/SvPasCrl, and FVB/NCrl, obtained from Charles River Laboratories. We used 2 training paradigms: delay conditioning, in which an unconditional stimulus coterminates with the presentation of a conditional stimulus, and trace conditioning, in which the conditional and unconditional stimuli are separated by a trace interval. In each paradigm, we evaluated the recent (3 d) and remote (25 d) memory of the mice by using a longitudinal design. Our results showed that both C57BL/6NCrl and 129S2/SvPasCrl mice developed strong and long-lasting context and tone memories in both paradigms, but FVB/NCrl mice showed a weaker but nevertheless consistent tone memory after delay training. Tone memory in the FVB strain was stronger in male than female mice. The remote tone memory of 129S2/SvPasCrl mice diminished after delay training but was stable and stronger than that of C57BL/6NCrl mice after trace training. In conclusion, both C57BL/6NCrl and 129S2/SvPasCrl mice showed reliable and long-lasting fear memory after delay or trace training, with 129 mice showing particularly strong tone memory after trace conditioning. The FVB/NCrl strain, especially male mice, showed reliable tone fear memory after delay training. Our findings confirm that both C57BL/6NCrl and 129S2/SvPasCrl mice develop strong context and tone memory in delay and trace fear-conditioning paradigms. PMID:24672832

  11. Differences in memory development among C57BL/6NCrl, 129S2/SvPasCrl, and FVB/NCrl mice after delay and trace fear conditioning.

    PubMed

    March, Amelia; Borchelt, David; Golde, Todd; Janus, Christopher

    2014-02-01

    Fear-conditioning testing paradigms have been used to study differences in memory formation between inbred mouse strains, including numerous mouse models of human diseases. In this study, we characterized the conditioned fear memory of 3 inbred strains: C57BL/6NCrl, 129S2/SvPasCrl, and FVB/NCrl, obtained from Charles River Laboratories. We used 2 training paradigms: delay conditioning, in which an unconditional stimulus coterminates with the presentation of a conditional stimulus, and trace conditioning, in which the conditional and unconditional stimuli are separated by a trace interval. In each paradigm, we evaluated the recent (3 d) and remote (25 d) memory of the mice by using a longitudinal design. Our results showed that both C57BL/6NCrl and 129S2/SvPasCrl mice developed strong and long-lasting context and tone memories in both paradigms, but FVB/NCrl mice showed a weaker but nevertheless consistent tone memory after delay training. Tone memory in the FVB strain was stronger in male than female mice. The remote tone memory of 129S2/SvPasCrl mice diminished after delay training but was stable and stronger than that of C57BL/6NCrl mice after trace training. In conclusion, both C57BL/6NCrl and 129S2/SvPasCrl mice showed reliable and long-lasting fear memory after delay or trace training, with 129 mice showing particularly strong tone memory after trace conditioning. The FVB/NCrl strain, especially male mice, showed reliable tone fear memory after delay training. Our findings confirm that both C57BL/6NCrl and 129S2/SvPasCrl mice develop strong context and tone memory in delay and trace fear-conditioning paradigms. PMID:24672832

  12. Memory suppression trades prolonged fear and sleep-dependent fear plasticity for the avoidance of current fear

    NASA Astrophysics Data System (ADS)

    Kuriyama, Kenichi; Honma, Motoyasu; Yoshiike, Takuya; Kim, Yoshiharu

    2013-07-01

    Sleep deprivation immediately following an aversive event reduces fear by preventing memory consolidation during homeostatic sleep. This suggests that acute insomnia might act prophylactically against the development of posttraumatic stress disorder (PTSD) even though it is also a possible risk factor for PTSD. We examined total sleep deprivation and memory suppression to evaluate the effects of these interventions on subsequent aversive memory formation and fear conditioning. Active suppression of aversive memory impaired retention of event memory. However, although the remembered fear was more reduced in sleep-deprived than sleep-control subjects, suppressed fear increased, and seemed to abandon the sleep-dependent plasticity of fear. Active memory suppression, which provides a psychological model for Freud's ego defense mechanism, enhances fear and casts doubt on the potential of acute insomnia as a prophylactic measure against PTSD. Our findings bring into question the role of sleep in aversive-memory consolidation in clinical PTSD pathophysiology.

  13. Involvement of dopaminergic and cholinergic systems in social isolation-induced deficits in social affiliation and conditional fear memory in mice.

    PubMed

    Okada, R; Fujiwara, H; Mizuki, D; Araki, R; Yabe, T; Matsumoto, K

    2015-07-23

    Post-weaning social isolation rearing (SI) in rodents elicits various behavioral abnormalities including attention deficit hyperactivity disorder-like behaviors. In order to obtain a better understanding of SI-induced behavioral abnormalities, we herein investigated the effects of SI on social affiliation and conditioned fear memory as well as the neuronal mechanism(s) underlying these effects. Four-week-old male mice were group-housed (GH) or socially isolated for 2-4 weeks before the experiments. The social affiliation test and fear memory conditioning were conducted at the age of 6 and 7 weeks, respectively. SI mice were systemically administered saline or test drugs 30 min before the social affiliation test and fear memory conditioning. Contextual and auditory fear memories were elucidated 1 and 4 days after fear conditioning. Social affiliation and contextual and auditory fear memories were weaker in SI mice than in GH mice. Methylphenidate (MPH), an inhibitor for dopamine transporters, ameliorated the SI-induced social affiliation deficit and the effect was attenuated by SCH23390, a D1 receptor antagonist, but not by sulpiride, a D2 receptor antagonist. On the other hand, tacrine, an acetylcholinesterase inhibitor, had no effect on this deficit. In contrast, tacrine improved SI-induced deficits in fear memories in a manner that was reversed by the muscarinic receptor antagonist scopolamine, while MPH had no effect on memory deficits. Neurochemical studies revealed that SI down-regulated the expression levels of the phosphorylated forms of neuro-signaling proteins, calmodulin-dependent kinase II (p-CaMKII), and cyclic AMP-responsive element binding protein (p-CREB), as well as early growth response protein-1 (Egr-1) in the hippocampus. The administration of MPH or tacrine before fear conditioning had no effect on the levels of the phosphorylated forms of the neuro-signaling proteins elucidated following completion of the auditory fear memory test; however

  14. Deletion of Glutamate Delta-1 Receptor in Mouse Leads to Enhanced Working Memory and Deficit in Fear Conditioning

    PubMed Central

    Yadav, Roopali; Hillman, Brandon G.; Gupta, Subhash C.; Suryavanshi, Pratyush; Bhatt, Jay M.; Pavuluri, Ratnamala; Stairs, Dustin J.; Dravid, Shashank M.

    2013-01-01

    Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system. PMID:23560106

  15. Encoding of fear learning and memory in distributed neuronal circuits.

    PubMed

    Herry, Cyril; Johansen, Joshua P

    2014-12-01

    How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory. PMID:25413091

  16. Post-training re-exposure to fear conditioned stimuli enhances memory consolidation and biases rats toward the use of dorsolateral striatum-dependent response learning.

    PubMed

    Leong, Kah-Chung; Goodman, Jarid; Packard, Mark G

    2015-09-15

    In a dual-solution task that can be acquired using either hippocampus-dependent "place" or dorsolateral striatum-dependent "response" learning, emotional arousal induced by unconditioned stimuli (e.g. anxiogenic drug injections or predator odor exposure) biases rats toward response learning. In the present experiments emotionally-arousing conditioned stimuli were used to modulate the relative use of multiple memory systems. In Experiment 1, adult male Long-Evans rats initially received three standard fear-conditioning trials in which a tone (2 kHz, 75 dB) was paired with a brief electrical shock (1 mA, 2s). On day 2, the rats were trained in a dual-solution plus-maze task to swim from the same start arm (South) to a hidden escape platform always located in the same goal arm (East). Immediately following training, rats received post-training re-exposure to the fear-conditioned stimuli (i.e. tone and context) without shock. On day 3, the relative use of place or response learning was assessed on a probe trial in which rats were started from the opposite start arm (North). Post-training re-exposure to fear-conditioned stimuli produced preferential use of a response strategy. In Experiment 2, different rats received fear conditioning and were then trained in a single-solution task that required the use of response learning. Immediately following training, rats received post-training re-exposure to the fear-conditioned stimuli without shock. Re-exposure to fear-conditioned stimuli enhanced memory consolidation in the response learning task. Thus, re-exposure to fear-conditioned stimuli biases rats toward the use of dorsolateral striatum-dependent response learning and enhances memory consolidation of response learning. PMID:26005126

  17. Modeling fear-conditioned bradycardia in humans.

    PubMed

    Castegnetti, Giuseppe; Tzovara, Athina; Staib, Matthias; Paulus, Philipp C; Hofer, Nicolas; Bach, Dominik R

    2016-06-01

    Across species, cued fear conditioning is a common experimental paradigm to investigate aversive Pavlovian learning. While fear-conditioned stimuli (CS+) elicit overt behavior in many mammals, this is not the case in humans. Typically, autonomic nervous system activity is used to quantify fear memory in humans, measured by skin conductance responses (SCR). Here, we investigate whether heart period responses (HPR) evoked by the CS, often observed in humans and small mammals, are suitable to complement SCR as an index of fear memory in humans. We analyze four datasets involving delay and trace conditioning, in which heart beats are identified via electrocardiogram or pulse oximetry, to show that fear-conditioned heart rate deceleration (bradycardia) is elicited and robustly distinguishes CS+ from CS-. We then develop a psychophysiological model (PsPM) of fear-conditioned HPR. This PsPM is inverted to yield estimates of autonomic input into the heart. We show that the sensitivity to distinguish CS+ and CS- (predictive validity) is higher for model-based estimates than peak-scoring analysis, and compare this with SCR. Our work provides a novel tool to investigate fear memory in humans that allows direct comparison between species. PMID:26950648

  18. Age-related increase in amyloid plaque burden is associated with impairment in conditioned fear memory in CRND8 mouse model of amyloidosis

    PubMed Central

    2012-01-01

    Introduction The current pathological confirmation of the diagnosis of Alzheimer's disease (AD) is still based on postmortem identification of parenchymal amyloid beta (Aβ) plaques, intra-neuronal neurofibrillary tangles, and neuronal loss. The memory deficits that are present in the early stages of AD are linked to the dysfunction of structures in the entorhinal cortex and limbic system, especially the hippocampus and amygdala. Using the CRND8 transgenic mouse model of amyloidosis, which over-expresses a mutant human amyloid precursor protein (APP) gene, we evaluated hippocampus-dependent contextual and amygdala-dependent tone fear conditioned (FC) memory, and investigated the relationship between the fear memory indices and Aβ plaque burden. Methods Mice were tested at three, six, and 12 months of age, which corresponds to early, mild, and severe Aβ plaque deposition, following a cross-sectional experimental design. We used a delay version of the fear conditioning paradigm in which tone stimulus was co-terminated with foot-shocks during exploration of the training chamber. The Aβ plaque burden was evaluated at each age after the completion of the behavioral tests. Results CRDN8 mice showed context fear memory comparable to control mice at three and six months, but were significantly impaired at 12 months of age. In contrast, the tone fear memory was significantly impaired in the model at each age of testing. The Aβ plaque burden significantly increased with age, and was correlated with the overall impairment in context and tone fear memory in the CRND8 mice within the studied age. Conclusions Our data extend previous studies showing that other APP mouse models exhibit impairment in fear conditioned memory, by demonstrating that this impairment is progressive and correlates well with an overall increase in Aβ burden. Also, the demonstrated greater sensitivity of the tone conditioning test in the identification of age dependent differences between CRND8 and

  19. Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task.

    PubMed

    Souza, Rimenez R; Dal Bó, Silvia; de Kloet, E Ronald; Oitzl, Melly S; Carobrez, Antonio P

    2014-04-01

    There is general agreement that the substantial modification in memory and motivational states exerted by corticosteroids after a traumatic experience is mediated in complementary manner by the mineralocorticoid (MR) and glucocorticoid (GR) receptors. Here we tested the hypothesis that pharmacological manipulation of MR activity would affect behavioral strategy and information storage in an olfactory fear conditioning (OFC) task. Male Wistar rats were submitted to the OFC with different training intensities. We observed that following high intensity OFC acquisition, a set of defensive coping strategies, which includes avoidance and risk assessment behaviors, was elicited when subjects were exposed to the conditioned stimulus (CS) 48 h later. In addition, following either OFC acquisition or retrieval (CS-I test) a profound corticosterone secretion was also detected. Systemic administration of the MR antagonist spironolactone altered the behavioral coping style irrespective the antagonist was administered 60 min prior to the acquisition or before the retrieval session. Surprisingly, the MR agonist fludrocortisone given 60 min prior to acquisition or retrieval of OFC had similar effects as the antagonist. In addition, post-training administration of fludrocortisone, following a weak training procedure, facilitated the consolidation of OFC. Fludrocortisone rather than spironolactone reduced serum corticosterone levels, suggesting that, at least in part, the effects of the MR agonist may derive from additional GR-mediated HPA-axis suppression. In conclusion, the present study suggests the involvement of the MR in the fine-tuning of behavioral adaptation necessary for optimal information storage and expression, as revealed by the marked alterations in the risk assessment behavior. PMID:24296155

  20. Durable fear memories require PSD-95.

    PubMed

    Fitzgerald, P J; Pinard, C R; Camp, M C; Feyder, M; Sah, A; Bergstrom, H C; Graybeal, C; Liu, Y; Schlüter, O M; Grant, S G; Singewald, N; Xu, W; Holmes, A

    2015-07-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. Although overly persistent fear memories underlie anxiety disorders, such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Postsynaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Using a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95(GK)), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown (KD) approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95(GK) mice to retrieve remote cued fear memory was associated with hypoactivation of the infralimbic (IL) cortex (but not the anterior cingulate cortex (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated virus-mediated PSD-95 KD in the IL, but not the ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories. PMID:25510511

  1. Arc expression identifies the lateral amygdala fear memory trace

    PubMed Central

    Gouty-Colomer, L A; Hosseini, B; Marcelo, I M; Schreiber, J; Slump, D E; Yamaguchi, S; Houweling, A R; Jaarsma, D; Elgersma, Y; Kushner, S A

    2016-01-01

    Memories are encoded within sparsely distributed neuronal ensembles. However, the defining cellular properties of neurons within a memory trace remain incompletely understood. Using a fluorescence-based Arc reporter, we were able to visually identify the distinct subset of lateral amygdala (LA) neurons activated during auditory fear conditioning. We found that Arc-expressing neurons have enhanced intrinsic excitability and are preferentially recruited into newly encoded memory traces. Furthermore, synaptic potentiation of thalamic inputs to the LA during fear conditioning is learning-specific, postsynaptically mediated and highly localized to Arc-expressing neurons. Taken together, our findings validate the immediate-early gene Arc as a molecular marker for the LA neuronal ensemble recruited during fear learning. Moreover, these results establish a model of fear memory formation in which intrinsic excitability determines neuronal selection, whereas learning-related encoding is governed by synaptic plasticity. PMID:25802982

  2. Young and Old Pavlovian Fear Memories Can Be Modified with Extinction Training during Reconsolidation in Humans

    ERIC Educational Resources Information Center

    Steinfurth, Elisa C. K.; Kanen, Jonathan W.; Raio, Candace M.; Clem, Roger L.; Huganir, Richard L.; Phelps, Elizabeth A.

    2014-01-01

    Extinction training during reconsolidation has been shown to persistently diminish conditioned fear responses across species. We investigated in humans if older fear memories can benefit similarly. Using a Pavlovian fear conditioning paradigm we compared standard extinction and extinction after memory reactivation 1 d or 7 d following acquisition.…

  3. Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats.

    PubMed

    Sun, Yan-Yan; Cai, Wei; Yu, Jie; Liu, Shu-Su; Zhuo, Min; Li, Bao-Ming; Zhang, Xue-Han

    2016-01-01

    The number and subtype composition of N-methyl-d-aspartate receptor (NMDAR) at synapses determines their functional properties and role in learning and memory. Genetically increased or decreased amount of GluN2B affects hippocampus-dependent memory in the adult brain. But in some experimental conditions (e.g., memory elicited by a single conditioning trial (1 CS-US)), GluN2B is not a necessary factor, which indicates that the precise role of GluN2B in memory formation requires further exploration. Here, we examined the role of GluN2B in the consolidation of fear memory using two training paradigms. We found that GluN2B was only required for the consolidation of memory elicited by five conditioning trials (5 CS-US), not by 1 CS-US. Strikingly, the expression of membrane GluN2B in CA1was training-strength-dependently increased after conditioning, and that the amount of membrane GluN2B determined its involvement in memory consolidation. Additionally, we demonstrated the increases in the activities of cAMP, ERK, and CREB in the CA1 after conditioning, as well as the enhanced intrinsic excitability and synaptic efficacy in CA1 neurons. Up-regulation of membrane GluN2B contributed to these enhancements. These studies uncover a novel mechanism for the involvement of GluN2B in memory consolidation by its accumulation at the cell surface in response to behavioral training. PMID:27487820

  4. Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats

    PubMed Central

    Sun, Yan-Yan; Cai, Wei; Yu, Jie; Liu, Shu-Su; Zhuo, Min; Li, Bao-Ming; Zhang, Xue-Han

    2016-01-01

    The number and subtype composition of N-methyl-d-aspartate receptor (NMDAR) at synapses determines their functional properties and role in learning and memory. Genetically increased or decreased amount of GluN2B affects hippocampus-dependent memory in the adult brain. But in some experimental conditions (e.g., memory elicited by a single conditioning trial (1 CS-US)), GluN2B is not a necessary factor, which indicates that the precise role of GluN2B in memory formation requires further exploration. Here, we examined the role of GluN2B in the consolidation of fear memory using two training paradigms. We found that GluN2B was only required for the consolidation of memory elicited by five conditioning trials (5 CS-US), not by 1 CS-US. Strikingly, the expression of membrane GluN2B in CA1was training-strength-dependently increased after conditioning, and that the amount of membrane GluN2B determined its involvement in memory consolidation. Additionally, we demonstrated the increases in the activities of cAMP, ERK, and CREB in the CA1 after conditioning, as well as the enhanced intrinsic excitability and synaptic efficacy in CA1 neurons. Up-regulation of membrane GluN2B contributed to these enhancements. These studies uncover a novel mechanism for the involvement of GluN2B in memory consolidation by its accumulation at the cell surface in response to behavioral training. PMID:27487820

  5. The formation and extinction of fear memory in tree shrews

    PubMed Central

    Shang, Shujiang; Wang, Cong; Guo, Chengbing; Huang, Xu; Wang, Liecheng; Zhang, Chen

    2015-01-01

    Fear is an emotion that is well-studied due to its importance for animal survival. Experimental animals, such as rats and mice, have been widely used to model fear. However, higher animals such as nonhuman primates have rarely been used to study fear due to ethical issues and high costs. Tree shrews are small mammals that are closely related to primates; they have been used to model human-related psychosocial conditions such as stress and alcohol tolerance. Here, we describe an experimental paradigm to study the formation and extinction of fear memory in tree shrews. We designed an experimental apparatus of a light/dark box with a voltage foot shock. We found that tree shrews preferred staying in the dark box in the daytime without stimulation and showed avoidance to voltage shocks applied to the footplate in a voltage-dependent manner. Foot shocks applied to the dark box for 5 days (10 min per day) effectively reversed the light–dark preference of the tree shrews, and this memory lasted for more than 50 days without any sign of memory decay (extinction) in the absence of further stimulation. However, this fear memory was reversed with 4 days of reverse training by applying the same stimulus to the light box. When reducing the stimulus intensity during the training period, a memory extinction and subsequently reinstatement effects were observed. Thus, our results describe an efficient method of monitoring fear memory formation and extinction in tree shrews. PMID:26283941

  6. Predator odor fear conditioning: Current perspectives and new directions

    PubMed Central

    Takahashi, Lorey K.; Chan, Megan M.; Pilar, Mark L.

    2008-01-01

    Predator odor fear conditioning involves the use of a natural unconditioned stimulus, as opposed to aversive electric foot-shock, to obtain novel information on the neural circuitry associated with emotional learning and memory. Researchers are beginning to identify brain sites associated with conditioned contextual fear such as the ventral anterior olfactory nucleus, dorsal premammillary nucleus, ventrolateral periaqueductal gray, cuneiform nucleus, and locus coeruleus. In addition, a few studies have reported an involvement of the basolateral and medial nucleus of the amygdala and hippocampus in fear conditioning. However, several important issues concerning the effectiveness of different predator odor unconditioned stimuli to produce fear conditioning, the precise role of brain nuclei in fear conditioning, and the general relation between the current predator odor and the traditional electric foot-shock fear conditioning procedures remain to be satisfactorily addressed. This review discusses the major behavioral results in the current predator odor fear conditioning literature and introduces two novel contextual and auditory fear conditioning models using cat odor. The new models provide critical information on the acquisition of conditioned fear behavior during training and the expression of conditioned responses in the retention test. Future studies adopting fear conditioning procedures that incorporate measures of both unconditioned and conditioned responses during training may lead to broad insights into predator odor fear conditioning and identify specific brain nuclei mediating conditioned stimulus – predator odor unconditioned stimulus associations. PMID:18577397

  7. Predicting aversive events and terminating fear in the mouse anterior cingulate cortex during trace fear conditioning.

    PubMed

    Steenland, Hendrik W; Li, Xiang-Yao; Zhuo, Min

    2012-01-18

    A variety of studies have implicated the anterior cingulate cortex (ACC) in fear, including permanent storage of fear memory. Recent pharmacological and genetic studies indicate that early synaptic plasticity in the ACC may also contribute to certain forms of fear memory at early time points. However, no study has directly examined the possible changes in neuronal activity of ACC neurons in freely behaving mice during early learning. In the present study, we examined the neural responses of the ACC during trace fear conditioning. We found that ACC putative pyramidal and nonpyramidal neurons were involved in the termination of fear behavior ("un-freezing"), and the spike activity of these neurons was reduced during freezing. Some of the neurons were also found to acquire un-freezing locked activity and change their tuning. The results implicate the ACC neurons in fear learning and controlling the abolition of fear behavior. We also show that the ACC is important for making cue-related fear memory associations in the trace fear paradigm as measured with tone-evoked potentials and single-unit activity. Collectively, our findings indicate that the ACC is involved in predicting future aversive events and terminating fear during trace fear. PMID:22262906

  8. False context fear memory in rats.

    PubMed

    Bae, Sarah E; Holmes, Nathan M; Westbrook, R Frederick

    2015-10-01

    Four experiments used rats to study false context fear memories. In Experiment 1, rats were pre-exposed to a distinctive chamber (context A) or to a control environment (context C), shocked after a delay in a second chamber (context B) and tested either in B or A. Rats pre-exposed to A froze just as much as control rats in B but more than control rats in A. In Experiment 2, rats were pre-exposed to A or C, subjected to an immediate shock in B and tested in B or A. Rats pre-exposed to A froze when tested in A but did not freeze when tested in B and control rats did not freeze in either A or B. The false fear memory to the pre-exposed A was contingent on its similarity with the shocked B. In Experiment 3, rats pre-exposed to A and subjected to immediate shock in B froze when tested in A but did not freeze when tested in C and rats pre-exposed to C did not freeze when tested either in A or C. In Experiment 4, rats pre-exposed to A and subjected to immediate shock in B froze more when tested in A than rats whose pre-exposure to A began with an immediate shock. The results were discussed in terms of a dual systems explanation of context fear conditioning: a hippocampal-dependent process that forms a unitary representation of context and an amygdala-based process which associates this representation with shock. PMID:26373831

  9. Long-term memory of visually cued fear conditioning: roles of the neuronal nitric oxide synthase gene and cyclic AMP response element-binding protein.

    PubMed

    Kelley, J B; Anderson, K L; Altmann, S L; Itzhak, Y

    2011-02-01

    Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) has a role in late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies implicated NO signaling in contextual and auditory cued fear conditioning. The present study investigated the role of NO signaling in visually cued fear conditioning. First, visually cued fear conditioning was investigated in wild-type (WT) and nNOS knockout (KO) mice. Second, the effects of pharmacological modulators of NO signaling on the acquisition of visually cued fear conditioning were investigated. Third, plasma levels of corticosterone were measured to determine a relationship between physiological and behavioral responses to fear conditioning. Fourth, levels of extracellular signal-related kinase (ERK1/2) and cyclic AMP response element binding protein (CREB) phosphorylation, downstream of NO signaling, were determined in the amygdala as potential correlates of fear learning. Mice underwent single or multiple (4) spaced trainings that consisted of a visual cue (blinking light) paired with footshock. WT mice acquired cued and contextual LTM following single and multiple trainings. nNOS KO mice acquired neither cued nor contextual LTM following a single training; however, multiple trainings improved contextual but not cued LTM. The selective nNOS inhibitor S-methyl-thiocitrulline (SMTC) impaired cued and contextual LTM in WT mice. The NO donor molsidomine recovered contextual LTM but had no effect on cued LTM in nNOS KO mice. Re-exposure to the visual cue 24 h posttraining elicited freezing response and a marked increase in plasma corticosterone levels in WT but not nNOS KO mice. The expression of CREB phosphorylation (Ser-133) was significantly higher in naive nNOS KO mice than in WT counterparts, and pharmacological modulators of NO had significant effects on levels of CREB phosphorylation and expression. These findings suggest that visual cue-dependent LTM is impaired in nNOS KO

  10. [GABA-Receptors in Modulation of Fear Memory Extinction].

    PubMed

    Dubrovina, N I

    2016-01-01

    GABA is the major inhibitory neurotransmitter in the central nervous system determining the efficacy of neuronal interaction. GABA-receptors play a key role in different aspects of fear memory--acquisition and consolidation, retention, reconsolidation and extinction. Extinction is an important behavioural phenomenon which allows organism to adapt its behavior to a changing environment. Extinction of fear memory is a form of new inhibitory learning which interferes with expression of the initial acquired fear conditioning. Resistance to extinction is symptom of depression and posttraumatic stress disorder. The aim of the present review was to summarize own and literary data about GABAergic modulation of fear extinction and pharmacological correction of extinction impairment at influences on GABA(A)- and GABA(B)- receptors. PMID:27538279

  11. Disruption of Memory Reconsolidation Erases a Fear Memory Trace in the Human Amygdala: An 18-Month Follow-Up

    PubMed Central

    Björkstrand, Johannes; Agren, Thomas; Frick, Andreas; Engman, Jonas; Larsson, Elna-Marie; Furmark, Tomas; Fredrikson, Mats

    2015-01-01

    Fear memories can be attenuated by reactivation followed by disrupted reconsolidation. Using functional magnetic resonance imaging we recently showed that reactivation and reconsolidation of a conditioned fear memory trace in the basolateral amygdala predicts subsequent fear expression over two days, while reactivation followed by disrupted reconsolidation abolishes the memory trace and suppresses fear. In this follow-up study we demonstrate that the behavioral effect persists over 18 months reflected in superior reacquisition after undisrupted, as compared to disrupted reconsolidation, and that neural activity in the basolateral amygdala representing the initial fear memory predicts return of fear. We conclude that disrupting reconsolidation have long lasting behavioral effects and may permanently erase the fear component of an amygdala-dependent memory. PMID:26132145

  12. Neural and Cellular Mechanisms of Fear and Extinction Memory Formation

    PubMed Central

    Orsini, Caitlin A.; Maren, Stephen

    2012-01-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last thirty years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  13. Neural and cellular mechanisms of fear and extinction memory formation.

    PubMed

    Orsini, Caitlin A; Maren, Stephen

    2012-08-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last 30 years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  14. Tracking the Fear Memory Engram: Discrete Populations of Neurons within Amygdala, Hypothalamus, and Lateral Septum Are Specifically Activated by Auditory Fear Conditioning

    ERIC Educational Resources Information Center

    Butler, Christopher W.; Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used "fos-tau-lacZ" ("FTL") transgenic mice to identify…

  15. Identification and Characterization of the V(D)J Recombination Activating Gene 1 in Long-Term Memory of Context Fear Conditioning

    PubMed Central

    Castro-Pérez, Edgardo; Soto-Soto, Emilio; Pérez-Carambot, Marizabeth; Dionisio-Santos, Dawling; Saied-Santiago, Kristian; Ortiz-Zuazaga, Humberto G.; Peña de Ortiz, Sandra

    2016-01-01

    An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs) may be associated with long-term memory (LTM) processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(D)J recombination-activating gene 1 (RAG1), which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(D)J recombination-activating gene 1, RAG1, may play a role in LTM consolidation. PMID:26843989

  16. Cannabinoid facilitation of fear extinction memory recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  17. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    PubMed Central

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  18. Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory

    PubMed Central

    Ko, Hyoung-Gon; Jang, Deok-Jin; Son, Junehee; Kwak, Chuljung; Choi, Jun-Hyeok; Ji, Young-Hoon; Lee, Yun-Sil; Son, Hyeon; Kaang, Bong-Kiun

    2009-01-01

    Newborn neurons in the subgranular zone (SGZ) of the hippocampus incorporate into the dentate gyrus and mature. Numerous studies have focused on hippocampal neurogenesis because of its importance in learning and memory. However, it is largely unknown whether hippocampal neurogenesis is involved in memory extinction per se. Here, we sought to examine the possibility that hippocampal neurogenesis may play a critical role in the formation and extinction of hippocampus-dependent contextual fear memory. By methylazoxymethanol acetate (MAM) or gamma-ray irradiation, hippocampal neurogenesis was impaired in adult mice. Under our experimental conditions, only a severe impairment of hippocampal neurogenesis inhibited the formation of contextual fear memory. However, the extinction of contextual fear memory was not affected. These results suggest that although adult newborn neurons contribute to contextual fear memory, they may not be involved in the extinction or erasure of hippocampus-dependent contextual fear memory. PMID:19138433

  19. Electrolytic Lesions of the Medial Prefrontal Cortex Do Not Interfere with Long-Term Memory of Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Garcia, Rene; Chang, Chun-hui; Maren, Stephen

    2006-01-01

    Lesion studies indicate that rats without the medial prefrontal cortex (mPFC) have difficulty recalling fear extinction acquired the previous day. Several electrophysiological studies have also supported this observation by demonstrating that extinction-related increases in neuronal activity in the mPFC participate in expression of fear…

  20. False Context Fear Memory in Rats

    ERIC Educational Resources Information Center

    Bae, Sarah; Holmes, Nathan M.; Westbrook, R. Frederick

    2015-01-01

    Four experiments used rats to study false context fear memories. In Experiment 1, rats were pre-exposed to a distinctive chamber (context A) or to a control environment (context C), shocked after a delay in a second chamber (context B) and tested either in B or A. Rats pre-exposed to A froze just as much as control rats in B but more than control…

  1. Novelty-Induced Arousal Enhances Memory for Cued Classical Fear Conditioning: Interactions between Peripheral Adrenergic and Brainstem Glutamatergic Systems

    ERIC Educational Resources Information Center

    King, Stanley O., II; Williams, Cedric L.

    2009-01-01

    Exposure to novel contexts produce heightened states of arousal and biochemical changes in the brain to consolidate memory. However, processes permitting simple exposure to unfamiliar contexts to elevate sympathetic output and to improve memory are poorly understood. This shortcoming was addressed by examining how novelty-induced changes in…

  2. The Roles of the Actin Cytoskeleton in Fear Memory Formation

    PubMed Central

    Lamprecht, Raphael

    2011-01-01

    The formation and storage of fear memory is needed to adapt behavior and avoid danger during subsequent fearful events. However, fear memory may also play a significant role in stress and anxiety disorders. When fear becomes disproportionate to that necessary to cope with a given stimulus, or begins to occur in inappropriate situations, a fear or anxiety disorder exists. Thus, the study of cellular and molecular mechanisms underpinning fear memory may shed light on the formation of memory and on anxiety and stress related disorders. Evidence indicates that fear learning leads to changes in neuronal synaptic transmission and morphology in brain areas underlying fear memory formation including the amygdala and hippocampus. The actin cytoskeleton has been shown to participate in these key neuronal processes. Recent findings show that the actin cytoskeleton is needed for fear memory formation and extinction. Moreover, the actin cytoskeleton is involved in synaptic plasticity and in neuronal morphogenesis in brain areas that mediate fear memory. The actin cytoskeleton may therefore mediate between synaptic transmission during fear learning and long-term cellular alterations mandatory for fear memory formation. PMID:21808614

  3. The role of basal forebrain cholinergic neurons in fear and extinction memory.

    PubMed

    Knox, Dayan

    2016-09-01

    Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed. PMID:27264248

  4. Memory-emotional interactions as revealed by fear generalization in animal-fearful individuals.

    PubMed

    Kopp, Bruno; Schlimm, Mike; Hermann, Christiane

    2005-06-01

    Discriminative fear learning and fear generalization were examined in animal-fearful individuals and in control participants. Electrical shocks were administered contingent upon discriminative pictures of spiders or snakes, respectively, in a generalization-after-discrimination paradigm. Neither discriminative fear learning nor extinction was affected by the individual fear status of the animal categories. Novel feared stimuli, which resembled discriminative stimuli, were treated as more shock predictive than novel non-feared stimuli during generalization testing. Neither preparedness theory nor selective sensitization theory was capable to account for these observations. The findings are commensurable with the hypothesis that phobic fear interferes with the retrieval of memory traces. PMID:15814082

  5. Conditioned fear modulates visual selection.

    PubMed

    Mulckhuyse, Manon; Crombez, Geert; Van der Stigchel, Stefan

    2013-06-01

    Eye movements reflect the dynamic interplay between top-down- and bottom-up-driven processes. For example, when we voluntarily move our eyes across the visual field, salient visual stimuli in the environment may capture our attention, our eyes, or modulate the trajectory of an eye movement. Previous research has shown that the behavioral relevance of a salient stimulus modulates these processes. This study investigated whether a stimulus signaling an aversive event modulates saccadic behavior. Using a differential fear-conditioning procedure, we presented a threatening (conditional stimulus: CS+) and a nonthreatening stimulus distractor (CS-) during an oculomotor selection task. The results show that short-latency saccades deviated more strongly toward the CS+ than toward the CS- distractor, whereas long-latency saccades deviated more strongly away from the CS+ than from the CS- distractor. Moreover, the CS+ distractor captured the eyes more often than the CS- distractor. Together, these results demonstrate that conditioned fear has a direct and immediate influence on visual selection. The findings are interpreted in terms of a neurobiological model of emotional visual processing. PMID:23356561

  6. Fear conditioning to subliminal fear relevant and non fear relevant stimuli.

    PubMed

    Lipp, Ottmar V; Kempnich, Clare; Jee, Sang Hoon; Arnold, Derek H

    2014-01-01

    A growing body of evidence suggests that conscious visual awareness is not a prerequisite for human fear learning. For instance, humans can learn to be fearful of subliminal fear relevant images--images depicting stimuli thought to have been fear relevant in our evolutionary context, such as snakes, spiders, and angry human faces. Such stimuli could have a privileged status in relation to manipulations used to suppress usually salient images from awareness, possibly due to the existence of a designated sub-cortical 'fear module'. Here we assess this proposition, and find it wanting. We use binocular masking to suppress awareness of images of snakes and wallabies (particularly cute, non-threatening marsupials). We find that subliminal presentations of both classes of image can induce differential fear conditioning. These data show that learning, as indexed by fear conditioning, is neither contingent on conscious visual awareness nor on subliminal conditional stimuli being fear relevant. PMID:25198514

  7. BDNFval66met affects neural activation pattern during fear conditioning and 24 h delayed fear recall

    PubMed Central

    Golkar, Armita; Lindström, Kara M.; Haaker, Jan; Öhman, Arne; Schalling, Martin; Ingvar, Martin

    2015-01-01

    Brain-derived neurotrophic factor (BDNF), the most abundant neutrophin in the mammalian central nervous system, is critically involved in synaptic plasticity. In both rodents and humans, BDNF has been implicated in hippocampus- and amygdala-dependent learning and memory and has more recently been linked to fear extinction processes. Fifty-nine healthy participants, genotyped for the functional BDNFval66met polymorphism, underwent a fear conditioning and 24h-delayed extinction protocol while skin conductance and blood oxygenation level dependent (BOLD) responses (functional magnetic resonance imaging) were acquired. We present the first report of neural activation pattern during fear acquisition ‘and’ extinction for the BDNFval66met polymorphism using a differential conditioned stimulus (CS)+ > CS− comparison. During conditioning, we observed heightened allele dose-dependent responses in the amygdala and reduced responses in the subgenual anterior cingulate cortex in BDNFval66met met-carriers. During early extinction, 24h later, we again observed heightened responses in several regions ascribed to the fear network in met-carriers as opposed to val-carriers (insula, amygdala, hippocampus), which likely reflects fear memory recall. No differences were observed during late extinction, which likely reflects learned extinction. Our data thus support previous associations of the BDNFval66met polymorphism with neural activation in the fear and extinction network, but speak against a specific association with fear extinction processes. PMID:25103087

  8. Sound tuning of amygdala plasticity in auditory fear conditioning.

    PubMed

    Park, Sungmo; Lee, Junuk; Park, Kyungjoon; Kim, Jeongyeon; Song, Beomjong; Hong, Ingie; Kim, Jieun; Lee, Sukwon; Choi, Sukwoo

    2016-01-01

    Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others. PMID:27488731

  9. Sound tuning of amygdala plasticity in auditory fear conditioning

    PubMed Central

    Park, Sungmo; Lee, Junuk; Park, Kyungjoon; Kim, Jeongyeon; Song, Beomjong; Hong, Ingie; Kim, Jieun; Lee, Sukwon; Choi, Sukwoo

    2016-01-01

    Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others. PMID:27488731

  10. Stability of Recent and Remote Contextual Fear Memory

    ERIC Educational Resources Information Center

    Frankland, Paul W.; Ding, Hoi-Ki; Takahashi, Eiki; Suzuki, Akinobu; Kida, Satoshi; Silva, Alcino J.

    2006-01-01

    Following initial encoding, memories undergo a prolonged period of reorganization. While such reorganization may occur in many different memory systems, its purpose is not clear. Previously, we have shown that recall of recent contextual fear memories engages the dorsal hippocampus (dHPC). In contrast, recall of remote contextual fear memories…

  11. Fear extinction memory consolidation requires potentiation of pontine-wave activity during REM sleep.

    PubMed

    Datta, Subimal; O'Malley, Matthew W

    2013-03-01

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372

  12. Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep

    PubMed Central

    Datta, Subimal; O'Malley, Matthew W .

    2013-01-01

    Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372

  13. Inhibition of Rac1 Activity in the Hippocampus Impairs the Forgetting of Contextual Fear Memory.

    PubMed

    Jiang, Lizhu; Mao, Rongrong; Zhou, Qixin; Yang, Yuexiong; Cao, Jun; Ding, Yuqiang; Yang, Yuan; Zhang, Xia; Li, Lingjiang; Xu, Lin

    2016-03-01

    Fear is crucial for survival, whereas hypermnesia of fear can be detrimental. Inhibition of the Rac GTPase is recently reported to impair the forgetting of initially acquired memory in Drosophila. Here, we investigated whether inhibition of Rac1 activity in rat hippocampus could contribute to the hypermnesia of contextual fear. We found that spaced but not massed training of contextual fear conditioning caused inhibition of Rac1 activity in the hippocampus and heightened contextual fear. Furthermore, intrahippocampal injection of the Rac1 inhibitor NSC23766 heightened contextual fear in massed training, while Rac1 activator CN04-A weakened contextual fear in spaced training rats. Our study firstly demonstrates that contextual fear memory in rats is actively regulated by Rac1 activity in the hippocampus, which suggests that the forgetting impairment of traumatic events in posttraumatic stress disorder may be contributed to the pathological inhibition of Rac1 activity in the hippocampus. PMID:25613020

  14. Updating versus Exposure to Prevent Consolidation of Conditioned Fear

    PubMed Central

    Pile, Victoria; Barnhofer, Thorsten; Wild, Jennifer

    2015-01-01

    Targeting the consolidation of fear memories following trauma may offer a promising method for preventing the development of flashbacks and other unwanted re-experiencing symptoms that characterise Posttraumatic Stress Disorder (PTSD). Research has demonstrated that performing visuo-spatial tasks after analogue trauma can block the consolidation of fear memory and reduce the frequency of flashbacks. However, no research has yet used verbal techniques to alter memories during the consolidation window. This is surprising given that the most effective treatments for PTSD are verbally-based with exposure therapy and trauma-focused cognitive behavioural therapy gaining the most evidence of efficacy. Psychological therapies aim to reduce the conditioned fear response, which is in keeping with the preliminary finding that an increased propensity for fear conditioning may be a vulnerability factor for PTSD. Our research had two aims. We investigated the degree to which individual differences in fear conditioning predict the development of PTSD symptoms. We also compared the preventative effects of two clinically informed psychological techniques administered during the consolidation window: exposure to the trauma memory and updating the meaning of the trauma. 115 healthy participants underwent a fear conditioning paradigm in which traumatic film stimuli (unconditioned stimuli) were paired with neutral stimuli (conditioned stimuli). Participants were randomly allocated to an updating, exposure or control group to compare the effects on the conditioned fear response and on PTSD symptomatology. The results showed that stronger conditioned responses at acquisition significantly predicted the development of PTSD symptoms. The updating group, who verbally devalued the unconditioned stimulus within the consolidation window, experienced significantly lower levels of PTSD symptoms during follow-up than the exposure and control groups. These findings are consistent with clinical

  15. Conditioning- and time-dependent increases in context fear and generalization.

    PubMed

    Poulos, Andrew M; Mehta, Nehali; Lu, Bryan; Amir, Dorsa; Livingston, Briana; Santarelli, Anthony; Zhuravka, Irina; Fanselow, Michael S

    2016-07-01

    A prominent feature of fear memories and anxiety disorders is that they endure across extended periods of time. Here, we examine how the severity of the initial fear experience influences incubation, generalization, and sensitization of contextual fear memories across time. Adult rats were presented with either five, two, one, or zero shocks (1.2 mA, 2 sec) during contextual fear conditioning. Following a recent (1 d) or remote (28 d) retention interval all subjects were returned to the original training context to measure fear memory and/or to a novel context to measure the specificity of fear conditioning. Our results indicate rats that received two or five shocks show an "incubation"-like enhancement of fear between recent and remote retention intervals, while single-shocked animals show stable levels of context fear memory. Moreover, when fear was tested in a novel context, 1 and 2 shocked groups failed to freeze, whereas five shocked rats showed a time-dependent generalization of context memory. Stress enhancement of fear learning to a second round of conditioning was evident in all previously shocked animals. Based on these results, we conclude that the severity or number of foot shocks determines not only the level of fear memory, but also the time-dependent incubation of fear and its generalization across distinct contexts. PMID:27317198

  16. Adrenergic Transmission Facilitates Extinction of Conditional Fear in Mice

    ERIC Educational Resources Information Center

    Barad, Mark; Cain, Christopher K.; Blouin, Ashley M.

    2004-01-01

    Extinction of classically conditioned fear, like its acquisition, is active learning, but little is known about its molecular mechanisms. We recently reported that temporal massing of conditional stimulus (CS) presentations improves extinction memory acquisition, and suggested that temporal spacing was less effective because individual CS…

  17. Cannabinoid facilitation of fear extinction memory recall in humans.

    PubMed

    Rabinak, Christine A; Angstadt, Mike; Sripada, Chandra S; Abelson, James L; Liberzon, Israel; Milad, Mohammed R; Phan, K Luan

    2013-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 h prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 h after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 h after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. This article is part of a Special Issue entitled 'Cognitive Enhancers'. PMID:22796109

  18. Controlled cortical impact before or after fear conditioning does not affect fear extinction in mice.

    PubMed

    Sierra-Mercado, Demetrio; McAllister, Lauren M; Lee, Christopher C H; Milad, Mohammed R; Eskandar, Emad N; Whalen, Michael J

    2015-05-01

    Post-traumatic stress disorder (PTSD) is characterized in part by impaired extinction of conditioned fear. Traumatic brain injury (TBI) is thought to be a risk factor for development of PTSD. We tested the hypothesis that controlled cortical impact (CCI) would impair extinction of fear learned by Pavlovian conditioning, in mice. To mimic the scenarios in which TBI occurs prior to or after exposure to an aversive event, severe CCI was delivered to the left parietal cortex at one of two time points: (1) Prior to fear conditioning, or (2) after conditioning. Delay auditory conditioning was achieved by pairing a tone with a foot shock in "context A". Extinction training involved the presentation of tones in a different context (context B) in the absence of foot shock. Test for extinction memory was achieved by presentation of additional tones alone in context B over the following two days. In pre- or post-injury paradigms, CCI did not influence fear learning and extinction. Furthermore, CCI did not affect locomotor activity or elevated plus maze testing. Our results demonstrate that, within the time frame studied, CCI does not impair the acquisition and expression of conditioned fear or extinction memory. PMID:25721797

  19. Controlled cortical impact before or after fear conditioning does not affect fear extinction in mice

    PubMed Central

    Sierra-Mercado, Demetrio; McAllister, Lauren M.; Lee, Christopher C.H.; Milad, Mohammed R.; Eskandar, Emad N.; Whalen, Michael J.

    2015-01-01

    Post-traumatic stress disorder (PTSD) is characterized in part by impaired extinction of conditioned fear. Traumatic brain injury (TBI) is thought to be a risk factor for development of PTSD. We tested the hypothesis that controlled cortical impact (CCI) would impair extinction of fear learned by Pavlovian conditioning, in mice. To mimic the scenarios in which TBI occurs prior to or after exposure to an aversive event, severe CCI was delivered to the left parietal cortex at one of two time points: (1) Prior to fear conditioning, or (2) after conditioning. Delay auditory conditioning was achieved by pairing a tone with a foot shock in “context A”. Extinction training involved the presentation of tones in a different context (context B) in the absence of foot shock. Test for extinction memory was achieved by presentation of additional tones alone in context B over the following two days. In pre- or post-injury paradigms, CCI did not influence fear learning and extinction. Furthermore, CCI did not affect locomotor activity or elevated plus maze testing. Our results demonstrate that, within the time frame studied, CCI does not impair the acquisition and expression of conditioned fear or extinction memory. PMID:25721797

  20. Impairment of fear memory consolidation and expression by antihistamines.

    PubMed

    Nonaka, Ayako; Masuda, Fumitaka; Nomura, Hiroshi; Matsuki, Norio

    2013-02-01

    Antihistamines are widely used to treat allergy symptoms. First-generation antihistamines have adverse effects on the central nervous system (CNS), such as hypnotic and amnesic effects, whereas second-generation antihistamines have poor brain penetration, and therefore, have fewer CNS-related adverse effects. Memory consists of several phases, including acquisition, consolidation, expression, and extinction. It remains unclear whether these phases are affected by antihistamines. We investigated the effects of diphenhydramine, a first-generation antihistamine, and levocetirizine and olopatadine, second-generation antihistamines, on memory phases. Mice were subjected to fear conditioning on day 1 and tested on day 2. Antihistamines were administered before conditioning, immediately after conditioning, or before the test session. Diphenhydramine (30mg/kg) decreased freezing time when administered immediately after conditioning or before the test session. These effects were not attributable to a change in locomotor activity. Levocetirizine (0.1, 1, 10mg/kg) and olopatadine (1, 10, 20mg/kg) had no effects on conditioned fear. We also examined the effect of diphenhydramine and levocetirizine on the expression of an activity-dependent gene associated with the test session. Diphenhydramine, but not levocetirizine, increased Arc transcription in the central nucleus of the amygdala. These data indicate that diphenhydramine, but not levocetirizine or olopatadine, impairs the consolidation and expression of conditioned fear. PMID:23178698

  1. The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans.

    PubMed

    Burger, Andreas M; Verkuil, Bart; Van Diest, Ilse; Van der Does, Willem; Thayer, Julian F; Brosschot, Jos F

    2016-07-01

    A critical component of the treatment for anxiety disorders is the extinction of fear via repeated exposure to the feared stimulus. This process is strongly dependent on successful memory formation and consolidation. Stimulation of the vagus nerve enhances memory formation in both animals and humans. The objective of this study was to assess whether transcutaneous stimulation of the vagus nerve (tVNS) can accelerate extinction memory formation and retention in fear conditioned humans. To assess fear conditioning and subsequent fear extinction, we assessed US expectancy ratings, fear potentiated startle responses and phasic heart rate responses. We conducted a randomized controlled trial in thirty-one healthy participants. After fear conditioning participants were randomly assigned to receive tVNS or sham stimulation during the extinction phase. Retention of extinction memory was tested 24h later. tVNS accelerated explicit fear extinction learning (US expectancy ratings), but did not lead to better retention of extinction memory 24h later. We did not find a differential physiological conditioning response during the acquisition of fear and thus were unable to assess potential effects of tVNS on the extinction of physiological indices of fear. These findings complement recent studies that suggest vagus nerve stimulation could be a promising tool to improve memory consolidation and fear extinction. PMID:27222436

  2. Adrenal-dependent diurnal modulation of conditioned fear extinction learning

    PubMed Central

    Woodruff, Elizabeth R.; Greenwood, Benjamin N.; Chun, Lauren E.; Fardi, Sara; Hinds, Laura R.; Spencer, Robert L.

    2015-01-01

    Post Traumatic Stress Disorder (PTSD) is associated with altered conditioned fear extinction expression and impaired circadian function including dysregulation of glucocorticoid hormone secretion. We examined in adult male rats the relationship between conditioned fear extinction learning, circadian phase, and endogenous glucocorticoids (CORT). Rats maintained on a 12 hr light:dark cycle were trained and tested across 3 separate daily sessions (conditioned fear acquisition and 2 extinction sessions) that were administered during either the rats’ active or inactive circadian phase. In an initial experiment we found that rats at both circadian phases acquired and extinguished auditory cue conditioned fear to a similar degree in the first extinction session. However, rats trained and tested at zeitgeber time-16 (ZT16) (active phase) showed enhanced extinction memory expression during the second extinction session compared to rats trained and tested at ZT4 (inactive phase). In a follow-up experiment, adrenalectomized (ADX) or sham surgery rats were similarly trained and tested across 3 separate daily sessions at either ZT4 or ZT16. ADX had no effect on conditioned fear acquisition or conditioned fear memory. Sham ADX rats trained and tested at ZT16 exhibited better extinction learning across the two extinction sessions compared to all other groups of rats. These results indicate that conditioned fear extinction learning is modulated by time of day, and this diurnal modulation requires the presence of adrenal hormones. These results support an important role of CORT-dependent circadian processes in regulating conditioned fear extinction learning, which may be capitalized upon to optimize effective treatment of PTSD. PMID:25746455

  3. Competition between engrams influences fear memory formation and recall.

    PubMed

    Rashid, Asim J; Yan, Chen; Mercaldo, Valentina; Hsiang, Hwa-Lin Liz; Park, Sungmo; Cole, Christina J; De Cristofaro, Antonietta; Yu, Julia; Ramakrishnan, Charu; Lee, Soo Yeun; Deisseroth, Karl; Frankland, Paul W; Josselyn, Sheena A

    2016-07-22

    Collections of cells called engrams are thought to represent memories. Although there has been progress in identifying and manipulating single engrams, little is known about how multiple engrams interact to influence memory. In lateral amygdala (LA), neurons with increased excitability during training outcompete their neighbors for allocation to an engram. We examined whether competition based on neuronal excitability also governs the interaction between engrams. Mice received two distinct fear conditioning events separated by different intervals. LA neuron excitability was optogenetically manipulated and revealed a transient competitive process that integrates memories for events occurring closely in time (coallocating overlapping populations of neurons to both engrams) and separates memories for events occurring at distal times (disallocating nonoverlapping populations to each engram). PMID:27463673

  4. Disrupting Reconsolidation of Fear Memory in Humans by a Noradrenergic β-Blocker

    PubMed Central

    Kindt, Merel; Soeter, Marieke; Sevenster, Dieuwke

    2014-01-01

    The basic design used in our human fear-conditioning studies on disrupting reconsolidation includes testing over different phases across three consecutive days. On day 1 - the fear acquisition phase, healthy participants are exposed to a series of picture presentations. One picture stimulus (CS1+) is repeatedly paired with an aversive electric stimulus (US), resulting in the acquisition of a fear association, whereas another picture stimulus (CS2-) is never followed by an US. On day 2 - the memory reactivation phase, the participants are re-exposed to the conditioned stimulus without the US (CS1-), which typically triggers a conditioned fear response. After the memory reactivation we administer an oral dose of 40 mg of propranolol HCl, a β-adrenergic receptor antagonist that indirectly targets the protein synthesis required for reconsolidation by inhibiting the noradrenaline-stimulated CREB phosphorylation. On day 3 - the test phase, the participants are again exposed to the unreinforced conditioned stimuli (CS1- and CS2-) in order to measure the fear-reducing effect of the manipulation. This retention test is followed by an extinction procedure and the presentation of situational triggers to test for the return of fear. Potentiation of the eye blink startle reflex is measured as an index for conditioned fear responding. Declarative knowledge of the fear association is measured through online US expectancy ratings during each CS presentation. In contrast to extinction learning, disrupting reconsolidation targets the original fear memory thereby preventing the return of fear. Although the clinical applications are still in their infancy, disrupting reconsolidation of fear memory seems to be a promising new technique with the prospect to persistently dampen the expression of fear memory in patients suffering from anxiety disorders and other psychiatric disorders. PMID:25549103

  5. Role of conceptual knowledge in learning and retention of conditioned fear

    PubMed Central

    Dunsmoor, Joseph E.; Martin, Alex; LaBar, Kevin S.

    2011-01-01

    Associating sensory cues with aversive outcomes is a relatively basic process shared across species. Yet higher-order cognitive processes likely contribute to associative fear learning in many circumstances, especially in humans. Here we ask whether fears can be acquired based on conceptual knowledge of object categories, and whether such concept-based fear conditioning leads to enhanced memory representations for conditioned objects. Participants were presented with a heterogeneous collection of images of animals and tools. Objects from one category were reinforced by an electrical shock, whereas the other category was never reinforced. Results confirmed concept-based fear learning through subjective report of shock expectancy, heightened skin conductance responses, and enhanced 24 hour recognition memory for items from the conditioned category. These results provide novel evidence that conditioned fear can generalize through knowledge of object concepts, and sheds light on the persistent nature of fear memories and category-based fear responses symptomatic of some anxiety disorders. PMID:22118937

  6. Extract of Ginkgo biloba EGb 761 facilitates fear conditioning measured by fear-potentiated startle.

    PubMed

    Yang, Yi-Ling; Su, Ya-Wen; Ng, Ming-Chong; Chang, Chai-Lun; Lu, Kwok-Tung

    Extract of Ginkgo biloba EGb 761 has been used in the treatment of various common geriatric complaints including vertigo, short-term memory loss, hearing loss, lack of attention, vigilance and cerebral vascular disorder. Recent results suggest that it can serve as a cognitive enhancer and anti-stress buffer. It raises a possibility that EGb 761 may be involved in the fear conditioning. In this study, we used fear-potentiated startle (FPS) to evaluate the possible effects of EGb 761 on the acquisition stage of fear conditioning. Our results showed that administration of EGb 761 30 min prior to the conditioning facilitated acquisition of conditioned fear in a dose dependent manner. No significant differences had been observed in either basal startle response or shock activity. These results indicated that the facilitation effect of EGb 761 was not the result of impaired basal startle response or enhanced pain perception. Subsequent control experiment results indicated that the facilitation effect of EGb 761 on the acquisition was not due to anxiogenic effect or non-specific effect. Our data present the first evidence that EGb 761 can enhance fear memory formation rather than serve as an anti-stress buffer. PMID:15936528

  7. Chronic Cannabinoid Administration in Vivo Compromises Extinction of Fear Memory

    ERIC Educational Resources Information Center

    Lin, Hui-Ching; Mao, Sheng-Chun; Chen, Po-See; Gean, Po-Wu

    2008-01-01

    Endocannabinoids are critically involved in the extinction of fear memory. Here we examined the effects of repeated cannabinoid administration on the extinction of fear memory in rats and on inhibitory synaptic transmission in medial prefrontal cortex (mPFC) slices. Rats were treated with the CB1 receptor agonist WIN55212-2 (WIN 10 mg/kg, i.p.)…

  8. Optogenetic Activation of Presynaptic Inputs in Lateral Amygdala Forms Associative Fear Memory

    ERIC Educational Resources Information Center

    Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee

    2014-01-01

    In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…

  9. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    PubMed

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). PMID:26642920

  10. Factors Regulating the Effects of Hippocampal Inactivation on Renewal of Conditional Fear after Extinction

    ERIC Educational Resources Information Center

    Corcoran, Kevin A.; Maren, Stephen

    2004-01-01

    After extinction of fear to a Pavlovian conditional stimulus (CS), contextual stimuli come to regulate the expression of fear to that CS. There is growing evidence that the context dependence of memory retrieval after extinction involves the hippocampus. In the present experiment, we examine whether hippocampal involvement in memory retrieval…

  11. Optogenetic activation of presynaptic inputs in lateral amygdala forms associative fear memory

    PubMed Central

    Kwon, Jeong-Tae; Nakajima, Ryuichi; Kim, Hyung-Su; Jeong, Yire; Augustine, George J.

    2014-01-01

    In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we tested whether direct activation of presynaptic sensory inputs in LA, without the participation of upstream activity, is sufficient to form fear memory in mice. Photostimulation of axonal projections from the two main auditory brain regions, the medial geniculate nucleus of the thalamus and the secondary auditory cortex, was paired with aversive footshock. Twenty-four hours later the same photostimulation induced robust conditioned freezing and this fear memory formation was disrupted when glutamatergic synaptic transmission was locally blocked in the LA. Therefore, our results prove for the first time that synapses between sensory input areas and the LA, previously implicated as a crucial brain site for fear memory formation, actually are sufficient to serve as a conditioned stimulus. Our results strongly support the idea that the LA may be sufficient to encode and store associations between neutral cue and aversive stimuli during natural fear conditioning as a critical part of a broad fear memory engram. PMID:25322798

  12. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. PMID:27296273

  13. Effects of unconscious processing on implicit memory for fearful faces.

    PubMed

    Yang, Jiongjiong; Xu, Xiaohong; Du, Xiaoya; Shi, Cuntong; Fang, Fang

    2011-01-01

    Emotional stimuli can be processed even when participants perceive them without conscious awareness, but the extent to which unconsciously processed emotional stimuli influence implicit memory after short and long delays is not fully understood. We addressed this issue by measuring a subliminal affective priming effect in Experiment 1 and a long-term priming effect in Experiment 2. In Experiment 1, a flashed fearful or neutral face masked by a scrambled face was presented three times, then a target face (either fearful or neutral) was presented and participants were asked to make a fearful/neutral judgment. We found that, relative to a neutral prime face (neutral-fear face), a fearful prime face speeded up participants' reaction to a fearful target (fear-fear face), when they were not aware of the masked prime face. But this response pattern did not apply to the neutral target. In Experiment 2, participants were first presented with a masked faces six times during encoding. Three minutes later, they were asked to make a fearful/neutral judgment for the same face with congruent expression, the same face with incongruent expression or a new face. Participants showed a significant priming effect for the fearful faces but not for the neutral faces, regardless of their awareness of the masked faces during encoding. These results provided evidence that unconsciously processed stimuli could enhance emotional memory after both short and long delays. It indicates that emotion can enhance memory processing whether the stimuli are encoded consciously or unconsciously. PMID:21408105

  14. Prediction of individual differences in fear response by novelty seeking, and disruption of contextual fear memory reconsolidation by ketamine.

    PubMed

    Duclot, Florian; Perez-Taboada, Iara; Wright, Katherine N; Kabbaj, Mohamed

    2016-10-01

    Only a portion of the population exposed to trauma will develop persistent emotional alterations characteristic of posttraumatic stress disorder (PTSD), which illustrates the necessity for identifying vulnerability factors and novel pharmacotherapeutic alternatives. Interestingly, clinical evidence suggests that novelty seeking is a good predictor for vulnerability to the development of excessive and persistent fear. Here, we first tested this hypothesis by analyzing contextual and cued fear responses of rats selected for their high (high responders, HR) or low (low responders, LR) exploration of a novel environment, indicator of novelty seeking. While HR and LR rats exhibited similar sensitivity to the shock and cued fear memory retention, fewer extinction sessions were required in HR than LR animals to reach extinction, indicating faster contextual and cued memory extinction. In a second part, we found an effective disruption of contextual fear reconsolidation by the N-methyl-d-aspartate receptor antagonist ketamine, associated with a down-regulation of early growth response 1 (Egr1) in the hippocampal CA1 area, and up-regulation of brain-derived neurotrophic factor (Bdnf) mRNA levels in the prelimbic and infralimbic cortices. Altogether, these data demonstrate a link between novelty seeking and conditioned fear extinction, and highlight a promising novel role of ketamine in affecting established fear memory. PMID:27343386

  15. Modification of Fear Memory by Pharmacological and Behavioural Interventions during Reconsolidation

    PubMed Central

    Thome, Janine; Koppe, Georgia; Hauschild, Sophie; Liebke, Lisa; Schmahl, Christian; Lis, Stefanie; Bohus, Martin

    2016-01-01

    Background Dysfunctional fear responses play a central role in many mental disorders. New insights in learning and memory suggest that pharmacological and behavioural interventions during the reconsolidation of reactivated fear memories may increase the efficacy of therapeutic interventions. It has been proposed that interventions applied during reconsolidation may modify the original fear memory, and thus prevent the spontaneous recovery and reinstatement of the fear response. Methods We investigated whether pharmacological (propranolol) and behavioural (reappraisal, multisensory stimulation) interventions reduce fear memory, and prevent reinstatement of fear in comparison to a placebo control group. Eighty healthy female subjects underwent a differential fear conditioning procedure with three stimuli (CS). Two of these (CS+) were paired with an electric shock on day 1. On day 2, 20 subjects were pseudo-randomly assigned to either the propranolol or placebo condition, or underwent one of the two behavioural interventions after one of the two CS+ was reactivated. On day 3, all subjects underwent an extinction phase, followed by a reinstatement test. Dependent variables were US expectancy ratings, fear-potentiated startle, and skin conductance response. Results Differential fear responses to the reactivated and non-reactivated CS+ were observed only in the propranolol condition. Here, the non-reactivated CS+ evoked stronger fear-potentiated startle-responses compared to the placebo group. None of the interventions prevented the return of the extinguished fear response after re-exposure to the unconditioned stimulus. Conclusions Our data are in line with an increasing body of research stating that the occurrence of reconsolidation may be constrained by boundary conditions such as subtle differences in experimental manipulations and instructions. In conclusion, our findings do not support a beneficial effect in using reconsolidation processes to enhance effects of

  16. Presynaptic Excitation via GABAB Receptors in Habenula Cholinergic Neurons Regulates Fear Memory Expression.

    PubMed

    Zhang, Juen; Tan, Lubin; Ren, Yuqi; Liang, Jingwen; Lin, Rui; Feng, Qiru; Zhou, Jingfeng; Hu, Fei; Ren, Jing; Wei, Chao; Yu, Tao; Zhuang, Yinghua; Bettler, Bernhard; Wang, Fengchao; Luo, Minmin

    2016-07-28

    Fear behaviors are regulated by adaptive mechanisms that dampen their expression in the absence of danger. By studying circuits and the molecular mechanisms underlying this adaptive response, we show that cholinergic neurons of the medial habenula reduce fear memory expression through GABAB presynaptic excitation. Ablating these neurons or inactivating their GABAB receptors impairs fear extinction in mice, whereas activating the neurons or their axonal GABAB receptors reduces conditioned fear. Although considered exclusively inhibitory, here, GABAB mediates excitation by amplifying presynaptic Ca(2+) entry through Cav2.3 channels and potentiating co-release of glutamate, acetylcholine, and neurokinin B to excite interpeduncular neurons. Activating the receptors for these neurotransmitters or enhancing neurotransmission with a phosphodiesterase inhibitor reduces fear responses of both wild-type and GABAB mutant mice. We identify the role of an extra-amygdalar circuit and presynaptic GABAB receptors in fear control, suggesting that boosting neurotransmission in this pathway might ameliorate some fear disorders. PMID:27426949

  17. Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory.

    PubMed

    Faria, Rodolfo Souza; Gutierres, Luís Felipe Soares; Sobrinho, Fernando César Faria; Miranda, Iris do Vale; Reis, Júlia Dos; Dias, Elayne Vieira; Sartori, Cesar Renato; Moreira, Dalmo Antonio Ribeiro

    2016-08-15

    Exposure to negative environmental events triggers defensive behavior and leads to the formation of aversive associative memory. Cellular and molecular changes in the central nervous system underlie this memory formation, as well as the associated behavioral changes. In general, memory process is established in distinct phases such as acquisition, consolidation, evocation, persistence, and extinction of the acquired information. After exposure to a particular event, early changes in involved neural circuits support the memory consolidation, which corresponds to the short-term memory. Re-exposure to previously memorized events evokes the original memory, a process that is considered essential for the reactivation and consequent persistence of memory, ensuring that long-term memory is established. Different environmental stimuli may modulate the memory formation process, as well as their distinct phases. Among the different environmental stimuli able of modulating memory formation is the physical exercise which is a potent modulator of neuronal activity. There are many studies showing that physical exercise modulates learning and memory processes, mainly in the consolidation phase of the explicit memory. However, there are few reports in the literature regarding the role of physical exercise in implicit aversive associative memory, especially at the persistence phase. Thus, the present study aimed to investigate the relationship between swimming exercise and the consolidation and persistence of contextual and auditory-cued fear memory. Male Wistar rats were submitted to sessions of swimming exercise five times a week, over six weeks. After that, the rats were submitted to classical aversive conditioning training by a pairing tone/foot shock paradigm. Finally, rats were evaluated for consolidation and persistence of fear memory to both auditory and contextual cues. Our results demonstrate that classical aversive conditioning with tone/foot shock pairing induced

  18. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  19. Contextual fear conditioning depresses infralimbic excitability.

    PubMed

    Soler-Cedeño, Omar; Cruz, Emmanuel; Criado-Marrero, Marangelie; Porter, James T

    2016-04-01

    Patients with posttraumatic stress disorder (PTSD) show hypo-active ventromedial prefrontal cortices (vmPFC) that correlate with their impaired ability to discriminate between safe and dangerous contexts and cues. Previously, we found that auditory fear conditioning depresses the excitability of neurons populating the homologous structure in rodents, the infralimbic cortex (IL). However, it is undetermined if IL depression was mediated by the cued or contextual information. The objective of this study was to examine whether contextual information was sufficient to depress IL neuronal excitability. After exposing rats to context-alone, pseudoconditioning, or contextual fear conditioning, we used whole-cell current-clamp recordings to examine the excitability of IL neurons in prefrontal brain slices. We found that contextual fear conditioning reduced IL neuronal firing in response to depolarizing current steps. In addition, neurons from contextual fear conditioned animals showed increased slow afterhyperpolarization potentials (sAHPs). Moreover, the observed changes in IL excitability correlated with contextual fear expression, suggesting that IL depression may contribute to the encoding of contextual fear. PMID:26860438

  20. Activity in Prelimbic Cortex Subserves Fear Memory Reconsolidation over Time

    ERIC Educational Resources Information Center

    Stern, Cristina A. J.; Gazarini, Lucas; Vanvossen, Ana C.; Hames, Mayara S.; Bertoglio, Leandro J.

    2014-01-01

    The prelimbic cortex has been implicated in the consolidation of previously learned fear. Herein, we report that temporarily inactivating this medial prefrontal cortex subregion with the GABA [subscript A] agonist muscimol (4.0 nmol in 0.2 µL per hemisphere) was able to equally disrupt 1-, 7-, and 21-d-old contextual fear memories after their…

  1. Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Ásgeirsdóttir, Herborg N; Cohen, Sarah J; Munchow, Alcira H; Barrera, Mercy P; Stackman, Robert W

    2013-01-01

    Excessive fear is a hallmark of several emotional and mental disorders such as phobias and panic disorders. Considerable attention is focused on defining the neurobiological mechanisms of the extinction of conditioned fear memory in an effort to identify mechanisms that may hold clinical significance for remediating aberrant fear memory. Serotonin modulates the acquisition and retention of conditioned emotional memory, and the serotonin 2A receptor (5HT2AR) may be one of the postsynaptic targets mediating such effects. Here we tested the hypothesis that the 5HT2AR regulates the consolidation and extinction of fear memory in male C57BL/6J mice. The influence of 5HT2ARs on memory consolidation was further confirmed with a novel object recognition task. With a trace fear conditioning paradigm, administration of the 5HT2AR agonist TCB-2 (1.0 mg/kg, i.p.) before the extinction test facilitated the acquisition of extinction of fear memory as compared to vehicle treatment. In contrast, administration of the 5HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) delayed the acquisition of extinction of fear memory. Further, the post-conditioning administration of TCB-2 enhanced contextual and cued fear memory, possibly by facilitating the consolidation of fear memory. Administration of TCB-2 also facilitated the acquisition of extinction of fear memory in delay fear conditioned mice. Stimulation or blockade of 5HT2ARs did not affect the encoding or retrieval of conditioned fear memory. Finally, administration of TCB-2 right after training in an object recognition task enhanced the consolidation of object memory. These results suggest that stimulation of 5HT2ARs facilitates the consolidation and extinction of trace and delay cued fear memory and the consolidation of object memory. Blocking the 5HT2AR impairs the acquisition of fear memory extinction. The results support the view that serotonergic activation of the 5HT2AR provides an important modulatory influence on circuits

  2. Extinction during memory reconsolidation blocks recovery of fear in adolescents.

    PubMed

    Johnson, D C; Casey, B J

    2015-01-01

    Adolescence is a time of intensified emotional experiences, during which anxiety and stress-related disorders peak. The most effective behavioral therapies for treating these disorders share exposure-based techniques as a core component. Exposure-based therapies build on the principles of fear extinction learning and involve desensitizing the individual to cues that trigger anxiety. Yet, recent evidence shows an adolescent-specific diminished capacity to extinguish fear responses, suggesting that adolescents may respond less well to exposure-based therapies than other age groups. Here we demonstrate an alternative method for blocking the recall of fear memories in adolescents, building on principles of memory reconsolidation in adults. During memory reconsolidation, a memory that is recalled becomes labile during which time it can be updated. Prior research has shown that extinction training during memory reconsolidation attenuates the recovery of fear memory in human adults and in rodents. Using this method, we show attenuation of fear memory in adolescent humans. These findings have significant implications for treating one of the most vulnerable populations to anxiety and stress related disorders - adolescents - by optimizing exposure therapy based on principles of memory reconsolidation. PMID:25749583

  3. Forming Competing Fear Learning and Extinction Memories in Adolescence Makes Fear Difficult to Inhibit

    ERIC Educational Resources Information Center

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages.…

  4. Attenuating fearful memories: effect of cued extinction on intrusions.

    PubMed

    Marks, Elizabeth H; Zoellner, Lori A

    2014-12-01

    Exposure-based therapies for posttraumatic stress disorder are thought to reduce intrusive memories through extinction processes. Methods that enhance extinction may translate to improved treatment. Rat research suggests retrieving a memory via a conditioned stimulus (CS) cue, and then modifying the retrieved memory within a specific reconsolidation window may enhance extinction. In humans, studies (e.g., Kindt & Soeter, 2013; Schiller et al., 2010) using basic learning paradigms show discrepant findings. Using a distressing film paradigm, participants (N = 148) completed fear acquisition and extinction. At extinction, they were randomized to 1 of 3 groups: CS cue within reconsolidation window, CS cue outside window, or non-CS cue within window. Intrusions were assessed 24 hr after extinction. Participants receiving the CS cue and completing extinction within the reconsolidation window had more intrusions (M = 2.40, SD = 2.54) than those cued outside (M = 1.65, SD = 1.70) or those receiving a non-CS cue (M = 1.24, SD = 1.26), F(2, 145) = 4.52, p = .01, d = 0.55. Consistent with the reconsolidation hypothesis, presenting a CS cue does appear to activate a specific period of time during which a memory can be updated. However, the CS cue caused increased, rather than decreased, frequency of intrusions. Understanding parameters of preextinction cueing may help us better understand reconsolidation as a potential memory updating mechanism. PMID:25286077

  5. Post-Retrieval Late Process Contributes to Persistence of Reactivated Fear Memory

    ERIC Educational Resources Information Center

    Nakayama, Daisuke; Yamasaki, Yoshiko; Matsuki, Norio; Nomura, Hiroshi

    2013-01-01

    Several studies have demonstrated the mechanisms involved in memory persistence after learning. However, little is known about memory persistence after retrieval. In this study, a protein synthesis inhibitor, anisomycin, was infused into the basolateral amygdala of mice 9.5 h after retrieval of contextual conditioned fear. Anisomycin attenuated…

  6. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Kelley, Jonathan B; Petkov, Martin

    2012-05-01

    Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice. PMID:22452925

  7. The hypocretin/orexin system mediates the extinction of fear memories.

    PubMed

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-11-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias. PMID:24930888

  8. The Neuronal PAS Domain Protein 4 (Npas4) Is Required for New and Reactivated Fear Memories

    PubMed Central

    Nguyen, Tam; DiLeone, Ralph J.; Schafe, Glenn E.

    2011-01-01

    The Neuronal PAS domain protein 4 (Npas4) is a neuronal activity-dependent immediate early gene that has recently been identified as a transcription factor which regulates the transcription of genes that control inhibitory synapse development and synaptic plasticity. The role Npas4 in learning and memory, however, is currently unknown. Here, we systematically examine the role of Npas4 in auditory Pavlovian fear conditioning, an amygdala-dependent form of emotional learning. In our first series of experiments, we show that Npas4 mRNA and protein are regulated in the rat lateral nucleus of the amygdala (LA) in a learning-dependent manner. Further, knockdown of Npas4 protein in the LA via adeno-associated viral (AAV) mediated gene delivery of RNAi was observed to impair fear memory formation, while innate fear and the expression of fear memory were not affected. In our second series of experiments, we show that Npas4 protein is regulated in the LA by retrieval of an auditory fear memory and that knockdown of Npas4 in the LA impairs retention of a reactivated, but not a non-reactivated, fear memory. Collectively, our findings provide the first comprehensive look at the functional role of Npas4 in learning and memory. PMID:21887312

  9. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  10. Demographic factors predict magnitude of conditioned fear.

    PubMed

    Rosenbaum, Blake L; Bui, Eric; Marin, Marie-France; Holt, Daphne J; Lasko, Natasha B; Pitman, Roger K; Orr, Scott P; Milad, Mohammed R

    2015-10-01

    There is substantial variability across individuals in the magnitudes of their skin conductance (SC) responses during the acquisition and extinction of conditioned fear. To manage this variability, subjects may be matched for demographic variables, such as age, gender and education. However, limited data exist addressing how much variability in conditioned SC responses is actually explained by these variables. The present study assessed the influence of age, gender and education on the SC responses of 222 subjects who underwent the same differential conditioning paradigm. The demographic variables were found to predict a small but significant amount of variability in conditioned responding during fear acquisition, but not fear extinction learning or extinction recall. A larger differential change in SC during acquisition was associated with more education. Older participants and women showed smaller differential SC during acquisition. Our findings support the need to consider age, gender and education when studying fear acquisition but not necessarily when examining fear extinction learning and recall. Variability in demographic factors across studies may partially explain the difficulty in reproducing some SC findings. PMID:26151498

  11. Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning

    PubMed Central

    Costanzi, Marco; Saraulli, Daniele; Cannas, Sara; D’Alessandro, Francesca; Florenzano, Fulvio; Rossi-Arnaud, Clelia; Cestari, Vincenzo

    2014-01-01

    Fear allows organisms to cope with dangerous situations and remembering these situations has an adaptive role preserving individuals from injury and death. However, recalling traumatic memories can induce re-experiencing the trauma, thus resulting in a maladaptive fear. A failure to properly regulate fear responses has been associated with anxiety disorders, like Posttraumatic Stress Disorder (PTSD). Thus, re-establishing the capability to regulate fear has an important role for its adaptive and clinical relevance. Strategies aimed at erasing fear memories have been proposed, although there are limits about their efficiency in treating anxiety disorders. To re-establish fear regulation, here we propose a new approach, based on the re-evaluation of the aversive value of traumatic experience. Mice were submitted to a contextual-fear-conditioning paradigm in which a neutral context was paired with an intense electric footshock. Three weeks after acquisition, conditioned mice were treated with a less intense footshock (pain threshold). The effectiveness of this procedure in reducing fear expression was assessed in terms of behavioral outcomes related to PTSD (e.g., hyper-reactivity to a neutral tone, anxiety levels in a plus maze task, social avoidance, and learning deficits in a spatial water maze) and of amygdala activity by evaluating c-fos expression. Furthermore, a possible role of lateral orbitofrontal cortex (lOFC) in mediating the behavioral effects induced by the re-evaluation procedure was investigated. We observed that this treatment: (i) significantly mitigates the abnormal behavioral outcomes induced by trauma; (ii) persistently attenuates fear expression without erasing contextual memory; (iii) prevents fear reinstatement; (iv) reduces amygdala activity; and (v) requires an intact lOFC to be effective. These results suggest that an effective strategy to treat pathological anxiety should address cognitive re-evaluation of the traumatic experience mediated

  12. Differential involvement of amygdala and cortical NMDA receptors activation upon encoding in odor fear memory.

    PubMed

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guillaume; Mouly, Anne-Marie

    2014-12-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptors in the BLA and olfactory cortex at discrete moments of an odor fear conditioning session. We showed that NMDA receptors in BLA are critically involved in odor fear acquisition during the first association but not during the next ones. In the cortex, NMDA receptor activation at encoding is not necessary for recent odor fear memory while its role in remote memory storage needs further investigation. PMID:25403452

  13. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    PubMed

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-09-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  14. Novel learning accelerates systems consolidation of a contextual fear memory.

    PubMed

    Haubrich, Josue; Cassini, Lindsey Freitas; Diehl, Felipe; Santana, Fabiana; Fürstenau de Oliveira, Lucas; de Oliveira Alvares, Lucas; Quillfeldt, Jorge Alberto

    2016-07-01

    After initial encoding memories may undergo a time-dependent reorganization, becoming progressively independent from the hippocampus (HPC) and dependent on cortical regions such as the anterior cingulate cortex (ACC). Although the mechanisms underlying systems consolidation are somewhat known, the factors determining its temporal dynamics are still poorly understood. Here, we studied the influence of novel learning occurring between training and test sessions on the time-course of HPC- and ACC-dependency of contextual fear conditioning (CFC) memory expression. We found that muscimol was disruptive when infused into the HPC up to 35 days after training, while the ACC is vulnerable only after 45 days. However, when animals were subjected to a series of additional, distinct tasks to be learned within the first 3 weeks, muscimol became effective sooner. Muscimol had no effect in the HPC at 20 days after training, exactly when the ACC becomes responsive to this treatment. Thus, our data indicates that the encoding of new information generates a tight interplay between distinct memories, accelerating the reorganization of previously stored long term memories between the hippocampal and cortical areas. © 2016 Wiley Periodicals, Inc. PMID:26860633

  15. Foreground Contextual Fear Memory Consolidation Requires Two Independent Phases of Hippocampal ERK/CREB Activation

    ERIC Educational Resources Information Center

    Trifilieff, Pierre; Vanhoutte, Peter; Caboche, Jocelyne; Desmedt, Aline; Riedel, Gernot; Mons, Nicole; Micheau, Jacques; Herry, Cyril

    2006-01-01

    Fear conditioning is a popular model for investigating physiological and cellular mechanisms of memory formation. In this paradigm, a footshock is either systematically associated to a tone (paired conditioning) or is pseudorandomly distributed (unpaired conditioning). In the former procedure, the tone/shock association is acquired, whereas in the…

  16. Identification of Genes Expressed in the Amygdala During the Formation of Fear Memory

    PubMed Central

    Stork, Oliver; Stork, Simone; Pape, Hans-Christian; Obata, Kunihiko

    2001-01-01

    In this study we describe changes of gene expression that occur in the basolateral complex of the mouse amygdala (BLA) during the formation of fear memory. Through the combination of a behavioral training scheme with polymerase chain reaction-based expression analysis (subtractive hybridization and virtual Northern analysis) we were able to identify various gene products that are increased in expression after Pavlovian fear conditioning and are of potential significance for neural plasticity and information storage in the amygdala. In particular, a key enzyme of monoamine metabolism, aldehyde reductase, and the protein sorting and ubiquitination factor Praja1, showed pronounced and learning-specific induction six hours after fear conditioning training. Aldehyde reductase and Praja1, including a novel alternatively spliced isoform termed Praja1a, were induced in the BLA depending on the emotional stimulus presented and showed different expression levels in response to associative conditioning, training stress, and experience of conditioned fear. Stress and fear were further found to induce various signal transduction factors (transthyretin, phosphodiesterase1, protein kinase inhibitor-α) and structural reorganization factors (e.g., E2-ubiquitin conjugating enzyme, neuroligin1, actin, UDP-galactose transporter) during training. Our results show that the formation of Pavlovian fear memory is associated with changes of gene expression in the BLA, which may contribute to neural plasticity and the processing of information about both conditioned and unconditioned fear stimuli.[The Praja1a sequence has been deposited in GenBank data base under accession no. AF335250.] PMID:11533224

  17. Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder.

    PubMed

    Desmedt, Aline; Marighetto, Aline; Piazza, Pier-Vincenzo

    2015-09-01

    For over a century, clinicians have consistently described the paradoxical co-existence in posttraumatic stress disorder (PTSD) of sensory intrusive hypermnesia and declarative amnesia for the same traumatic event. Although this amnesia is considered as a critical etiological factor of the development and/or persistence of PTSD, most current animal models in basic neuroscience have focused exclusively on the hypermnesia, i.e., the persistence of a strong fear memory, neglecting the qualitative alteration of fear memory. The latest is characterized by an underrepresentation of the trauma in the context-based declarative memory system in favor of its overrepresentation in a cue-based sensory/emotional memory system. Combining psychological and neurobiological data as well as theoretical hypotheses, this review supports the idea that contextual amnesia is at the core of PTSD and its persistence and that altered hippocampal-amygdalar interaction may contribute to such pathologic memory. In a first attempt to unveil the neurobiological alterations underlying PTSD-related hypermnesia/amnesia, we describe a recent animal model mimicking in mice some critical aspects of such abnormal fear memory. Finally, this line of argument emphasizes the pressing need for a systematic comparison between normal/adaptive versus abnormal/maladaptive fear memory to identify biomarkers of PTSD while distinguishing them from general stress-related, potentially adaptive, neurobiological alterations. PMID:26238378

  18. Retrieval cues that trigger reconsolidation of associative fear memory are not necessarily an exact replica of the original learning experience

    PubMed Central

    Soeter, Marieke; Kindt, Merel

    2015-01-01

    Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus (CS). A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15), the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15), an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg) systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders. PMID

  19. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    PubMed

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory. PMID:25091528

  20. Nonlinear developmental trajectory of fear learning and memory.

    PubMed

    King, Elizabeth C; Pattwell, Siobhan S; Sun, Alice; Glatt, Charles E; Lee, Francis S

    2013-11-01

    The transition into and out of adolescence is a unique developmental period during which neuronal circuits are particularly susceptible to modification by experience. Adolescence is associated with an increased incidence of anxiety disorders in humans, and an estimated 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents. Conserved neural circuitry of rodents and humans has facilitated neurodevelopmental studies of behavioral and molecular processes associated with fear learning and memory that lie at the heart of many anxiety disorders. Here, we review the nonlinear developmental aspects of fear learning and memory during a transition period into and out of adolescence and provide a discussion of the molecular mechanisms that may underlie these alterations in behavior. We provide a model that may help to inform novel treatment strategies for children and adolescents with fear-related disorders. PMID:24176014

  1. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear

    PubMed Central

    Giustino, Thomas F.; Maren, Stephen

    2015-01-01

    Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD). As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL) and infralimbic (IL) subdivisions of the medial prefrontal cortex (mPFC) regulate the expression and suppression of fear in rodents, respectively. Here, we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression. PMID:26617500

  2. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear.

    PubMed

    Giustino, Thomas F; Maren, Stephen

    2015-01-01

    Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD). As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL) and infralimbic (IL) subdivisions of the medial prefrontal cortex (mPFC) regulate the expression and suppression of fear in rodents, respectively. Here, we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression. PMID:26617500

  3. AMPK Signaling in the Dorsal Hippocampus Negatively Regulates Contextual Fear Memory Formation.

    PubMed

    Han, Ying; Luo, Yixiao; Sun, Jia; Ding, Zengbo; Liu, Jianfeng; Yan, Wei; Jian, Min; Xue, Yanxue; Shi, Jie; Wang, Ji-Shi; Lu, Lin

    2016-06-01

    Both the formation of long-term memory (LTM) and dendritic spine growth that serves as a physical basis for the long-term storage of information require de novo protein synthesis. Memory formation also critically depends on transcription. Adenosine monophosphate-activated protein kinase (AMPK) is a transcriptional regulator that has emerged as a major energy sensor that maintains cellular energy homeostasis. However, still unknown is its role in memory formation. In the present study, we found that AMPK is primarily expressed in neurons in the hippocampus, and then we demonstrated a time-dependent decrease in AMPK activity and increase in mammalian target of rapamycin complex 1 (mTORC1) activity after contextual fear conditioning in the CA1 but not CA3 area of the dorsal hippocampus. Using pharmacological methods and adenovirus gene transfer to bidirectionally regulate AMPK activity, we found that increasing AMPK activity in the CA1 impaired the formation of long-term fear memory, and decreasing AMPK activity enhanced fear memory formation. These findings were associated with changes in the phosphorylation of AMPK and p70s6 kinase (p70s6k) and expression of BDNF and membrane GluR1 and GluR2 in the CA1. Furthermore, the prior administration of an mTORC1 inhibitor blocked the enhancing effect of AMPK inhibition on fear memory formation, suggesting that this negative regulation of contextual fear memory by AMPK in the CA1 depends on the mTORC1 signaling pathway. Finally, we found that AMPK activity regulated hippocampal spine growth associated with memory formation. In summary, our results indicate that AMPK is a key negative regulator of plasticity and fear memory formation. PMID:26647974

  4. Prefrontal consolidation supports the attainment of fear memory accuracy

    PubMed Central

    Vieira, Philip A.; Lovelace, Jonathan W.; Corches, Alex; Rashid, Asim J.; Josselyn, Sheena A.

    2014-01-01

    The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required for normal neural function. CBP hypofunction leads to severe psychopathological symptoms in human and cognitive abnormalities in genetic mutant mice with severity dependent on the neural locus and developmental time of the gene inactivation. Here, we showed that an acute hypofunction of CBP in the medial prefrontal cortex (mPFC) results in a disruption of fear memory accuracy in mice. In addition, interruption of CREB function in the mPFC also leads to a deficit in auditory discrimination of fearful stimuli. While mice with deficient CBP/CREB signaling in the mPFC maintain normal responses to aversive stimuli, they exhibit abnormal responses to similar but nonrelevant stimuli when compared to control animals. These data indicate that improvement of fear memory accuracy involves mPFC-dependent suppression of fear responses to nonrelevant stimuli. Evidence from a context discriminatory task and a newly developed task that depends on the ability to distinguish discrete auditory cues indicated that CBP-dependent neural signaling within the mPFC circuitry is an important component of the mechanism for disambiguating the meaning of fear signals with two opposing values: aversive and nonaversive. PMID:25031365

  5. Interplay between serotonin and cannabinoid function in the amygdala in fear conditioning.

    PubMed

    Nasehi, Mohammad; Davoudi, Kamelia; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-04-01

    The possible interactions between the cannabinoid and serotonin systems in the regions of the brain involved in emotional learning and memory formation have been studied by some researchers. In view of the key role of the amygdala in the acquisition and expression of fear memory, we investigated the involvement of basolateral amygdala (BLA) serotonin 5-HT4 receptors in arachidonylcyclopropylamide (ACPA; selective CB1 cannabinoid receptor agonist)-induced fear memory consolidation impairment. In our study, a context and tone fear conditioning apparatus was used for testing fear conditioning in adult male NMRI mice. The results showed that intraperitoneal administration of ACPA 0.5 or 0.05, 0.1 and 0.5mg/kg immediately after training decreased the percentage of freezing time in context or tone fear conditioning respectively, suggesting a context- or tone-dependent fear memory consolidation impairment. Post-training intra-BLA microinjections of RS67333, as 5-HT4 serotonin receptor agonist, at doses of 0.025 and 0.05 µg/mouse also impaired context or tone memory consolidation, while RS23597, as 5-HT4 serotonin receptor antagonist, did not produce a marked difference in both fear memories as compared with the control group. Moreover, a subthreshold dose of RS67333 did not alter ACPA response in both fear conditionings. Interestingly, a subthreshold dose of RS23597 potentiated or reversed ACPA response at the dose of 0.01 or 0.05 respectively. It is concluded that BLA serotonin 5-HT4 receptors are involved in tone-dependent fear memory consolidation impairment induced by CB1 activation using ACPA, suggesting a modulatory role for serotonin 5-HT4 receptor. PMID:26820636

  6. Fear Conditioned Responses and PTSD Symptoms in Children: Sex Differences in Fear-Related Symptoms

    PubMed Central

    Gamwell, Kaitlyn; Nylocks, Maria; Cross, Dorthie; Bradley, Bekh; Norrholm, Seth D.

    2016-01-01

    Fear conditioning studies in adults have found that posttraumatic stress disorder (PTSD) is associated with heightened fear responses and impaired discrimination. The objective of the current study was to examine the association between PTSD symptoms and fear conditioned responses in children from a highly traumatized urban population. Children between 8 and 13 years old participated in a fear conditioning study in addition to providing information about their trauma history and PTSD symptoms. Results showed that females showed less discrimination between danger and safety signals during conditioning compared to age-matched males. In boys, intrusive symptoms were predictive of fear responses, even after controlling for trauma exposure. However, in girls, conditioned fear to the danger cue was predictive of self-blame and fear of repeated trauma. This study suggests there are early sex differences in the patterns of fear conditioning and that these sex differences may translate to differential risk for trauma-related psychopathology. PMID:26011240

  7. Fear conditioned responses and PTSD symptoms in children: Sex differences in fear-related symptoms.

    PubMed

    Gamwell, Kaitlyn; Nylocks, Maria; Cross, Dorthie; Bradley, Bekh; Norrholm, Seth D; Jovanovic, Tanja

    2015-11-01

    Fear conditioning studies in adults have found that posttraumatic stress disorder (PTSD) is associated with heightened fear responses and impaired discrimination. The objective of the current study was to examine the association between PTSD symptoms and fear conditioned responses in children from a highly traumatized urban population. Children between 8 and 13 years old participated in a fear conditioning study in addition to providing information about their trauma history and PTSD symptoms. Results showed that females showed less discrimination between danger and safety signals during conditioning compared to age-matched males. In boys, intrusive symptoms were predictive of fear responses, even after controlling for trauma exposure. However, in girls, conditioned fear to the danger cue was predictive of self-blame and fear of repeated trauma. This study suggests there are early sex differences in the patterns of fear conditioning and that these sex differences may translate to differential risk for trauma-related psychopathology. PMID:26011240

  8. Reciprocal Patterns of c-Fos Expression in the Medial Prefrontal Cortex and Amygdala after Extinction and Renewal of Conditioned Fear

    ERIC Educational Resources Information Center

    Knapska, Ewelina; Maren, Stephen

    2009-01-01

    After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry.…

  9. An egr-1 (zif268) Antisense Oligodeoxynucleotide Infused Into the Amygdala Disrupts Fear Conditioning

    PubMed Central

    Malkani, Seema; Wallace, Karin J.; Donley, Melanie P.; Rosen, Jeffrey B.

    2004-01-01

    Studies of gene expression following fear conditioning have demonstrated that the inducible transcription factor, egr-1, is increased in the lateral nucleus of the amygdala shortly following fear conditioning. These studies suggest that egr-1 and its protein product Egr-1 in the amygdala are important for learning and memory of fear. To directly test this hypothesis, an egr-1 antisense oligodeoxynucleotide (antisense-ODN) was injected bilaterally into the amygdala prior to contextual fear conditioning. The antisense-ODN reduced Egr-1 protein in the amygdala and interfered with fear conditioning. A 250-pmole dose produced an 11% decrease in Egr-1 protein and reduced long-term memory of fear as measured by freezing in a retention test 24 h after conditioning, but left shock-induced freezing intact. A larger 500-pmole dose produced a 25% reduction in Egr-1 protein and significantly decreased both freezing immediately following conditioning and freezing in the retention test. A nonsense-ODN had no effect on postshock or retention test freezing. In addition, 500 pmole of antisense-ODN infused prior to the retention test in previously trained rats did not reduce freezing, indicating that antisense-ODN did not suppress conditioned fear behavior. Finally, rats infused with 500 pmole of antisense-ODN displayed unconditioned fear to a predator odor, demonstrating that unconditioned freezing was unaffected by the antisense-ODN. The data indicate that the egr-1 antisense-ODN interferes with learning and memory processes of fear without affecting freezing behavior and suggests that the inducible transcription factor Egr-1 within the amygdala plays important functions in long-term learning and memory of fear. PMID:15466317

  10. An appetitive experience after fear memory destabilization attenuates fear retention: involvement GluN2B-NMDA receptors in the Basolateral Amygdala Complex.

    PubMed

    Ferrer Monti, Roque I; Giachero, Marcelo; Alfei, Joaquín M; Bueno, Adrián M; Cuadra, Gabriel; Molina, Victor A

    2016-09-01

    It is known that a consolidated memory can return to a labile state and become transiently malleable following reactivation. This instability is followed by a restabilization phase termed reconsolidation. In this work, we explored whether an unrelated appetitive experience (voluntary consumption of diluted sucrose) can affect a contextual fear memory in rats during the reactivation-induced destabilization phase. Our findings show that exposure to an appetitive experience following reactivation can diminish fear retention. This effect persisted after 1 wk. Importantly, it was achieved only under conditions that induced fear memory destabilization. This result could not be explained as a potentiated extinction, because sucrose was unable to promote extinction. Since GluN2B-containing NMDA receptors in the basolateral amygdala complex (BLA) have been implicated in triggering fear memory destabilization, we decided to block pharmacologically these receptors to explore the neurobiological bases of the observed effect. Intra-BLA infusion with ifenprodil, a GluN2B-NMDA antagonist, prevented the fear reduction caused by the appetitive experience. In sum, these results suggest that the expression of a fear memory can be dampened by an unrelated appetitive experience, as long as memory destabilization is achieved during reactivation. Possible mechanisms behind this effect and its clinical implications are discussed. PMID:27531837

  11. Conditioned Fear Acquisition and Generalization in Generalized Anxiety Disorder.

    PubMed

    Tinoco-González, Daniella; Fullana, Miquel Angel; Torrents-Rodas, David; Bonillo, Albert; Vervliet, Bram; Blasco, María Jesús; Farré, Magí; Torrubia, Rafael

    2015-09-01

    Abnormal fear conditioning processes (including fear acquisition and conditioned fear-generalization) have been implicated in the pathogenesis of anxiety disorders. Previous research has shown that individuals with panic disorder present enhanced conditioned fear-generalization in comparison to healthy controls. Enhanced conditioned fear-generalization could also characterize generalized anxiety disorder (GAD), but research so far is inconclusive. An important confounding factor in previous research is comorbidity. The present study examined conditioned fear-acquisition and fear-generalization in 28 patients with GAD and 30 healthy controls using a recently developed fear acquisition and generalization paradigm assessing fear-potentiated startle and online expectancies of the unconditioned stimulus. Analyses focused on GAD patients without comorbidity but included also patients with comorbid anxiety disorders. Patients and controls did not differ as regards fear acquisition. However, contrary to our hypothesis, both groups did not differ either in most indexes of conditioned fear-generalization. Moreover, dimensional measures of GAD symptoms were not correlated with conditioned fear-generalization indexes. Comorbidity did not have a significant impact on the results. Our data suggest that conditioned fear-generalization is not enhanced in GAD. Results are discussed with special attention to the possible effects of comorbidity on fear learning abnormalities. PMID:26459843

  12. Conditioned Fear Extinction and Reinstatement in a Human Fear-Potentiated Startle Paradigm

    ERIC Educational Resources Information Center

    Norrholm, Seth D.; Jovanovic, Tanja; Vervliet, Bram; Myers, Karyn M.; Davis, Michael; Rothbaum, Barbara O.; Duncan, Erica J.

    2006-01-01

    The purpose of this study was to analyze fear extinction and reinstatement in humans using fear-potentiated startle. Participants were fear conditioned using a simple discrimination procedure with colored lights as the conditioned stimuli (CSs) and an airblast to the throat as the unconditioned stimulus (US). Participants were extinguished 24 h…

  13. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD).

    PubMed

    Meloni, Edward G; Gillis, Timothy E; Manoukian, Jasmine; Kaufman, Marc J

    2014-01-01

    Xenon (Xe) is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA) receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD). Because glutamate receptors also have been shown to play a role in fear memory reconsolidation--a state in which recalled memories become susceptible to modification--we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing) in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr) on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory. PMID:25162644

  14. Mechanisms underlying the formation of the amygdalar fear memory trace: A computational perspective.

    PubMed

    Feng, F; Samarth, P; Paré, D; Nair, S S

    2016-05-13

    Recent experimental and modeling studies on the lateral amygdala (LA) have implicated intrinsic excitability and competitive synaptic interactions among principal neurons (PNs) in the formation of auditory fear memories. The present modeling studies, conducted over an expanded range of intrinsic excitability in the network, revealed that only excitable PNs that received tone inputs participate in the competition. Strikingly, the number of model PNs integrated into the fear memory trace remained constant despite the much larger range considered, and model runs highlighted several conditioning-induced tone responsive characteristics of the various PN populations. Furthermore, these studies showed that although excitation was important, disynaptic inhibition among PNs is the dominant mechanism that keeps the number of plastic PNs stable despite large variations in the network's excitability. Finally, we found that the overall level of inhibition in the model network determines the number of projection cells integrated into the fear memory trace. PMID:26944604

  15. Selective and protracted effect of nifedipine on fear memory extinction correlates with induced stress response.

    PubMed

    Waltereit, Robert; Mannhardt, Sönke; Nescholta, Sabine; Maser-Gluth, Christiane; Bartsch, Dusan

    2008-05-01

    Memory extinction, defined as a decrease of a conditioned response as a function of a non-reinforced conditioned stimulus presentation, has high biological and clinical relevance. Extinction is not a passive reversing or erasing of the plasticity associated with acquisition, but a novel, active learning process. Nifedipine blocks L-type voltage gated calcium channels (LVGCC) and has been shown previously to selectively interfere with the extinction, but not the acquisition, of fear memory. We studied here the effect of retrograde and anterograde shifts of nifedipine application, with respect to an extinction training, on the extinction of fear conditioning. Subcutaneous injection of 30 mg/kg nifedipine, at least up to 4 h before the extinction session, significantly impaired extinction, as did intraperitoneal injection of 15 mg/kg nifedipine, at least up to 2 h before extinction training. However, the injection of nifedipine also induced a strong and protracted stress response. The pharmacokinetics of nifedipine suggest that it was mainly this stress response that triggered the specific inhibition of extinction, not the blockade of LVGCC in the brain. Our results support recent findings that stress selectively interferes with the extinction, but not the acquisition, of fear memory. They also indicate that a pharmacological approach is not sufficient to study the role of brain LVGCC in learning and memory. Further research using specific genetically modified animals is necessary to delineate the role of LVGCC in fear memory extinction. PMID:18441293

  16. Spontaneous brain activity following fear reminder of fear conditioning by using resting-state functional MRI

    PubMed Central

    Feng, Pan; Zheng, Yong; Feng, Tingyong

    2015-01-01

    Although disrupting reconsolidation may be a promising approach to attenuate or erase the expression of fear memory, it is not clear how the neural state following fear reminder contribute to the following fear extinction. To address this question, we used resting-state functional magnetic resonance imaging (rs-fMRI) to measure spontaneous neuronal activity and functional connectivity (RSFC) following fear reminder. Some brain regions such as dorsal anterior cingulate (dACC) and ventromedial prefrontal cortex (vmPFC) showed increased amplitude of LFF (ALFF) in the fear reminder group than the no reminder group following fear reminder. More importantly, there was much stronger functional connectivity between the amygdala and vmPFC in the fear reminder group than those in the no reminder group. These findings suggest that the strong functional connectivity between vmPFC and amygdala following a fear reminder could serve as a key role in the followed-up fear extinction stages, which may contribute to the erasing of fear memory. PMID:26576733

  17. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Zamanparvar, Majid; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-03-01

    The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Growing evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. In addition, there is an interaction between the cannabinoid and noradrenergic system that has significant functional and behavioral implications. Considering the importance of these systems in forming memories for fearful events, we have investigated the involvement of basolateral amygdala (BLA) α2-adrenoceptors on ACPA (as selective cannabinoid CB1 agonist)-induced inhibition of the acquisition of contextual and auditory conditioned fear. A contextual and auditory fear conditioning apparatus for assess fear memory in adult male NMRI mice was used. Pre-training, intraperitoneal administration of ACPA decreased the percentage freezing time in contextual (at doses of 0.05 and 0.1mg/kg) and auditory (at dose of 0.1 mg/kg) in the fear conditioning task, indicating memory acquisition deficit. The same result was observed with intra-BLA microinjection of clonidine (0.001-0.5 μg/mouse, for both memories), as α2-adrenoceptor agonist and yohimbine (at doses of 0.005 and 0.05 for contextual and at dose of 0.05 μg/mouse for auditory fear memory), as α2-adrenoceptor antagonist. In addition, intra-BLA microinjection of clonidine (0.0005 μg/mouse) did not alter ACPA response in both conditions, while the same dose of yohimbine potentiated ACPA response at the lower dose on contextual fear memory. It is concluded that BLA α2-adrenergic receptors may be involved in context- but not tone-dependent fear memory impairment induced by activation of CB1 receptors. PMID:26698395

  18. Amygdala kindling disrupts trace and delay fear conditioning with parallel changes in Fos protein expression throughout the limbic brain.

    PubMed

    Botterill, J J; Fournier, N M; Guskjolen, A J; Lussier, A L; Marks, W N; Kalynchuk, L E

    2014-04-18

    Amygdala kindling is well known to increase unconditioned fear and anxiety. However, relatively little is known about whether this form of kindling causes functional changes within the neural circuitry that mediates fear learning and the retrieval of fear memories. To address this issue, we examined the effect of short- (i.e., 30 stimulations) and long-term (i.e., 99 stimulations) amygdala kindling in rats on trace and delay fear conditioning, which are aversive learning tasks that rely predominantly on the hippocampus and amygdala, respectively. After memory retrieval, we analyzed the pattern of neural activity with Fos, the protein product of the immediate early gene c-fos. We found that kindling had no effect on acquisition of the trace fear conditioning task but it did selectively impair retrieval of this fear memory. In contrast, kindling disrupted both acquisition and retrieval of fear memory in the delay fear conditioning task. We also found that kindling-induced impairments in memory retrieval were accompanied by decreased Fos expression in several subregions of the hippocampus, parahippocampus, and amygdala. Interestingly, decreased freezing in the trace conditioning task was significantly correlated with dampened Fos expression in hippocampal and parahippocampal regions whereas decreased freezing in the delay conditioning task was significantly correlated with dampened Fos expression in hippocampal, parahippocampal, and amygdaloid circuits. Overall, these results suggest that amygdala kindling promotes functional changes in brain regions involved in specific types of fear learning and memory. PMID:24486965

  19. Prefrontal Consolidation Supports the Attainment of Fear Memory Accuracy

    ERIC Educational Resources Information Center

    Vieira, Philip A.; Lovelace, Jonathan W.; Corches, Alex; Rashid, Asim J.; Josselyn, Sheena A.; Korzus, Edward

    2014-01-01

    The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required…

  20. Effects of Postnatal Serotonin Agonism on Fear Response and Memory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter the development of the serotonergic circuitry, altering behaviors mediated by 5-HT signaling, such as memory, fear and aggression. White leghorn chicks...

  1. Modulation of fear memory by dietary polyunsaturated fatty acids via cannabinoid receptors.

    PubMed

    Yamada, Daisuke; Takeo, Jiro; Koppensteiner, Peter; Wada, Keiji; Sekiguchi, Masayuki

    2014-07-01

    Although the underlying mechanism remains unknown, several studies have suggested benefits of n-3 long-chain polyunsaturated fatty acid (PUFA) for patients with anxiety disorders. Elevated fear is thought to contribute to the pathogenesis of particular anxiety disorders. The aim of the present study was to evaluate whether the dietary n-3 to n-6 PUFA (3:6) ratio influences fear memory. For this purpose, the effects of various dietary 3:6 ratios on fear memory were examined in mice using contextual fear conditioning, and the effects of these diets on central synaptic transmission were examined to elucidate the mechanism of action of PUFA. We found that fear memory correlated negatively with dietary, serum, and brain 3:6 ratios in mice. The low fear memory in mice fed a high 3:6 ratio diet was increased by the cannabinoid CB1 receptor antagonist rimonabant, reaching a level seen in mice fed a low 3:6 ratio diet. The agonist sensitivity of CB1 receptor was enhanced in the basolateral nucleus of the amygdala (BLA) of mice fed a high 3:6 ratio diet, compared with that of mice fed a low 3:6 ratio diet. Similar enhancement was induced by pharmacological expulsion of cholesterol in the neuronal membrane of brain slices from mice fed a low 3:6 ratio diet. CB1 receptor-mediated short-term synaptic plasticity was facilitated in pyramidal neurons of the BLA in mice fed a high 3:6 ratio diet. These results suggest that the ratio of n-3 to n-6 PUFA is a factor regulating fear memory via cannabinoid CB1 receptors. PMID:24518289

  2. Hippocampus and Medial Prefrontal Cortex Contributions to Trace and Contextual Fear Memory Expression over Time

    ERIC Educational Resources Information Center

    Beeman, Christopher L.; Bauer, Philip S.; Pierson, Jamie L.; Quinn, Jennifer J.

    2013-01-01

    Previous work has shown that damage to the dorsal hippocampus (DH) occurring at recent, but not remote, timepoints following acquisition produces a deficit in trace conditioned fear memory expression. The opposite pattern has been observed with lesions to the medial prefrontal cortex (mPFC). The present studies address: (1) whether these lesion…

  3. The Cannabinoid System in the Retrosplenial Cortex Modulates Fear Memory Consolidation, Reconsolidation, and Extinction

    ERIC Educational Resources Information Center

    Sachser, Ricardo Marcelo; Crestani, Ana Paula; Quillfeldt, Jorge Alberto; e Souza, Tadeu Mello; de Oliveira Alvares, Lucas

    2015-01-01

    Despite the fact that the cannabinoid receptor type 1 (CB1R) plays a pivotal role in emotional memory processing in different regions of the brain, its function in the retrosplenial cortex (RSC) remains unknown. Here, using contextual fear conditioning in rats, we showed that a post-training intra-RSC infusion of the CB1R antagonist AM251…

  4. Generalization of Conditioned Fear along a Dimension of Increasing Fear Intensity

    ERIC Educational Resources Information Center

    Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.

    2009-01-01

    The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two…

  5. Effects of Post-Training Hippocampal Injections of Midazolam on Fear Conditioning

    ERIC Educational Resources Information Center

    Gafford, Georgette M.; Parsons, Ryan G.; Helmstetter, Fred J.

    2005-01-01

    Benzodiazepines have been useful tools for investigating mechanisms underlying learning and memory. The present set of experiments investigates the role of hippocampal GABA[subscript A]/benzodiazepine receptors in memory consolidation using Pavlovian fear conditioning. Rats were prepared with cannulae aimed at the dorsal hippocampus and trained…

  6. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  7. Reconsolidation in a human fear conditioning study: a test of extinction as updating mechanism.

    PubMed

    Kindt, Merel; Soeter, Marieke

    2013-01-01

    Disrupting reconsolidation seems to be a promising approach to dampen the expression of fear memory. Recently, we demonstrated that disrupting reconsolidation by a pharmacological manipulation specifically targeted the emotional expression of memory (i.e., startle response). Here we test in a human differential fear-conditioning paradigm with fear-relevant stimuli whether the spacing of a single unreinforced retrieval trial relative to extinction learning allows for "rewriting" the original fear association, thereby preventing the return of fear. In contrast to previous findings reported by Schiller et al. (2010), who used a single-method for indexing fear (skin conductance response) and fear-irrelevant stimuli, we found that extinction learning within the reconsolidation window did not prevent the recovery of fear on multiple indices of conditioned responding (startle response, skin conductance response and US-expectancy). These conflicting results ask for further critical testing given the potential impact on the field of emotional memory and its application to clinical practice. PMID:21986472

  8. Prefrontal inputs to the amygdala instruct fear extinction memory formation

    PubMed Central

    Bukalo, Olena; Pinard, Courtney R.; Silverstein, Shana; Brehm, Christina; Hartley, Nolan D.; Whittle, Nigel; Colacicco, Giovanni; Busch, Erica; Patel, Sachin; Singewald, Nicolas; Holmes, Andrew

    2015-01-01

    Persistent anxiety after a psychological trauma is a hallmark of many anxiety disorders. However, the neural circuits mediating the extinction of traumatic fear memories remain incompletely understood. We show that selective, in vivo stimulation of the ventromedial prefrontal cortex (vmPFC)–amygdala pathway facilitated extinction memory formation, but not retrieval. Conversely, silencing the vmPFC-amygdala pathway impaired extinction formation and reduced extinction-induced amygdala activity. Our data demonstrate a critical instructional role for the vmPFC-amygdala circuit in the formation of extinction memories. These findings advance our understanding of the neural basis of persistent fear, with implications for posttraumatic stress disorder and other anxiety disorders. PMID:26504902

  9. Increased stathmin expression strengthens fear conditioning in epileptic rats.

    PubMed

    Zhang, Linna; Feng, Danni; Tao, Hong; DE, Xiangyan; Chang, Qing; Hu, Qikuan

    2015-01-01

    Patients with temporal lobe epilepsy have inexplicable fear attack as the aura. However, the underlying neural mechanisms of seizure-modulated fear are not clarified. Recent studies identified stathmin as one of the key controlling molecules in learning and innate fear. Stathmin binds to tubulin, inhibits microtubule assembly and promotes microtubule catastrophes. Therefore, stathmin is predicted to play a crucial role in the association of epilepsy seizures with fear conditioning. Firstly, a pilocarpine model of epilepsy in rats was established, and subsequently the fear condition training was performed. The epileptic rats with fear conditioning (epilepsy + fear) had a much longer freezing time compared to each single stimulus. The increased freezing levels revealed a significantly strengthened effect of the epileptic seizures on the learned fear of the tone-shock contextual. Subsequently, the stathmin expression was compared in the hippocampus, the amygdale, the insular cortex and the temporal lobe. The significant change of stathmin expression occurred in the insular and the hippocampus, but not in the amygdale. Stathmin expression and dendritic microtubule stability were compared between fear and epilepsy in rats. Epilepsy was found to strengthen the fear conditioning with increased expression of stathmin and a decrease in microtubule stability. Fear conditioning slightly increased the expression of stathmin, whereas epilepsy with fear conditioning increased it significantly in the hippocampus, insular cortex and hypothalamus. The phosphorylated stathmin slightly increased in the epilepsy with fear conditioning. The increased expression of stathmin was contrary to the decrease of the stathmin microtubule-associated protein (MAP2) and α-tubulin in the epileptic rats with fear conditioning in all three areas of the brain. The most significant change of the ratio of MAP2 and α-tubulin/stathmin occurred in the insular cortex and hippocampus. In conclusion

  10. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits.

    PubMed

    Burghardt, N S; Bauer, E P

    2013-09-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used for the treatment of a spectrum of anxiety disorders, yet paradoxically they may increase symptoms of anxiety when treatment is first initiated. Despite extensive research over the past 30 years focused on SSRI treatment, the precise mechanisms by which SSRIs exert these opposing acute and chronic effects on anxiety remain unknown. By testing the behavioral effects of SSRI treatment on Pavlovian fear conditioning, a well characterized model of emotional learning, we have the opportunity to identify how SSRIs affect the functioning of specific brain regions, including the amygdala, bed nucleus of the stria terminalis (BNST) and hippocampus. In this review, we first define different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. We examine the results of numerous rodent studies investigating how acute SSRI treatment modulates fear learning and relate these effects to the known functions of serotonin in specific brain regions. With these findings, we propose a model by which acute SSRI administration, by altering neural activity in the extended amygdala and hippocampus, enhances both acquisition and expression of cued fear conditioning, but impairs the expression of contextual fear conditioning. Finally, we review the literature examining the effects of chronic SSRI treatment on fear conditioning in rodents and describe how downregulation of N-methyl-d-aspartate (NMDA) receptors in the amygdala and hippocampus may mediate the impairments in fear learning and memory that are reported. While long-term SSRI treatment effectively reduces symptoms of anxiety, their disruptive effects on fear learning should be kept in mind when combining chronic SSRI treatment and learning-based therapies, such as cognitive behavioral therapy. PMID:23732229

  11. Equal pain—Unequal fear response: enhanced susceptibility of tooth pain to fear conditioning

    PubMed Central

    Meier, Michael L.; de Matos, Nuno M. P.; Brügger, Mike; Ettlin, Dominik A.; Lukic, Nenad; Cheetham, Marcus; Jäncke, Lutz; Lutz, Kai

    2014-01-01

    Experimental fear conditioning in humans is widely used as a model to investigate the neural basis of fear learning and to unravel the pathogenesis of anxiety disorders. It has been observed that fear conditioning depends on stimulus salience and subject vulnerability to fear. It is further known that the prevalence of dental-related fear and phobia is exceedingly high in the population. Dental phobia is unique as no other body part is associated with a specific phobia. Therefore, we hypothesized that painful dental stimuli exhibit an enhanced susceptibility to fear conditioning when comparing to equal perceived stimuli applied to other body sites. Differential susceptibility to pain-related fear was investigated by analyzing responses to an unconditioned stimulus (UCS) applied to the right maxillary canine (UCS-c) vs. the right tibia (UCS-t). For fear conditioning, UCS-c and USC-t consisted of painful electric stimuli, carefully matched at both application sites for equal intensity and quality perception. UCSs were paired to simple geometrical forms which served as conditioned stimuli (CS+). Unpaired CS+ were presented for eliciting and analyzing conditioned fear responses. Outcome parameter were (1) skin conductance changes and (2) time-dependent brain activity (BOLD responses) in fear-related brain regions such as the amygdala, anterior cingulate cortex, insula, thalamus, orbitofrontal cortex, and medial prefrontal cortex. A preferential susceptibility of dental pain to fear conditioning was observed, reflected by heightened skin conductance responses and enhanced time-dependent brain activity (BOLD responses) in the fear network. For the first time, this study demonstrates fear-related neurobiological mechanisms that point toward a superior conditionability of tooth pain. Beside traumatic dental experiences our results offer novel evidence that might explain the high prevalence of dental-related fears in the population. PMID:25100974

  12. Pair exposure with conspecific during fear conditioning induces the link between freezing and passive avoidance behaviors in rats.

    PubMed

    Lee, Hyunchan; Noh, Jihyun

    2016-07-01

    Social factor plays an important role in dealing with posttraumatic stress disorder related to excessive physiological fear response and insufficient fear memory extinction of the brain. However, although social circumstances occurred not only during contextual retrieval but also during fear conditioning, most previous studies focused on the advantageous aspects of social buffering in fear retrieval period. To demonstrate the association between fear responses and fear memory from social stimuli during fear conditioning, pair exposed rats with conspecific as social buffering were subjected to a fear conditioning of passive avoidance test to evaluate memory function and freezing behavior. Whereas single exposed rats showed the significant increase of freezing behaviors and passive avoidance behaviors compared to control rats, pair exposed rats showed significant alleviation of the freezing behaviors and passive avoidance behaviors compared to single exposed rats. Furthermore, we determined a significant correlation between freezing and passive avoidance behavioral alteration in pair exposed rats. Taken together, we suggest that pair exposure with conspecific during fear conditioning helps to cope with both freezing response and fear memory systems and their reciprocal interaction has a crucial potential as a resource for the relief of unreasonable stress responses in posttraumatic stress disorder. PMID:26827818

  13. Involvement of the dopaminergic system in the consolidation of fear conditioning in hippocampal CA3 subregion.

    PubMed

    Wen, Jia-Ling; Xue, Li; Wang, Run-Hua; Chen, Zi-Xiang; Shi, Yan-Wei; Zhao, Hu

    2015-02-01

    The hippocampus, the primary brain structure related to learning and memory, receives sparse but comprehensive dopamine innervations and contains dopamine D1 and D2 receptors. Systematic hippocampal dopaminergic dysfunction can cause deficits in spatial working memory and impair consolidation of contextual fear memories. CA3 is involved in the rapid acquisition of new memories and has extensive nerve fibre connections with other brain structures such as CA1, the amygdala, and the medial prefrontal cortex (mPFC). A bidirectional fibrous connection between CA3 and the amygdala reflects the importance of CA3 in fear conditioning. The present study evaluated the effects of a 6-OHDA lesion in CA3 on the acquisition and expression of conditioned fear. The results showed CA3 involvement in the expression but not the acquisition of conditioned fear. Injection of SCH23390 and quinpirole into the bilateral CA3 attenuated a conditioned fear-related freezing response, whereas SKF38393 and sulpiride were not associated with this effect. The present study found that a 6-OHDA lesion in CA3 up-regulated the expression of GluR1 in BLA and down-regulated NR2B in CA1 and the basolateral amygdala (BLA). Our data suggest that dopamine depletion in hippocampal subdivision CA3 may not be necessary for the acquisition of conditioned fear, but the expression of conditioned fear is likely dependent on the integrity of mesohippocampal dopaminergic connections. It is probable that both D1 and D2 dopaminergic receptors modulate the expression of conditioned fear. Changes in the expression of NR2B and GluR1 indicate that CA3 may modulate the activities of other brain structures. PMID:25446753

  14. Sleep Promotes Generalization of Extinction of Conditioned Fear

    PubMed Central

    Pace-Schott, Edward F.; Milad, Mohammed R.; Orr, Scott P.; Rauch, Scott L.; Stickgold, Robert; Pitman, Roger K.

    2009-01-01

    Study Objective: To examine the effects of sleep on fear conditioning, extinction, extinction recall, and generalization of extinction recall in healthy humans. Design: During the Conditioning phase, a mild, 0.5-sec shock followed conditioned stimuli (CS+s), which consisted of 2 differently colored lamps. A third lamp color was interspersed but never reinforced (CS-). Immediately after Conditioning, one CS+ was extinguished (CS+E) by presentation without shocks (Extinction phase). The other CS+ went unextinguished (CS+U). Twelve hours later, following continuous normal daytime waking (Wake group, N = 27) or an equal interval containing a normal night's sleep (Sleep group, N = 26), conditioned responses (CRs) to all CSs were measured (Extinction Recall phase). It was hypothesized that the Sleep versus Wake group would show greater extinction recall and/or generalization of extinction recall from the CS+E to the CS+U. Setting: Academic medical center. Subjects: Paid normal volunteers. Measurements and Results: Square-root transformed skin conductance response (SCR) measured conditioned responding. During Extinction Recall, the Group (Wake or Sleep) × CS+ Type (CS+E or CS+U) interaction was significant (P = 0.04). SCRs to the CS+E did not differ between groups, whereas SCRs to the CS+U were significantly smaller in the Sleep group. Additionally, SCRs were significantly larger to the CS+U than CS+E in the Wake but not the Sleep group. Conclusions: After sleep, extinction memory generalized from an extinguished conditioned stimulus to a similarly conditioned but unextinguished stimulus. Clinically, adequate sleep may promote generalization of extinction memory from specific stimuli treated during exposure therapy to similar stimuli later encountered in vivo. Citation: Pace-Schott EF; Milad MR; Orr SP; Rauch SL; Stickgold R; Pitman RK. Sleep promotes generalization of extinction of conditioned fear. SLEEP 2009;32(1):19-26. PMID:19189775

  15. A temporal shift in the circuits mediating retrieval of fear memory.

    PubMed

    Do-Monte, Fabricio H; Quiñones-Laracuente, Kelvin; Quirk, Gregory J

    2015-03-26

    Fear memories allow animals to avoid danger, thereby increasing their chances of survival. Fear memories can be retrieved long after learning, but little is known about how retrieval circuits change with time. Here we show that the dorsal midline thalamus of rats is required for the retrieval of auditory conditioned fear at late (24 hours, 7 days, 28 days), but not early (0.5 hours, 6 hours) time points after learning. Consistent with this, the paraventricular nucleus of the thalamus (PVT), a subregion of the dorsal midline thalamus, showed increased c-Fos expression only at late time points, indicating that the PVT is gradually recruited for fear retrieval. Accordingly, the conditioned tone responses of PVT neurons increased with time after training. The prelimbic (PL) prefrontal cortex, which is necessary for fear retrieval, sends dense projections to the PVT. Retrieval at late time points activated PL neurons projecting to the PVT, and optogenetic silencing of these projections impaired retrieval at late, but not early, time points. In contrast, silencing of PL inputs to the basolateral amygdala impaired retrieval at early, but not late, time points, indicating a time-dependent shift in retrieval circuits. Retrieval at late time points also activated PVT neurons projecting to the central nucleus of the amygdala, and silencing these projections at late, but not early, time points induced a persistent attenuation of fear. Thus, the PVT may act as a crucial thalamic node recruited into cortico-amygdalar networks for retrieval and maintenance of long-term fear memories. PMID:25600268

  16. Facial expression influences recognition memory for faces: robust enhancement effect of fearful expression.

    PubMed

    Wang, Bo

    2013-04-01

    Memory for faces is important for social interactions. However, it is unclear whether negative or positive expression affects recollection and familiarity for faces and whether the effect can be modulated by retention interval. Two experiments examined the effect of emotional expression on recognition for faces at two delay conditions. In Experiment 1 participants viewed neutral, positive, and negative (including fearful, sad, angry etc.) faces and made gender discrimination for each face. In Experiment 2 they viewed and made gender discrimination for neutral, positive, and fearful faces. Following the incidental learning they were randomly assigned into the immediate and 24-hour (24-h) delay conditions. Findings from the two experiments are as follows: (1) In the immediate and 24-h delay conditions overall recognition and recollection for negative faces (fearful faces in Experiment 2) were better than for neutral faces and positive faces. (2) In the immediate and 24-h delay conditions recollection and familiarity for positive faces was equivalent to recollection for neutral faces. (3) The enhancement effect of fearful expression on recognition and recollection was not due to greater discriminability between the old and new faces in the fearful category. The results indicate that recognition and recollection for faces and the enhancement effect of fearful expression is robust within 24 hours. PMID:23016604

  17. Asymmetrical Stimulus Generalization following Differential Fear Conditioning

    PubMed Central

    Bang, Sun Jung; Allen, Timothy A.; Jones, Lauren K.; Boguszewski, Pawel; Brown, Thomas H.

    2008-01-01

    Rodent ultrasonic vocalizations (USVs) are ethologically critical social signals. Rats emit 22 kHz USVs and 50 kHz USVs, respectively, in conjunction with negative and positive affective states. Little is known about what controls emotional reactivity to these social signals. Using male Sprague-Dawley rats, we examined unconditional and conditional freezing behavior in response to the following auditory stimuli: three 22 kHz USVs, a discontinuous tone whose frequency and on-off pattern matched one of the USVs, a continuous tone with the same or lower frequencies, a 4 kHz discontinuous tone with an on-off pattern matched to one of the USVs, and a 50 kHz USV. There were no differences among these stimuli in terms of the unconditional elicitation of freezing behavior. Thus, the stimuli were equally neutral before conditioning. During differential fear conditioning, one of these stimuli (the CS+) always co-terminated with a footshock unconditional stimulus (US) and another stimulus (the CS−) was explicitly unpaired with the US. There were no significant differences among these cues in CS+-elicited freezing behavior. Thus, the stimuli were equally salient or effective as cues in supporting fear conditioning. When the CS+ was a 22 kHz USV or a similar stimulus, rats discriminated based on the principal frequency and/or the temporal pattern of the stimulus. However, when these same stimuli served as the CS−, discrimination failed due to generalization from the CS+. Thus, the stimuli differed markedly in the specificity of conditioning. This strikingly asymmetrical stimulus generalization is a novel bias in discrimination. PMID:18434217

  18. Overexpression of SIRT6 in the hippocampal CA1 impairs the formation of long-term contextual fear memory

    PubMed Central

    Yin, Xi; Gao, Yuan; Shi, Hai-Shui; Song, Li; Wang, Jie-Chao; Shao, Juan; Geng, Xu-Hong; Xue, Gai; Li, Jian-Li; Hou, Yan-Ning

    2016-01-01

    Histone modifications have been implicated in learning and memory. Our previous transcriptome data showed that expression of sirtuins 6 (SIRT6), a member of Histone deacetylases (HDACs) family in the hippocampal cornu ammonis 1 (CA1) was decreased after contextual fear conditioning. However, the role of SIRT6 in the formation of memory is still elusive. In the present study, we found that contextual fear conditioning inhibited translational expression of SIRT6 in the CA1. Microinfusion of lentiviral vector-expressing SIRT6 into theCA1 region selectively enhanced the expression of SIRT6 and impaired the formation of long-term contextual fear memory without affecting short-term fear memory. The overexpression of SIRT6 in the CA1 had no effect on anxiety-like behaviors or locomotor activity. Also, we also found that SIRT6 overexpression significantly inhibited the expression of insulin-like factor 2 (IGF2) and amounts of proteins and/or phosphoproteins (e.g. Akt, pAkt, mTOR and p-mTOR) related to the IGF2 signal pathway in the CA1. These results demonstrate that the overexpression of SIRT6 in the CA1 impaired the formation of long-term fear memory, and SIRT6 in the CA1 may negatively modulate the formation of contextual fear memory via inhibiting the IGF signaling pathway. PMID:26732053

  19. Overexpression of SIRT6 in the hippocampal CA1 impairs the formation of long-term contextual fear memory.

    PubMed

    Yin, Xi; Gao, Yuan; Shi, Hai-Shui; Song, Li; Wang, Jie-Chao; Shao, Juan; Geng, Xu-Hong; Xue, Gai; Li, Jian-Li; Hou, Yan-Ning

    2016-01-01

    Histone modifications have been implicated in learning and memory. Our previous transcriptome data showed that expression of sirtuins 6 (SIRT6), a member of Histone deacetylases (HDACs) family in the hippocampal cornu ammonis 1 (CA1) was decreased after contextual fear conditioning. However, the role of SIRT6 in the formation of memory is still elusive. In the present study, we found that contextual fear conditioning inhibited translational expression of SIRT6 in the CA1. Microinfusion of lentiviral vector-expressing SIRT6 into theCA1 region selectively enhanced the expression of SIRT6 and impaired the formation of long-term contextual fear memory without affecting short-term fear memory. The overexpression of SIRT6 in the CA1 had no effect on anxiety-like behaviors or locomotor activity. Also, we also found that SIRT6 overexpression significantly inhibited the expression of insulin-like factor 2 (IGF2) and amounts of proteins and/or phosphoproteins (e.g. Akt, pAkt, mTOR and p-mTOR) related to the IGF2 signal pathway in the CA1. These results demonstrate that the overexpression of SIRT6 in the CA1 impaired the formation of long-term fear memory, and SIRT6 in the CA1 may negatively modulate the formation of contextual fear memory via inhibiting the IGF signaling pathway. PMID:26732053

  20. The NO-cGMP-PKG Signaling Pathway Regulates Synaptic Plasticity and Fear Memory Consolidation in the Lateral Amygdala via Activation of ERK/MAP Kinase

    ERIC Educational Resources Information Center

    Ota, Kristie T.; Pierre, Vicki J.; Ploski, Jonathan E.; Queen, Kaila; Schafe, Glenn E.

    2008-01-01

    Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and…

  1. Post-training activation of Rac1 in the basolateral amygdala is required for the formation of both short-term and long-term auditory fear memory

    PubMed Central

    Gao, Qinqin; Yao, Wenqing; Wang, Junjun; Yang, Tong; Liu, Cao; Tao, Yezheng; Chen, Yuejun; Liu, Xing; Ma, Lan

    2015-01-01

    Rac1, a member of the Rho family of small GTPases, is crucial for morphological changes of the mature neuronal synapse including spine formation and activity-dependent spine enlargement, while its role in the formation of associated memories, such as conditioned fear memory, is not clear. Here, we report that selective deletion of Rac1 in excitatory neurons, but not in parvalbumin inhibitory neurons, impaired short- and long-term memories (STM and LTM) of fear conditioning. Conditional knockout of Rac1 before associative fear training in the basolateral amygdala (BLA), a key area for fear memory acquisition and storage, impaired fear memory. The expression of dominant-negative mutant of Rac1, or infusion of Rac1 inhibitor NSC23766 into BLA blocked both STM and LTM of fear conditioning. Furthermore, selective inhibition of Rac1 activation in BLA immediately following fear conditioning impaired STM and LTM, demonstrating that fear conditioning-induced Rac1 activation in BLA plays a critical role in the formation of both STM and LTM of conditioned fear. PMID:26582975

  2. The effect of adverse rearing environments on persistent memories in young rats: removing the brakes on infant fear memories.

    PubMed

    Callaghan, B L; Richardson, R

    2012-01-01

    Mental health problems are often assumed to have their roots in early-life experiences. However, memories acquired in infancy are rapidly forgotten in nearly all species (including humans). As yet, a testable mechanism on how early-life experiences have a lasting impact on mental health is lacking. In these experiments, we tested the idea that infant adversity leads to an early transition into adult-like fear retention, allowing infant memories to have a longer-lasting influence. Rats were exposed to maternal separation (3 h per day) across postnatal days (P) 2-14, or their mother was given corticosterone in her drinking water across the same period. Infant rats were then trained to fear a conditioned stimulus (CS) paired with an aversive unconditioned stimulus (US) on P17. Retention of the fear association was then tested 1-55 days later. When tested one day after the CS-US association was formed, both standard-reared (SR) and maternally-separated (MS) rats exhibited strong memory. However, when tested 10 days later, SR rats exhibited robust forgetting, whereas MS rats exhibited near-perfect retention. These effects were mimicked by exposing the mother to the stress hormone corticosterone in the drinking water. Finally, fear associations in P17 MS rats were retained for up to 30 days. Our findings point to differences in retention of fear as one factor that might underlie the propensity of stress-exposed individuals to exhibit early anxiety symptoms and suggest that manipulations of the corticosterone system may hold the key to ameliorating some of the effects of early stress on persistent retention of fear. PMID:22781171

  3. Thalamocortical interactions underlying visual fear conditioning in humans.

    PubMed

    Lithari, Chrysa; Moratti, Stephan; Weisz, Nathan

    2015-11-01

    Despite a strong focus on the role of the amygdala in fear conditioning, recent works point to a more distributed network supporting fear conditioning. We aimed to elucidate interactions between subcortical and cortical regions in fear conditioning in humans. To do this, we used two fearful faces as conditioned stimuli (CS) and an electrical stimulation at the left hand, paired with one of the CS, as unconditioned stimulus (US). The luminance of the CS was rhythmically modulated leading to "entrainment" of brain oscillations at a predefined modulation frequency. Steady-state responses (SSR) were recorded by MEG. In addition to occipital regions, spectral analysis of SSR revealed increased power during fear conditioning particularly for thalamus and cerebellum contralateral to the upcoming US. Using thalamus and amygdala as seed-regions, directed functional connectivity was calculated to capture the modulation of interactions that underlie fear conditioning. Importantly, this analysis showed that the thalamus drives the fusiform area during fear conditioning, while amygdala captures the more general effect of fearful faces perception. This study confirms ideas from the animal literature, and demonstrates for the first time the central role of the thalamus in fear conditioning in humans. PMID:26287369

  4. Harnessing Reconsolidation to Weaken Fear and Appetitive Memories: A Meta-Analysis of Post-Retrieval Extinction Effects

    PubMed Central

    Kredlow, M. Alexandra; Unger, Leslie D.; Otto, Michael W.

    2015-01-01

    A new understanding of the mechanisms of memory retrieval and reconsolidation holds the potential for improving exposure-based treatments. Basic research indicates that following fear extinction, safety and fear memories may compete, raising the possibility of return of fear. One possible solution is to modify original fear memories through reconsolidation interference, reducing the likelihood of return of fear. Post-retrieval extinction is a behavioral method of reconsolidation interference that has been explored in the context of conditioned fear and appetitive memory paradigms. This meta-analysis examines the magnitude of post-retrieval extinction effects and potential moderators of these effects. A PubMed and PsycINFO search was conducted through June 2014. Sixty-three comparisons examining post-retrieval extinction for preventing the return of fear or appetitive responses in animals or humans met inclusion criteria. Post-retrieval extinction demonstrated a significant, small-to-moderate effect (g = .40) for further reducing the return of fear in humans and a significant, large effect (g = 0.89) for preventing the return of appetitive responses in animals relative to standard extinction. For fear outcomes in animals, effects were small (g = 0.21) and non-significant, but moderated by the number of animals housed together and the duration of time between post-retrieval extinction/extinction and test. Across paradigms, these findings support the efficacy of this pre-clinical strategy for preventing the return of conditioned fear and appetitive responses. Overall, findings to date support the continued translation of post-retrieval extinction research to human and clinical applications, with particular application to the treatment of anxiety, traumatic stress, and substance use disorders. PMID:26689086

  5. The Role of Muscarinic and Nicotinic Cholinergic Neurotransmission in Aversive Conditioning: Comparing Pavlovian Fear Conditioning and Inhibitory Avoidance

    ERIC Educational Resources Information Center

    Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S.

    2004-01-01

    Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…

  6. The cannabinoid system in the retrosplenial cortex modulates fear memory consolidation, reconsolidation, and extinction.

    PubMed

    Sachser, Ricardo Marcelo; Crestani, Ana Paula; Quillfeldt, Jorge Alberto; Mello E Souza, Tadeu; de Oliveira Alvares, Lucas

    2015-12-01

    Despite the fact that the cannabinoid receptor type 1 (CB1R) plays a pivotal role in emotional memory processing in different regions of the brain, its function in the retrosplenial cortex (RSC) remains unknown. Here, using contextual fear conditioning in rats, we showed that a post-training intra-RSC infusion of the CB1R antagonist AM251 impaired, and the agonist CP55940 improved, long-term memory consolidation. Additionally, a post-reactivation infusion of AM251 enhanced memory reconsolidation, while CP55940 had the opposite effect. Finally, AM251 blocked extinction, whereas CP55940 facilitated it and maintained memory extinguished over time. Altogether, our data strongly suggest that the cannabinoid system of the RSC modulates emotional memory. PMID:26572648

  7. Limited Efficacy of Propranolol on the Reconsolidation of Fear Memories

    ERIC Educational Resources Information Center

    Muravieva, Elizaveta V.; Alberini, Cristina M.

    2010-01-01

    Previous studies suggested that the beta-adrenergic receptor antagonist propranolol might be a novel, potential treatment for post-traumatic stress disorder (PTSD). This hypothesis stemmed mainly from rodent studies showing that propranolol interferes with the reconsolidation of Pavlovian fear conditioning (FC). However, subsequent investigations…

  8. Extinction of conditioned fear is better learned and recalled in the morning than in the evening.

    PubMed

    Pace-Schott, Edward F; Spencer, Rebecca M C; Vijayakumar, Shilpa; Ahmed, Nafis A K; Verga, Patrick W; Orr, Scott P; Pitman, Roger K; Milad, Mohammed R

    2013-11-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N = 109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCRs) to 2 differently colored lamps (CS+), but not a third color (CS-), within the computer image of a room (conditioning context). One CS+ (CS + E) but not the other (CS + U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 h (within AM or PM), 12 h (morning-to-evening or evening-to-morning) or 24 h (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p = .002). Collapsing across CS + type, there was smaller morning differential SCR at both extinction recall (p = .003) and fear renewal (p = .005). Morning extinction recall showed better generalization from the CS + E to CS + U with the response to the CS + U significantly larger than to the CS + E only in the evening (p = .028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicted better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. PMID:23992769

  9. Extinction of Conditioned Fear is Better Learned and Recalled in the Morning than in the Evening

    PubMed Central

    Pace-Schott, Edward F.; Spencer, Rebecca M.C.; Vijayakumar, Shilpa; Ahmed, Nafis; Verga, Patrick W.; Orr, Scott P.; Pitman, Roger K.; Milad, Mohammed R.

    2013-01-01

    Sleep helps emotional memories consolidate and may promote generalization of fear extinction memory. We examined whether extinction learning and memory might differ in the morning and evening due, potentially, to circadian and/or sleep-homeostatic factors. Healthy men (N=109) in 6 groups completed a 2-session protocol. In Session 1, fear conditioning was followed by extinction learning. Partial reinforcement with mild electric shock produced conditioned skin conductance responses (SCR) to 2 differently colored lamps (CS+), but not a third color (CS−), within the computer image of a room (conditioning context). One CS+ (CS+E) but not the other (CS+U) was immediately extinguished by un-reinforced presentations in a different room (extinction context). Delay durations of 3 hr (within AM or PM), 12 hr (morning-to-evening or evening-to-morning) or 24 hr (morning-to-morning or evening-to-evening) followed. In Session 2, extinction recall and contextual fear renewal were tested. We observed no significant effects of the delay interval on extinction memory but did observe an effect of time-of-day. Fear extinction was significantly better if learned in the morning (p=.002). Collapsing across CS+ type, there was smaller morning differential SCR at both extinction recall (p=.003) and fear renewal (p=.005). Morning extinction recall showed better generalization from the CS+E to CS+U with the response to the CS+U significantly larger than to the CS+E only in the evening (p=.028). Thus, extinction is learned faster and its memory is better generalized in the morning. Cortisol and testosterone showed the expected greater salivary levels in the morning when higher testosterone/cortisol ratio also predicting better extinction learning. Circadian factors may promote morning extinction. Alternatively, evening homeostatic sleep pressure may impede extinction and favor recall of conditioned fear. PMID:23992769

  10. Implications of memory modulation for post-traumatic stress and fear disorders

    PubMed Central

    Parsons, Ryan G; Ressler, Kerry J

    2013-01-01

    Post-traumatic stress disorder, panic disorder and phobia manifest in ways that are consistent with an uncontrollable state of fear. Their development involves heredity, previous sensitizing experiences, association of aversive events with previous neutral stimuli, and inability to inhibit or extinguish fear after it is chronic and disabling. We highlight recent progress in fear learning and memory, differential susceptibility to disorders of fear, and how these findings are being applied to the understanding, treatment and possible prevention of fear disorders. Promising advances are being translated from basic science to the clinic, including approaches to distinguish risk versus resilience before trauma exposure, methods to interfere with fear development during memory consolidation after a trauma, and techniques to inhibit fear reconsolidation and to enhance extinction of chronic fear. It is hoped that this new knowledge will translate to more successful, neuroscientifically informed and rationally designed approaches to disorders of fear regulation. PMID:23354388

  11. Role of mGluR4 in acquisition of fear learning and memory.

    PubMed

    Davis, Matthew J; Iancu, Ovidiu D; Acher, Francine C; Stewart, Blair M; Eiwaz, Massarra A; Duvoisin, Robert M; Raber, Jacob

    2013-03-01

    Group III metabotropic glutamate receptors (mGluRs), which are generally located presynaptically, modulate synaptic transmission by regulating neurotransmitter release. Previously we showed enhanced amygdala-dependent cued fear conditioning in mGluR4(-/-) mice 24 h following training involving two tone-shock pairings. In this study, we assessed the effects of modulating mGluR4 signaling on acquisition and extinction of conditioned fear. mGluR4(-/-) and wild-type female and male mice received 10 tone-shock pairings during training. Compared to wild-type mice, mGluR4(-/-) mice showed enhanced acquisition and extinction of cued fear. Next, we assessed whether acute pharmacological stimulation of mGluR4 with the specific orthosteric mGluR4 agonist LSP1-2111 also affects acquisition and extinction of cued fear. Consistent with the enhanced acquisition of cued fear in mGluR4(-/-), LSP1-2111, at 2.5 and 5 mg/kg, inhibited acquisition of cued fear conditioning in wild-type male mice. The drug's effect on extinction was less clear and only a subtle effect was seen at 5 mg/kg. Finally, analysis of microarray data of amygdala tissues from mGluR4(-/-) versus wild-type and from wild-type mice treated with a mGluR4 agonist versus saline revealed a significant overlap in pattern of gene expression. Together, these data support a role for mGluR4 signaling in acquisition of fear learning and memory. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22884897

  12. Extending animal models of fear conditioning to humans.

    PubMed

    Delgado, M R; Olsson, A; Phelps, E A

    2006-07-01

    A goal of fear and anxiety research is to understand how to treat the potentially devastating effects of anxiety disorders in humans. Much of this research utilizes classical fear conditioning, a simple paradigm that has been extensively investigated in animals, helping outline a brain circuitry thought to be responsible for the acquisition, expression and extinction of fear. The findings from non-human animal research have more recently been substantiated and extended in humans, using neuropsychological and neuroimaging methodologies. Research across species concur that the neural correlates of fear conditioning include involvement of the amygdala during all stages of fear learning, and prefrontal areas during the extinction phase. This manuscript reviews how animal models of fear are translated to human behavior, and how some fears are more easily acquired in humans (i.e., social-cultural). Finally, using the knowledge provided by a rich animal literature, we attempt to extend these findings to human models targeted to helping facilitate extinction or abolishment of fears, a trademark of anxiety disorders, by discussing efficacy in modulating the brain circuitry involved in fear conditioning via pharmacological treatments or emotion regulation cognitive strategies. PMID:16472906

  13. Neonatal Odor-Shock Conditioning Alters the Neural Network Involved in Odor Fear Learning at Adulthood

    ERIC Educational Resources Information Center

    Sevelinges, Yannick; Sullivan, Regina M.; Messaoudi, Belkacem; Mouly, Anne-Marie

    2008-01-01

    Adult learning and memory functions are strongly dependent on neonatal experiences. We recently showed that neonatal odor-shock learning attenuates later life odor fear conditioning and amygdala activity. In the present work we investigated whether changes observed in adults can also be observed in other structures normally involved, namely…

  14. DHPG Activation of Group 1 mGluRs in BLA Enhances Fear Conditioning

    ERIC Educational Resources Information Center

    Rudy, Jerry W.; Matus-Amat, Patricia

    2009-01-01

    Group 1 metabotropic glutamate receptors are known to play an important role in both synaptic plasticity and memory. We show that activating these receptors prior to fear conditioning by infusing the group 1 mGluR agonist, (R.S.)-3,5-dihydroxyphenylglycine (DHPG), into the basolateral region of the amygdala (BLA) of adult Sprague-Dawley rats…

  15. Impaired conditioned fear response and startle reactivity in epinephrine-deficient mice.

    PubMed

    Toth, Mate; Ziegler, Michael; Sun, Ping; Gresack, Jodi; Risbrough, Victoria

    2013-02-01

    Norepinephrine and epinephrine signaling is thought to facilitate cognitive processes related to emotional events and heightened arousal; however, the specific role of epinephrine in these processes is less known. To investigate the selective impact of epinephrine on arousal and fear-related memory retrieval, mice unable to synthesize epinephrine (phenylethanolamine N-methyltransferase knockout, PNMT-KO) were tested for contextual and cued-fear conditioning. To assess the role of epinephrine in other cognitive and arousal-based behaviors these mice were also tested for acoustic startle, prepulse inhibition, novel object recognition, and open-field activity. Our results show that compared with wild-type mice, PNMT-KO mice showed reduced contextual fear but normal cued fear. Mice exhibited normal memory performance in the short-term version of the novel object recognition task, suggesting that PNMT mice exhibit more selective memory effects on highly emotional and/or long-term memories. Similarly, open-field activity was unaffected by epinephrine deficiency, suggesting that differences in freezing are not related to changes in overall anxiety or exploratory drive. Startle reactivity to acoustic pulses was reduced in PNMT-KO mice, whereas prepulse inhibition was increased. These findings provide further evidence for a selective role of epinephrine in contextual-fear learning and support its potential role in acoustic startle. PMID:23268986

  16. Human fear conditioning conducted in full immersion 3-dimensional virtual reality.

    PubMed

    Huff, Nicole C; Zeilinski, David J; Fecteau, Matthew E; Brady, Rachael; LaBar, Kevin S

    2010-01-01

    conditioning and extinction parameters to yield empirical data that can suggest better treatment options and/or analyze mechanistic hypotheses. In order to test the hypothesis that fear conditioning may be richly encoded and context specific when conducted in a fully immersive environment, we developed distinct virtual reality 3-D contexts in which participants experienced fear conditioning to virtual snakes or spiders. Auditory cues co-occurred with the CS in order to further evoke orienting responses and a feeling of "presence" in subjects. Skin conductance response served as the dependent measure of fear acquisition, memory retention and extinction. PMID:20736913

  17. Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults.

    PubMed

    Schiele, Miriam A; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen; Pauli, Paul

    2016-05-01

    Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc. Dev Psychobiol 58: 471-481, 2016. PMID:26798984

  18. Representational similarity analysis offers a preview of the noradrenergic modulation of long-term fear memory at the time of encoding.

    PubMed

    Visser, Renée M; Kunze, Anna E; Westhoff, Bianca; Scholte, H Steven; Kindt, Merel

    2015-05-01

    Neuroimaging research on emotional memory has greatly advanced our understanding of the pathogenesis of anxiety disorders. While the behavioral expression of fear at the time of encoding does not predict whether an aversive experience will evolve into long-term fear memory, the application of multi-voxel pattern analysis (MVPA) for the analysis of BOLD-MRI data has recently provided a unique marker for memory formation. Here, we aimed to further investigate the utility of this marker by modulating the strength of fear memory with an α2-adrenoceptor antagonist (yohimbine HCl). Fifty-two healthy participants were randomly assigned to two conditions - either receiving 20mg yohimbine or a placebo pill (double-blind) - prior to differential fear conditioning and MRI-scanning. We examined the strength of fear associations during acquisition and retention of fear (48 h later) by assessing the similarity of BOLD-MRI patterns and pupil dilation responses. Additionally, participants returned for a follow-up test outside the scanner (2-4 weeks), during which we assessed fear-potentiated startle responses. Replicating our previous findings, neural pattern similarity reflected the development of fear associations over time, and unlike average activation or pupil dilation, predicted the later expression of fear memory (pupil dilation 48 h later). While no effect of yohimbine was observed on markers of autonomic arousal, including salivary α-amylase (sAA), we obtained indirect evidence for the noradrenergic enhancement of fear memory consolidation: sAA levels showed a strong increase prior to fMRI scanning, irrespective of whether participants had received yohimbine, and this increase correlated with the subsequent expression of fear (48 h later). Remarkably, this noradrenergic enhancement of fear was associated with changes in neural response patterns at the time of learning. These findings provide further evidence that representational similarity analysis is a sensitive tool

  19. Differential effects of dorsal hippocampal inactivation on expression of recent and remote drug and fear memory.

    PubMed

    Raybuck, J D; Lattal, K M

    2014-05-21

    Drugs of abuse generate strong drug-context associations, which can evoke powerful drug cravings that are linked to reinstatement in animal models and to relapse in humans. Work in learning and memory has demonstrated that contextual memories become more distributed over time, shifting from dependence on the hippocampus for retrieval to dependence on cortical structures. Implications for such changes in the structure of memory retrieval to addiction are unknown. Thus, to determine if the passage of time alters the substrates of conditioned place preference (CPP) memory retrieval, we investigated the effects of inactivation of the dorsal hippocampus (DH) with the GABA-A receptor agonist muscimol on expression of recent or remote CPP. We compared these effects with the same manipulation on expression of contextual fear conditioning. DH inactivation produced similar deficits in expression of both recent and remote CPP, but blocked expression of recent but not remote contextual fear memory. We describe the implications of these findings for mechanisms underlying long-term storage of contextual information. PMID:24686177

  20. Sex differences in fear conditioning in posttraumatic stress disorder

    PubMed Central

    Inslicht, Sabra S.; Metzler, Thomas J.; Garcia, Natalia M.; Pineles, Suzanne L.; Milad, Mohammed R.; Orr, Scott P.; Marmar, Charles R.; Neylan, Thomas C.

    2013-01-01

    Background Women are twice as likely as men to develop Posttraumatic Stress Disorder (PTSD). Abnormal acquisition of conditioned fear has been suggested as a mechanism for the development of PTSD. While some studies of healthy humans suggest that women are either no different or express less conditioned fear responses during conditioning relative to men, differences in the acquisition of conditioned fear between men and women diagnosed with PTSD has not been examined. Methods Thirty-one participants (18 men; 13 women) with full or subsyndromal PTSD completed a fear conditioning task. Participants were shown computer-generated colored circles that were paired (CS+) or unpaired (CS−) with an aversive electrical stimulus and skin conductance levels were assessed throughout the task. Results Repeated measures ANOVA indicated a significant sex by stimulus interaction during acquisition. Women had greater differential conditioned skin conductance responses (CS + trials compared to CS− trials) than did men, suggesting greater acquisition of conditioned fear in women with PTSD. Conclusions In contrast to studies of healthy individuals, we found enhanced acquisition of conditioned fear in women with PTSD. Greater fear conditioning in women may either be a pre-existing vulnerability trait or an acquired phenomenon that emerges in a sex-dependent manner after the development of PTSD. Characterizing the underlying mechanisms of these differences is needed to clarify sex-related differences in the pathophysiology of PTSD. PMID:23107307

  1. A role for α1-adrenergic receptors in extinction of conditioned fear and cocaine conditioned preference

    PubMed Central

    Bernardi, Rick E.; Lattal, K. Matthew

    2010-01-01

    Previous work has demonstrated an important role for adrenergic receptors in memory processes in fear and drug conditioning paradigms. Recent studies have also demonstrated alterations in extinction in these paradigms using drug treatments targeting β- and α2-adrenergic receptors, but little is known about the role of α1-adrenergic receptors in extinction. The current study examined whether antagonism of α1-adrenergic receptors would impair the consolidation of extinction in fear and cocaine conditioned place preference (CPP) paradigms. After contextual fear conditioning, injections of prazosin (1.0 or 3.0 mg/kg) following nonreinforced context exposures slowed the loss of conditioned freezing over the course of five extinction sessions (Experiment 1). After cocaine place conditioning, prazosin had no effect on the rate of extinction over eight nonreinforced test sessions. Following post-extinction reconditioning, however, prazosin-treated mice showed a robust place preference, but vehicle-treated mice did not, suggesting that prazosin reduced the persistent effects of extinction (Experiment 2). These results confirm the involvement of the α1-adrenergic receptor in extinction processes in both appetitive and aversive preparations. PMID:20364880

  2. Impaired extinction of learned contextual fear memory in early growth response 1 knockout mice.

    PubMed

    Han, Seungrie; Hong, Soontaek; Mo, Jiwon; Lee, Dongmin; Choi, Eunju; Choi, June-seek; Sun, Woong; Lee, Hyun Woo; Kim, Hyun

    2014-01-01

    Inductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals. Genome-wide microarray experiments revealed 368 differentially expressed genes in the hippocampus of Egr-1 WT exposed to different phases of a fear conditioning paradigm compared to gene expression profiles in the hippocampus of KO mice. Some of genes, such as serotonin receptor 2C (Htr2c), neuropeptide B (Npb), neuronal PAS domain protein 4 (Npas4), NPY receptor Y1 (Npy1r), fatty acid binding protein 7 (Fabp7), and neuropeptide Y (Npy) are known to regulate processing of fearful memories, and promoter analyses demonstrated that several of these genes contained Egr-1 binding sites. This study provides a useful list of potential Egr-1 target genes which may be regulated during fear memory processing. PMID:24552706

  3. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice.

    PubMed

    Gianlorenço, A C L; Riboldi, A M; Silva-Marques, B; Mattioli, R

    2015-02-01

    Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice. PMID:25524412

  4. Specific phobia: a disorder of fear conditioning and extinction.

    PubMed

    Stein, Dan J; Matsunaga, Hisato

    2006-04-01

    Specific phobia is the most prevalent of the anxiety disorders. Although there have been relatively few studies of its psychobiology and pharmacotherapy, there is a rich laboratory of literature on fear conditioning and extinction and a clear evolutionary perspective. Advances in the cognitive-affective neuroscience of fear processing may ultimately lead to new approaches to the clinical management of phobias. PMID:16641829

  5. TRPC3 channels critically regulate hippocampal excitability and contextual fear memory.

    PubMed

    Neuner, Sarah M; Wilmott, Lynda A; Hope, Kevin A; Hoffmann, Brian; Chong, Jayhong A; Abramowitz, Joel; Birnbaumer, Lutz; O'Connell, Kristen M; Tryba, Andrew K; Greene, Andrew S; Savio Chan, C; Kaczorowski, Catherine C

    2015-03-15

    Memory formation requires de novo protein synthesis, and memory disorders may result from misregulated synthesis of critical proteins that remain largely unidentified. Plasma membrane ion channels and receptors are likely candidates given their role in regulating neuron excitability, a candidate memory mechanism. Here we conduct targeted molecular monitoring and quantitation of hippocampal plasma membrane proteins from mice with intact or impaired contextual fear memory to identify putative candidates. Here we report contextual fear memory deficits correspond to increased Trpc3 gene and protein expression, and demonstrate TRPC3 regulates hippocampal neuron excitability associated with memory function. These data provide a mechanistic explanation for enhanced contextual fear memory reported herein following knockdown of TRPC3 in hippocampus. Collectively, TRPC3 modulates memory and may be a feasible target to enhance memory and treat memory disorders. PMID:25513972

  6. Chronic stress enhanced fear memories are associated with increased amygdala zif268 mRNA expression and are resistant to reconsolidation

    PubMed Central

    Hoffman, Ann N.; Parga, Alejandro; Paode, Pooja; Watterson, Lucas R.; Nikulina, Ella M.; Hammer, Ronald P.; Conrad, Cheryl D.

    2015-01-01

    The chronically stressed brain may present a vulnerability to develop maladaptive fear-related behaviors in response to a traumatic event. In rodents, chronic stress leads to amygdala hyperresponsivity and dendritic hypertrophy and produces a post traumatic stress disorder (PTSD)-like phenotype that includes exaggerated fear learning following Pavlovian fear conditioning and resistance to extinction. It is unknown whether chronic stress-induced enhanced fear memories are vulnerable to disruption via reconsolidation blockade, as a novel therapeutic approach for attenuating exaggerated fear memories. We used a chronic stress procedure in a rat model (wire mesh restraint for 6h/d/21d) to create a vulnerable brain that leads to a PTSD-like phenotype. We then examined freezing behavior during acquisition, reactivation and after post-reactivation rapamycin administration (i.p., 40 mg/kg) in a Pavlovian fear conditioning paradigm to determine its effects on reconsolidation as well as the subsequent functional activation of limbic structures using zif268 mRNA. Chronic stress increased amygdala zif268 mRNA during fear memory retrieval at reactivation. Moreover, these enhanced fear memories were unaffected by post reactivation rapamycin to disrupt long-term fear memory. Also, post-reactivation long term memory processing was also associated with increased amygdala (LA and BA), and decreased hippocampal CA1 zif268 mRNA expression. These results suggest potential challenges for reconsolidation blockade as an effective approach in treating exaggerated fear memories, as in PTSD. Our findings also support chronic stress manipulations combined with fear conditioning as a useful preclinical approach to study a PTSD-like phenotype. PMID:25732249

  7. Delayed extinction fails to reduce skin conductance reactivity to fear-conditioned stimuli.

    PubMed

    Fricchione, Jon; Greenberg, Mark S; Spring, Justin; Wood, Nellie; Mueller-Pfeiffer, Christoph; Milad, Mohammed R; Pitman, Roger K; Orr, Scott P

    2016-09-01

    A brief 10-min time delay between an initial and subsequent exposure to extinction trials has been found to impair memory reconsolidation in fear-conditioned rodents and humans, providing a potential means to reduce fearfulness in anxiety disorders and posttraumatic stress disorder (PTSD). The present study used videos of biologically prepared, conditioned stimuli (tarantulas) to test the efficacy of delayed extinction in blocking reconsolidation of conditioned fear in healthy young adults. Strong differential conditioning, measured by skin conductance, was observed among a screened subset of participants during acquisition. However, the delayed-extinction intervention failed to reduce reactivity to the conditioned stimulus paired with the extinction delay. These results are partially consistent with other recent, mixed findings and point to a need for testing other candidate interventions designed to interfere with the reconsolidation process. PMID:27314560

  8. Prereactivation propranolol fails to reduce skin conductance reactivity to prepared fear-conditioned stimuli.

    PubMed

    Spring, Justin D; Wood, Nellie E; Mueller-Pfeiffer, Christoph; Milad, Mohammed R; Pitman, Roger K; Orr, Scott P

    2015-03-01

    Pharmacologic blockade of memory reconsolidation has been demonstrated in fear-conditioned rodents and humans and may provide a means to reduce fearfulness in anxiety disorders and posttraumatic stress disorder. Studying the efficacy of potential interventions in clinical populations is challenging, creating a need for paradigms within which candidate reconsolidation-blocking interventions can be readily tested. We used videos of biologically prepared conditioned stimuli (tarantulas) to test the efficacy of propranolol in blocking reconsolidation of conditioned fear in healthy young adults. Strong differential conditioning, measured by skin conductance, was observed among a screened subset of participants during acquisition. However, subsequent propranolol failed to reduce reactivity to the reactivated conditioned stimulus. These results are consistent with other recent findings and point to a need for testing other candidate drugs. PMID:25224026

  9. Protocol for Studying Extinction of Conditioned Fear in Naturally Cycling Female Rats

    PubMed Central

    Maeng, Lisa Y.; Cover, Kara K.; Landau, Aaron J.; Milad, Mohammed R.; Lebron-Milad, Kelimer

    2015-01-01

    Extinction of conditioned fear has been extensively studied in male rodents. Recently, there have been an increasing number of studies indicating that neural mechanisms for certain behavioral tasks and response behaviors are different in females and males. Using females in research studies can represent a challenge because of the variation of gonadal hormones during their estrous cycle. This protocol describes well-established procedures that are useful in investigating the role of estrogen in fear extinction memory consolidation in female rats. Phase of the estrous cycle and exogenous estrogen administration prior to extinction training can influence extinction recall 24 hr later. The vaginal swabbing technique for estrous phase identification described here aids the examination and manipulation of naturally cycling gonadal hormones. The use of this basic rodent model may further delineate the mechanisms by which estrogen can modulate fear extinction memory in females. PMID:25741747

  10. Protocol for studying extinction of conditioned fear in naturally cycling female rats.

    PubMed

    Maeng, Lisa Y; Cover, Kara K; Landau, Aaron J; Milad, Mohammed R; Lebron-Milad, Kelimer

    2015-01-01

    Extinction of conditioned fear has been extensively studied in male rodents. Recently, there have been an increasing number of studies indicating that neural mechanisms for certain behavioral tasks and response behaviors are different in females and males. Using females in research studies can represent a challenge because of the variation of gonadal hormones during their estrous cycle. This protocol describes well-established procedures that are useful in investigating the role of estrogen in fear extinction memory consolidation in female rats. Phase of the estrous cycle and exogenous estrogen administration prior to extinction training can influence extinction recall 24 hr later. The vaginal swabbing technique for estrous phase identification described here aids the examination and manipulation of naturally cycling gonadal hormones. The use of this basic rodent model may further delineate the mechanisms by which estrogen can modulate fear extinction memory in females. PMID:25741747

  11. Contextual Change After Fear Acquisition Affects Conditioned Responding and the Time Course of Extinction Learning—Implications for Renewal Research

    PubMed Central

    Sjouwerman, Rachel; Niehaus, Johanna; Lonsdorf, Tina B.

    2015-01-01

    Context plays a central role in retrieving (fear) memories. Accordingly, context manipulations are inherent to most return of fear (ROF) paradigms (in particular renewal), involving contextual changes after fear extinction. Context changes are, however, also often embedded during earlier stages of ROF experiments such as context changes between fear acquisition and extinction (e.g., in ABC and ABA renewal). Previous studies using these paradigms have however focused exclusively on the context switch after extinction (i.e., renewal). Thus, the possibility of a general effect of context switch on conditioned responding that may not be conditional to preceding extinction learning remains unstudied. Hence, the current study investigated the impact of a context switch between fear acquisition and extinction on immediate conditioned responding and on the time-course of extinction learning by using a multimodal approach. A group that underwent contextual change after fear conditioning (AB; n = 36) was compared with a group without a contextual change from acquisition to extinction (AA; n = 149), while measuring physiological (skin conductance and fear potentiated startle) measures and subjective fear ratings. Contextual change between fear acquisition and extinction had a pronounced effect on both immediate conditioned responding and on the time course of extinction learning in skin conductance responses and subjective fear ratings. This may have important implications for the mechanisms underlying and the interpretation of the renewal effect (i.e., contextual switch after extinction). Consequently, future studies should incorporate designs and statistical tests that disentangle general effects of contextual change from genuine ROF effects. PMID:26696855

  12. Functional Integrity of the Retrosplenial Cortex Is Essential for Rapid Consolidation and Recall of Fear Memory

    ERIC Educational Resources Information Center

    Katche, Cynthia; Dorman, Guido; Slipczuk, Leandro; Cammarota, Martin; Medina, Jorge H.

    2013-01-01

    Memory storage is a temporally graded process involving different phases and different structures in the mammalian brain. Cortical plasticity is essential to store stable memories, but little is known regarding its involvement in memory processing. Here we show that fear memory consolidation requires early post-training macromolecular synthesis in…

  13. Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4.

    PubMed

    Brzózka, Magdalena M; Rossner, Moritz J

    2013-01-15

    The basic helix-loop-helix (bHLH) transcription factor TCF4 was confirmed in the combined analysis of several large genome-wide association studies (GWAS) as one of the rare highly replicated significant schizophrenia (SZ) susceptibility genes in large case-control cohorts. Focused genetic association studies showed that TCF4 influences verbal learning and memory, and modulates sensorimotor gating. Mice overexpressing Tcf4 in the forebrain (Tcf4tg) display cognitive deficits in hippocampus-dependent learning tasks and impairment of prepulse inhibition, a well-established endophenotype of SZ. The spectrum of cognitive deficits in SZ subjects, however, is broad and covers attention, working memory, and anticipation. Collectively, these higher order cognitive processes and the recall of remote memories are thought to depend mainly on prefrontal cortical networks. To further investigate cognitive disturbances in Tcf4tg mice, we employed the trace fear conditioning paradigm that requires attention and critically depends on the anterior cingulate cortex (ACC). We show that Tcf4tg mice display deficits in recent and remote trace fear memory and are impaired at anticipating aversive stimuli. We also assessed mRNA expression of the neuronal activity-regulated gene Fos in the ACC and hippocampus. Upon trace conditioning, Fos expression is reduced in Tcf4tg mice as compared to controls, which parallels cognitive impairments in this learning paradigm. Collectively, these data indicate that the reduced cognitive performance in Tcf4tg mice includes deficits at the level of attention and behavioral anticipation. PMID:23069005

  14. Knockdown of corticotropin-releasing factor 1 receptors in the ventral tegmental area enhances conditioned fear.

    PubMed

    Chen, Nicola A; Ganella, Despina E; Bathgate, Ross A D; Chen, Alon; Lawrence, Andrew J; Kim, Jee Hyun

    2016-09-01

    The neuropeptide corticotropin-releasing factor (CRF) coordinates the physiological and behavioural responses to stress. CRF receptors are highly expressed in the ventral tegmental area (VTA), an important region for motivated behaviour. Therefore, we examined the role of CRF receptor type 1 (CRFR1) in the VTA in conditioned fear, using a viral-mediated RNA interference approach. Following stereotaxic injection of a lentivirus that contained either shCRF-R1 or a control sequence, mice received tone-footshock pairings. Intra-VTA shCRF-R1 did not affect tone-elicited freezing during conditioning. Once conditioned fear was acquired, however, shCRF-R1 mice consistently showed stronger freezing to the tone even after extinction and reinstatement. These results implicate a novel role of VTA CRF-R1 in conditioned fear, and suggest how stress may modulate aversive learning and memory. PMID:27397862

  15. Trace and Contextual Fear Conditioning Require Neural Activity and NMDA Receptor-Dependent Transmission in the Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Gilmartin, Marieke R.; Helmstetter, Fred J.

    2010-01-01

    The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a…

  16. Voluntary exercise during extinction of auditory fear conditioning reduces the relapse of fear associated with potentiated activity of striatal direct pathway neurons.

    PubMed

    Mika, Agnieszka; Bouchet, Courtney A; Bunker, Preston; Hellwinkel, Justin E; Spence, Katie G; Day, Heidi E W; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2015-11-01

    Relapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session. However, it is unclear whether acute exercise can be used to prevent relapse of fear, and the neural mechanisms underlying this potential effect are unknown. The current study therefore examined whether acute exercise during extinction of auditory fear can protect against the later relapse of fear. Male F344 rats lacking an extended history of wheel running were conditioned to fear a tone CS and subsequently extinguished within either a freely mobile running wheel, a locked wheel, or a control context lacking a wheel. Rats exposed to fear extinction within a freely mobile wheel ran during fear extinction, and demonstrated reduced fear as well as attenuated corticosterone levels during re-exposure to the extinguished CS during the relapse test in a novel context 1week later. Examination of cfos mRNA patterns elicited by re-exposure to the extinguished CS during the relapse test revealed that acute exercise during extinction decreased activation of brain circuits classically involved in driving fear expression and interestingly, increased activity within neurons of the direct striatal pathway involved in reward signaling. These data suggest that exercise during extinction reduces relapse through a mechanism involving the direct pathway of the striatum. It is suggested that a positive affective state could become associated with the CS during exercise during extinction, thus resulting in a relapse-resistant extinction memory. PMID

  17. Psychopaths Show Enhanced Amygdala Activation during Fear Conditioning

    PubMed Central

    Schultz, Douglas H.; Balderston, Nicholas L.; Baskin-Sommers, Arielle R.; Larson, Christine L.; Helmstetter, Fred J.

    2016-01-01

    Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into “primary” and “secondary” psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional “fearlessness,” while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC) for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths. PMID:27014154

  18. Conditioning- and Time-Dependent Increases in Context Fear and Generalization

    ERIC Educational Resources Information Center

    Poulos, Andrew M.; Mehta, Nehali; Lu, Bryan; Amir, Dorsa; Livingston, Briana; Santarelli, Anthony; Zhuravka, Irina; Fanselow, Michael S.

    2016-01-01

    A prominent feature of fear memories and anxiety disorders is that they endure across extended periods of time. Here, we examine how the severity of the initial fear experience influences incubation, generalization, and sensitization of contextual fear memories across time. Adult rats were presented with either five, two, one, or zero shocks (1.2…

  19. Resting-state connectivity of the amygdala is altered following Pavlovian fear conditioning

    PubMed Central

    Schultz, Douglas H.; Balderston, Nicholas L.; Helmstetter, Fred J.

    2012-01-01

    Neural plasticity in the amygdala is necessary for the acquisition and storage of memory in Pavlovian fear conditioning, but most neuroimaging studies have focused only on stimulus-evoked responses during the conditioning session. This study examined changes in the resting-state functional connectivity (RSFC) of the amygdala before and after Pavlovian fear conditioning, an emotional learning task. Behavioral results from the conditioning session revealed that participants learned normally and fMRI data recorded during learning identified a number of stimulus-evoked changes that were consistent with previous work. A direct comparison between the pre- and post-conditioning amygdala connectivity revealed a region of dorsal prefrontal cortex (PFC) in the superior frontal gyrus that showed a significant increase in connectivity following the conditioning session. A behavioral measure of explicit memory performance was positively correlated with the change in amygdala connectivity within a neighboring region in the superior frontal gyrus. Additionally, an implicit autonomic measure of conditioning was positively correlated with the change in connectivity between the amygdala and the anterior cingulate cortex (ACC). The resting-state data show that amygdala connectivity is altered following Pavlovian fear conditioning and that these changes are also related to behavioral outcomes. These alterations may reflect the operation of a consolidation process that strengthens neural connections to support memory after the learning event. PMID:22936906

  20. Social buffering ameliorates conditioned fear responses in female rats.

    PubMed

    Ishii, Akiko; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-05-01

    The stress experienced by an animal is ameliorated when the animal is exposed to distressing stimuli along with a conspecific animal(s). This is known as social buffering. Previously, we found that the presence of an unfamiliar male rat induced social buffering and ameliorated conditioned fear responses of a male rat subjected to an auditory conditioned stimulus (CS). However, because our knowledge of social buffering is highly biased towards findings in male subjects, analyses using female subjects are crucial for comprehensively understanding the social buffering phenomenon. In the present studies, we assessed social buffering of conditioned fear responses in female rats. We found that the estrus cycle did not affect the intensity of the rats' fear responses to the CS or their degree of vigilance due to the presence of a conspecific animal. Based on these findings, we then assessed whether social buffering ameliorated conditioned fear responses in female rats without taking into account their estrus cycles. When fear conditioned female rats were exposed to the CS without the presence of a conspecific, they exhibited behavioral responses, including freezing, and elevated corticosterone levels. By contrast, the presence of an unfamiliar female rat suppressed these responses. Based on these findings, we conclude that social buffering can ameliorate conditioned fear responses in female rats. PMID:27060333

  1. Stress-induced enhancement of fear conditioning and sensitization facilitates extinction-resistant and habituation-resistant fear behaviors in a novel animal model of posttraumatic stress disorder.

    PubMed

    Corley, Michael J; Caruso, Michael J; Takahashi, Lorey K

    2012-01-18

    Posttraumatic stress disorder (PTSD) is characterized by stress-induced symptoms including exaggerated fear memories, hypervigilance and hyperarousal. However, we are unaware of an animal model that investigates these hallmarks of PTSD especially in relation to fear extinction and habituation. Therefore, to develop a valid animal model of PTSD, we exposed rats to different intensities of footshock stress to determine their effects on either auditory predator odor fear extinction or habituation of fear sensitization. In Experiment 1, rats were exposed to acute footshock stress (no shock control, 0.4 mA, or 0.8 mA) immediately prior to auditory fear conditioning training involving the pairing of auditory clicks with a cloth containing cat odor. When presented to the conditioned auditory clicks in the next 5 days of extinction testing conducted in a runway apparatus with a hide box, rats in the two shock groups engaged in higher levels of freezing and head out vigilance-like behavior from the hide box than the no shock control group. This increase in fear behavior during extinction testing was likely due to auditory activation of the conditioned fear state because Experiment 2 demonstrated that conditioned fear behavior was not broadly increased in the absence of the conditioned auditory stimulus. Experiment 3 was then conducted to determine whether acute exposure to stress induces a habituation resistant sensitized fear state. We found that rats exposed to 0.8 mA footshock stress and subsequently tested for 5 days in the runway hide box apparatus with presentations of nonassociative auditory clicks exhibited high initial levels of freezing, followed by head out behavior and culminating in the occurrence of locomotor hyperactivity. In addition, Experiment 4 indicated that without delivery of nonassociative auditory clicks, 0.8 mA footshock stressed rats did not exhibit robust increases in sensitized freezing and locomotor hyperactivity, albeit head out vigilance

  2. Cannabinoid modulation of chronic mild stress-induced selective enhancement of trace fear conditioning in adolescent rats.

    PubMed

    Reich, Christian G; Iskander, Anthony N; Weiss, Michael S

    2013-10-01

    History of stress is considered a major risk factor for the development of major depression and posttraumatic stress disorder (PTSD). Elucidating the neurobiological mechanisms of Pavlovian fear conditioning may provide insight into the etiology of PTSD. In the current study, adolescent male Sprague-Dawley rats were exposed to 3 weeks of a chronic-mild-unpredictable stress (CMS) protocol. Immediately following the CMS, the animals were subjected to hippocampal-dependent (trace and contextual) and hippocampal-independent (delay) fear conditioning. CMS exposure enhanced trace freezing behavior compared to non-stress controls. This effect was not observed in contextual or delay conditioned animals. Given that the endocannabinoid system is negatively affected by CMS procedures, separate groups of stressed rats were administered the CB1 receptor agonist, ACEA (0.1 mg/kg), prior to trace fear conditioning or a memory-recall test. Regardless of administration time, ACEA significantly reduced freezing behavior in stressed animals. Furthermore, when administered during the first memory recall test, ACEA enhanced long-term extinction in both stress and non-stress groups. The results demonstrate that chronic unpredictable stress selectively enhances hippocampal-dependent episodic fear memories. Pathologies of the episodic memory and fear response may increase the susceptibility of developing PTSD. Reduction in fear responses via exogenous activation of the CB1 receptor suggests that a deficiency in the endocannabinoid system contributes to this pathology. PMID:23926242

  3. Ensemble coding of context-dependent fear memory in the amygdala

    PubMed Central

    Orsini, Caitlin A.; Yan, Chen; Maren, Stephen

    2013-01-01

    After fear conditioning, presenting the conditioned stimulus (CS) alone yields a context-specific extinction memory; fear is suppressed in the extinction context, but renews in any other context. The context-dependence of extinction is mediated by a brain circuit consisting of the hippocampus, prefrontal cortex (PFC) and amygdala. In the present work, we sought to determine at what level of this circuit context-dependent representations of the CS emerge. To explore this question, we used cellular compartment analysis of temporal activity by fluorescent in situ hybridization (catFISH). This method exploits the intracellular expression profile of the immediate early gene (IEG), Arc, to visualize neuronal activation patterns to two different behavioral experiences. Rats were fear conditioned in one context and extinguished in another; 24 h later, they were sequentially exposed to the CS in the extinction context and another context. Control rats were also tested in each context, but were never extinguished. We assessed Arc mRNA expression within the basal amygdala (BA), lateral amygdala (LA), ventral hippocampus (VH), prelimbic cortex (PL) and infralimbic cortex (IL). We observed that the sequential retention tests induced context-dependent patterns of Arc expression in the BA, LA, and IL of extinguished rats; this was not observed in non-extinguished controls. In general, non-extinguished animals had proportionately greater numbers of non-selective (double-labeled) neurons than extinguished animals. Collectively, these findings suggest that extinction learning results in pattern separation, particularly within the BA, in which unique neuronal ensembles represent fear memories after extinction. PMID:24379767

  4. An Appetitive Conditioned Stimulus Enhances Fear Acquisition and Impairs Fear Extinction

    ERIC Educational Resources Information Center

    Leung, Hiu T.; Holmes, Nathan M.; Westbrook, R. Frederick

    2016-01-01

    Four experiments used between- and within-subject designs to examine appetitive-aversive interactions in rats. Experiments 1 and 2 examined the effect of an excitatory appetitive conditioned stimulus (CS) on acquisition and extinction of conditioned fear. In Experiment 1, a CS shocked in a compound with an appetitive excitor (i.e., a stimulus…

  5. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing

    PubMed Central

    Pickens, Charles L.; Navarre, Brittany M.; Nair, Sunila G.

    2010-01-01

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-sec tone-shock pairings) fear training and high fear after 1–2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18–20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. PMID:20600654

  6. Unconditioned responses and functional fear networks in human classical conditioning

    PubMed Central

    Linnman, Clas; Rougemont-Bücking, Ansgar; Beucke, Jan Carl; Zeffiro, Thomas A; Milad, Mohammed R

    2011-01-01

    Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (an electric shock) that was either expected and actually delivered, or expected but not delivered, and (2) on how related brain activity changed across conditioning trials, and (3) how shock expectation influenced inter-regional coupling within the fear network. We found that: (1) the delivery of the shock engaged the red nucleus, amygdale, dorsal striatum, insula, somatosensory and cingulate cortices, (2) when the shock was expected but not delivered, only the red nucleus, the anterior insular and dorsal anterior cingulate cortices showed activity increases that were sustained across trials, and (3) psycho-physiological interaction analysis demonstrated that fear led to increased red nucleus coupling to insula but decreased hippocampus coupling to the red nucleus, thalamus and cerebellum. The hippocampus and the anterior insula may serve as hubs facilitating the switch between engagement of a defensive immediate fear network and a resting network. PMID:21377494

  7. Unconditioned responses and functional fear networks in human classical conditioning.

    PubMed

    Linnman, Clas; Rougemont-Bücking, Ansgar; Beucke, Jan Carl; Zeffiro, Thomas A; Milad, Mohammed R

    2011-08-01

    Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (an electric shock) that was either expected and actually delivered, or expected but not delivered, and (2) on how related brain activity changed across conditioning trials, and (3) how shock expectation influenced inter-regional coupling within the fear network. We found that: (1) the delivery of the shock engaged the red nucleus, amygdale, dorsal striatum, insula, somatosensory and cingulate cortices, (2) when the shock was expected but not delivered, only the red nucleus, the anterior insular and dorsal anterior cingulate cortices showed activity increases that were sustained across trials, and (3) psycho-physiological interaction analysis demonstrated that fear led to increased red nucleus coupling to insula but decreased hippocampus coupling to the red nucleus, thalamus and cerebellum. The hippocampus and the anterior insula may serve as hubs facilitating the switch between engagement of a defensive immediate fear network and a resting network. PMID:21377494

  8. Long-lasting regulation of hippocampal Bdnf gene transcription after contextual fear conditioning.

    PubMed

    Mizuno, K; Dempster, E; Mill, J; Giese, K P

    2012-08-01

    Long-term memory formation requires de novo protein synthesis and gene transcription. During contextual long-term memory formation brain-derived neurotrophic factor (BDNF) gene expression changes in conjunction with alterations of DNA methylation in the Bdnf gene. However, little is known about the molecular mechanisms underlying the maintenance and persistence of contextual long-term memory. Here, we examined the transcription of specific Bdnf exons in the hippocampus for long periods after contextual fear conditioning. We found changes in transcription lasting for at least 24 h after contextual fear conditioning, with some sex-specific effects. In addition, hypomethylation at a CpG site in CpG island 2 located at the end of Bdnf exon III sequence was detected at 0.5 h and maintained for up to 24 h after contextual fear conditioning. The identification of these long-lasting changes in transcription and DNA methylation at the Bdnf gene suggests that BDNF might have a role for storage of contextual long-term memory in the hippocampus. PMID:22574690

  9. Delay and trace fear conditioning in a complex virtual learning environment-neural substrates of extinction.

    PubMed

    Ewald, Heike; Glotzbach-Schoon, Evelyn; Gerdes, Antje B M; Andreatta, Marta; Müller, Mathias; Mühlberger, Andreas; Pauli, Paul

    2014-01-01

    Extinction is an important mechanism to inhibit initially acquired fear responses. There is growing evidence that the ventromedial prefrontal cortex (vmPFC) inhibits the amygdala and therefore plays an important role in the extinction of delay fear conditioning. To our knowledge, there is no evidence on the role of the prefrontal cortex in the extinction of trace conditioning up to now. Thus, we compared brain structures involved in the extinction of human delay and trace fear conditioning in a between-subjects-design in an fMRI study. Participants were passively guided through a virtual environment during learning and extinction of conditioned fear. Two different lights served as conditioned stimuli (CS); as unconditioned stimulus (US) a mildly painful electric stimulus was delivered. In the delay conditioning group (DCG) the US was administered with offset of one light (CS+), whereas in the trace conditioning group (TCG) the US was presented 4 s after CS+ offset. Both groups showed insular and striatal activation during early extinction, but differed in their prefrontal activation. The vmPFC was mainly activated in the DCG, whereas the TCG showed activation of the dorsolateral prefrontal cortex (dlPFC) during extinction. These results point to different extinction processes in delay and trace conditioning. VmPFC activation during extinction of delay conditioning might reflect the inhibition of the fear response. In contrast, dlPFC activation during extinction of trace conditioning may reflect modulation of working memory processes which are involved in bridging the trace interval and hold information in short term memory. PMID:24904363

  10. Sleep supports cued fear extinction memory consolidation independent of circadian phase.

    PubMed

    Melo, Irene; Ehrlich, Ingrid

    2016-07-01

    Sleep promotes memory, particularly for declarative learning. However, its role in non-declarative, emotional memories is less well understood. Some studies suggest that sleep may influence fear-related memories, and thus may be an important factor determining the outcome of treatments for emotional disorders such as post-traumatic stress disorder. Here, we investigated the effect of sleep deprivation and time of day on fear extinction memory consolidation. Mice were subjected to a cued Pavlovian fear and extinction paradigm at the beginning of their resting or active phase. Immediate post-extinction learning sleep deprivation for 5h compromised extinction memory when tested 24h after learning. Context-dependent extinction memory recall was completely prevented by sleep-manipulation during the resting phase, while impairment was milder during the active phase and extinction memory retained its context-specificity. Importantly, control experiments excluded confounding factors such as differences in baseline locomotion, fear generalization and stress hormone levels. Together, our findings indicate that post-learning sleep supports cued fear extinction memory consolidation in both circadian phases. The lack of correlation between memory efficacy and sleep time suggests that extinction memory may be influenced by specific sleep events in the early consolidation period. PMID:27109918

  11. Cholinergic neuronal lesions in the medial septum and vertical limb of the diagonal bands of Broca induce contextual fear memory generalization and impair acquisition of fear extinction.

    PubMed

    Knox, Dayan; Keller, Samantha M

    2016-06-01

    Previous research has shown that the ventral medial prefrontal cortex (vmPFC) and hippocampus (Hipp) are critical for extinction memory. Basal forebrain (BF) cholinergic input to the vmPFC and Hipp is critical for neural function in these substrates, which suggests BF cholinergic neurons may be critical for extinction memory. In order to test this hypothesis, we applied cholinergic lesions to different regions of the BF and observed the effects these lesions had on extinction memory. Complete BF cholinergic lesions induced contextual fear memory generalization, and this generalized fear was resistant to extinction. Animals with complete BF cholinergic lesions could not acquire cued fear extinction. Restricted cholinergic lesions in the medial septum and vertical diagonal bands of Broca (MS/vDBB) mimicked the effects that BF cholinergic lesions had on contextual fear memory generalization and acquisition of fear extinction. Cholinergic lesions in the horizontal diagonal band of Broca and nucleus basalis (hDBB/NBM) induced a small deficit in extinction of generalized contextual fear memory with no accompanying deficits in cued fear extinction. The results of this study reveal that MS/vDBB cholinergic neurons are critical for inhibition and extinction of generalized contextual fear memory, and via this process, may be critical for acquisition of cued fear extinction. Further studies delineating neural circuits and mechanisms through which MS/vDBB cholinergic neurons facilitate these emotional memory processes are needed. © 2015 Wiley Periodicals, Inc. PMID:26606423

  12. Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances Plasticity of Cortical-Amygdala Circuits.

    PubMed

    Jiang, Li; Kundu, Srikanya; Lederman, James D; López-Hernández, Gretchen Y; Ballinger, Elizabeth C; Wang, Shaohua; Talmage, David A; Role, Lorna W

    2016-06-01

    We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photostimulation of endogenous cholinergic input (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs), (2) enhances glutamatergic synaptic transmission in the BLA, and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories. PMID:27161525

  13. Characterization of fear conditioning and fear extinction by analysis of electrodermal activity.

    PubMed

    Faghih, Rose T; Stokes, Patrick A; Marin, Marie-France; Zsido, Rachel G; Zorowitz, Sam; Rosenbaum, Blake L; Huijin Song; Milad, Mohammed R; Dougherty, Darin D; Eskandar, Emad N; Widge, Alik S; Brown, Emery N; Barbieri, Riccardo

    2015-08-01

    Electrodermal activity (EDA) is a measure of physical arousal, which is frequently measured during psychophysical tasks relevant for anxiety disorders. Recently, specific protocols and procedures have been devised in order to examine the neural mechanisms of fear conditioning and extinction. EDA reflects important responses associated with stimuli specifically administrated during these procedures. Although several previous studies have demonstrated the reproducibility of measures estimated from EDA, a mathematical framework associated with the stimulus-response experiments in question and, at the same time, including the underlying emotional state of the subject during fear conditioning and/or extinction experiments is not well studied. We here propose an ordinary differential equation model based on sudomotor nerve activity, and estimate the fear eliciting stimulus using a compressed sensing algorithm. Our results show that we are able to recover the underlying stimulus (visual cue or mild electrical shock). Moreover, relating the time-delay in the estimated stimulation to the visual cue during extinction period shows that fear level decreases as visual cues are presented without shock, suggesting that this feature might be used to estimate the fear state. These findings indicate that a mathematical model based on electrodermal responses might be critical in defining a low-dimensional representation of essential cognitive features in order to describe dynamic behavioral states. PMID:26738104

  14. Neurons activated during fear memory consolidation and reconsolidation are mapped to a common and new topography in the lateral amygdala.

    PubMed

    Bergstrom, Hadley C; McDonald, Craig G; Dey, Smita; Fernandez, Gina M; Johnson, Luke R

    2013-07-01

    A key question in neuroscience is how memory is selectively allocated to neural networks in the brain. This question remains a significant research challenge, in both rodent models and humans alike, because of the inherent difficulty in tracking and deciphering large, highly dimensional neuronal ensembles that support memory (i.e., the engram). In a previous study we showed that consolidation of a new fear memory is allocated to a common topography of amygdala neurons. When a consolidated memory is retrieved, it may enter a labile state, requiring reconsolidation for it to persist. What is not known is whether the original spatial allocation of a consolidated memory changes during reconsolidation. Knowledge about the spatial allocation of a memory, during consolidation and reconsolidation, provides fundamental insight into its core physical structure (i.e., the engram). Using design-based stereology, we operationally define reconsolidation by showing a nearly identical quantity of neurons in the dorsolateral amygdala (LAd) that expressed a plasticity-related protein, phosphorylated mitogen-activated protein kinase, following both memory acquisition and retrieval. Next, we confirm that Pavlovian fear conditioning recruits a stable, topographically organized population of activated neurons in the LAd. When the stored fear memory was briefly reactivated in the presence of the relevant conditioned stimulus, a similar topography of activated neurons was uncovered. In addition, we found evidence for activated neurons allocated to new regions of the LAd. These findings provide the first insight into the spatial allocation of a fear engram in the LAd, during its consolidation and reconsolidation phase. PMID:23322210

  15. Δ9-Tetrahydrocannabinol alone and combined with cannabidiol mitigate fear memory through reconsolidation disruption.

    PubMed

    Stern, Cristina A J; Gazarini, Lucas; Vanvossen, Ana C; Zuardi, Antonio W; Galve-Roperh, Ismael; Guimaraes, Francisco S; Takahashi, Reinaldo N; Bertoglio, Leandro J

    2015-06-01

    Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the major constituents of the Cannabis sativa plant, which is frequently consumed by subjects exposed to life-threatening situations to relief their symptomatology. It is still unknown, however, whether THC could also affect the maintenance of an aversive memory formed at that time when taken separately and/or in conjunction with CBD. The present study sought to investigate this matter at a preclinical level. We report that THC (0.3-10mg/kg, i.p.) was able to disrupt the reconsolidation of a contextual fear memory, resulting in reduced conditioned freezing expression for over 22 days. This effect was dependent on activation of cannabinoid type-1 receptors located in prelimbic subregion of the medial prefrontal cortex and on memory retrieval/reactivation. Since CBD may counteract the negative psychotropic effects induced by THC and has been shown to be a reconsolidation blocker, we then investigated and demonstrated that associating sub-effective doses of these two compounds was equally effective in attenuating fear memory maintenance in an additive fashion and in a dose ratio of 10 to 1, which contrasts with that commonly found in C. sativa recreational samples. Of note, neither THC alone nor CBD plus THC interfered with anxiety-related behaviors and locomotor activity, as assessed in the elevated plus-maze test, at a time point coinciding with that used to evaluate their effects on memory reconsolidation. Altogether, present findings suggest a potential therapeutic value of using THC and/or CBD to mitigate a dysfunctional aversive memory through reconsolidation disruption in post-traumatic stress disorder patients. PMID:25799920

  16. Activation of LVGCCs and CB1 Receptors Required for Destabilization of Reactivated Contextual Fear Memories

    ERIC Educational Resources Information Center

    Suzuki, Akinobu; Mukawa, Takuya; Tsukagoshi, Akinori; Frankland, Paul W.; Kida, Satoshi

    2008-01-01

    Previous studies have shown that inhibiting protein synthesis shortly after reactivation impairs the subsequent expression of a previously consolidated fear memory. This has suggested that reactivation returns a memory to a labile state and that protein synthesis is required for the subsequent restabilization of memory. While the molecular…

  17. Categories, Concepts, and Conditioning: How Humans Generalize Fear

    PubMed Central

    Dunsmoor, Joseph E.; Murphy, Gregory L.

    2015-01-01

    During the past century, Pavlovian conditioning has served as the predominant experimental paradigm and theoretical framework to understand how humans learn to fear and avoid real or perceived dangers. Animal models for translational research offer insight into basic behavioral and neurophysiological factors mediating the acquisition, expression, inhibition, and generalization of fear. However, it is important to consider the limits of traditional animal models when applied to humans. Here, we focus on the question of how humans generalize fear. We propose that to understand fear generalization in humans requires taking into account research on higher-level cognition such as category-based induction, inferential reasoning, and representation of conceptual knowledge. Doing so will open the door for productive avenues of new research. PMID:25577706

  18. RNA sequencing from neural ensembles activated during fear conditioning in the mouse temporal association cortex.

    PubMed

    Cho, Jin-Hyung; Huang, Ben S; Gray, Jesse M

    2016-01-01

    The stable formation of remote fear memories is thought to require neuronal gene induction in cortical ensembles that are activated during learning. However, the set of genes expressed specifically in these activated ensembles is not known; knowledge of such transcriptional profiles may offer insights into the molecular program underlying stable memory formation. Here we use RNA-Seq to identify genes whose expression is enriched in activated cortical ensembles labeled during associative fear learning. We first establish that mouse temporal association cortex (TeA) is required for remote recall of auditory fear memories. We then perform RNA-Seq in TeA neurons that are labeled by the activity reporter Arc-dVenus during learning. We identify 944 genes with enriched expression in Arc-dVenus+ neurons. These genes include markers of L2/3, L5b, and L6 excitatory neurons but not glial or inhibitory markers, confirming Arc-dVenus to be an excitatory neuron-specific but non-layer-specific activity reporter. Cross comparisons to other transcriptional profiles show that 125 of the enriched genes are also activity-regulated in vitro or induced by visual stimulus in the visual cortex, suggesting that they may be induced generally in the cortex in an experience-dependent fashion. Prominent among the enriched genes are those encoding potassium channels that down-regulate neuronal activity, suggesting the possibility that part of the molecular program induced by fear conditioning may initiate homeostatic plasticity. PMID:27557751

  19. RNA sequencing from neural ensembles activated during fear conditioning in the mouse temporal association cortex

    PubMed Central

    Cho, Jin-Hyung; Huang, Ben S.; Gray, Jesse M.

    2016-01-01

    The stable formation of remote fear memories is thought to require neuronal gene induction in cortical ensembles that are activated during learning. However, the set of genes expressed specifically in these activated ensembles is not known; knowledge of such transcriptional profiles may offer insights into the molecular program underlying stable memory formation. Here we use RNA-Seq to identify genes whose expression is enriched in activated cortical ensembles labeled during associative fear learning. We first establish that mouse temporal association cortex (TeA) is required for remote recall of auditory fear memories. We then perform RNA-Seq in TeA neurons that are labeled by the activity reporter Arc-dVenus during learning. We identify 944 genes with enriched expression in Arc-dVenus+ neurons. These genes include markers of L2/3, L5b, and L6 excitatory neurons but not glial or inhibitory markers, confirming Arc-dVenus to be an excitatory neuron-specific but non-layer-specific activity reporter. Cross comparisons to other transcriptional profiles show that 125 of the enriched genes are also activity-regulated in vitro or induced by visual stimulus in the visual cortex, suggesting that they may be induced generally in the cortex in an experience-dependent fashion. Prominent among the enriched genes are those encoding potassium channels that down-regulate neuronal activity, suggesting the possibility that part of the molecular program induced by fear conditioning may initiate homeostatic plasticity. PMID:27557751

  20. Serotonin 5-HT7 Receptor in the Ventral Hippocampus Modulates the Retrieval of Fear Memory and Stress-Induced Defecation

    PubMed Central

    Yoshida, Takayuki; Konno, Kohtarou; Minami, Masabumi; Watanabe, Masahiko; Yoshioka, Mitsuhiro

    2016-01-01

    Background: Patients with posttraumatic stress disorder or panic disorder are often troubled by inappropriate retrieval of fear memory. Moreover, these disorders are often comorbid with irritable bowel syndrome. The main aim of the present study is to elucidate the involvement of hippocampal serotonergic systems in fear memory retrieval and stress-induced defecation. Methods and Results: Microinjection of serotonin7 receptor antagonist, but not other serotonin receptor antagonists (serotonin 1A, 2A, 2C, 3, 4, and 6), into the rat ventral hippocampus significantly suppressed the expression of freezing behavior, an index of fear memory retrieval, and decreased the amount of feces, an index of stress-induced defecation, in the contextual fear conditioning test. Electrophysiological data indicated that the serotonin7 receptor agonist increased the frequency of action potentials in the ventral hippocampal CA3 pyramidal neuron via the activation of the hyperpolarization-activated nonselective cation current Ih. Moreover, in situ hybridization demonstrated that Htr7 mRNA was abundantly expressed in the CA3 compared with other subregions of the hippocampus and that these Htr7 mRNA-positive cells coexpressed hyperpolarization-activated cyclic nucleotide-gated channel 2 and 4 mRNAs, which are components of the Ih channel. Conclusions: These results indicated that the released serotonin activates the serotonin7 receptor in the CA3 ventral hippocampus subregion, enhances the sensitivity to inputs via hyperpolarization-activated cyclic nucleotide 2 and 4 channels, and thereby facilitates fear memory retrieval. The serotonin7 receptor might be a target of drug development for the treatment of mental disorders involving fear memory and gastrointestinal problems. PMID:26647382

  1. Reactivating fear memory under propranolol resets pre-trauma levels of dendritic spines in basolateral amygdala but not dorsal hippocampus neurons

    PubMed Central

    Vetere, Gisella; Piserchia, Valentina; Borreca, Antonella; Novembre, Giovanni; Aceti, Massimiliano; Ammassari-Teule, Martine

    2013-01-01

    Fear memory enhances connectivity in cortical and limbic circuits but whether treatments disrupting fear reset connectivity to pre-trauma level is unknown. Here we report that C56BL/6J mice exposed to a tone-shock association in context A (conditioning), and briefly re-exposed to the same tone-shock association in context B (reactivation), exhibit strong freezing to the tone alone delivered 48 h later in context B (long term fear memory). This intense fear response is associated with a massive increase in dendritic spines and phospho-Erk (p-ERK) signaling in basolateral amygdala (BLA) but neurons. We then show that propranolol (a central/peripheral β-adrenergic receptor blocker) administered before, but not after, the reactivation trial attenuates long term fear memory assessed drug free 48 h later, and completely prevents the increase in spines and p-ERK signaling in BLA neurons. An increase in spines, but not of p-ERK, was also detected in the dorsal hippocampus (DH) of the conditioned mice. DH spines, however, were unaffected by propranolol suggesting their independence from the ERK/β-ARs cascade. We conclude that propranolol selectively blocks dendritic spines and p-ERK signaling enhancement in the BLA; its effect on fear memory is, however, less pronounced suggesting that the persistence of spines at other brain sites decreases the sensitivity of the fear memory trace to treatments selectively targeting β ARs in the BLA. PMID:24391566

  2. Prior fear conditioning and reward learning interact in fear and reward networks

    PubMed Central

    Bulganin, Lisa; Bach, Dominik R.; Wittmann, Bianca C.

    2014-01-01

    The ability to flexibly adapt responses to changes in the environment is important for survival. Previous research in humans separately examined the mechanisms underlying acquisition and extinction of aversive and appetitive conditioned responses. It is yet unclear how aversive and appetitive learning interact on a neural level during counterconditioning in humans. This functional magnetic resonance imaging (fMRI) study investigated the interaction of fear conditioning and subsequent reward learning. In the first phase (fear acquisition), images predicted aversive electric shocks or no aversive outcome. In the second phase (counterconditioning), half of the CS+ and CS− were associated with monetary reward in the absence of electric stimulation. The third phase initiated reinstatement of fear through presentation of electric shocks, followed by CS presentation in the absence of shock or reward. Results indicate that participants were impaired at learning the reward contingencies for stimuli previously associated with shock. In the counterconditioning phase, prior fear association interacted with reward representation in the amygdala, where activation was decreased for rewarded compared to unrewarded CS− trials, while there was no reward-related difference in CS+ trials. In the reinstatement phase, an interaction of previous fear association and previous reward status was observed in a reward network consisting of substantia nigra/ventral tegmental area (SN/VTA), striatum and orbitofrontal cortex (OFC), where activation was increased by previous reward association only for CS− but not for CS+ trials. These findings suggest that during counterconditioning, prior fear conditioning interferes with reward learning, subsequently leading to lower activation of the reward network. PMID:24624068

  3. Tracking explicit and implicit long-lasting traces of fearful memories in humans.

    PubMed

    Packard, Pau Alexander; Rodríguez-Fornells, Antoni; Stein, Lilian Milnitsky; Nicolás, Berta; Fuentemilla, Lluís

    2014-12-01

    Recent accounts of Posttraumatic Stress Disorder (PTSD) suggest that the encoding of an episode within a fearful context generates different implicit and explicit memory representations. Whilst implicit memory traces include the associated emotional states, explicit traces include a recoding into an abstract or gist-based structural context of the episode. Theoretically, the long-term preservation of implicit memory traces may facilitate the often untreatable memory intrusions in PTSD. Here, we tracked in two experiments how implicit and explicit memory traces for fearful episodes dissociate and evolve over time. Subjects (N=86) were presented with semantically-related word-lists in a contextual fear paradigm and tested for explicit memories either immediately (i.e., 30 min) or after a delay (i.e., 1 or 2 weeks) with a verbal recognition task. Skin Conductance Response (SCR) was used to assess implicit memory responses. Subjects showed high memory accuracy for words when tested immediately after encoding. At test, SCR was higher during the presentation of verbatim but not gist-based words encoded in a fearful context, and remained unchanged after 2 weeks, despite subjects being unaware of words' encoding context. We found no clear evidence of accurate explicit memory traces for the fearful or neutral contexts of words presented during encoding, either 30 min or 2 weeks afterwards. These findings indicate that the implicit, but not the explicit, memory trace of a fearful context of an episode can be detected at long-term through SCR and is dissociated from the gist-based memory. They may have implicationstowards the understanding of how the processing of fearful memoriescould lead to PTSD. PMID:25256154

  4. Requirement of Mammalian Target of Rapamycin Complex 1 Downstream Effectors in Cued Fear Memory Reconsolidation and Its Persistence

    PubMed Central

    Huynh, Thu N.; Santini, Emanuela

    2014-01-01

    Memory retrieval, often termed reconsolidation, can render previously consolidated memories susceptible to manipulation that can lead to alterations in memory strength. Although it is known that reconsolidation requires mammalian target of rapamycin complex 1 (mTORC1)-dependent translation, the specific contributions of its downstream effectors in reconsolidation are unclear. Using auditory fear conditioning in mice, we investigated the role of eukaryotic translation initiation factor 4E (eIF4E)–eIF4G interactions and p70 S6 kinase polypeptide 1 (S6K1) in reconsolidation. We found that neither 4EGI-1 (2-[(4-(3,4-dichlorophenyl)-thiazol-2-ylhydrazono)-3-(2-nitrophenyl)]propionic acid), an inhibitor of eFI4E–eIF4G interactions, nor PF-4708671 [2-((4-(5-ethylpyrimidin-4-yl)piperazin-1-yl)methyl)-5-(trifluoromethyl)-1H-benzo[d]imidazole], an inhibitor of S6K1, alone blocked the reconsolidation of auditory fear memory. In contrast, using these drugs in concert to simultaneously block eIF4E–eIF4G interactions and S6K1 immediately after memory reactivation significantly attenuated fear memory reconsolidation. Moreover, the combination of 4EGI-1 and PF-4708671 further destabilized fear memory 10 d after memory reactivation, which was consistent with experiments using rapamycin, an mTORC1 inhibitor. Furthermore, inhibition of S6K1 immediately after retrieval resulted in memory destabilization 10 d after reactivation, whereas inhibition of eIF4E–eIF4G interactions did not. These results indicate that the reconsolidation of fear memory requires concomitant association of eIF4E to eIF4G as well as S6K1 activity and that the persistence of memory at longer intervals after memory reactivation also requires mTORC1-dependent processes that involve S6K1. These findings suggest a potential mechanism for how mTORC1-dependent translation is fine tuned to alter memory persistence. PMID:24990923

  5. Improvement in γ-hydroxybutyrate-induced contextual fear memory deficit by systemic administration of NCS-382.

    PubMed

    Ishiwari, Keita; Sircar, Ratna

    2016-06-15

    Low, nonsedative doses of γ-hydroxybutyric acid (GHB) produce short-term anterograde amnesia in humans and memory impairments in experimental animals. We have previously shown that acute systemic treatment of GHB in adolescent female rats impairs the acquisition, but not the expression, of contextual fear memory while sparing both the acquisition and the expression of auditory cued fear memory. In the brain, GHB binds to specific GHB-binding sites as well as to γ-aminobutyric acid type B (GABAB) receptors. Although many of the behavioral effects of GHB at high doses have been attributed to its effects on the GABAB receptor, it is unclear which receptor mediates its relatively low-dose memory-impairing effects. The present study examined the ability of the putative GHB receptor antagonist NCS-382 to block the disrupting effects of GHB on fear memory in adolescent rat. Groups of rats received either a single dose of NCS-382 (3-10 mg/kg, intraperitoneally) or vehicle, followed by an injection of either GHB (100 mg/kg, intraperitoneally) or saline. All rats were trained in the fear paradigm, and tested for contextual fear memory and auditory cued fear memory. NCS-382 dose-dependently reversed deficits in the acquisition of contextual fear memory induced by GHB in adolescent rats, with 5 mg/kg of NCS-382 maximally increasing freezing to the context compared with the group administered GHB alone. When animals were tested for cued fear memory, treatment groups did not differ in freezing responses to the tone. These results suggest that low-dose amnesic effects of GHB are mediated by GHB receptors. PMID:27105320

  6. Improvement in γ-hydroxybutyrate-induced contextual fear memory deficit by systemic administration of NCS-382

    PubMed Central

    Ishiwari, Keita

    2016-01-01

    Low, nonsedative doses of γ-hydroxybutyric acid (GHB) produce short-term anterograde amnesia in humans and memory impairments in experimental animals. We have previously shown that acute systemic treatment of GHB in adolescent female rats impairs the acquisition, but not the expression, of contextual fear memory while sparing both the acquisition and the expression of auditory cued fear memory. In the brain, GHB binds to specific GHB-binding sites as well as to γ-aminobutyric acid type B (GABAB) receptors. Although many of the behavioral effects of GHB at high doses have been attributed to its effects on the GABAB receptor, it is unclear which receptor mediates its relatively low-dose memory-impairing effects. The present study examined the ability of the putative GHB receptor antagonist NCS-382 to block the disrupting effects of GHB on fear memory in adolescent rat. Groups of rats received either a single dose of NCS-382 (3–10 mg/kg, intraperitoneally) or vehicle, followed by an injection of either GHB (100 mg/kg, intraperitoneally) or saline. All rats were trained in the fear paradigm, and tested for contextual fear memory and auditory cued fear memory. NCS-382 dose-dependently reversed deficits in the acquisition of contextual fear memory induced by GHB in adolescent rats, with 5 mg/kg of NCS-382 maximally increasing freezing to the context compared with the group administered GHB alone. When animals were tested for cued fear memory, treatment groups did not differ in freezing responses to the tone. These results suggest that low-dose amnesic effects of GHB are mediated by GHB receptors. PMID:27105320

  7. Prediction of "Fear" Acquisition in Healthy Control Participants in a De Novo Fear Conditioning Paradigm

    ERIC Educational Resources Information Center

    Otto, Michael W.; Leyro, Teresa M.; Christian, Kelly; Deveney, Christen M.; Reese, Hannah; Pollack, Mark H.; Orr, Scott P.

    2007-01-01

    Studies using fear-conditioning paradigms have found that anxiety patients are more conditionable than individuals without these disorders, but these effects have been demonstrated inconsistently. It is unclear whether these findings have etiological significance or whether enhanced conditionability is linked only to certain anxiety…

  8. Synaptic transmission changes in fear memory circuits underlie key features of an animal model of schizophrenia.

    PubMed

    Pollard, Marie; Varin, Christophe; Hrupka, Brian; Pemberton, Darrel J; Steckler, Thomas; Shaban, Hamdy

    2012-02-01

    Non-competitive antagonists of the N-methyl-d-aspartate receptor (NMDA) such as phencyclidine (PCP) elicit schizophrenia-like symptoms in healthy individuals. Similarly, PCP dosing in rats produces typical behavioral phenotypes that mimic human schizophrenia symptoms. Although schizophrenic behavioral phenotypes of the PCP model have been extensively studied, the underlying alterations of intrinsic neuronal properties and synaptic transmission in relevant limbic brain microcircuits remain elusive. Acute brain slice electrophysiology and immunostaining of inhibitory neurons were used to identify neuronal circuit alterations of the amygdala and hippocampus associated with changes in extinction of fear learning in rats following PCP treatment. Subchronic PCP application led to impaired long-term potentiation (LTP) and marked increases in the ratio of NMDA to 2-amino-3(5-methyl-3-oxo-1,2-oxazol-4-yl)propionic acid (AMPA) receptor-mediated currents at lateral amygdala (LA) principal neurons without alterations in parvalbumin (PV) as well as non-PV, glutamic acid decarboxylase 67 (GAD 67) immunopositive neurons. In addition, LTP was impaired at the Schaffer collateral to CA1 hippocampal pathway coincident with a reduction in colocalized PV and GAD67 immunopositive neurons in the CA3 hippocampal area. These effects occurred without changes in spontaneous events or intrinsic membrane properties of principal cells in the LA. The impairment of LTP at both amygdalar and hippocampal microcircuits, which play a key role in processing relevant survival information such as fear and extinction memory concurred with a disruption of extinction learning of fear conditioned responses. Our results show that subchronic PCP administration in rats impairs synaptic functioning in the amygdala and hippocampus as well as processing of fear-related memories. PMID:22085880

  9. Reprint of: "Demographic factors predict magnitude of conditioned fear".

    PubMed

    Rosenbaum, Blake L; Bui, Eric; Marin, Marie-France; Holt, Daphne J; Lasko, Natasha B; Pitman, Roger K; Orr, Scott P; Milad, Mohammed R

    2015-12-01

    There is substantial variability across individuals in the magnitudes of their skin conductance (SC) responses during the acquisition and extinction of conditioned fear. To manage this variability, subjects may be matched for demographic variables, such as age, gender and education. However, limited data exist addressing how much variability in conditioned SC responses is actually explained by these variables. The present study assessed the influence of age, gender and education on the SC responses of 222 subjects who underwent the same differential conditioning paradigm. The demographic variables were found to predict a small but significant amount of variability in conditioned responding during fear acquisition, but not fear extinction learning or extinction recall. A larger differential change in SC during acquisition was associated with more education. Older participants and women showed smaller differential SC during acquisition. Our findings support the need to consider age, gender and education when studying fear acquisition but not necessarily when examining fear extinction learning and recall. Variability in demographic factors across studies may partially explain the difficulty in reproducing some SC findings. PMID:26608179

  10. Erasure of fear memories is prevented by Nogo Receptor 1 in adulthood.

    PubMed

    Bhagat, S M; Butler, S S; Taylor, J R; McEwen, B S; Strittmatter, S M

    2016-09-01

    Critical periods are temporary windows of heightened neural plasticity early in development. For example, fear memories in juvenile rodents are subject to erasure following extinction training, while after closure of this critical period, extinction training only temporarily and weakly suppresses fear memories. Persistence of fear memories is important for survival, but the inability to effectively adapt to the trauma is a characteristic of post-traumatic stress disorder (PTSD). We examined whether Nogo Receptor 1 (NgR1) regulates the plasticity associated with fear extinction. The loss of NgR1 function in adulthood eliminates spontaneous fear recovery and fear renewal, with a restoration of fear reacquisition rate equal to that of naive mice; thus, mimicking the phenotype observed in juvenile rodents. Regional gene disruption demonstrates that NgR1 expression is required in both the basolateral amygdala (BLA) and infralimbic (IL) cortex to prevent fear erasure. NgR1 expression by parvalbumin expressing interneurons is essential for limiting extinction-dependent plasticity. NgR1 gene deletion enhances anatomical changes of inhibitory synapse markers after extinction training. Thus, NgR1 robustly inhibits elimination of fear expression in the adult brain and could serve as a therapeutic target for anxiety disorders, such as PTSD. PMID:26619810

  11. Differing Effects of Systemically Administered Rapamycin on Consolidation and Reconsolidation of Context vs. Cued Fear Memories

    ERIC Educational Resources Information Center

    Glover, Ebony M.; Ressler, Kerry J.; Davis, Michael

    2010-01-01

    Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) kinase, has attracted interest as a possible prophylactic for post-traumatic stress disorder (PTSD)-associated fear memories. We report here that although rapamycin (40 mg/kg, i.p.) disrupted the consolidation and reconsolidation of fear-potentiated startle paradigm to a…

  12. Distinctive Roles for Amygdalar CREB in Reconsolidation and Extinction of Fear Memory

    ERIC Educational Resources Information Center

    Tronson, Natalie C.; Wiseman, Shari L.; Neve, Rachael L.; Nestler, Eric J.; Olausson, Peter; Taylor, Jane R.

    2012-01-01

    Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral…

  13. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories.

    PubMed

    Pattwell, Siobhan S; Liston, Conor; Jing, Deqiang; Ninan, Ipe; Yang, Rui R; Witztum, Jonathan; Murdock, Mitchell H; Dincheva, Iva; Bath, Kevin G; Casey, B J; Deisseroth, Karl; Lee, Francis S

    2016-01-01

    Fear can be highly adaptive in promoting survival, yet it can also be detrimental when it persists long after a threat has passed. Flexibility of the fear response may be most advantageous during adolescence when animals are prone to explore novel, potentially threatening environments. Two opposing adolescent fear-related behaviours-diminished extinction of cued fear and suppressed expression of contextual fear-may serve this purpose, but the neural basis underlying these changes is unknown. Using microprisms to image prefrontal cortical spine maturation across development, we identify dynamic BLA-hippocampal-mPFC circuit reorganization associated with these behavioural shifts. Exploiting this sensitive period of neural development, we modified existing behavioural interventions in an age-specific manner to attenuate adolescent fear memories persistently into adulthood. These findings identify novel strategies that leverage dynamic neurodevelopmental changes during adolescence with the potential to extinguish pathological fears implicated in anxiety and stress-related disorders. PMID:27215672

  14. Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase.

    PubMed

    Pan, Yung-Wei; Storm, Daniel R; Xia, Zhengui

    2013-10-01

    Adult neurogenesis occurs in two discrete regions of the adult mammalian brain, the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) along the lateral ventricles. Signaling mechanisms regulating adult neurogenesis in the SGZ are currently an active area of investigation. Adult-born neurons in the DG functionally integrate into the hippocampal circuitry and form functional synapses, suggesting a role for these neurons in hippocampus-dependent memory formation. Although results from earlier behavioral studies addressing this issue were inconsistent, recent advances in conditional gene targeting technology, viral injection and optogenetic approaches have provided convincing evidence supporting a role for adult-born neurons in the more challenging forms of hippocampus-dependent learning and memory. Here, we briefly summarize these recent studies with a focus on extra signal-regulated kinase (ERK) 5, a MAP kinase whose expression in the adult brain is restricted to the neurogenic regions including the SGZ and SVZ. We review evidence identifying ERK5 as a novel endogenous signaling pathway that regulates the pro-neural transcription factor Neurogenin 2, is activated by neurotrophins and is critical for adult neurogenesis. We discuss studies demonstrating that specific deletion of ERK5 in the adult neurogenic regions impairs several forms of hippocampus-dependent memory formation in mice. These include contextual fear memory extinction, the establishment and maintenance of remote contextual fear memory, and several other challenging forms of hippocampus-dependent memory formation including 48h memory for novel object recognition, contextual fear memory established by a weak foot shock, pattern separation, and reversal of spatial learning and memory. We also briefly discuss current evidence that increasing adult neurogenesis, by small molecules or genetic manipulation, improves memory formation and long-term memory. PMID:23871742

  15. Ketamine administration diminishes operant responding but does not impair conditioned fear.

    PubMed

    Groeber Travis, Caitlin M; Altman, Daniel E; Genovese, Raymond F

    2015-12-01

    While not well understood, the NMDA (N-methyl-D-aspartate) antagonist ketamine, a dissociative anesthetic, has been reported to be efficacious in depression and related psychological disorders. Conditioned fear is a normal emotional conditioning process that is known to become dysfunctional in individuals suffering from Post-Traumatic Stress Disorder (PTSD) and related stress disorders. We examined the effects of ketamine to determine the potential modulation of the acquisition and extinction of a conditioned fear using a conditioned suppression procedure. Rats were trained on a variable interval (VI), food maintained, operant conditioning task to establish a general measure of performance. Rats were exposed to inescapable shock (IES, unconditioned stimulus) paired (×20) with an audio/visual conditioned stimulus (CS) to establish conditioning. Conditioning was quantified by measuring response suppression following CS presentation during subsequent extinction trials where the CS alone was presented. Ketamine or vehicle was administered either after initial conditioning or after each of the subsequent extinction trials. For each regimen, a series of four injections were administered 60 min apart (100, 50, 50, 50 mg/kg, respectively) in order to sustain a ketamine effect for a minimum of 4 h. Ketamine produced a general decrease in responding on the VI, relative to baseline, as response rates were slower on the operant task when tested 24 h later and longer. Ketamine did not affect the acquisition of the conditioned fear when the regimen was administered shortly after the initial pairings of IES and CS. Ketamine did not alter extinction to the conditioned fear when the regimen was administered following each CS only presentation following initial conditioning. Our conclusion from these findings is that while ketamine alters behavior on an appetitively motivated operant task it does not, however, appear to directly modulate learning and memory processes associated

  16. Sex Differences in Response to an Observational Fear Conditioning Procedure

    ERIC Educational Resources Information Center

    Kelly, Megan M.; Forsyth, John P.

    2007-01-01

    The present study evaluated sex differences in observational fear conditioning using modeled ''mock'' panic attacks as an unconditioned stimulus (UCS). Fifty-nine carefully prescreened healthy undergraduate participants (30 women) underwent 3 consecutive differential conditioning phases: habituation, acquisition, and extinction. It was expected…

  17. Generalization of Extinguished Skin Conductance Responding in Human Fear Conditioning

    ERIC Educational Resources Information Center

    Vervliet, Bram; Vansteenwegen, Debora; Eelen, Paul

    2004-01-01

    In a human fear conditioning paradigm using the skin conductance response (SCR), participants were assigned to two groups. Following identical acquisition, group ABA (n = 16) was extinguished to a generalization stimulus (GS), whereas group AAB (n = 20) was extinguished to the conditioned stimulus (CS). At test, presenting the CS in group ABA…

  18. Enhanced Generalization of Auditory Conditioned Fear in Juvenile Mice

    ERIC Educational Resources Information Center

    Ito, Wataru; Pan, Bing-Xing; Yang, Chao; Thakur, Siddarth; Morozov, Alexei

    2009-01-01

    Increased emotionality is a characteristic of human adolescence, but its animal models are limited. Here we report that generalization of auditory conditioned fear between a conditional stimulus (CS+) and a novel auditory stimulus is stronger in 4-5-wk-old mice (juveniles) than in their 9-10-wk-old counterparts (adults), whereas nonassociative…

  19. Mindfulness-Based Stress Reduction, Fear Conditioning, and The Uncinate Fasciculus: A Pilot Study

    PubMed Central

    Hölzel, Britta K.; Brunsch, Vincent; Gard, Tim; Greve, Douglas N.; Koch, Kathrin; Sorg, Christian; Lazar, Sara W.; Milad, Mohammed R.

    2016-01-01

    Mindfulness has been suggested to impact emotional learning, but research on these processes is scarce. The classical fear conditioning/extinction/extinction retention paradigm is a well-known method for assessing emotional learning. The present study tested the impact of mindfulness training on fear conditioning and extinction memory and further investigated whether changes in white matter fiber tracts might support such changes. The uncinate fasciculus (UNC) was of particular interest in the context of emotional learning. In this pilot study, 46 healthy participants were quasi-randomized to a Mindfulness-Based Stress Reduction (MBSR, N = 23) or waitlist control (N = 23) group and underwent a two-day fear conditioning, extinction learning, and extinction memory protocol before and after the course or control period. Skin conductance response (SCR) data served to measure the physiological response during conditioning and extinction memory phases. Diffusion tensor imaging (DTI) data were analyzed with probabilistic tractography and analyzed for changes of fractional anisotropy in the UNC. During conditioning, participants were able to maintain a differential response to conditioned vs. not conditioned stimuli following the MBSR course (i.e., higher sensitivity to the conditioned stimuli), while controls dropped the response. Extinction memory results were not interpretable due to baseline differences. MBSR participants showed a significant increase in fractional anisotropy in the UNC, while controls did not (group by time interaction missed significance). Pre-post changes in UNC were correlated with changes in the response to the conditioned stimuli. The findings suggest effects of mindfulness practice on the maintenance of sensitivity of emotional responses and suggest underlying neural plasticity. (ClinicalTrials.gov, Identifier NCT01320969, https://clinicaltrials.gov/ct2/show/NCT01320969). PMID:27378875

  20. Mindfulness-Based Stress Reduction, Fear Conditioning, and The Uncinate Fasciculus: A Pilot Study.

    PubMed

    Hölzel, Britta K; Brunsch, Vincent; Gard, Tim; Greve, Douglas N; Koch, Kathrin; Sorg, Christian; Lazar, Sara W; Milad, Mohammed R

    2016-01-01

    Mindfulness has been suggested to impact emotional learning, but research on these processes is scarce. The classical fear conditioning/extinction/extinction retention paradigm is a well-known method for assessing emotional learning. The present study tested the impact of mindfulness training on fear conditioning and extinction memory and further investigated whether changes in white matter fiber tracts might support such changes. The uncinate fasciculus (UNC) was of particular interest in the context of emotional learning. In this pilot study, 46 healthy participants were quasi-randomized to a Mindfulness-Based Stress Reduction (MBSR, N = 23) or waitlist control (N = 23) group and underwent a two-day fear conditioning, extinction learning, and extinction memory protocol before and after the course or control period. Skin conductance response (SCR) data served to measure the physiological response during conditioning and extinction memory phases. Diffusion tensor imaging (DTI) data were analyzed with probabilistic tractography and analyzed for changes of fractional anisotropy in the UNC. During conditioning, participants were able to maintain a differential response to conditioned vs. not conditioned stimuli following the MBSR course (i.e., higher sensitivity to the conditioned stimuli), while controls dropped the response. Extinction memory results were not interpretable due to baseline differences. MBSR participants showed a significant increase in fractional anisotropy in the UNC, while controls did not (group by time interaction missed significance). Pre-post changes in UNC were correlated with changes in the response to the conditioned stimuli. The findings suggest effects of mindfulness practice on the maintenance of sensitivity of emotional responses and suggest underlying neural plasticity. (ClinicalTrials.gov, Identifier NCT01320969, https://clinicaltrials.gov/ct2/show/NCT01320969). PMID:27378875

  1. Angiotensin type 1a receptors on corticotropin-releasing factor neurons contribute to the expression of conditioned fear.

    PubMed

    Hurt, R C; Garrett, J C; Keifer, O P; Linares, A; Couling, L; Speth, R C; Ressler, K J; Marvar, P J

    2015-09-01

    Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1a R) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin-releasing factor (CRF)-expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1a R signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1a R gene from its CRF-releasing cells (CRF-AT1a R((-/-)) ). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF-AT1a R((-/-)) mice exhibit less freezing than wild-type mice during tests of conditioned fear expression-an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1a R activity in CRF-expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1 R antagonists may act to modulate fear extinction. PMID:26257395

  2. Brain-derived neurotrophic factor in the anterior cingulate cortex is involved in the formation of fear memory.

    PubMed

    Li, Qing-Qing; Li, Bao-Ming

    2015-10-25

    Brain-derived neurotrophic factor (BDNF), a small dimeric secretory protein, plays a vital role in activity-dependent synaptic plasticity, learning and memory. It has been shown that BDNF in the hippocampus and amygdala participates in the formation of fear memory. However, little is known about the functional role of BDNF in the anterior cingulate cortex (ACC). To address this question, we examined the mRNA and protein levels of BDNF in the ACC of rats at various time points after fear conditioning, using quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA). The results showed that BDNF exhibited a temporally specific increase in both mRNA and protein levels after CS (tone) and US (foot shock) was paired. Such increase did not occur after the animals were exposed to CS or US alone. When BDNF antibody was locally infused into the ACC prior to CS-US pairing, both contextual and auditory fear memories were severely impaired. Taken together, these results suggest that BDNF in the ACC is required for the formation of fear memory. PMID:26490062

  3. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    PubMed Central

    Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102

  4. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning.

    PubMed

    Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu E; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted

    2014-12-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102

  5. Post-weaning Social Isolation Impairs Observational Fear Conditioning

    PubMed Central

    Yusufishaq, Shabana; Rosenkranz, J. Amiel

    2013-01-01

    Many mammals can utilize social information to learn by observation of conspecifics (social learning). Social learning of fear is expected to be especially advantageous for survival. However, disruption of social development in early life can impair social cognition and might also be expected to disrupt social learning. Social isolation during a critical period of adolescence disrupts social development. The purpose of this study was to determine whether disruption of social development through post-weaning social isolation leads to impairments of social fear learning. Rats were reared in isolation or pair-housed from immediately post-weaning, for 3 weeks. Social fear learning in rats was acquired by observation of tone-footshock pairings administered to a conspecific. Isolation-reared rats displayed less conditioned freezing than pair-housed rats when tested the next day. This reduction of conditioned freezing was correlated with conspecific-oriented behaviors during conditioning, was measured despite similarities in demonstrator behaviors, and occurred despite a manipulation that equalized freezing during conditioning between the pair-housed and isolation-reared rats. The results could not be explained by abnormal sensitization to a repeated tone or deficits in freezing or direct fear conditioning. These results demonstrate that observational fear conditioning is impaired by social isolation, and provide a model to study impaired social affective learning. Impaired social cognition, manifested as inability to recognize or appropriately interpret social cues, is a symptom of several psychiatric disorders. Better understanding of the mechanisms of impaired social fear learning can lead to novel treatments for social cognition symptoms of psychiatric disorders. PMID:23295398

  6. Regulation of amygdalar PKA by β-arrestin-2/phosphodiesterase-4 complex is critical for fear conditioning

    PubMed Central

    Li, Yuting; Li, Haohong; Liu, Xing; Bao, Guobin; Tao, Yezheng; Wu, Ziyan; Xia, Peng; Wu, Chunfu; Li, Baoming; Ma, Lan

    2009-01-01

    β-arrestins, key regulators of receptor signaling, are highly expressed in the central nervous system, but their roles in brain physiology are largely unknown. Here we show that β-arrestin-2 is critically involved in the formation of associative fear memory and amygdalar synaptic plasticity. In response to fear conditioning, β-arrestin-2 translocates to amygdalar membrane where it interacts with PDE-4, a cAMP-degrading enzyme, to inhibit PKA activation. Arrb2−/− mice exhibit impaired conditioned fear memory and long-term potentiation at the lateral amygdalar synapses. Moreover, expression of the β-arrestin-2 in the lateral amygdala of Arrb2−/− mice, but not its mutant form that is incapable of binding PDE-4, restores basal PKA activity and rescues conditioned fear memory. Taken together, our data demonstrate that the feedback regulation of amygdalar PKA activation by β-arrestin-2 and PDE-4 complex is critical for the formation of conditioned fear memory. PMID:19955404

  7. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice

    PubMed Central

    2013-01-01

    Background Histone acetylation has been implicated in learning and memory in the brain, however, its function at the level of the genome and at individual genetic loci remains poorly investigated. This study examines a key acetylation mark, histone H4 lysine 5 acetylation (H4K5ac), genome-wide and its role in activity-dependent gene transcription in the adult mouse hippocampus following contextual fear conditioning. Results Using ChIP-Seq, we identified 23,235 genes in which H4K5ac correlates with absolute gene expression in the hippocampus. However, in the absence of transcription factor binding sites 150 bp upstream of the transcription start site, genes were associated with higher H4K5ac and expression levels. We further establish H4K5ac as a ubiquitous modification across the genome. Approximately one-third of all genes have above average H4K5ac, of which ~15% are specific to memory formation and ~65% are co-acetylated for H4K12. Although H4K5ac is prevalent across the genome, enrichment of H4K5ac at specific regions in the promoter and coding region are associated with different levels of gene expression. Additionally, unbiased peak calling for genes differentially acetylated for H4K5ac identified 114 unique genes specific to fear memory, over half of which have not previously been associated with memory processes. Conclusions Our data provide novel insights into potential mechanisms of gene priming and bookmarking by histone acetylation following hippocampal memory activation. Specifically, we propose that hyperacetylation of H4K5 may prime genes for rapid expression following activity. More broadly, this study strengthens the importance of histone posttranslational modifications for the differential regulation of transcriptional programs in cognitive processes. PMID:23927422

  8. Origins of common fears: effects on severity, anxiety responses and memories of onset.

    PubMed

    Withers, R D; Deane, F P

    1995-11-01

    The purpose of the present study was twofold: First, to test Rachman's (1976) theory (Behaviour Research and Therapy, 14, 125-131) which predicts that "directly" conditioned fears will differ from "indirectly" conditioned fears in magnitude and anxiety response patterns. Secondly, to explore validity issues related to the questionnaire methodology typically used in fear acquisition research. The questionnaire comprised 3 anxiety scales and 3 fear-onset questions used in prior research, a specifically developed 36-item fear list and 2 validity-check items. One hundred and ninety-one Ss completed the questionnaire. After selecting and rank-ordering 10 fears from the fear list, Ss answered questionnaire items for their first- and then their tenth-ranked fear. Results failed to confirm Rachman's predictions: A significantly greater proportion of Ss ascribed highly-feared and moderately-feared situations or things to direct conditioning. In addition, differential anxiety response patterns were not present for different levels of fear. However, results supported the prediction that direct-conditioning ascriptions would be endorsed with greater certainty. The findings suggest that direct-conditioning experiences may be more memorable than indirect-conditioning events. The theoretical and methodological implications of the findings are discussed. It is suggested that future research either employ methodologies more suited to investigating causal relationships or that Rachman's (1976) theory be blended with an attributional account of fear acquisition. PMID:7487850

  9. Venlafaxine facilitates between-session extinction and prevents reinstatement of auditory-cue conditioned fear.

    PubMed

    Yang, Cheng-Hao; Shi, Hai-Shui; Zhu, Wei-Li; Wu, Ping; Sun, Li-Li; Si, Ji-Jian; Liu, Meng-Meng; Zhang, Yan; Suo, Lin; Yang, Jian-Li

    2012-04-21

    Anxiety disorders, characterized by anxiety and fearfulness, are found to be able to cause abnormal emotional responses' associated with memories of negative events, which implicate pressure on society with an increasingly large burden. Better treatment has been of concern to the community. Venlafaxine (VEN), a nonclassical antidepressant agent, is applied in the treatment of social phobia, major depression (MD) and general anxiety disorder (GAD) and, to a certain extent, posttraumatic stress disorder (PTSD), which improves working memory and spatial memory as well as ameliorates emotion by affecting specified brain regions. In this study, we committed to seek a new way for using VEN on treatment of anxiety disorders. To investigate the effect of VEN on extinction of auditory-cue conditioned fear, conditioned rats received a treatment with VEN before extinction training and tests for freezing level of within-session and between-session extinction. To investigate the effect of VEN on reinstatement, all conditioned rats received a treatment with VEN over a period for 21 days. After a rest for 7 days, two tests for freezing level were conducted. We found that: (1) VEN (40mg/kg) treatment at 30min prior to extinction training significantly facilitated the between-session extinction, but not the within-session extinction; (2) chronic administration with VEN (40mg/kg) prevented the return of extinguished auditory-cue fear. These data elucidate the critical role of VEN in auditory-cue fear memory, suggesting that VEN may be an ideal choice for the exposure-based drug treatment and maintenance treatment in patients with GAD, SAD and PTSD. PMID:22366271

  10. Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear.

    PubMed

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J; Striessnig, Jörg; Singewald, Nicolas

    2008-05-01

    Dihydropyridine (DHP) L-type Ca(2+) channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. Ca(V)1.2 and Ca(V)1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive Ca(V)1.2 LTCCs (Ca(V)1.2DHP(-/-) mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in Ca(V)1.2DHP(-/-) mice, indicating that it is mediated by Ca(V)1.2, but not by Ca(V)1.3 LTCCs. Supporting this conclusion, Ca(V)1.3-deficient mice (Ca(V)1.3(-/-)) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral Ca(V)1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in Ca(V)1.2DHP(-/-) mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the Ca(V)1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly Ca(V)1.3) is not sufficient to accelerate extinction of conditioned fear in mice. PMID:18441296

  11. (16)Oxygen irradiation enhances cued fear memory in B6D2F1 mice.

    PubMed

    Raber, Jacob; Marzulla, Tessa; Kronenberg, Amy; Turker, Mitchell S

    2015-11-01

    The space radiation environment includes energetic charged particles that may impact cognitive performance. We assessed the effects of (16)O ion irradiation on cognitive performance of C57BL/6J × DBA/2J F1 (B6D2F1) mice at OHSU (Portland, OR) one month following irradiation at Brookhaven National Laboratory (BNL, Upton, NY). Hippocampus-dependent contextual fear memory and hippocampus-independent cued fear memory of B6D2F1 mice were tested. (16)O ion exposure enhanced cued fear memory. This effect showed a bell-shaped dose response curve. Cued fear memory was significantly stronger in mice irradiated with (16)O ions at a dose of 0.4 or 0.8 Gy than in sham-irradiated mice or following irradiation at 1.6 Gy. In contrast to cued fear memory, contextual fear memory was not affected following (16)O ion irradiation at the doses used in this study. These data indicate that the amygdala might be particularly susceptible to effects of (16)O ion exposure. PMID:26553639

  12. 16Oxygen irradiation enhances cued fear memory in B6D2F1 mice

    NASA Astrophysics Data System (ADS)

    Raber, Jacob; Marzulla, Tessa; Kronenberg, Amy; Turker, Mitchell S.

    2015-11-01

    The space radiation environment includes energetic charged particles that may impact cognitive performance. We assessed the effects of 16O ion irradiation on cognitive performance of C57BL/6J × DBA/2J F1 (B6D2F1) mice at OHSU (Portland, OR) one month following irradiation at Brookhaven National Laboratory (BNL, Upton, NY). Hippocampus-dependent contextual fear memory and hippocampus-independent cued fear memory of B6D2F1 mice were tested. 16O ion exposure enhanced cued fear memory. This effect showed a bell-shaped dose response curve. Cued fear memory was significantly stronger in mice irradiated with 16O ions at a dose of 0.4 or 0.8 Gy than in sham-irradiated mice or following irradiation at 1.6 Gy. In contrast to cued fear memory, contextual fear memory was not affected following 16O ion irradiation at the doses used in this study. These data indicate that the amygdala might be particularly susceptible to effects of 16O ion exposure.

  13. Post-training corticosterone inhibits the return of fear evoked by platform stress and a subthreshold conditioning procedure in Sprague-Dawley rats.

    PubMed

    Xing, Xiaoli; Wang, Hongbo; Zhang, Lili; Bai, Yunjing; Liang, Jing; Liu, Zhengkui; Zheng, Xigeng

    2015-06-01

    The return of fear is an important issue in anxiety disorder research. Each time a fear memory is reactivated, it may further strengthen overactivation of the fear circuit, which may contribute to long-term maintenance of the fear memory. Recent evidence indicates that glucocorticoids may help attenuate pathological fear, but its role in the return of fear is unclear. In the present study, systemic corticosterone (CORT; 25mg/kg) administration 1h after fear conditioning did not impair the consolidation process but significantly suppressed the return of fear evoked by a subthreshold conditioning (SC) procedure and elevated platform (EP) stress. Compared with the SC-induced return of fear, acute stress-induced return was state-dependent. In addition, post-training CORT treatment increased the adrenocorticotropic response after EP stress, which indicates that the drug-induced suppression of the return of fear may possibly derive from its regulation effect of the hypothalamic-pituitary-adrenal axis reactivity to stress. These results suggest that post-training CORT administration may help inhibit the return of fear evoked by EP or SC stress. The possible mechanisms involved in the high-dose CORT-induced suppression of the SC- and EP-induced return of fear are discussed. PMID:25818040

  14. Medial prefrontal cortex stimulation modulates the processing of conditioned fear

    PubMed Central

    Guhn, Anne; Dresler, Thomas; Andreatta, Marta; Müller, Laura D.; Hahn, Tim; Tupak, Sara V.; Polak, Thomas; Deckert, Jürgen; Herrmann, Martin J.

    2014-01-01

    The extinction of conditioned fear depends on an efficient interplay between the amygdala and the medial prefrontal cortex (mPFC). In rats, high-frequency electrical mPFC stimulation has been shown to improve extinction by means of a reduction of amygdala activity. However, so far it is unclear whether stimulation of homologues regions in humans might have similar beneficial effects. Healthy volunteers received one session of either active or sham repetitive transcranial magnetic stimulation (rTMS) covering the mPFC while undergoing a 2-day fear conditioning and extinction paradigm. Repetitive TMS was applied offline after fear acquisition in which one of two faces (CS+ but not CS−) was associated with an aversive scream (UCS). Immediate extinction learning (day 1) and extinction recall (day 2) were conducted without UCS delivery. Conditioned responses (CR) were assessed in a multimodal approach using fear-potentiated startle (FPS), skin conductance responses (SCR), functional near-infrared spectroscopy (fNIRS), and self-report scales. Consistent with the hypothesis of a modulated processing of conditioned fear after high-frequency rTMS, the active group showed a reduced CS+/CS− discrimination during extinction learning as evident in FPS as well as in SCR and arousal ratings. FPS responses to CS+ further showed a linear decrement throughout both extinction sessions. This study describes the first experimental approach of influencing conditioned fear by using rTMS and can thus be a basis for future studies investigating a complementation of mPFC stimulation to cognitive behavioral therapy (CBT). PMID:24600362

  15. Mild Transient Hypercapnia as a Novel Fear Conditioning Stimulus Allowing Re-Exposure during Sleep

    PubMed Central

    Balbir, Alex; Germain, Anne; O’Donnell, Christopher P.

    2013-01-01

    Introduction Studies suggest that sleep plays a role in traumatic memories and that treatment of sleep disorders may help alleviate symptoms of posttraumatic stress disorder. Fear-conditioning paradigms in rodents are used to investigate causal mechanisms of fear acquisition and the relationship between sleep and posttraumatic behaviors. We developed a novel conditioning stimulus (CS) that evoked fear and was subsequently used to study re-exposure to the CS during sleep. Methods Experiment 1 assessed physiological responses to a conditioned stimulus (mild transient hypercapnia, mtHC; 3.0% CO2; n = 17)+footshock for the purpose of establishing a novel CS in male FVB/J mice. Responses to the novel CS were compared to tone+footshock (n = 18) and control groups of tone alone (n = 17) and mild transient hypercapnia alone (n = 10). A second proof of principle experiment re-exposed animals during sleep to mild transient hypercapnia or air (control) to study sleep processes related to the CS. Results Footshock elicited a response of acute tachycardia (30–40 bpm) and increased plasma epinephrine. When tone predicted footshock it elicited mild hypertension (1–2 mmHg) and a three-fold increase in plasma epinephrine. When mtHC predicted footshock it also induced mild hypertension, but additionally elicited a conditioned bradycardia and a smaller increase in plasma epinephrine. The overall mean 24 hour sleep–wake profile was unaffected immediately after fear conditioning. Discussion Our study demonstrates the efficacy of mtHC as a conditioning stimulus that is perceptible but innocuous (relative to tone) and applicable during sleep. This novel model will allow future studies to explore sleep-dependent mechanisms underlying maladaptive fear responses, as well as elucidate the moderators of the relationship between fear responses and sleep. PMID:23840700

  16. Fear conditioning induced by interpersonal conflicts in healthy individuals.

    PubMed

    Tada, Mitsuhiro; Uchida, Hiroyuki; Maeda, Takaki; Konishi, Mika; Umeda, Satoshi; Terasawa, Yuri; Nakajima, Shinichiro; Mimura, Masaru; Miyazaki, Tomoyuki; Takahashi, Takuya

    2015-01-01

    Psychophysiological markers have been focused to investigate the psychopathology of psychiatric disorders and personality subtypes. In order to understand neurobiological mechanisms underlying these conditions, fear-conditioning model has been widely used. However, simple aversive stimuli are too simplistic to understand mechanisms because most patients with psychiatric disorders are affected by social stressors. The objective of this study was to test the feasibility of a newly-designed conditioning experiment using a stimulus to cause interpersonal conflicts and examine associations between personality traits and response to that stimulus. Twenty-nine healthy individuals underwent the fear conditioning and extinction experiments in response to three types of stimuli: a simple aversive sound, disgusting pictures, and pictures of an actors' face with unpleasant verbal messages that were designed to cause interpersonal conflicts. Conditioned response was quantified by the skin conductance response (SCR). Correlations between the SCR changes, and personality traits measured by the Zanarini Rating Scale for Borderline Personality Disorder (ZAN-BPD) and Revised NEO Personality Inventory were explored. The interpersonal conflict stimulus resulted in successful conditioning, which was subsequently extinguished, in a similar manner as the other two stimuli. Moreover, a greater degree of conditioned response to the interpersonal conflict stimulus correlated with a higher ZAN-BPD total score. Fear conditioning and extinction can be successfully achieved, using interpersonal conflicts as a stimulus. Given that conditioned fear caused by the interpersonal conflicts is likely associated with borderline personality traits, this paradigm could contribute to further understanding of underlying mechanisms of interpersonal fear implicated in borderline personality disorder. PMID:25978817

  17. Hippocampal hyperexcitability underlies enhanced fear memories in TgNTRK3, a panic disorder mouse model.

    PubMed

    Santos, Mónica; D'Amico, Davide; Spadoni, Ornella; Amador-Arjona, Alejandro; Stork, Oliver; Dierssen, Mara

    2013-09-18

    Panic attacks are a hallmark in panic disorder (PAND). During the panic attack, a strong association with the surrounding context is established suggesting that the hippocampus may be critically involved in the pathophysiology of PAND, given its role in contextual processing. We previously showed that variation in the expression of the neurotrophin tyrosine kinase receptor type 3 (NTRK3) in both PAND patients and a transgenic mouse model (TgNTRK3) may have a role in PAND pathophysiology. Our study examines hippocampal function and activation of the brain fear network in TgNTRK3 mice. TgNTRK3 mice showed increased fear memories accompanied by impaired extinction, congruent with an altered activation pattern of the amygdala-hippocampus-medial prefrontal cortex fear circuit. Moreover, TgNTRK3 mice also showed an unbalanced excitation-to-inhibition ratio in the hippocampal cornu ammonis 3 (CA3)-CA1 subcircuit toward hyperexcitability. The resulting hippocampal hyperexcitability underlies the enhanced fear memories, as supported by the efficacy of tiagabine, a GABA reuptake inhibitor, to rescue fear response. The fearful phenotype appears to be the result of hippocampal hyperexcitability and aberrant fear circuit activation. We conclude that NTRK3 plays a role in PAND by regulating hippocampus-dependent fear memories. PMID:24048855

  18. Ethnic Differences in Physiological Responses to Fear Conditioned Stimuli

    PubMed Central

    Martínez, Karen G.; Franco-Chaves, José A.; Milad, Mohammed R.; Quirk, Gregory J.

    2014-01-01

    The idea that emotional expression varies with ethnicity is based largely on questionnaires and behavioral observations rather than physiological measures. We therefore compared the skin conductance responses (SCR) of Hispanic (Puerto Rican) and White non-Hispanic subjects in a fear conditioning and fear extinction task. Subjects were recruited from two sites: San Juan, Puerto Rico (PR), and Boston, Massachusetts (MA), using identical methods. A total of 78 healthy subjects (39 from PR, 39 from MA) were divided by sex and matched for age and educational level. Females from the two sites did not differ in their SCRs during any experimental phase of fear conditioning (habituation, conditioning, or extinction). In contrast, PR males responded significantly to the conditioned stimulus than MA males or PR females. Subtracting ethnic differences observed during the habituation phase (prior to conditioning) eliminated differences from subsequent phases, suggesting that PR males are elevated in their response to novelty rather than fear learning. Our findings suggest that, in addition to sex differences, there are ethnic differences in physiological responses to novel stimuli at least in males, which could be relevant for the assessment and treatment of anxiety disorders. PMID:25501365

  19. Ethnic differences in physiological responses to fear conditioned stimuli.

    PubMed

    Martínez, Karen G; Franco-Chaves, José A; Milad, Mohammed R; Quirk, Gregory J

    2014-01-01

    The idea that emotional expression varies with ethnicity is based largely on questionnaires and behavioral observations rather than physiological measures. We therefore compared the skin conductance responses (SCR) of Hispanic (Puerto Rican) and White non-Hispanic subjects in a fear conditioning and fear extinction task. Subjects were recruited from two sites: San Juan, Puerto Rico (PR), and Boston, Massachusetts (MA), using identical methods. A total of 78 healthy subjects (39 from PR, 39 from MA) were divided by sex and matched for age and educational level. Females from the two sites did not differ in their SCRs during any experimental phase of fear conditioning (habituation, conditioning, or extinction). In contrast, PR males responded significantly to the conditioned stimulus than MA males or PR females. Subtracting ethnic differences observed during the habituation phase (prior to conditioning) eliminated differences from subsequent phases, suggesting that PR males are elevated in their response to novelty rather than fear learning. Our findings suggest that, in addition to sex differences, there are ethnic differences in physiological responses to novel stimuli at least in males, which could be relevant for the assessment and treatment of anxiety disorders. PMID:25501365

  20. Secondary extinction in Pavlovian fear conditioning

    PubMed Central

    Vurbic, Drina; Bouton, Mark E.

    2011-01-01

    Pavlov (1927/1960) reported that following the conditioning of several stimuli, extinction of one conditioned stimulus (CS) attenuated responding to others that had not undergone direct extinction. However, this secondary extinction effect has not been widely replicated in the contemporary literature. In three conditioned suppression experiments with rats, we further explored the phenomenon. In Experiment 1, we asked whether secondary extinction is more likely to occur with target CSs that have themselves undergone some prior extinction. A robust secondary extinction effect was obtained with a nonextinguished target CS. Experiment 2 showed that extinction of one CS was sufficient to reduce renewal of a second CS when it was tested in a neutral (nonextinction) context. In Experiment 3, secondary extinction was observed in groups that initially received intermixed conditioning trials with the target and nontarget CSs, but not in groups that received conditioning of the two CSs in separate sessions. The results are consistent with the hypothesis that CSs must be associated with a common temporal context during conditioning for secondary extinction to occur. PMID:21286897

  1. An Overview of Translationally Informed Treatments for Posttraumatic Stress Disorder: Animal Models of Pavlovian Fear Conditioning to Human Clinical Trials.

    PubMed

    Bowers, Mallory E; Ressler, Kerry J

    2015-09-01

    Posttraumatic stress disorder manifests after exposure to a traumatic event and is characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive disruptions, and hyperarousal/reactivity symptoms. These symptoms reflect dysregulation of the fear system likely caused by poor fear inhibition/extinction, increased generalization, and/or enhanced consolidation or acquisition of fear. These phenotypes can be modeled in animal subjects using Pavlovian fear conditioning, allowing investigation of the underlying neurobiology of normative and pathological fear. Preclinical studies reveal a number of neurotransmitter systems and circuits critical for aversive learning and memory that have informed the development of therapies used in human clinical trials. In this review, we discuss the evidence for a number of established and emerging pharmacotherapies and device-based treatments for posttraumatic stress disorder that have been developed via a bench to bedside translational model. PMID:26238379

  2. An overview of translationally informed treatments for PTSD: animal models of Pavlovian fear conditioning to human clinical trials

    PubMed Central

    Bowers, Mallory E.; Ressler, Kerry J.

    2015-01-01

    Posttraumatic stress disorder (PTSD) manifests after exposure to a traumatic event and is characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive disruptions, and hyperarousal/reactivity symptoms. These symptoms reflect dysregulation of the fear system likely caused by poor fear inhibition/extinction, increased generalization, and/or enhanced consolidation or acquisition of fear. These phenotypes can be modeled in animal subjects using Pavlovian fear conditioning, allowing investigation of the underlying neurobiology of normative and pathological fear. Pre-clinical studies reveal a number of neurotransmitter systems and circuits critical for aversive learning and memory, which have informed the development of therapies used in human clinical trials. In this review, we discuss the evidence for a number of established and emerging pharmacotherapies and device-based treatments for PTSD that have been developed via a bench to bedside translational model. PMID:26238379

  3. Abnormal fear conditioning and amygdala processing in an animal model of autism.

    PubMed

    Markram, Kamila; Rinaldi, Tania; La Mendola, Deborah; Sandi, Carmen; Markram, Henry

    2008-03-01

    A core feature of autism spectrum disorders is the impairment in social interactions. Among other brain regions, a deficit in amygdala processing has been suggested to underlie this impairment, but whether the amygdala is processing fear abnormally in autism, is yet not clear. We used the valproic acid (VPA) rat model of autism to (a) screen for autism-like symptoms in rats, (b) test for alterations in amygdala-dependent fear processing, and (c) evaluate neuronal reactivity and synaptic plasticity in the lateral amygdala by means of in vitro single-cell electrophysiological recordings. VPA-treated animals displayed several symptoms common to autism, among them impaired social interactions and increased repetitive behaviors. Furthermore, VPA-treated rats were more anxious and exhibited abnormally high and longer lasting fear memories, which were overgeneralized and harder to extinguish. On the cellular level, the amygdala was hyperreactive to electrical stimulation and displayed boosted synaptic plasticity as well as a deficit in inhibition. We show for the first time enhanced, overgeneralized and resistant conditioned fear memories in an animal model of autism. Such hyperfear could be caused by the hyperreactivity and hyperplasticity found in the lateral amygdala, which may in turn be due to a deficit in the inhibitory system of the amygdala. We hypothesize an 'aversive world' syndrome that could, even if not a primary cause of the disorder itself, underlie some core symptoms in autism, such as impairments in social interactions and resistance to rehabilitation. PMID:17507914

  4. Generalization of Conditioned Fear-Potentiated Startle in Humans

    PubMed Central

    Lissek, Shmuel; Biggs, Arter L.; Rabin, Stephanie J.; Cornwell, Brian R.; Alvarez, Ruben P.; Pine, Daniel S.; Grillon, Christian

    2008-01-01

    Though generalization of conditioned fear has been implicated as a central feature of pathological anxiety, surprisingly little is known about the psychobiology of this learning phenomenon in humans. Whereas animal work has frequently applied methods to examine generalization gradients to study the gradual weakening of the conditioned-fear response as the test stimulus increasingly differs from the conditioned stimulus (CS), to our knowledge no psychobiological studies of such gradients have been conducted in humans over the last 40 years. The current effort validates an updated generalization paradigm incorporating more recent methods for the objective measurement of anxiety (fear-potentiated startle). The paradigm employs 10, quasi-randomly presented, rings of gradually-increasing size with extremes serving as CS+ and CS-. The eight rings of intermediary size serve as generalization stimuli (GS’s) and create a continuum-of-similarity from CS+ to CS-. Both startle data and online self-report ratings demonstrate continuous decreases in generalization as the presented stimulus becomes less similar to the CS+. The current paradigm represents an updated and efficacious tool with which to study fear generalization—a central, yet understudied conditioning-correlate of pathologic anxiety. PMID:18394587

  5. Prediction of "fear" acquisition in healthy control participants in a de novo fear-conditioning paradigm.

    PubMed

    Otto, Michael W; Leyro, Teresa M; Christian, Kelly; Deveney, Christen M; Reese, Hannah; Pollack, Mark H; Orr, Scott P

    2007-01-01

    Studies using fear-conditioning paradigms have found that anxiety patients are more conditionable than individuals without these disorders, but these effects have been demonstrated inconsistently. It is unclear whether these findings have etiological significance or whether enhanced conditionability is linked only to certain anxiety characteristics. To further examine these issues, the authors assessed the predictive significance of relevant subsyndromal characteristics in 72 healthy adults, including measures of worry, avoidance, anxious mood, depressed mood, and fears of anxiety symptoms (anxiety sensitivity), as well as the dimensions of Neuroticism and Extraversion. Of these variables, the authors found that the combination of higher levels of subsyndromal worry and lower levels of behavioral avoidance predicted heightened conditionability, raising questions about the etiological significance of these variables in the acquisition or maintenance of anxiety disorders. In contrast, the authors found that anxiety sensitivity was more linked to individual differences in orienting response than differences in conditioning per se. PMID:17179530

  6. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories

    PubMed Central

    Pattwell, Siobhan S.; Liston, Conor; Jing, Deqiang; Ninan, Ipe; Yang, Rui R.; Witztum, Jonathan; Murdock, Mitchell H.; Dincheva, Iva; Bath, Kevin G.; Casey, B. J.; Deisseroth, Karl; Lee, Francis S.

    2016-01-01

    Fear can be highly adaptive in promoting survival, yet it can also be detrimental when it persists long after a threat has passed. Flexibility of the fear response may be most advantageous during adolescence when animals are prone to explore novel, potentially threatening environments. Two opposing adolescent fear-related behaviours—diminished extinction of cued fear and suppressed expression of contextual fear—may serve this purpose, but the neural basis underlying these changes is unknown. Using microprisms to image prefrontal cortical spine maturation across development, we identify dynamic BLA-hippocampal-mPFC circuit reorganization associated with these behavioural shifts. Exploiting this sensitive period of neural development, we modified existing behavioural interventions in an age-specific manner to attenuate adolescent fear memories persistently into adulthood. These findings identify novel strategies that leverage dynamic neurodevelopmental changes during adolescence with the potential to extinguish pathological fears implicated in anxiety and stress-related disorders. PMID:27215672

  7. The influence of gonadal hormones on conditioned fear extinction in healthy humans.

    PubMed

    Milad, M R; Zeidan, M A; Contero, A; Pitman, R K; Klibanski, A; Rauch, S L; Goldstein, J M

    2010-07-14

    Recent rodent studies suggest that gonadal hormones influence extinction of conditioned fear. Here we investigated sex differences in, and the influence of estradiol and progesterone on, fear extinction in healthy humans. Men and women underwent a two-day paradigm in which fear conditioning and extinction learning took place on day 1 and extinction recall was tested on day 2. Visual cues were used as the conditioned stimuli and a mild electric shock was used as the unconditioned stimulus. Skin conductance was recorded throughout the experiment and used to measure conditioned responses (CRs). Blood samples were obtained from all women to measure estradiol and progesterone levels. We found that higher estradiol during extinction learning enhanced subsequent extinction recall but had no effects on fear acquisition or extinction learning itself. Sex differences were only observed during acquisition, with men exhibiting significantly higher CRs. After dividing women into low- and high-estradiol groups, men showed comparable extinction recall to high-estradiol women, and both of these groups showed higher extinction recall than low-estradiol women. Therefore, sex differences in extinction memory emerged only after taking into account women's estradiol levels. Lower estradiol may impair extinction consolidation in women. These findings could have practical applications in the treatment of anxiety disorders through cognitive and behavioral therapies. PMID:20412837

  8. The influence of gonadal hormones on conditioned fear extinction in healthy humans

    PubMed Central

    Milad, Mohammed R; Zeidan, Mohamed A.; Contero, Angelica; Pitman, Roger K.; Klibanski, Anne; Rauch, Scott L.; Goldstein, Jill M.

    2010-01-01

    Recent rodent studies suggest that gonadal hormones influence extinction of conditioned fear. Here we investigated sex differences in, and the influence of estradiol and progesterone on, fear extinction in healthy humans. Men and women underwent a two-day paradigm in which fear conditioning and extinction learning took place on day 1 and extinction recall was tested on day 2. Visual cues were used as the conditioned stimuli and a mild electric shock was used as the unconditioned stimulus. Skin conductance was recorded throughout the experiment and used to measure conditioned responses (CRs). Blood samples were obtained from all women to measure estradiol and progesterone levels. We found that higher estradiol during extinction learning enhanced subsequent extinction recall but had no effects on fear acquisition or extinction learning itself. Sex differences were only observed during acquisition, with men exhibiting significantly higher CRs. After dividing women into low- and high-estradiol groups, men showed comparable extinction recall to high-estradiol women, and both of these groups showed higher extinction recall than low-estradiol women. Therefore, sex differences in extinction memory emerged only after taking into account women's estradiol levels. Lower estradiol may impair extinction consolidation in women. These findings could have practical applications in the treatment of anxiety disorders through cognitive and behavioral therapies. PMID:20412837

  9. Increased GABAergic Efficacy of Central Amygdala Projections to Neuropeptide S Neurons in the Brainstem During Fear Memory Retrieval.

    PubMed

    Jüngling, Kay; Lange, Maren D; Szkudlarek, Hanna J; Lesting, Jörg; Erdmann, Frank S; Doengi, Michael; Kügler, Sebastian; Pape, Hans-Christian

    2015-11-01

    The canonical view on the central amygdala has evolved from a simple output station towards a highly organized microcircuitry, in which types of GABAergic neurons in centrolateral (CeL) and centromedial (CeM) subnuclei regulate fear expression and generalization. How these specific neuronal populations are connected to extra-amygdaloid target regions remains largely unknown. Here we show in mice that a subpopulation of GABAergic CeL and CeM neurons projects monosynaptically to brainstem neurons expressing neuropeptide S (NPS). The CeL neurons are PKCδ-negative and are activated during conditioned fear. During fear memory retrieval, the efficacy of this GABAergic influence on NPS neurons is enhanced. Moreover, a large proportion of these neurons (~50%) contain prodynorphin and somatostatin, two neuropeptides inhibiting NPS neurons. We conclude that CeL and CeM neurons inhibit NPS neurons in the brainstem by GABA release and that efficacy of this connection is strengthened upon fear memory retrieval. Thereby, this pathway provides a possible feedback mechanism between amygdala and brainstem routes involved in fear and stress coping. PMID:25936641

  10. Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear.

    PubMed

    Rodriguez-Romaguera, Jose; Do Monte, Fabricio H M; Quirk, Gregory J

    2012-05-29

    Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) reduces symptoms of intractable obsessive-compulsive disorder (OCD), but the mechanism of action is unknown. OCD is characterized by avoidance behaviors that fail to extinguish, and DBS could act, in part, by facilitating extinction of fear. We investigated this possibility by using auditory fear conditioning in rats, for which the circuits of fear extinction are well characterized. We found that DBS of the VS (the VC/VS homolog in rats) during extinction training reduced fear expression and strengthened extinction memory. Facilitation of extinction was observed for a specific zone of dorsomedial VS, just above the anterior commissure; stimulation of more ventrolateral sites in VS impaired extinction. DBS effects could not be obtained with pharmacological inactivation of either dorsomedial VS or ventrolateral VS, suggesting an extrastriatal mechanism. Accordingly, DBS of dorsomedial VS (but not ventrolateral VS) increased expression of a plasticity marker in the prelimbic and infralimbic prefrontal cortices, the orbitofrontal cortex, the amygdala central nucleus (lateral division), and intercalated cells, areas known to learn and express extinction. Facilitation of fear extinction suggests that, in accord with clinical observations, DBS could augment the effectiveness of cognitive behavioral therapies for OCD. PMID:22586125

  11. Effects of inferior olive lesion on fear-conditioned bradycardia

    PubMed Central

    Kotajima, Hiroko; Sakai, Kazuhisa; Hashikawa, Tsutomu

    2014-01-01

    The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Additionally, climbing fibers originating from the IO are believed to transmit the unconditioned stimulus to the cerebellum in eyeblink conditioning. Studies using fear-conditioned bradycardia showed that the cerebellum is associated with adaptive control of heart rate. However, the role of inputs from the IO to the cerebellum in fear-conditioned bradycardia has not yet been investigated. To examine this possible role, we tested fear-conditioned bradycardia in mice by selective disruption of the IO using 3-acetylpyridine. In a rotarod test, mice with an IO lesion were unable to remain on the rod. The number of neurons of IO nuclei in these mice was decreased to ∼40% compared with control mice. Mice with an IO lesion did not show changes in the mean heart rate or in heart rate responses to a conditioned stimulus, or in their responses to a painful stimulus in a tail-flick test. However, they did show impairment of the acquisition/expression of conditioned bradycardia and attenuation of heart rate responses to a pain stimulus used as an unconditioned stimulus. These results indicate that the IO inputs to the cerebellum play a key role in the acquisition/expression of conditioned bradycardia. PMID:24784584

  12. Recall and Reconsolidation of Contextual Fear Memory: Differential Control by ERK and Zif268 Expression Dosage

    PubMed Central

    Besnard, Antoine; Caboche, Jocelyne; Laroche, Serge

    2013-01-01

    Compelling evidence points to the existence of independent cellular processes involved in the consolidation and reconsolidation of memory. For instance, a double dissociation has been reported between hippocampal Extracellular-Regulated Kinase-1/2 (ERK1/2) activity being necessary for contextual fear conditioning (CFC) consolidation but not reconsolidation. Conversely, hippocampal expression of the immediate early gene Zif268 is necessary for CFC reconsolidation but not consolidation. Since we previously reported that ERK1/2 controls the transcription of Zif268 in the hippocampus, we examined the precise role of ERK1/2 activity and Zif268 gene expression dosage in CFC memory processing. For this, we first assessed performance of Zif268 homozygous and heterozygous mutant mice in a CFC paradigm. Whereas Zif268−/− mice displayed a deficit of both consolidation and reconsolidation, Zif268+/− mice displayed a selective deficit of reconsolidation only, therefore pointing to the relationship between Zif268 gene expression dosage and CFC memory processing. Zif268 gene expression dosage interfered with the reconsolidation process if and only if CFC memory was relatively recently encoded and directly reactivated. Furthermore, CFC memory strengthening previously reported to involve Zif268 expression in the hippocampus was spared in Zif268+/− mice. Finally, blocking ERK1/2 activity prior to CFC retrieval prevented the deficit of reconsolidation observed in Zif268+/− mice. Collectively, these results highlight a tight relationship between Zif268 gene expression dosage and CFC memory processing. They also suggest that ERK1/2 activity upon CFC memory recall is necessary for its retrieval, a prerequisite for its reactivation and subsequent reconsolidation. PMID:23977192

  13. Towards understanding sex differences in visceral pain: enhanced reactivation of classically-conditioned fear in healthy women.

    PubMed

    Benson, Sven; Kattoor, Joswin; Kullmann, Jennifer S; Hofmann, Sarah; Engler, Harald; Forsting, Michael; Gizewski, Elke R; Elsenbruch, Sigrid

    2014-03-01

    Sex differences in learned fear regarding aversive gastrointestinal stimuli could play a role in the female preponderance of chronic abdominal pain. In a fear conditioning model with rectal pain as unconditioned stimulus (US), we compared healthy males and females with respect to neural responses during aversive visceral learning, extinction and re-activation of fear memory (i.e., reinstatement). To do so, conditioned visual stimuli (CS(+)) were consistently paired with painful rectal distensions as US, while different visual stimuli (CS(-)) were presented without US. During extinction, both CSs were presented without US, whereas during reinstatement, a single, unpaired US was presented. In region-of-interest analyses, sexes were compared with respect to conditioned anticipatory neural activation (CS(+)>CS(-)). The results revealed that in late acquisition, CS+ presentation induced significantly greater anticipatory activation of the insula in women. During extinction, women demonstrated reduced activation of the posterior cingulate cortex. During reinstatement, the CS(+) led to greater activation of the hippocampus, thalamus and cerebellum in women. These group effects in neural activation during learning and memory processes were not accounted for by sex differences in pain thresholds, pain ratings, or stress parameters. In conclusion, this is the first study to support sex differences in neural processes mediating aversive visceral learning. Our finding of enhanced neural responses during reinstatement in key brain areas relevant for memory suggests enhanced reactivation of old fear memory trace in women. Sex differences in "gut memories" could play a role in the female preponderance of chronic abdominal pain. PMID:24398396

  14. Extinction after Retrieval: Effects on the Associative and Nonassociative Components of Remote Contextual Fear Memory

    ERIC Educational Resources Information Center

    Costanzi, Marco; Cannas, Sara; Saraulli, Daniele; Rossi-Arnaud, Clelia; Cestari, Vincenzo

    2011-01-01

    Long-lasting memories of adverse experiences are essential for individuals' survival but are also involved, in the form of recurrent recollections of the traumatic experience, in the aetiology of anxiety diseases (e.g., post-traumatic stress disorder [PTSD]). Extinction-based erasure of fear memories has long been pursued as a behavioral way to…

  15. Memory for fearful faces across development: specialization of amygdala nuclei and medial temporal lobe structures

    PubMed Central

    Pinabiaux, Charlotte; Hertz-Pannier, Lucie; Chiron, Catherine; Rodrigo, Sébastian; Jambaqué, Isabelle; Noulhiane, Marion

    2013-01-01

    Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8–12 years) and adolescents (n = 12; 13–17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated. PMID:24399958

  16. c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning.

    PubMed

    Leach, Prescott T; Kenney, Justin W; Gould, Thomas J

    2016-08-01

    Acute nicotine enhances hippocampus-dependent learning. Identifying how acute nicotine improves learning will aid in understanding how nicotine facilitates the development of maladaptive memories that contribute to drug-seeking behaviors, help development of medications to treat disorders associated with cognitive decline, and advance understanding of the neurobiology of learning and memory. The effects of nicotine on learning may involve recruitment of signaling through the c-Jun N-terminal kinase family (JNK 1-3). Learning in the presence of acute nicotine increases the transcription of mitogen-activated protein kinase 8 (MAPK8, also known as JNK1), likely through a CREB-dependent mechanism. The functional significance of JNK1 in the effects of acute nicotine on learning, however, is unknown. The current studies undertook a backward genetic approach to determine the functional contribution JNK1 protein makes to nicotine-enhanced contextual fear conditioning. JNK1 wildtype (WT) and knockout (KO) mice were administered acute nicotine prior to contextual and cued fear conditioning. 24h later, mice were evaluated for hippocampus-dependent (contextual fear conditioning) and hippocampus-independent (cued fear conditioning) memory. Nicotine selectively enhanced contextual conditioning in WT mice, but not in KO mice. Nicotine had no effect on hippocampus-independent learning in either genotype. JNK1 KO and WT mice given saline showed similar levels of learning. These data suggest that JNK1 may be recruited by nicotine and is functionally necessary for the acute effects of nicotine on learning and memory. PMID:27235579

  17. Adolescent traumatic stress experience results in less robust conditioned fear and post-extinction fear cue responses in adult rats.

    PubMed

    Moore, Nicole L T; Gauchan, Sangeeta; Genovese, Raymond F

    2014-05-01

    Early exposure to a traumatic event may produce lasting effects throughout the lifespan. Traumatic stress during adolescence may deliver a distinct developmental insult compared with more-often studied neonatal or juvenile traumatic stress paradigms. The present study describes the lasting effects of adolescent traumatic stress upon adulthood fear conditioning. Adolescent rats were exposed to a traumatic stressor (underwater trauma, UWT), then underwent fear conditioning during adulthood. Fear extinction was tested over five conditioned suppression extinction sessions three weeks later. The efficacies of two potential extinction-enhancing compounds, endocannabinoid reuptake inhibitor AM404 (10mg/kg) and M1 muscarinic positive allosteric modulator BQCA (10mg/kg), were also assessed. Finally, post-extinction fear responses were examined using a fear cue (light) as a prepulse stimulus. Rats traumatically stressed during adolescence showed blunted conditioned suppression on day 1 of extinction training, and AM404 reversed this effect. Post-extinction startle testing showed that fear conditioning eliminates prepulse inhibition to the light cue. Startle potentiation was observed only in rats without adolescent UWT exposure. AM404 and BQCA both ameliorated this startle potentiation, while BQCA increased startle in the UWT group. These results suggest that exposure to a traumatic stressor during adolescence alters developmental outcomes related to stress response and fear extinction compared to rats without adolescent traumatic stress exposure, blunting the adulthood fear response and reducing residual post-extinction fear expression. Efficacy of pharmacological interventions may also vary as a factor of developmental traumatic stress exposure. PMID:24491436

  18. Fear Conditioning Potentiates Synaptic Transmission onto Long-Range Projection Neurons in the Lateral Subdivision of Central Amygdala

    PubMed Central

    Penzo, Mario A.; Robert, Vincent

    2014-01-01

    Recent studies indicate that the lateral subdivision of the central amygdala (CeL) is essential for fear learning. Specifically, fear conditioning induces cell-type-specific synaptic plasticity in CeL neurons that is required for the storage of fear memories. The CeL also controls fear expression by gating the activity of the medial subdivision of the central amygdala (CeM), the canonical amygdala output to areas that mediate defensive responses. In addition to the connection with CeM, the CeL sends long-range projections to innervate extra-amygdala areas. However, the long-range projection CeL neurons have not been well characterized, and their role in fear regulation is unknown. Here we show in mice that a subset of CeL neurons directly project to the midbrain periaqueductal gray (PAG) and the paraventricular nucleus of the thalamus, two brain areas implicated in defensive behavior. These long-range projection CeL neurons are predominantly somatostatin-positive (SOM+) neurons, which can directly inhibit PAG neurons, and some of which innervate both the PAG and paraventricular nucleus of the thalamus. Notably, fear conditioning potentiates excitatory synaptic transmission onto these long-range projection CeL neurons. Thus, our study identifies a subpopulation of SOM+ CeL neurons that may contribute to fear learning and regulate fear expression independent of CeM. PMID:24523533

  19. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  20. Pharmacological enhancement of mGluR5 facilitates contextual fear memory extinction

    PubMed Central

    Sethna, Ferzin

    2014-01-01

    Behavioral exposure therapy, which involves extinction of the previously acquired fear, has been used to treat anxiety-related symptoms such as post-traumatic stress disorder. It has been hypothesized that proextinction pharmacotherapeutics may enhance the efficacy of exposure therapy. Systemic administration of the metabotropic glutamate receptor 5 (mGluR5)-positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) facilitated the extinction of contextual fear memory. Notably, CDPPB also enhanced the initial fear memory formation, and had no effect on memory retrieval. Our data suggest that positive regulation of mGluR5 may offer a new method to enhance exposure therapy through facilitating extinction without adversely affecting other aspects of memory process. PMID:25403451

  1. FAAH inhibitor OL-135 disrupts contextual, but not auditory, fear conditioning in rats.

    PubMed

    Burman, Michael A; Szolusha, Kerribeth; Bind, Rebecca; Kerney, Kristen; Boger, Dale L; Bilsky, Edward J

    2016-07-15

    Anxiety disorders are among the most prevalent psychological disorders, have significant negative impacts on quality of life and the healthcare system, and yet effective treatments remain elusive. Manipulating the endocannabinoid system has demonstrated potential for treating anxiety, although the side effects of direct manipulations of cannabinoid receptors keeps them from widespread clinical use. Disrupting the degradation enzyme fatty acid amide hydrolase (FAAH) enhances endogenous signaling and may produce similar efficacy without the side effects. The current experiments examine the effects of low (5.6mg/kg) or moderate (10.0mg/kg) doses of OL-135, a FAAH inhibitor, on the acquisition and consolidation of classical fear conditioning, a common model of trauma-induced anxiety. The acquisition of contextual, but not auditory, fear conditioning was disrupted by both doses of OL-135. Shock reactivity was not affected. Due to the additional neural circuitry required for contextual, but not auditory, fear conditioning, these data suggest that endocannabinoid signaling outside the amygdala may be critical for a subset of fearful memories. PMID:27083303

  2. Estrous cycle phase and gonadal hormones influence conditioned fear extinction

    PubMed Central

    Milad, Mohammed R; Igoe, Sarah A; Lebron-Milad, Kelimer; Novales, Juan E

    2009-01-01

    Gonadal hormones modulate fear acquisition, but less is known about the influence of gonadal hormones on fear extinction. We assessed sex differences and the influence of gonadal hormone fluctuations and exogenous manipulations of estrogen and progesterone on acquisition, extinction learning and extinction recall in a 3-day auditory fear conditioning and extinction protocol. Experiments were conducted on males and naturally cycling female rats. Regarding female rats, significant differences in fear extinction were observed between subgroups of females, depending on their phase of the estrous cycle. Extinction that took place during the proestrus (high estrogen/progesterone) phase was more fully consolidated, as evidenced by low freezing during a recall test. This suggests that estrogen and/or progesterone facilitate extinction. In support of this, injection of both estrogen and progesterone prior to extinction learning in female rats during the metestrus phase of the cycle (low estrogen/progesterone) facilitated extinction consolidation, and blockade of estrogen and progesterone receptors during the proestrus phase impaired extinction consolidation. When comparing male to female rats without consideration of the estrous cycle phase, no significant sex differences were observed. When accounting for cycle phase in females, sex differences were observed only during extinction recall. Female rats that underwent extinction during the metestrus phase showed significantly higher freezing during the recall test relative to males. Collectively, these data suggest that gonadal hormones influence extinction behavior possibly by influencing the function of brain regions involved in the consolidation of fear extinction. Moreover, the elevated fear observed in female relative to male rats during extinction recall suggests that gonadal hormones may in part play a role in the higher prevalence of anxiety disorders in women. PMID:19761818

  3. Exploring Epigenetic Regulation of Fear Memory and Biomarkers Associated with Post-Traumatic Stress Disorder

    PubMed Central

    Maddox, Stephanie A.; Schafe, Glenn E.; Ressler, Kerry J.

    2013-01-01

    This review examines recent work on epigenetic mechanisms underlying animal models of fear learning as well as its translational implications in disorders of fear regulation, such as Post-traumatic Stress Disorder (PTSD). Specifically, we will examine work outlining roles of differential histone acetylation and DNA-methylation associated with consolidation, reconsolidation, and extinction in Pavlovian fear paradigms. We then focus on the numerous studies examining the epigenetic modifications of the Brain-derived neurotrophin factor (BDNF) pathway and the extension of these findings from animal models to recent work in human clinical populations. We will also review recently published data on FKBP5 regulation of glucocorticoid receptor function, and how this is modulated in animal models of PTSD and in human clinical populations via epigenetic mechanisms. As glucocorticoid regulation of memory consolidation is well established in fear models, we examine how these recent data contribute to our broader understanding of fear memory formation. The combined recent progress in epigenetic modulation of memory with the advances in fear neurobiology suggest that this area may be critical to progress in our understanding of fear-related disorders with implications for new approaches to treatment and prevention. PMID:23847551

  4. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex.

    PubMed

    Kugelman, Tara; Zuloaga, Damian G; Weber, Sydney; Raber, Jacob

    2016-02-01

    The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. PMID:26522840

  5. p300/CBP Histone Acetyltransferase Activity Is Required for Newly Acquired and Reactivated Fear Memories in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E.

    2013-01-01

    Modifications in chromatin structure have been widely implicated in memory and cognition, most notably using hippocampal-dependent memory paradigms including object recognition, spatial memory, and contextual fear memory. Relatively little is known, however, about the role of chromatin-modifying enzymes in amygdala-dependent memory formation.…

  6. Voluntary exercise improves both learning and consolidation of cued conditioned fear in C57 mice.

    PubMed

    Falls, William A; Fox, James H; MacAulay, Christina M

    2010-03-01

    Exercise is associated with improved cognitive function in humans as well as improved learning across a range of tasks in rodents. Although these studies provide a strong link between exercise and learning, to date studies have largely focused on tasks that principally involve the hippocampus. However, exercise has been shown to produce alterations in other brain areas suggesting that the cognitive enhancing effects of exercise may be more general. Therefore we set out to examine the effects of voluntary exercise on cued Pavlovian fear conditioning, a form of learning that is critically dependent on the amygdala. In Experiment 1 we showed that mice given 2 weeks of access to a running wheel prior to tone and foot shock fear conditioning showed enhanced conditioned fear as measured by fear-potentiated startle. This effect was not the result of altered shock reactivity nor was it to due to reduced baseline startle amplitude in exercising mice. In subsequent experiments we sought to examine whether the enhanced cued conditioned fear was the result of an improvement in learning, consolidation or retrieval of conditioned fear. In separate groups of mice, two weeks of access to a running wheel was begun either prior to fear conditioning, immediately after fear conditioning (consolidation period) or 2 weeks after fear conditioning. Compared to sedentary mice, mice that exercised either prior to fear conditioning, or immediately after fear conditioning, showed enhanced cued conditioned fear. Fear conditioning was not enhanced in mice that began exercising 2 weeks after fear conditioning. Taken together these results suggest that voluntary exercise improves the learning and consolidation of cued conditioned fear but does not improve the retrieval or performance of conditioned fear. Because a great deal is known about the neural circuit for cued conditioned fear, it is now possible to examine the cellular, molecular and pharmacological changes associated with exercise in

  7. Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity.

    PubMed

    Chew, Benjamin; Ryu, Jae Ryun; Ng, Teclise; Ma, Dongliang; Dasgupta, Ananya; Neo, Sin Hui; Zhao, Jing; Zhong, Zhong; Bichler, Zoë; Sajikumar, Sreedharan; Goh, Eyleen L K

    2015-01-01

    Attempts have been made to use glycogen synthase kinase-3 beta (GSK3β) inhibitors for prophylactic treatment of neurocognitive conditions. However the use of lithium, a non-specific inhibitor of GSK3β results in mild cognitive impairment in humans. The effects of global GSK3β inhibition or knockout on learning and memory in healthy adult mice are also inconclusive. Our study aims to better understand the role of GSK3β in learning and memory through a more regionally, targeted approach, specifically performing lentiviral-mediated knockdown of GSK3β within the dentate gyrus (DG). DG-GSK3β-silenced mice showed impaired contextual fear memory retrieval. However, cue fear memory, spatial memory, locomotor activity and anxiety levels were similar to control. These GSK3β-silenced mice also showed increased induction and maintenance of DG long-term potentiation (DG-LTP) compared to control animals. Thus, this region-specific, targeted knockdown of GSK3β in the DG provides better understanding on the role of GSK3β in learning and memory. PMID:26157370

  8. Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity

    PubMed Central

    Chew, Benjamin; Ryu, Jae Ryun; Ng, Teclise; Ma, Dongliang; Dasgupta, Ananya; Neo, Sin Hui; Zhao, Jing; Zhong, Zhong; Bichler, Zoë; Sajikumar, Sreedharan; Goh, Eyleen L. K.

    2015-01-01

    Attempts have been made to use glycogen synthase kinase-3 beta (GSK3β) inhibitors for prophylactic treatment of neurocognitive conditions. However the use of lithium, a non-specific inhibitor of GSK3β results in mild cognitive impairment in humans. The effects of global GSK3β inhibition or knockout on learning and memory in healthy adult mice are also inconclusive. Our study aims to better understand the role of GSK3β in learning and memory through a more regionally, targeted approach, specifically performing lentiviral-mediated knockdown of GSK3β within the dentate gyrus (DG). DG-GSK3β-silenced mice showed impaired contextual fear memory retrieval. However, cue fear memory, spatial memory, locomotor activity and anxiety levels were similar to control. These GSK3β-silenced mice also showed increased induction and maintenance of DG long-term potentiation (DG-LTP) compared to control animals. Thus, this region-specific, targeted knockdown of GSK3β in the DG provides better understanding on the role of GSK3β in learning and memory. PMID:26157370

  9. CONTROLLABLE VERSUS UNCONTROLLABLE STRESSORS BI-DIRECTIONALLY MODULATE CONDITIONED BUT NOT INNATE FEAR

    PubMed Central

    Baratta, M. V.; Christianson, J. P.; Gomez, D. M.; Zarza, C. M.; Amat, J.; Masini, C.V.; Watkins, L. R.; Maier, S. F.

    2007-01-01

    Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tailshock (ES), yoked inescapable (uncontrollable) tailshock (IS), or control treatment (HC) 7 days before fear conditioning in which a tone and footshock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS. PMID:17478046

  10. Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear.

    PubMed

    Baratta, M V; Christianson, J P; Gomez, D M; Zarza, C M; Amat, J; Masini, C V; Watkins, L R; Maier, S F

    2007-06-01

    Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tail shock (ES), yoked inescapable (uncontrollable) tail shock (IS), or control treatment (home cage, HC) 7 days before fear conditioning in which a tone and foot shock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS. PMID:17478046

  11. The effects of early-life adversity on fear memories in adolescent rats and their persistence into adulthood.

    PubMed

    Chocyk, Agnieszka; Przyborowska, Aleksandra; Makuch, Wioletta; Majcher-Maślanka, Iwona; Dudys, Dorota; Wędzony, Krzysztof

    2014-05-01

    Adolescence is a developmental period characterized by extensive morphological and functional remodeling of the brain. The processes of brain maturation during this period may unmask malfunctions that originate earlier in life as a consequence of early-life stress (ELS). This is associated with the emergence of many psychopathologies during adolescence, particularly affective spectrum disorders. In the present study, we applied a maternal separation (MS) procedure (3h/day, on postnatal days 1-14) as a model of ELS to examine its effects on the acquisition, expression and extinction of fear memories in adolescent rats. Additionally, we studied the persistence of these memories into adulthood. We found that MS decreased the expression of both contextual (CFC) and auditory (AFC) fear conditioning in adolescent rats. Besides, MS had no impact on the acquisition of extinction learning. During the recall of extinction MS animals both, those previously subjected and not subjected to the extinction session, exhibited equally low levels of freezing. In adulthood, the MS animals (conditioned during adolescence) still displayed impairments in the expression of AFC (only in males) and CFC. Furthermore, the MS procedure had also an impact on the expression of CFC (but not AFC) after retraining in adulthood. Our findings imply that ELS may permanently affect fear learning and memory. The results also support the hypothesis that, depending on individual predispositions and further experiences, ELS may either lead to a resilience or a vulnerability to early- and late-onsets psychopathologies. PMID:24508235

  12. A role for midline and intralaminar thalamus in the associative blocking of Pavlovian fear conditioning

    PubMed Central

    Sengupta, Auntora; McNally, Gavan P.

    2014-01-01

    Fear learning occurs in response to positive prediction error, when the expected outcome of a conditioning trial exceeds that predicted by the conditioned stimuli present. This role for error in Pavlovian association formation is best exemplified by the phenomenon of associative blocking, whereby prior fear conditioning of conditioned stimulus (CS) A is able to prevent learning to CSB when they are conditioned in compound. The midline and intralaminar thalamic nuclei (MIT) are well-placed to contribute to fear prediction error because they receive extensive projections from the midbrain periaqueductal gray—which has a key role in fear prediction error—and project extensively to prefrontal cortex and amygdala. Here we used an associative blocking design to study the role of MIT in fear learning. In Stage I rats were trained to fear CSA via pairings with shock. In Stage II rats received compound fear conditioning of CSAB paired with shock. On test, rats that received Stage I training expressed less fear to CSB relative to control rats that did not receive this training. Microinjection of bupivacaine into MIT prior to Stage II training had no effect on the expression of fear during Stage II and had no effect on fear learning in controls, but prevented associative blocking and so enabled fear learning to CSB. These results show an important role for MIT in predictive fear learning and are discussed with reference to previous findings implicating the midline and posterior intralaminar thalamus in fear learning and fear responding. PMID:24822042

  13. Post-Training Unilateral Amygdala Lesions Selectively Impair Contextual Fear Memories

    ERIC Educational Resources Information Center

    Flavell, Charlotte R.; Lee, Jonathan L. C.

    2012-01-01

    The basolateral amygdala (BLA) and the dorsal hippocampus (dHPC) are both structures with key roles in contextual fear conditioning. During fear conditioning, it is postulated that contextual representations of the environment are formed in the hippocampus, which are then associated with foot shock in the amygdala. However, it is not known to what…

  14. Dopamine-dependent synaptic plasticity in an amygdala inhibitory circuit controls fear memory expression.

    PubMed

    Lee, Joo Han; Kim, Joung-Hun

    2016-01-01

    Of the numerous events that occur in daily life, we readily remember salient information, but do not retain most less-salient events for a prolonged period. Although some of the episodes contain putatively emotional aspects, the information with lower saliency is rarely stored in neural circuits via an unknown mechanism. We provided substantial evidence indicating that synaptic plasticity in the dorsal ITC of amygdala allows for selective storage of salient emotional experiences, while it deters less-salient experience from entering long-term memory. After activation of D4R or weak fear conditioning, STDP stimulation induces LTD in the LA-ITC synapses. This form of LTD is dependent upon presynaptic D4R, and is likely to result from enhancement of GABA release. Both optogenetic abrogation of LTD and ablation of D4R at the dorsal ITC in vivo lead to heightened and over-generalized fear responses. Finally, we demonstrated that LTD was impaired at the dorsal ITC of PTSD model mice, which suggests that maladaptation of GABAergic signaling and the resultant LTD impairment contribute to the endophenotypes of PTSD. PMID:26674344

  15. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence.

    PubMed

    Çalışkan, Gürsel; Müller, Iris; Semtner, Marcus; Winkelmann, Aline; Raza, Ahsan S; Hollnagel, Jan O; Rösler, Anton; Heinemann, Uwe; Stork, Oliver; Meier, Jochen C

    2016-05-01

    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L(185L)to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders. PMID:26908632

  16. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence

    PubMed Central

    Çalışkan, Gürsel; Müller, Iris; Semtner, Marcus; Winkelmann, Aline; Raza, Ahsan S.; Hollnagel, Jan O.; Rösler, Anton; Heinemann, Uwe; Stork, Oliver; Meier, Jochen C.

    2016-01-01

    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L185L to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders. PMID:26908632

  17. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory.

    PubMed

    Corcoran, Kevin A; Frick, Brendan J; Radulovic, Jelena; Kay, Leslie M

    2016-01-01

    Memory for contextual fear conditioning relies upon the retrosplenial cortex (RSC) regardless of how long ago conditioning occurred, whereas areas connected to the RSC, such as the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) appear to play time-limited roles. To better understand whether these brain regions functionally interact during memory processing and how the passage of time affects these interactions, we simultaneously recorded local field potentials (LFPs) from these three regions as well as anterior dorsal thalamus (ADT), which provides one of the strongest inputs to RSC, and measured coherence of oscillatory activity within the theta (4-12Hz) and gamma (30-80Hz) frequency bands. We identified changes of theta coherence related to encoding, retrieval, and extinction of context fear, whereas changes in gamma coherence were restricted to fear extinction. Specifically, exposure to a novel context and retrieval of recently acquired fear conditioning memory were associated with increased theta coherence between RSC and all three other structures. In contrast, RSC-DH and RSC-ADT theta coherence were decreased in mice that successfully retrieved, relative to mice that failed to retrieve, remote memory. Greater RSC-ADT theta and gamma coherence were observed during recent, compared to remote, extinction of freezing responses. Thus, the degree of coherence between RSC and connected brain areas may predict and contribute to context memory retrieval and retrieval-related phenomena such as fear extinction. Importantly, although theta coherence in this circuit increases during memory encoding and retrieval of recent memory, failure to decrease RSC-DH theta coherence might be linked to retrieval deficit in the long term, and possibly contribute to aberrant memory processing characteristic of neuropsychiatric disorders. PMID:26691782

  18. Intra-amygdala microinfusion of IL-6 impairs the auditory fear conditioning of rats via JAK/STAT activation.

    PubMed

    Hao, Yongxin; Jing, He; Bi, Qiang; Zhang, Jiaozhen; Qin, Ling; Yang, Pingting

    2014-12-15

    Though accumulating literature implicates that cytokines are involved in the pathophysiology of mental disorders, the role of interleukin-6 (IL-6) in learning and memory functions remains unresolved. The present study was undertaken to investigate the effect of IL-6 on amygdala-dependent fear learning. Adult Wistar rats were used along with the auditory fear conditioning test and pharmacological techniques. The data showed that infusions of IL-6, aimed at the amygdala, dose-dependently impaired the acquisition and extinction of conditioned fear. In addition, the results in the Western blot analysis confirmed that JAK/STAT was temporally activated-phosphorylated by the IL-6 treatment. Moreover, the rats were treated with JSI-124, a JAK/STAT3 inhibitor, prior to the IL-6 treatment showed a significant decrease in the IL-6 induced impairments of fear conditioning. Taken together, our results demonstrate that the learning behavior of rats in the auditory fear conditioning could be modulated by IL-6 via the amygdala. Furthermore, the JAK/STAT3 activation in the amygdala seemed to play a role in the IL-6 mediated behavioral alterations of rats in auditory fear learning. PMID:25193320

  19. Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure

    PubMed Central

    Pezze, M.A.; Marshall, H.J.; Domonkos, A.; Cassaday, H.J.

    2016-01-01

    The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10 s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05 μg/side) or D1 antagonist SCH23390 (0.5 μg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning. PMID:26343307

  20. Noradrenergic regulation of fear and drug-associated memory reconsolidation.

    PubMed

    Otis, James M; Werner, Craig T; Mueller, Devin

    2015-03-01

    Emotional and traumatic experiences lead to the development of particularly strong memories that can drive neuropsychiatric disorders, such as posttraumatic stress disorder (PTSD) and drug addiction. Disruption of these memories would therefore serve as a powerful treatment option, and targeting the pathologic emotional, but not declarative, component of a memory would be ideal for clinical intervention. Research reveals that after retrieval of a consolidated memory, the memory can be destabilized, and must then be reconsolidated through synaptic plasticity to allow subsequent retrieval. Disruption of reconsolidation-related plasticity would therefore impair specific, reactivated memories. Noradrenergic signaling strengthens synaptic plasticity and is essential for encoding the emotional components of memory. Consistent with this, investigations have now revealed that noradrenergic signaling is a critical mechanism for reconsolidation of emotional memories in rodent and human models. Here, we discuss these investigations and promising clinical trials indicating that disruption of noradrenergic signaling during reconsolidation may abolish the pathologic emotional, but not declarative, component of memories allowing alleviation of neuropsychiatric disorders including PTSD and drug addiction. PMID:25315025

  1. A BDNF Sensitive Mechanism Is Involved in the Fear Memory Resulting from the Interaction between Stress and the Retrieval of an Established Trace

    ERIC Educational Resources Information Center

    Giachero, Marcelo; Bustos, Silvia G.; Calfa, Gaston; Molina, Victor A.

    2013-01-01

    The present study investigates the fear memory resulting from the interaction of a stressful experience and the retrieval of an established fear memory trace. Such a combination enhanced both fear expression and fear retention in adult Wistar rats. Likewise, midazolam intra-basolateral amygdala (BLA) infusion prior to stress attenuated the…

  2. Reconsolidation Allows Fear Memory to Be Updated to a Less Aversive Level through the Incorporation of Appetitive Information

    PubMed Central

    Haubrich, Josue; Crestani, Ana P; Cassini, Lindsey F; Santana, Fabiana; Sierra, Rodrigo O; Alvares, Lucas de O; Quillfeldt, Jorge A

    2015-01-01

    The capacity to adapt to new situations is one of the most important features of memory. When retrieved, memories may undergo a labile state that is sensitive to modification. This process, called reconsolidation, can lead to memory updating through the integration of new information into a previously consolidated memory background. Thus reconsolidation provides the opportunity to modify an undesired fear memory by updating its emotional valence to a less aversive level. Here we evaluated whether a fear memory can be reinterpreted by the concomitant presentation of an appetitive stimulus during its reactivation, hindering fear expression. We found that memory reactivation in the presence of appetitive stimuli resulted in the suppression of a fear response. In addition, fear expression was not amenable to reinstatement, spontaneous recovery, or rapid reacquisition. Such effect was prevented by either systemic injection of nimodipine or intra-hippocampal infusion of ifenprodil, indicating that memory updating was mediated by a reconsolidation mechanism relying on hippocampal neuronal plasticity. Taken together, this study shows that reconsolidation allows for a ‘re-signification' of unwanted fear memories through the incorporation of appetitive information. It brings a new promising cognitive approach to treat fear-related disorders. PMID:25027331

  3. Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information.

    PubMed

    Haubrich, Josue; Crestani, Ana P; Cassini, Lindsey F; Santana, Fabiana; Sierra, Rodrigo O; Alvares, Lucas de O; Quillfeldt, Jorge A

    2015-01-01

    The capacity to adapt to new situations is one of the most important features of memory. When retrieved, memories may undergo a labile state that is sensitive to modification. This process, called reconsolidation, can lead to memory updating through the integration of new information into a previously consolidated memory background. Thus reconsolidation provides the opportunity to modify an undesired fear memory by updating its emotional valence to a less aversive level. Here we evaluated whether a fear memory can be reinterpreted by the concomitant presentation of an appetitive stimulus during its reactivation, hindering fear expression. We found that memory reactivation in the presence of appetitive stimuli resulted in the suppression of a fear response. In addition, fear expression was not amenable to reinstatement, spontaneous recovery, or rapid reacquisition. Such effect was prevented by either systemic injection of nimodipine or intra-hippocampal infusion of ifenprodil, indicating that memory updating was mediated by a reconsolidation mechanism relying on hippocampal neuronal plasticity. Taken together, this study shows that reconsolidation allows for a 're-signification' of unwanted fear memories through the incorporation of appetitive information. It brings a new promising cognitive approach to treat fear-related disorders. PMID:25027331

  4. De Novo mRNA Synthesis Is Required for Both Consolidation and Reconsolidation of Fear Memories in the Amygdala

    ERIC Educational Resources Information Center

    Duvarci, Sevil; Nader, Karim; LeDoux, Joseph E.

    2008-01-01

    Memory consolidation is the process by which newly learned information is stabilized into long-term memory (LTM). Considerable evidence indicates that retrieval of a consolidated memory returns it to a labile state that requires it to be restabilized. Consolidation of new fear memories has been shown to require de novo RNA and protein synthesis in…

  5. Systemic mifepristone blocks reconsolidation of cue-conditioned fear; propranolol prevents this effect.

    PubMed

    Pitman, Roger K; Milad, Mohammed R; Igoe, Sarah A; Vangel, Mark G; Orr, Scott P; Tsareva, Alina; Gamache, Karine; Nader, Karim

    2011-08-01

    Reducing reconsolidation of reactivated traumatic memories may offer a novel pharmacological treatment for posttraumatic stress disorder (PTSD). Preclinical research is needed to identify candidate drugs. We evaluated the ability of postreactivation mifepristone (RU38486, a glucocorticoid antagonist), alone and in combination with propranolol (a beta-adrenergic blocker), both given systemically, to reduce cue-conditioned fear in rats. On Day 1, a 30-s tone conditioned stimulus (CS) was paired with an electric shock unconditioned stimulus (US). On Day 2, the CS was presented without the US (reactivation), and the freezing conditioned response (CR) was measured. This was immediately followed by subcutaneous injection of vehicle, mifepristone 30 mg/kg, propranolol 10 mg/kg, or both. On Day 3, the CR was again measured as a test of postreactivation long-term memory (PR-LTM). On Day 10, the CR was again measured to evaluate spontaneous recovery. On Day 11, the US was presented alone (reinstatement). On Day 12, the CR was again measured. A fifth group received mifepristone without the CS presentation (nonreactivation) on Day 2. A sixth group was tested four hours after the Day 2 mifepristone injection to measure postreactivation short-term memory. Postreactivation, but not nonreactivation, mifepristone produced a decrement in the CR that did not undergo spontaneous recovery and underwent only modest reinstatement. Mifepristone did not exert its effect when administered concurrently with propranolol. Postreactivation mifepristone did not impair short-term memory. Systemic mifepristone blocks the reconsolidation of cue-conditioned fear in rats. Concurrent administration of propranolol prevents this effect. Postreactivation mifepristone may be a promising treatment for PTSD, but not necessarily in combination with propranolol. PMID:21688892

  6. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    ERIC Educational Resources Information Center

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  7. Effects of Early Serotonin Programming on Fear Response, Memory and Aggression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter development of serotonergic circuitry, altering behaviors mediated by 5-HT signaling, including memory, fear and aggression. The present study was desi...

  8. Extinction reverses olfactory fear-conditioned increases in neuron number and glomerular size.

    PubMed

    Morrison, Filomene G; Dias, Brian G; Ressler, Kerry J

    2015-10-13

    Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training. PMID:26420875

  9. Extinction reverses olfactory fear-conditioned increases in neuron number and glomerular size

    PubMed Central

    Morrison, Filomene G.; Dias, Brian G.; Ressler, Kerry J.

    2015-01-01

    Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training. PMID:26420875

  10. Effects of a Flavonoid-Rich Fraction on the Acquisition and Extinction of Fear Memory: Pharmacological and Molecular Approaches

    PubMed Central

    de Oliveira, Daniela R.; Zamberlam, Claudia R.; Rêgo, Gizelda M.; Cavalheiro, Alberto; Cerutti, Janete M.; Cerutti, Suzete M.

    2016-01-01

    The effects of flavonoids have been correlated with their ability to modulate the glutamatergic, serotoninergic, and GABAergic neurotransmission; the major targets of these substances are N-methyl-D-aspartic acid receptor (NMDARs), serotonin type1A receptor (5-HT1ARs), and the gamma-aminobutyric acid type A receptors (GABAARs). Several studies showed that these receptors are involved in the acquisition and extinction of fear memory. This study assessed the effects of treatment prior to conditioning with a flavonoid-rich fraction from the stem bark of Erythrina falcata (FfB) on the acquisition and extinction of the conditioned suppression following pharmacological manipulations and on gene expression in the dorsal hippocampus (DH). Adult male Wistar rats were treated before conditioned fear with FfB, vehicle, an agonist or antagonist of the 5-HT1AR, GABAARs or the GluN2B-NMDAR or one of these antagonists before FfB treatment. The effects of these treatments on fear memory retrieval, extinction training and extinction retrieval were evaluated at 48, 72, and 98 h after conditioning, respectively. We found that activation of GABAARs and inactivation of GluN2B-NMDARs play important roles in the acquisition of lick response suppression. FfB reversed the effect of blocking GluN2B-NMDARs on the conditioned fear and induced the spontaneous recovery. Blocking the 5-HT1AR and the GluN2B-NMDAR before FfB treatment seemed to be associated with weakening of the spontaneous recovery. Expression of analysis of DH samples via qPCR showed that FfB treatment resulted in the overexpression of Htr1a, Grin2a, Gabra5, and Erk2 after the retention test and of Htr1a and Erk2 after the extinction retention test. Moreover, blocking the 5-HT1ARs and the GluN2B-NMDARs before FfB treatment resulted in reduced Htr1a and Grin2b expression after the retention test, but played a distinct role in Grin2a and Erk2 expression, according session evaluated. We show for the first time that the

  11. Early Extinction after Fear Conditioning Yields a Context-Independent and Short-Term Suppression of Conditional Freezing in Rats

    ERIC Educational Resources Information Center

    Chang, Chun-hui; Maren, Stephen

    2009-01-01

    Extinction of Pavlovian fear conditioning in rats is a useful model for therapeutic interventions in humans with anxiety disorders. Recently, we found that delivering extinction trials soon (15 min) after fear conditioning yields a short-term suppression of fear, but little long-term extinction. Here, we explored the possible mechanisms underlying…

  12. Juvenile neurogenesis makes essential contributions to adult brain structure and plays a sex-dependent role in fear memories

    PubMed Central

    Cushman, Jesse D.; Maldonado, Jose; Kwon, Eunice E.; Garcia, A. Denise; Fan, Guoping; Imura, Tetsuya; Sofroniew, Michael V.; Fanselow, Michael S.

    2012-01-01

    Postnatal neurogenesis (PNN) contributes neurons to olfactory bulb (OB) and dentate gyrus (DG) throughout juvenile development, but the quantitative amount, temporal dynamics and functional roles of this contribution have not been defined. By using transgenic mouse models for cell lineage tracing and conditional cell ablation, we found that juvenile neurogenesis gradually increased the total number of granule neurons by approximately 40% in OB, and by 25% in DG, between 2 weeks and 2 months of age, and that total numbers remained stable thereafter. These findings indicate that the overwhelming majority of net postnatal neuronal addition in these regions occurs during the juvenile period and that adult neurogenesis contributes primarily to replacement of granule cells in both regions. Behavioral analysis in our conditional cell ablation mouse model showed that complete loss of PNN throughout both the juvenile and young adult period produced a specific set of sex-dependent cognitive changes. We observed normal hippocampus-independent delay fear conditioning, but excessive generalization of fear to a novel auditory stimulus, which is consistent with a role for PNN in psychopathology. Standard contextual fear conditioning was intact, however, pre-exposure dependent contextual fear was impaired suggesting a specific role for PNN in incidental contextual learning. Contextual discrimination between two highly similar contexts was enhanced; suggesting either enhanced contextual pattern separation or impaired temporal integration. We also observed a reduced reliance on olfactory cues, consistent with a role for OB PNN in the efficient processing of olfactory information. Thus, juvenile neurogenesis adds substantively to the total numbers of granule neurons in OB and DG during periods of critical juvenile behavioral development, including weaning, early social interactions and sexual maturation, and plays a sex-dependent role in fear memories. PMID:22347173

  13. Rapid amygdala responses during trace fear conditioning without awareness.

    PubMed

    Balderston, Nicholas L; Schultz, Douglas H; Baillet, Sylvain; Helmstetter, Fred J

    2014-01-01

    The role of consciousness in learning has been debated for nearly 50 years. Recent studies suggest that conscious awareness is needed to bridge the gap when learning about two events that are separated in time, as is true for trace fear conditioning. This has been repeatedly shown and seems to apply to other forms of classical conditioning as well. In contrast to these findings, we show that individuals can learn to associate a face with the later occurrence of a shock, even if they are unable to perceive the face. We used a novel application of magnetoencephalography (MEG) to non-invasively record neural activity from the amygdala, which is known to be important for fear learning. We demonstrate rapid (∼ 170-200 ms) amygdala responses during the stimulus free period between the face and the shock. These results suggest that unperceived faces can serve as signals for impending threat, and that rapid, automatic activation of the amygdala contributes to this process. In addition, we describe a methodology that can be applied in the future to study neural activity with MEG in other subcortical structures. PMID:24823365

  14. Effect of a positive reinforcing stimulus on fear memory reconsolidation in ethanol withdrawn rats: Influence of d-cycloserine.

    PubMed

    Ortiz, Vanesa; Molina, Víctor Alejandro; Martijena, Irene Delia

    2016-12-15

    The pharmacological blockade of memory reconsolidation has been suggested as a potential treatment to the attenuation of maladaptive memories associated to psychiatric disorders and drug addiction. To interfere with the process of fear memory reconsolidation using a manipulation safer than pharmacological interventions, here we examined whether a positive reinforcing stimulus (non-alcoholic beer, NB) post-memory retrieval can decrease the fear response in ethanol withdrawn (ETOH) animals. We first evaluated the potential interfering effect of NB on memory reconsolidation in non-ethanol dependent (control, CON) rats. Non-alcoholic beer intake shortly after memory retrieval attenuated the fear response in CON rats. A resistance to destabilization/reconsolidation process was previously observed in ETOH rats, which was reversed by the activation of NMDA receptor induced by pre-retrieval d-cycloserine (DCS) administration. Therefore, the influence of DCS (5mg/kg; i.p.) to facilitate the disruptive effect of NB on fear memory was examined in ETOH animals. As expected, NB was ineffective to attenuate the fear response in ETOH rats, with DCS being necessary to promote the disruptive effect of NB on the reconsolidation in these animals. Hence, DCS/reinforcing stimulus in combination with memory reactivation can be considered as an alternative approach for disrupting resistant fear memories. PMID:27522017

  15. Cronobacter sakazakii infection alters serotonin transporter and improved fear memory retention in the rat

    PubMed Central

    Sivamaruthi, Bhagavathi S.; Madhumita, Rajkumar; Balamurugan, Krishnaswamy; Rajan, Koilmani E.

    2015-01-01

    It is well established that Cronobacter sakazakii infection cause septicemia, necrotizing enterocolitis and meningitis. In the present study, we tested whether the C. sakazakii infection alter the learning and memory through serotonin transporter (SERT). To investigate the possible effect on SERT, on postnatal day-15 (PND-15), wistar rat pups were administered with single dose of C. sakazakii culture (infected group; 107 CFU) or 100 μL of Luria-Bertani broth (medium control) or without any treatment (naïve control). All the individuals were subjected to passive avoidance test on PND-30 to test their fear memory. We show that single dose of C. sakazakii infection improved fear memory retention. Subsequently, we show that C. sakazakii infection induced the activation of toll-like receptor-3 and heat-shock proteins-90 (Hsp-90). On the other hand, level of serotonin (5-hydroxytryptamine) and SERT protein was down-regulated. Furthermore, we show that C. sakazakii infection up-regulate microRNA-16 (miR-16) expression. The observed results highlight that C. sakazakii infections was responsible for improved fear memory retention and may have reduced the level of SERT protein, which is possibly associated with the interaction of up-regulated Hsp-90 with SERT protein or miR-16 with SERT mRNA. Taken together, observed results suggest that C. sakazakii infection alter the fear memory possibly through SERT. Hence, this model may be effective to test the C. sakazakii infection induced changes in synaptic plasticity through SERT and effect of other pharmacological agents against pathogen induced memory disorder. PMID:26388777

  16. Cronobacter sakazakii infection alters serotonin transporter and improved fear memory retention in the rat.

    PubMed

    Sivamaruthi, Bhagavathi S; Madhumita, Rajkumar; Balamurugan, Krishnaswamy; Rajan, Koilmani E

    2015-01-01

    It is well established that Cronobacter sakazakii infection cause septicemia, necrotizing enterocolitis and meningitis. In the present study, we tested whether the C. sakazakii infection alter the learning and memory through serotonin transporter (SERT). To investigate the possible effect on SERT, on postnatal day-15 (PND-15), wistar rat pups were administered with single dose of C. sakazakii culture (infected group; 10(7) CFU) or 100 μL of Luria-Bertani broth (medium control) or without any treatment (naïve control). All the individuals were subjected to passive avoidance test on PND-30 to test their fear memory. We show that single dose of C. sakazakii infection improved fear memory retention. Subsequently, we show that C. sakazakii infection induced the activation of toll-like receptor-3 and heat-shock proteins-90 (Hsp-90). On the other hand, level of serotonin (5-hydroxytryptamine) and SERT protein was down-regulated. Furthermore, we show that C. sakazakii infection up-regulate microRNA-16 (miR-16) expression. The observed results highlight that C. sakazakii infections was responsible for improved fear memory retention and may have reduced the level of SERT protein, which is possibly associated with the interaction of up-regulated Hsp-90 with SERT protein or miR-16 with SERT mRNA. Taken together, observed results suggest that C. sakazakii infection alter the fear memory possibly through SERT. Hence, this model may be effective to test the C. sakazakii infection induced changes in synaptic plasticity through SERT and effect of other pharmacological agents against pathogen induced memory disorder. PMID:26388777

  17. Thwarting the Renewal (Relapse) of Conditioned Fear with the Explicitly Unpaired Procedure: Possible Interpretations and Implications for Treating Human Fears and Phobias

    ERIC Educational Resources Information Center

    Thomas, Brian L.; Longo, Craig L.; Ayres, John J. B.

    2005-01-01

    In three experiments using the barpress conditioned suppression task with albino rats, we studied the renewal (relapse) of conditioned fear in an ABA fear-renewal paradigm. We found that explicitly unpaired (EU) deliveries of conditioned stimuli (CSs) and unconditioned stimuli (USs) in Context B thwarted fear renewal in Context A. Evidence…

  18. PEGylated Carbon Nanotubes Impair Retrieval of Contextual Fear Memory and Alter Oxidative Stress Parameters in the Rat Hippocampus

    PubMed Central

    Dal Bosco, Lidiane; Weber, Gisele E. B.; Parfitt, Gustavo M.; Paese, Karina; Gonçalves, Carla O. F.; Serodre, Tiago M.; Furtado, Clascídia A.; Santos, Adelina P.; Monserrat, José M.; Barros, Daniela M.

    2015-01-01

    Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions. PMID:25738149

  19. Nicotine Modulates the Long-Lasting Storage of Fear Memory

    ERIC Educational Resources Information Center

    Lima, Ramon H.; Radiske, Andressa; Kohler, Cristiano A.; Gonzalez, Maria Carolina; Bevilaqua, Lia R.; Rossato, Janine I.; Medina, Jorge H.; Cammarota, Martin

    2013-01-01

    Late post-training activation of the ventral tegmental area (VTA)-hippocampus dopaminergic loop controls the entry of information into long-term memory (LTM). Nicotinic acetylcholine receptors (nAChR) modulate VTA function, but their involvement in LTM storage is unknown. Using pharmacological and behavioral tools, we found that…

  20. Extinction Partially Reverts Structural Changes Associated with Remote Fear Memory

    ERIC Educational Resources Information Center

    Vetere, Gisella; Restivo, Leonardo; Novembre, Giovanni; Aceti, Massimiliano; Lumaca, Massimo; Ammassari-Teule, Martine

    2011-01-01

    Structural synaptic changes occur in medial prefrontal cortex circuits during remote memory formation. Whether extinction reverts or further reshapes these circuits is, however, unknown. Here we show that the number and the size of spines were enhanced in anterior cingulate (aCC) and infralimbic (ILC) cortices 36 d following contextual fear…

  1. Future Selves and Aging: Older Adults' Memory Fears

    ERIC Educational Resources Information Center

    Dark-Freudeman, Alissa; West, Robin L.; Viverito, Kristen M.

    2006-01-01

    Thoughts about the self in the future, called possible selves, are an important component of the current identity of individuals. This study specifically focused on possible selves in the domain of memory and cognition. Both older and younger groups spontaneously reported possible selves in the cognitive domain, e.g., "learning a new skill," but…

  2. Corticosterone regulates fear memory via Rac1 activity in the hippocampus.

    PubMed

    Gan, Ping; Ding, Ze-Yang; Gan, Cheng; Mao, Rong-Rong; Zhou, Heng; Xu, Lin; Zhou, Qi-Xin

    2016-09-01

    Stressful events can generate enduring memories, which may induce certain psychiatric disorders such as post-traumatic stress disorder (PTSD). However, the underlying molecular mechanisms in these processes remain unclear. In this study, we examined whether the active form of the small G protein Rac1, Rac1-GTP, is involved in fear memory. Firstly, we detected the time course changes of Rac1-GTP after foot shocks (a strong stressor) and exogenous corticosterone (CORT) treatment. The data showed that stress and CORT induced the downregulation of Rac1-GTP in the hippocampus. Changes in the serum CORT level were negatively correlated with the level of Rac1-GTP. Additionally, a glucocorticoid receptor antagonist, RU38486, not only recovered the expression of Rac1-GTP but also impaired fear memory. Furthermore, systemic administration of NSC23766, an inhibitor of Rac1-GTP, improved fear memory at 1.5 and 24h. Therefore, Rac1 activity plays a critical role in stress-related cognition and may be a potential target in stress-related disorders. PMID:27249795

  3. De novo mRNA synthesis is required for both consolidation and reconsolidation of fear memories in the amygdala

    PubMed Central

    Duvarci, Sevil; Nader, Karim; LeDoux, Joseph E.

    2008-01-01

    Memory consolidation is the process by which newly learned information is stabilized into long-term memory (LTM). Considerable evidence indicates that retrieval of a consolidated memory returns it to a labile state that requires it to be restabilized. Consolidation of new fear memories has been shown to require de novo RNA and protein synthesis in the lateral nucleus of the amygdala (LA). We have previously shown that de novo protein synthesis in the LA is required for reconsolidation of auditory fear memories. One key question is whether protein synthesis during reconsolidation depends on already existing mRNAs or on synthesis of new mRNAs in the amygdala. In the present study, we examined the effect of mRNA synthesis inhibition during consolidation and reconsolidation of auditory fear memories. We first show that intra-LA infusion of two different mRNA inhibitors dose-dependently impairs long-term memory but leaves short-term memory (STM) intact. Next, we show that intra-LA infusion of the same inhibitors dose-dependently blocks post-reactivation long-term memory (PR-LTM), whereas post-reactivation short-term memory (PR-STM) is left intact. Furthermore, the same treatment in the absence of memory reactivation has no effect. Together, these results show that both consolidation and reconsolidation of auditory fear memories require de novo mRNA synthesis and are equally sensitive to disruption of de novo mRNA synthesis in the LA. PMID:18832561

  4. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear.

    PubMed

    Bredy, Timothy W; Wu, Hao; Crego, Cortney; Zellhoefer, Jessica; Sun, Yi E; Barad, Mark

    2007-04-01

    Extinction of conditioned fear is an important model both of inhibitory learning and of behavior therapy for human anxiety disorders. Like other forms of learning, extinction learning is long-lasting and depends on regulated gene expression. Epigenetic mechanisms make an important contribution to persistent changes in gene expression; therefore, in these studies, we have investigated whether epigenetic regulation of gene expression contributes to fear extinction. Since brain-derived neurotrophic factor (BDNF) is crucial for synaptic plasticity and for the maintenance of long-term memory, we examined histone modifications around two BDNF gene promoters after extinction of cued fear, as potential targets of learning-induced epigenetic regulation of gene expression. Valproic acid (VPA), used for some time as an anticonvulsant and a mood stabilizer, modulates the expression of BDNF, and is a histone deacetylase (HDAC) inhibitor. Here, we report that extinction of conditioned fear is accompanied by a significant increase in histone H4 acetylation around the BDNF P4 gene promoter and increases in BDNF exon I and IV mRNA expression in prefrontal cortex, that VPA enhances long-term memory for extinction because of its HDAC inhibitor effects, and that VPA potentiates the effect of weak extinction training on histone H4 acetylation around both the BDNF P1 and P4 gene promoters and on BDNF exon IV mRNA expression. These results suggest a relationship between histone H4 modification, epigenetic regulation of BDNF gene expression, and long-term memory for extinction of conditioned fear. In addition, they suggest that HDAC inhibitors may become a useful pharmacological adjunct to psychotherapy for human anxiety disorders. PMID:17522015

  5. Neuropeptide S reduces fear and avoidance of con-specifics induced by social fear conditioning and social defeat, respectively.

    PubMed

    Zoicas, Iulia; Menon, Rohit; Neumann, Inga D

    2016-09-01

    Neuropeptide S (NPS) has anxiolytic effects and facilitates extinction of cued fear in rodents. Here, we investigated whether NPS reverses social fear and social avoidance induced by social fear conditioning (SFC) and acute social defeat (SD), respectively, in male CD1 mice. Our results revealed that intracerebroventricular NPS (icv; 10 and 50 nmol/2 μl) reversed fear of unknown con-specifics induced by SFC and dose-dependently reduced avoidance of known aggressive con-specifics induced by SD. While 50 nmol of NPS completely reversed social avoidance and reinstated social preference, 10 nmol of NPS reduced social avoidance, but did not completely reinstate social preference in socially-defeated mice. Further, a lower dose (1 nmol/2 μl) of NPS facilitated the within-session extinction of cued fear, while a higher dose (10 nmol/2 μl) reduced the expression of cued fear. We could also confirm the anxiolytic effects of NPS (1, 10 and 50 nmol/2 μl) on the elevated plus-maze (EPM), which were not accompanied by alterations in locomotor activity either on the EPM or in the home cage. Finally, we could show that icv infusion of the NPS receptor 1 antagonist D-Cys((t)Bu)(5)-NPS (10 nmol/2 μl) did not alter SFC-induced social fear, general anxiety and locomotor activity. Taken together, our study extends the potent anxiolytic profile of NPS to a social context by demonstrating the reduction of social fear and social avoidance, thus providing the framework for studies investigating the involvement of the NPS system in the regulation of different types of social behaviour. PMID:27044664

  6. Dendritic structural plasticity in the basolateral amygdala after fear conditioning and its extinction in mice

    PubMed Central

    Heinrichs, Stephen C.; Leite-Morris, Kimberly A.; Guy, Marsha D.; Goldberg, Lisa R.; Young, Angela J.; Kaplan, Gary B.

    2015-01-01

    Previous research suggests that morphology and arborization of dendritic spines change as a result of fear conditioning in cortical and subcortical brain regions. This study uniquely aims to delineate these structural changes in the basolateral amygdala (BLA) after both fear conditioning and fear extinction. C57BL/6 mice acquired robust conditioned fear responses (70–80% cued freezing behavior) after six pairings with a tone cue associated with footshock in comparison to unshocked controls. During fear acquisition, freezing behavior was significantly affected by both shock exposure and trial number. For fear extinction, mice were exposed to the conditioned stimulus tone in the absence of shock administration and behavioral responses significantly varied by shock treatment. In the retention tests over 3 weeks, the percentage time spent freezing varied with the factor of extinction training. In all treatment groups, alterations in dendritic plasticity were analyzed using Golgi–Cox staining of dendrites in the BLA. Spine density differed between the fear conditioned group and both the fear extinction and control groups on third order dendrites. Spine density was significantly increased in the fear conditioned group compared to the fear extinction group and controls. Similarly in Sholl analyses, fear conditioning significantly increased BLA spine numbers and dendritic intersections while subsequent extinction training reversed these effects. In summary, fear extinction produced enduring behavioral plasticity that is associated with a reversal of alterations in BLA dendritic plasticity produced by fear conditioning. These neuroplasticity findings can inform our understanding of structural mechanisms underlying stress-related pathology can inform treatment research into these disorders. PMID:23570859

  7. Operant conditioning of autobiographical memory retrieval.

    PubMed

    Debeer, Elise; Raes, Filip; Williams, J Mark G; Craeynest, Miet; Hermans, Dirk

    2014-01-01

    Functional avoidance is considered as one of the key mechanisms underlying overgeneral autobiographical memory (OGM). According to this view OGM is regarded as a learned cognitive avoidance strategy, based on principles of operant conditioning; i.e., individuals learn to avoid the emotionally painful consequences associated with the retrieval of specific negative memories. The aim of the present study was to test one of the basic assumptions of the functional avoidance account, namely that autobiographical memory retrieval can be brought under operant control. Here 41 students were instructed to retrieve personal memories in response to 60 emotional cue words. Depending on the condition, they were punished with an aversive sound for the retrieval of specific or nonspecific memories in an operant conditioning procedure. Analyzes showed that the course of memory specificity significantly differed between conditions. After the procedure participants punished for nonspecific memories retrieved significantly more specific memories compared to participants punished for specific memories. However, whereas memory specificity significantly increased in participants punished for specific memories, it did not significantly decrease in participants punished for nonspecific memories. Thus, while our findings indicate that autobiographical memory retrieval can be brought under operant control, they do not support a functional avoidance view on OGM. PMID:23445114

  8. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    ERIC Educational Resources Information Center

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  9. Serotonin transporter polyadenylation polymorphism modulates the retention of fear extinction memory

    PubMed Central

    Hartley, Catherine A.; McKenna, Morgan C.; Salman, Rabia; Holmes, Andrew; Casey, B. J.; Glatt, Charles E.

    2012-01-01

    Growing evidence suggests serotonin's role in anxiety and depression is mediated by its effects on learned fear associations. Pharmacological and genetic manipulations of serotonin signaling in mice alter the retention of fear extinction learning, which is inversely associated with anxious temperament in mice and humans. Here, we test whether genetic variation in serotonin signaling in the form of a common human serotonin transporter polyadenylation polymorphism (STPP/rs3813034) is associated with spontaneous fear recovery after extinction. We show that the risk allele of this polymorphism is associated with impaired retention of fear extinction memory and heightened anxiety and depressive symptoms. These STPP associations in humans mirror the phenotypic effects of serotonin transporter knockout in mice, highlighting the STPP as a potential genetic locus underlying interindividual differences in serotonin transporter function in humans. Furthermore, we show that the serotonin transporter polyadenylation profile associated with the STPP risk allele is altered through the chronic administration of fluoxetine, a treatment that also facilitates retention of extinction learning. The propensity to form persistent fear associations due to poor extinction recall may be an intermediate phenotype mediating the effects of genetic variation in serotonergic function on anxiety and depression. The consistency and specificity of these data across species provide robust support for this hypothesis and suggest that the little-studied STPP may be an important risk factor for mood and anxiety disorders in humans. PMID:22431634

  10. The Effect of Midazolam and Propranolol on Fear Memory Reconsolidation in Ethanol-Withdrawn Rats: Influence of D-Cycloserine

    PubMed Central

    Ortiz, Vanesa; Giachero, Marcelo; Espejo, Pablo Javier; Molina, Víctor Alejandro

    2015-01-01

    Background: Withdrawal from chronic ethanol facilitates the formation of contextual fear memory and delays the onset to extinction, with its retrieval promoting an increase in ethanol consumption. Consequently, manipulations aimed to reduce these aversive memories, may be beneficial in the treatment of alcohol discontinuation symptoms. Related to this, pharmacological memory reconsolidation blockade has received greater attention due to its therapeutic potential. Methods: Here, we examined the effect of post-reactivation amnestic treatments such as Midazolam (MDZ, 3 mg/kg i.p) and Propranolol (PROP, 5 mg/kg i.p) on contextual fear memory reconsolidation in ethanol- withdrawn (ETOH) rats. Next, we examined whether the activation of N-methyl-D-aspartate (NMDA) receptors induced by d-cycloserine (DCS, 5 mg/kg i.p., a NMDA partial agonist) before memory reactivation can facilitate the disruptive effect of PROP and MDZ on fear memory in ETOH rats. Results: We observed a resistance to the disruptive effect of both MDZ and PROP following memory reactivation. Although intra-basolateral amygdala (BLA; 1.25 ug/side) and systemic PROP administration attenuated fear memory in DCS pre-treated ETOH rats, DCS/MDZ treatment did not affect memory in these animals. Finally, a decrease of both total and surface protein expression of the α1 GABAA receptor (GABAA-R) subunit in BLA was found in the ETOH rats. Conclusions: Ethanol withdrawal facilitated the formation of fear memory resistant to labilization post-reactivation. DCS administration promoted the disruptive effect of PROP on memory reconsolidation in ETOH rats. The resistance to MDZ’s disruptive effect on fear memory reconsolidation may be, at least in part, associated with changes in the GABAA-R composition induced by chronic ethanol administration/withdrawal. PMID:25617327

  11. Effects of Recent Exposure to a Conditioned Stimulus on Extinction of Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Chan, Wan Yee Macy; Leung, Hiu T.; Westbrook, R. Frederick; McNally, Gavan P.

    2010-01-01

    In six experiments we studied the effects of a single re-exposure to a conditioned stimulus (CS; "retrieval trial") prior to extinction training (extinction-reconsolidation boundary) on the development of and recovery from fear extinction. A single retrieval trial prior to extinction training significantly augmented the renewal and reinstatement…

  12. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    PubMed

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. PMID:25555360

  13. Consequences of adolescent ethanol exposure in male Sprague-Dawley rats on fear conditioning and extinction in adulthood

    NASA Astrophysics Data System (ADS)

    Broadwater, Margaret A.

    Some evidence suggests that adolescents are more vulnerable than adults to alcohol-induced cognitive deficits and that these deficits may persist into adulthood. Five experiments were conducted to assess long-term consequences of ethanol exposure on tone and context Pavlovian fear conditioning in male Sprague-Dawley rats. Experiment 1 examined age-related differences in sensitivity to ethanol-induced disruptions of fear conditioning to a pre-conditioning ethanol challenge. Experiments 2 examined fear conditioning 22 days after early-mid adolescent (P28-48) or adult (P70-90) exposure to 4 g/kg i.g. ethanol or water given every other day (total of 11 exposures). In Experiment 3, mid-late adolescents (P35-55) were exposed in the same manner to assess whether timing of ethanol exposure within the adolescent period would differentially affect later fear conditioning. Experiment 4 assessed the influence of prior adolescent or adult ethanol exposure on the disrupting effects of a pre-conditioning ethanol challenge. In Experiment 5, neurogenesis (doublecortin---DCX) and cholinergic (choline acetyltransferase---ChAT) markers were measured to assess potential long-term ethanol-induced changes in neural mechanisms important for learning and memory. Results indicated that the long-lasting behavioral effects of ethanol exposure varied depending on exposure age, with early-mid adolescent exposed animals showing attenuated context fear retention (a relatively hippocampal-dependent task), whereas mid-late adolescent and adult exposed animals showed slower context extinction (thought to be reliant on the mPFC). Early-mid adolescent ethanol-exposed animals also had significantly less DCX and ChAT expression than their water-exposed counterparts, possibly contributing to deficits in context fear. Tone fear was not influenced by prior ethanol exposure at any age. In terms of age differences in ethanol sensitivity, adolescents were less sensitive than adults to ethanol

  14. Fear conditioning and extinction across development: Evidence from human studies and animal models☆

    PubMed Central

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C.; Pine, Daniel S.; Fox, Nathan A.

    2015-01-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations. PMID:24746848

  15. Fear conditioning and extinction across development: evidence from human studies and animal models.

    PubMed

    Shechner, Tomer; Hong, Melanie; Britton, Jennifer C; Pine, Daniel S; Fox, Nathan A

    2014-07-01

    The ability to differentiate danger and safety through associative processes emerges early in life. Understanding the mechanisms underlying associative learning of threat and safety can clarify the processes that shape development of normative fears and pathological anxiety. Considerable research has used fear conditioning and extinction paradigms to delineate underlying mechanisms in animals and human adults; however, little is known about these mechanisms in children and adolescents. The current paper summarizes the empirical data on the development of fear conditioning and extinction. It reviews methodological considerations and future directions for research on fear conditioning and extinction in pediatric populations. PMID:24746848

  16. Maintenance of aversive memories shown by fear extinction-impaired phenotypes is associated with increased activity in the amygdaloid-prefrontal circuit

    PubMed Central

    Laricchiuta, Daniela; Saba, Luana; De Bartolo, Paola; Caioli, Silvia; Zona, Cristina; Petrosini, Laura

    2016-01-01

    Although aversive memory has been mainly addressed by analysing the changes occurring in average populations, the study of neuronal mechanisms of outliers allows understanding the involvement of individual differences in fear conditioning and extinction. We recently developed an innovative experimental model of individual differences in approach and avoidance behaviors, classifying the mice as Approaching, Balancing or Avoiding animals according to their responses to conflicting stimuli. The approach and avoidance behaviors appear to be the primary reactions to rewarding and threatening stimuli and may represent predictors of vulnerability (or resilience) to fear. We submitted the three mice phenotypes to Contextual Fear Conditioning. In comparison to Balancing animals, Approaching and Avoiding mice exhibited no middle- or long-term fear extinction. The two non-extinguishing phenotypes exhibited potentiated glutamatergic neurotransmission (spontaneous excitatory postsynaptic currents/spinogenesis) of pyramidal neurons of medial prefrontal cortex and basolateral amygdala. Basing on the a priori individuation of outliers, we demonstrated that the maintenance of aversive memories is linked to increased spinogenesis and excitatory signaling in the amygdala-prefrontal cortex fear matrix. PMID:26875790

  17. Maintenance of aversive memories shown by fear extinction-impaired phenotypes is associated with increased activity in the amygdaloid-prefrontal circuit.

    PubMed

    Laricchiuta, Daniela; Saba, Luana; De Bartolo, Paola; Caioli, Silvia; Zona, Cristina; Petrosini, Laura

    2016-01-01

    Although aversive memory has been mainly addressed by analysing the changes occurring in average populations, the study of neuronal mechanisms of outliers allows understanding the involvement of individual differences in fear conditioning and extinction. We recently developed an innovative experimental model of individual differences in approach and avoidance behaviors, classifying the mice as Approaching, Balancing or Avoiding animals according to their responses to conflicting stimuli. The approach and avoidance behaviors appear to be the primary reactions to rewarding and threatening stimuli and may represent predictors of vulnerability (or resilience) to fear. We submitted the three mice phenotypes to Contextual Fear Conditioning. In comparison to Balancing animals, Approaching and Avoiding mice exhibited no middle- or long-term fear extinction. The two non-extinguishing phenotypes exhibited potentiated glutamatergic neurotransmission (spontaneous excitatory postsynaptic currents/spinogenesis) of pyramidal neurons of medial prefrontal cortex and basolateral amygdala. Basing on the a priori individuation of outliers, we demonstrated that the maintenance of aversive memories is linked to increased spinogenesis and excitatory signaling in the amygdala-prefrontal cortex fear matrix. PMID:26875790

  18. Adversity-induced relapse of fear: neural mechanisms and implications for relapse prevention from a study on experimentally induced return-of-fear following fear conditioning and extinction.

    PubMed

    Scharfenort, R; Menz, M; Lonsdorf, T B

    2016-01-01

    The efficacy of current treatments for anxiety disorders is limited by high relapse rates. Relapse of anxiety disorders and addiction can be triggered by exposure to life adversity, but the underlying mechanisms remain unexplored. Seventy-six healthy adults were a priori selected for the presence or absence of adverse experiences during childhood (CA) and recent past (RA; that is, past 12 months). Participants underwent fear conditioning (day 1) and fear extinction and experimental return-of-fear (ROF) induction through reinstatement (a model for adversity-induced relapse; day 2). Ratings, autonomic (skin conductance response) and neuronal activation measures (functional magnetic resonance imaging (fMRI)) were acquired. Individuals exposed to RA showed a generalized (that is, not CS- specific) fear recall and ROF, whereas unexposed individuals showed differential (that is, CS+ specific) fear recall and ROF on an autonomic level despite no group differences during fear acquisition and extinction learning. These group differences in ROF were accompanied by corresponding activation differences in brain areas known to be involved in fear processing and differentiability/generalization of ROF (that is, hippocampus). In addition, dimensional measures of RA, CA and lifetime adversity were negatively correlated with differential skin conductance responses (SCRs) during ROF and hippocampal activation. As discriminating signals of danger and safety, as well as a tendency for overgeneralization, are core features in clinically anxious populations, these deficits may specifically contribute to relapse risk following exposure to adversity, in particular to recent adversity. Hence, our results may provide first and novel insights into the possible mechanisms mediating enhanced relapse risk following exposure to (recent) adversity, which may guide the development of effective pre- and intervention programs. PMID:27434492

  19. Conditioned fear associated phenotypes as robust, translational indices of trauma-, stressor-, and anxiety-related behaviors.

    PubMed

    Briscione, Maria Anne; Jovanovic, Tanja; Norrholm, Seth Davin

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). It is characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the development and maintenance of PTSD. Fear conditioning is a robust, translational experimental paradigm that can be employed to elucidate these mechanisms by allowing for the study of fear-related dimensions of PTSD (e.g., fear extinction, fear inhibition, and generalization of fear) across multiple units of analysis. Fear conditioning experiments have identified varying trajectories of the dimensions described, highlighting exciting new avenues of targeted, focused study. Additionally, fear conditioning studies provide a translational platform to develop novel interventions. The current review highlights the versatility of fear conditioning paradigms, the implications for pharmacological and non-pharmacological treatments, the robustness of these paradigms to span an array of neuroscientific measures (e.g., genetic studies), and finally the need to understand the boundary conditions under which these paradigms are effective. Further understanding these paradigms will ultimately allow for optimization of fear conditioning paradigms, a necessary step towards the advancement of PTSD treatment methods. PMID:25101010

  20. Conditioned Fear Associated Phenotypes as Robust, Translational Indices of Trauma-, Stressor-, and Anxiety-Related Behaviors

    PubMed Central

    Briscione, Maria Anne; Jovanovic, Tanja; Norrholm, Seth Davin

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). It is characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the development and maintenance of PTSD. Fear conditioning is a robust, translational experimental paradigm that can be employed to elucidate these mechanisms by allowing for the study of fear-related dimensions of PTSD (e.g., fear extinction, fear inhibition, and generalization of fear) across multiple units of analysis. Fear conditioning experiments have identified varying trajectories of the dimensions described, highlighting exciting new avenues of targeted, focused study. Additionally, fear conditioning studies provide a translational platform to develop novel interventions. The current review highlights the versatility of fear conditioning paradigms, the implications for pharmacological and non-pharmacological treatments, the robustness of these paradigms to span an array of neuroscientific measures (e.g., genetic studies), and finally the need to understand the boundary conditions under which these paradigms are effective. Further understanding these paradigms will ultimately allow for optimization of fear conditioning paradigms, a necessary step towards the advancement of PTSD treatment methods. PMID:25101010

  1. Reinstatement of an extinguished fear conditioned response in infant rats.

    PubMed

    Revillo, Damian A; Trebucq, Gastón; Paglini, Maria G; Arias, Carlos

    2016-01-01

    Although it is currently accepted that the extinction effect reflects new context-dependent learning, this is not so clear during infancy, because some studies did not find recovery of the extinguished conditioned response (CR) in rodents during this ontogenetic stage. However, recent studies have shown the return of an extinguished CR in infant rats. The present study analyzes the possibility of recovering an extinguished CR with a reinstatement procedure in a fear conditioning paradigm, on PD17 (Experiments 1-4) and on PD24 (Experiment 5), while exploring the role of the olfactory content of the context upon the reinstatement effect during the preweanling period. Preweanling rats expressed a previously extinguished CR after a single experience with an unsignaled US. Furthermore, this result was only found when subjects were trained and tested in contexts that included an explicit odor, but not in standard experimental cages. Finally, Experiment 5 demonstrated the reinstatement effect on PD24 in a standard context. These results support the notion that extinction during infancy has the same characteristics as those described for extinction that occurs in adulthood. Instead of postulating a different mechanism for extinction during infancy, we propose that it may be more accurate to view the problem in terms of the variables that may differentially modulate the extinction effect according to the stages of ontogeny. PMID:26670181

  2. Calcitonin gene-related peptide erases the fear memory and facilitates long-term potentiation in the central nucleus of the amygdala in rats.

    PubMed

    Wu, Xin; Zhang, Jie-Ting; Liu, Jue; Yang, Si; Chen, Tao; Chen, Jian-Guo; Wang, Fang

    2015-11-01

    Calcitonin gene-related peptide (CGRP) is a 37 amino acid neuropeptide, which plays a critical role in the central nervous system. CGRP binds to G protein-coupled receptors, including CGRP1, which couples positively to adenylyl cyclase (AC) and protein kinase A (PKA) activation. CGRP and CGRP1 receptors are enriched in central nucleus of the amygdala (CeA), the main part of the amygdala, which regulates conditioned fear memories. Here, we reported the importance of CGRP and CGRP1 receptor for synaptic plasticity in the CeA and the extinction of fear memory in rats. Our electrophysiological and behavioral in vitro and in vivo results showed exogenous application of CGRP induced an immediate and lasting long-term potentiation in the basolateral nucleus of amygdala-CeA pathway, but not in the lateral nucleus of amygdala-CeA pathway, while bilateral intra-CeA infusion CGRP (0, 5, 13 and 21 μM/side) dose dependently enhanced fear memory extinction. The effects were blocked by CGRP1 receptor antagonist (CGRP8-37 ), N-methyl-d-aspartate receptors antagonist MK801 and PKA inhibitor H89. These results demonstrate that CGRP can lead to long-term potentiation of basolateral nucleus of amygdala-CeA pathway through a PKA-dependent postsynaptic mechanism that involved N-methyl-d-aspartate receptors and enhance the extinction of fear memory in rats. Together, the results strongly support a pivotal role of CGRP in the synaptic plasticity of CeA and extinction of fear memory. Calcitonin gene-related peptide (CGRP) plays an essential role in synaptic plasticity in the amygdala and fear memory. We found that CGRP-induced chemical long-term potentiation (LTP) in a dose-dependent way in the BLA-CeA (basolateral and central nucleus of amygdala, respectively) pathway and enhanced fear memory extinction in rats through a protein kinase A (PKA)-dependent postsynaptic mechanism that involved NMDA receptors. These results support a pivotal role of CGRP in amygdala. PMID:26179152

  3. Effects of Stress and Sex on Acquisition and Consolidation of Human Fear Conditioning

    ERIC Educational Resources Information Center

    Kuhn, Cynthia M.; LaBar, Kevin S.; Zorawski, Michael; Blanding, Nineequa Q.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min…

  4. The Amygdala Is Critical for Trace, Delay, and Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Kochli, Daniel E.; Thompson, Elaine C.; Fricke, Elizabeth A.; Postle, Abagail F.; Quinn, Jennifer J.

    2015-01-01

    Numerous investigations have definitively shown amygdalar involvement in delay and contextual fear conditioning. However, much less is known about amygdala contributions to trace fear conditioning, and what little evidence exists is conflicting as noted in previous studies. This discrepancy may result from selective targeting of individual nuclei…

  5. Dissociated Roles for the Lateral and Medial Septum in Elemental and Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Calandreau, Ludovic; Jaffard, Robert; Desmedt, Aline

    2007-01-01

    Extensive evidence indicates that the septum plays a predominant role in fear learning, yet the direction of this control is still a matter of debate. Increasing data suggest that the medial (MS) and lateral septum (LS) would be differentially required in fear conditioning depending on whether a discrete conditional stimulus (CS) predicts, or not,…

  6. A Discrete Population of Neurons in the Lateral Amygdala Is Specifically Activated by Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Wilson, Yvette M.; Murphy, Mark

    2009-01-01

    There is no clear identification of the neurons involved in fear conditioning in the amygdala. To search for these neurons, we have used a genetic approach, the "fos-tau-lacZ" (FTL) mouse, to map functionally activated expression in neurons following contextual fear conditioning. We have identified a discrete population of neurons in the lateral…

  7. Mechanisms Contributing to the Induction and Storage of Pavlovian Fear Memories in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Kim, Dongbeom; Pare, Denis; Nair, Satish S.

    2013-01-01

    The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is…

  8. Role of the Phosphoinositide 3-Kinase-Akt-Mammalian Target of the Rapamycin Signaling Pathway in Long-Term Potentiation and Trace Fear Conditioning Memory in Rat Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Sui, Li; Wang, Jing; Li, Bao-Ming

    2008-01-01

    Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt (also known as protein kinase B, PKB), mammalian target of rapamycin (mTOR), the 70-kDa ribosomal S6 kinase (p70S6k), and the eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), may play important roles in long-term synaptic plasticity and memory in many…

  9. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory

    PubMed Central

    Chiang, Po-Han; Chien, Ta-Chun; Chen, Chih-Cheng; Yanagawa, Yuchio; Lien, Cheng-Chang

    2015-01-01

    Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that ASICs were differentially expressed within the amygdala neuronal population, and the extent of LTP at various glutamatergic synapses correlated with the level of ASIC expression in postsynaptic neurons. Importantly, selective deletion of ASIC1a in GABAergic cells, including amygdala output neurons, eliminated LTP in these cells and reduced fear learning to the same extent as that found when ASIC1a was selectively abolished in BLA glutamatergic neurons. Thus, fear learning requires ASIC-dependent LTP at multiple amygdala synapses, including both cortico-BLA input synapses and intra-amygdala synapses on output neurons. PMID:25988357

  10. The Fragrant Power of Collective Fear

    PubMed Central

    Harb, Roa; Taulor, Jane R.

    2015-01-01

    Fear is a well-characterized biological response to threatening or stressful situations in humans and other social animals. Importantly, fearful stimuli in the natural environment are likely to be encountered concurrently by a group of animals. The modulation of fear acquisition and fear memory by a group as opposed to an individual experience, however, remains largely unknown. Here, we demonstrate a robust reduction in fear memory to an aversive event undertaken in a group despite similar fear learning between individually- and group-conditioned rats. This reduction persists outside the group confines, appears to be a direct outcome of group cognizance and is counteracted by loss of olfactory signaling among the group members. These results show that a group experience of fear can be protective and suggest that distinct neural pathways from those classically studied in individuals modulate collective fear memories. PMID:25945800

  11. The fragrant power of collective fear.

    PubMed

    Harb, Roa; Taylor, Jane R; Taulor, Jane R

    2015-01-01

    Fear is a well-characterized biological response to threatening or stressful situations in humans and other social animals. Importantly, fearful stimuli in the natural environment are likely to be encountered concurrently by a group of animals. The modulation of fear acquisition and fear memory by a group as opposed to an individual experience, however, remains largely unknown. Here, we demonstrate a robust reduction in fear memory to an aversive event undertaken in a group despite similar fear learning between individually- and group-conditioned rats. This reduction persists outside the group confines, appears to be a direct outcome of group cognizance and is counteracted by loss of olfactory signaling among the group members. These results show that a group experience of fear can be protective and suggest that distinct neural pathways from those classically studied in individuals modulate collective fear memories. PMID:25945800

  12. Involvement of the Anterior Cingulate Cortex in Formation, Consolidation, and Reconsolidation of Recent and Remote Contextual Fear Memory

    ERIC Educational Resources Information Center

    Einarsson, Einar O.; Nader, Karim

    2012-01-01

    It has been suggested that memories become more stable and less susceptible to the disruption of reconsolidation over weeks after learning. Here, we test this by targeting the anterior cingulate cortex (ACC) and test its involvement in the formation, consolidation, and reconsolidation of recent and remote contextual fear memory. We found that…

  13. The effects of cannabinoids on contextual conditioned fear in CB1 knockout and CD1 mice.

    PubMed

    Mikics, Eva; Dombi, Timea; Barsvári, Beáta; Varga, Balázs; Ledent, Catherine; Freund, Tamás F; Haller, József

    2006-05-01

    We studied the effects of cannabinoids on contextual conditioned fear responses. CB1 knockout and wild-type (CD1) mice were exposed to a brief session of electric shocks, and their behavior was studied in the same context 24 h later. In wild-type mice, shock exposure increased freezing and resting, and decreased locomotion and exploration. The genetic disruption of the CB1 receptor abolished the conditioned fear response. The CB1 antagonist AM-251 reduced the peak of the conditioned fear response when applied 30 min before behavioral testing (i.e. 24 h after shocks) in CD1 (wild-type) mice. The cannabinoid agonist WIN-55,212-2 markedly increased the conditioned fear response in CD1 mice, the effect of which was potently antagonized by AM-251. Thus, cannabinoid receptor activation appears to strongly promote the expression of contextual conditioned fear. In earlier experiments, cannabinoids did not interfere with the expression of cue-induced conditioned fear but strongly promoted its extinction. Considering the primordial role of the amygdala in simple associative learning (e.g. in cue-induced fear) and the role of the hippocampus in learning more complex stimulus relationships (e.g. in contextual fear), the present and earlier findings are not necessarily contradictory, but suggest that cannabinoid signaling plays different roles in the two structures. Data are interpreted in terms of the potential involvement of cannabinoids in trauma-induced behavioral changes. PMID:16572000

  14. Female-dependent impaired fear memory of adult rats induced by maternal separation, and screening of possible related genes in the hippocampal CA1.

    PubMed

    Sun, Xiu-Min; Tu, Wen-Qiang; Shi, Yan-Wei; Xue, Li; Zhao, Hu

    2014-07-01

    Early life stress is one of the major susceptible factors for stress-related pathologies like posttraumatic stress disorder (PTSD). Recent studies in rats suggest that rather than being overall unfavorable, early life stress may prepare the organism to perform optimally to stressful environments later in life. In this study, severely adverse early life stress was conducted by six consecutive hours of maternal separation (MS), from PND1 to PND21, and contextual fear conditioning model was used on PND90 to mimic the second stress in adulthood and the re-experiencing symptom of PTSD. It was observed that in this investigation pups experienced MS showed decreased sensibility to contextual fear conditioning in adulthood, and there sex plays an important role. For example, female rats suffered MS had much lower freezing than males and controls. Meanwhile, Morris water maze test indicated that MS did not impair rat's performance of spatial learning and memory. Furthermore, suppression subtractive hybridization (SSH) was used to screen the related genes of fear memory, by examining the changes of mRNA expression in CA1 area between female MS and control rats after contextual fear conditioning. Finally, nine up-regulated and one down-regulated genes, including β2-MG, MAF, Nd1-L, TorsinA and MACF1 gene were found in this study. It is assumed that the TorsinA, MACF1 and Nd1-L gene may contribute to the decreased sensitivity of PTSD induced by MS. PMID:24667363

  15. Sexually divergent expression of active and passive conditioned fear responses in rats

    PubMed Central

    Gruene, Tina M; Flick, Katelyn; Stefano, Alexis; Shea, Stephen D; Shansky, Rebecca M

    2015-01-01

    Traditional rodent models of Pavlovian fear conditioning assess the strength of learning by quantifying freezing responses. However, sole reliance on this measure includes the de facto assumption that any locomotor activity reflects an absence of fear. Consequently, alternative expressions of associative learning are rarely considered. Here we identify a novel, active fear response (‘darting’) that occurs primarily in female rats. In females, darting exhibits the characteristics of a learned fear behavior, appearing during the CS period as conditioning proceeds and disappearing from the CS period during extinction. This finding motivates a reinterpretation of rodent fear conditioning studies, particularly in females, and it suggests that conditioned fear behavior is more diverse than previously appreciated. Moreover, rats that darted during initial fear conditioning exhibited lower freezing during the second day of extinction testing, suggesting that females employ distinct and adaptive fear response strategies that improve long-term outcomes. DOI: http://dx.doi.org/10.7554/eLife.11352.001 PMID:26568307

  16. DREAM (Downstream Regulatory Element Antagonist Modulator) contributes to synaptic depression and contextual fear memory

    PubMed Central

    2010-01-01

    The downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM), we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD) but not long-term potentiation (LTP), was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory. PMID:20205763

  17. DREAM (downstream regulatory element antagonist modulator) contributes to synaptic depression and contextual fear memory.

    PubMed

    Wu, Long-Jun; Mellström, Britt; Wang, Hansen; Ren, Ming; Domingo, Sofia; Kim, Susan S; Li, Xiang-Yao; Chen, Tao; Naranjo, Jose R; Zhuo, Min

    2010-01-01

    The downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM), we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD) but not long-term potentiation (LTP), was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory. PMID:20205763

  18. Electrocortical and ocular indices of attention to fearful and neutral faces presented under high and low working memory load.

    PubMed

    MacNamara, Annmarie; Schmidt, Joseph; Zelinsky, Gregory J; Hajcak, Greg

    2012-12-01

    Working memory load reduces the late positive potential (LPP), consistent with the notion that functional activation of the DLPFC attenuates neural indices of sustained attention. Visual attention also modulates the LPP. In the present study, we sought to determine whether working memory load might exert its influence on ERPs by reducing fixations to arousing picture regions. We simultaneously recorded eye-tracking and EEG while participants performed a working memory task interspersed with the presentation of task-irrelevant fearful and neutral faces. As expected, fearful compared to neutral faces elicited larger N170 and LPP amplitudes; in addition, working memory load reduced the N170 and the LPP. Participants made more fixations to arousing regions of neutral faces and faces presented under high working memory load. Therefore, working memory load did not induce avoidance of arousing picture regions and visual attention cannot explain load effects on the N170 and LPP. PMID:22951516

  19. The role of Neuropeptide Y in fear conditioning and extinction.

    PubMed

    Tasan, R O; Verma, D; Wood, J; Lach, G; Hörmer, B; de Lima, T C M; Herzog, H; Sperk, G

    2016-02-01

    While anxiety disorders are the brain disorders with the highest prevalence and constitute a major burden for society, a considerable number of affected people are still treated insufficiently. Thus, in an attempt to identify potential new anxiolytic drug targets, neuropeptides have gained considerable attention in recent years. Compared to classical neurotransmitters they often have a regionally restricted distribution and may bind to several distinct receptor subtypes. Neuropeptide Y (NPY) is a highly conserved neuropeptide that is specifically concentrated in limbic brain areas and signals via at least 5 different G-protein-coupled receptors. It is involved in a variety of physiological processes including the modulation of emotional-affective behaviors. An anxiolytic and stress-reducing property of NPY is supported by many preclinical studies. Whether NPY may also interact with processing of learned fear and fear extinction is comparatively unknown. However, this has considerable relevance since pathological, inappropriate and generalized fear expression and impaired fear extinction are hallmarks of human post-traumatic stress disorder and a major reason for its treatment-resistance. Recent evidence from different laboratories emphasizes a fear-reducing role of NPY, predominantly mediated by exogenous NPY acting on Y1 receptors. Since a reduction of fear expression was also observed in Y1 receptor knockout mice, other Y receptors may be equally important. By acting on Y2 receptors, NPY promotes fear extinction and generates a long-term suppression of fear, two important preconditions that could support cognitive behavioral therapies in human patients. A similar effect has been demonstrated for the closely related pancreatic polypeptide (PP) when acting on Y4 receptors. Preliminary evidence suggests that NPY modulates fear in particular by activation of Y1 and Y2 receptors in the basolateral and central amygdala, respectively. In the basolateral amygdala, NPY

  20. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  1. Exposure to Novelty Weakens Conditioned Fear in Long-Evans Rats

    ERIC Educational Resources Information Center

    Anderson, Matthew J.; Burpee, Tara E.; Wall, Matthew J.; McGraw, Justin J.

    2013-01-01

    The present study sought to determine whether post-training exposure to a novel or familiar object, encountered in either the location of the original fear conditioning (black compartment of a passive avoidance {PA} chamber) or in a neutral setting (open field where initial object training had occurred) would prove capable of reducing fear at…

  2. Systemic Blockade of D2-Like Dopamine Receptors Facilitates Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized…

  3. Fear generalization in humans: impact of feature learning on conditioning and extinction.

    PubMed

    Vervliet, Bram; Geens, Maarten

    2014-09-01

    Little is known about the role of discrete stimulus features in the regulation of fear. This study examined the effects of feature learning on the acquisition and extinction of fear conditioning. Human participants were fear conditioned to a yellow triangle (CS+) using an electrical shock. We manipulated feature learning through differential conditioning. The nonconditioned control stimulus (CS-) was a red triangle in one group (Color-Relevant), but a yellow circle in the other group (Shape-Relevant). Next, two generalization stimuli were tested that shared the shape- or color-feature with the CS+ (a blue triangle and a yellow square). Online shock-expectancy ratings and skin conductance responding showed that the CS- determined the pattern of fear generalization: the same-color stimulus elicited more fear in Group Color-Relevant, versus the same-shape stimulus in group Shape-Relevant. Furthermore, extinguishing these two generalization stimuli had no detectable effect on fear of the CS+. These results show that fear generalization is influenced by feature learning through differential conditioning, and that exposures to different features of a stimulus are not sufficient to extinguish fear of that stimulus as a whole. PMID:24120427

  4. Impairments in Fear Conditioning in Mice Lacking the nNOS Gene

    ERIC Educational Resources Information Center

    Kelley, Jonathan B.; Balda, Mara A.; Anderson, Karen L.; Itzhak, Yossef

    2009-01-01

    The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic…

  5. Onset and Offset of Aversive Events Establish Distinct Memories Requiring Fear and Reward Networks

    ERIC Educational Resources Information Center

    Andreatta, Marta; Fendt, Markus; Muhlberger, Andreas; Wieser, Matthias J.; Imobersteg, Stefan; Yarali, Ayse; Gerber, Bertram; Pauli, Paul

    2012-01-01

    Two things are worth remembering about an aversive event: What made it happen? What made it cease? If a stimulus precedes an aversive event, it becomes a signal for threat and will later elicit behavior indicating conditioned fear. However, if the stimulus is presented upon cessation of the aversive event, it elicits behavior indicating…

  6. Memory Retrieval before or after Extinction Reduces Recovery of Fear in Adolescent Rats

    ERIC Educational Resources Information Center

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2013-01-01

    Adolescent rats exhibit impaired extinction retention compared to pre-adolescent and adult rats. A single nonreinforced exposure to the conditioned stimulus (CS; a retrieval trial) given shortly before extinction has been shown in some circumstances to reduce the recovery of fear after extinction in adult animals. This study investigated whether a…

  7. Sleep deprivation impairs contextual fear conditioning and attenuates subsequent behavioural, endocrine and neuronal responses.

    PubMed

    Hagewoud, Roelina; Bultsma, Lillian J; Barf, R Paulien; Koolhaas, Jaap M; Meerlo, Peter

    2011-06-01

    Sleep deprivation (SD) affects hippocampus-dependent memory formation. Several studies in rodents have shown that brief SD immediately following a mild foot shock impairs consolidation of contextual fear memory as reflected in a reduced behavioural freezing response during re-exposure to the shock context later. In the first part of this study, we examined whether this reduced freezing response is accompanied by an attenuated fear-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis. Results show that 6h of SD immediately following the initial shock results in a diminished adrenal corticosterone (CORT) response upon re-exposure to the shock context the next day. In the second part, we established whether the attenuated freezing response in SD animals is associated with reduced activation of relevant brain areas known to be involved in the retrieval and expression of fear memory. Immunohistochemical analysis of brain slices showed that the normal increase in phosphorylation of the transcription factor 3',5'-cyclic AMP response-element binding protein (CREB) upon re-exposure to the shock context was reduced in SD animals in the CA1 region of the hippocampus and in the amygdala. In conclusion, brief SD impairs the consolidation of contextual fear memory. Upon re-exposure to the context, this is reflected in a diminished behavioural freezing response, an attenuated HPA axis response and a reduction of the normal increase of phosphorylated CREB expression in the hippocampus and amygdala. PMID:20946438

  8. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  9. Different brain networks underlying the acquisition and expression of contextual fear conditioning: a metabolic mapping study.

    PubMed

    González-Pardo, H; Conejo, N M; Lana, G; Arias, J L

    2012-01-27

    The specific brain regions and circuits involved in the acquisition and expression of contextual fear conditioning are still a matter of debate. To address this issue, regional changes in brain metabolic capacity were mapped during the acquisition and expression of contextual fear conditioning using cytochrome oxidase (CO) quantitative histochemistry. In comparison with a group briefly exposed to a conditioning chamber, rats that received a series of randomly presented footshocks in the same conditioning chamber (fear acquisition group) showed increased CO activity in anxiety-related brain regions like the ventral periaqueductal gray, the ventral hippocampus, the lateral habenula, the mammillary bodies, and the laterodorsal thalamic nucleus. Another group received randomly presented footshocks, and it was re-exposed to the same conditioning chamber one week later (fear expression group). The conditioned group had significantly higher CO activity as compared with the matched control group in the following brain regions: the ventral periaqueductal gray, the central and lateral nuclei of the amygdala, and the bed nucleus of the stria terminalis. In addition, analysis of functional brain networks using interregional CO activity correlations revealed different patterns of functional connectivity between fear acquisition and fear expression groups. In particular, a network comprising the ventral hippocampus and amygdala nuclei was found in the fear acquisition group, whereas a closed reciprocal dorsal hippocampal network was detected in the fear expression group. These results suggest that contextual fear acquisition and expression differ as regards to the brain networks involved, although they share common brain regions involved in fear, anxiety, and defensive behavior. PMID:22173014

  10. The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear.

    PubMed

    Schmidt, K; Forkmann, K; Sinke, C; Gratz, M; Bitz, A; Bingel, U

    2016-07-01

    Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance. PMID:27015710

  11. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory

    PubMed Central

    Hait, Nitai C; Wise, Laura E; Allegood, Jeremy C; O’Brien, Megan; Avni, Dorit; Reeves, Thomas M; Knapp, Pamela E; Lu, Junyan; Luo, Cheng; Miles, Michael F; Milstien, Sheldon; Lichtman, Aron H; Spiegel, Sarah

    2014-01-01

    FTY720 (fingolimod), an FDA-approved drug for treatment of multiple sclerosis, has beneficial effects in the CNS that are not yet well understood, independent of its effects on immune cell trafficking. We show that FTY720 enters the nucleus, where it is phosphorylated by sphingosine kinase 2 (SphK2), and that nuclear FTY720-P binds and inhibits class I histone deacetylases (HDACs), enhancing specific histone acetylations. FTY720 is also phosphorylated in mice and accumulates in the brain, including the hippocampus, inhibits HDACs and enhances histone acetylation and gene expression programs associated with memory and learning, and rescues memory deficits independently of its immunosuppressive actions. Sphk2−/− mice have lower levels of hippocampal sphingosine-1-phosphate, an endogenous HDAC inhibitor, and reduced histone acetylation, and display deficits in spatial memory and impaired contextual fear extinction. Thus, sphingosine-1-phosphate and SphK2 play specific roles in memory functions and FTY720 may be a useful adjuvant therapy to facilitate extinction of aversive memories. PMID:24859201

  12. Brain Structure Correlates of Individual Differences in the Acquisition and Inhibition of Conditioned Fear

    PubMed Central

    Hartley, Catherine A.; Fischl, Bruce

    2011-01-01

    Research employing aversive conditioning paradigms has elucidated the neurocircuitry involved in acquiring and diminishing fear responses. However, the factors underlying individual differences in fear acquisition and inhibition are not presently well understood. In this study, we explored whether the magnitude of individuals' acquired fear responses and the modulation of these responses via 2 fear reduction methods were correlated with structural differences in brain regions involved in affective processing. Physiological and structural magnetic resonance imaging data were obtained from experiments exploring extinction retention and intentional cognitive regulation. Our results identified 2 regions in which individual variation in brain structure correlated with subjects' fear-related arousal. Confirming previous results, increased thickness in ventromedial prefrontal cortex was correlated with the degree of extinction retention. Additionally, subjects with greater thickness in the posterior insula exhibited larger conditioned responses during acquisition. The data suggest a trend toward a negative correlation between amygdala volume and fear acquisition magnitude. There was no significant correlation between fear reduction via cognitive regulation and thickness in our prefrontal regions of interest. Acquisition and regulation measures were uncorrelated, suggesting that while certain individuals may have a propensity toward increased expression of conditioned fear, these responses can be diminished via both extinction and cognitive regulation. PMID:21263037

  13. Different components of conditioned food aversion memory.

    PubMed

    Nikitin, Vladimir P; Solntseva, Svetlana V; Kozyrev, Sergey A; Nikitin, Pavel V; Shevelkin, Alexey V

    2016-07-01

    Memory reconsolidation processes and protein kinase Mzeta (PKMzeta) activity in memory maintenance and reorganization are poorly understood. Therefore, we examined memory reconsolidation and PKMzeta activity during the maintenance and reorganization of a conditioned food aversion memory among snails. These processes were specifically evaluated after administration of a serotonin receptor antagonist (methiothepin), NMDA glutamate receptor antagonist (MK-801), protein synthesis inhibitor (cycloheximide; CYH), or PKMzeta inhibitor (zeta inhibitory peptide; ZIP) either 2 or 10 days after aversion training. Two days post-training, injections of MK-801 or CYH, combined with a conditioned stimulus reminder, caused amnesia development, and a second training 11 days after this induction did not lead to long-term memory formation. Interestingly, MK-801 or CYH injections and the reminder 10 days after training did not affect memory retrieval. Methiothepin and the reminder, or ZIP without the reminder, at 2 and 10 days after training led to memory impairment, while a second training 11 days after amnesia induction resulted in memory formation. These results suggest that the maintenance of a conditioned food aversion involves two different components with variable dynamics. One component could be characterized by memory strengthening over time and involve N-methyl-D-aspartate receptors and protein synthesis reconsolidation at early, but not late, training stages. The other memory component could involve serotonin-dependent reconsolidation and Mzeta-like kinase activity at both early and late stages after learning. Deficiencies within these two components led to various forms of memory impairment, which differed in terms of the formation of a conditioned food aversion during the second training. PMID:27017957

  14. The Impact of Instructions on Generalization of Conditioned Fear in Humans.

    PubMed

    Ahmed, Ola; Lovibond, Peter F

    2015-09-01

    Generalization of conditioned fear has been implicated in the maintenance and proliferation of fear in anxiety disorders. The role of cognitive processes in generalization of conditioning is an important yet understudied issue. Vervliet et al. (2010) tested generalization of fear to a visual stimulus of a particular color and shape paired with electric shock. Test stimuli shared either the color or shape of the CS+. Prior to conditioning, participants were instructed that either color or shape would be predictive of shock. Generalization was stronger to the stimulus containing the instructed feature, suggesting that instructions impacted generalization of fear. However, the result may also reflect the impact of instructions on attention and learning during the conditioning phase. In the present study, the instructional manipulation was given after the conditioning phase to control for any impact of instructions on learning. A similar result to that reported by Vervliet et al. was observed. On self-reported expectancy of shock, generalization was greater to the test stimulus that included the instructed stimulus feature. The same pattern was observed on skin conductance, although it did not reach statistical significance. The findings indicate that explicitly instructed information affected generalization of conditioned fear independently of any impact on learning, pointing to the role of cognitive processes in human fear generalization. They also support the utility of cognitive therapy approaches, which are employed after fear has already developed, in addressing clinical overgeneralization. PMID:26459840

  15. Acquired fears reflected in cortical sensory processing: A review of electrophysiological studies of human classical conditioning

    PubMed Central

    Miskovic, Vladimir; Keil, Andreas

    2012-01-01

    The capacity to associate neutral stimuli with affective value is an important survival strategy that can be accomplished by cell assemblies obeying Hebbian learning principles. In the neuroscience laboratory, classical fear conditioning has been extensively used as a model to study learning related changes in neural structure and function. Here, we review the effects of classical fear conditioning on electromagnetic brain activity in humans, focusing on how sensory systems adapt to changing fear-related contingencies. By considering spatio-temporal patterns of mass neuronal activity we illustrate a range of cortical changes related to a retuning of neuronal sensitivity to amplify signals consistent with fear-associated stimuli at the cost of other sensory information. Putative mechanisms that may underlie fear-associated plasticity at the level of the sensory cortices are briefly considered and several avenues for future work are outlined. PMID:22891639

  16. Context Preexposure Prevents Forgetting of a Contextual Fear Memory: Implication for Regional Changes in Brain Activation Patterns Associated with Recent and Remote Memory Tests

    ERIC Educational Resources Information Center

    Biedenkapp, Joseph C.; Rudy, Jerry W.

    2007-01-01

    Contextual fear conditioning was maintained over a 15-day retention interval suggesting no forgetting of the conditioning experience. However, a more subtle generalization test revealed that, as the retention interval increased, rats showed enhanced generalized fear to an altered context. Preexposure to the training context prior to conditioning,…

  17. The E3 ligase APC/C-Cdh1 is required for associative fear memory and long-term potentiation in the amygdala of adult mice.

    PubMed

    Pick, Joseph E; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating knockout mice where Cdh1 was conditionally eliminated from the forebrain post-developmentally. Although spatial learning and memory in the Morris water maze (MWM) was normal, the Cdh1 conditional knockout (cKO) mice displayed enhanced reversal learning in the MWM and in a water-based Y maze. In addition, we found that the Cdh1 cKO mice had impaired associative fear memory and exhibited impaired long-term potentiation (LTP) in amygdala slices. Finally, we observed increased expression of Shank1 and NR2A expression in amygdalar slices from the Cdh1 cKO mice following the induction of LTP, suggesting a possible molecular mechanism underlying the behavioral and synaptic plasticity impairments displayed in these mice. Our findings are consistent with a role for the APC/C-Cdh1 in fear memory and synaptic plasticity in the amygdala. PMID:23242419

  18. Sonic hedgehog signaling regulates amygdalar neurogenesis and extinction of fear memory.

    PubMed

    Hung, Hui-Chi; Hsiao, Ya-Hsin; Gean, Po-Wu

    2015-10-01

    It is now recognized that neurogenesis occurs throughout life predominantly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. In the present study, we investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with 5-bromo-3-deoxyuridine (BrdU). BrdU-positive and NeuN-positive cells were analyzed 52 days after the training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU(+)/NeuN(+) cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. Proliferation inhibitor methylazoxymethanol acetate (MAM) or DNA synthesis inhibitor cytosine arabinoside (Ara-C) reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with short hairpin interfering RNA (shRNA) by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory. PMID:26271722

  19. Maltreatment Exposure, Brain Structure, and Fear Conditioning in Children and Adolescents.

    PubMed

    McLaughlin, Katie A; Sheridan, Margaret A; Gold, Andrea L; Duys, Andrea; Lambert, Hilary K; Peverill, Matthew; Heleniak, Charlotte; Shechner, Tomer; Wojcieszak, Zuzanna; Pine, Daniel S

    2016-07-01

    Alterations in learning processes and the neural circuitry that supports fear conditioning and extinction represent mechanisms through which trauma exposure might influence risk for psychopathology. Few studies examine how trauma or neural structure relates to fear conditioning in children. Children (n=94) aged 6-18 years, 40.4% (n=38) with exposure to maltreatment (physical abuse, sexual abuse, or domestic violence), completed a fear conditioning paradigm utilizing blue and yellow bells as conditioned stimuli (CS+/CS-) and an aversive alarm noise as the unconditioned stimulus. Skin conductance responses (SCR) and self-reported fear were acquired. Magnetic resonance imaging data were acquired from 60 children. Children without maltreatment exposure exhibited strong differential conditioning to the CS+ vs CS-, based on SCR and self-reported fear. In contrast, maltreated children exhibited blunted SCR to the CS+ and failed to exhibit differential SCR to the CS+ vs CS- during early conditioning. Amygdala and hippocampal volume were reduced among children with maltreatment exposure and were negatively associated with SCR to the CS+ during early conditioning in the total sample, although these associations were negative only among non-maltreated children and were positive among maltreated children. The association of maltreatment with externalizing psychopathology was mediated by this perturbed pattern of fear conditioning. Child maltreatment is associated with failure to discriminate between threat and safety cues during fear conditioning in children. Poor threat-safety discrimination might reflect either enhanced fear generalization or a deficit in associative learning, which may in turn represent a central mechanism underlying the development of maltreatment-related externalizing psychopathology in children. PMID:26677946

  20. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex–Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices

    PubMed Central

    Song, Chenghui; Ehlers, Vanessa L.

    2015-01-01

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC–BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted <10 d). Together, these data suggest that intrinsic plasticity within mPFC–BLA projection neurons occurs in a subregion- and cell-type-specific manner during acquisition, consolidation, and extinction of trace fear conditioning. SIGNIFICANCE STATEMENT Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel

  1. Fear conditioning enhances gamma oscillations and their entrainment of neurons representing the conditioned stimulus

    PubMed Central

    Headley, Drew B.; Weinberger, Norman M.

    2013-01-01

    Learning alters the responses of neurons in the neocortex, typically strengthening their encoding of behaviorally relevant stimuli. These enhancements are extensively studied in the auditory cortex by characterizing changes in firing rates and evoked potentials. However, synchronous activity is also important for the processing of stimuli, especially the relationship between gamma oscillations in the local field potential and spiking. We investigated whether tone/shock fear conditioning in rats, a task known to alter responses in auditory cortex, also modified the relationship between gamma and unit activity. A boost in gamma oscillations developed, especially at sites tuned near the tone, and strengthened across multiple conditioning sessions. Unit activity became increasingly phase-locked to gamma, with sites tuned near the tone developing enhanced phase-locking during the tone, while those tuned away maintained a tendency to decrease their phase-locking. Enhancements in the coordination of spiking between sites tuned near the tone developed within the first conditioning session, and remained throughout the rest of training. Enhanced cross-covariances in unit activity were strongest for subjects that exhibited robust conditioned fear. These results illustrate that changes in sensory cortex during associative learning extend to the coordination of neurons encoding the relevant stimulus, with implications for how it is processed downstream. PMID:23536084

  2. [Suppression of conditioned fear by administration of CCKB receptor antagonist PD135158].

    PubMed

    Tsutsumi, T; Isogawa, K; Kouno, Y; Hikichi, T; Nagayama, H; Akiyoshi, J

    1998-02-01

    The aim of this study is to determine whether or not CCKB receptor antagonist PD135158 suppresses conditioned fear. Rats were individually subjected to 30 min of inescapable electric footshock in a chamber with a grid floor. PD135158 or the vehicle was administered 30 min before placing the rats in the shock chamber again. The rats were observed for 5 min without receiving shock. The administration of PD135158 30 min before conditioned-fear stress significantly reduced freezing behavior. PD135158 blocked the expression of conditioned fear. PD135158 was again administered 30 min before footshock. Then, the rats were individually subjected to 30 min of inescapable electric footshock in the shock chamber. Twenty-four hours after receiving footshock, the rats were again placed in the shock chamber and observed for 5 min without shock administration. The administration of PD135158 30 min before footshock significantly reduced conditioned freezing. PD135158 blocked the anxiety of conditioned fear. PD135158 blocked not only the anxiety, but also the expression of conditioned fear. These results suggest that CCKB receptor might play an important role in conditioned-fear stress. They indicate that CCKB receptor is related to anxiety. PMID:9592807

  3. Modulation of Gene Expression in Contextual Fear Conditioning in the Rat

    PubMed Central

    Macchi, Monica; Ciampini, Cristina; Bernardi, Rodolfo; Baldi, Elisabetta; Bucherelli, Corrado; Brunelli, Marcello; Scuri, Rossana

    2013-01-01

    In contextual fear conditioning (CFC) a single training leads to long-term memory of context-aversive electrical foot-shocks association. Mid-temporal regions of the brain of trained and naive rats were obtained 2 days after conditioning and screened by two-directional suppression subtractive hybridization. A pool of differentially expressed genes was identified and some of them were randomly selected and confirmed with qRT-PCR assay. These transcripts showed high homology for rat gene sequences coding for proteins involved in different cellular processes. The expression of the selected transcripts was also tested in rats which had freely explored the experimental apparatus (exploration) and in rats to which the same number of aversive shocks had been administered in the same apparatus, but temporally compressed so as to make the association between painful stimuli and the apparatus difficult (shock-only). Some genes resulted differentially expressed only in the rats subjected to CFC, others only in exploration or shock-only rats, whereas the gene coding for translocase of outer mitochondrial membrane 20 protein and nardilysin were differentially expressed in both CFC and exploration rats. For example, the expression of stathmin 1 whose transcripts resulted up regulated was also tested to evaluate the transduction and protein localization after conditioning. PMID:24278235

  4. Possible involvement of hippocampal immediate-early genes in contextual fear memory deficit induced by cranial irradiation.

    PubMed

    Son, Yeonghoon; Kang, Sohi; Kim, Jinwook; Lee, Sueun; Kim, Jong-Choon; Kim, Sung-Ho; Kim, Joong-Sun; Jo, Sung-Kee; Jung, Uhee; Youn, BuHyun; Shin, Taekyun; Yang, Miyoung; Moon, Changjong

    2016-09-01

    Cranial irradiation can trigger adverse effects on brain functions, including cognitive ability. However, the cellular and molecular mechanisms underlying radiation-induced cognitive impairments remain still unknown. Immediate-early genes (IEGs) are implicated in neuronal plasticity and the related functions (i.e., memory formation) in the hippocampus. The present study quantitatively assessed changes in the mRNA and protein levels of the learning-induced IEGs, including Arc, c-fos, and zif268, in the mouse hippocampus after cranial irradiation using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry, respectively. Mice (male, 8-week-old C57BL/6) received whole-brain irradiation with 0 or 10Gy of gamma-ray and, 2weeks later, contextual fear conditioning (CFC) was used to induce IEGs. In the CFC task, mice evaluated 2weeks after irradiation exhibited significant memory deficits compared with sham (0Gy)-irradiated controls. The levels of mRNA encoding IEGs were significantly upregulated in the hippocampus 10 and 30min after CFC training. The mRNA levels in the irradiated hippocampi were significantly lower than those in the sham-irradiated controls. The IEG protein levels were significantly increased in all hippocampal regions, including the hippocampal dentate gyrus, cornu ammonis (CA)1, and CA3, after CFC training. The CFC-induced upregulation of Arc and c-fos in 10Gy-irradiated hippocampi was significantly lower than that in sham-irradiated controls, although there were no significant differences in the protein levels of the learning-induced zif268 between sham-irradiated and 10Gy-irradiated hippocampi. Thus, cranial irradiation with 10Gy of gamma-ray impairs the induction of hippocampal IEGs (particularly Arc and c-fos) via behavioral contextual fear memory, and this disturbance may be associated with the memory deficits evident in mice after cranial irradiation, possibly through the dysregulation of neuronal

  5. The influence of acute stress on the regulation of conditioned fear

    PubMed Central

    Raio, Candace M.; Phelps, Elizabeth A.

    2014-01-01

    Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology. PMID:25530986

  6. Social fear conditioning: a novel and specific animal model to study social anxiety disorder.

    PubMed

    Toth, Iulia; Neumann, Inga D; Slattery, David A

    2012-05-01

    Social anxiety disorder (SAD) is a major health concern with high lifetime prevalence. The current medication is rather unspecific and, despite considerable efforts, its efficacy is still unsatisfactory. However, there are no appropriate and specific animal models available to study the underlying etiology of the disorder. Therefore, we aimed to establish a model of specific social fear in mice and use this social fear conditioning (SFC) model to assess the therapeutic efficacy of the benzodiazepine diazepam and of the antidepressant paroxetine; treatments currently used for SAD patients. We show that by administering electric foot shocks (2-5, 1 s, 0.7 mA) during the investigation of a con-specific, the investigation of unfamiliar con-specifics was reduced for both the short- and long-term, indicating lasting social fear. The induced fear was specific to social stimuli and did not lead to other behavioral alterations, such as fear of novelty, general anxiety, depression, and impaired locomotion. We show that social fear was dose-dependently reversed by acute diazepam, at doses that were not anxiolytic in a non-social context, such as the elevated plus maze. Finally, we show that chronic paroxetine treatment reversed social fear. All in all, we demonstrated robust social fear after exposure to SFC in mice, which was reversed with both acute benzodiazepine and chronic antidepressant treatment. We propose the SFC model as an appropriate animal model to identify the underlying etiology of SAD and possible novel treatment approaches. PMID:22237310

  7. Corticotropin releasing factor type-1 receptor antagonism in the dorsolateral bed nucleus of the stria terminalis disrupts contextually conditioned fear, but not unconditioned fear to a predator odor.

    PubMed

    Asok, Arun; Schulkin, Jay; Rosen, Jeffrey B

    2016-08-01

    The bed nucleus of the stria terminalis (BNST) plays a critical role in fear and anxiety. The BNST is important for contextual fear learning, but the mechanisms regulating this function remain unclear. One candidate mechanism is corticotropin-releasing-factor (CRF) acting at CRF type 1 receptors (CRFr1s). Yet, there has been little progress in elucidating if CRFr1s in the BNST are involved in different types of fear (conditioned and/or unconditioned). Therefore, the present study investigated the effect of antalarmin, a potent CRFr1 receptor antagonist, injected intracerebroventricularly (ICV) and into the dorsolateral BNST (LBNST) during single trial contextual fear conditioning or exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Neither ICV nor LBNST antalarmin disrupted unconditioned freezing to TMT. In contrast, ICV and LBNST antalarmin disrupted the retention of contextual fear when tested 24h later. Neither ICV nor LBNST antalarmin affected baseline or post-shock freezing-indicating antalarmin does not interfere with the early phases of contextual fear acquisition. Antalarmin did not (1) permanently affect the ability to learn and express contextual fear, (2) change responsivity to footshocks, or (3) affect the ability to freeze. Our findings highlight an important role for CRFr1s within the LBNST during contextually conditioned fear, but not unconditioned predator odor fear. PMID:27153520

  8. Limbic but not non-limbic kindling impairs conditioned fear and promotes plasticity of NPY and its Y2 receptor.

    PubMed

    Botterill, J J; Guskjolen, A J; Marks, W N; Caruncho, H J; Kalynchuk, L E

    2015-11-01

    Epileptic seizures negatively affect cognition. However, the mechanisms that contribute to cognitive impairments after seizures are largely unknown. Here, we examined the effects of long-term kindling (i.e., 99 stimulations) of limbic (basolateral amygdala, dorsal hippocampus) and non-limbic (caudate nucleus) brain sites on conditioned fear and hippocampal plasticity. We first showed that kindling had no effect on acquisition of a hippocampal-dependent trace fear-conditioning task but limbic kindling impaired the retrieval of these fear memories. To determine the relationship between memory and hippocampal neuronal activity, we examined the expression of Fos protein 90 min after memory retrieval (i.e., 4 days after the last kindling stimulation). We found that limbic kindling, but not non-limbic kindling, decreased Fos expression in the granule cell layer, hilus, CA3 pyramidal cell layer, and CA1 pyramidal cell layer. Next, to investigate a mechanism that could contribute to dampen hippocampal neuronal activity in limbic-kindled rats, we focused on the endogenous anticonvulsant neuropeptide Y (NPY), which is expressed in a subset of GABAergic interneurons and can prevent glutamate release through interactions with its Y2 receptor. We found that limbic kindling significantly decreased the number of NPY-immunoreactive cells in several hippocampal subfields despite minimal staining of the neurodegenerative marker Fluoro-Jade B. However, we also noted that limbic kindling enhanced NPY immunoreactivity throughout the mossy fiber pathway. In these same regions, we observed limbic kindling-induced de novo expression of the NPY Y2 receptor. These novel findings demonstrate the site-specific effects of kindling on cognition and NPY plasticity, and they provide evidence that altered hippocampal NPY after limbic seizures coincides with dampened neural activity and cognitive impairments. PMID:25146309

  9. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders.

    PubMed

    Kutlu, Munir Gunes; Gould, Thomas J

    2015-10-15

    Anxiety disorders are a group of crippling mental diseases affecting millions of Americans with a 30% lifetime prevalence and costs associated with healthcare of $42.3 billion. While anxiety disorders show high levels of co-morbidity with smoking (45.3% vs. 22.5% in healthy individuals), they are also more common among the smoking population (22% vs. 11.1% in the non-smoking population). Moreover, there is clear evidence that smoking modulates symptom severity in patients with anxiety disorders. In order to better understand this relationship, several animal paradigms are used to model several key symptoms of anxiety disorders; these include fear conditioning and measures of anxiety. Studies clearly demonstrate that nicotine mediates acquisition and extinction of fear as well as anxiety through the modulation of specific subtypes of nicotinic acetylcholine receptors (nAChRs) in brain regions involved in emotion processing such as the hippocampus. However, the direction of nicotine's effects on these behaviors is determined by several factors that include the length of administration, hippocampus-dependency of the fear learning task, and source of anxiety (novelty-driven vs. social anxiety). Overall, the studies reviewed here suggest that nicotine alters behaviors related to fear and anxiety and that nicotine contributes to the development, maintenance, and reoccurrence of anxiety disorders. PMID:26231942

  10. Estrogen and Extinction of Fear Memories: Implications for Posttraumatic Stress Disorder Treatment

    PubMed Central

    Glover, Ebony M.; Jovanovic, Tanja; Norrholm, Seth Davin

    2015-01-01

    Posttraumatic stress disorder (PTSD) is a psychiatric illness whose prevalence in women is more than twice the rate as men. Despite a burgeoning literature characterizing sex differences in PTSD incidence and its disproportionate burden on society, there is a dearth of literature describing biological mechanisms underlying these disparities. However, the recent identification of biomarkers of PTSD by translational neuroscientists offers a promising opportunity to explore sex interactions in PTSD phenotypes. A notable observation is that individuals with PTSD show deficits in their ability to inhibit conditioned fear responding after extinction training. Given that extinction procedures, via exposure-based cognitive behavioral therapy, make up one of the predominant modes of treatment in PTSD, there is a critical need for more research on sex interactions in this form of fear regulation. An emerging hypothesis is that fluctuating gonadal hormones, especially estrogen, in the menstrual cycle may play a critical role in fear extinction and, hence, PTSD vulnerability and symptom severity in women. The current review discusses how the study of putative activational effects of estrogen on fear extinction may be harnessed to advance the search for better treatments for PTSD in women. We conclude that estrogen treatment may be a putative pharmacological adjunct in extinction based therapies, and should be tracked in the menstrual cycle during the course of PTSD treatment. PMID:25796471

  11. Estrogen and extinction of fear memories: implications for posttraumatic stress disorder treatment.

    PubMed

    Glover, Ebony M; Jovanovic, Tanja; Norrholm, Seth Davin

    2015-08-01

    Posttraumatic stress disorder (PTSD) is a psychiatric illness whose prevalence in women is more than twice the rate as men. Despite a burgeoning literature characterizing sex differences in PTSD incidence and its disproportionate burden on society, there is a dearth of literature describing biological mechanisms underlying these disparities. However, the recent identification of biomarkers of PTSD by translational neuroscientists offers a promising opportunity to explore sex interactions in PTSD phenotypes. A notable observation is that individuals with PTSD show deficits in their ability to inhibit conditioned fear responding after extinction training. Given that extinction procedures, via exposure-based cognitive behavioral therapy, make up one of the predominant modes of treatment in PTSD, there is a critical need for more research on sex interactions in this form of fear regulation. An emerging hypothesis is that fluctuating gonadal hormones, especially estrogen, in the menstrual cycle may play a critical role in fear extinction and, hence, PTSD vulnerability and symptom severity in women. The current review discusses how the study of putative activational effects of estrogen on fear extinction may be harnessed to advance the search for better treatments for PTSD in women. We conclude that estrogen treatment may be a putative pharmacologic adjunct in extinction-based therapies and should be tracked in the menstrual cycle during the course of PTSD treatment. PMID:25796471

  12. The Role of Nucleus Accumbens Shell in Learning about Neutral versus Excitatory Stimuli during Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Bradfield, Laura A.; McNally, Gavan P.

    2010-01-01

    We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…

  13. Right-sided human prefrontal brain activation during acquisition of conditioned fear.

    PubMed

    Fischer, Håkan; Andersson, Jesper L R; Furmark, Tomas; Wik, Gustav; Fredrikson, Mats

    2002-09-01

    This H2(15)O positron emission tomography (PET) study reports on relative regional cerebral blood flow (rCBF) alterations during fear conditioning in humans. In the PET scanner, subjects viewed a TV screen with either visual white noise or snake videotapes displayed alone, then with electric shocks, followed by final presentations of white noise and snakes. Autonomic nervous system responses confirmed fear conditioning only to snakes. To reveal neural activation during acquisition, while equating sensory stimulation, scans during snakes with shocks and white noise alone were contrasted against white noise with shocks and snakes alone. During acquisition, rCBF increased in the right medial frontal gyrus, supporting a role for the prefrontal cortex in fear conditioning to unmasked evolutionary fear-relevant stimuli. PMID:12899356

  14. Correlations between psychological tests and physiological responses during fear conditioning and renewal

    PubMed Central

    2012-01-01

    Background Anxiety disorders are characterized by specific emotions, thoughts and physiological responses. Little is known, however, about the relationship between psychological/personality indices of anxiety responses to fear stimuli. Methods We studied this relationship in healthy subjects by comparing scores on psychological and personality questionnaires with results of an experimental fear conditioning paradigm using a visual conditioned stimulus (CS). We measured skin conductance response (SCR) during habituation, conditioning, and extinction; subsequently testing for recall and renewal of fear 24 hours later. Results We found that multiple regression models explained 45% of the variance during conditioning to the CS+, and 24% of the variance during renewal of fear to the CS+. Factors that explained conditioning included lower levels of conscientiousness, increased baseline reactivity (SCL), and response to the shock (UCR). Low levels of extraversion correlated with greater renewal. No model could be found to explain extinction learning or extinction recall to the CS+. Conclusions The lack of correlation of fear extinction with personality and neuropsychological indices suggests that extinction may be less determined by trait variables and cognitive state, and may depend more on the subject’s current emotional state. The negative correlation between fear renewal and extraversion suggests that this personality characteristic may protect against post-treatment relapse of symptoms of anxiety disorders. PMID:22985550

  15. Alterations in fear response and spatial memory in pre- and post-natal zinc supplemented rats: remediation by copper.

    PubMed

    Railey, Angela M; Micheli, Teresa L; Wanschura, Patricia B; Flinn, Jane M

    2010-05-11

    The role of zinc in the nervous system is receiving increased attention. At a time when dietary fortification and supplementation have increased the amount of zinc being consumed, little work has been done on the effects of enhanced zinc on behavior. Both zinc and copper are essential trace minerals that are acquired from the diet; under normal conditions the body protects against zinc overload, but at excessive dosages, copper deficiency has been seen. In order to examine the effect of enhanced metal administration on learning and memory, Sprague Dawley rats were given water supplemented with 10ppm Zn, 10ppm Zn+0.25ppm Cu, or normal lab water, during pre- and post-natal development. Fear conditioning tests at 4months showed significantly higher freezing rates during contextual retention and extinction and cued extinction for rats drinking water supplemented with zinc, suggesting increased anxiety compared to controls raised on lab water. During the MWM task at 9months, zinc-enhanced rats had significantly longer latencies to reach the platform compared to controls. The addition of copper to the zinc supplemented water brought freezing and latency levels closer to that of controls. These data demonstrate the importance of maintaining appropriate intake of both metals simultaneously, and show that long-term supplementation with zinc may cause alterations in memory. PMID:20159028

  16. Post-Session Administration of USP Methylene Blue Facilitates the Retention of Pathological Fear Extinction and Contextual Memory in Phobic Adults

    PubMed Central

    Telch, Michael J.; Bruchey, Aleksandra K.; Rosenfield, David; Cobb, Adam R.; Smits, Jasper; Pahl, Sandra; Gonzalez-Lima, F.

    2015-01-01

    Objective Preclinical studies have shown that low-dose USP methylene blue increases mitochondrial cytochrome oxidase activity in the brain and improves memory retention after learning tasks, including fear extinction. We report on the first controlled experiment to examine the memory-enhancing effects of post-training methylene blue administration on retention of fear extinction and contextual memory following fear extinction training. Method Adults (N = 42) displaying marked claustrophobic fear were randomized to double-blind administration of 260 mg of methylene blue versus placebo immediately following six five-minute extinction trials to an enclosed chamber. Retesting occurred one month later to assess fear renewal as indexed by peak fear during exposure to a non-trained enclosed chamber with the prediction that methylene blue's effects would vary as a function of fear reduction achieved during extinction training. Incidental contextual memory was assessed 1 and 30 days after training to assess the cognitive enhancing effects of methylene blue independent of its effects on fear attenuation. Results Consistent with predictions, participants displaying low end fear at post-training showed significantly less fear at follow-up if they received methylene blue post-training relative to placebo. In contrast, participants displaying moderate to high levels of post-training fear tended to fare worse at follow-up relative to placebo. Methylene blue's enhancement of contextual memory was unrelated to initial or post-training claustrophobic fear. Conclusions Methylene blue enhances memory and the retention of fear extinction when administered after a successful exposure session, but may have a deleterious effect on extinction when administered after an unsuccessful exposure session. PMID:25018057

  17. Exposure to a Fearful Context during Periods of Memory Plasticity Impairs Extinction via Hyperactivation of Frontal-Amygdalar Circuits

    ERIC Educational Resources Information Center

    Stafford, James M.; Maughan, DeeAnna K.; Ilioi, Elena C.; Lattal, K. Matthew

    2013-01-01

    An issue of increasing theoretical and translational importance is to understand the conditions under which learned fear can be suppressed, or even eliminated. Basic research has pointed to extinction, in which an organism is exposed to a fearful stimulus (such as a context) in the absence of an expected aversive outcome (such as a shock). This…

  18. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning.

    PubMed

    Catlow, Briony J; Song, Shijie; Paredes, Daniel A; Kirstein, Cheryl L; Sanchez-Ramos, Juan

    2013-08-01

    Drugs that modulate serotonin (5-HT) synaptic concentrations impact neurogenesis and hippocampal (HPC)-dependent learning. The primary objective is to determine the extent to which psilocybin (PSOP) modulates neurogenesis and thereby affects acquisition and extinction of HPC-dependent trace fear conditioning. PSOP, the 5-HT2A agonist 25I-NBMeO and the 5-HT2A/C antagonist ketanserin were administered via an acute intraperitoneal injection to mice. Trace fear conditioning was measured as the amount of time spent immobile in the presence of the conditioned stimulus (CS, auditory tone), trace (silent interval) and post-trace interval over 10 trials. Extinction was determined by the number of trials required to resume mobility during CS, trace and post-trace when the shock was not delivered. Neurogenesis was determined by unbiased counts of cells in the dentate gyrus of the HPC birth-dated with BrdU co-expressing a neuronal marker. Mice treated with a range of doses of PSOP acquired a robust conditioned fear response. Mice injected with low doses of PSOP extinguished cued fear conditioning significantly more rapidly than high-dose PSOP or saline-treated mice. Injection of PSOP, 25I-NBMeO or ketanserin resulted in significant dose-dependent decreases in number of newborn neurons in hippocampus. At the low doses of PSOP that enhanced extinction, neurogenesis was not decreased, but rather tended toward an increase. Extinction of "fear conditioning" may be mediated by actions of the drugs at sites other than hippocampus such as the amygdala, which is known to mediate the perception of fear. Another caveat is that PSOP is not purely selective for 5-HT2A receptors. PSOP facilitates extinction of the classically conditioned fear response, and this, and similar agents, should be explored as potential treatments for post-traumatic stress disorder and related conditions. PMID:23727882

  19. Overgeneralization of Conditioned Fear as a Pathogenic Marker of Panic Disorder

    PubMed Central

    Lissek, Shmuel; Rabin, Stephanie; Heller, Randi E.; Lukenbaugh, David; Geraci, Marilla; Pine, Daniel S.; Grillon, Christian

    2009-01-01

    Objective Classical conditioning features prominently in many etiological accounts of panic disorder. According to such accounts, neutral conditioned stimuli present during panic attacks acquire panicogenic properties. Conditioned stimuli triggering panic symptoms are not limited to the original conditioned stimuli but are thought to generalize to stimuli resembling those co-occurring with panic, resulting in the proliferation of panic cues. The authors conducted a laboratory-based assessment of this potential correlate of panic disorder by testing the degree to which panic patients and healthy subjects manifest generalization of conditioned fear. Method Nineteen patients with a DSM-IV-TR diagnosis of panic disorder and 19 healthy comparison subjects were recruited for the study. The fear-generalization paradigm consisted of 10 rings of graded size presented on a computer monitor; one extreme size was a conditioned danger cue, the other extreme a conditioned safety cue, and the eight rings of intermediary size created a continuum of similarity from one extreme to the other. Generalization was assessed by conditioned fear potentiating of the startle blink reflex as measured with electromyography (EMG). Results Panic patients displayed stronger conditioned generalization than comparison subjects, as reflected by startle EMG. Conditioned fear in panic patients generalized to rings with up to three units of dissimilarity to the conditioned danger cue, whereas generalization in comparison subjects was restricted to rings with only one unit of dissimilarity. Conclusions The findings demonstrate a marked proclivity toward fear overgeneralization in panic disorder and provide a methodology for laboratory-based investigations of this central, yet understudied, conditioning correlate of panic. Given the putative molecular basis of fear conditioning, these results may have implications for novel treatments and prevention in panic disorder. PMID:19917595

  20. Trait anxiety and perceptual load as determinants of emotion processing in a fear conditioning paradigm.

    PubMed

    Fox, Elaine; Yates, Alan; Ashwin, Chris

    2012-04-01

    The impact of trait anxiety and perceptual load on selective attention was examined in a fear conditioning paradigm. A fear-conditioned angry face (CS+), an unconditioned angry face (CS-), or an unconditioned face with a neutral or happy expression were used in distractor interference and attentional probe tasks. In Experiments 1 and 2, participants classified centrally presented letters under two conditions of perceptual load. When perceptual load was high, distractors had no effect on selective attention, even with aversive conditioning. However, when perceptual load was low, strong response interference effects for CS+ face distractors were found for low trait-anxious participants. Across both experiments, this enhanced distractor interference reversed to strong facilitation effects for those reporting high trait anxiety. Thus, high trait-anxious participants were faster, rather than slower, when ignoring CS+ distractors. Using an attentional probe task in Experiment 3, it was found that fear conditioning resulted in strong attentional avoidance in a high trait-anxious group, which contrasted with enhanced vigilance in a low trait-anxious group. These results demonstrate that the impact of fear conditioning on attention is modulated by individual variation in trait anxiety when perceptual load is low. Fear conditioning elicits an avoidance of threat-relevant stimuli in high trait-anxious participants. PMID:21875186

  1. Trait Anxiety and Perceptual Load as Determinants of Emotion Processing in a Fear Conditioning Paradigm

    PubMed Central

    Fox, Elaine; Yates, Alan; Ashwin, Chris

    2012-01-01

    The impact of trait anxiety and perceptual load on selective attention was examined in a fear conditioning paradigm. A fear-conditioned angry face (CS+), an unconditioned angry face (CS−), or an unconditioned face with a neutral or happy expression were used in distractor interference and attentional probe tasks. In Experiments 1 and 2, participants classified centrally presented letters under two conditions of perceptual load. When perceptual load was high, distractors had no effect on selective attention, even with aversive conditioning. However, when perceptual load was low, strong response interference effects for CS+ face distractors were found for low trait-anxious participants. Across both experiments, this enhanced distractor interference reversed to strong facilitation effects for those reporting high trait anxiety. Thus, high trait-anxious participants were faster, rather than slower, when ignoring CS+ distractors. Using an attentional probe task in Experiment 3, it was found that fear conditioning resulted in strong attentional avoidance in a high trait-anxious group, which contrasted with enhanced vigilance in a low trait-anxious group. These results demonstrate that the impact of fear conditioning on attention is modulated by individual variation in trait anxiety when perceptual load is low. Fear conditioning elicits an avoidance of threat-relevant stimuli in high trait-anxious participants. PMID:21875186

  2. Effects of recent exposure to a conditioned stimulus on extinction of Pavlovian fear conditioning

    PubMed Central

    Chan, Wan Yee Macy; Leung, Hiu T.; Westbrook, R. Frederick; McNally, Gavan P.

    2010-01-01

    In six experiments we studied the effects of a single re-exposure to a conditioned stimulus (CS; “retrieval trial”) prior to extinction training (extinction-reconsolidation boundary) on the development of and recovery from fear extinction. A single retrieval trial prior to extinction training significantly augmented the renewal and reinstatement of extinguished responding. Augmentation of recovery was not observed if the retrieval and extinction training occurred in different contexts. These results contrast with those reported in earlier papers by Monfils and coworkers in rats and by Schiller and coworkers in humans. We suggest that these contrasting results could depend on the contrasting influences of either: (1) occasion-setting contextual associations vs. direct context–CS associations formed as a consequence of the retrieval trial or (2) discrimination vs. generalization between the circumstances of conditioning and extinction. PMID:20884753

  3. The Development of Skin Conductance Fear Conditioning in Children from Ages 3 to 8 Years

    ERIC Educational Resources Information Center

    Gao, Yu; Raine, Adrian; Venables, Peter H.; Dawson, Michael E.; Mednick, Sarnoff A.

    2010-01-01

    Although fear conditioning is an important psychological construct implicated in behavioral and emotional problems, little is known about how it develops in early childhood. Using a differential, partial reinforcement conditioning paradigm, this longitudinal study assessed skin conductance conditioned responses in 200 children at ages 3, 4, 5, 6,…

  4. From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and in anxiety disorders

    PubMed Central

    VanElzakker, Michael B.; Dahlgren, M. Kathryn; Davis, F. Caroline; Dubois, Stacey; Shin, Lisa M.

    2014-01-01

    Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders. PMID:24321650

  5. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders.

    PubMed

    VanElzakker, Michael B; Dahlgren, M Kathryn; Davis, F Caroline; Dubois, Stacey; Shin, Lisa M

    2014-09-01

    Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders. PMID:24321650

  6. Protein profiles associated with context fear conditioning and their modulation by memantine.

    PubMed

    Ahmed, Md Mahiuddin; Dhanasekaran, A Ranjitha; Block, Aaron; Tong, Suhong; Costa, Alberto C S; Gardiner, Katheleen J

    2014-04-01

    Analysis of the molecular basis of learning and memory has revealed details of the roles played by many genes and the proteins they encode. Because most individual studies focus on a small number of proteins, many complexities of the relationships among proteins and their dynamic responses to stimulation are not known. We have used the technique of reverse phase protein arrays (RPPA) to assess the levels of more than 80 proteins/protein modifications in subcellular fractions from hippocampus and cortex of mice trained in Context Fear Conditioning (CFC). Proteins include components of signaling pathways, several encoded by immediate early genes or involved in apoptosis and inflammation, and subunits of glutamate receptors. At one hour after training, levels of more than half the proteins had changed in one or more fractions, among them multiple components of the Mitogen-activated protein kinase, MAPK, and Mechanistic Target of Rapamycin, MTOR, pathways, subunits of glutamate receptors, and the NOTCH pathway modulator, NUMB homolog (Drosophila). Levels of 37 proteins changed in the nuclear fraction of hippocampus alone. Abnormalities in levels of thirteen proteins analyzed have been reported in brains of patients with Alzheimer's Disease. We therefore further investigated the protein profiles of mice treated with memantine, a drug approved for treatment of AD. In hippocampus, memantine alone induced many changes similar to those seen after CFC and altered the levels of seven proteins associated with Alzheimer's Disease abnormalities. Lastly, to further explore the relevance of these datasets, we superimposed responses to CFC and memantine onto components of the long term potentiation pathway, a process subserving learning and memory formation. Fourteen components of the long term potentiation pathway and 26 proteins interacting with components responded to CFC and/or memantine. Together, these datasets provide a novel view of the diversity and complexity in protein

  7. Protein Profiles Associated With Context Fear Conditioning and Their Modulation by Memantine*

    PubMed Central

    Ahmed, Md. Mahiuddin; Dhanasekaran, A. Ranjitha; Block, Aaron; Tong, Suhong; Costa, Alberto C. S.; Gardiner, Katheleen J.

    2014-01-01

    Analysis of the molecular basis of learning and memory has revealed details of the roles played by many genes and the proteins they encode. Because most individual studies focus on a small number of proteins, many complexities of the relationships among proteins and their dynamic responses to stimulation are not known. We have used the technique of reverse phase protein arrays (RPPA) to assess the levels of more than 80 proteins/protein modifications in subcellular fractions from hippocampus and cortex of mice trained in Context Fear Conditioning (CFC). Proteins include components of signaling pathways, several encoded by immediate early genes or involved in apoptosis and inflammation, and subunits of glutamate receptors. At one hour after training, levels of more than half the proteins had changed in one or more fractions, among them multiple components of the Mitogen-activated protein kinase, MAPK, and Mechanistic Target of Rapamycin, MTOR, pathways, subunits of glutamate receptors, and the NOTCH pathway modulator, NUMB homolog (Drosophila). Levels of 37 proteins changed in the nuclear fraction of hippocampus alone. Abnormalities in levels of thirteen proteins analyzed have been reported in brains of patients with Alzheimer's Disease. We therefore further investigated the protein profiles of mice treated with memantine, a drug approved for treatment of AD. In hippocampus, memantine alone induced many changes similar to those seen after CFC and altered the levels of seven proteins associated with Alzheimer's Disease abnormalities. Lastly, to further explore the relevance of these datasets, we superimposed responses to CFC and memantine onto components of the long term potentiation pathway, a process subserving learning and memory formation. Fourteen components of the long term potentiation pathway and 26 proteins interacting with components responded to CFC and/or memantine. Together, these datasets provide a novel view of the diversity and complexity in protein

  8. The importance of the context in the hippocampus and brain related areas throughout the performance of a fear conditioning task.

    PubMed

    Arias, Natalia; Méndez, Marta; Arias, Jorge L

    2015-11-01

    The importance context has been broadly studied in the management of phobias and in the drug addiction literature. The way in which changes to a context influence behavior after the simple acquisition of a passive avoidance task remains unclear. The hippocampus has long been implicated in the contextual and spatial processing required for contextual fear, but its role in encoding the aversive component of a contextual fear memory is still inconclusive. Our work tries to elucidate whether a change in context, represented as differences in the load of the stimuli, is critical for learning about the context-shock association and whether this manipulation of the context could be linked to any change in metabolic brain activity requirements. For this purpose, we used an avoidance conditioning task. Animals were divided into three different experimental conditions. In one group, acquisition was performed in an enriched stimuli environment and retention was performed in a typically lit chamber (the PA-ACQ-CONTX group). In another group, acquisition was performed in the typically lit chamber and retention was undertaken in the highly enriched chamber (the PA-RET-CONTX group). Finally, for the control group, PA-CN-CONTX, acquisition, and retention were performed in the enriched stimuli environment. Our results showed that the PA-ACQ-CONTX group had longer escape latencies and poorer retention than the PA-RET-CONTX and PA-CN-CONTX groups after 24 h of acquisition under contextual changes. To study metabolic brain activity, histochemical labelling of cytochrome c-oxidase (CO) was performed. CO results suggested a neural circuit including the hippocampus, amygdala, thalamus, parahippocampal cortices, and mammillary nuclei that is involved in the learning and memory processes that enable context-dependent behavior. These results highlight how dysfunction in this network may be involved in the contextualization of fear associations that underlie several forms of psychopathology

  9. Selective and Protracted Effect of Nifedipine on Fear Memory Extinction Correlates with Induced Stress Response

    ERIC Educational Resources Information Center

    Waltereit, Robert; Mannhardt, Sonke; Nescholta, Sabine; Maser-Gluth, Christiane; Bartsch, Dusan

    2008-01-01

    Memory extinction, defined as a decrease of a conditioned response as a function of a non-reinforced conditioned stimulus presentation, has high biological and clinical relevance. Extinction is not a passive reversing or erasing of the plasticity associated with acquisition, but a novel, active learning process. Nifedipine blocks L-type voltage…

  10. Generalization of Pain-Related Fear Using a Left-Right Hand Judgment Conditioning Task.

    PubMed

    Meulders, Ann; Harvie, Daniel S; Lorimer Moseley, G; Vlaeyen, Johan W S

    2015-09-01

    Recent research suggests that the mere intention to perform a painful movement can elicit pain-related fear. Based on these findings, the present study aimed to determine whether imagining a movement that is associated with pain (CS+) can start to elicit conditioned pain-related fear as well and whether pain-related fear elicited by imagining a painful movement can spread towards novel, similar but distinct imagined movements. We proposed a new experimental paradigm that integrates the left-right hand judgment task (HJT) with a differential fear conditioning procedure. During Acquisition, one hand posture (CS+) was consistently followed by a painful electrocutaneous stimulus (pain-US) and another hand posture (CS-) was not. Participants were instructed to make left-right judgments, which involve mentally rotating their own hand to match the displayed hand postures (i.e., motor imagery). During Generalization, participants were presented with a series of novel hand postures with six grades of perceptual similarity to the CS+ (generalization stimuli; GSs). Finally, during Extinction, the CS+ hand posture was no longer reinforced. The results showed that (1) a painful hand posture triggers fear and increased US-expectancy as compared to a nonpainful hand posture, (2) this pain-related fear spreads to similar but distinct hand postures following a generalization gradient, and subsequently, (3) it can be successfully reduced during extinction. These effects were apparent in the verbal ratings, but not in the startle measures. Because of the lack of effect in the startle measures, we cannot draw firm conclusions about whether the "imagined movements" (i.e., motor imagery of the hand postures) gained associative strength rather than the hand posture pictures itself. From a clinical perspective, basic research into generalization of pain-related fear triggered by covert CSs such as intentions, imagined movements and movement-related cognitions might further our

  11. Brain c-Fos immunocytochemistry and cytochrome oxidase histochemistry after a fear conditioning task.

    PubMed

    Conejo, Nélida M; González Pardo, Héctor; López, Matías; Cantora, Raúl; Arias, Jorge L

    2007-05-01

    The involvement of the basolateral and the medial amygdala in fear conditioning was evaluated using different markers of neuronal activation. The method described here is a combination of cytochrome oxidase (CO) histochemistry and c-Fos immunocytochemistry on fresh frozen brain sections. Freezing behavior was used as an index of auditory and contextual fear conditioning. As expected, freezing scores were significantly higher in rats exposed to tone-shock pairings in a distinctive environment (conditioned; COND), as compared to rats that did not receive any shocks (UNCD). CO labeling was increased in the basolateral and medial amygdala of the COND group. Conversely, c-Fos expression in the basolateral and medial amygdala was lower in the COND group as compared to the UNCD group. Furthermore, c-Fos expression was particularly high in the medial amygdala of the UNCD group. The data provided by both techniques indicate that these amygdalar nuclei could play different roles on auditory and contextual fear conditioning. PMID:17425902

  12. Contextual fear conditioning in virtual reality is affected by 5HTTLPR and NPSR1 polymorphisms: effects on fear-potentiated startle

    PubMed Central

    Glotzbach-Schoon, Evelyn; Andreatta, Marta; Reif, Andreas; Ewald, Heike; Tröger, Christian; Baumann, Christian; Deckert, Jürgen; Mühlberger, Andreas; Pauli, Paul

    2013-01-01

    The serotonin (5-HT) and neuropeptide S (NPS) systems are discussed as important genetic modulators of fear and sustained anxiety contributing to the etiology of anxiety disorders. Sustained anxiety is a crucial characteristic of most anxiety disorders which likely develops through contextual fear conditioning. This study investigated if and how genetic alterations of the 5-HT and the NPS systems as well as their interaction modulate contextual fear conditioning; specifically, function polymorphic variants in the genes coding for the 5-HT transporter (5HTT) and the NPS receptor (NPSR1) were studied. A large group of healthy volunteers was therefore stratified for 5HTTLPR (S+ vs. LL carriers) and NPSR1 rs324981 (T+ vs. AA carriers) polymorphisms resulting in four genotype groups (S+/T+, S+/AA, LL/T+, LL/AA) of 20 participants each. All participants underwent contextual fear conditioning and extinction using a virtual reality (VR) paradigm. During acquisition, one virtual office room (anxiety context, CXT+) was paired with an unpredictable electric stimulus (unconditioned stimulus, US), whereas another virtual office room was not paired with any US (safety context, CXT−). During extinction no US was administered. Anxiety responses were quantified by fear-potentiated startle and ratings. Most importantly, we found a gene × gene interaction on fear-potentiated startle. Only carriers of both risk alleles (S+/T+) exhibited higher startle responses in CXT+ compared to CXT−. In contrast, anxiety ratings were only influenced by the NPSR1 polymorphism with AA carriers showing higher anxiety ratings in CXT+ as compared to CXT−. Our results speak in favor of a two level account of fear conditioning with diverging effects on implicit vs. explicit fear responses. Enhanced contextual fear conditioning as reflected in potentiated startle responses may be an endophenotype for anxiety disorders. PMID:23630477

  13. Intra-amygdala microinjection of TNF-α impairs the auditory fear conditioning of rats via glutamate toxicity.

    PubMed

    Jing, He; Hao, Yongxin; Bi, Qiang; Zhang, Jiaozhen; Yang, Pingting

    2015-02-01

    During an inflammatory or infectious process, innate immune cells produce large amount of pro-inflammatory cytokines that act on the brain to cause cognitive dysfunctions. Tumor necrosis factor alpha (TNF-α) is one of the main pro-inflammatory cytokines. Thus, it is important to study how the excessive TNF-α affects the cognitive functions of central nervous system and possible antagonists to its effects. In the present study, we conducted behavioral experiments of rats to determine whether murine TNF-α administered directly into the brain would elicit behavioral effects related to learning and memory impairments. Rats subjected to single-dose intra-amygdala TNF-α infusion showed a significant delay in the acquisition and extinction of auditory fear conditioning. Accordingly, the glutamate level of the tissue samples from amygdala was elevated after the TNF-α treatment. Furthermore, pharmacological blockade of NMDAR before the TNF-α treatment reversed the TNF-α induced impairments in fear learning. Our findings suggest that TNF-α can impair the learning and memory functions through glutamate-NMDAR neurotoxicity, and present the possibility to develop therapeutic modalities directing at glutamate transmission for the treatment of neuro-inflammative dysfunctions. PMID:25448547

  14. A cholinergic-dependent role for the entorhinal cortex in trace fear conditioning.

    PubMed

    Esclassan, Frederic; Coutureau, Etienne; Di Scala, Georges; Marchand, Alain R

    2009-06-24

    Trace conditioning is considered a model of higher cognitive involvement in simple associative tasks. Studies of trace conditioning have shown that cortical areas and the hippocampal formation are required to associate events that occur at different times. However, the mechanisms that bridge the trace interval during the acquisition of trace conditioning remain unknown. In four experiments with fear conditioning in rats, we explored the involvement of the entorhinal cortex (EC) in the acquisition of fear under a trace-30 s protocol. We first determined that pretraining neurotoxic lesions of the EC selectively impaired trace-, but not delay-conditioned fear as evaluated by freezing behavior. A local cholinergic deafferentation of the EC using 192-IgG-saporin did not replicate this deficit, presumably because cholinergic interneurons were spared by the toxin. However, pretraining local blockade of EC muscarinic receptors with the M1 antagonist pirenzepine yielded a specific and dose-dependent deficit in trace-conditioned responses. The same microinjections performed after conditioning were without effect on trace fear responses. These effects of blocking M1 receptors are consistent with the notion that conditioned stimulus (CS)-elicited, acetylcholine-dependent persistent activities in the EC are needed to maintain a representation of a tone CS across the trace interval during the acquisition of trace conditioning. This function of the EC is consistent with recent views of this region as a short-term stimulus buffer. PMID:19553448

  15. Post-Extinction Conditional Stimulus Valence Predicts Reinstatement Fear: Relevance for Long Term Outcomes of Exposure Therapy

    PubMed Central

    Zbozinek, Tomislav D.; Hermans, Dirk; Prenoveau, Jason M.; Liao, Betty; Craske, Michelle G.

    2014-01-01

    Exposure therapy for anxiety disorders is translated from fear conditioning and extinction. While exposure therapy is effective in treating anxiety, fear sometimes returns after exposure. One pathway for return of fear is reinstatement: unsignaled unconditional stimuli following completion of extinction. The present study investigated the extent to which valence of the conditional stimulus (CS+) after extinction predicts return of CS+ fear after reinstatement. Participants (N = 84) engaged in a differential fear conditioning paradigm and were randomized to reinstatement or non-reinstatement. We hypothesized that more negative post-extinction CS+ valence would predict higher CS+ fear after reinstatement relative to non-reinstatement and relative to extinction retest. Results supported the hypotheses and suggest that strategies designed to decrease negative valence of the CS+ may reduce the return of fear via reinstatement following exposure therapy. PMID:24957680

  16. Blockade of endogenous opioid neurotransmission enhances acquisition of conditioned fear in humans.

    PubMed

    Eippert, Falk; Bingel, Ulrike; Schoell, Eszter; Yacubian, Juliana; Büchel, Christian

    2008-05-21

    The endogenous opioid system is involved in fear learning in rodents, as opioid agonists attenuate and opioid antagonists facilitate the acquisition of conditioned fear. It has been suggested that an opioidergic signal, which is engaged through conditioning and acts inhibitory on unconditioned stimulus input, is the source of these effects. To clarify whether blockade of endogenous opioid neurotransmission enhances acquisition of conditioned fear in humans, and to elucidate the neural underpinnings of such an effect, we used functional magnetic resonance imaging in combination with behavioral recordings and a double-blind pharmacological intervention. All subjects underwent the same classical fear-conditioning paradigm, but subjects in the experimental group received the opioid antagonist naloxone before and during the experiment, in contrast to subjects in the control group, who received saline. Blocking endogenous opioid neurotransmission with naloxone led to more sustained responses to the unconditioned stimulus across trials, evident in both behavioral and blood oxygen level-dependent responses in pain responsive cortical regions. This effect was likely caused by naloxone blocking conditioned responses in a pain-inhibitory circuit involving opioid-rich areas such as the rostral anterior cingulate cortex, amygdala, and periaqueductal gray. Most importantly, naloxone enhanced the acquisition of fear on the behavioral level and changed the activation profile of the amygdala: whereas the control group showed rapidly decaying conditioned responses across trials, the naloxone group showed sustained conditioned responses in the amygdala. Together, these results demonstrate that in humans the endogenous opioid system has an inhibitory role in the acquisition of fear. PMID:18495880

  17. Heart rate response to fear conditioning and virtual reality in subthreshold PTSD.

    PubMed

    Roy, Michael J; Costanzo, Michelle E; Jovanovic, Tanja; Leaman, Suzanne; Taylor, Patricia; Norrholm, Seth D; Rizzo, Albert A

    2013-01-01

    Posttraumatic stress disorder (PTSD) is a significant health concern for U.S. military service members (SMs) returning from Afghanistan and Iraq. Early intervention to prevent chronic disability requires greater understanding of subthreshold PTSD symptoms, which are associated with impaired physical health, mental health, and risk for delayed onset PTSD. We report a comparison of physiologic responses for recently deployed SMs with high and low subthreshold PTSD symptoms, respectively, to a fear conditioning task and novel virtual reality paradigm (Virtual Iraq). The high symptom group demonstrated elevated heart rate (HR) response during fear conditioning. Virtual reality sequences evoked significant HR responses which predicted variance of the PTSD Checklist-Military Version self-report. Our results support the value of physiologic assessment during fear conditioning and combat-related virtual reality exposure as complementary tools in detecting subthreshold PTSD symptoms in Veterans. PMID:23792855

  18. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    PubMed

    Serrano, Peter; Friedman, Eugenia L; Kenney, Jana; Taubenfeld, Stephen M; Zimmerman, Joshua M; Hanna, John; Alberini, Cristina; Kelley, Ann E; Maren, Stephen; Rudy, Jerry W; Yin, Jerry C P; Sacktor, Todd C; Fenton, André A

    2008-12-23

    How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta), an autonomously active atypical protein kinase C (PKC) isoform critical for the maintenance of long-term potentiation (LTP). PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP) by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH) and basolateral amygdala (BLA) on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US) associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise, or

  19. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  20. The Role of the Nucleus Basalis Magnocellularis in Fear Conditioning Consolidation in the Rat

    ERIC Educational Resources Information Center

    Baldi, Elisabetta; Mariottini, Chiara; Bucherelli, Corrado

    2007-01-01

    The nucleus basalis magnocellularis (NBM) is known to be involved in the memorization of several conditioned responses. To investigate the role of the NBM in fear conditioning memorization, this neural site was subjected to fully reversible tetrodotoxin (TTX) inactivation during consolidation in adult male Wistar rats that had undergone fear…

  1. L-type Voltage-Gated Calcium Channels in Conditioned Fear: A Genetic and Pharmacological Analysis

    ERIC Educational Resources Information Center

    McKinney, Brandon C.; Sze, Wilson; White, Jessica A.; Murphy, Geoffrey G.

    2008-01-01

    Using pharmacological approaches, others have suggested that L-type voltage-gated calcium channels (L-VGCCs) mediate both consolidation and extinction of conditioned fear. In the absence of L-VGCC isoform-specific antagonists, we have begun to investigate the subtype-specific role of LVGCCs in consolidation and extinction of conditioned fear…

  2. Extensive Extinction in Multiple Contexts Eliminates the Renewal of Conditioned Fear in Rats

    ERIC Educational Resources Information Center

    Thomas, Brian L.; Vurbic, Drina; Novak, Cheryl

    2009-01-01

    Two studies examined whether nonreinforcement of a stimulus in multiple contexts, instead of a single context, would decrease renewal of conditioned fear in rats (as assessed by conditioned suppression of lever pressing). In Experiment 1, renewal was measured after 36 nonreinforced CS trials delivered during six extinction sessions in a single…

  3. Microstimulation Reveals Opposing Influences of Prelimbic and Infralimbic Cortex on the Expression of Conditioned Fear

    ERIC Educational Resources Information Center

    Vidal-Gonzalez, Ivan; Rauch, Scott L.; Quirk, Gregory J.; Vidal-Gonzalez, Benjamin

    2006-01-01

    Recent studies using lesion, infusion, and unit-recording techniques suggest that the infralimbic (IL) subregion of medial prefrontal cortex (mPFC) is necessary for the inhibition of conditioned fear following extinction. Brief microstimulation of IL paired with conditioned tones, designed to mimic neuronal tone responses, reduces the expression…

  4. Fear conditioning in mouse lines genetically selected for binge-like ethanol drinking.

    PubMed

    Crabbe, John C; Schlumbohm, Jason P; Hack, Wyatt; Barkley-Levenson, Amanda M; Metten, Pamela; Lattal, K Matthew

    2016-05-01

    The comorbidity of substance- and alcohol-use disorders (AUD) with other psychiatric conditions, especially those related to stress such as post-traumatic stress disorder (PTSD), is well-established. Binge-like intoxication is thought to be a crucial stage in the development of the chronic relapsing nature of the addictions, and self-medication through binge-like drinking is commonly seen in PTSD patients. We have selectively bred two separate High Drinking in the Dark (HDID-1 and HDID-2) mouse lines to reach high blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol starting shortly after the onset of circadian dark. As an initial step toward the eventual goal of employing binge-prone HDID mice to study PTSD-like behavior including alcohol binge drinking, we sought first to determine their ability to acquire conditioned fear. We asked whether these mice acquired, generalized, or extinguished conditioned freezing to a greater or lesser extent than unselected control HS/Npt mice. In two experiments, we trained groups of 16 adult male mice in a standard conditioned fear protocol. Mice were tested for context-elicited freezing, and then, in a novel context, for cue-induced freezing. After extinction tests, renewal of conditioned fear was tested in the original context. Mice of all three genotypes showed typical fear responding. Context paired with shock elicited freezing behavior in a control experiment, but cue unpaired with shock did not. These studies indicate that fear learning per se does not appear to be influenced by genes causing predisposition to binge drinking, suggesting distinct neural mechanisms. However, HDID mice are shown to be a suitable model for studying the role of conditioned fear specifically in binge-like drinking. PMID:27139234

  5. The Role of Nicotinic Acetylcholine Receptors in the Medial Prefrontal Cortex and Hippocampus in Trace Fear Conditioning

    PubMed Central

    Raybuck, J. D.; Gould, T. J.

    2010-01-01

    Acute nicotine enhances multiple types of learning including trace fear conditioning but the underlying neural substrates of these effects are not well understood. Trace fear conditioning critically involves the medial prefrontal cortex and hippocampus, which both express nicotinic acetylcholine receptors (nAChRs). Therefore, nicotine could act in either or both areas to enhance trace fear conditioning. To identify the underlying neural areas and nAChR subtypes, we examined the effects of infusion of nicotine, or nicotinic antagonists dihydro-beta-erythroidine (DHβE: high-affinity nAChRs) or methyllycaconitine (MLA: low-affinity nAChRs) into the dorsal hippocampus, ventral hippocampus, and medial prefrontal cortex (mPFC) on trace and contextual fear conditioning. We found that the effects of nicotine on trace and contextual fear conditioning vary by brain region and nAChR subtype. The dorsal hippocampus was involved in the effects of nicotine on both trace and contextual fear conditioning but each task was sensitive to different doses of nicotine. Additionally, dorsal hippocampal infusion of the antagonist DHβE produced deficits in trace but not contextual fear conditioning. Nicotine infusion into the ventral hippocampus produced deficits in both trace and contextual fear conditioning. In the mPFC, nicotine enhanced trace but not contextual fear conditioning. Interestingly, infusion of the antagonists MLA or DHβE in the mPFC also enhanced trace fear conditioning. These findings suggest that nicotine acts on different substrates to enhance trace versus contextual fear conditioning, and that nicotine-induced desensitization of nAChRs in the mPFC may contribute to the effects of nicotine on trace fear conditioning. PMID:20727979

  6. [AMYGDALA: NEUROANATOMY AND NEUROPHYSIOLOGY OF FEAR].

    PubMed

    Tsvetkov, E A; Krasnoshchekova, E I; Vesselkin, N P; Kharazova, A D

    2015-01-01

    This work describes neuroanatomical and neurophysiological mechanisms of Pavlovian fear conditioning, focusing on contributions of the amygdala, a subcortical nuclear group, to control of conditioned fear responses. The mechanisms of synaptic plasticity at projections to the amygdala and within amygdala were shown to mediate the formation and retention of fear memory. This work reviews current data on anatomical organization of the amygdala, as well as its afferent and efferent projections, in respect to the role of the amygdala in auditory fear conditioning during which acoustic signals serve as the conditioned stimulus. PMID:26983275

  7. Intra-amygdala microinjections of chlorpheniramine impair memory formation or memory retrieval in anxiety- and fear-mediated models.

    PubMed

    Serafim, K R; Russo, P S T; Fernandes, C E M; Gianlorenço, A C L; Mattioli, R

    2016-07-01

    H1 receptor histaminergic antagonist, chlorpheniramine (CPA) participates in cognitive performance in various animal models. However, little is known regarding the effects of CPA microinjection into the amygdala on emotional behavior. The purpose of this study was to investigate whether CPA microinjection into the amygdala has the same effect on two models, one anxiety- and the other fear-mediated, in various memory stages using the elevated plus maze (EPM) and the inhibitory avoidance task (IAT) tests. Two experiments were performed with seventy-two adult male Swiss mice. Behavioral testing was performed on two consecutive days, and in both experiments, before each trial, the animals received bilateral microinjections of saline (SAL) or CPA (0.16 nmol). The animals were re-exposed to the EPM or IAT 24h after the first trial. Four experimental groups were tested: SAL-SAL, SAL-CPA, CPA-SAL and CPA-CPA. In experiment 1, a decreased open arm exploration (% open arm entries, %OAE and% open arms time, %OAT) for SAL-SAL and SAL-CPA was showed, while these measures did not decrease for the CPA-SAL and CPA-CPA groups in Trial 2. In experiment 2, an increase of retention latency in relation to training 2 for the groups SAL-SAL and CPA-SAL and a significant decrease in latency for the group SAL-CPA was revealed. These results indicate that chlorpheniramine microinjection into the amygdala impairs emotional memory acquisition and/or consolidation in the EPM and retrieval of IAT. PMID:27344002

  8. Short-Term Adaptation of Conditioned Fear Responses Through Endocannabinoid Signaling in the Central Amygdala

    PubMed Central

    Kamprath, Kornelia; Romo-Parra, Hector; Häring, Martin; Gaburro, Stefano; Doengi, Michael; Lutz, Beat; Pape, Hans-Christian

    2011-01-01

    The cannabinoid receptor type 1 (CB1) and the central nucleus of the amygdala (CeA) are both known to have crucial roles in the processing of fear and anxiety, whereby they appear to be especially involved in the control of fear states. However, in contrast to many other brain regions including the cortical subregions of the amygdala, the existence of CB1 in the CeA remains enigmatic. In this study we show that CB1 is expressed in the CeA of mice and that CB1 in the CeA mediates short-term synaptic plasticity, namely depolarization-induced suppression of excitation (DSE) and inhibition (DSI). Moreover, the CB1 antagonist AM251 increased both excitatory and inhibitory postsynaptic responses in CeA neurons. Local application of AM251 in the CeA in vivo resulted in an acutely increased fear response in an auditory fear conditioning paradigm. Upon application of AM251 in the basolateral nucleus of the amygdala (BLA) in an otherwise identical protocol, no such acute behavioral effects were detected, but CB1 blockade resulted in increased fear responses during tone exposures on the subsequent days. Moreover, we observed that the efficacy of DSE and DSI in the CeA was increased on the day following fear conditioning, indicating that a single tone-shock pairing resulted in changes in endocannabinoid signaling in the CeA. Taken together, our data show the existence of CB1 proteins in the CeA, and their critical role for ensuring short-term adaptation of responses to fearful events, thereby suggesting a potential therapeutic target to accompany habituation-based therapies of post-traumatic symptoms. PMID:20980994

  9. Social buffering enhances extinction of conditioned fear responses in male rats.

    PubMed

    Mikami, Kaori; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-09-01

    In social species, the phenomenon in which the presence of conspecific animals mitigates stress responses is called social buffering. We previously reported that social buffering in male rats ameliorated behavioral fear responses, as well as hypothalamic-pituitary-adrenal axis activation, elicited by an auditory conditioned stimulus (CS). However, after social buffering, it is not clear whether rats exhibit fear responses when they are re-exposed to the same CS in the absence of another rat. In the present study, we addressed this issue using an experimental model of extinction. High stress levels during extinction training impaired extinction, suggesting that extinction is enhanced when stress levels during extinction training are low. Therefore, we hypothesized that rats that had received social buffering during extinction training would not show fear responses to a CS, even in the absence of another rat, because social buffering had enhanced the extinction of conditioned fear responses. To test this, we subjected male fear-conditioned rats to extinction training either alone or with a non-conditioned male rat. The subjects were then individually re-exposed to the CS in a recall test. When the subjects individually underwent extinction training, no responses were suppressed in the recall test. Conversely, when the subjects received social buffering during extinction training, freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala were suppressed. Additionally, the effects of social buffering were absent when the recall test was conducted in a different context from the extinction training. The present results suggest that social buffering enhances extinction of conditioned fear responses. PMID:27158024

  10. Rapid Activation of Glucocorticoid Receptors in the Prefrontal Cortex Mediates the Expression of Contextual Conditioned Fear in Rats.

    PubMed

    Reis, Fernando M C V; Almada, Rafael C; Fogaça, Manoela V; Brandão, Marcus L

    2016-06-01

    The aim of the present study was to investigate the role of glucocorticoids in medial prefrontal cortex (mPFC) activity and the expression of contextual conditioned fear (freezing). Rats were pretreated with vehicle or metyrapone, a corticosterone synthesis blocker, and exposed to a context previously paired with footshocks. Freezing and Fos-protein expression in different mPFC regions were assessed. Exposure to the aversive context led to increased freezing and Fos expression in the prelimbic (PrL), anterior cingulate areas 1 and 2 (Cg1/Cg2). Pretreatment with metyrapone decreased freezing and Fos expression in these areas. Administration of spironolactone, an MR antagonist, in the PrL before the test decreased freezing. Pretreatment with RU38486, a glucocorticoid receptor (GR) antagonist, reduced this effect of spironolactone, suggesting that the effects of this MR antagonist may be attributable to a redirection of endogenous corticosterone actions to GRs. Consistent with this result, the decrease in freezing that was induced by intra-PrL injections of corticosterone was attenuated by pretreatment with RU38486 but not spironolactone. These findings indicate that corticosterone release during aversive conditioning influences mPFC activity and the retrieval of conditioned fear memory indicating the importance of balance between MR:GR-mediated effects in this brain region in this process. PMID:25976757

  11. Enhanced extinction of contextual fear conditioning in ClockΔ19 mutant mice.

    PubMed

    Bernardi, Rick E; Spanagel, Rainer

    2014-08-01

    Clock genes have been implicated in several disorders, such as schizophrenia, bipolar disorder, autism spectrum disorders, and drug dependence. However, few studies to date have examined the role of clock genes in fear-related behaviors. The authors used mice with the ClockΔ19 mutation to assess the involvement of this gene in contextual fear conditioning. Male wild-type (WT) and ClockΔ19 mutant mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by daily 12-min retention trials. There were no differences between mutant and WT mice in the acquisition of contextual fear, and WT and mutant mice demonstrated similar freezing during the first retention session. However, extinction of contextual fear was accelerated in mutant mice across the remaining retention sessions, as compared to WT mice, suggesting a role for Clock in extinction following aversive learning. Because the ClockΔ19 mutation has previously been demonstrated to result in an increase in dopamine signaling, the authors confirmed the role of dopamine in extinction learning using preretention session administration of a low dose of the dopamine transport reuptake inhibitor modafinil (0.75 mg/kg), which resulted in decreased freezing across retention sessions. These findings are consistent with an emerging portrayal of the importance of Clock genes in noncircadian functions, as well as the important role of dopamine in extinction learning. PMID:24865659

  12. Fear conditioning, persistence of disruptive behavior and psychopathic traits: an fMRI study

    PubMed Central

    Cohn, M D; Popma, A; van den Brink, W; Pape, L E; Kindt, M; van Domburgh, L; Doreleijers, T A H; Veltman, D J

    2013-01-01

    Children diagnosed with Disruptive Behavior Disorders (DBD), especially those with psychopathic traits, are at risk of developing persistent and severe antisocial behavior. Deficient fear conditioning may be a key mechanism underlying persistence, and has been associated with altered regional brain function in adult antisocial populations. In this study, we investigated the associations between the neural correlates of fear conditioning, persistence of childhood-onset DBD during adolescence and psychopathic traits. From a cohort of children arrested before the age of 12 years, participants who were diagnosed with Oppositional Defiant Disorder or Conduct Disorder in previous waves (mean age of onset 6.5 years, s.d. 3.2) were reassessed at mean age 17.6 years (s.d. 1.4) and categorized as persistent (n=25) or desistent (n=25) DBD. Using the Youth Psychopathic Traits Inventory and functional magnetic resonance imaging during a fear conditioning task, these subgroups were compared with 26 matched healthy controls from the same cohort. Both persistent and desistent DBD subgroups were found to show higher activation in fear processing-related brain areas during fear conditioning compared with healthy controls. In addition, regression analyses revealed that impulsive-irresponsible and grandiose-manipulative psychopathic traits were associated with higher activation, whereas callous-unemotional psychopathic traits were related to lower activation in fear-related areas. Finally, the association between neural activation and DBD subgroup membership was mediated by impulsive-irresponsible psychopathic traits. These results provide evidence for heterogeneity in the neurobiological mechanisms underlying psychopathic traits and antisocial behavior and, as such, underscore the need to develop personalized interventions. PMID:24169638

  13. Conditioned fear and extinction learning performance and its association with psychiatric symptoms in active duty Marines

    PubMed Central

    Acheson, D.T.; Geyer, M.A.; Baker, D.G.; Nievergelt, C.M.; Yurgil, K.; Risbrough, V.B.

    2014-01-01

    Summary Background Posttraumatic Stress Disorder (PTSD) is a major public health concern, especially given the recent wars in Iraq and Afghanistan. Nevertheless, despite a sharp increase in the incidence of psychiatric disorders in returning veterans, empirically based prevention strategies are still lacking. To develop effective prevention and treatment strategies, it is necessary to understand the underlying biological mechanisms contributing to PTSD and other trauma related symptoms. Methods The “Marine Resiliency Study II” (MRS-II; October 2011–October 2013) Neurocognition project is an investigation of neurocognitive performance in Marines about to be deployed to Afghanistan. As part of this investigation, 1195 Marines and Navy corpsmen underwent a fear conditioning and extinction paradigm and psychiatric symptom assessment prior to deployment. The current study assesses (1) the effectiveness of the fear potentiated startle paradigm in producing fear learning and extinction and (2) the association of performance in the paradigm with baseline psychiatric symptom classes (healthy: n = 923, PTSD symptoms: n = 42, anxiety symptoms: n = 37, and depression symptoms: n = 12). Results Results suggest that the task was effective in producing differential fear learning and fear extinction in this cohort. Further, distinct patterns emerged differentiating the PTSD and anxiety symptom classes from both healthy and depression classes. During fear acquisition, the PTSD symptom group was the only group to show deficient discrimination between the conditioned stimulus (CS+) and safety cue (CS−), exhibiting larger startle responses during the safety cue compared to the healthy group. During extinction learning, the PTSD symptom group showed significantly less reduction in their CS+ responding over time compared to the healthy group, as well as reduced extinction of self-reported anxiety to the CS+ by the end of the extinction session. Conversely, the anxiety symptom

  14. Fear conditioning of SCR but not the startle reflex requires conscious discrimination of threat and safety

    PubMed Central

    Sevenster, Dieuwke; Beckers, Tom; Kindt, Merel

    2014-01-01

    There is conflicting evidence as to whether awareness is required for conditioning of the skin conductance response (SCR). Recently, Schultz and Helmstetter (2010) reported SCR conditioning in contingency unaware participants by using difficult to discriminate stimuli. These findings are in stark contrast with other observations in human fear conditioning research, showing that SCR predominantly reflects contingency learning. Therefore, we repeated the study by Schultz and Helmstetter and additionally measured conditioning of the startle response, which seems to be less sensitive to declarative knowledge than SCR. While we solely observed SCR conditioning in participants who reported awareness of the contingencies (n = 16) and not in the unaware participants (n = 18), we observed startle conditioning irrespective of awareness. We conclude that SCR but not startle conditioning depends on conscious discriminative fear learning. PMID:24616672

  15. Differential Transcriptional Response to Nonassociative and Associative Components of Classical Fear Conditioning in the Amygdala and Hippocampus

    ERIC Educational Resources Information Center

    Isiegas, Carolina; Stein, Joel; Hellman, Kevin; Hannenhalli, Sridhar; Abel, Ted; Keeley, Michael B.; Wood, Marcelo A.

    2006-01-01

    Classical fear conditioning requires the recognition of conditioned stimuli (CS) and the association of the CS with an aversive stimulus. We used Affymetrix oligonucleotide microarrays to characterize changes in gene expression compared to naive mice in both the amygdala and the hippocampus 30 min after classical fear conditioning and 30 min after…

  16. Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats

    PubMed Central

    Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger

    2016-01-01

    The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. SIGNIFICANCE STATEMENT Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional

  17. Elevated Fear Conditioning to Socially Relevant Unconditioned Stimuli in Social Anxiety Disorder

    PubMed Central

    Lissek, Shmuel; Levenson, Jessica; Biggs, Arter L.; Johnson, Linda L.; Ameli, Rezvan; Pine, Daniel S.; Grillon, Christian

    2008-01-01

    Objective Though conditioned fear has long been acknowledged as an important etiologic mechanism in social anxiety disorder, past psychophysiological experiments have found no differences in general conditionability among social anxiety patients using generally aversive but socially nonspecific unconditioned stimuli (e.g., unpleasant odors and painful pressure). The authors applied a novel fear conditioning paradigm consisting of socially relevant unconditioned stimuli of critical facial expressions and verbal feedback. This study represents the first effort to assess the conditioning correlates of social anxiety disorder within an ecologically enhanced paradigm. Method Subjects with social anxiety disorder and age- and gender-matched healthy comparison subjects underwent differential classical conditioning. Conditioned stimuli included images of three neutral facial expressions, each of which was paired with one of three audiovisual unconditioned stimuli: negative insults with critical faces (USneg), positive compliments with happy faces (USpos), or neutral comments with neutral faces (USneu). The conditioned response was measured as the fear-potentiation of the startle-blink reflex elicited during presentation of the conditioned stimuli. Results Only social anxiety subjects demonstrated fear conditioning in response to facial expressions, as the startle-blink reflex was potentiated by the CSneg versus both CSneu and CSpos among those with the disorder, while healthy comparison subjects displayed no evidence of conditioned startle-potentiation. Such group differences in conditioning were independent of levels of anxiety to the unconditioned stimulus, implicating associative processes rather than increased unconditioned stimulus reactivity as the active mechanism underlying enhanced conditioned startle-potentiation among social anxiety subjects. Conclusions Results support a conditioning contribution to social anxiety disorder and underscore the importance of

  18. The Timing of Multiple Retrieval Events Can Alter GluR1 Phosphorylation and the Requirement for Protein Synthesis in Fear Memory Reconsolidation

    ERIC Educational Resources Information Center

    Jarome, Timothy J.; Kwapis, Janine L.; Werner, Craig T.; Parsons, Ryan G.; Gafford, Georgette M.; Helmstetter, Fred J.

    2012-01-01

    Numerous studies have indicated that maintaining a fear memory after retrieval requires de novo protein synthesis. However, no study to date has examined how the temporal dynamics of repeated retrieval events affect this protein synthesis requirement. The present study varied the timing of a second retrieval of an established auditory fear memory…

  19. Extinction Training During the Reconsolidation Window Prevents Recovery of Fear

    PubMed Central

    Schiller, Daniela; Raio, Candace M.; Phelps, Elizabeth A.

    2012-01-01

    Fear is maladaptive when it persists long after circumstances have become safe. It is therefore crucial to develop an approach that persistently prevents the return of fear. Pavlovian fear-conditioning paradigms are commonly employed to create a controlled, novel fear association in the laboratory. After pairing an innocuous stimulus (conditioned stimulus, CS) with an aversive outcome (unconditioned stimulus, US) we can elicit a fear response (conditioned response, or CR) by presenting just the stimulus alone1,2 . Once fear is acquired, it can be diminished using extinction training, whereby the conditioned stimulus is repeatedly presented without the aversive outcome until fear is no longer expressed3. This inhibitory learning creates a new, safe representation for the CS, which competes for expression with the original fear memory4. Although extinction is effective at inhibiting fear, it is not permanent. Fear can spontaneously recover with the passage of time. Exposure to stress or returning to the context of initial learning can also cause fear to resurface3,4. Our protocol addresses the transient nature of extinction by targeting the reconsolidation window to modify emotional memory in a more permanent manner. Ample evidence suggests that reactivating a consolidated memory returns it to a labile state, during which the memory is again susceptible to interference5-9. This window of opportunity appears to open shortly after reactivation and close approximately 6hrs later5,11,16, although this may vary depending on the strength and age of the memory15. By allowing new information to incorporate into the original memory trace, this memory may be updated as it reconsolidates10,11. Studies involving non-human animals have successfully blocked the expression of fear memory by introducing pharmacological manipulations within the reconsolidation window, however, most agents used are either toxic to humans or show equivocal effects when used in human studies12-14. Our

  20. Potentiation rather than distraction in a trace fear conditioning procedure.

    PubMed

    Pezze, M A; Marshall, H J; Cassaday, H J

    2016-07-01

    Trace conditioning procedures are defined by the introduction of a trace interval between conditioned stimulus (CS, e.g. noise or light) offset and unconditioned stimulus (US, e.g. footshock). The introduction of an additional stimulus as a distractor has been suggested to increase the attentional demands of the task and to extend the usefulness of the behavioural model. In Experiment 1, the CS was noise and the distractor was provided by an intermittent light. In Experiment 2, the CS was light and the distractor was provided by an intermittent noise. In both experiments, the introduction of a 10s trace interval weakened associative learning compared with that seen in a 0s delay conditioned group. However, there was no consistent evidence of distraction. On the contrary, in Experiment 1, associative learning was stronger (in both trace and delay conditioned groups) for rats conditioned also in the presence of the intermittent light. In Experiment 2, there was no such effect when the roles of the stimuli were reversed. The results of Experiment 2 did however confirm the particular salience of the noise stimulus. The finding of increased associative learning dependent on salience is consistent with arousal-mediated effects on associative learning. PMID:27060226

  1. Involvement of the Lateral Septal Area in the Expression of Fear Conditioning to Context

    ERIC Educational Resources Information Center

    Reis, Daniel G.; Scopinho, America A.; Guimaraes, Francisco S.; Correa, Fernando M. A.; Resstel, Leonardo B. M.

    2010-01-01

    Considering the evidence that the lateral septal area (LSA) modulates defensive responses, the aim of the present study is to verify if this structure is also involved in contextual fear conditioning responses. Neurotransmission in the LSA was reversibly inhibited by bilateral microinjections of cobalt chloride (CoCl[subscript 2], 1 mM) 10 min…

  2. Suppression of conditioned fear by administration of CCKB receptor antagonist PD135158.

    PubMed

    Tsutsumi, T; Akiyoshi, J; Isogawa, K; Kohno, Y; Hikichi, T; Nagayama, H

    1999-12-01

    In order to examine the involvement of CCK in the formation of anxiety, we have investigated whether CCKB receptor antagonist PD135158 suppressed conditioned fear stress. Rats were individually subjected to 30 min of inescapable electric footshock in a chamber with a grid floor. First, the rats were individually subjected to 30 min of footshock. Twenty-four h after the footshock, the rats were again placed in the chamber and observed for 5 min without shocks. PD135158 was administered 30 min before placing the rats in the chamber again. Secondly, PD135158 was administered 30 min before footshock. Thirdly, PD135158 was administered 5 min after footshock. Administration of PD135158 30 min before conditioned fear stress significantly reduced freezing behavior. Administration of PD135158 30 min before footshock also significantly reduced freezing behavior. But, administration of PD135158 5 min after footshock did not significantly reduce freezing behavior. PD135158 blocked not only the acquisition but also the expression of conditioned fear. These results suggest that the CCKB receptor might play an important role in conditioned fear stress and that it might be related to anxiety. PMID:10657528

  3. Neural Correlates of Appetitive-Aversive Interactions in Pavlovian Fear Conditioning

    ERIC Educational Resources Information Center

    Nasser, Helen M.; McNally, Gavan P.

    2013-01-01

    We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of…

  4. A Model of Amygdala-Hippocampal-Prefrontal Interaction in Fear Conditioning and Extinction in Animals

    ERIC Educational Resources Information Center

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard J.; Myers, Catherine E.

    2013-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus…

  5. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  6. A Bout of Voluntary Running Enhances Context Conditioned Fear, Its Extinction, and Its Reconsolidation

    ERIC Educational Resources Information Center

    Siette, Joyce; Reichelt, Amy C.; Westbrook, R. Frederick

    2014-01-01

    Three experiments used rats to examine the effect of a single bout of voluntary activity (wheel running) on the acquisition, extinction, and reconsolidation of context conditioned fear. In Experiment 1, rats provided with access to a wheel for 3 h immediately before or after a shocked exposure to a context froze more when tested in that context…

  7. Selectivity of conditioned fear of touch is modulated by somatosensory precision.

    PubMed

    Harvie, Daniel S; Meulders, Ann; Reid, Emily; Camfferman, Danny; Brinkworth, Russell S A; Moseley, G Lorimer

    2016-06-01

    Learning to initiate defenses in response to specific signals of danger is adaptive. Some chronic pain conditions, however, are characterized by widespread anxiety, avoidance, and pain consistent with a loss of defensive response specificity. Response specificity depends on ability to discriminate between safe and threatening stimuli; therefore, specificity might depend on sensory precision. This would help explain the high prevalence of chronic pain in body areas of low tactile acuity, such as the lower back, and clarify why improving sensory precision may reduce chronic pain. We compared the acquisition and generalization of fear of pain-associated vibrotactile stimuli delivered to either the hand (high tactile acuity) or the back (low tactile acuity). During acquisition, tactile stimulation at one location (CS+) predicted the noxious electrocutaneous stimulation (US), while tactile stimulation at another location (CS-) did not. Responses to three stimuli with decreasing spatial proximity to the CS+ (generalizing stimuli; GS1-3) were tested. Differential learning and generalization were compared between groups. The main outcome of fear-potentiated startle responses showed differential learning only in the hand group. Self-reported fear and expectancy confirmed differential learning and limited generalization in the hand group, and suggested undifferentiated fear and expectancy in the back group. Differences in generalization could not be inferred from the startle data. Specificity of fear responses appears to be affected by somatosensory precision. This has implications for our understanding of the role of sensory imprecision in the development of chronic pain. PMID:26950514

  8. Reinstatement of an Extinguished Fear Conditioned Response in Infant Rats

    ERIC Educational Resources Information Center

    Revillo, Damian A.; Trebucq, Gastón; Paglini, Maria G.; Arias, Carlos

    2016-01-01

    Although it is currently accepted that the extinction effect reflects new context-dependent learning, this is not so clear during infancy, because some studies did not find recovery of the extinguished conditioned response (CR) in rodents during this ontogenetic stage. However, recent studies have shown the return of an extinguished CR in infant…

  9. Sevoflurane anesthesia induces neither contextual fear memory impairment nor alterations in local population connectivity of medial prefrontal cortex local field potentials networks in aged rats.

    PubMed

    Xu, Xinyu; Zhang, Qian; Tian, Xin; Wang, Guolin

    2016-08-01

    Sevoflurane has been found to increase apoptosis and pathologic markers associated with Alzheimer disease, provoking concern over their potential contribution to postoperative cognitive dysfunction. This study aimed to determine the effects of sevoflurane on contextual fear memory of aged rats and to characterize local population connectivity of local field potentials (LFPs) in medial prefrontal cortex (mPFC) of aged rats during contextual fear memory. Eighteen-month-old male SD rats were implanted with one multichannel electrode array in mPFC. The aged rats were divided into control group, sevoflurane group (1 MAC sevoflurane for 2 h) and surgical group with 1.0 MAC sevoflurane for 2 h. We then assessed the effect of the anesthesia on contextual fear memory, and alterations in the local population connectivity of mPFC LFP networks by partial directed coherence (PDC). Surgery impaired contextual fear memory and reduced local population connectivity of mPFC LFP networks in aged rats at day 1 after the surgery and anesthesia. 1 MAC Sevoflurane anesthesia induced neither contextual fear memory impairment nor alterations in local population connectivity of mPFC LFP networks in aged rats when tested 1, 7, 15 and 30 days after exposure (P > 0.05). PDC values of theta band mPFC LFPs became strongly increased during contextual fear memory at 1, 7, 15, and 30 days after anesthesia. Our results suggest that 1 MAC sevoflurane anesthesia does not induce contextual fear memory impairment in aged rats and suggest that the increased local population connectivity in theta bands LFPs of mPFC plays a role in contextual fear memory. PMID:26946081

  10. Deficient fear conditioning in psychopathy as a function of interpersonal and affective disturbances

    PubMed Central

    Veit, Ralf; Konicar, Lilian; Klinzing, Jens G.; Barth, Beatrix; Yilmaz, Özge; Birbaumer, Niels

    2013-01-01

    The diminished fear reactivity is one of the most valid physiological findings in psychopathy research. In a fear conditioning paradigm, with faces as conditioned stimulus (CS) and electric shock as unconditioned stimulus (US), we investigated a sample of 14 high psychopathic violent offenders. Event related potentials, skin conductance responses (SCR) as well as subjective ratings of the CSs were collected. This study assessed to which extent the different facets of the psychopathy construct contribute to the fear conditioning deficits observed in psychopaths. Participants with high scores on the affective facet subscale of the Psychopathy Checklist-Revised (PCL-R) showed weaker conditioned fear responses and lower N100 amplitudes compared to low scorers. In contrast, high scorers on the affective facet rated the CS+ (paired) more negatively than low scorers regarding the CS− (unpaired). Regarding the P300, high scores on the interpersonal facet were associated with increased amplitudes to the CS+ compared to the CS−, while the opposed pattern was found for the antisocial facet. Both, the initial and terminal contingent negative variation indicated a divergent pattern: participants with pronounced interpersonal deficits, showed increased cortical negativity to the CS+ compared to the CS−, whereas a reversed CS+/CS− differentiation was found in offenders scoring high on the antisocial facet. The present study revealed that deficient fear conditioning in psychopathy was most pronounced in offenders with high scores on the affective facet. Event related potentials suggest that participants with distinct interpersonal deficits showed increased information processing, whereas the antisocial facet was linked to decreased attention and interest to the CS+. These data indicate that an approach to the facets of psychopathy can help to resolve ambiguous findings in psychopathy research and enables a more precise and useful description of this disorder. PMID:24298245

  11. Extinction and Retrieval + Extinction of Conditioned Fear Differentially Activate Medial Prefrontal Cortex and Amygdala in Rats.

    PubMed

    Lee, Hongjoo J; Haberman, Rebecca P; Roquet, Rheall F; Monfils, Marie-H

    2015-01-01

    Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a footshock) leads to associative learning such that the tone alone comes to elicit a conditioned response (e.g., freezing). We have previously shown that an extinction session that occurs within the reconsolidation window (termed retrieval + extinction) attenuates fear responding and prevents the return of fear in Pavlovian fear conditioning (Monfils et al., 2009). To date, the mechanisms that explain the different behavioral outcomes between standard extinction and retrieval + extinction remain poorly understood. Here we sought to examine the differential temporal engagement of specific neural systems by these two approaches using Arc catFISH (cellular compartment analysis of temporal activity using fluorescence in situ hybridization (FISH)). Our results demonstrate that extinction and retrieval + extinction lead to differential patterns of expression, suggesting that they engage different networks. These findings provide insight into the neural mechanisms that allow extinction during reconsolidation to prevent the return of fear in rodents. PMID:26834596

  12. Extinction and Retrieval + Extinction of Conditioned Fear Differentially Activate Medial Prefrontal Cortex and Amygdala in Rats

    PubMed Central

    Lee, Hongjoo J.; Haberman, Rebecca P.; Roquet, Rheall F.; Monfils, Marie-H.

    2016-01-01

    Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a footshock) leads to associative learning such that the tone alone comes to elicit a conditioned response (e.g., freezing). We have previously shown that an extinction session that occurs within the reconsolidation window (termed retrieval + extinction) attenuates fear responding and prevents the return of fear in Pavlovian fear conditioning (Monfils et al., 2009). To date, the mechanisms that explain the different behavioral outcomes between standard extinction and retrieval + extinction remain poorly understood. Here we sought to examine the differential temporal engagement of specific neural systems by these two approaches using Arc catFISH (cellular compartment analysis of temporal activity using fluorescence in situ hybridization (FISH)). Our results demonstrate that extinction and retrieval + extinction lead to differential patterns of expression, suggesting that they engage different networks. These findings provide insight into the neural mechanisms that allow extinction during reconsolidation to prevent the return of fear in rodents. PMID:26834596

  13. Reduced Electrodermal Fear Conditioning from Ages 3 to 8 Years Is Associated with Aggressive Behavior at Age 8 Years

    PubMed Central

    Gao, Yu; Raine, Adrian; Venables, Peter H.; Dawson, Michael E.; Mednick, Sarnoff A.

    2010-01-01

    Background Poor fear conditioning characterizes adult psychopathy and criminality, but it is not known whether it is related to aggressive/antisocial behavior in early childhood. Methods Using a differential, partial reinforcement conditioning paradigm, electrodermal activity was recorded from 200 male and female children at ages 3, 4, 5, 6, and 8 years. Antisocial/aggressive and hyperactive-inattentive measures were collected at age 8, while social adversity was assessed at age 3. Results Poor electrodermal fear conditioning from ages 3 to 8 years was associated with aggressive behavior at age 8 in both males and females. Conclusions Results indicate that the relationship between poor fear conditioning and aggression occurs early in childhood. Enhanced electrodermal fear conditioning may protect children against future aggressive/violent behavior. Abnormal amygdala functioning, as indirectly assessed by fear conditioning, may be one of the factors influencing the development of childhood aggression. PMID:19788551

  14. Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear.

    PubMed

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P

    2010-11-01

    Synaptically released Zn²+ is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles, highly enriched in the amygdala-associated neural circuitry, and ZnT3 KO mice lack Zn²+ in synaptic vesicles. However, earlier work reported no deficiency in fear memory in ZnT3 KO mice, which is surprising based on the effects of Zn²+ on amygdala synaptic plasticity. We therefore reexamined ZnT3 KO mice in various tasks for learned and innate fear. The mutants were deficient in a weak fear-conditioning protocol using single tone-shock pairing but showed normal memory when a stronger, five-pairing protocol was used. ZnT3 KO mice were deficient in memory when a tone was presented as complex auditory information in a discontinuous fashion. Moreover, ZnT3 KO mice showed abnormality in trace fear conditioning and in fear extinction. By contrast, ZnT3 KO mice had normal anxiety. Thus, ZnT3 is involved in associative fear memory and extinction, but not in innate fear, consistent with the role of synaptic zinc in amygdala synaptic plasticity. PMID:21036893

  15. Protein degradation by ubiquitin–proteasome system in formation and labilization of contextual conditioning memory

    PubMed Central

    Sol Fustiñana, María; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro

    2014-01-01

    The ubiquitin–proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates. PMID:25135196

  16. Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory.

    PubMed

    Sol Fustiñana, María; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2014-09-01

    The ubiquitin-proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this