Science.gov

Sample records for conductive carbon coatings

  1. Superhydrophobic conductive carbon nanotube coatings for steel.

    PubMed

    Sethi, Sunny; Dhinojwala, Ali

    2009-04-21

    We report the synthesis of superhydrophobic coatings for steel using carbon nanotube (CNT)-mesh structures. The CNT coating maintains its structural integrity and superhydrophobicity even after exposure to extreme thermal stresses and has excellent thermal and electrical properties. The coating can also be reinforced by optimally impregnating the CNT-mesh structure with cross-linked polymers without significantly compromising on superhydrophobicity and electrical conductivity. These superhydrophobic conductive coatings on steel, which is an important structural material, open up possibilities for many new applications in the areas of heat transfer, solar panels, transport of fluids, nonwetting and nonfouling surfaces, temperature resilient coatings, composites, water-walking robots, and naval applications. PMID:19281157

  2. Conductive Carbon Coatings for Electrode Materials

    SciTech Connect

    Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

    2007-07-13

    A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO{sub 4} and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO{sub 4} suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10{sup -9} S cm{sup -1}). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures (<800 C) required to make LiFePO{sub 4}, however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density.

  3. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers

    NASA Astrophysics Data System (ADS)

    Agarwal, Mangilal; Xing, Qi; Shim, Bong Sup; Kotov, Nicholas; Varahramyan, Kody; Lvov, Yuri

    2009-05-01

    Composite nanocoating of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) and aqueous dispersion of carbon nanotubes (CNT-PSS) on lignocellulose wood microfibers has been developed to make conductive microfibers and paper sheets. To construct the multilayers on wood microfibers, cationic poly(ethyleneimine) (PEI) has been used in alternate deposition with anionic conductive PEDOT-PSS and solubilized CNT-PSS. Using a Keithley microprobe measurement system, current-voltage measurements have been carried out on single composite microfibers after deposition of each layer to optimize the electrical properties of the coated microfibers. The conductivity of the resultant wood microfibers was in the range of 10-2-2 S cm-1 depending on the architecture of the coated layer. Further, the conductivity of the coated wood microfibers increased up to 20 S cm-1 by sandwiching multilayers of conductive co-polymer PEDOT-PSS with CNT-PSS through a polycation (PEI) interlayer. Moreover, paper hand sheets were manufactured from these coated wood microfibers with conductivity ranging from 1 to 20 S cm-1. A paper composite structure consisting of conductive/dielectric/conductive layers that acts as a capacitor has also been fabricated and is reported.

  4. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates.

    PubMed

    Andrew Ng, M H; Hartadi, Lysia T; Tan, Huiwen; Patrick Poa, C H

    2008-05-21

    Optically transparent and electrically conductive single-walled carbon nanotube (SWNT) thin films were fabricated at room temperature using a dip-coating technique. The film transparency and sheet resistance can be easily tailored by controlling the number of coatings. Aminopropyltriethoxysilane (APTS) was used as an adhesion promoter and, together with surfactant Triton X-100, greatly improved the SWNTs coating. Only five coats were required to obtain a sheet resistance of 2.05 [Formula: see text] and film transparency of 84 %T. The dip-coated film after post-deposition treatment with nitric acid has a sheet resistance as low as 130 [Formula: see text] at 69 %T. This technique is suitable for large-scale SWNT coating at room temperature and can be used on different types of substrates such as glass and plastics. This paper will discuss the role of the adhesion promoter and surfactant in the coating process. PMID:21825746

  5. Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding.

    PubMed

    Das, Arindam; Hayvaci, Harun T; Tiwari, Manish K; Bayer, Ilker S; Erricolo, Danilo; Megaridis, Constantine M

    2011-01-01

    This paper presents a solvent-based, mild method to prepare superhydrophobic, carbon nanofiber/PTFE-filled polymer composite coatings with high electrical conductivity and reports the first data on the effectiveness of such coatings as electromagnetic interference (EMI) shielding materials. The coatings are fabricated by spraying dispersions of carbon nanofibers and sub-micron PTFE particles in a polymer blend solution of poly(vinyledene fluoride) and poly(methyl methacrylate) on cellulosic substrates. Upon drying, coatings display static water contact angles as high as 158° (superhydrophobic) and droplet roll-off angles of 10° indicating self-cleaning ability along with high electrical conductivities (up to 309 S/m). 100 μm-thick coatings are characterized in terms of their EMI shielding effectiveness in the X-band (8.2-12.4 GHz). Results show up to 25 dB of shielding effectiveness, which changed little with frequency at a fixed composition, thus indicating the potential of these coatings for EMI shielding applications and other technologies requiring both extreme liquid repellency and high electrical conductivity. PMID:20889160

  6. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings.

    PubMed

    Li, Zhongrui; Kandel, Hom R; Dervishi, Enkeleda; Saini, Viney; Xu, Yang; Biris, Alexandru R; Lupu, Dan; Salamo, Gregory J; Biris, Alexandru S

    2008-03-18

    We compared conductive transparent carbon nanotube coatings on glass substrates made of differently produced single-wall (SWNT), double-wall, and multiwall carbon nanotubes. The airbrushing approach and the vacuum filtration method were utilized for the fabrication of carbon nanotube films. The optoelectronic performance of the carbon nanotube film was found to strongly depend on many effects including the ratio of metallic-to-semiconducting tubes, dispersion, length, diameter, chirality, wall number, structural defects, and the properties of substrates. The electronic transportability and optical properties of the SWNT network can be significantly altered by chemical doping with thionyl chloride. Hall effect measurements revealed that all of these thin carbon nanotube films are of p-type probably due to the acid reflux-based purification and atmospheric impurities. The competition between variable-range hoping and fluctuation-assisted tunneling in the functionized carbon nanotube system could lead to a crossover behavior in the temperature dependence of the network resistance. PMID:18251555

  7. Final Technical Report CONDUCTIVE COATINGS FOR SOLAR CELLS USING CARBON NANOTUBES

    SciTech Connect

    Paul J Glatkowski; Jorma Peltola; Christopher Weeks; Mike Trottier; David Britz

    2007-09-30

    US Department of Energy (DOE) awarded a grant for Eikos Inc. to investigate the feasibility of developing and utilizing Transparent Conducting Coatings (TCCs) based on carbon nanotubes (CNT) for solar cell applications. Conventional solar cells today employ metal oxide based TCCs with both Electrical Resistivity (R) and Optical Transparency (T), commonly referred to as optoelectronic (RT) performance significantly higher than with those possible with CNT based TCCs available today. Transparent metal oxide based coatings are also inherently brittle requiring high temperature in vacuum processing and are thus expensive to manufacture. One such material is indium tin oxide (ITO). Global demand for indium has recently increased rapidly while supply has diminished causing substantial spikes in raw material cost and availability. In contrast, the raw material, carbon, needed for CNT fabrication is abundantly available. Transparent Conducting Coatings based on CNTs can overcome not only cost and availability constraints while also offering the ability to be applied by existing, low cost process technologies under ambient conditions. Processes thus can readily be designed both for rigid and flexible PV technology platforms based on mature spray or dip coatings for silicon based solar cells and continuous roll to roll coating processes for polymer solar applications.

  8. Effect of an organic molecular coating on control over the conductance of carbon nanotube channel

    SciTech Connect

    Bobrinetskiy, I. I.; Emelianov, A. V.; Nevolin, V. K. Romashkin, A. V.

    2014-12-15

    It is shown that the coating of carbon nanotubes with molecules with a constant dipole moment changes the conductance of the tubes due to a variation in the structure of energy levels that participate in charge transport. The I–V characteristics of the investigated structures exhibit significant dependence of the channel conductance on the gate potential. The observed memory effect of conductance level can be explained by the rearrangement of polar groups and molecules as a whole in an electric field. The higher the dipole moment per unit length and the weaker the intermolecular interaction, the faster the rearrangement process is.

  9. Bimodal Latex Effect on Spin-Coated Thin Conductive Polymer-Single-Walled Carbon Nanotube Layers.

    PubMed

    Moradi, Mohammad-Amin; Larrakoetxea Angoitia, Katalin; van Berkel, Stefan; Gnanasekaran, Karthikeyan; Friedrich, Heiner; Heuts, Johan P A; van der Schoot, Paul; van Herk, Alex M

    2015-11-10

    We synthesize two differently sized poly(methyl methacrylate-co-tert-butyl acrylate) latexes by emulsion polymerization and mix these with a sonicated single-walled carbon nanotube (SWCNT) dispersion, in order to prepare 3% SWCNT composite mixtures. We spin-coat these mixtures at various spin-speed rates and spin times over a glass substrate, producing a thin, transparent, solid, conductive layer. Keeping the amount of SWCNTs constant, we vary the weight fraction of our smaller 30-nm latex particles relative to the larger 70-nm-sized ones. We find a maximum in the electrical conductivity up to 370 S/m as a function of the weight fraction of smaller particles, depending on the overall solid content, the spin speed, and the spin time. This maximum occurs at 3-5% of the smaller latex particles. We also find a more than 2-fold increase in conductivity parallel to the radius of spin-coating than perpendicular to it. Atomic force microscopy points at the existence of lanes of latex particles in the spin-coated thin layer, while large-area transmission electron microscopy demonstrates that the SWCNTs are aligned over a grid fixed on the glass substrate during the spin-coating process. We extract the conductivity distribution on the surface of the thin film and translate this into the direction of the SWCNTs in it. PMID:26491888

  10. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes.

    PubMed

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-12-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations. PMID:26676996

  11. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ventura, Isaac Aguilar; Zhou, Jian; Lubineau, Gilles

    2015-12-01

    A well-known strategy to improve the electrical conductivity of polymers is to dope them with high-aspect-ratio and conductive nanoparticles such as carbon nanotubes (CNTs). However, these nanocomposites also exhibit undesirable properties such as damage-sensitive and history-dependent conductivity because their macroscopic electrical conductivity is largely determined by the tunneling effect at the tube/tube interface. To reduce these issues, new nanocomposites have been developed with CNTs that have been coated with a conductive layer of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT/PSS). It has been posited that the insulating region between the CNTs is replaced by a conductive polymer bridge; this has not been proven up to now. We propose here to investigate in-depth how the macroscopic conductivity of these materials is changing when (1) varying the frequency of the electrical loading (impedance spectroscopy), (2) varying the mechanical hydrostatic pressure, and (3) varying the voltage of the electrical loading. The response is systematically compared to the one of conventional carbon nanotube/polycarbonate (CNT/PC) nanocomposites so we can clarify how efficiently the tunneling effect is suppressed from these composites. The objective is to elucidate further the mechanism for conduction in such material formulations.

  12. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes.

    PubMed

    Green, Alexander A; Hersam, Mark C

    2008-05-01

    Single-walled carbon nanotubes (SWNTs) are promising materials for transparent conduction as a result of their exceptional electrical, optical, mechanical, and chemical properties. However, since current synthetic methods yield polydisperse mixtures of SWNTs, the performance of SWNT transparent conductive films has previously been hindered by semiconducting species. Here, we describe the performance of transparent conductors produced using predominantly metallic SWNTs. Compared with unsorted material, films enriched in metallic SWNTs can enhance conductivity by factors of over 5.6 in the visible and 10 in the infrared. Moreover, by using monodisperse metallic SWNTs sorted with angstrom-level resolution in diameter, semitransparent conductive coatings with tunable optical transmittance can be produced. PMID:18393537

  13. Transparent Conductive Coating Based on Carbon Nanotubes Using Electric Field Deposition Method

    SciTech Connect

    Latununuwe, Altje; Hattu, Nikmans; Setiawan, Andhy; Winata, Toto; Abdullah, Mikrajuddin; Darma, Yudi

    2010-10-24

    The transparent conductive coating based on carbon nanotubes (CNTs) had been fabricated using the electric field deposition method. The scanning electron microscope (SEM) results show a quite uniform CNTs on Corning glass substrates. Moreover the X-ray Diffraction (XRD) results shows the peak at around 25 deg. which proves the existence of CNT materials. The CNT thin films obtained with different deposition times have different transmittance coefficients at wavelength of 550 nm. I-V measurement results shows higher sheet resistance value which relates with bigger transmittance coefficients and vice versa.

  14. Correlation Between Thermal Interface Conductance and Mechanical Adhesion Strength in Cu-Coated Glassy Carbon

    NASA Astrophysics Data System (ADS)

    Pelzl, J.; Kijamnajsuk, P.; Chirtoc, M.; Horny, N.; Eisenmenger-Sittner, C.

    2015-09-01

    The influence of defective areas in the interface on the correlation between the thermal interface conductance and the mechanical adhesion strength was investigated on as-prepared and heat-treated samples of copper-coated carbon flat specimens with different bonding layers between the copper film and the substrate. The thermal interface conductance was determined by frequency-domain photothermal radiometry. The mechanical adhesion strength of the film coating was deduced from pull-off experiments. The imperfect interfaces were modeled by two different values for the thermal interface conductance, G1 and G2, which co-exist at different areas on the interface and are weighted according to their areas, A1 and A2. The model parameters were determined by adjusting the frequency dependence of the normalized phases and phase differences of the PTR signals from as-prepared and heat-treated samples. The total thermal conductance of the interface was found to exhibit a correlation with the adhesion strength for most of the heat-treated samples whereas, among the as-prepared samples, considerable deviations from such a trend exist. The observations are explained by the impact of supplementary stress on the adhesion strength measurements which are due to the strain developed during the preparation process at the interface. The interfacial stress and strain are mostly released during thermal annealing. A semi-empirical formula was developed that describes the impact of the defective areas on the adhesion strength using the experimentally determined thermal model parameters.

  15. Carbon nanotubes noncovalently functionalized by an organic-inorganic hybrid: new building blocks for constructing superhydrophobic conductive coatings.

    PubMed

    Peng, Mao; Qi, Ji; Zhou, Zhi; Liao, Zhangjie; Zhu, Zhongming; Guo, Honglei

    2010-08-17

    A facile method for constructing superhydrophobic, conductive, and transparent/translucent coatings is presented. Pristine multiwalled carbon nanotubes (MWNTs) are first noncovalently (wrapped) modified by an organic-inorganic hybrid of an amphiphilic copolymer of styrene and maleic anhydride and silica with the existence of gamma-aminopropyltriethoxysilane (a silane coupling agent). The modified MWNTs were mixed with tetraethyl orthosilicate in ethanol, air sprayed, coated with a fluoroalkylsilane, and then heat treated to obtain the superhydrophobic, conductive, and transparent/translucent coatings. Scanning electron microscopy shows that the coatings have a micrometer- and nanometer-scale hierarchical structure similar to that of lotus leaves; therefore, they show both high water contact angles (>160 degrees) and low sliding angles (<2 degrees). The coatings also exhibit good transmittance and greatly improved conductivities. This method is convenient, inexpensive, and easy to scale up. Moreover, it does not require any chemical modification of the MWNTs or use any harsh chemicals. PMID:20695543

  16. Effects of carbon nanotube and conducting polymer coated microelectrodes on single-unit recordings in vitro.

    PubMed

    Charkhkar, Hamid; Knaack, Gretchen L; Mandal, Himadri S; Keefer, Edward W; Pancrazio, Joseph J

    2014-01-01

    Neuronal networks cultured on microelectrode arrays (MEAs) have been utilized as biosensors that can detect all or nothing extracellular action potentials, or spikes. Coating the microelectrodes with carbon nanotubes (CNTs), either pristine or conjugated with a conductive polymer, has been previously reported to improve extracellular recordings presumably via reduction in microelectrode impedance. The goal of this work was to examine the basis of such improvement in vitro. Every other microelectrode of in vitro MEAs was electrochemically modified with either conducting polymer, poly-3,4-ethylenedioxythiophene (PEDOT) or a blend of CNT and PEDOT. Mouse cortical tissue was dissociated and cultured on the MEAs to form functional neuronal networks. The performance of the modified and unmodified microelectrodes was evaluated by activity measures such as spike rate, spike amplitude, burst duration and burst rate. We observed that the yield, defined as percentage of microelectrodes with neuronal activity, was significantly higher by 55% for modified microelectrodes compared to the unmodified sites. However, the spike rate and burst parameters were similar for modified and unmodified microelectrodes suggesting that neuronal networks were not physiologically altered by presence of PEDOT or PEDOT-CNT. Our observations from immunocytochemistry indicated that neuronal cells were more abundant in proximity to modified microelectrodes. PMID:25569998

  17. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    NASA Astrophysics Data System (ADS)

    Takacs, H.; Viala, B.; Tortai, J.-H.; Hermán, V.; Duclairoir, F.

    2016-03-01

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P1/P2, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P1 = pyrene-terminated polystyrene is the second shell for electrical insulation, and P2 = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (˜0.6 T) and ultra-high resistivity (˜1010 μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P1. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  18. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics

    SciTech Connect

    Ostfeld, Aminy E.; Arias, Ana Claudia; Catheline, Amélie; Ligsay, Kathleen; Kim, Kee-Chan; Fogden, Siân; Chen, Zhihua; Facchetti, Antonio

    2014-12-22

    Solutions of unbundled and unbroken single-walled carbon nanotubes have been prepared using a reductive dissolution process. Transparent conductive films spray-coated from these solutions show a nearly twofold improvement in the ratio of electrical conductivity to optical absorptivity versus those deposited from conventional aqueous dispersions, due to substantial de-aggregation and sizable nanotube lengths. These transparent electrodes have been utilized to fabricate P3HT-PCBM organic solar cells achieving power conversion efficiencies up to 2.3%, comparable to those of solar cells using indium tin oxide transparent electrodes.

  19. Reduced graphene oxide with ultrahigh conductivity as carbon coating layer for high performance sulfur@reduced graphene oxide cathode

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Peng, Zhenhuan; Wang, Wenjun; Chen, Xikun; Fang, Jianhui; Xu, Jiaqiang

    2014-01-01

    We developed hydrogen iodide (HI) reduction of rGO and surfactant-assisted chemical reaction- deposition method to form hybrid material of sulfur (S) encapsulated in reduced graphene oxide (rGO) sheets for rechargeable lithium batteries. The surfactant-assisted chemical reaction-deposition method strategy provides intimate contact between the S and graphene oxide. Chemical reduced rGO with high conductivity as carbon coating layer prevented the dissolution of polysulfide ions and improved the electron transfer. This novel core-shell structured S@rGO composites with high S content showed high reversible capacity, good discharge capacity retention and enhanced rate capability used as cathodes in rechargeable Li/S cells. We demonstrated here that an electrode prepared from a S@rGO with up to 85 wt% S maintains a stable discharge capacity of about 980 mAh g-1 at 0.05 C and 570 mAh g-1 at 1C after 200 cycles charge/discharge. These results emphasize the importance of rGO with high electrical conductivity after HI-reduced rGO homogeneously coating on the surface of S, therefore, effectively alleviating the shuttle phenomenon of polysulfides in organic electrolyte. Our surfactant-assisted chemical reaction-HI reduction approach should offer a new technique for the design and synthesis of battery electrodes based on highly conducting carbon materials.

  20. Transparent conductive coatings

    NASA Technical Reports Server (NTRS)

    Ashok, S.

    1983-01-01

    Thin film transparent conductors are discussed. Materials with electrical conductivity and optical transparency are highly desirable in many optoelectronic applications including photovoltaics. Certain binary oxide semiconductors such as tin oxide (SnO2) and indium oxide (In2O3) offer much better performance tradeoff in optoelectronics as well as better mechanical and chemical stability than thin semitransparent films. These thin-film transparent conductors (TC) are essentially wide-bandgap degenerate semiconductors - invariably n-type - and hence are transparent to sub-bandgap (visible) radiation while affording high electrical conductivity due to the large free electron concentration. The principal performance characteristics of TC's are, of course, electrical conductivity and optical transmission. The TC's have a refractive index of around 2.0 and hence act as very efficient antireflection coatings. For using TC's in surface barrier solar cells, the photovoltaic barrier is of utmost importance and so the work function or electron affinity of the TC is also a very important material parameter. Fabrication processes are discussed.

  1. Enhanced electrical conductivity and hardness of silver-nickel composites by silver-coated multi-walled carbon nanotubes.

    PubMed

    Lee, Dongmok; Sim, Jeonghyun; Kim, Wonyoung; Moon, Chuldong; Cho, Wookdong; Baik, Seunghyun

    2015-07-24

    We investigated electrical conductivity and Vickers hardness of Ag- and Ni-based composites prepared by powder metallurgy involving spark plasma sintering. The starting composition was Ag:Ni = 61:39 vol%, which provided an electrical conductivity of 3.30 × 10(5) S cm(-1) and a hardness of 1.27 GPa. The addition of bare multi-walled carbon nanotubes (MWNTs, 1.45 vol%) increased hardness (1.31 GPa) but decreased electrical conductivity (2.99 × 10(5) S cm(-1)) and carrier mobility (11 cm(2) V(-1) s(-1)) due to the formation of Ni3C in the interface between the MWNTs and Ni during spark plasma sintering. The formation of Ni3C was prevented by coating the surface of the nanotubes with Ag (nAgMWNTs), concomitantly increasing electrical conductivity (3.43 × 10(5) S cm(-1)) and hardness (1.37 GPa) of the sintered specimen (Ag:Ni:nAgMWNTs = 59.55:39:1.45 vol%). The electrical contact switching time (133 357) was also increased by 30%, demonstrating excellent feasibility as electrical contact materials for electric power industries. PMID:26133395

  2. Thermal Conductivity of Coated Paper

    SciTech Connect

    Kerr, Lei L; Pan, Yun-Long; Dinwiddie, Ralph Barton; Wang, Hsin; Peterson, Robert C.

    2009-01-01

    In this paper, we introduce a method for measuring the thermal conductivity of paper using a hot disk system. To the best of our knowledge, few publications are found discussing the thermal conductivity of a coated paper although it is important to various forms of today s digital printing where heat is used for imaging as well as for toner fusing. This motivates us to investigate the thermal conductivity of paper coating. Our investigation demonstrates that thermal conductivity is affected by the coat weight and the changes in the thermal conductivity affect ink gloss and density. As the coat weight increases, the thermal conductivity increases. Both the ink gloss and density decrease as the thermal conductivity increases. The ink gloss appears to be more sensitive to the changes in the thermal conductivity.

  3. Thermal Conductivity of Coated Paper

    NASA Astrophysics Data System (ADS)

    Kerr, Lei L.; Pan, Yun-Long; Dinwiddie, Ralph B.; Wang, Hsin; Peterson, Robert C.

    2009-04-01

    In this article, a method for measuring the thermal conductivity of paper using a hot disk system is introduced. To the best of our knowledge, few publications are found discussing the thermal conductivity of a coated paper, although it is important to various forms of today’s digital printing where heat is used for imaging, as well as for toner fusing. This motivated an investigation of the thermal conductivity of paper coating. This study demonstrates that the thermal conductivity is affected by the coating mass and the changes in the thermal conductivity affect toner gloss and density. As the coating mass increases, the thermal conductivity increases. Both the toner gloss and density decrease as the thermal conductivity increases. The toner gloss appears to be more sensitive to the changes in the thermal conductivity.

  4. Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  5. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  6. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  7. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Xu, Hong-feng; Fu, Jie; Tian, Ying

    2016-07-01

    Ni-Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  8. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  9. Direct and Efficient Preparation of Graphene Transparent Conductive Films on Flexible Poly Carbonate Substrate by Spray-Coating.

    PubMed

    Li, Xiuqiang; Zhang, Dong; Yang, Chao; Shang, Yu

    2015-12-01

    Owing to the hydrophobic property and heat-labile of flexible substances, it is difficult to prepare graphene transparent conductive films (TCFs) on flexible substrate in a direct and effective way. Here we prepared a good dispersion of water/graphene oxide (GO)/ethanol, and the fabrication of graphene TCFs on flexible poly carbonate (PC) substrate was made by spray deposition of water/GO/ethanol, followed by the reduction of hydriodic acid (HI) fuming method. It can be found that when ethanol was added to GO solution, the drying dynamics of the spraying solvent increased and the problem of wetting property of GO dispersion on the PC could be effectively resolved. HI acid vapour can achieve an effective reduction of the GO film. The reduction effect of HI acid fuming method is more effective in comparation with traditional HI acid immersed method. An increase in spraying concentration can lead to a rise in coverage degree of film and folding degree of surface. 1/500 mg/ml is a relatively appropriate concentration for spray-coating. The thickness of the film was controlled by adjusting the spraying volume of water/GO/ethanol dispersion. The graphene TCFs exhibit a sheet resistance of less than 15.3 kΩ/sq at 74% transmittance. PMID:26682372

  10. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  11. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  12. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  13. Effects of Transitional Buffering Interface coatings on thermal contact conductance

    NASA Astrophysics Data System (ADS)

    Chung, K. C.; Sheffield, J. W.; Sauer, H. J., Jr.; O'Keefe, T. J.; Zhang, J.

    1991-06-01

    Enhancing thermal contact conductance by a reliable and durable coating technique, Transitional Buffering Interface (TBI), has been investigated. A phase mixed coatings, Cu/C, and pure copper coatings on both primary surfaces of specimens were evaluated using four different surface roughnesses. All the samples are being tested at the following contact pressure sequence 125, 250, 375, 500, 375, 250 and 125 kPa. The test results of thermal contact conductance are presented in terms of coating thickness, surface texture and properties of coating materials. Vickers microhardness correlations are also presented for phase mixture copper and carbon and pure copper coatings. Using the experimental data, dimensionless expressions were developed that related the contact conductance of phase mixture copper-carbon and pure copper coatings to the coating thickness, the surface roughness, the contact pressure and the properties of aluminum substrate. The adhesive test indicated good durability of TBI coating surfaces.

  14. Titanium carbon nitride coating. Final report

    SciTech Connect

    Nance, S.D.

    1992-04-01

    The purpose of this investigation was to determine the advantages of titanium carbon nitride (TiCN) coated tools. Cutting tests were conducted comparing TiCN coating directly against titanium nitride (TiN) coated and uncoated T-15 CPM end mills.

  15. Percolation-dominated superhydrophobicity and conductivity for nanocomposite coatings from the mixtures of a commercial aqueous silica sol and functionalized carbon nanotubes.

    PubMed

    Peng, Mao; Guo, Honglei; Liao, Zhangjie; Qi, Ji; Zhou, Zhi; Fang, Zhengping; Shen, Lie

    2012-02-01

    Superhydrophobic conductive nanocomposite coatings are prepared for the first time from the simple mixture of a commercial aqueous silica sol and functionalized multiwalled carbon nanotubes (MWNTs) by air-spraying at ambient conditions followed by fluorosilane treatment. The relationship between MWNT content and the structure and properties of the nanocomposite coatings is investigated systematically. An ultra-low threshold (<5 vol.%) for superhydrophobicity is observed, which suggests that MWNTs are superior to any other spherical fillers for the construction of superhydrophobic nanocomposite coatings. When the content of nanotubes is below the threshold, the surface roughness mainly caused by the silica nanoparticles is not enough for creating superhydrophobic surfaces. Only above the threshold, the multiscale hierarchical structure is enough for both high water contact angles (>165°) and extremely low sliding angles (<2°). The conductivity is also percolation dominated, while the threshold for conductivity is much higher than that for superhydrophobicity, which can be ascribed to the encapsulated structure and the agglomeration of nanotubes in the composite coatings during air-spraying. Moreover, the aqueous silica sols hold merits of great film-forming capability at relatively low calcination temperatures, and being free of organic solvents. PMID:22056263

  16. Conducting carbonized polyaniline nanotubes

    NASA Astrophysics Data System (ADS)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  17. Conducting carbonized polyaniline nanotubes.

    PubMed

    Mentus, Slavko; Cirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 degrees C min(-1) up to a maximum temperature of 800 degrees C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 microm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 microm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm(-1), increased to 0.7 S cm(-1) upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy. PMID:19471087

  18. Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly(m-phenylene isophthalamide) Polymer Core/Shell Structures.

    PubMed

    Jiang, Shujuan; Zhang, Hongbo; Song, Shaoqing; Ma, Yanwen; Li, Jinghua; Lee, Gyeong Hee; Han, Qiwei; Liu, Jie

    2015-10-27

    A core/shell stretchable conductive composite of a few-walled carbon nanotube network coated on a poly(m-phenylene isophthalamide) fiber (FWNT/PMIA) was fabricated by a dip-coating method and an annealing process that greatly enhanced interactions between the FWNT network and PMIA core as well as within the FWNT network. The first strain-conductivity test of the as-prepared FWNT/PMIA fiber showed a stretching-induced alignment of nanotubes in the shell during the deformation process and a good conductivity stability with a slight conductivity drop from 109.63 S/cm to 98.74 S/cm (Δσ/σ0 = 10%) at a strain of ∼150% (2.5 times the original length). More importantly, after the first stretching process, the fiber can be recovered with a slight increase in length but a greatly improved conductivity of 167.41 S/cm through an additional annealing treatment. The recovered fiber displays a similarly superb conductivity stability against stretching, with a decrease of only ∼13 S/cm to 154.49 S/cm (Δσ/σ0 = 8%) at a strain of ∼150%. We believe that this conductivity stability came from the formation and maintaining of aligned nanotube structures during the stretching process, which ensures the good tube-tube contacts and the elongation of the FWNT network without losing its conductivity. Such stable conductivity in stretchable fibers will be important for applications in stretchable electronics. PMID:26390200

  19. Carbon Fibers Conductivity Studies

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Butkus, A. M.

    1980-01-01

    In an attempt to understand the process of electrical conduction in polyacrylonitrile (PAN)-based carbon fibers, calculations were carried out on cluster models of the fiber consisting of carbon, nitrogen, and hydrogen atoms using the modified intermediate neglect of differential overlap (MINDO) molecular orbital (MO) method. The models were developed based on the assumption that PAN carbon fibers obtained with heat treatment temperatures (HTT) below 1000 C retain nitrogen in a graphite-like lattice. For clusters modeling an edge nitrogen site, analysis of the occupied MO's indicated an electron distribution similar to that of graphite. A similar analysis for the somewhat less stable interior nitrogen site revealed a partially localized II electron distribution around the nitrogen atom. The differences in bonding trends and structural stability between edge and interior nitrogen clusters led to a two-step process proposed for nitrogen evolution with increasing HTT.

  20. Enhancement of thermal contact conductance of coated junctions

    NASA Astrophysics Data System (ADS)

    Chung, Kee-Chiang; Sheffield, John W.

    1995-04-01

    The thermal contact conductance of coated, contacting aluminum 6061-T651 surfaces was studied experimentally. Four different coating materials, copper, silver, a phase mixture of copper-carbon, and a phase mixture of silver-carbon were evaluated using four different surface roughnesses for each coating material. All of the samples were tested at contact pressures of 125, 250, 375, and 500 kPa. The test results of thermal contact conductance are presented in terms of coating thickness, surface texture, and properties of the coating materials. Using the experimental data, dimensionless expressions were developed that relate the contact conductance of the phase mixture and pure coatings to the coating thickness, the surface roughness, the contact pressure, and the properties of the aluminum substrate. The effects of the surface roughness and of the phase mixture of the coatings on the thermal contact conductance were investigated. In addition, the load cycling effect on the thermal contact conductance was examined for bare aluminum 6061-T651 specimens.

  1. Enhancement of thermal contact conductance of coated junctions

    SciTech Connect

    Chung, K.C.; Sheffield, J.W.

    1995-04-01

    The thermal contact conductance of coated, contacting aluminum 6061-T651 surfaces was studied experimentally. Four different coating materials, copper, silver, a phase mixture of copper-carbon, and a phase mixture of silver-carbon were evaluated using four different surface roughnesses for each coating material. All of the samples were tested at contact pressures of 125, 250, 375, and 500 kPa. The test results of thermal contact conductance are presented in terms of coating thickness, surface texture, and properties of the coating materials. Using the experimental data, dimensionless expressions were developed that relate the contact conductance of the phase mixture and pure coatings to the coating thickness, the surface roughness, the contact pressure, and the properties of the aluminum substrate. The effects of the surface roughness and of the phase mixture of the coatings on the thermal contact conductance were investigated. In addition, the load cycling effect on the thermal contact conductance was examined for bare aluminum 6061-T651 specimens. 15 refs.

  2. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above

  3. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C

  4. Conductive Tether Coating for Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Schuler, Pete

    2000-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS), which is an on-orbit demonstration of the propulsion capabilities of electrodynamic tethers in space, is a secondary payload on a Delta 11 unmanned expendable booster. The ProSEDS tether consists of a 5 km bare electrodynamic tether and a 1 0-km non-conductive leader tether. Near the Delta 11, 160 m of the conductive tether is insulated to prevent plasma electron collection from the plasma contactor and for other science requirements. The remainder of the 5-km conductive tether is coated with a new conductive coating to collect plasma electrons. A bare metal tether easily collects electrons from the plasma, but thermal concerns preclude this design. A highly emissive conductive polymer developed by Triton Systems, Inc. has been optimized for both conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven individually coated strands of 28 AWG aluminum wire, coated with an atomic oxygen-resistant conductive polymer composed of a mixture of COR (Colorless Oxygen Resistant) and polyanaline (PANI) known as C-COR (Conductive-Colorless Oxygen Resistant). The conductive-coated wire strands are cold-welded to individually coated strands of the insulated tether. The insulated tether is coated with 1 mil of polyimide and an atomic oxygen resistant polymer TOR-BP. The insulated tether must stand off the entire voltage of the tether (1 200 V) at various times during the mission. All seven wires are twisted around a Kevlar-29 core using the Hi-wire design. Extensive testing has been performed at the Marshall Space Flight Center to qualify both the conductive coating and insulating coating for use on the ProSEDS tether. The conductive coating has been exposed to a plasma to verify the coatings ability to collect electrons from the space plasma from 0 to 1500 V, and to verify the coatings ability to collect electrons after atomic oxygen exposure. The insulated coating has been

  5. Transparent conductive coatings in the far ultraviolet

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Park, Jung HO; Wilson, Michele M.; Keffer, Charles E.; Torr, Douglas G.

    1993-01-01

    In certain cases a space-borne optical instrument with a dielectric window requires a transparent conductive coating deposited on the window to remove the electrostatic charge collected due to the bombardment of ionized particles. Semiconductor and metal films are studied for use as transparent conductive coatings for the front window of far ultraviolet camera. Cr is found to be the best coating material. The theoretical search for the semiconductor and metal coating materials and experimental results for ITO and Cr films are reported.

  6. Thermal conductivity of zirconia thermal barrier coatings

    SciTech Connect

    Dinwiddie, R.B.; Beecher, S.C.; Nagaraj, B.A.; Moore, C.S.

    1995-10-01

    Thermal barrier coatings (TBC`s) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC`s is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings.

  7. Coating for gasifiable carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Harper-Tervet, Jan (Inventor); Dowler, Warren L. (Inventor); Yen, Shiao-Ping S. (Inventor); Mueller, William A. (Inventor)

    1982-01-01

    A thin, uniform, firmly adherent coating of metal gasification catalyst is applied to a carbon-graphite fiber by first coating the fiber with a film-forming polymer containing functional moieties capable of reaction with the catalytic metal ions. Multivalent metal cations such as calcium cross-link the polymer such as a polyacrylic acid to insolubilize the film by forming catalytic metal macro-salt links between adjacent polymer chains. The coated fibers are used as reinforcement for resin composites and will gasify upon combustion without evolving conductive airborne fragments.

  8. Corrosion resistant coatings from conducting polymers

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1993-12-01

    Cr-based corrosion resistant undercoatings will have to be replaced because of environmental and health concerns. A coating system of a conducting polyaniline primer layer topcoated with epoxy or polyurethane, is being evaluated for corrosion resistance on mild steel in 0.1 M HCl or in a marine setting. Results of both laboratory and Beach Site testing indicate that this coating is very effective; even when the coatings are scratched to expose bare metal, the coated samples show very little signs of corrosion in the exposed area. 3 figs, 6 refs.

  9. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  10. Preparation of carbon nanotubes as the conductive coating layer on flexible thermal-resistant substrate by permeating method and its residual stress analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Kai; Huang, Szu-Chun; Yu, Hsin Her

    2013-04-01

    A polyarylate (PAR) substrate was first prepared by hot pressing and then carbon nanotubes (CNTs) were coated on its surface by a low-temperature spraying method. In order to eliminate the residual stress and enhance the adhesive ability between the substrate and the coated CNT layer, an optimal thermo-permeating process is proposed. The relationship between the thickness of the permeating layer and the residual stress of coating layers was investigated. Triple-layer structure models were provided to evaluate the residual stress of coating layers. The experimental results show that if the sample was treated by the optimal thermo-permeating process, its residual stress was dramatically reduced from 1.7×103 MPa to 0.45 Pa; meanwhile, its adhesive ability was intensively enhanced from 1B to 5B according to ASTM D3359 adhesion classifications.

  11. Preparation of carbon nanotubes as the conductive coating layer on flexible thermal-resistant substrate by permeating method and its residual stress analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Kai; Huang, Szu-Chun; Yu, Hsin Her

    2014-03-01

    A polyarylate (PAR) substrate was first prepared by hot pressing and then carbon nanotubes (CNTs) were coated on its surface by a low-temperature spraying method. In order to eliminate the residual stress and enhance the adhesive ability between the substrate and the coated CNT layer, an optimal thermo-permeating process is proposed. The relationship between the thickness of the permeating layer and the residual stress of coating layers was investigated. Triple-layer structure models were provided to evaluate the residual stress of coating layers. The experimental results show that if the sample was treated by the optimal thermo-permeating process, its residual stress was dramatically reduced from 1.7×103 MPa to 0.45 Pa; meanwhile, its adhesive ability was intensively enhanced from 1B to 5B according to ASTM D3359 adhesion classifications.

  12. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  13. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  14. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  15. Conducting polymers as corrosion resistant coatings

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.

    1994-09-01

    Although the majority of top coatings used for corrosion protection are electrically insulating, previous workers have proposed using an electrically active barrier for corrosion control. The most effective corrosion resistant undercoatings in use today are based on chromium compounds. Coatings based on other materials will need to replace these coatings by the turn of the century because of environmental and health concerns. For this reason the authors have begun an investigation of the use of conducting polymers as corrosion resistant coatings as an alternative to metal-based coatings. Conducting polymers have long been considered to be unsuitable for commercial processing, hindering their use for practical applications. Research in the field of electrically conducting polymers has recently produced a number of polymers such as polyaniline and its derivatives which are readily soluble in common organic solvents. The authors coating system, consisting of a conducting polyaniline primer layer, topcoated with epoxy or polyurethane, has been evaluated for corrosion resistance on mild steel substrates. In this paper, the authors report the results of laboratory testing under acidic and saline conditions and the results of testing in the severe launch environment at the Beach Testing Facility at Kennedy Space Center. The launch environment consists of exposure to corrosive HCl exhaust fumes and the salt spray from the Atlantic Ocean.

  16. Battery plate containing filler with conductive coating

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1986-01-01

    The plate (10) comprises a matrix or binder resin phase (12) in which is dispersed particulate, conductive tin oxide such as tin oxide coated glass fibers (14). A monopolar plate (11) is prepared by coating a layer (18) of electrolytically active material onto a surface of the plate (10). Tin oxide is prevented from reduction by coating a surface of the plate (10) with a conductive, impervious layer resistant to reduction such as a thin film (22) of lead adhered to the plate with a layer (21) of conductive adhesive. The plate (10) can be formed by casting a molten dispersion from mixer (36) onto a sheet (30) of lead foil or by passing an assembly of a sheet (41) of resin, a sheet (43) of fiberglass and a sheet (45) of lead between the nip of heated rollers (48, 50).

  17. Battery plate containing filler with conductive coating

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    The plate (10) comprises a matrix or binder resin phase (12) in which is dispersed particulate, conductive tin oxide such as tin oxide coated glass fibers (14). A monopolar plate (11) is prepared by coating a layer (18) of electrolytically active material onto a surface of the plate (10). Tin oxide is prevented from reduction by coating a surface of the plate (10) with a conductive, impervious layer resistant to reduction such as a thin film (22) of lead adhered to the plate with a layer (21) of conductive adhesive. The plate (10) can be formed by casting a molten dispersion from mixer (36) onto a sheet (30) of lead foil or by passing an assembly of a sheet (41) of resin, a sheet (43) of fiberglass and a sheet (45) of lead between the nip of heated rollers (48, 50).

  18. Low Thermal Conductivity Thermal Barrier Coatings Developed

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2003-01-01

    Thermal barrier coatings (TBCs) are used extensively in modern gas turbine engines to thermally insulate air-cooled metallic components from the hot gases in the engine. These coatings typically consist of a zirconia-yttria ceramic that has been applied by either plasma spraying or physical vapor deposition. Future engines will rely even more heavily on TBCs and will require materials that have even higher temperature capability with improved insulation (i.e., lower thermal conductivity even after many hours at high temperature). This report discusses new TBCs that have been developed with these future requirements in mind. The Ultra-Efficient Engine Technology Program at the NASA Glenn Research Center is funding this effort, which has been conducted primarily at Glenn with contractor support (GE and Howmet) for physical vapor deposition. As stated, the new TBC not only had to be more insulating but the insulation had to persist even after many hours of exposure-that is, the new TBC had to have both lower conductivity and improved sintering resistance. A new type of test rig was developed for this task. This new test approach used a laser to deliver a known high heat flux in an essentially uniform pattern to the surface of the coating, thereby establishing a realistic thermal gradient across its thickness. This gradient was determined from surface and backside pyrometry; and since the heat flux and coating thickness are known, this permitted continuous monitoring of thermal conductivity. Thus, this laser rig allowed very efficient screening of candidate low-conductivity, sinter-resistant TBCs. The coating-design approach selected for these new low-conductivity TBCs was to identify oxide dopants that had the potential to promote the formation of relatively large and stable groupings of defects known as defect clusters. This approach was used because it was felt that such clusters would reduce conductivity while enhancing stability. The approach proved to be

  19. Thermal Spreading in Carbon Nanotube Coating.

    PubMed

    Kim, Duckjong; Shin, Dong-Sig; Yu, Jeonghwan; Kim, Haesik; Kim, Jae-Hyun; Woo, Chang-Su

    2015-11-01

    Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, have attracted significant attention as good candidates for next-generation heat-spreading materials because of their high thermal conductivity, mechanical flexibility, etc. Regarding the thermal spreading performance of carbon-based nanofilms, remarkable test results have been reported mainly from the industrial side, but their validity and the physical mechanism underlying the heat transfer enhancement are still under debate. In this study, we assess the thermal spreading performance of a multi-walled CNT film on a copper foil using a non-contact characterization method in a simple and methodical manner, and discuss the possibility of carbon nanofilms as heat spreaders based on the experimental and numerical results. This study provides useful information on heat transfer enhancement by carbon nanofilms and could contribute to the development of high-performance carbon-based heat-spreading coatings. PMID:26726629

  20. Conductance of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, Supriyo; Anatram, M. P.

    1998-01-01

    The recent report of quantized conductance in a 4 m long multiwalled nanotube (MWNT) raises the exciting possibility of ballistic transport at room temperature over relatively long distances. We argue that this is made possible by the special symmetry of the eigenstates of the lowest propagating modes in metallic nanotubes which suppresses backscattering. This unusual effect is absent for the higher propagating modes so that transport is not ballistic once the bias exceeds the cut-off energy for the higher modes, which is estimated to be approximately 75 meV for nanotubes of diameter approximately 15 nm. Also, we show that the symmetry of the eigenstates can significantly affect their coupling to the reservoir and hence the contact resistance. A simple model is presented that can be used to understand the observed conductance-voltage characteristics.

  1. Conduction in Carbon Nanotube Networks

    NASA Astrophysics Data System (ADS)

    Kaiser, A. B.; Rogers, S. A.

    2003-10-01

    Recent measurements of the resistivity of single-wall carbon nanotube (SWNT) networks are consistent with our model of metallic conduction interrupted by barriers. We extend our model of thermopower nonlinearities due to peaks in the density of electronic states and apply it to recent thermopower data for carbon nanotube networks.

  2. Pyrolytic carbon coated black silicon.

    PubMed

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-01-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm. PMID:27174890

  3. Pyrolytic carbon coated black silicon

    NASA Astrophysics Data System (ADS)

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N.; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-05-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm.

  4. Pyrolytic carbon coated black silicon

    PubMed Central

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N.; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-01-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm. PMID:27174890

  5. Carbon nanotube based functional superhydrophobic coatings

    NASA Astrophysics Data System (ADS)

    Sethi, Sunny

    The main objective of this dissertation is synthesis of carbon nanotube (CNT) based superhydrophobic materials. The materials were designed such that electrical and mechanical properties of CNTs could be combined with superhydrophobicity to create materials with unique properties, such as self-cleaning adhesives, miniature flotation devices, ice-repellant coatings, and coatings for heat transfer furnaces. The coatings were divided into two broad categories based on CNT structure: Vertically aligned CNT arrays (VA coatings) and mesh-like (non-aligned) carbon nanotube arrays (NA coatings). VA coatings were used to create self-cleaning adhesives and flexible field emission devices. Coatings with self cleaning property along with high adhesiveness were inspired from structure found on gecko foot. Gecko foot is covered with thousands of microscopic hairs called setae; these setae are further divided into hundreds of nanometer sized hairs called spatulas. When gecko presses its foot against any surface, these hairs bend and conform to the topology of the surface resulting into very large area of contact. Such large area of intimate contact allows geckos to adhere to surfaces using van der Waals (vdW) interactions alone. VA-CNTs adhere to a variety of surfaces using a similar mechanism. CNTs of suitable diameter could withstand four times higher adhesion force than gecko foot. We found that upon soiling these CNT based adhesives (gecko tape) could be cleaned using a water droplet (lotus effect) or by applying vibrations. These materials could be used for applications requiring reversible adhesion. VA coatings were also used for developing field emission devices. A single CNT can emit electrons at very low threshold voltages. Achieving efficient electron emission on large scale has a lot of challenges such as screening effect, pull-off and lower current efficiency. We have explored the use of polymer-CNT composite structures to overcome these challenges in this work. NA

  6. Lower-Conductivity Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming

    2003-01-01

    Thermal-barrier coatings (TBCs) that have both initial and post-exposure thermal conductivities lower than those of yttria-stabilized zirconia TBCs have been developed. TBCs are thin ceramic layers, generally applied by plasma spraying or physical vapor deposition, that are used to insulate air-cooled metallic components from hot gases in gas turbine and other heat engines. Heretofore, yttria-stabilized zirconia (nominally comprising 95.4 atomic percent ZrO2 + 4.6 atomic percent Y2O3) has been the TBC material of choice. The lower-thermal-conductivity TBCs are modified versions of yttria-stabilized zirconia, the modifications consisting primarily in the addition of other oxides that impart microstructural and defect properties that favor lower thermal conductivity.

  7. Interconnecting conductively coated coverslides. [for ISEE-1

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.; Bass, J. A.

    1978-01-01

    The International Sun Earth Explorer-1 has the requirement that the entire outer surface of the spacecraft be conductive. A transparent coating of indium oxide was deposited for that reason on the satellite's solar cell coverglasses in order to give them a conductive surface, and the surfaces were interconnected to ground. This paper examines the interconnector attachment problem. On the ISEE-1, wires were bonded to the coverglasses by using a conductive epoxy; the resistance of these bonds increased dramatically with time. A program was initiated to find the functional cause of the resistance increase and to flight-qualify an alternative method of bonding. It was found the tests initiated were insufficient to find the cause of resistance increase and that an alternative solution of using indium solder is acceptable for bonding wires directly to indium oxide.

  8. Metallic single-walled carbon nanotubes for conductive nanocomposites.

    PubMed

    Wang, Wei; Fernando, K A Shiral; Lin, Yi; Meziani, Mohammed J; Veca, L Monica; Cao, Li; Zhang, Puyu; Kimani, Martin M; Sun, Ya-Ping

    2008-01-30

    This article reports an unambiguous demonstration that bulk-separated metallic single-walled carbon nanotubes offer superior performance (consistently and substantially better than the as-produced nanotube sample) in conductive composites with poly(3-hexylthiophene) and also in transparent conductive coatings based on PEDOT:PSS. The results serve as a validation on the widely held view that the carbon nanotubes are competitive in various technologies currently dominated by conductive inorganic materials (such as indium tin oxide). PMID:18173271

  9. Carbon nanotube coatings as chemical absorbers

    DOEpatents

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  10. A conductive surface coating for Si-CNT radiation detectors

    NASA Astrophysics Data System (ADS)

    Valentini, Antonio; Valentini, Marco; Ditaranto, Nicoletta; Melisi, Domenico; Aramo, Carla; Ambrosio, Antonio; Casamassima, Giuseppe; Cilmo, Marco; Fiandrini, Emanuele; Grossi, Valentina; Guarino, Fausto; Angela Nitti, Maria; Passacantando, Maurizio; Santucci, Sandro; Ambrosio, Michelangelo

    2015-08-01

    Silicon-Carbon Nanotube radiation detectors need an electrically conductive coating layer to avoid the nanotube detachment from the silicon substrate and uniformly transmit the electric field to the entire nanotube active surface. Coating material must be transparent to the radiation of interest, and must provide the drain voltage necessary to collect charges generated by incident photons. For this purpose various materials have been tested and proposed in photodetector and photoconverter applications. In this article interface properties and electrical contact behavior of Indium Tin Oxide films on Carbon Nanotubes have been analyzed. Ion Beam Sputtering has been used to grow the transparent conductive layer on the nanotubes. The films were deposited at room temperature with Oxygen/Argon mixture into the sputtering beam, at fixed current and for different beam energies. Optical and electrical analyses have been performed on films. Surface chemical analysis and in depth profiling results obtained by X-ray Photoelectron Spectroscopy of the Indium Tin Oxide layer on nanotubes have been used to obtain the interface composition. Results have been applied in photodetectors realization based on multi wall Carbon Nanotubes on silicon.

  11. Applications of thin carbon coatings and films in injection molding

    NASA Astrophysics Data System (ADS)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (<0.5 mm thickness) with lower pressures by promoting wall slip. The second application consists of a new approach to provide electromagnetic interference (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of

  12. Thermal conductivity of carbonate rocks

    USGS Publications Warehouse

    Thomas, J., Jr.; Frost, R.R.; Harvey, R.D.

    1973-01-01

    The thermal conductivities of several well-defined carbonate rocks were determined near 40??C. Values range from 1.2 W m-1 C-1 for a highly porous chalk to 5.1 W m-1 C-1 for a dolomite. The thermal conductivity of magnesite (5.0) is at the high end of the range, and that for Iceland Spar Calcite (3.2) is near the middle. The values for limestones decrease linearly with increasing porosity. Dolomites of comparable porosity have greater thermal conductivities than limestones. Water-sorbed samples have expected greater thermal conductivities than air-saturated (dry) samples of the same rock. An anomalously large increase in the thermal conductivity of a water-sorbed clayey dolomite over that of the same sample when dry is attributed to the clay fraction, which swells during water inhibition, causing more solid-to-solid contacts within the dolomite framework. Measurements were made with a Colora Thermoconductometer. Chemical and mineralogical analyses were made and tabulated. Porosity of the rocks was determined by mercury porosimetry and also from density measurements. The Iceland Spar Calcite and magnesite were included for reference. ?? 1973.

  13. Corrosion-protective coatings from electrically conducting polymers

    SciTech Connect

    Thompson, K.G.; Bryan, C.J.; Benicewicz, B.C.; Wrobleski, D.A.

    1991-12-31

    In a joint research effort involving the Kennedy Space Center and the Los Alamos National Laboratory, electrically conductive polymer coatings have been developed as corrosion-protective coatings for metal surfaces. At the Kennedy Space Center, the launch environment consists of marine, severe solar, and intermittent high acid/elevated temperature conditions. Electrically conductive polymer coatings have been developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  14. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  15. Carbon Nanotube Assemblies for Transparent Conducting Electrodes

    SciTech Connect

    Garrett, Matthew P; Gerhardt, Rosario

    2012-01-01

    The goal of this chapter is to introduce readers to the fundamental and practical aspects of nanotube assemblies made into transparent conducting networks and discuss some practical aspects of their characterization. Transparent conducting coatings (TCC) are an essential part of electro-optical devices, from photovoltaics and light emitting devices to electromagnetic shielding and electrochromic widows. The market for organic materials (including nanomaterials and polymers) based TCCs is expected to show a growth rate of 56.9% to reach nearly 20.3billionin2015,whilethemarketfortraditionalinorganictransparentelectronicswillexperiencegrowthwithratesof6.7103 billion in 2015. Emerging flexible electronic applications have brought additional requirements of flexibility and low cost for TCC. However, the price of indium (the major component in indium tin oxide TCC) continues to increase. On the other hand, the price of nanomaterials has continued to decrease due to development of high volume, quality production processes. Additional benefits come from the low cost, nonvacuum deposition of nanomaterials based TCC, compared to traditional coatings requiring energy intensive vacuum deposition. Among the materials actively researched as alternative TCC are nanoparticles, nanowires, and nanotubes with high aspect ratio as well as their composites. The figure of merit (FOM) can be used to compare TCCs made from dissimilar materials and with different transmittance and conductivity values. In the first part of this manuscript, we will discuss the seven FOM parameters that have been proposed, including one specifically intended for flexible applications. The approach for how to measure TCE electrical properties, including frequency dependence, will also be discussed. We will relate the macroscale electrical characteristics of TCCs to the nanoscale parameters of conducting networks. The fundamental aspects of nanomaterial assemblies in conducting networks will also be addressed

  16. Pyrolytic carbon-coated nuclear fuel

    DOEpatents

    Lindemer, Terrence B.; Long, Jr., Ernest L.; Beatty, Ronald L.

    1978-01-01

    An improved nuclear fuel kernel having at least one pyrolytic carbon coating and a silicon carbon layer is provided in which extensive interaction of fission product lanthanides with the silicon carbon layer is avoided by providing sufficient UO.sub.2 to maintain the lanthanides as oxides during in-reactor use of said fuel.

  17. Electrically conducting superhydrophobic microtextured carbon nanotube nanocomposite

    NASA Astrophysics Data System (ADS)

    Caffrey, Paul O.; Gupta, Mool C.

    2014-09-01

    We report a simple and inexpensive method of producing an electrically conductive superhydrophobic polymer surface by adding multiwall carbon nanotubes directly into the polymer poly(dimethylsiloxane) (PDMS) matrix and replicating micro/nanotexture using a replication master prepared by ultrafast-laser microtexturing process. No additional coatings on conducting PDMS are required to achieve water contact angles greater than 161°. The conductivity can be controlled by changing the percent MWCNT added to PDMS and at a bulk loading of 4.4 wt% we report a conductivity improvement over pure PDMS by a factor of more than 1011 with electrical resistivity ρ = 761 Ω cm. This combined behavior of a conductive, superhydrophobic nanocomposite has exciting applications for allowing a new class of enclosures providing EMI shielding, water repellency and sensing to provide built-in temperature feedback. The effect of temperature on the nanocomposite was investigated and a negative temperature coefficient of resistance (-0.037 Ω/K) similar to that of a thermistor was observed.

  18. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2002-01-01

    Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  19. Thermal conductivity of a zirconia thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Slifka, A. J.; Filla, B. J.; Phelps, J. M.; Bancke, G.; Berndt, C. C.

    1998-03-01

    The conductivity of a thermal-barrier coating composed of atmospheric plasma sprayed 8 mass percent yttria partially stabilized zirconia has been measured. This coating was sprayed on a substrate of 410 stainless steel. An absolute, steady-state measurement method was used to measure thermal conductivity from 400 to 800 K. The thermal conductivity of the coating is 0.62 W/(m·K). This measurement has shown to be temperature independent.

  20. Conductive polymer coatings for anodes in aqueous electrowinning

    NASA Astrophysics Data System (ADS)

    Alfantazi, A. M.; Moskalyk, R. R.

    2003-07-01

    This article discusses the potential application of electrically conductive polymers as protective coatings for permanent lead anodes employed in aqueous electrowinning processes. Also presented are results from a preliminary study of the performance of two intrinsically conductive polymers (polyaniline and poly 3,4,5-trifluorophenylthiophene [TFPT]) under mild copper electrowinning conditions as conductive and protective coatings on anodic surfaces. The laboratory results indicated that using lead alloy anodes coated with TFPT merits continued research.

  1. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2008-01-01

    The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.

  2. Tests Of Protective Coats For Carbon Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III

    1995-01-01

    Report describes laboratory and field tests of candidate paints (primers, tie coats, and topcoats) for use in protecting carbon-steel structures against corrosion in seaside environment at Kennedy Space Center. Coating materials selected because of utility in preventing corrosion, also on basis of legal requirements, imposed in several urban areas, for reduction of volatile organic contents.

  3. Coaxial three-dimensional CoMoO4 nanowire arrays with conductive coating on carbon cloth for high-performance lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Chen, Yaping; Liu, Borui; Jiang, Wei; Liu, Qi; Liu, Jingyuan; Wang, Jun; Zhang, Hongsen; Jing, Xiaoyan

    2015-12-01

    Nanostructured transition metal oxides have attracted considerable attentions for both high-capacity and high-rate, but great challenges remain to utilize them. In order to overcome these challenges, hierarchical three-dimensional CoMoO4/polypyrrole core-shell nanowire (NW) arrays on flexible and conductive carbon cloth (CC) have been successfully constructed through a facile two-step solution-based approach. The hybrid NWs electrode as a binder-free lithium ion batteries (LIBs) anode material exhibits a reversible capacity of around 1400-1450 mAh g-1 at a low current density of 100 mA g-1. The specific capacity retains at 753 mAh g-1 while featuring an excellent cycling properties with a capacity of 764 mAh g-1 after 1000 cycles under the current rate of 1200 mA g-1. Furthermore, full batteries have been fabricated and demonstrated characteristics of outstanding electrical stability and superior power output characteristics, which represents an efficient way for practical implementation.

  4. Fabrication of Ketjen black-polybenzoxazine superhydrophobic conductive composite coatings

    NASA Astrophysics Data System (ADS)

    Shen, Lie; Ding, Hongliang; Wang, Wen; Guo, Qipeng

    2013-03-01

    Superhydrophobic conductive Ketjen black-polybenzoxazine (KB-PBZ) composite coatings were prepared by a simple drop casting method with high static water contact angle (˜160°), low sliding angle (˜3°), and low sheet resistance (103 Ω/sq). The relationship between Ketjen black amounts and the structure and properties of the composite coatings was investigated. Under appropriate conditions, the composite coatings showed hierarchically structured roughness and possessed superhydrophobicity over the whole range of pH values. These coatings exhibited excellent thermal and environmental stability. Moreover, the superhydrophobic conductive composite coatings also can be obtained on various substrates such as wood, aluminum foil, paper, polyethylene terephthalate film and fabric.

  5. Protected Sulfur Cathode with Mixed Conductive Coating Layer for Lithium Sulfur Battery

    NASA Astrophysics Data System (ADS)

    Jin, Jun; Wen, Zhaoyin; Wang, Qingsong; Gu, Sui; Huang, Xiao; Chen, Chunhua

    2016-08-01

    A mixed conductive coating layer composed of lithium ion conductive ceramic powder, carbon and binder was introduced on the surface of a sulfur electrode. This coating layer is designed to suppress the migration of lithium polysulfides from the sulfur electrode, and improve the cycling capacity of a lithium sulfur battery. The protected sulfur cathode with a mixed conductive coating layer delivered an initial specific capacity of 1236 mAh g-1 at 0.5C and maintained a capacity of 842 mAh g-1 after 100 cycles. In particular, a soft package battery with protected cathode exhibits improved cycling capacity and excellent rate performance.

  6. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOEpatents

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  7. Void forming pyrolytic carbon coating process

    DOEpatents

    Beatty, Ronald L.; Cook, Jackie L.

    2000-01-01

    A pyrolytic carbon coated nuclear fuel particle and method of making it. The fuel particle has a core composed of a refractory compound of an actinide metal. The pyrolytic carbon coating surrounds the core so as to provide a void volume therebetween. The coating has an initial density of no greater than 1.45 grams/cm.sup.3 and an anisotropy factor than 3.0 and a final density upon heat treatment above about 2000.degree. C. of greater than 1.7 grams/cm.sup.3 and an anisotropy factor greater than 5.

  8. Void forming pyrolytic carbon coating process

    SciTech Connect

    Beatty, R.L.; Cook, J.L.

    2000-06-27

    A pyrolytic carbon coated nuclear fuel particle and method of making it are disclosed. The fuel particle has a core composed of a refractory compound of an actinide metal. The pyrolytic carbon coating surrounds the core so as to provide a void volume therebetween. The coating has an initial density of no greater than 1.45 grams/cm{sup 3} and an anisotropy factor than 3.0 and a final density upon heat treatment above about 2,000 C of greater than 1.7 grams/cm{sup 3} and an anisotropy factor greater than 5.

  9. Fully solution-processed transparent conducting oxide-free counter electrodes for dye-sensitized solar cells: spray-coated single-wall carbon nanotube thin films loaded with chemically-reduced platinum nanoparticles.

    PubMed

    Kim, Sang Yong; Kim, Yesel; Lee, Kyung Moon; Yoon, Woo Sug; Lee, Ho Seok; Lee, Jong Tae; Kim, Seung-Joo; Ahn, Yeong Hwan; Park, Ji-Yong; Lee, Tai Kyu; Lee, Soonil

    2014-08-27

    We report fully solution-processed fabrication of transparent conducting oxide-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs) by combining spray-coating of single-wall carbon nanotubes (SWCNTs) and chemical reduction of chloroplatinic acid precursor to platinum nanoparticles (Pt NPs) with formic acid. The power conversion efficiency of a semitransparent DSSC with such SWCNT-based CE loaded with Pt NPs is comparable to that of a control device with a conventional CE. Quantification of Pt loading shows that network morphology of entangled SWCNTs is efficient in forming and retaining chemically reduced Pt NPs. Moreover, electron microscopy and electrochemical impedance spectroscopy results show that mainly Pt NPs, which are tens of nanometers in diameter and reside at the surface of SWCNT CEs, contribute to electrocatalytic activity for triiodide reduction, to which we attribute strong correlation between power conversion efficiency of DSSCs and time constant deduced from equivalent-circuit analysis of impedance spectra. PMID:25122074

  10. Carbon coating may expedite the fracture of carbon-coated silicon core-shell nanoparticles during lithiation.

    PubMed

    Li, Weiqun; Cao, Ke; Wang, Hongtao; Liu, Jiabin; Zhou, Limin; Yao, Haimin

    2016-03-01

    Previous studies on silicon (Si) indicate that lithiation-induced fracture of crystalline Si nanoparticles can be greatly inhibited if their diameter is reduced to below a critical scale of around 150 nm. In this paper, in situ lithiation of individual carbon-coated Si nanoparticles (Si@C NPs) is conducted which shows that Si@C NPs will fracture during lithiation even though their diameter is much smaller than 150 nm, implying a deleterious effect of the carbon coating on the integrity of the Si@C NPs during lithiation. To shed light on this effect, finite element analysis is carried out which reveals that the carbon coating, if fractured during lithiation, will induce cracks terminating at the C/Si interface. Such cracks, upon further lithiation, can immediately propagate into the Si core due to the elevated driving force caused by material inhomogeneity between the coating and core. To prevent the fracture of the carbon coating so as to protect the Si core, a design guideline is proposed by controlling the ratio between the diameter of Si core and the thickness of carbon coating. The results in this paper should be of practical value to the design and application of Si-based core-shell structured anode materials for lithium ion batteries. PMID:26878967

  11. Processing and characterization of Ultrathin carbon coatings on glass

    SciTech Connect

    Lee, H.; Rajagopalan, R.; Robinson, J.; Pantano, C.G.

    2009-04-15

    Ultrathin carbon layers, on the order of 3-6 nm in thickness, were formed on glass substrates by spin coating and pyrolysis of polymer precursors. The organic precursors used were poly(furfuryl alcohol), coal tar pitch, and a photoresist. The carbon coatings were characterized by ellipsometry, optical profilometry, water contact angle, confocal Raman spectroscopy, UV-vis spectroscopy, and atomic force microscopy. We also report the transparency, hydrophobicity, friction, weathering resistance, and electrical conductivity of the carbon-coated glass. The results reveal that up to 97% transparent, ultrathin carbon films could be formed on glass substrates with a root-mean-square roughness of less than about to 0.3 nm. This carbon layer modified the otherwise hydrophilic surface of the glass to yield a water contact angle of 85{sup o}. The coatings were also found to provide a water barrier against weathering under hot and humid conditions. A 4.5-nm-thick carbon film on glass had a sheet resistance of 55.6 k {Omega} m and a conductivity of 40 S/cm.

  12. Measurement of the thermal contact conductance and thermal conductivity of anodized aluminum coatings

    SciTech Connect

    Peterson, G.P.; Fletcher, L.S. )

    1990-08-01

    An experimental investigation was conducted to determine the thermal contact conductance and effective thermal conductivity of anodized coatings. One chemically polished Aluminum 6061-T6 test specimen and seven specimens with anodized coatings varying in thickness from 60.9 {mu}m to 163.8 {mu}m were tested while in contact with a single unanodized aluminum surface. Measurements of the overall joint conductance, composed of the thermal contact conductance between the anodized coating and the bare aluminum surface and the bulk conductance of the coating material, indicated that the overall joint conductance decreased with increasing thickness of the anodized coating and increased with increasing interfacial load. Using the experimental data, a dimensionless expression was developed that related the overall joint conductance to the coating thickness, the surface roughness, the interfacial pressure, and the properties of the aluminum substrate. By subtracting the thermal contact conductance from the measured overall joint conductance, estimations of the effective thermal conductivity of the anodized coating as a function of pressure were obtained for each of the seven anodized specimens. At an extrapolated pressure of zero, the effective thermal conductivity was found to be approximately 0.02 W/m-K. In addition to this extrapolated value, a single expression for predicting the effective thermal conductivity as a function of both the interface pressure and the anodized coating thickness was developed and shown to be within {plus minus}5 percent of the experimental data over a pressure range of 0 to 14 MPa.

  13. Carbon-coated nanoparticle superlattices for energy applications

    NASA Astrophysics Data System (ADS)

    Li, Jun; Yiliguma, Affa; Wang, Yifei; Zheng, Gengfeng

    2016-07-01

    Nanoparticle (NP) superlattices represent a unique material architecture for energy conversion and storage. Recent reports on carbon-coated NP superlattices have shown exciting electrochemical properties attributed to their rationally designed compositions and structures, fast electron transport, short diffusion length, and abundant reactive sites via enhanced coupling between close-packed NPs, which are distinctive from their isolated or disordered NP or bulk counterparts. In this minireview, we summarize the recent developments of highly-ordered and interconnected carbon-coated NP superlattices featuring high surface area, tailorable and uniform doping, high conductivity, and structure stability. We then introduce the precisely-engineered NP superlattices by tuning/studying specific aspects, including intermetallic structures, long-range ordering control, and carbon coating methods. In addition, these carbon-coated NP superlattices exhibit promising characteristics in energy-oriented applications, in particular, in the fields of lithium-ion batteries, fuel cells, and electrocatalysis. Finally, the challenges and perspectives are discussed to further explore the carbon-coated NP superlattices for optimized electrochemical performances.

  14. Carbon-coated nanoparticle superlattices for energy applications.

    PubMed

    Li, Jun; Yiliguma; Wang, Yifei; Zheng, Gengfeng

    2016-08-14

    Nanoparticle (NP) superlattices represent a unique material architecture for energy conversion and storage. Recent reports on carbon-coated NP superlattices have shown exciting electrochemical properties attributed to their rationally designed compositions and structures, fast electron transport, short diffusion length, and abundant reactive sites via enhanced coupling between close-packed NPs, which are distinctive from their isolated or disordered NP or bulk counterparts. In this minireview, we summarize the recent developments of highly-ordered and interconnected carbon-coated NP superlattices featuring high surface area, tailorable and uniform doping, high conductivity, and structure stability. We then introduce the precisely-engineered NP superlattices by tuning/studying specific aspects, including intermetallic structures, long-range ordering control, and carbon coating methods. In addition, these carbon-coated NP superlattices exhibit promising characteristics in energy-oriented applications, in particular, in the fields of lithium-ion batteries, fuel cells, and electrocatalysis. Finally, the challenges and perspectives are discussed to further explore the carbon-coated NP superlattices for optimized electrochemical performances. PMID:27432112

  15. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  16. Carbon and oxide coatings on continuous ceramic fibers

    SciTech Connect

    Hay, R.S.; Cinibulk, M.K.; Petry, M.D.; Keller, K.A.; Welch, J.R.

    1995-10-01

    Oxide-carbon multilayer coatings were continuously applied to various fibers of nominal SiC composition. A liquid-phase coating system that allows application of the coatings in a controlled atmosphere at relatively rapid rates was employed. Sugar-ammonium hydroxide solutions were used for carbon coatings, and aqueous sols were used for the oxides. Carbon was also deposited simultaneously with alumina by chemical vapor deposition of a hydrocarbon in the coating furnace. The coatings were extensively characterized by optical microscopy and TEM. Problems with embrittlement by oxide coatings and poor adherence of oxide coatings on carbon, and some possible solutions to these problems, are discussed.

  17. Optimization and Testing of Electrically Conductive Spacecraft Coatings

    NASA Technical Reports Server (NTRS)

    Mell, Richard J.

    2001-01-01

    This is the final report discussing work done for the Space Environmental Effects (SEE) program in the Materials and Processes Laboratory, on electrically conductive thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude lower electrical resistivity than most available thermal control coatings. Extensive research has taken place over the last few years to develop a variety of spacecraft coatings with the unique property of being able to conduct surface charge to a substrate or grounding system. The ability to conduct surface charge to a safe point, while maintaining optical properties and performance, is highly advantageous in maintaining operational space based systems. Without this mechanism the surface of a spacecraft can accumulate charge to the point that a catastrophic electrical breakdown can occur, resulting in damage to or failure of the spacecraft. Ultimately, use of this type of coating will help mitigate many of the concerns that NASA and the space industry still have for their space based systems. The unique coatings studied here fall into two specific categories: 1) broadband absorber and 2) selective absorber. These coatings have controllable solar absorptance and electrical surface resistivity values over the designated ranges. These coatings were developed under an SBIR program which focused on the development of such constituents and coatings. This project focused on simulated space environmental effects testing with the intent of using this data to help optimize the stability and initial properties of these coatings.

  18. Diamond-Coated Carbon Nanotubes for Efficient Field Emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Stevan; Withers, James C.

    2005-01-01

    Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.

  19. Therma1 Conductivity and Durability of Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Thermal barrier coatings (TBCs) will play a crucial role in advanced gas turbine engines because of their ability to further increase engine operating temperature and reduce cooling, thus helping to achieve engine emission and efficiency goals. Future TBCs must be designed with increased phase stability, lower thermal conductivity, and improved sintering and thermal stress resistance in order to effectively protect engine hot-section components. Advanced low conductivity TBCs are being developed at NASA by incorporating multi-component oxide dopants into zirconia-yttria or hafnia-yttria to promote the formation of thermodynamically stable defect clusters within the coating structures. This presentation will primarily focus on thermal conductivity and durability of the novel defect cluster thermal barrier coatings for turbine airfoil and combustor applications, determined by a unique CO2 laser heat-flux approach. The laser heat-flux testing approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity under simulated engine temperature and thermal gradient conditions. The conductivity increase due to coating sintering (and/or phase change) and the conductivity decrease due to coating delamination have been determined under steady-state, cyclic, uniform or non-uniform heat-flux conditions. The coating radiation flux resistance has been evaluated by varying coating thermal gradients, and also by using a laser-heated radiative-flux source. Advanced multi-component TBC systems have been shown to have significantly reduced thermal conductivity and improved high temperature stability due to the nano-sized, low mobility defect clusters associated with the paired rare earth dopant additions. The effect of oxide defect cluster dopants on coating thermal conductivity, thermal stability and furnace cyclic durability will also be discussed. The current low conductivity TBC systems have demonstrated long-term cyclic durability at very high

  20. Test Of Protective Coatings On Carbon Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis

    1993-01-01

    Report describes results of tests in which carbon-steel panels coated with one-or two-component solvent-based inorganic zinc primers and top-coated with inorganic topcoat or any of various organic topcoats, placed on outdoor racks at beach at Kennedy Space Center for 5 years. From time to time, slurry of Al(2)O(3) in 10-percent HCI solution applied to some of panels to simulate corrosive effect of effluent from solid-fuel rocket booster engines. Panels coated with inorganic topcoat performed much better than organic-topcoated panels.

  1. Polyaniline: a conductive polymer coating for durable nanospray emitters

    PubMed

    Maziarz; Lorenz; White; Wood

    2000-07-01

    Despite the tremendous sensitivity and lower sample requirements for nanospray vs. conventional electrospray, metallized nanospray emitters have suffered from one of two problems: low mechanical stability (leading to emitter failure) or lengthy, tedious production methods. Here, we describe a simple alternative to metallized tips using polyaniline (PANI), a synthetic polymer well known for its high conductivity, anticorrosion properties, antistatic properties, and mechanical stability. A simple method for coating borosilicate emitters (1.2 mm o.d.) pulled to fine tapers (4 +/- 1 microm) with water-soluble and xylene-soluble dispersions of conductive polyaniline (which allows for electrical contact at the emitter outlet) is described. The polyaniline-coated emitters show high durability and are resistant to electrical discharge, likely because of the thick (yet optically transparent) coatings; a single emitter can be used over a period of days for multiple samples with no visible indication of the destruction of the polyaniline coating. The optical transparency of the coating also allows the user to visualize the sample plug loaded into the emitter. Examples of nanospray using coatings of the water-soluble and xylene-soluble polyaniline dispersions are given. A comparison of PANI-coated and gold-coated nanospray emitters to conventional electrospray ionization (ESI) show that PANI-coated emitters provide similar enhanced sensitivity that gold-coated emitters exhibit vs. conventional ESI. PMID:10883822

  2. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  3. The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium

    NASA Astrophysics Data System (ADS)

    Lu, Chen-En; Pu, Nen-Wen; Hou, Kung-Hsu; Tseng, Chun-Chieh; Ger, Ming-Der

    2013-10-01

    Different concentrations of formic acid were added into a trivalent chromium electroplating solution to produce chromium carbide (Crsbnd C) coatings. The influence of the formic acid concentration on chemical composition, microstructure, surface morphology, corrosion resistance, conductivity and carbon content of the resulting Crsbnd C coatings was studied. Formic acid was found to increase the carbon content in the coatings so as to form Crsbnd C films. These coatings had a nearly amorphous structure containing Cr, Cr2O3, and various Crsbnd C compounds with carbon content uniformly distributed throughout the coatings. The carbon content and the conductivity of the Crsbnd C layer were correlated with formic acid concentration. For a formic acid concentration of 2 M, the Crsbnd C layer had the highest carbon content (∼28%), the lowest contact resistance, and the best corrosion resistance along with a corrosion current density of ∼6.4 × 10-7 A/cm2.

  4. Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Dong, Yanfeng; Liu, Shaohong; Wang, Zhiyu; Liu, Yang; Zhao, Zongbin; Qiu, Jieshan

    2015-04-01

    Sandwich-type, two-dimensional hybrid nanosheets were fabricated by the infiltration of nanosized sulfur into graphene-backboned mesoporous carbon with a PPy nanocoating. They exhibit a high reversible capacity for as long as 400 cycles with an ultra slow decay rate of 0.05% per cycle at the high rate of 1-3 C due to the efficient immobilization of polysulfides.Sandwich-type, two-dimensional hybrid nanosheets were fabricated by the infiltration of nanosized sulfur into graphene-backboned mesoporous carbon with a PPy nanocoating. They exhibit a high reversible capacity for as long as 400 cycles with an ultra slow decay rate of 0.05% per cycle at the high rate of 1-3 C due to the efficient immobilization of polysulfides. Electronic supplementary information (ESI) available: Experimental details, BET, SEM, XPS and more electrochemical data. See DOI: 10.1039/c5nr01015b

  5. Quantum conductance steps in solutions of multiwalled carbon nanotubes.

    PubMed

    Urbina, A; Echeverría, I; Pérez-Garrido, A; Díaz-Sánchez, A; Abellán, J

    2003-03-14

    We have prepared solutions of multiwalled carbon nanotubes in Aroclor 1254, a mixture of polychlorinated biphenyls. The solutions are stable at room temperature. Transport measurements were performed using a scanning-tunneling probe on a sample prepared by spin coating the solution on gold substrates. Conductance steps were clearly seen. A histogram of a high number of traces shows maximum peaks at integer values of the conductance quantum G(0)=2e(2)/h, demonstrating ballistic transport at room temperature along the carbon nanotube over distances longer than 1.4 microm. PMID:12689021

  6. Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium-sulfur batteries.

    PubMed

    Dong, Yanfeng; Liu, Shaohong; Wang, Zhiyu; Liu, Yang; Zhao, Zongbin; Qiu, Jieshan

    2015-05-01

    Sandwich-type, two-dimensional hybrid nanosheets were fabricated by the infiltration of nanosized sulfur into graphene-backboned mesoporous carbon with a PPy nanocoating. They exhibit a high reversible capacity for as long as 400 cycles with an ultra slow decay rate of 0.05% per cycle at the high rate of 1-3 C due to the efficient immobilization of polysulfides. PMID:25832361

  7. Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Leonhardt, Todd; Curry, Donald; Rapp, Robert A.

    1998-01-01

    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role.

  8. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  9. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.

    1991-01-01

    Using a continuous powder coating process, more than 1500 meters of T 300/LaRC-TPI prepreg were produced. Two different types of heating sections in the coating line, namely electrical resistance and convection heating, were utilized. These prepregs were used to fabricate unidirectional composites. During composite fabrication the cure time of the consolidation was varied, and composites samples were produced with and without vacuum. Under these specimens, the effects of the different heating sections and of the variation of the consolidation parameters on mechanical properties and void content were investigated. The void fractions of the various composites were determined from density measurements, and the mechanical properties were measured by tensile testing, short beam shear testing and dynamic mechanical analysis.

  10. Development of Advanced Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  11. An electro-conductive organic coating for scanning electron microscopy (déjà vu)

    NASA Astrophysics Data System (ADS)

    Burnett, Bryan R.

    2014-09-01

    An organic compound, originally marketed as an antistatic, can form an extremely thin electro-conductive coating upon drying. A scanning electron microscope (SEM) application for this compound was first explored in the late 1960s. A coating of this compound eliminates the need for carbon or gold coating in some applications. It is well suited for the viewing of fabric samples and associated gunshot residue (GSR) in the SEM and makes it possible to quickly analyze fabric bullet wipe and bore wipe GSR. Fabric samples can also be examined for GSR from intermediate-range shots to estimate muzzle-target distances. Scanning

  12. Carbon-coated anatase titania as a high rate anode for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Tae; Yu, Chan-Yeop; Kim, Sun-Jae; Sun, Yang-Kook; Myung, Seung-Taek

    2015-05-01

    Anatase titania nanorods/nanowires, and TiO2(B) are synthesized via a hydrothermal reaction of commercial TiO2 (P-25) in strong alkaline environment. Surfaces of these products are modified by carbon to improve the electrical conductivity through carbonization of pitch as the carbon source at 700 °C for 2 h in an Ar atmosphere. Even after carbon coating, the resultants exhibit the same crystal structure and morphology as confirmed by Rietveld refinement of x-ray diffraction data and transmission electron microscopic observation that the images display thin carbon coating layers on the surfaces of anatase nanorods and nanowires. Although the bare and carbon-coated anatase TiO2 nanorods exhibit stable cycling performance, the high rate performance is highly dependent on the presence of carbon because of high electrical conductivity, ∼10-1 S cm-1, enabling Li+ ion storage even at 30 °C (9.9 A g-1) approximately 100 mAh (g-TiO2)-1 for the carbon-coated anatase TiO2 nanorods. Besides, the bare and carbon-coated anatase TiO2 nanowires show poor electrode performances due to their large particle size and high crystallinity causing Li+ insertion into the host structure difficult. It is believed that the conducting carbon coating layers greatly improves the electrochemical property through the improved electrical conductivity and shortened diffusion path.

  13. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  14. Functional Carbon Nanocomposite, Optoelectronic, and Catalytic Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Yu Teng

    Over the past couple decades, fundamental research into carbon nanomaterials has produced a steady stream of groundbreaking physical science. Their record setting mechanical strength, chemical stability, and optoelectronic performance have fueled many optimistic claims regarding the breadth and pace of carbon nanotube and graphene integration. However, present synthetic, processing, and economic constraints have precluded these materials from many practical device applications. To overcome these limitations, novel synthetic techniques, processing methodologies, device geometries, and mechanistic insight were developed in this dissertation. The resulting advancements in material production and composite device performance have brought carbon nanomaterials ever closer to commercial implementation. For improved materials processing, vacuum co-deposition was first demonstrated as viable technique for forming carbon nanocomposite films without property distorting covalent modifications. Co-deposited nanoparticle, carbon nanotube, and graphene composite films enabled rapid device prototyping and compositional optimization. Cellulosic polymer stabilizers were then shown to be highly effective carbon nanomaterial dispersants, improving graphene production yields by two orders of magnitude in common organic solvents. By exploiting polarity interactions, iterative solvent exchange was used to further increase carbon nanomaterial dispersion concentrations by an additional order of magnitude, yielding concentrated inks. On top of their low causticity, these cellulosic nanomaterial inks have highly tunable viscosities, excellent film forming capacity, and outstanding thermal stability. These processing characteristics enable the efficient scaling of carbon nanomaterial coatings and device production using existing roll-to-roll fabrication techniques. Utilizing these process improvements, high-performance gas sensing, energy storage, transparent conductor, and photocatalytic

  15. Improving cochlear implant properties through conductive hydrogel coatings.

    PubMed

    Hassarati, Rachelle T; Dueck, Wolfram F; Tasche, Claudia; Carter, Paul M; Poole-Warren, Laura A; Green, Rylie A

    2014-03-01

    Conductive hydrogel (CH) coatings for biomedical electrodes have shown considerable promise in improving electrode mechanical and charge transfer properties. While they have desirable properties as a bulk material, there is limited understanding of how these properties translate to a microelectrode array. This study evaluated the performance of CH coatings applied to Nucleus Contour Advance cochlear electrode arrays. Cyclic voltammetry and biphasic stimulation were carried out to determine electrical properties of the coated arrays. Electrical testing demonstrated that CH coatings supported up to 24 times increase in charge injection limit. Reduced impedance was also maintained for over 1 billion stimulations without evidence of delamination or degradation. Mechanical studies performed showed negligible effect of the coating on the pre-curl structure of the Contour Advance arrays. Testing the coating in a model human scala tympani confirmed that adequate contact was maintained across the lateral wall. CH coatings are a viable, stable coating for improving electrical properties of the platinum arrays while imparting a softer material interface to reduce mechanical mismatch. Ultimately, these coatings may act to minimize scar tissue formation and fluid accumulation around electrodes and thus improve the electrical performance of neural implants. PMID:24608692

  16. Carbon coating may expedite the fracture of carbon-coated silicon core-shell nanoparticles during lithiation

    NASA Astrophysics Data System (ADS)

    Li, Weiqun; Cao, Ke; Wang, Hongtao; Liu, Jiabin; Zhou, Limin; Yao, Haimin

    2016-02-01

    Previous studies on silicon (Si) indicate that lithiation-induced fracture of crystalline Si nanoparticles can be greatly inhibited if their diameter is reduced to below a critical scale of around 150 nm. In this paper, in situ lithiation of individual carbon-coated Si nanoparticles (Si@C NPs) is conducted which shows that Si@C NPs will fracture during lithiation even though their diameter is much smaller than 150 nm, implying a deleterious effect of the carbon coating on the integrity of the Si@C NPs during lithiation. To shed light on this effect, finite element analysis is carried out which reveals that the carbon coating, if fractured during lithiation, will induce cracks terminating at the C/Si interface. Such cracks, upon further lithiation, can immediately propagate into the Si core due to the elevated driving force caused by material inhomogeneity between the coating and core. To prevent the fracture of the carbon coating so as to protect the Si core, a design guideline is proposed by controlling the ratio between the diameter of Si core and the thickness of carbon coating. The results in this paper should be of practical value to the design and application of Si-based core-shell structured anode materials for lithium ion batteries.Previous studies on silicon (Si) indicate that lithiation-induced fracture of crystalline Si nanoparticles can be greatly inhibited if their diameter is reduced to below a critical scale of around 150 nm. In this paper, in situ lithiation of individual carbon-coated Si nanoparticles (Si@C NPs) is conducted which shows that Si@C NPs will fracture during lithiation even though their diameter is much smaller than 150 nm, implying a deleterious effect of the carbon coating on the integrity of the Si@C NPs during lithiation. To shed light on this effect, finite element analysis is carried out which reveals that the carbon coating, if fractured during lithiation, will induce cracks terminating at the C/Si interface. Such cracks, upon

  17. Carbon coatings on polymers and their biocompatibility

    NASA Astrophysics Data System (ADS)

    Hubáček, T.; Siegel, J.; Khalili, R.; Slepičková-Kasálková, N.; Švorčík, V.

    2013-06-01

    In this paper we modified the surface properties of polymer foils (polyethyleneterephthalate (PET) and polytetrafluoroethylene (PTFE)) by flash evaporation of carbon layers (C-layers). Adhesion and proliferation of vascular smooth muscle cells (VSMC) on carbon coated PTFE and PET were studied in vitro. Chemical composition of deposited C-layers was determined by Raman spectroscopy, surface contact angle was measured by goniometry. Surface morphology of carbon coated samples was studied using atomic force microscopy. Electrical properties of deposited C-layers were determined by measuring its sheet resistance. It was found that the carbon deposition leads to a decrease of surface roughness of PTFE and PET and to a significant increase of sample wettability. Electrical resistance and wettability of deposited C-layers depends significantly on both the thickness of C-layer and the type of polymeric substrate used. It was found that maximal stimulation of the VSMC (adhesion and proliferation) on carbon coated polymers depends on the surface roughness and contact angle of cell carriers used.

  18. Performance of carbon-based hot frit substrates. 2, Coating performance studies in hydrogen at atmospheric pressure

    SciTech Connect

    Barletta, R.; Vanier, P.; Adams, J.; Svandrlik, J.; Powell, J.R.

    1993-07-01

    Erosion tests were conducted on coated graphite and 2D, 3D carbon- carbons in 1 atm hydrogen at high temperatures. Refractory NbC, TaC coatings were used. It was found that the most effective combination of coating and substrate was TaC deposited by chemical vapor reaction method on AXF-5QI graphite.

  19. Metallic coatings for enhancement of thermal contact conductance

    SciTech Connect

    Lambert, M.A.; Fletcher, L.S. )

    1994-04-01

    The reliability of standard electronic modules may be improved by decreasing overall module temperature. This may be accomplished by enhancing the thermal contact conductance at the interface between the module frame guide rib and the card rail to which the module is clamped. Some metallic coatings, when applied to the card rail, would deform under load, increasing the contact area and associated conductance. This investigation evaluates the enhancements in thermal conductance afforded by vapor deposited silver and gold coatings. Experimental thermal conductance measurements were made for anodized aluminum 6101-T6 and electroless nickel-plated copper C11000-H03 card materials to the aluminum A356-T61 rail material. Conductance values for the electroless nickel-plated copper junction ranged from 600 to 2800 W/m(exp 2)K and those for the anodized aluminum junction ranged from 25 to 91 W/m(exp 2)K for contact pressures of 0.172-0.862 MPa and mean junction temperatures of 20-100 C. Experimental thermal conductance values of vapor deposited silver- and gold-coated aluminum A356-T61 rail surfaces indicate thermal enhancements of 1.25-2.19 for the electroless nickel-plated copper junctions and 1.79-3.41 for the anodized aluminum junctions. The silver and gold coatings provide significant thermal enhancement; however, these coating-substrate combinations are susceptible to galvanic corrosion under some conditions. 25 refs.

  20. Metallic coatings for enhancement of thermal contact conductance

    NASA Astrophysics Data System (ADS)

    Lambert, M. A.; Fletcher, L. S.

    1994-04-01

    The reliability of standard electronic modules may be improved by decreasing overall module temperature. This may be accomplished by enhancing the thermal contact conductance at the interface between the module frame guide rib and the card rail to which the module is clamped. Some metallic coatings, when applied to the card rail, would deform under load, increasing the contact area and associated conductance. This investigation evaluates the enhancements in thermal conductance afforded by vapor deposited silver and gold coatings. Experimental thermal conductance measurements were made for anodized aluminum 6101-T6 and electroless nickel-plated copper C11000-H03 card materials to the aluminum A356-T61 rail material. Conductance values for the electroless nickel-plated copper junction ranged from 600 to 2800 W/m(exp 2)K and those for the anodized aluminum junction ranged from 25 to 91 W/m(exp 2)K for contact pressures of 0.172-0.862 MPa and mean junction temperatures of 20-100 C. Experimental thermal conductance values of vapor deposited silver- and gold-coated aluminum A356-T61 rail surfaces indicate thermal enhancements of 1.25-2.19 for the electroless nickel-plated copper junctions and 1.79-3.41 for the anodized aluminum junctions. The silver and gold coatings provide significant thermal enhancement; however, these coating-substrate combinations are susceptible to galvanic corrosion under some conditions.

  1. Powder-Derived High-Conductivity Coatings for Copper Alloys

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.

    2003-01-01

    Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions.

  2. Synthesis of transparent conducting oxide coatings

    DOEpatents

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  3. Carbon Coating Of Copper By Arc-Discharge Pyrolysis

    NASA Technical Reports Server (NTRS)

    Ebihara, Ben T.; Jopek, Stanley

    1988-01-01

    Adherent, abrasion-resistant coat deposited with existing equipment. Carbon formed and deposited as coating on copper substrate by pyrolysis of hydrocarbon oil in electrical-arc discharges. Technique for producing carbon deposits on copper accomplished with electrical-discharge-machining equipment used for cutting metals. Applications for new coating technique include the following: solar-energy-collecting devices, coating of metals other than copper with carbon, and carburization of metal surfaces.

  4. Superconductive niobium films coating carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Vecchione, A.; Fittipaldi, R.; Corato, V.

    2014-11-01

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm-2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm.

  5. Effect of carbon coating on scuffing performance in diesel fuels

    SciTech Connect

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  6. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  7. Testing and Optimization of Electrically Conductive Spacecraft Coatings

    NASA Technical Reports Server (NTRS)

    Mell, R. J.; Wertz, G. E.; Edwards, D. L. (Technical Monitor)

    2001-01-01

    This is the final report discussing the work done for the Space Environments and Effects (SEE) Program. It discusses test chamber design, coating research, and test results on electrically thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude higher electrical conductivity than most available thermal control coatings. Most current coatings tend to have a range in surface resistivity from 1,011 to 1,013 ohms/sq. Historically, spacecraft have had thermal control surfaces composed of dielectric materials of either polymers (paints and metalized films) or glasses (ceramic paints and optical solar reflectors). Very seldom has the thermal control surface of a spacecraft been a metal where the surface would be intrinsically electrically conductive. The poor thermal optical properties of most metals have, in most cases, stopped them from being used as a thermal control surface. Metals low infrared emittance (generally considered poor for thermal control surfaces) and/or solar absorptance, have resulted in the use of various dielectric coatings or films being applied over the substrate materials in order to obtain the required optical properties.

  8. A conductive and hydrophilic bipolar plate coating for enhanced proton exchange membrane fuel cell performance and water management

    NASA Astrophysics Data System (ADS)

    Nowak, Andrew P.; Salguero, Tina T.; Kirby, Kevin W.; Zhong, Feng; Blunk, Richard H. J.

    2012-07-01

    Electrically conductive and hydrophilic coatings for proton exchange membrane fuel cell (PEMFC) stainless steel bipolar plates have been developed in order to minimize voltage losses at the plate and gas diffusion layer (GDL) interface and facilitate liquid water transport in plate channels for efficient stack operation. The coatings are based on a multifunctional silane, 1,2-bis(triethoxysilyl)ethane (BTSE), mixed with conductive, hydrophilic carbon black. Vulcan® XC72 carbon black was modified with either polar phenylsulfonic acid (PSA) or carboxylic acid (COOH) groups to increase hydrophilic character and wetting behavior. Wetting and electrical contact resistance performance was compared with coatings based on nano-particle titania and silica. These conductive silane and carbon composite coating precursors are conveniently formulated in alcohol solution for scalable application via spray coating. Cured films exhibit negligible contact resistance increase (<2 mΩ cm2) at 1.4 MPa when deposited on both physical vapor deposited (PVD) carbon and electroplated gold coated stainless steel. The coatings were tested for hydrophilicity retention under wet and dry fuel cell conditions where the BTSE-COOH coating remained hydrophilic on stamped stainless steel bipolar plate prototypes after greater than 1200 h of simulated fuel cell testing with only moderate loss of hydrophilicity.

  9. Oxidation of Carbon/Carbon through Coating Cracks

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Roth, d. J.; Rauser, R. W.; Cawley, J. D.; Curry, D. M.

    2008-01-01

    Reinforced carbon/carbon (RCC) is used to protect the wing leading edge and nose cap of the Space Shuttle Orbiter on re-entry. It is composed of a lay-up of carbon/carbon fabric protected by a SiC conversion coating. Due to the thermal expansion mismatch of the carbon/carbon and the SiC, the SiC cracks on cool-down from the processing temperature. The cracks act as pathways for oxidation of the carbon/carbon. A model for the diffusion controlled oxidation of carbon/carbon through machined slots and cracks is developed and compared to laboratory experiments. A symmetric cylindrical oxidation cavity develops under the slots, confirming diffusion control. Comparison of cross sectional dimensions as a function of oxidation time shows good agreement with the model. A second set of oxidation experiments was done with samples with only the natural craze cracks, using weight loss as an index of oxidation. The agreement of these rates with the model is quite reasonab

  10. In situ measurement of ceramic vacuum chamber conductive coating quality

    SciTech Connect

    Doose, C.; Harkay, K.; Kim, S.; Milton, S.

    1997-08-01

    A method for measuring the relative surface resistivity and quality of conductive coatings on ceramic vacuum chambers was developed. This method is unique in that it allows one to test the coating even after the ceramic chamber is installed in the accelerator and under vacuum; furthermore, the measurement provides a localized surface reading of the coating conductance. The method uses a magnetic probe is calibrated using the measured DC end-to-end resistance of the tube under test and by comparison to a high quality test surface. The measurement method has also been verified by comparison to high frequency impedance measurements. A detailed description, results, and sensitivity of the technique are given here.

  11. Gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  12. Gas storage carbon with enhanced thermal conductivity

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Judkins, R.R.

    2000-07-18

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  13. Carbon coated textiles for flexible energy storage

    SciTech Connect

    Jost, Kristy; Perez, Carlos O; Mcdonough, John; Presser, Volker; Heon, Min; Dion, Genevieve; Gogotsi, Yury

    2011-01-01

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at 0.25 A$g1 achieved a high gravimetric and areal capacitance, an average of 85 F$g1 on cotton lawn and polyester microfiber, both corresponding to 0.43 F$cm2.

  14. Carbon coated textiles for flexible energy storage

    SciTech Connect

    Jost, Kristy; Perez, Carlos R.; McDonough, John K.; Presser, Volker; Heon, Min; Dion, Genevieve; Gogotsi, Yury

    2011-10-20

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25 A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².

  15. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.

    PubMed

    Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P

    2015-08-19

    Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant. PMID:26222837

  16. Mixed polyvalent-monovalent metal coating for carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Harper-Tervet, J.; Tervet, F. W.; Humphrey, M. F. (Inventor)

    1982-01-01

    An improved coating of gasification catalyst for carbon-graphite fibers is provided comprising a mixture of a polyvalent metal such as calcium and a monovalent metal such as lithium. The addition of lithium provides a lighter coating and a more flexible coating when applied to a coating of a carboxyl containing resin such as polyacrylic acid since it reduces the crosslink density. Furthermore, the presence of lithium provides a glass-like substance during combustion which holds the fiber together resulting in slow, even combustion with much reduced evolution of conductive fragments. The coated fibers are utilized as fiber reinforcement for composites.

  17. Quantum conductance of carbon nanotubes with defects

    SciTech Connect

    Chico, L.; Benedict, L.X.; Louie, S.G.; Cohen, M.L. |

    1996-07-01

    We study the conductance of metallic carbon nanotubes with vacancies and pentagon-heptagon pair defects within the Landauer formalism. Using a tight-binding model and a Green{close_quote}s function technique to calculate the scattering matrix, we examine the one-dimensional to two-dimensional crossover in these systems and show the existence of metallic tube junctions in which the conductance is suppressed for symmetry reasons. {copyright} {ital 1996 The American Physical Society.}

  18. Fabrication of transparent conductive electrode film using thermal roll-imprinted Ag metal grid and coated conductive polymer.

    PubMed

    Yu, Jong-Su; Jo, Jeongdai; Yoon, Seong-Man; Kim, Do-Jin

    2012-02-01

    In this study, to fabricate a low-resistance and high optical transparent conductive electrode (TCE) film, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of thermal-roll imprinted (TRI) poly-carbonate (PC) patterned films, the manufacture of high-conductivity and low-resistance Ag paste which was filled into patterned PC film using a doctor blade process and then coated with a thin film layer of conductive polymer by a spin coating process. As a result of these imprinting processes the PC films obtained a line width of 10 +/- 0.5 Mm, a channel length of 500 +/- 2 microm, and a pattern depth of 7.34 +/- 0.5 microm. After the Ag paste was used to fill part of the patterned film with conductive polymer coating, the following parameters were obtained: a sheet resistance of 9.65 Omega/sq, optical transparency values were 83.69% at a wavelength of 550 nm. PMID:22629916

  19. Formulation of electrically conductive thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Shai, M. C.

    1978-01-01

    The development and formulation of electrically conductive thermal control coating was undertaken for use on the International Sun Earth Explorer spacecraft. The primary effort was to develop a coating with a bulk resistivity of less than 100,000 ohm/sqm, an optical absorptance of approximately 0.55, and a normal emittance of 0.90. The required stability in space called for a bulk resistivity of less than 100,000 ohm/sq m, an absorptance of less than 0.67, and a normal emittance of 0.90 after exposure to approximately 4 x 10 to the 16th proton/sq cm of solar-wind particles and 5300 equivalent sun-hours. These exposures represent 2 years of ISEE flight conditions. Both the unsuccessful formulation efforts and the successful use of oxide pigments fired at 1448 K are described. Problems relative to the reactivity of specific coating vehicles exposed to high humidity are discussed.

  20. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  1. Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.

  2. Adjustable thermal conductivity in carbon nanotube nanofluids

    NASA Astrophysics Data System (ADS)

    Xie, Huaqing; Chen, Lifei

    2009-05-01

    Homogeneous and stable nanofluids have been produced by suspending well dispersible multi-walled carbon nanotubes (CNTs) into ethylene glycol base fluid. CNT nanofluids have enhanced thermal conductivity and the enhancement ratios increase with the nanotube loading and the temperature. Thermal conductivity enhancement was adjusted by ball milling and cutting the treated CNTs suspended in the nanofluids to relatively straight CNTs with an appropriate length distribution. Our findings indicate that the straightness ratio, aspect ratio, and aggregation have collective influence on the thermal conductivity of CNT nanofluids.

  3. Laser Processing of Carbon Nanotube Transparent Conducting Films

    NASA Astrophysics Data System (ADS)

    Mann, Andrew

    Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction

  4. Electrically conductive PEDOT coating with self-healing superhydrophobicity.

    PubMed

    Zhu, Dandan; Lu, Xuemin; Lu, Qinghua

    2014-04-29

    A self-healing electrically conductive superhydrophobic poly(3,4-ethylenedioxythiophene) (PEDOT) coating has been prepared by chemical vapor deposition of a fluoroalkylsilane (POTS) onto a PEDOT film, which was obtained by electrochemical deposition. The coating not only maintained high conductivity with a low resistivity of 3.2 × 10(-4) Ω·m, but also displayed a water contact angle larger than 156° and a sliding angle smaller than 10°. After being etched with O2 plasma, the coating showed an excellent self-healing ability, spontaneously regaining its superhydrophobicity when left under ambient conditions for 20 h. This superhydrophobicity recovery process was found to be humidity-dependent, and could be accelerated and completed within 2 h under a high humidity of 84%. The coating also exhibited good superhydrophobicity recovering ability after being corroded by strong acid solution at pH 1 or strong base solution at pH 14 for 3 h. PMID:24702588

  5. Fe3O4/carbon coated silicon ternary hybrid composite as supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Oh, Ilgeun; Kim, Myeongjin; Kim, Jooheon

    2015-02-01

    In this study, Fe3O4/carbon-coated Si ternary hybrid composites were fabricated. A carbon layer was directly formed on the surface of Si by the thermal vapor deposition. The carbon-coating layer not only prevented the contact between Si and reactive electrolyte but also provided anchoring sites for the deposition of Fe3O4. Fe3O4 nanoparticles were deposited on the surface of carbon-coated Si by the hydrazine reducing method. The morphology and structure of Fe3O4 and carbon layer were characterized via X-ray diffractometry, field emission scanning electron microscopy, field emission transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analyses. These characterizations indicate that a carbon layer was fully coated on the Si particles, and Fe3O4 particles were homogeneously deposited on the carbon-coated Si particles. The Fe3O4/carbon-coated Si electrode exhibited enhanced electrochemical performance, attributed to the high conductivity and stability of carbon layer and pseudocapacitive reaction of Fe3O4. The proposed ternary-hybrid composites may be potentially useful for the fabrication of high-performance electrodes.

  6. Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers

    NASA Astrophysics Data System (ADS)

    Einig, A.; Rumeau, P.; Desrousseaux, S.; Magga, Y.; Bai, J. B.

    2013-04-01

    Nanoparticles addition is widely studied to improve properties of carbon fiber reinforced composites. Here, hybrid carbon fiber results from grafting of carbon nanotubes (CNT) by Chemical Vapor Deposition (CVD) on the carbon fiber for mechanical reinforcement and conductive properties. Both tows and woven fabrics made of the hybrid fibers are added to the matrix for composite processing. However handling hybrid fibers may induce unwilling health risk due to eventual CNT release and a protective layer is required. A thin coating layer is deposited homogeneously by low pressure plasma polymerization of an organic monomer without modifying the morphology and the organization of grafted CNTs. The polymeric layer effect on the electrical behavior of hybrid fiber is assessed by conductivity measurements. Its influence on the mechanical properties is also studied regarding the interface adhesion between fiber and matrix. The protective role of layer is demonstrated by means of friction constraints applied to the hybrid fiber.

  7. Diamondlike carbon protective coatings for optical windows

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.

    1989-01-01

    Diamondlike carbon (DLC) films were deposited on infrared transmitting optical windows and were evaluated as protective coatings for these windows exposed to particle and rain erosion. The DLC films were deposited on zinc selenide (ZnSe) and zinc sulfide (ZnS) by three different ion beam methods: (1) sputter deposition from a carbon target using an 8-cm argon ion source; (2) direct deposition by a 30-cm hollow cathode ion source with hydrocarbon gas in argon; and (3) dual beam direct deposition by the 30-cm hollow cathode ion source and an 8-cm argon ion source. In an attempt to improve the adherence of the DLC films on ZnSc and ZnS, ion beam cleaning, ion implantation with helium and neon ions, or sputter deposition of a thin, ion beam intermediate coating was employed prior to deposition of the DLC film. The protection that the DLC films afforded the windows from particle and rain erosion was evaluated, along with the hydrogen content, adherence, intrinsic stress, and infrared transmittance of the films. Because of the elevated stress levels in the ion beam sputtered DLC films and in those ion beam deposited with butane, films thicker than 0.1 micron and with good adherence on ZnS and ZnSe could not be generated. An intermediate coating of germanium successfully allowed the DLC films to remain adherent to the optical windows and caused only negligible reduction in the specular transmittance of the ZnS and ZnSe at 10 microns.

  8. Carbon-Based Wear Coatings: Properties and Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2003-01-01

    and friction; thermal conductivity; chemical and thermal inertness; corrosion and wear resistance; radiation resistance and biocompatibility; electronic, acoustic, and electrochemical characteristics; and environmental compatibility. These properties make diamond attractive for a wide range of diverse applications. In particular, chemical-vapor-deposited (CVD) diamond coatings offer a broad potential, since size and cost are not as limiting. The production of large, superhard diamond films or sheets at low cost make designer materials possible. This presentation is divided into two sections: properties and applications of hard coatings. The first section is concerned with the fundamental properties of the surfaces of CVD diamonds and related materials. The surface properties of hard coatings with favorable coefficients of friction (less than or equal to 0.1) and dimensional wear coefficients (less than or equal to 10(exp -6) cubic millimeters/N.m) in specific environments are discussed. The second section is devoted to applications. Examples of actual, successful applications and of potential challenging applications of the coatings.such as CVD diamond, diamondlike carbon, and cubic boron nitride-are described. Cutting tools coated with CVD diamond are of immediate commercial interest. Other applications, such as microelectromechanical systems (MEMS), valves, and bearings of CVD diamond, are being developed, but at a slow pace. There is a continually growing interest in commercializing diamondlike carbon for wear parts applications, such as biomedical parts and implants, forming dies, transport guides, magnetic tapes and disks, valves, and gears. Cubic boron nitride films are receiving attention because they can be used on tools to machine ferrous materials or on wear parts in sliding contact with ferrous materials.

  9. Carbon-Coated Hierarchical SnO2 Hollow Spheres for Lithium Ion Batteries.

    PubMed

    Liu, Qiannan; Dou, Yuhai; Ruan, Boyang; Sun, Ziqi; Chou, Shu-Lei; Dou, Shi Xue

    2016-04-18

    Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2 -based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries. PMID:26888027

  10. Investigation of conductive thermal control coatings by a contactless method in vacuo

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Shai, C. M.; Sanford, E. L.

    1977-01-01

    A technique for determining the conductance per unit area of thermal control coatings for electrostatically clean spacecraft is described. In order to simulate orbital conditions more closely, current-density-voltage (j-V) curves are obtained by a contactless method in which the paint on an aluminum substrate is the anode of a vacuum diode configuration with a tungsten filament cathode. Conductances per unit area which satisfy the International Sun Earth Explorer (ISEE) requirement were observed on black paints containing carbon and in white and green paints filled with zinc oxide which were fired in order to induce defect conductivity. Because of surface effects and the nonhomogeneous nature of paints, large discrepancies were found between measurements with the contactless method and measurements employing metallic contacts, particularly at low current densities. Therefore, measurements with metallic contacts are considered to be of questionable value in deciding the suitability of coatings for electrostatic charge control.

  11. Conductivity of carbon nanotube polymer composites

    SciTech Connect

    Wescott, J T; Kung, P; Maiti, A

    2006-11-20

    Dissipative Particle Dynamics (DPD) simulations were used to investigate methods of controlling the assembly of percolating networks of carbon nanotubes (CNTs) in thin films of block copolymer melts. For suitably chosen polymers the CNTs were found to spontaneously self-assemble into topologically interesting patterns. The mesoscale morphology was projected onto a finite-element grid and the electrical conductivity of the films computed. The conductivity displayed non-monotonic behavior as a function of relative polymer fractions in the melt. Results are compared and contrasted with CNT dispersion in small-molecule fluids and mixtures.

  12. Quantum conductance of carbon nanotube peapods

    SciTech Connect

    Yoon, Young-Gui; Mazzoni, Mario S.C.; Louie, Steven G.

    2003-08-01

    We present a first-principles study of the quantum conductance of hybrid nanotube systems consisting of single-walled carbon nanotubes (SWCNTs) encapsulating either an isolated single C60 molecule or a chain of C60 molecules (nanotube peapods). The calculations show a rather weak bonding interaction between the fullerenes and the SWCNTs. The conductance of a (10,10) SWCNT with a single C60 molecule is virtually unaffected at the Fermi level, but exhibits quantized resonant reductions at the molecular levels. The nanotube peapod arrangement gives rise to high density of states for the fullerene highest occupied molecular orbital and lowest unoccupied molecular orbital bands.

  13. Thermal conductivity of tubrostratic carbon nanofiber networks

    DOE PAGESBeta

    Bauer, Matthew L.; Saltonstall, Chris B.; Leseman, Zayd C.; Beechem, Thomas E.; Hopkins, Patrick E.; Norris, Pamela M.

    2016-01-01

    Composite material systems composed of a matrix of nano materials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. While many reports have studied the intrinsic thermal properties of individual carbon fibers, to be useful in applications in which thermal stability is critical, an understanding of heat transport in composite materials is required. In this work, air/ carbon nano fiber networks are studied to elucidate the system parameters influencing thermal transport. Sample thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature through a bidirectional modificationmore » of the 3ω technique. The nanostructures of the individual fibers are characterized with small angle x-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two phase composite is used to reconcile low measured thermal conductivities with predictive modeling. This methodology can be more generally applied to a wide range of fiber composite materials and their applications.« less

  14. Thermal conductivity of tubrostratic carbon nanofiber networks

    SciTech Connect

    Bauer, Matthew L.; Saltonstall, Chris B.; Leseman, Zayd C.; Beechem, Thomas E.; Hopkins, Patrick E.; Norris, Pamela M.

    2016-01-01

    Composite material systems composed of a matrix of nano materials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. While many reports have studied the intrinsic thermal properties of individual carbon fibers, to be useful in applications in which thermal stability is critical, an understanding of heat transport in composite materials is required. In this work, air/ carbon nano fiber networks are studied to elucidate the system parameters influencing thermal transport. Sample thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature through a bidirectional modification of the 3ω technique. The nanostructures of the individual fibers are characterized with small angle x-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two phase composite is used to reconcile low measured thermal conductivities with predictive modeling. This methodology can be more generally applied to a wide range of fiber composite materials and their applications.

  15. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    NASA Astrophysics Data System (ADS)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  16. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2007-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  17. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2004-01-01

    A thermal barrier coating composition comprising a base oxide, a primary stabilizer oxide, and at least one dopant oxide is disclosed. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. The base oxide is selected from the group consisting of zirconia and hafnia and combinations thereof. The primary stabilizing oxide is selected from the group consisting of yttria, dysprosia, erbia and combinations thereof. The dopant or group A and group B cluster-promoting oxide dopants are selected from the group consisting of rare earth metal oxides, transitional metal oxides, alkaline earth metal oxides and combinations thereof. The dopant or dopants preferably have ionic radii different from those of the primary stabilizer and/or the base oxides.

  18. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2006-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  19. High surface area silicon carbide-coated carbon aerogel

    DOEpatents

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  20. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  1. Lubrication by Diamond and Diamondlike Carbon Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1997-01-01

    Regardless of environment (ultrahigh vacuum, humid air, dry nitrogen, or water), ion-beam-deposited diamondlike carbon (DLC) and nitrogen-ion-implanted, chemical-vapor-deposited (CVD) diamond films had low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6)cu mm/N(dot)m). These films can be used as effective wear-resistant, self-lubricating coatings regardless of environment. On the other hand, as-deposited, fine-grain CVD diamond films; polished, coarse-grain CVD diamond films; and polished and then fluorinated, coarse-grain CVD diamond films can be used as effective wear-resistant, self-lubricating coatings in humid air, in dry nitrogen, and in water, but they had a high coefficient of friction and a high wear rate in ultrahigh vacuum. The polished, coarse-grain CVD diamond film revealed an extremely low wear rate, far less than 10(exp 10) cu mm/N(dot)m, in water.

  2. Antibacterial activity of carbon-coated zinc oxide particles.

    PubMed

    Sawai, Jun; Yamamoto, Osamu; Ozkal, Burak; Nakagawa, Zenbe-E

    2007-03-01

    Particles of ZnO coated with carbon (ZnOCC) were prepared and evaluated for their antibacterial activity. ZnO powder and poly(vinyl alcohol) (PVA) (polymerization degree: 2,000-95,000) were mixed at a mass ratio (ZnO/PVA) of 1, and then heated at 500-650 degree C for 3 h under argon gas with a flow rate of 50ml/min. Carbon deposited on the ZnOCC surface was amorphous as revealed by X-ray diffraction studies. The ZnOCC particles maintained their shape in water, even under agitation. The antibacterial activity of ZnOCC powder against Staphylococcus aureus was evaluated quantitatively by measuring the change in the electrical conductivity of the growth medium caused by bacterial metabolism (conductimetric assay). The conductivity curves obtained were analyzed using the growth inhibition kinetic model proposed by Takahashi for calorimetric evaluation, allowing the estimation of the antibacterial efficacy and kinetic parameters of ZnOCC. In a previous study, when ZnO was immobilized on materials, such as activated carbon, the amount of ZnO immobilized was approximately 10-50%, and the antibacterial activity markedly decreased compared to that of the original ZnO. On the other hand, the ZnOCC particles prepared in this study contained approximately 95% ZnO and possessed antibacterial activity similar to that of pure ZnO. The carbon-coating treatment could maintain the antibacterial efficacy of the ZnO and may be useful in the develop-ment of multifunctional antimicrobial materials. PMID:17408004

  3. Conductive polyurethane composites containing polyaniline-coated nano-silica.

    PubMed

    Liu, Bo-Tau; Syu, Jhan-Rong; Wang, De-Hua

    2013-03-01

    In this study, we used 1.2-Aminopropyltriethoxysilane (APTS) as a coupling agent to synthesize silica-polyaniline (PANI) core-shell nanoparticles. The core-shell nanoparticles and PANI oligomers were reacted with isocyanates to prepare the conductive polyurethane (PU)-PANI-silica nanocomposites. The core-shell-nanoparticle structure shows significant enhancement on electrical properties of the conductive nanocomposites even though only 0.0755-wt.% PANI was coated on the nano-silica. The surface resistance of the nanocomposite containing 5 wt.% PANI can reduce to ~10(8) Ω/sq, lowering two orders in contrast to the nanocomposite without the core-shell structure. In comparison with the neat PU, tensile strength and elongation of the nanocomposite containing silica-PANI core-shell nanoparticles can increase 3.1 and 3.8 times, respectively. We suspect that the extraordinary enhancement of electrical and mechanical properties may result from the fact that contact probability among PANI moieties and chemical bonding between particles and PU matrix increase due to the PANI coated on the surface of silica. PMID:23261334

  4. Synthesis of carbon-coated iron nanoparticles by detonation technique

    SciTech Connect

    Sun, Guilei; Li, Xiaojie; Wang, Qiquan; Yan, Honghao

    2010-05-15

    Carbon-coated iron nanoparticles were synthesized by detonating a mixture of ferrocene, naphthalene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an explosion vessel under low vacuum conditions (8.1 kPa). The RDX functioned as an energy source for the decomposition of ferrocene and naphthalene. The carbon-coated iron nanoparticles were formed as soot-like deposits on the inner surface of the reactor, which were characterized by XRD, TEM, HRTEM, Raman spectroscopy and vibrating sample magnetometer. And a portion of the detonation soot was treated with hydrochloric acid. The product was carbon-coated nanoparticles in perfect core-shell structures with graphitic shells and bcc-Fe cores. The detonation technique offers an energy-saving route to the synthesis of carbon-coated nanomaterials.

  5. Method for applying pyrolytic carbon coatings to small particles

    DOEpatents

    Beatty, Ronald L.; Kiplinger, Dale V.; Chilcoat, Bill R.

    1977-01-01

    A method for coating small diameter, low density particles with pyrolytic carbon is provided by fluidizing a bed of particles wherein at least 50 per cent of the particles have a density and diameter of at least two times the remainder of the particles and thereafter recovering the small diameter and coated particles.

  6. Preparation of cribriform sheet-like carbon-coated zinc oxide with improved electrochemical performance

    NASA Astrophysics Data System (ADS)

    Huang, Jianhang; Yang, Zhanhong; Xie, Xiaoe; Feng, Zhaobin; Zhang, Zheng

    2015-09-01

    Cribriform sheet-like carbon-coated ZnO are prepared using pyrrole as the carbon source. It is found that a sheet-like precursor will form when polymerizing pyrrole in the presence of ZnO particles. After the carbonization of precursor, cribriform sheet-like carbon-coated ZnO can be obtained. Morphology and structure analysis of as-prepared carbon-coated ZnO is conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The carbon overlayer not only present a barrier layer on the surface of the ZnO particles, which keeps relative high discharge capacity by inhibiting the active materials in electrode from dissolving into electrolyte, but also modify the surface status of ZnO particles so as to obtain more uniform current distribution and improved conductivity. As a result, when evaluated as an anode material for Zn/Ni cell, carbon-coated ZnO exhibit a more stable cycle performance than bare ZnO electrode.

  7. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors.

    PubMed

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-28

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl(2)) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. PMID:26598964

  8. Carbon coating of simulated nuclear-waste material

    SciTech Connect

    Blocher, J.M. Jr.; Browning, M.F.; Kidd, R.W.

    1982-03-01

    The development of low-temperature pyrolytic carbon (LT-PyC) coatings as described in this report was initiated to reduce the release of volatile waste form components and to permit the coating of larger glass marbles that have low temperature softening points (550 to 600/sup 0/C). Fluidized bed coaters for smaller particles (<2mm) and newly developed screw-agitated coaters for larger particles (>2mm) were used. Coating temperatures were reduced from >1000/sup 0/C for conventional CVD high temperature PyC to approx. 500/sup 0/C by using a catalyst. The coating gas combination that produced the highest quality coatings was found to be Ni(CO)/sub 4/ as the catalyst, C/sub 2/H/sub 2/ as the carbon source gas, and H/sub 2/ as a diluent. Carbon deposition was found to be temperature dependent with a maximum rate observed at 530/sup 0/C. Coating rates were typically 6 to 7 ..mu..m/hour. The screw-agitated coater approach to coating large-diameter particles was demonstrated to be feasible. Clearances are important between the auger walls and coater to eliminate binding and attrition. Coatings prepared in fluidized bed coaters using similar parameters are better in quality and are deposited at two to three times the rate as in screw-agitated coaters.

  9. Properties of conductive coatings for thermal control mirrors and solar cell covers

    NASA Technical Reports Server (NTRS)

    Joslin, D. E.; Kan, H. K. A.

    1975-01-01

    Conductive transparent coatings applied to the dielectric surfaces of a spacecraft offer the possibility of distributing charge uniformly over the entire spacecraft surface. Optical and electrical measurements of such a coating as a function of temperature are described. These results are used in considering the impact of a conductive coating on the absorptance of thermal control mirrors and on the transmittance of solar cell cover glass, which can be improved by the application of an antireflection coating.

  10. Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites

    NASA Astrophysics Data System (ADS)

    Wang, Kan

    Good processability is often required for applications of conducting materials like polyaniline (PANI), carbon nanotubes (CNTs) and graphene. This can be achieved by either physical stabilization or chemical functionalization. Functionalization usually expands the possible applications for the conducting materials depending on the properties of the functional groups. Processable conducting materials can also be combined with other co-dissolving materials to prepare composites with desired chemical and physical properties. Polyanilines (PANI) doped with dodecylbenzenesulfonic acid (DBSA) are soluble in many organic solvents such as chloroform and toluene. Single wall carbon nanotubes (SWCNTs) can be dispersed into PANI/DBSA to form homogeneous solutions. PANI/DBSA functions as a conducting surfactant for SWCNTs. The mixture can be combined with two-parts polyurethanes that co-dissolve in the organic solvent to produce conducting polymer composites. The composite mixtures can be applied onto various substrates by simple spray-on methods to obtain transparent and conducting coatings. Graphene, a single layer of graphite, has drawn intense interest for its unique properties. Processable graphene has been produced in N-methyl-2-pyrrolidone (NMP) by a one-step solvothermal reduction of graphite oxide without the aid of any reducing reagent and/or surfactant. The as-synthesized graphene disperses well in a variety of organic solvents such as dimethylsulfoxide (DMSO), ethanol and tetrahydrogenfuran (THF). The conductivity of solvothermal reduced graphite oxide is comparable to hydrazine reduced graphite oxide. Attempts were made to create intrinsically conducting glue comparable to mussel adhesive protiens using polyaniline and graphene. Mussels can attach to a variety of substrates under water. Catechol residue in 3,4-dihydroxyphenylalanine (L-DOPA) is the key to the wet adhesion. Tyrosine and phosphoserine with primary alkyl amine groups also participate in adhesion. A

  11. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  12. Update on diamond and diamond-like carbon coatings

    NASA Astrophysics Data System (ADS)

    Lettington, Alan H.

    1990-10-01

    This paper reviewed the infrared uses of diamond-like carbon thin films and the potential uses of synthetic diamond layers. Diamond-like carbon is used widely as a protective anti-reflection coating for exposed germanium infrared windows and lenses and as thin protective coatings for front surface aluminium mirrors. This material is also used in protective anti-reflective coatings for zinc sulphide as the outer thin film in multi-layer designs incorporating variable index intermediate layers of germanium carbide. The maximum thickness of diamond-like carbon that can be used is often limited by the stress induced in the layer through the method of deposition and by the absorption present in the basic material. This stress and absorption can be far lower in synthetic diamond layers but there are now problems associated with the high substrate temperatures, difficulties in coating large areas uniformly and problems arising from surface scattering and low deposition rates.

  13. Oxidation resistant slurry coating for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Rybicki, G. C. (Inventor)

    1985-01-01

    An oxidation resistant coating is produced on carbon-base materials, and the same processing step effects an infiltration of the substrate with silicon containing material. The process comprises making a slurry of nickel and silicon powders in a nitrocellulose lacquer, spraying onto the graphite or carbon-carbon substrate, and sintering in vacuum to form a fused coating that wets and covers the surface as well as penetrates into the pores of the substrate. Optimum wetting and infiltration occurs in the range of Ni-60 w/o Si to Ni-90 w/o Si with deposited thicknesses of 25-100 mg/sq. cm. Sintering temperatures of about 1200 C to about 1400 C are used, depending on the melting point of the specific coating composition. The sintered coating results in Ni-Si intermetallic phases and SiC, both of which are highly oxidation resistant.

  14. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOEpatents

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  15. Multilayered Polymer Coated Carbon Nanotubes to Deliver Dasatinib

    PubMed Central

    Moore, Thomas L.; Grimes, Stuart W.; Lewis, Robert L.; Alexis, Frank

    2014-01-01

    Multilayered, multifunctional polymer coatings were grafted onto carbon nanotubes (CNT) using a one-pot, ring-opening polymerization in order to control the release kinetic and therapeutic efficacy of dasatinib. Biocompatible, biodegradable multilayered coatings composed of poly(glycolide) (PGA), and poly(lactide) (PLA) were polymerized directly onto hydroxyl-functionalized CNT surfaces. Sequential addition of monomers into the reaction vessel enabled multilayered coatings of PLA-PGA, or PGA-PLA. Poly(ethylene glycol) capped the polymer chain ends, resulting in a multifunctional amphiphilic coating. Multilayer polymer coatings on CNTs enabled control of anticancer dasatinib’s release kinetics and enhanced the in vitro therapeutic efficacy against U-87 glioblastoma compared to monolayer polymer coatings. PMID:24294824

  16. Influence of carbon nanomaterials on the properties of paint coatings

    NASA Astrophysics Data System (ADS)

    Zhdanok, S. A.; Krauklis, A. V.; Borisevich, K. O.; Prokopchuk, N. P.; Nikolaichik, A. V.; Stanovoi, P. G.

    2011-11-01

    The conditions for obtaining carbon nanomaterials with the use of a low-temperature plasma are described. The product obtained was analyzed using the electron microscopy and a laser diffraction particle-size analyzer. The influence of the carbon nanomaterials on the physicochemical properties of paint coatings, their adhesion, impact and bending strengths, hardness, and protection characteristics was investigated.

  17. Heat Conduction in Ceramic Coatings: Relationship Between Microstructure and Effective Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Kachanov, Mark

    1998-01-01

    Analysis of the effective thermal conductivity of ceramic coatings and its relation to the microstructure continued. Results (obtained in Task 1) for the three-dimensional problem of heat conduction in a solid containing an inclusion (or, in particular, cavity - thermal insulator) of the ellipsoidal shape, were further advanced in the following two directions: (1) closed form expressions of H tensor have been derived for special cases of ellipsoidal cavity geometry: spheroid, crack-like spheroidal cavity and needle shaped spheroidal cavity; (2) these results for one cavity have been incorporated to construct heat energy potential for a solid with many spheroidal cavities (in the approximation of non-interacting defects). This problem constitutes a basic building block for further analyses.

  18. Analytical performance characteristics of nanoelectrospray emitters as a function of conductive coating.

    PubMed

    Smith, Douglas R; Moy, Marie A; Dolan, Anthony R; Wood, Troy D

    2006-04-01

    As miniaturization of electrospray continues to become more prevalent in the mass spectrometry arsenal, numerous types of conductive coatings have been developed with miniaturized electrospray emitters. Different conductive coatings have different properties that may lead to differences in analytical performance. This paper investigates and compares the analytical properties of a series of applied conductive coatings for low-flow electrospray ionization developed in this laboratory vs. commercially-available types. Evaporated graphite is thoroughly compared with commercially available polyaniline (PANI) coated emitters and metal coated emitters. Each set of emitters was investigated to determine various performance characteristics, including susceptibility to electrical discharge in both positive and negative ionization modes, as well as emitter reproducibility and generation of a standard curve to determine each emitter coating's limit of detection and limit of quantitation. Furthermore, evaporated graphite and polyaniline coated fused silica capillaries were investigated to determine which coating is more stable over long-term analyses and during electrical discharge. PMID:16568172

  19. Reinforced Carbon Carbon (RCC) oxidation resistant material samples - Baseline coated, and baseline coated with tetraethyl orthosilicate (TEOS) impregnation

    NASA Technical Reports Server (NTRS)

    Gantz, E. E.

    1977-01-01

    Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.

  20. Chemical sensors using coated or doped carbon nanotube networks

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Meyyappan, Meyya (Inventor)

    2010-01-01

    Methods for using modified single wall carbon nanotubes ("SWCNTs") to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl.sub.2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., C.sub.nH.sub.2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.

  1. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  2. Thermophysical properties of thermal sprayed coatings on carbon steel substrates by photothermal radiometry

    SciTech Connect

    Garcia, J.A.; Mandelis, A.; Farahbakhsh, B.; Lebowitz, C.; Harris, I.

    1999-09-01

    Laser infrared photothermal radiometry (PTR) was used to measure the thermophysical properties (thermal diffusivity and conductivity) of various thermal sprayed coatings on carbon steel. A one-dimensional photothermal model of a three-layered system in the backscattered mode was introduced and compared with experimental measurements. The uppermost layer was used to represent a roughness-equivalent layer, a second layer represented the substrate. The thermophysical parameters of thermal sprayed coatings examined in this work were obtained when a multiparameter-fit optimization algorithm was used with the backscattered PTR experimental results. The results also suggested a good method to determine the thickness of tungsten carbide and stainless-steel thermal spray coatings once the thermal physical properties are known. The ability of PTR to measure the thermophysical properties and the coating thickness has a strong potential as a method for in situ characterization of thermal spray coatings.

  3. Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yanli; Hu, Yi; Shao, Jianzhong; Shen, Zhen; Chen, Renzhong; Zhang, Xiangwu; He, Xia; Song, Yuanze; Xing, Xiuli

    2015-12-01

    Pyrolytic carbon-coated Si/C nanofibers (Si/C-CNFs) composites have been prepared through the sucrose coating and secondary thermal treatment of Si/CNFs composites produced via electrospinning and carbonization. This results in a structure in which Si nanoparticles are distributed along the fibers, with the fiber surface being coated with an amorphous carbon layer through pyrolysis of the sucrose. This carbon coating not only limits the volume expansion of the exposed Si nanoparticles, preventing their direct contact with the electrolyte, but also creates a connection between the fibers that is beneficial to Li+ ion transport, structural integrity, and electrochemical conductivity. Consequently, the Si/C-CNFs composite exhibits a more stable cycle performance, better rate performance, and higher conductivity than Si/CNFs alone. The optimal level of performance was attained with a 20:200 mass ratio of sucrose to deionized water, with a high retained capacity of 1215.2 mAh g-1 after 50 cycles, thus indicating that it is a suitable anode material for Li-ion batteries.

  4. Functionalization, coordination, and coating of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hamilton, Christopher Eric

    Single-walled carbon nanotubes were covalently end-functionalized with various donor ligands in order to facilitate the coordination of metal catalyst nanoparticles. The purpose of this study was to optimize catalyst complexation to SWNT ends, allowing growth from preformed seeds (SWNT-cats). The "SWNT amplification" method is envisioned as a route to bulk single-chirality nanotube samples. Study by 31P MAS NMR was undertaken in order to characterize SWNT phosphine derivatives. The synthesis of new N-aryl dipyridylamines (dpas) and related compounds is reported. The products, chelating N-donor ligands, will be used to prepare copper complexes. Copper dpa complexes are able to discriminate between olefin isomers in simple mixtures. Similar triarylamines have been similarly prepared and characterized; these have been tested for their ability to separate SWNTs of particular diameters (or chiral angles) by selective pi-pi stacking interactions. This method is a possible route to single or few-chirality samples, which could then be subjected to SWNT amplification. A novel method for production of high-yield dispersions of single and few layer graphene is presented. o-Dichlorobenzene suspensions of graphene provide twice the yield of previous methods. Moreover, ODCB graphene dispersions form a convenient platform from which to pursue covalent derivatization of graphene in a nonpolar medium. ODCB dispersions have been used to covalently functionalize graphene with perfluoroalkyl groups by a free radical method. Initiation of radical reactions was achieved by both UV photolysis and thermal decomposition of peroxides. Perfluoroalkylated graphene is highly exfoliated and shows great promise for use in polymer composites, lubricants and coatings. Chemical bath deposition (CBD) of II-VI semiconductor materials on SWNT substrates is demonstrated. Bulk heterojunction photovoltaic devices have been prepared from these SWNT-semiconductor composites. The CBD process of depositing

  5. Redirected charge transport arising from diazonium grafting of carbon coated LiFePO4.

    PubMed

    Madec, L; Seid, K A; Badot, J-C; Humbert, B; Moreau, P; Dubrunfaut, O; Lestriez, B; Guyomard, D; Gaubicher, J

    2014-11-01

    The morphological and the electrical properties of carbon coated LiFePO4 (LFPC) active material functionalized by 4-ethynylbenzene tetrafluoroboratediazonium salt were investigated. For this purpose, FTIR, Raman, XPS, High Resolution Transmission Electron Microscopy (HRTEM) and Broadband Dielectric Spectroscopy (BDS) were considered. Electronic conductivities of LFPC samples at room temperature were found to decrease in a large frequency range upon simple immersion in polar solvents and to decrease further upon functionalization. Due to their high dipole moment, strongly physisorbed molecules detected by XPS likely add barriers to electron hopping. Significant alteration of the carbon coating conductivity was only observed, however, upon functionalization. This effect is most presumably associated with an increase in the sp(3) content determined by Raman spectroscopy, which is a strong indication of the formation of a covalent bond between the organic layer and the carbon coating. In this case, the electron flux appears to be redirected and relayed by short-range (intra chain) and long-range (inter chain) electron transport through molecular oligomers anchored at the LFPC surface. The latter are controlled by tunnelling and slightly activated hopping, which enable higher conductivity at low temperature (T < 250 K). Alteration of the electron transport within the carbon coating also allows detection of a relaxation phenomenon that corresponds to small polaron hopping in bulk LiFePO4. XPS and HRTEM images allow a clear correlation of these findings with the island type oligomeric structure of grafted molecules. PMID:25234701

  6. Performance characteristics of zinc-rich coatings applied to carbon steel

    NASA Technical Reports Server (NTRS)

    Paton, W. J.

    1973-01-01

    A program was conducted to evaluate the performance of topcoated and untopcoated zinc-rich coatings. Sacrificial coatings of this type are required for protecting carbon steel structures from the aggressive KSC sea coast environment. A total of 59 commercially available zinc-rich coatings and 47 topcoated materials were exposed for an 18-month period. Test panels were placed in special racks placed approximately 30.5 m (100 feet) above the high tide line at the KSC Corrosion Test Site. Laboratory tests to determine the temperature resistance, abrasion resistance, and adhesion of the untopcoated zinc-rich coatings were also performed. It has been concluded that: (1) The inorganic types of zinc-rich coatings are far superior to the organic types in the KSC environment. (2) Organic zinc-rich coatings applied at 0.1 - 0.15 mm (4-6 mils) film thickness provide better corrosion protection than when applied at the manufacturers' recommended nominal film thickness of .08 mm (3 mils). (3) Topcoats are not necessary, or even desirable, when used in conjunction with zinc-rich coatings in the KSC environment. (4) Some types of inorganic zinc-rich coatings require an extended outdoor weathering period in order to obtain adequate mechanical properties. and (5) A properly formulated inorganic zinc-rich coating is not affected by a 24-hour thermal exposure to 400 C (752 F).

  7. Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and Polyimide-Coated Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-09-01

    The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4'-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.

  8. Interactions between the glass fiber coating and oxidized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ku-Herrera, J. J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J. V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-03-01

    Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as "sizing"), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  9. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  10. Development of conductive coated polyester film as RPC electrodes using screen printing

    NASA Astrophysics Data System (ADS)

    Kalmani, S. D.; Mondal, N. K.; Satyanarayana, B.; Verma, P.; Datar, V. M.

    2009-05-01

    Each of the three 16 kton ICAL detector modules at the India-based Neutrino Observatory (INO) will use RPCs as the active element, sandwiched between 6 cm thick soft iron plates, for measurements on atmospheric neutrinos. The electrodes of the RPC are float glass sheets having a volume resistivity of about 10 12-10 13 Ω cm (at room temperature) covered with carbon/graphite or a conductive paint with a surface resistivity of ˜800 kΩ/square to 1 MΩ/square to apply high voltage on the glass surface, so that this surface does not shield the discharge signal from the external pickup plates and is small compared to the resistivity of the glass to provide a uniform potential across the entire surface. We initially coated the surface with locally available graphite powder, mixed with lacquer and thinner, and were able to get a few hundred kΩ/square resistivity. However, we observed a drastic reduction in surface resistivity with time and it came unstuck from the glass. Subsequently a conductive paint developed by Kansai-Nerolac was used. This paint uses modified acrylic resin as binder, conductive black pigment and solvents, which include aromatic hydrocarbons and alcohols. At room temperature, the surface dries in 10 minutes, while complete drying takes ˜18 hours. The spraying is done at a pressure of 4 kg/cm 2 with the glass plate kept at a distance of 8-10 in. Using this paint, we are able to achieve the required resistance of ˜ few hundred kΩ/square. We still need to study the long term stability and best curing method. We need to automate the procedure to get a uniform coat and to coat a large number of glasses for the final detector. While robotic systems are available abroad costing about 5 000 000 rupees, we are exploring other alternatives. In particular, we are in the process of developing a polyester film, with a conductive coating on one side, which can be glued on to the glass. The coating was done using on a local commercial screen printing machine

  11. Conductive surface modification of LiFePO4 with nitrogen doped carbon layers for lithium-ion batteries

    SciTech Connect

    Yoon, Sukeun; Liao, Chen; Sun, Xiao-Guang; Bridges, Craig A; Unocic, Raymond R; Nanda, Jagjit; Dai, Sheng; Paranthaman, Mariappan Parans

    2012-01-01

    The LiFePO4 rod surface modified with nitrogen doped carbon layer has been prepared using hydrothermal processing followed by post-annealing in the presence of an ionic liquid. The coated LiFePO4 rod exhibits good capacity retention and high rate capability as the nitrogen doped carbon improves conductivity and prevents aggregation of the rod during cycling.

  12. Ultrahigh currents in dielectric-coated carbon nanotube probes.

    PubMed

    Lisunova, Yuliya; Levkivskyi, Ivan; Paruch, Patrycja

    2013-09-11

    Carbon nanotubes used as conductive atomic force microscopy probes are expected to withstand extremely high currents. However, in existing prototypes, significant self-heating results in rapid degradation of the nanotube probe. Here, we investigate an alternative probe design, fabricated by dielectric encapsulation of multiwalled carbon nanotubes, which can support unexpectedly high currents with extreme stability. We show that the dielectric coating acts as a reservoir for Joule heat removal, and as a chemical barrier against thermal oxidation, greatly enhancing transport properties. In contact with Au surfaces, these probes can carry currents of 0.12 mA at a power of 1.5 mW and show no measurable change in resistance at current densities of 10(12) A/m(2) over a time scale of 10(3) s. Our observations are in good agreement with theoretical modeling and exact numerical calculations, demonstrating that the enhanced transport characteristics of such probes are governed by their more effective heat removal mechanisms. PMID:23978224

  13. New solar selective coating based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abendroth, Thomas; Leupolt, Beate; Mäder, Gerrit; Härtel, Paul; Grählert, Wulf; Althues, Holger; Kaskel, Stefan; Beyer, Eckhard

    2016-05-01

    Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems.

  14. HYDROTHERMALLY SELF-ADVANCING HYBRID COATINGS FOR MITIGATING CORROSION OF CARBON STEEL.

    SciTech Connect

    SUGAMA, T.

    2006-11-22

    Hydrothermally self-advancing hybrid coatings were prepared by blending two starting materials, water-borne styrene acrylic latex (SAL) as the matrix and calcium aluminate cement (CAC) as the hydraulic filler, and then their usefulness was evaluated as the room temperature curable anti-corrosion coatings for carbon steel in CO{sub 2}-laden geothermal environments at 250 C. The following two major factors supported the self-improving mechanisms of the coating during its exposure in an autoclave: First was the formation of a high temperature stable polymer structure of Ca-complexed carboxylate groups containing SAL (Ca-CCG-SAL) due to hydrothermal reactions between SAL and CAC; second was the growth with continuing exposure time of crystalline calcite and boehmite phases coexisting with Ca-CCG-SAL. These two factors promoted the conversion of the porous microstructure in the non-autoclaved coating into a densified one after 7 days exposure. The densified microstructure not only considerably reduced the conductivity of corrosive ionic electrolytes through the coatings' layers, but also contributed to the excellent adherence of the coating to underlying steel' s surface that, in turn, retarded the cathodic oxygen reduction reaction at the corrosion site of steel. Such characteristics including the minimum uptake of corrosive electrolytes by the coating and the retardation of the cathodic corrosion reaction played an important role in inhibiting the corrosion of carbon steel in geothermal environments.

  15. Adhesion of preceramic inorganic polymer coatings to carbon fibers

    SciTech Connect

    Chaudhry, T.M.; Drzal, L.T.; Ho, H.; Laine, R.

    1996-12-31

    To determine whether the preceramic inorganic polymer coating can provide not only the thermal oxidative protection during both processing and use in metal matrix composites or ceramic matrix composites but also the appropriate composite properties, it is desirable to know how and at what point in the thermal processing cycle the coating-carbon fiber interface undergoes changes that affect the interfacial adhesion and failure mode. Also, it is important to identify the locus of interfacial failure i.e. between fiber and coating or between coating and matrix. This work is directed at determining the interfacial changes and the locus of failure in order to optimize both the coating chemistry and the conversion process. The characteristics of the benchmark interface coating material, silicon oxycarbide, SiO{sub x}C{sub y} or black glass have been studied. SiO{sub x}C{sub y} was chosen because (1) SiO{sub x}C{sub y} is amorphous, (2) it is possible to prepare very well-defined materials, where the chemistry and the evolution of the material with time and temperature are known in detail, and (3) SiO{sub x}C{sub y} is a matrix material used in commercial composites. It has been shown that these coatings are effective in increasing the oxidation resistance of the carbon fibers themselves.

  16. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  17. Optimum Me-DLC coatings and hard coatings for tribological performance[Diamond-Like Carbon

    SciTech Connect

    Su, Y.L.; Kao, W.H.

    2000-02-01

    In this study, hard coatings (TiN, TiCN, CrN, and CrCN) and Me-DLC coatings (Ti{sub x%}-C:H and Cr{sub x%}-C:H) were deposited on tungsten carbide (WC) substrate by multiarc physical vapor deposition (MAPVD) and unbalanced magnetron (UBM) sputtering, respectively. Counterbodies of the AISI 1045 steel cylinder and the AA7075T65l aluminum cylinder were used in the cylinder-on-disk, line-contact wear mode under dry condition; a counterbody of the AISI 51200 steel ball was used in the ball-on-disk, point-contact wear mode, under both dry and lubricated conditions. All wear tests were conducted with a reciprocating machine. After the tests, the most suitable coating for various counterbodies and test environments was selected. For the coating/1045 steel cylinder, the Ti{sub 10%}-C:H coating possesses excellent tribological characteristics. For the coating/7075T651 aluminum cylinder, hard coatings display excellent wear resistance. For the coating/steel ball, CrCN and CrN coatings display very little wear under both dry and lubricated conditions. On TiN and TiCN coatings, special wear mechanisms of material transfer, adhesion wear, and fatigue fracture occurred during initial tests under kerosene lubrication.

  18. Hollow carbon spheres in microwaves: Bio inspired absorbing coating

    NASA Astrophysics Data System (ADS)

    Bychanok, D.; Li, S.; Sanchez-Sanchez, A.; Gorokhov, G.; Kuzhir, P.; Ogrin, F. Y.; Pasc, A.; Ballweg, T.; Mandel, K.; Szczurek, A.; Fierro, V.; Celzard, A.

    2016-01-01

    The electromagnetic response of a heterostructure based on a monolayer of hollow glassy carbon spheres packed in 2D was experimentally surveyed with respect to its response to microwaves, namely, the Ka-band (26-37 GHz) frequency range. Such an ordered monolayer of spheres mimics the well-known "moth-eye"-like coating structures, which are widely used for designing anti-reflective surfaces, and was modelled with the long-wave approximation. Based on the experimental and modelling results, we demonstrate that carbon hollow spheres may be used for building an extremely lightweight, almost perfectly absorbing, coating for Ka-band applications.

  19. Na-doped hydroxyapatite coating on carbon/carbon composites: Preparation, in vitro bioactivity and biocompatibility

    NASA Astrophysics Data System (ADS)

    Li, Hejun; Zhao, Xueni; Cao, Sheng; Li, Kezhi; Chen, Mengdi; Xu, Zhanwei; Lu, Jinhua; Zhang, Leilei

    2012-12-01

    Na-doped hydroxyapatite (Na-HA) coating was directly prepared onto carbon/carbon (C/C) composites using electrochemical deposition (ECD) and the mean thickness of the coating is approximately 10 ± 2 μm. The formed Na-HA crystals which are Ca-deficient, are rod-like with a hexagonal cross section. The Na/P molar ratios of the coating formed on C/C substrate is 0.097. During the deposition, the Na-HA crystals grow in both radial and longitudinal directions, and faster along the longitudinal direction. The pattern formation of crystal growth leads to dense coating which would help to increase the bonding strength of the coating. The average shear bonding strength of Na-HA coating on C/C is 5.55 ± 0.77 MPa. The in vitro bioactivity of the Na-HA coated C/C composites were investigated by soaking the samples in a simulated body fluid (SBF) for 14 days. The results indicate that the Na-HA coated C/C composites can rapidly induce bone-like apatite nucleation and growth on its surface in SBF. The in vitro cellular biocompatibility tests reveal that the Na-HA coating was better to improve the in vitro biocompatibility of C/C composites compared with hydroxyapatite (HA) coating. It was suggested that the Na-HA coating might be an effective method to improve the surface bioactivity and biocompatibility of C/C composites.

  20. Conducting polymers on non-conducting substrates: Chemical coating processes and applications

    SciTech Connect

    Genies, E.M.

    1996-01-01

    The presentation will be as follows: {emdash}Historical background {emdash}Oxidizing polymerization mechanism of heterocycles and aromatic compounds: the cases of pyrrole and anilin {emdash}The processes: solute, gas phase and from conducting polymer solutions {emdash}The substrates: glass, polymers, inorganic materials, textiles, powders. {emdash}Properties of coatings: {emdash}Chemical properties: redox, acid-base {emdash}Properties resulting from the polymer doping counter-ion {emdash}Physical properties: : optical, magnetic, conducting, microwave absorption {emdash}Stability {emdash}Applications: optics, microelectronics, sensors, electrochrome glasses, electromagnetic and antistatic shielding, military applications, packaging for electronic components, biocompat- ibility, plasturgy. {emdash}Commercial applications throughout the world. How to obtain these materials {emdash}Conclusions The examples will be taken from the results of our laboratory, those of CEA-Direction des Technologies Avanc{acute e}es{emdash}Centre d{close_quote}Etudes et de Recherche sur les Mat{acute e}riaux{emdash}Centre d{close_quote}Etudes Nucl{acute e}aires de Grenoble (Mssrs R. Jolly and J. C. Thi{acute e}blemont), from the Milliken Research Corp. (Dr. H. H. Kuhn), from the Zipperlin Kessler company (Dr. B. Wessling), from the Americhem company and from I.B.M. (Dr. M. Angelopoulos). {copyright} {ital 1996 American Institute of Physics.}

  1. Single-walled carbon nanotube networks in conductive composite materials.

    PubMed

    Bârsan, Oana A; Hoffmann, Günter G; van der Ven, Leo G J; de With, G Bert

    2014-01-01

    Electrically conductive composite materials can be used for a wide range of applications because they combine the advantages of a specific polymeric material (e.g., thermal and mechanical properties) with the electrical properties of conductive filler particles. However, the overall electrical behaviour of these composite materials is usually much below the potential of the conductive fillers, mainly because by mixing two different components, new interfaces and interphases are created, changing the properties and behaviours of both. Our goal is to characterize and understand the nature and influence of these interfaces on the electrical properties of composite materials. We have improved a technique based on the use of sodium carboxymethyl cellulose (CMC) to disperse single-walled carbon nanotubes (SWCNTs) in water, followed by coating glass substrates, and drying and removing the CMC with a nitric acid treatment. We used electron microscopy and atomic force microscopy techniques to characterize the SWCNT films, and developed an in situ resistance measurement technique to analyse the influence of both the individual components and the mixture of an epoxy/amine system on the electrical behaviour of the SWCNTs. The results showed that impregnating a SWCNT network with a polymer is not the only factor that affects the film resistance; air exposure, temperature, physical and chemical properties of the individual polymer components, and also the formation of a polymeric network, can all have an influence on the macroscopic electrical properties of the initial SWCNT network. These results emphasize the importance of understanding the effects that each of the components can have on each other before trying to prepare an efficient polymer composite material. PMID:25430670

  2. Nano-coatings on carbon structures for interfacial modification

    NASA Astrophysics Data System (ADS)

    Pulikollu, Rajasekhar V.

    Surface modification of materials is a rapidly growing field as structures become smaller, more integrated and complex. It opens up the possibility of combining the optimum bulk properties of a material with optimized surface properties such as enhanced bonding, corrosion resistance, reactivity, stress transfer, and thermal, optical or electrical behavior. Therefore, surface functionalization or modification can be an enabling step in a wide variety of modern applications. In this dissertation several surface modification approaches on carbon foam and carbon nano-fibers will be discussed. These are recently developed sp2 graphitic carbon based structures that have significant potential in aerospace, automotive and thermal applications. Influence of surface modification on composite formation and properties have also been investigated. Two types of property changes have been investigated: one for enhancing the surface reactivity and another for surface inertness. Characterization techniques such as X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Contact Angle Measurement, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and mechanical testing are used in this study to find out the influence of these coatings on surface composition, chemistry and morphology. Mechanical testing has been performed on composites and stand alone foam to study the influence of surface modification on physical and mechanical properties of the composite materials. The effectiveness of these coatings on metallic/graphite interface has also been investigated for metal-matrix composite related applications. Additionally, the influence of plasma coatings on nucleation and growth of nanotubes on larger carbon structures (to produce multiscale, multifunctional materials) have also been studied. It is seen that the liquid phase activation treatment introduces oxygen functional groups on the surface, but may cause severe enough degradation that

  3. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating

    NASA Astrophysics Data System (ADS)

    Mo, Lixin; Ran, Jun; Yang, Li; Fang, Yi; Zhai, Qingbin; Li, Luhai

    2016-02-01

    A high-performance ITO-free transparent conductive film (TCF) has been made by combining high resolution Ag grids with a carbon nanotube (CNT) coating. Ag grids printed with flexography have a 20 μm line width at a grid interval of 400 μm. The Ag grid/CNT hybrid film exhibits excellent overall performance, with a typical sheet resistance of 14.8 Ω/□ and 82.6% light transmittance at room temperature. This means a 23.98% reduction in sheet resistance and only 2.52% loss in transmittance compared to a pure Ag grid film. Analysis indicates that filling areas between the Ag grids and interconnecting the silver nanoparticles with the CNT coating are the primary reasons for the significantly improved conductivity of the hybrid film that also exhibits excellent flexibility and mechanical strength compared to an ITO film. The hybrid film may fully satisfy the requirements of different applications, e.g. use as the anode of polymer solar cells (PSCs). The J-V curve shows that the power conversion efficiency (PCE) of the PSCs using the Ag grid/CNT hybrid anode is 0.61%, which is 24.5% higher than that of the pure Ag grids with a PCE of 0.49%. Further investigations to improve the performance of the solar cells based on the printed hybrid TCFs are ongoing.

  4. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating.

    PubMed

    Mo, Lixin; Ran, Jun; Yang, Li; Fang, Yi; Zhai, Qingbin; Li, Luhai

    2016-02-12

    A high-performance ITO-free transparent conductive film (TCF) has been made by combining high resolution Ag grids with a carbon nanotube (CNT) coating. Ag grids printed with flexography have a 20 μm line width at a grid interval of 400 μm. The Ag grid/CNT hybrid film exhibits excellent overall performance, with a typical sheet resistance of 14.8 Ω/□ and 82.6% light transmittance at room temperature. This means a 23.98% reduction in sheet resistance and only 2.52% loss in transmittance compared to a pure Ag grid film. Analysis indicates that filling areas between the Ag grids and interconnecting the silver nanoparticles with the CNT coating are the primary reasons for the significantly improved conductivity of the hybrid film that also exhibits excellent flexibility and mechanical strength compared to an ITO film. The hybrid film may fully satisfy the requirements of different applications, e.g. use as the anode of polymer solar cells (PSCs). The J-V curve shows that the power conversion efficiency (PCE) of the PSCs using the Ag grid/CNT hybrid anode is 0.61%, which is 24.5% higher than that of the pure Ag grids with a PCE of 0.49%. Further investigations to improve the performance of the solar cells based on the printed hybrid TCFs are ongoing. PMID:26758939

  5. Development of electrically conductive DLC coated stainless steel separators for polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuo; Watanabe, Masanori; Toda, Tadao; Fujii, Toshiaki

    2013-06-01

    Polymer electrolyte fuel cell (PEFC) as one of generation devices of electrical power is rapidly expanding the market as clean energy instead of petroleum and atomic energy. Residential fuel cell goes into quantity production and introduction of fuel cell for use in automobiles starts in the year 2015 in Japan. Critical subject for making fuel cell expand is how to reduce cost of fuel cell. In this paper we describe about separator plate which domains large ratio of cost in fuel cell stack. In present time, carbon is used in material of residential fuel cell separator. Metal separators are developed in fuel cell for use in automobiles because of need of mechanical strength at first. In order to make fuel cell expand in market, further cost reduction is required. But the metal separator has problem that by using metal separator contact resistance occurred by metal corrosion increases and catalyst layer and membrane degrade. In recent time we found out to protect from corrosion and dissolution of metals by coating the film of porous free conductive DLC with plasma ion implantation and deposition technology that we have developed. Film of electrically conductive DLC was formed with high speed of 13 μm/hr by ICP plasma, and coating cost breakout was performed.

  6. Electrically Conductive, Corrosion-Resistant Coatings Through Defect Chemistry for Metallic Interconnects

    SciTech Connect

    Anil V. Virkar

    2006-12-31

    The principal objective of this work was to develop oxidation protective coatings for metallic interconnect based on a defect chemistry approach. It was reasoned that the effectiveness of a coating is dictated by oxygen permeation kinetics; the slower the permeation kinetics, the better the protection. All protective coating materials investigated to date are either perovskites or spinels containing metals exhibiting multiple valence states (Co, Fe, Mn, Cr, etc.). As a result, all of these oxides exhibit a reasonable level of electronic conductivity; typically at least about {approx}0.05 S/cm at 800 C. For a 5 micron coating, this equates to a maximum {approx}0.025 {Omega}cm{sup 2} area specific resistance due to the coating. This suggests that the coating should be based on oxygen ion conductivity (the lower the better) and not on electronic conductivity. Measurements of ionic conductivity of prospective coating materials were conducted using Hebb-Wagner method. It was demonstrated that special precautions need to be taken to measure oxygen ion conductivity in these materials with very low oxygen vacancy concentration. A model for oxidation under a protective coating is presented. Defect chemistry based approach was developed such that by suitably doping, oxygen vacancy concentration was suppressed, thus suppressing oxygen ion transport and increasing effectiveness of the coating. For the cathode side, the best coating material identified was LaMnO{sub 3} with Ti dopant on the Mn site (LTM). It was observed that LTM is more than 20 times as effective as Mn-containing spinels. On the anode side, LaCrO3 doped with Nb on the Cr site (LNC) was the material identified. Extensive oxidation kinetics studies were conducted on metallic alloy foils with coating {approx}1 micron in thickness. From these studies, it was projected that a 5 micron coating would be sufficient to ensure 40,000 h life.

  7. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    ERIC Educational Resources Information Center

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  8. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  9. Thermal contact conductance of non-flat, rough, metallic coated metals

    SciTech Connect

    Lambert, M.A.; Fletcher, L.S.

    1996-12-31

    Thermal contact conductance is an important consideration in such applications as thermally induced stress in supersonic and hypersonic flight vehicles, nuclear reactor cooling, electronics packaging, spacecraft thermal control, and gas turbine and internal combustion engine cooling. In many instances, the highest possible thermal contact conductance is desired. For this reason, soft, high conductivity, metallic coatings are sometimes applied to contacting surfaces (often metallic) to increase thermal contact conductance. Two previously developed theoretical models for thermal contact conductance of metallic coated metals have been proven accurate for flat, rough surfaces. However, these two theories often substantially over-predict the conductance of non-flat, rough, metallic coated metals. In this investigation, a previously developed semi-empirical conductance model for flat and non-flat, rough, uncoated metals is employed in predicting the conductance of flat and non-flat, rough, metallic coated metals. The more commonly cited of the previous theoretical models for flat surfaces and the semi-empirical model are compared to experimental thermal contact conductance results from a number of investigations in the literature. Results for a number of metallic coating/substrate combinations on surfaces with widely varying flatness and roughness were analyzed. Both models agree well with experimental results for flat, rough, metallic coated metals. However, the semi-empirical model is substantially more accurate and more conservative than the theoretical model compared to the majority of experimental results for non-flat, rough, metallic coated metals.

  10. Synthesis of Doped Semiconductor Nanocrystals and Conductive Coatings

    NASA Astrophysics Data System (ADS)

    Wills, Andrew Wilke

    Semiconductor nanocrystals are an intriguing class of materials because of their size-tunable properties. This makes them promising for future optoelectronic devices such as solar cells and light emitting diodes. Realization of these devices, however, requires precise control of the flow of electricity through the particles. In bulk semiconductors, this is achieved by using materials with few unintentional defects, then intentionally adding particular defects or dopants to alter the semiconductor's electronic properties. In contrast, the addition of electrically active dopants has scarcely been demonstrated in semiconductor nanocrystals, and charge transport is hindered by the barrier of electron hopping between particles. The goal of this thesis, therefore, is to discover new methods to control charge transport in nanocrystals. It divides into three major thrusts: 1) the investigation of the doping process in semiconductor nanocrystals, 2) the invention of new synthetic methods to incorporate electrically active dopants into semiconductor nanocrystals, and 3) the invention of a new nanocrystal surface coating that aids processing of nanocrystals into devices but can be removed to enhance charge transport between particles. The first objective is achieved by the comparison of four different precursors that have been used to dope Mn into nanocrystals. Experiments show that dimethylmanganese incorporates efficiently into ZnSe nanocrystals while other precursors are less efficient and sometimes lower the quality of the nanocrystals produced. The second goal is met by the application of a core-shell synthetic strategy to the incorporation of non-isovalent impurities (Al and In) into CdSe nanocrystals. By separating the three steps of nucleation, dopant binding, and growth, each step can be optimized so that doping is achieved and high quality particles are produced. Detailed characterization shows dopant incorporation and local environment, while transistor

  11. Reactive Plasma-Sprayed Aluminum Nitride-Based Coating Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Fukumoto, Masahiro; Egota, Kazumi; Okamoto, Kenji

    2015-12-01

    Recently, thick aluminum nitride/alumina (AlN/Al2O3) composite coatings were successfully fabricated through the reactive plasma spraying of fine Al2O3/AlN mixture in the N2/H2 atmospheric plasma. The coatings consist of AlN, Al5O6N, γ-Al2O3, and α-Al2O3 phases. This study will evaluate the thermal conductivity of these complicated plasma-sprayed coatings and optimize the controlling aspects. Furthermore, the influence of the process parameters on the coatings thermal conductivity will be investigated. The fabricated coatings showed very low thermal conductivity (2.43 W/m K) compared to the AlN sintered compacts. It is attributed to the phase composition of the fabricated coatings, oxide content, and porosity. The presence of Al2O3, Al5O6N and the high coating porosity decreased its thermal conductivity. The presence of oxygen in the AlN lattice creates Al vacancies which lead to phonon scattering and therefore suppressed the thermal conductivity. The formation of γ-Al2O3 phase in the coating leads to further decrease in its conductivity, due to its lower density compared to the α-phase. Moreover, the high porosity of the coating strongly suppressed the conductivity. This is due to the complicated microstructure of plasma spray coatings (splats, porosity, and interfaces, particularly in case of reactive spray process), which obviously lowered the conductivity. Furthermore, the measured coating density was lower than the AlN value and suppressed the coating conductivity. In addition, the spraying parameter showed a varied effect on the coating phase composition, porosity, density, and therefore on its conductivity. Although the N2 gas flow improved the nitride content, it suppressed the thermal conductivity gradually. It is attributed to the further increase in the porosity and further decrease in the density of the coatings with the N2 gas. Furthermore, increasing the arc did not show a significant change on the coating thermal conductivity. On the other hand

  12. Coating of carbon fibers -- The strength of the fibers

    SciTech Connect

    Helmer, T.; Peterlik, H.; Kromp, K.

    1995-01-01

    The 6k carbon fiber Torayca T800H was coated with pyrolytic carbon by a CVD process. Fiber bundles were tested and evaluated. By this procedure, the whole distribution of the failure probability with respect to the fiber strength is obtained in a single experiment. The 50% strength of the fiber bundle, i.e., the strength at which 50% of the fibers in the bundle are broken, is inversely proportional to the square root of the thickness of the coating. By relating the strength to the defect size according to linear-elastic fracture mechanics (LEFM), the probability density function of the defects was derived. It is Weibull-shaped for the uncoated fiber and shows an increasing bimodal shape for the increasing coating thicknesses.

  13. Fiber optic ultrasound transducers with carbon/PDMS composite coatings

    NASA Astrophysics Data System (ADS)

    Mosse, Charles A.; Colchester, Richard J.; Bhachu, Davinder S.; Zhang, Edward Z.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2014-03-01

    Novel ultrasound transducers were created with a composite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) that was dip coated onto the end faces of optical fibers. The CNTs were functionalized with oleylamine to allow for their dissolution in xylene, a solvent of PDMS. Ultrasound pulses were generated by illuminating the composite coating with pulsed laser light. At distances of 2 to 16 mm from the end faces, ultrasound pressures ranged from 0.81 to 0.07 MPa and from 0.27 to 0.03 MPa with 105 and 200 μm core fibers, respectively. Using an optical fiber hydrophone positioned adjacent to the coated 200 µm core optical fiber, ultrasound reflectance measurements were obtained from the outer surface of a sheep heart ventricle. The results of this study suggest that ultrasound transducers that comprise optical fibers with CNT-PDMS composite coatings may be suitable for miniature medical imaging probes.

  14. Thermal Conductivity of Diamond Packed Electrospun PAN-Based Carbon Fibers Incorporated with Multi Wall Carbon Nanotubes.

    PubMed

    Dong, Qi; Lu, Chunyuan; Tulugan, Kelimu; Jin, Chunzi; Yoon, Soo Jong; Park, Yeong Min; Kim, Tae Gyu

    2016-02-01

    Multi wall carbon nanotubes (MWCNTs) and diamond are renowned as superlative material due to their relatively high thermal conductivity and hardness while comparing with any bulk materials. In this research, polyacrylonitrile (PAN) solution incorporated with MWCNTs at an alteration of mass fractions (0 wt%, 0.6 wt%, 1 wt%, 2 wt%) were fabricated via electrospinning under optimized parameters. Dried composite nanofibers were stabilized and carbonized, after which water base polytrafluorethylene (PTFE) mixed with nano diamond powder solution was spin coated on them. Scanning electron microscopy, Raman spectroscopy, X-ray scattering and Laserflash thermal conductivity were used to characterize the composite nanofiber sheets. The result shows that the thermal conductivity increased to 4.825 W/m K from 2.061 W/mK. The improvement of thermal conductivities is suggesting the incorporation of MWCNTs. PMID:27433684

  15. Biomedical applications of diamond-like carbon coatings: a review.

    PubMed

    Roy, Ritwik Kumar; Lee, Kwang-Ryeol

    2007-10-01

    Owing to its superior tribological and mechanical properties with corrosion resistance, biocompatibility, and hemocompatibility, diamond-like carbon (DLC) has emerged as a promising material for biomedical applications. DLC films with various atomic bond structures and compositions are finding places in orthopedic, cardiovascular, and dental applications. Cells grew on to DLC coating without any cytotoxity and inflammation. DLC coatings in orthopedic applications reduced wear, corrosion, and debris formation. DLC coating also reduced thrombogenicity by minimizing the platelet adhesion and activation. However, some contradictory results (Airoldi et al., Am J Cardiol 2004;93:474-477, Taeger et al., Mat-wiss u Werkstofftech 2003;34:1094-1100) were also reported that no significant improvement was observed in the performance of DLC-coated stainless stent or DLC-coated femoral head. This controversy should be discussed based on the detailed information of the coating such as atomic bond structure, composition, and/or electronic structure. In addition, instability of the DLC coating caused by its high level of residual stress and poor adhesion in aqueous environment should be carefully considered. Further in vitro and in vivo studies are thus required to confirm its use for medical devices. PMID:17285609

  16. Electrically conductive, black thermal control coatings for space craft application. II - Silicone matrix formulation

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1986-01-01

    Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.

  17. Formation of a Conductive Nanocomposite on Plastic and Glass Substrates Through Wet Chemical Deposition of Well Dispersed Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Al-Dahoudi, N.

    2007-08-01

    Carbon multi-wall nanotubes (MWNTs) powder was successfully dispersed using microfluidizer with different loading ratio in a water-based inorganic organic monomer composing a stable coating sol. The coatings made of the sol showed that the conductivity behave according to a power percolation law model with critical volume fraction of 0.0825. The highest obtained electrical conductivity of a single 85 nm thick layer of the system was 103 Ω-1.m-1. At the same time the coatings are transparent showing a transmission quite similar to that of the substrate.

  18. Electronic and ionic co-conductive coating on the separator towards high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qingsong; Wen, Zhaoyin; Yang, Jianhua; Jin, Jun; Huang, Xiao; Wu, Xiangwei; Han, Jinduo

    2016-02-01

    A thin coating layer composed of the mixture of the electronic conductive carbon and lithium ionic conductive inorganic solid electrolyte was introduced on one side of the routine Celgard separator. This functional coated separator is designed to localize the polysulfides on the cathode side and act as an upper current collector for further utilization of sulfur while alleviating the ion conductivity decrease induced by the dissolved polysulfides in the discharge and charge process. Moreover, catalytic conversion of polysulfides by the solid state highly ionic conductor is observed. This brings significant improvement in battery specific capacity and cycling stability, with an initial discharge capacity of 1247 mA h g-1 and a reversible capacity of 830 mA h g-1 after 150 extended cycles at 0.5 C rate. Rest-testing proves a low self-discharge and excellent capacity retention of the modified cells.

  19. Respiration sensor made from indium tin oxide-coated conductive fabrics

    NASA Astrophysics Data System (ADS)

    Kim, Sun Hee; Lee, Joo Hyeon; Jee, Seung Hyun

    2015-02-01

    Conductive fabrics with new properties and applications have been the subject of extensive research over the last few years, with wearable respiration sensors attracting much attention. Different methods can be used to obtain fabrics that are electrically conducting, an essential property for various applications. For instance, fabrics can be coated with conductive polymers. Here, indium tin oxide (ITO)-coated conductive fabrics with cross-linked polyvinyl alcohol (C-PVA) were prepared using a doctor-blade. The C-PVA was employed in the synthesis to bind ITO on the fabrics with the highest possible mechanical strength. The feasibility of a respiration sensor prepared using the ITO-coated conductive fabric was investigated. The ITO-coated conductive fabric with the C-PVA was demonstrated to have a high potential for use in respiration sensors.

  20. Bioglass-based scaffolds with carbon nanotube coating for bone tissue engineering.

    PubMed

    Meng, Decheng; Ioannou, John; Boccaccini, Aldo R

    2009-10-01

    Highly porous 45S5 Bioglass-based foam scaffolds were coated with multi-walled carbon nanotubes (CNT) by electrophoretic deposition (EPD) technique. By placing the scaffolds in between the two electrodes of the EPD cell, a CNT coating of up to 1 mum thickness was achieved on the surface throughout the whole three dimensional (3D) matrix. A 0.5 wt% CNT aqueous suspension was used and EPD was carried out at 2.8 V for 10 mins. The compression strength of this CNT/Bioglass composite was measured to be 0.70 MPa. Moreover the increased electrical conductivity of the composite with CNT coating was confirmed. The scaffolds have the potential for applications in bone tissue engineering due to the high bioactivity, nano-roughness in 3D and electrical conductivity provided by the addition of CNT. PMID:19437104

  1. Production and characterization of Ni and Cu composite coatings by electrodeposition reinforced with carbon nanotubes or graphite nanoplatelets

    NASA Astrophysics Data System (ADS)

    Karim, M. R. Abdul; Pavese, M.; Ambrosio, E. P.; Ugues, D.; Lombardi, M.; Biamino, S.; Badini, C.; Fino, P.

    2013-06-01

    Electrodeposition is well-known as a versatile and economical processing technique to produce metal coatings on conductive substrates. Recently, it has been gaining increasing interest also for the production of tailored composite coatings, containing for instance floropolymers or silicon carbide. A more novel approach concerns the use of carbon nanotubes or even graphene, in the form of graphite nano-platelets. The production of Ni- and Cu-based nanocomposites containing carbon nanoreinforcements was carried out by using standard electrodeposition conditions, but with a particular attention to the dispersion of the nanotubes. The obtained coatings were strong and well adherent to the steel substrate, and presented rather well dispersed carbon nanotubes or graphite nanoplatelets, even if some agglomerates could be present in samples obtained from highly concentrated suspensions. In the case of nickel-based composite coatings, the size of nickel grains was reduced, and pin-on-disc tests demonstrated a significant increase in the life of the coating. In the case of copper-based composite coatings, thermal diffusivity measurements demonstrated that the carbon nanomaterial does not reduce the conductivity of the pure copper coating.

  2. Diamondlike carbon protective coatings for IR materials

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nir, D.; Swec, D. M.; Banks, B. A.

    1985-01-01

    Diamondlike carbon (DLC) films have the potential to protect optical windows in applications where it is important to maintain the integrity of the specular transmittance of these films on ZnS and ZnSe infrared transmitting windows. The films must be adherent and durable such that they protect the windows from rain and particle erosion as well as chemical attack. In order to optimize the performance of these films, 0.1 micro m thick diamondlike carbon films were deposited on fused silica and silicon wafers, using three different methods of ion beam deposition. One method was sputter deposition from a carbon target using an 8 cm ion source. The merits of hydrogen addition were experimentally evaluated in conjunction with this method. The second method used a 30 cm hollow cathode ion source with hydrocarbon/Argon gases to deposit diamondlike carbon films from the primary beam at 90 to 250 eV. The third method used a dual beam system employing a hydrocarbon/Argon 30 cm ion source and an 8 cm ion source. Films were evaluated for adherence, intrinsic stress, infrared transmittance between 2.5 and 50 micro m, and protection from particle erosion. An erosion test using a sandblaster was used to give quantitative values of the protection afforded to the fused silica by the diamondlike carbon films. The fused silica surfaces protected by diamondlike carbon films were exposed to 100 micro m diameter SiO particles at 60 mi/hr (26.8/sec) in the sandblaster.

  3. Modified carbon fibers to improve composite properties. [sizing fibers for reduced electrical conductivity and adhesion during combustion

    NASA Technical Reports Server (NTRS)

    Shepler, R. E.

    1979-01-01

    Thin coatings, 5 to 10 wt. percent, were applied to PAN-based carbon fibers. These coatings were intended to make the carbon fibers less electrically conductive or to cause fibers to stick together when a carbon fiber/epoxy composite burned. The effectiveness of the coatings in these regards was evaluated in burn tests with a test rig designed to simulate burning, impact and wind conditions which might release carbon fibers. The effect of the coatings on fiber and composite properties and handling was also investigated. Attempts at sizing carbon fibers with silicon dioxide, silicon carbide and boron nitride meet with varying degrees of success; however, none of these materials provided an electrically nonconductive coating. Coatings intended to stick carbon fibers together after a composite burned were sodium silicate, silica gel, ethyl silicate, boric acid and ammonium borate. Of these, only the sodium silicate and silica gel provided any sticking together of fibers. The amount of sticking was insufficient to achieve the desired objectives.

  4. Optical And Protective Properties Of Hard Carbon Coatings

    NASA Astrophysics Data System (ADS)

    Dischler, B.; Bubenzer, A.; Koidl, P.; Brandt, G.

    1983-09-01

    In recent years amorphous carbon coatings found growing interest because of their optical and protective properties. We have deposited hydrogenated amorphous carbon films (a-C:H) from an RF excited discharge in benzene vapour. Substrates include germanium, glass and MgF2. The refractive index can be tuned between 1.8 and 2.2 and efficient antireflection coatings on Ge have been prepared. We have determined the optical absorption from the UV to the IR range (0.2 - 25 μm). A typical 1 µm thick a-C:H film is transparent (> 50% transmission) from 750 nm to the far infrared. Amorphous carbon films are harder than sapphire and are resistant to concentrated acids and bases.

  5. Field Enhanced Thermionic Electron Emission from Oxide Coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Day, Christopher; Jin, Feng; Liu, Yan; Little, Scott

    2006-03-01

    We have created a novel nanostructure by coating carbon nanotubes with a thin functional oxide layer. The structure was fabricated by sputter deposition of a thin film of oxide materials on aligned carbon nanotubes, which were grown on a tungsten substrate with plasma enhanced chemical vapor deposition. This structure combines the low work function of the oxide coating with a high field enhancement factor introduced by carbon nanotubes and we have demonstrated that it can be used as a highly efficient electron source. A field enhancement factor as high as 2000 was observed and thermionic electron emission current at least an order of magnitude higher than the emission from a conventional oxide cathode was obtained.

  6. Diamond-like carbon coatings for orthopaedic applications: an evaluation of tribological performance.

    PubMed

    Xu, T; Pruitt, L

    1999-02-01

    A detailed investigation of the tribological behaviour of vacuum arc diamond-like carbon coated Ti-6Al-4V against a medical grade ultra-high molecular weight polyethylene is conducted in this work in order to investigate the potential use of diamond-like carbon coatings for orthopaedic appplications. Lubricated and non-lubricated wear experiments are performed using a standard pin-on-disc wear tester. The coefficient of friction is monitored continuously during testing and wear rate calculations are performed using surface profilometry measurements of worn disc surfaces. Sliding wear tests show the existence of two distinct friction and wear regimes distinguished by physically different mechanisms. In the first stages of wear, adhesion and abrasion are the dominant mechanisms of wear while fatigue processes are activated later in the tests. The effects of diamond-like carbon coating structure, surface roughness and lubrication on tribological behaviour are presented. Optimal process-structure-property design for vacuum arc plasma deposition is utilized in order to obtain strong adhesion to the titanium alloy substrate. Diamond-like carbon coatings significantly improve the friction and wear performance of the orthopaedic bearing pair and show exceptional promise for biomedical applications. PMID:15347929

  7. Conducting polymer/polyimide-clay nanocomposite coatings for corrosion protection of AA-2024 alloy

    NASA Astrophysics Data System (ADS)

    Shah, Kunal G.

    Corrosion of metals is a major problem in the aerospace and automobile industry. The current methods of corrosion protection such as chromate conversion coatings are under increased scrutiny from the Environmental Protection Agency (EPA) due to their carcinogenic nature. Intrinsically conducting polymers (ICPs) like polyaniline and polypyrrole have been considered as a potential replacement for chromate conversion coatings and have been under investigation since past decade. The goal of this study is to replace the chromate conversion coating by an environmentally friendly organic coating. Poly (N-ethyl aniline) coating was electrodeposited as the primer layer and polyimide-clay nanocomposite was solution cast as the barrier layer on AA-2024 alloy. This study will provide a better understanding of the corrosion protection mechanism of the conducting polymer coating. Various characterization techniques such as infrared spectroscopy, cyclic voltammetry and scanning electron microscopy were used to study the formation, chemical structure and morphology of the coatings. Electrodeposition parameters like monomer concentration, applied current density and the reaction time were varied in order to optimize the properties of the conducting polymer coating. The corrosion performance of the primer coating was evaluated by DC polarization studies. It was found that poly (N-ethyl aniline) reduces from emeraldine to leucoemeraldine form; reducing the rate of cathodic reaction, which reduces the rate of corrosion of AA-2024 alloy. Polyimide-clay nanocomposite coating was solution cast on the conducting polymer primer layer for enhancing the barrier and corrosion properties of the coating system. The concentration of polyimide (10--25 vol%) and clay (0.1 and 1 wt%) were varied in the coating formulation to optimize the barrier properties of topcoat. X-ray diffraction showed that the intergallery clay distance decreased from 17.2 A to 11.79 A after immidization of polyimide

  8. Magnetic alignment of nickel-coated carbon fibers

    SciTech Connect

    Hao, Chuncheng; State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049 ; Li, Xiaojiao; Wang, Guizhen

    2011-11-15

    Graphical abstract: Carbon nanofibers were subjected to a two-step pretreatment, sensitization and activation. Carbon nanofibers were encapsulated by a uniform layer of nickel nanoparticles. The prepared composites are ferromagnetic and with a small value of coercivity. Upon such functionalization, the carbon nanofibers can be aligned in a relatively small external magnetic field. Highlights: {center_dot} A simple microwave-assisted procedure for the magnetic composite. {center_dot} Dense layer of nickel on pretreated carbon nanofibers. {center_dot} Ferromagnetic properties and low coercivity. {center_dot} A long-chain aligned structure under magnetic field. -- Abstract: Magnetic composites of nickel-coated carbon nanofibers have been successfully fabricated by employing a simple microwave-assisted procedure. The scanning electron microscopy images show that a complete and uniform nickel coating with mean size of 25 nm could be deposited on carbon fibers. Magnetization curves demonstrate that the prepared composites are ferromagnetic and that the coercivity is 96 Oe. The magnetic carbon nanofibers can be aligned as a long-chain structure in an external magnetic field.

  9. Novel Carbon Nanomaterial Coating for Dispersibility, Delivery and Sensing

    NASA Astrophysics Data System (ADS)

    Swierczewska, Magdalena

    Carbon nanomaterials have been cited to provide great potential in biomedical applications such as in vivo imaging, drug delivery, and biomarker detection. Yet poor dispersibility in physiological conditions greatly limits their biomedical promise. As with most nanoparticles, the surface interaction with biological systems is the driving force towards effective activity in vivo, namely exhibiting dispersion, low cytotoxicity, and molecular targetability. Therefore, by surface engineering carbon nanomaterials with a distinct biocompatible coating, their applications in imaging, drug delivery, biomarker detection, and therapy can be empowered. We render carbon nanomaterials useful for such in vivo biomedical applications by providing dispersibility, delivery and sensing capabilities with a facile surface coating method. A single, yet multifunctional, hyaluronic acid-based biosurfactant was strategically chosen to meet the design criteria. The amphiphilic material, hyaluronic acid-5beta-cholanic acid (HACA), is an efficient dispersing agent for carbon nanomaterials, including single-walled carbon nanotubes (SWCNTs), in physiological conditions for a sustained period of time. Furthermore, the biological activity and cancer cell targeting of HACA wrapped SWCNTs (HACA-SWCNTs) were evaluated in vitro and in vivo utilizing imaging techniques intrinsic to SWCNTs, HACA, and HACA-SWCNTs. Fluorescent dye-labeled HACA-SWCNTs were designed to activate fluorescence signals intracelluarly, not only serving as an approach to image cellular uptake but also to determine the coating efficacy of HACA onto SWCNTs. SWCNT localization within cells was also confirmed by tracking the intrinsic Raman signals of carbon nanomaterials. In vivo photoacoustic, fluorescence, and positron emission tomography imaging display high tumor targeting capability of HACA-SWCNTs in a murine tumor model. Once targeted, HACA-SWCNTs have potential to serve as photothermal tumor ablation agents after laser

  10. Texture structure and ablation behavior of TaC coating on carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Zhao-Ke, Chen; Xiang, Xiong; Guo-Dong, Li; Wei, Sun; Ying, Long

    2010-11-01

    TaC coatings with hybrid, (2 0 0) and (2 2 0) texture structure were prepared on carbon/carbon (C/C) composites by isothermal chemical vapor deposition with TaCl5-Ar-C3H6 system. The residual stress, hardness and ablation behaviors of the different coatings were characterized by Raman spectra, nano-indentation and oxyacetylene flame ablation machine respectively. Results shown tensile stress exists in the TaC coatings and increases when texture orientation turns from hybrid to (2 2 0) and (2 0 0), while nano-indentation hardness of the coatings also obeys the same trend. The deposited coatings could improve the ablation-resistance properties of C/C composites effectively. The texture structure also had great effects on the ablation properties and ablation morphologies of the coatings. The mass ablation rate obviously decreases when the texture structure changes from hybrid orientation to (2 0 0) and (2 2 0) orientations. The hybrid orientation and (2 0 0) texture coatings exhibit coarse oxide morphologies with crater or some breakage existed; while the (2 2 0) texture coating shows dense, molten oxide morphology. The main ablation behaviors of the hybrid, (2 0 0) and (2 2 0) texture TaC coatings are oxidation and particle denudation and block denudation, oxidation and block denudation, oxidation and mechanical erosion and block denudation, respectively.

  11. Atmospheric Plasma Deposition of Diamond-like Carbon Coatings

    SciTech Connect

    Ladwig, Angela

    2008-01-23

    There is great demand for thin functional coatings in the semiconductor, optics, electronics, medical, automotive and aerospace industries [1-13]. As fabricated components become smaller and more complex, the properties of the materials’ surface take on greater importance. Thin coatings play a key role in tailoring surfaces to give them the desired hardness, wear resistance, chemical inertness, and electrical characteristics. Diamond-like carbon (DLC) coatings possess an array of desirable properties, including outstanding abrasion and wear resistance, chemical inertness, hardness, a low coefficient of friction and exceptionally high dielectric strength [14-22]. Diamond-like carbon is considered to be an amorphous material, containing a mixture of sp2 and sp3 bonded carbon. Based on the percentage of sp3 carbon and the hydrogen content, four different types of DLC coatings have been identified: tetrahedral carbon (ta-C), hydrogenated amorphous carbon (a-C:H) hard, a-C:H soft, and hydrogenated tetrahedral carbon (ta-C:H) [20,24,25]. Possessing the highest hardness of 80 GPa, ta-C possesses an sp3 carbon content of 80 to 88u%, and no appreciable hydrogen content whereas a-C:H soft possesses a hardness of less than 10 GPa, contains an sp3 carbon content of 60% and a hydrogen content between 30 to 50%. Methods used to deposit DLC coatings include ion beam deposition, cathodic arc spray, pulsed laser ablation, argon ion sputtering, and plasma-enhanced chemical vapor deposition [73-83]. Researchers contend that several advantages exist when depositing DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of

  12. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  13. Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes.

    PubMed

    Maillaud, Laurent; Poulin, Philippe; Pasquali, Matteo; Zakri, Cécile

    2015-06-01

    Transparent conductive films are made from aqueous surfactant stabilized dispersions of carbon nanotubes using an up-scalable rod coating method. The processability of the films is governed by the amount of surfactant which is shown to alter strongly the wetting and viscosity of the ink. The increase of viscosity results from surfactant mediated attractive interactions between the carbon nanotubes. Links between the formulation, ink rheological properties, and electro-optical properties of the films are determined. The provided guidelines are generalized and used to fabricate optimized electrodes using conductive polymers and carbon nanotubes. In these electrodes, the carbon nanotubes act as highly efficient viscosifiers that allow the optimized ink to be homogeneously spread using the rod coating method. From a general point of view and in contrast to previous studies, the CNTs are optimally used in the present approach as conductive additives for viscosity enhancements of electronic inks. PMID:25961667

  14. Durable superhydrophobic carbon soot coatings for sensor applications

    NASA Astrophysics Data System (ADS)

    Esmeryan, K. D.; Radeva, E. I.; Avramov, I. D.

    2016-01-01

    A novel approach for the fabrication of durable superhydrophobic (SH) carbon soot coatings used in quartz crystal microbalance (QCM) based gas or liquid sensors is reported. The method uses modification of the carbon soot through polymerization of hexamethyldisiloxane (HMDSO) by means of glow discharge RF plasma. The surface characterization shows a fractal-like network of carbon nanoparticles with diameter of ~50 nm. These particles form islands and cavities in the nanometer range, between which the plasma polymerized hexamethyldisiloxane (PPHMDSO) embeds and binds to the carbon chains and QCM surface. Such modified surface structure retains the hydrophobic nature of the soot and enhances its robustness upon water droplet interactions. Moreover, it significantly reduces the insertion loss and dynamic resistance of the QCM compared to the commonly used carbon soot/epoxy resin approach. Furthermore, the PPHMDSO/carbon soot coating demonstrates durability and no aging after more than 40 probing cycles in water based liquid environments. In addition, the surface layer keeps its superhydrophobicity even upon thermal annealing up to 540 °C. These experiments reveal an opportunity for the development of soot based SH QCMs with improved electrical characteristics, as required for high-resolution gas or liquid measurements.

  15. Tuning Electrical Conductivity of Inorganic Minerals with Carbon Nanomaterials.

    PubMed

    Kovalchuk, Anton A; Tour, James M

    2015-12-01

    Conductive powders based on Barite or calcium carbonate with chemically converted graphene (CCG) were successfully synthesized by adsorption of graphene oxide (GO) or graphene oxide nanoribbons (GONRs) onto the mineral surfaces and subsequent chemical reduction with hydrazine. The efficient adsorption of GO or GONRs on the surface of Barite and calcium carbonate-based mineral particles results in graphene-wrapped hybrid materials that demonstrate a concentration dependent electrical conductivity that increases with the GO or GONR loading. PMID:26544547

  16. Conductive hydrophobic hybrid textiles modified with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kowalczyk, D.; Brzeziński, S.; Makowski, T.; Fortuniak, W.

    2015-12-01

    The paper presents the results of modifying and testing modern hybrid polyester-cotton woven fabrics with deposited multi-wall carbon nanotubes and imparted hydrophobicity. The effect of the carbon nanotubes deposited on these fabrics on their conductive properties and hydrophobicity has been assessed. The electro-conductive and hydrophobic composite fabrics obtained in this way, being light, elastic and resistant to mechanical effects, make it possible to be widely used in various industrial fields.

  17. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  18. Poly(4-vinylpyridine)-coated glassy carbon flow detectors

    SciTech Connect

    Wang, J.; Golden, T.; Tuzhi, P.

    1987-03-01

    The performance of a thin-layer flow detector with a glassy carbon electrode coated with a film of protonated poly(4-vinylpyridine) is described. Substantial improvement in the selectivity of amperometric detection for liquid chromatography and flow injection systems is observed as a result of excluding cationic species from the surface. The detector response was evaluated with respect to flow rate, solute concentration, coating scheme, film-to-film reproducibility, and other variables. Despite the increase in diffusional resistance, low detection limits of ca. 0.04 and 0.10 ng of ascorbic acid and uric acid, respectively, are maintained. Protection from organic surfactants can be coupled to the charge exclusion effect by using a bilayer coating, with a cellulose acetate film atop the poly(4-vinylpyridine) layer. Applicability to urine sample is demonstrated.

  19. RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites.

    PubMed

    Yu, Seunggun; Park, Bo-In; Park, Cheolmin; Hong, Soon Man; Han, Tae Hee; Koo, Chong Min

    2014-05-28

    In this paper, we demonstrate a facile route to produce epoxy/carbon fiber composites providing continuous heat conduction pathway of Cu with a high degree of crystal perfection via electroplating, followed by rapid thermal annealing (RTA) treatment and compression molding. Copper shells on carbon fibers were coated through electroplating method and post-treated via RTA technique to reduce the degree of imperfection in the Cu crystal. The epoxy/Cu-plated carbon fiber composites with Cu shell of 12.0 vol % prepared via simple compression molding, revealed 18 times larger thermal conductivity (47.2 W m(-1) K(-1)) in parallel direction and 6 times larger thermal conductivity (3.9 W m(-1) K(-1)) in perpendicular direction than epoxy/carbon fiber composite. Our novel composites with RTA-treated carbon fiber/Cu core/shell hybrid showed heat conduction behavior of an excellent polymeric composite thermal conductor with continuous heat conduction pathway, comparable to theoretical values obtained from Hatta and Taya model. PMID:24758290

  20. The Electrochemical Behavior of Zn-Mn Alloy Coating in Carbonated Concrete Solution

    NASA Astrophysics Data System (ADS)

    Touazi, S.; Bučko, M.; Makhloufi, L.; Legat, A.; Bajat, J. B.

    2016-05-01

    In order to improve the protective performance of Zn coating on reinforcing steel in concrete, the electrochemical deposition of Zn-Mn coatings was conducted on steel surface. The morphology, chemical and phase compositions of Zn-Mn coatings obtained from sulfate-citrate bath were investigated in the first part of paper. In the second part, the obtained deposits were tested in solution simulating carbonated concrete, consisting of NaHCO3 and Na2CO3. Data obtained from Tafel analysis showed higher corrosion resistance for Zn-Mn alloy deposits obtained at -1700 and -1800mV versus SCE, when compared to pure Zn deposit. Impedance spectroscopy investigations revealed that the total impedance of Zn-Mn coatings increased steadily with time, and was significantly higher as compared to pure Zn after 24h in corrosion solution. On the contrary, for pure Zn, the impedance increased in the first 12h, and then decreased during prolonged exposure time, which can be explained by rapid growth of nonprotective white rust and the degradation of zinc coating, as was confirmed by optical microscope after 24h of immersion in carbonated concrete pore solution.

  1. Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.

  2. Inner Surface Coating of Non-Conductive Tubular Substrate Using Electrophoretic Deposition

    NASA Astrophysics Data System (ADS)

    Kreethawate, L.; Larpkiattaworn, S.; Jiemsirilers, S.; Uchikoshi, T.

    2011-10-01

    Inner surface of microporous alumina tube was coated with nanoporous alumina layer using electrophoretic deposition (EPD) process. Polypyrrole (Ppy) film was formed on the inner wall of the porous tube to give electrical conductivity by chemical polymerization of pyrrole (Py). The nanoporous structure was controled using bimodal suspension of alumina powders with 0.6 μm and 30 nm in ethanol. The thickness of the coated layer was controlled by varying the processing parameters such as deposition time and DC applied voltage. After the deposition, the coated substrate was sintered at 1250°C for 2 h to bond the coated layer with the substrate.The microstructure of the substrate and the coated layer was observed by SEM. The results show the good interfacial joining between the substrate and the coated layer; they are not seperatated after the Ppy burnt-out. Crack-free and nanoporous layer on the microporous substrate was successfully fabricated.

  3. Investigation into conductivity of silver-coated cenosphere composites prepared by a modified electroless process

    NASA Astrophysics Data System (ADS)

    Cao, Xiao Guo; Zhang, Hai Yan

    2013-01-01

    Silver-coated cenosphere composites are successfully fabricated by a modified electroless plating process that is modified by replacing the conventional pretreatment and sensitization steps by only using surface hydroxylation step to simplify the steps and reduce the overall cost of the coating process. Furthermore, the activation and electroless plating steps are merged into one step. The cenosphere particles are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD) before and after the coating process. The relatively continuous and compact coating is obtained under the given coating conditions. The results indicated that the conductivity of Ag-coated cenospheres was improved with increasing the AgNO3 solution dosage and reaction time. It was also found that the optimum AgNO3 solution concentration was 0.05 mol/L, and the optimum range of reaction temperature was from 50 °C to 65 °C.

  4. Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems

    NASA Astrophysics Data System (ADS)

    Curry, Nicholas; Markocsan, Nicolaie; Östergren, Lars; Li, Xin-Hai; Dorfman, Mitch

    2013-08-01

    The aim of this study was the further development of dysprosia-stabilized zirconia coatings for gas turbine applications. The target for these coatings was a longer lifetime and higher insulating performance compared to today's industrial standard thermal barrier coating. Two morphologies of ceramic top coat were studied: one using a dual-layer system and the second using a polymer to generate porosity. Evaluations were carried out using a laser flash technique to measure thermal properties. Lifetime testing was conducted using thermo-cyclic fatigue testing. Microstructure was assessed with SEM and Image analysis was used to characterize porosity content. The results show that coatings with an engineered microstructure give performance twice that of the present reference coating.

  5. Single Wall Carbon Nano Tube Films and Coatings

    NASA Astrophysics Data System (ADS)

    Sreekumar, T. V.; Kumar, Satish; Ericson, Lars M.; Smalley, Richard E.

    2002-03-01

    Purified single wall carbon nano tubes (SWNTs) produced from the high-pressure carbon monoxide (HiPCO) process have been dissolved /dispersed in oleum. These solutions /dispersions were optically homogeneous and have been used to form stand-alone SWNT films. The washed, dried, and heat-treated films are isotropic. The scanning electron micrographs of the film surface shows that the nanotube ropes (or fibrils) of about 20 nm diameters are arranged just like macroscopic fibers in a non-woven fabric. Polarized Raman spectroscopy of the SWNT film confirms the isotropic nature of these films. The films are being characterized for their thermal, mechanical as well electrical properties. Thin nano tube coatings, including optically transparent coatings, have also been made on a variety of substrates such as glass, polyethylene, polystyrene, polypropylene, silicon wafer, as well as stainless steel.

  6. Substrate/layer interface of amorphous-carbon hard coatings

    NASA Astrophysics Data System (ADS)

    Böhme, O.; Cebollada, A.; Yang, S.; Teer, D. G.; Albella, J. M.; Román, E.

    2000-08-01

    A combined study of the crystalline structure, the chemical interaction, and diffusion processes of the substrate/layer interface of amorphous-carbon hard coatings is presented. The structure of the coatings and their gradient layer interface to a chromium buffer layer has been investigated on two substrates [Si(100) and tool steel] using x-ray diffraction (XRD). Chemical interaction and diffusion processes at the interfaces and within the layers were analyzed by Auger electron spectroscopy and x-ray photoemission spectroscopy depth profiles. The chromium buffer layer revealed similar textured structure on both substrates. The subsequent gradient layer was determined (within XRD limits) to be amorphous and composed of an amorphous-carbon and chromium-carbide composite. The chromium carbide maintains the same stoichiometry (Cr3C2), regardless of the gradually changing chromium content. No large-scale interdiffusion was measured, either between or within the layers.

  7. Low temperature charge transport and microwave absorption of carbon coated iron nanoparticles–polymer composite films

    SciTech Connect

    Prasad, V.

    2012-06-15

    Highlights: ► Carbon coated Fe nanoparticle–PVC composite films were prepared by solution casting method. ► A low electrical percolation threshold of 2.2 was achieved. ► The low temperature electrical conductivity follows variable range hopping type conduction. ► An EMI shielding of 18 dB was achieved in 200 micron thick film. -- Abstract: In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ∼18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.

  8. Bio-lnspired dielectric elastomer actuator with AgNWs coated on carbon black electrode.

    PubMed

    Jun, K W; Lee, J M; Lee, J Y; Ohl, I K

    2014-10-01

    Bio-inspired dielectric elastomer actuators with AgNW-coated carbon black electrodes were developed in this study. The novel elastomer actuators show large in-plane deformations by electrical stimulation through the both electrodes. When a certain input voltage is applied to the elastomer electrode, the electrostatic force between cathode and anode electrodes compress the dielectric elastomer film, resulting large in in-plane direction deformation. The expanded area of the circular actuation device under 70 mV/m electric field was measured up to 50% due to a synergistic effect of highly conductive AgNW network and ultrahigh capacitance of carbon black electrodes. PMID:25942813

  9. Carbon--silicon coating alloys for improved irradiation stability

    DOEpatents

    Bokros, J.C.

    1973-10-01

    For ceramic nuclear fuel particles, a fission product-retaining carbon-- silicon alloy coating is described that exhibits low shrinkage after exposure to fast neutron fluences of 1.4 to 4.8 x 10/sup 21/ n/cm/sup 2/ (E = 0.18 MeV) at irradiation temperatures from 950 to 1250 deg C. Isotropic pyrolytic carbon containing from 18 to 34 wt% silicon is co-deposited from a gaseous mixiure of propane, helium, and silane at a temperature of 1350 to 1450 deg C. (Official Gazette)

  10. Radiative absorption enhancement from coatings on black carbon aerosols.

    PubMed

    Cui, Xinjuan; Wang, Xinfeng; Yang, Lingxiao; Chen, Bing; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2016-05-01

    The radiative absorption enhancement of ambient black carbon (BC), by light-refractive coatings of atmospheric aerosols, constitutes a large uncertainty in estimates of climate forcing. The direct measurements of radiative absorption enhancement require the experimentally-removing the coating materials in ambient BC-containing aerosols, which remains a challenge. Here, the absorption enhancement of the BC core by non-absorbing aerosol coatings was quantified using a two-step removal of both inorganic and organic matter coatings of ambient aerosols. The mass absorption cross-section (MAC) of decoated/pure atmospheric BC aerosols of 4.4±0.8m(2)g(-1) was enhanced to 9.6±1.8m(2)g(-1) at 678-nm wavelength for ambiently-coated BC aerosols at a rural Northern China site. The enhancement of MAC (EMAC) rises from 1.4±0.3 in fresh combustion emissions to ~3 for aged ambient China aerosols. The three-week high-intensity campaign observed an average EMAC of 2.25±0.55, and sulfates were primary drivers of the enhanced BC absorption. PMID:26874760