These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Comparison of temperature, specific conductance, pH, and dissolved oxygen at selected basic fixed sites in south-central Texas, 1996-98  

USGS Publications Warehouse

One component of the surface-water part of the U.S. Geological Survey National Water-Quality Assessment Program is the use of continuous water-quality monitors to help characterize the spatial and temporal distribution of general water quality in relation to hydrologic conditions. During 1996?98, six continuous water-quality monitors in the South-Central Texas study unit collected water temperature, specific conductance, pH, and dissolved oxygen data. The data were compared among the six sites using boxplots of monthly mean values, summary statistics of monthly values, and hydrographs of daily mean values.

Ging, Patricia B.; Otero, Cassi L.

2003-01-01

2

Pockwock-Bowater Watershed Project. Technical Note # 2 Overview of daily stream data for stream discharge, temperature, electrical conductivity, pH, dissolved oxygen content, and turbidity  

Microsoft Academic Search

Methods. The data that were acquired for stream discharge, temperature, electrical conductivity, and pH, but not in terms of stream turbidity for Peggy Brook, Long Ponds Stream, Sand Brook West and Walsh Brook were all compiled into the Excel spreadsheet format, with hourly resolution. The data were inspected in terms of erratic readings, sudden shifts, sensor instabilities (marked by onset

Todd Smith; Joe Pomeroy; Nancy McInnis Leek; Fan-Rui Meng; P. A. Arp

3

Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99  

USGS Publications Warehouse

The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

2001-01-01

4

pH change induces shifts in the size and light absorption of dissolved organic matter  

E-print Network

pH change induces shifts in the size and light absorption of dissolved organic matter Michael L ecosystems through its light absorbing qualities. We investigated how pH affects light absorption by DOM with pH manipulation experiments and with data from two lake surveys. We hypothesized that: (1) light

Pace, Michael L.

5

Dissolved Oxygen and pH Microelectrode Measurements at Water-Immersed Metal Surfaces,  

National Technical Information Service (NTIS)

Investigation of microbial corrosion requires incorporation of both electrochemical and microbiological methods. Dissolved oxygen (DO) and pH were measured at metal/artificial seawater interfaces using microelectrodes in biotic and abiotic systems. Measur...

B. Little, W. C. Lee, W. G. Characklis, Z. Lewandowski

1989-01-01

6

pH change induces shifts in the size and light absorption of dissolved organic matter  

Microsoft Academic Search

Dissolved organic matter (DOM) influences inland water ecosystems through its light absorbing qualities. We investigated how\\u000a pH affects light absorption by DOM with pH manipulation experiments and with data from two lake surveys. We hypothesized that:\\u000a (1) light absorption and photobleaching of DOM would increase with increasing pH, and (2) as a result of photobleaching, molar\\u000a absorption (i.e. light absorbance

Michael L. Pace; Isabel Reche; Jonathan J. Cole; Antonio Fernández-Barbero; Ignacio P. Mazuecos; Yves T. Prairie

7

THE EFFECT OF PH AND DISSOLVED INORGANIC CARBON ON THE PROPERTIES OF IRON COLLOIDAL SUSPENSIONS  

EPA Science Inventory

Discolored water resulting from suspended iron particles is a relatively common drinking water consumer complaint. These particles result from the oxygenation of Fe(II), and this study shows that pH and dissolved inorganic carbon (DIC) have important effects on their properties....

8

INFLUENCE OF PH, DISSOLVED OXYGEN, SUSPENDED SOLIDS OR DISSOLVED SOLIDS UPON VENTILATORY AND COUGH FREQUENCIES IN THE BLUEGILL 'LEPOMIS MACROCHIRUS' AND BROOK TROUT 'SALVELINUS FONTINALIS'  

EPA Science Inventory

Conservative no-effect concentration ranges were estimated for ventilatory and coughing responses of bluegill sunfish Lepomis macrochirus and brook trout Salvelinus fontinalis exposed to altered pH, or to changes in dissolved oxygen (DO), suspended solids, or dissolved solids con...

9

Conductance Regulator Bicarbonate Conductance and pH Regulatory Capability of Cystic Fibrosis Transmembrane  

E-print Network

Conductance Regulator Bicarbonate Conductance and pH Regulatory Capability of Cystic Fibrosis Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator J0 of California, Berkeley, CA 94720 Communicated by Hans H. Ussing, February 28, 1994 ABSTRACT The cystic fibrosis

Machen, Terry E.

10

Day-night reversion in the horizontal distributions of dissolved oxygen content and pH in a Sargassum forest  

Microsoft Academic Search

This paper examines the influence of aSargassum forest on distributions of illuminance, dissolved oxygen content and pH in a small cove facing Wakasa Bay. Spatial distributions of illuminance, dissolved oxygen content, water density and pH were observed for June 1982 during the season of luxuriant seaweed growth, and for August 1982 during the season of little growth. Observations of dissolved

Teruhisa Komatsu

1989-01-01

11

in situ interlaboratory comparisons for dissolved oxygen concentration and pH  

Microsoft Academic Search

Organization, benefits, and possible drawbacks of in situ interlaboratory comparison are discussed using the example of dissolved oxygen concentration and pH measurements organized\\u000a at the University of Tartu.\\u000a \\u000a \\u000a In situ interlaboratory comparisons are intercomparison measurements, where all the participants (with their technical equipment\\u000a and using their own competence) are measuring the same sample continuously at the same time, at the

Lauri Jalukse; Viktor Vabson; Ivo Leito

2006-01-01

12

Effect of pH on dynamic and equilibrium surface tension of dissolve organic matter  

NASA Astrophysics Data System (ADS)

Dissolved organic matter (DOM) in the terrestrial environment may originate from the decomposition of soil organic matter accumulated from the degradation of vegetative residues, the release of root exudates, the lysis of microorganisms and addition of organic wastes, such as livestock manure, biosolids, and different composted organic residues, or from irrigation with wastewater. The structure of DOM macromolecules is known to vary with the following aqueous solution properties: ionic strength, the nature of the inorganic ions, pH and dissolved organic carbon (DOC) concentration. In aqueous solution, the DOM molecules are amphiphilic, that is, it possesses both hydrophilic and hydrophobic functional groups in the same molecule. This simultaneous presence, gave rise to the conceptual surfactant like model for DOM which has been studies in conjunction with the equilibrium surface tension at the liquid-air interface (STeq, mN/m). Measurements of STeq of DOM solution were reported in a relatively small number of studies for the conditions of the aqueous solution (e.g., temperature, pH, ionic strength, the valence of the metal ions, and DOC concentration). All studies demonstrate the decrease in STeq with increase aqueous concentration of the DOC. The effect of pH, however, exhibit contradictory results. Specifically, for a given DOC concentration, the patterns reported for STeq versus pH were different. With increasing pH values, STeq has been reported to decrease, increase or exhibit a minimum. These contradictory results have been attributed to the different DOC concentration examined in each of the studies. In current study we hypothesized that the inconsistent results of STeq vs. pH may also stem from the adsorption kinetics of the DOM amphiphilic molecules at the liquid air interface, which can be evaluated form dynamic surface tension measurements (STt). The STt is approaching STeq values and commonly exhibiting an exponential decay pattern. If for different pH values STt is not reaching STeq, different apparent STeq vs. pH patterns can be obtain. In this study measurement of STt and STeq as a function of pH will be presented for DOM solutions from different origins. The analysis of the STt curves will be demonstrated based on a short and long term diffusion model.

Arye, Gilboa; Trifonov, Pavel; Ilani, Talli

2014-05-01

13

Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem  

NASA Astrophysics Data System (ADS)

In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 ?mol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of semidiurnal pH variability increases 5-fold relative to the magnitude of change during northward alongshore. Applying an empirically-determined alkalinity relationship, we conclude that changes in the carbonate chemistry parameters are largely driven by changes in total carbon. On small spatial scales, cross-shore differences exist in mean oxygen and pH but differences in alongshore mean oxygen and pH at a given depth appears to be negligible. Cross-shore differences can equate to a 0.05 pH unit decrease and 25 ?mol kg-1 oxygen decrease over 1 km at a given depth. Strong spatial variability in pH and oxygen conditions exist over vertical gradients in the kelp forest, with mean pH at the surface (7m) being 0.2 pH units greater than at the bottom (17m) and mean oxygen being 104 ?mol kg-1 greater. The observed range of pH (7.55-8.22) observed in this shallow environment during the course of a year is greater than open ocean predictions for a global mean pH reduction of 0.2-0.3 units predicted by the year 2100. These results suggest that organisms on exposed upwelling coasts may be adapted to a range of pH conditions and highlight the need for scientists to consider biological response to varying scales of pH change in order to develop more realistic predictions of the impacts of climate change for the coastal zone.

Tanner, C. A.; Martz, T.; Levin, L. A.

2011-12-01

14

Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749  

Microsoft Academic Search

A significant problem in scale-down cultures, rarely studied for metabolic characterization and curdlan-producing Agrobacterium sp. ATCC 31749, is the presence of dissolved oxygen (DO) gradients combined with pH control. Constant DO, between 5% and\\u000a 75%, was maintained during batch fermentations by manipulating the agitation with PID system. Fermentation, metabolic and\\u000a kinetic characterization studies were conducted in a scale-down system. The

Hong-Tao Zhang; Xiao-Bei Zhan; Zhi-Yong Zheng; Jian-Rong Wu; Nike English; Xiao-Bin Yu; Chi-Chung Lin

15

Responses of atlantic salmon ( Salmo salar ) alevins to dissolved organic carbon and dissolved aluminum at low pH  

Microsoft Academic Search

Mortality of Atlantic salmon alevins in solutions containing Al and dissolved organic anions (both synthetic and natural) was correlated with Al accumulation in alevin tissues. Both mortality and accumulation could be related to the concentration differences between Al and organic anions. Mortality and body accumulation of Al both increased dramatically as total Al concentrations increasingly exceeded organic anion concentrations. Alevin

R. H. Peterson; R. A. Bourbonnière; G. L. Lacroix; D. J. Martin-Robichaud; P. Takats; G. Brun

1989-01-01

16

Processes controlling dissolved oxygen and pH in the upper Willamette River basin, Oregon, 1994  

USGS Publications Warehouse

In July and August of 1994, the U. S. Geological Survey in cooperation with the Oregon Department of Environmental Quality (ODEQ) collected data to document the spatial extent and diel variability of dissolved oxygen (DO) concentrations and pH levels in selected reaches of streams in the upper Willamette River Basin. These data were also collected to identify primary factors that control DO concentrations downstream from major point sources as well as to provide ODEQ with data to refine calibration of their steady-state DO and nutrient models for the upper Willamette River Basin. All of the reaches studied had diel variations in DO and pH. The magnitude of the diel variations in DO ranged from 0.2 to 3.9 milligrams per liter (7 to 50 percent-saturation units based on ambient water temperature and barometric pressure) and in pH from 0.3 to 1.4 units. However, of the reaches studied, only the Coast Fork Willamette River from river mile (RM) 21.7 to 12.5 and the Willamette River from RM 151 to 141.6 had field measured violations of State standards for DO and pH. DO concentration and pH in water depend on many factors. Data were collected to examine several major factors, including BOD (biochemical oxygen demand), carbonaceous BOD, nitrogenous BOD, and measures of photosynthetic activity. Of the four study reaches, only a short stretch of the Coast Fork Willamette River has potential for important levels of oxygen consumption from BOD or nitrification. Additionally, water-column primary-productivity measurements indicated that respiration and photosynthesis by free-floating algae did not explain the observed diel variations in DO in the study reaches. Results from a simple mathematical model incorporating measures of community respiration and net primary productivities indicated that periphyton are capable of producing a diel variation of the order of magnitude observed during the August study period. In the Willamette River near Peoria, the combined periphyton DO consumption and production estimate at RM 151 (2.4 mg/L) and RM 144.6 (1.7 mg/L) would account for 90 and 63 percent, respectively, of the observed diel fluctuation. The estimates for the Corvallis reach at RM 132.6 (0.4 mg/L) and RM 130.7 (2.9 mg/L) had a considerably larger range of 36 to 264 percent of DO saturation, respectively. Therefore, because BOD and phytoplankton do not appear to be important contributors to diel DO fluctuations, periphyton are likely the primary contributor to diel fluctuations in the upper Willamette River Basin during July and August.

Pogue, T. R.; Anderson, C. W.

1995-01-01

17

Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control{  

E-print Network

experimentation with pH and dissolved oxygen control{ Harry L. T. Lee,a Paolo Boccazzi,b Rajeev J. Ram21 ) without introducing bubbles, and closed loop control over dissolved oxygen and pH (¡0, with 100 mL working volume, comprising a peristaltic oxygenating mixer and microfluidic injectors

Sinskey, Anthony J.

18

Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers  

PubMed Central

Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited using the same excitation wavelength and exhibited well-separated emission spectra. The pH-sensing films showed good response over the pH range 5.5 to 8.5, corresponding to pKa values in the biologically-relevant range between 6.9 and 7.1. The oxygen-sensing films exhibited linear Stern-Volmer quenching responses to dissolved oxygen. As the sensing membranes were prepared using thermally initiated polymerization of sensing moiety-containing monomers, no leaching of the sensors from the membranes to buffers or medium was observed. This advantageous characteristic accounts in part for the sensors' biocompatibility without apparent toxicity to HeLa cells after 40 hours incubation. The dual-sensing membrane was used to measure pH and dissolved oxygen simultaneously. The measured results correlated with the set-point values. PMID:20543884

Tian, Yanqing; Shumway, Bradley R.; Youngbull, A. Cody; Li, Yongzhong; Jen, Alex K.-Y.; Johnson, Roger H.; Meldrum, Deirdre R.

2010-01-01

19

Effects of herbicide application on carbon dioxide, dissolved oxygen, pH, and RpH in paddy-field ponded water  

Microsoft Academic Search

Herbicide application may affect dissolved oxygen (DO), dissolved carbon dioxide (CO2), pH, and RpH in ponded water, and RpH of the water which is the water pH aerated with the atmosphere. In the present study, DO concentration did not reach supersaturated state after herbicide application, and variation in DO decreased. The herbicide application reduced the diurnal variation in dissolved CO2

Yasuhiro Usui; Tatsuaki Kasubuchi

2011-01-01

20

Leachability and desorption of PCBs from soil and their dependency on pH and dissolved organic matter.  

PubMed

pH affects both soil-water partitioning coefficient (Kd) of polychlorinated biphenyls (PCBs) and dissolved organic matter (DOM), thereby influencing PCBs' leachability from contaminated soils. To explore these incompletely understood interactions, the leachability of 11 selected PCBs in a naturally aged soil was investigated in pH static leaching tests spanning a wide pH range (2 to 9). The Kd was calculated for each of the PCBs, based on their observed concentrations in the soil and leachates obtained from each test. The concentration and composition of DOM in each leachate were also determined, the latter using FTIR spectroscopy. Correlations between the DOM's FTIR spectra and Kd values were investigated by orthogonal projections to latent structures. The log Kd-values varied among the PCB congeners and were most variable at low pH, but the values for all studied congeners decreased with increasing pH, by up to 3log units (for PCB 187). In the pH5-7 interval, an abrupt decrease in log Kd values with increases in pH was observed, although the total organic carbon content remained relatively stable. The FTIR data indicate that fulvic and humic acids in DOM partially deprotonate as the pH rises from 5 to 7. PMID:25192928

Badea, Silviu-Laurentiu; Mustafa, Majid; Lundstedt, Staffan; Tysklind, Mats

2014-11-15

21

Comparison of Relationships Between pH, Dissolved Oxygen and Chlorophyll a for Aquaculture and Non-aquaculture Waters  

Microsoft Academic Search

The relationships between pH, dissolved oxygen (DO) and chlorophyll a in aquaculture and non-aquaculture waters are assessed in this paper. The research includes the evaluation of field and experimental\\u000a studies at the Panjiakou Reservoir (between Aug and Oct 2009) and the review of international data covering two decades. The\\u000a results indicated that typical eutrophic non-aquaculture water had mean concentrations of

Changjuan Zang; Suiliang Huang; Min Wu; Shenglan Du; Miklas Scholz; Feng Gao; Chao Lin; Yong Guo; Yu Dong

2011-01-01

22

Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator.  

PubMed Central

The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl- channel regulated by protein kinase A. The most common mutation in cystic fibrosis (CF), deletion of Phe-508 (delta F508-CFTR), reduces Cl- secretion, but the fatal consequences of CF have been difficult to rationalize solely in terms of this defect. The aim of this study was to determine the role of CFTR in HCO3- transport across cell membranes. HCO3- permeability was assessed from measurements of intracellular pH [pHi; from spectrofluorimetry of the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5-(and -6)carboxyfluorescein] and of channel activity (patch clamp; cell attached and isolated, inside-out patches) on NIH 3T3 fibroblasts and C127 mammary epithelial cells transfected with wild-type CFTR (WT-CFTR) or delta F508-CFTR, and also on mock-transfected cells. When WT-CFTR-transfected cells were acidified (pulsed with NH4Cl) and incubated in Na(+)-free (N-methyl-D-glucamine substitution) solutions (to block Na(+)-dependent pHi regulatory mechanisms), pHi remained acidic (pH approximately 6.5) until the cells were treated with 20 microM forskolin (increases cellular [cAMP]); pHi then increased toward (but not completely to) control level (pHi 7.2) at a rate of 0.055 pH unit/min. Forskolin had no effect on rate of pHi recovery in delta F508 and mock-transfected cells. This Na(+)-independent, forskolin-dependent pHi recovery was not observed in HCO3-/CO2-free medium. Forskolin-treated WT-CFTR-transfected (but not delta F508-CFTR or mock-transfected) cells in Cl(-)-containing, HCO3(-)-free solutions showed Cl- channels with a linear I/V relationship and a conductance of 10.4 +/- 0.5 pS in symmetrical 150 mM Cl-. When channels were incubated with different [Cl-] and [HCO3-] on the inside and outside, the Cl-/HCO3- permeability ratio (determined from reversal potentials of I/V curves) was 3.8 +/- 1.0 (mean +/- SEM; n = 9); the ratio of conductances was 3.9 +/- 0.5 (at 150 mM Cl- and 127 mM HCO3-. We conclude that in acidified cells the WT-CFTR functions as a base loader by allowing a cAMP-dependent influx of HCO3- through channels that conduct HCO3- about one-quarter as efficiently as it conducts Cl-. Under physiological conditions, the electrochemical gradients for both Cl- and HCO3- are directed outward, so CFTR likely contributes to the epithelial secretion of both ions. HCO3- secretion may be important for controlling pH of the luminal, but probably not the cytoplasmic, fluid in CFTR-containing epithelia. In CF, a decreased secretion of HCO3- may lead to decreased pH of the luminal fluid. PMID:7515498

Poulsen, J H; Fischer, H; Illek, B; Machen, T E

1994-01-01

23

B/Ca in coccoliths and relationship to calcification vesicle pH and dissolved inorganic carbon concentrations  

NASA Astrophysics Data System (ADS)

Coccolithophorid algae are microscopic but prolific calcifiers in modern and ancient oceans. When the pH of seawater is modified, as may occur in the future due to ocean acidification, different species and strains of coccolithophorids have exhibited diverse calcification responses in laboratory culture. Since their biomineralization is a completely intracellular process, it is unclear why their response should be affected by extracellular seawater pH. Variations in the B/Ca in coccoliths are potential indicators of pH shifts in the intracellular coccolith vesicle where calcification occurs, because B/Ca in abiogenic calcites increases at higher pH due to the greater abundance of borate ions, the only B species incorporated into calcite. We used a SIMS ion probe to measure B/Ca of coccoliths from three different strains of Emiliania huxleyi and one strain of Coccolithus braarudii braarudii cultured under different seawater pH conditions to ascertain if the B/Ca can be used to elucidate how coccolithophorids respond to changing ocean pH. These data are interpreted with the aid of a conceptual model of cellular boron acquisition by coccolithophorids. Based on uptake in other plants, we infer that boron uptake by coccolithophorid cells is dominated by passive uptake of boric acid across the lipid bilayer. Subsequently, in the alkaline coccolith vesicle (C.V.), boron speciates according to the C.V. pH, and borate is incorporated into the coccolith. At increasing seawater pH, the relative abundance of the neutral boric acid in seawater decreases, lowering the potential B flux into the cell. Homeostasis or constant pH of the coccolith vesicle results in a decrease of the B/Ca in the coccolith with increasing seawater pH. In contrast, if coccolith vesicle pH increases with increasing seawater pH, then the B/Ca will increase as the fraction of borate in the coccolith vesicle increases. The coccolith B/Ca is also expected to depend inversely on the dissolved inorganic carbon (DIC) concentration in the coccolith vesicle. The B/Ca in cultured coccoliths is much lower than that of foraminifera or corals and limits precision in the analysis. Modest variations in DIC or pH of the coccolith vesicle can account for the observed trends in B/Ca in cultured coccoliths. The model shows that paired measurements of B/Ca and B isotopic composition of the calcite could distinguish between regulation of pH or DIC in the coccolith vesicle.

Stoll, Heather; Langer, Gerald; Shimizu, Nobumichi; Kanamaru, Kinuyo

2012-03-01

24

High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest  

NASA Astrophysics Data System (ADS)

Predicting consequences of ocean deoxygenation and ocean acidification for nearshore marine ecosystems requires baseline dissolved oxygen (DO) and carbonate chemistry data that are both high-frequency and high-quality. Such data allow accurate assessment of environmental variability and present-day organism exposure regimes. In this study, scales of DO and pH variability were characterized over one year in a nearshore, kelp forest ecosystem in the Southern California Bight. DO and pH were strongly, positively correlated revealing that organisms on this upwelling shelf are not only exposed to low pH but also low DO. The dominant temporal scale of DO and pH variability occurred on semidiurnal, diurnal and event (days-weeks) time scales. Daily ranges in DO and pH at 7 m water depth (13 mab) could be as large as 220 ?mol kg-1 and 0.36 units, respectively. This range is much greater than the expected decreases in pH in the open ocean by the year 2100. Sources of pH and DO variation include photosynthesis within the kelp forest ecosystem, which can elevate DO and pH by up to 60 ?mol kg-1 and 0.1 units over one week following the intrusion of high-density, nutrient-rich water. Accordingly, highly productive macrophyte-based ecosystems could serve as deoxygenation and acidification refugia by acting to elevate DO and pH relative to surrounding waters. DO and pH exhibited greater spatial variation over a 10 m increase in water depth (from 7 to 17 m) than along a 5-km stretch of shelf in a cross-shore or alongshore direction. Over a three-month time period mean DO and pH at 17-m water depth were 168 ?mol kg-1 and 7.87, respectively. These values represent a 35% decrease in mean DO and 37% increase in [H+] relative to surface waters. High-frequency variation was also reduced at depth. The mean daily range in DO and pH was 39% and 37% less, respectively, at 17-m water depth relative to the surface. As a consequence, the exposure history of an organism is largely a function of its depth of occurrence within the kelp forest. These findings raise the possibility that the benthic communities along eastern boundary current systems are currently acclimatized and adapted to natural, variable, and low DO and pH. Future exposure of coastal California populations to low DO and pH may increase as upwelling intensifies and hypoxic boundaries shoal, compressing habitats and challenging the physiological capacity of intolerant species.

Frieder, C. A.; Nam, S. H.; Martz, T. R.; Levin, L. A.

2012-03-01

25

Polymerization of dissolved humic substances catalyzed by peroxidase. Effects of pH and humic composition  

Microsoft Academic Search

High performance size exclusion chromatography (HPSEC) was used to follow the changes in molecular size distribution of three dissolved humic materials of various origins brought about by oxidative coupling of humic constituents under the combined action of hydrogen peroxide and horseradish peroxidase (HRP). Increase in weight-average molecular weight (Mw) occurred invariably for all humic substances with the oxidative polymerization catalyzed

A. Cozzolino; A. Piccolo

2002-01-01

26

Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008  

USGS Publications Warehouse

Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy Creek reflect the different basin characteristics. Relations between specific conductance and dissolved-solids concentrations were statistically significant for the Green River (p-value less than 0.001) and Muddy Creek (p-value less than 0.001); therefore, specific conductance can be used to estimate dissolved-solids concentrations. Using continuous specific conductance values to estimate dissolved solids in real-time on the World Wide Web increases the amount and improves the timeliness of data available to water managers for assessing dissolved-solids concentrations in the Colorado River Basin.

Clark, Melanie L.; Davidson, Seth L.

2009-01-01

27

Development and Characterization of a pH and Conductivity Measurement System for Water Quality Assessment  

Microsoft Academic Search

This work reports the implementation and characterization of a measurement system for water quality assessment. The measured quantities are pH, conductivity and temperature. Sensor characterization and the interdependence of the different quantities are analyzed. For pH and temperature commercial sensors were used and only signal conditioning interfaces were developed. For conductivity measurements it was designed and implemented a new conductivity

L. M. Gurriana; J. M. Dias Pereira; H. G. Ramos

28

Microenvironments of pH in biofilms grown on dissolving silicate surfaces  

Microsoft Academic Search

Differences in pH between silicate–biofilm interfaces and bulk medium (?pH=pHinterface?pHbulk) were detectable with commercial microelectrodes in cultures grown in unbuffered medium (|?pH|=0.27–1.08) for an arthrobacter species, but were generally beneath detection (?pH<0.04) for a streptomyces species. Biofilm half-thicknesses developed by Arthrobacter ranged from 1.2 to 11.5 mm, and were highly variable even for replicates. In buffered medium, neither bacterium produced

Laura J. Liermann; Amy S. Barnes; Birgitta E. Kalinowski; Xiangyang Zhou; Susan L. Brantley

2000-01-01

29

THE RELATIONSHIP OF TOTAL DISSOLVED SOLIDS MEASUREMENTS TO BULK ELECTRICAL CONDUCTIVITY IN AN AQUIFER CONTAMINATED WITH HYDROCARBON  

EPA Science Inventory

A recent conceptual model links high bulk electrical conductivities at hydrocarbon impacted sites to higher total dissolved solids (TDS) resulting from enhanced mineral weathering due to acids produced during biodegradation. In this study, we investigated the vertical distributio...

30

Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils  

Microsoft Academic Search

We used of a set of mechanistic adsorption models (1-pK TPM, ion exchange and Nica-Donnan) within the framework of the component additive (CA) approach in an attempt to determine the effect of repeated massive application of inorganic P fertilizer on the processes and mechanisms controlling the concentration of dissolved inorganic phosphorus (DIP) in soils. We studied the surface layer of

Nicolas Devau; Philippe Hinsinger; Edith Le Cadre; Bruno Colomb; Frédéric Gérard

2011-01-01

31

Influence of increasing dissolved inorganic carbon concentrations and decreasing pH on chemolithoautrophic bacteria from oxic-sulfidic interfaces  

NASA Astrophysics Data System (ADS)

Increases in the dissolved inorganic carbon (DIC) concentration are expected to cause a decrease in the pH of ocean waters, a process known as ocean acidification. In oxygen-deficient zones this will add to already increased DIC and decreased pH values. It is not known how this might affect microbial communities and microbially mediated processes. In this study, the potential effects of ocean acidification on chemolithoautotrophic prokaryotes of marine oxic-anoxic transition zones were investigated, using the chemoautotrophic denitrifying ?-proteobacterium "Sulfurimonas gotlandica" strain GD1 as a model organism. This and related taxa use reduced sulfur compounds, e.g. sulfide and thiosulfate, as electron donors and were previously shown to be responsible for nitrate removal and sulfide detoxification in redox zones of the Baltic Sea water column but occur also in other oxygen-deficient marine systems. Bacterial cell growth within a broad range of DIC concentrations and pH values was monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for growth was already reached at 800 ?M, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6-7.1 there was no significant difference in substrate utilization; however, at lower pH values cell growth decreased sharply and cell-specific substrate consumption increased. These findings suggest that a direct effect of ocean acidification, with the predicted changes in pH and DIC, on chemolithoautotrophic bacteria such as "S. gotlandica" str. GD1 is generally not very probable.

Mammitzsch, K.; Jost, G.; Jürgens, K.

2012-12-01

32

PALMERSTON NORTH, NEW ZEALAND The effects of IVF aspiration on the temperature, dissolved oxygen levels, and pH of follicular fluid  

Microsoft Academic Search

  \\u000a Purpose\\u000a : To investigate the effects of IVF aspiration on the temperature, pH, and dissolved oxygen of bovine follicular fluid.\\u000a \\u000a \\u000a Methods\\u000a : The temperature was monitored at various positions in an aspiration kit. Dissolved oxygen and pH were measured before and\\u000a after aspiration.\\u000a \\u000a \\u000a \\u000a \\u000a Results\\u000a : The temperature of follicular fluid dropped by 7.7?±?1.3°C upon aspiration. Dissolved oxygen levels rose

Gabe P. Redding; John E. Bronlund; Alan L. Hart

2006-01-01

33

Dissolved oxygen and pH monitoring within cell culture media using a hydrogel microarray sensor  

E-print Network

within cell culture media are invasive and cannot be used to make on-line measurements in a closed-loop system. In this research, a microfabricated hydrogel microarray sensor was developed to monitor each anlyte. Either a pH or an oxygen sensitive...

Lee, Seung Joon

2009-05-15

34

Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios  

PubMed Central

Assessments of inorganic elemental speciation in seawater span the past four decades. Experimentation, compilation and critical review of equilibrium data over the past forty years have, in particular, considerably improved our understanding of cation hydrolysis and the complexation of cations by carbonate ions in solution. Through experimental investigations and critical evaluation it is now known that more than forty elements have seawater speciation schemes that are strongly influenced by pH. In the present work, the speciation of the elements in seawater is summarized in a manner that highlights the significance of pH variations. For elements that have pH-dependent species concentration ratios, this work summarizes equilibrium data (S = 35, t = 25°C) that can be used to assess regions of dominance and relative species concentrations. Concentration ratios of complex species are expressed in the form log[A]/[B] = pH - C where brackets denote species concentrations in solution, A and B are species important at higher (A) and lower (B) solution pH, and C is a constant dependent on salinity, temperature and pressure. In the case of equilibria involving complex oxy-anions (MOx(OH)y) or hydroxy complexes (M(OH)n), C is written as pKn = -log Kn or pKn* = -log Kn* respectively, where Kn and Kn* are equilibrium constants. For equilibria involving carbonate complexation, the constant C is written as pQ = -log(K2lKn [HCO3-]) where K2l is the HCO3 - dissociation constant, Kn is a cation complexation constant and [HCO3-] is approximated as 1.9 × 10-3 molar. Equilibrium data expressed in this manner clearly show dominant species transitions, ranges of dominance, and relative concentrations at any pH.

Byrne, Robert H

2002-01-01

35

The features of the correlation between the pH values and the dissolved oxygen at the Chistaya Balka test area in the Northern Caspian Sea  

Microsoft Academic Search

Abnormally high pH values (up to 9 NBS units and over) were registered by different expeditions at the seaward edge of the Volga River delta. Within the report, the relationship of the pH values, the dissolved oxygen content, and the water temperature are considered using the equations of the thermodynamic theory of carbonate equilibrium. It is shown that the changes

P. N. Makkaveev

2009-01-01

36

High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest  

NASA Astrophysics Data System (ADS)

Predicting consequences of ocean deoxygenation and ocean acidification for nearshore marine ecosystems requires baseline dissolved oxygen (DO) and carbonate chemistry data that are both high-frequency and high-quality. Such data allow accurate assessment of environmental variability and present-day organism exposure regimes. In this study, scales of DO and pH variability were characterized over one year in a nearshore kelp forest ecosystem in the Southern California Bight. DO and pH were strongly, positively correlated, revealing that organisms on this upwelling shelf are not only exposed to low pH but also to low DO. The dominant scale of temporal DO and pH variability occurred on semidiurnal, diurnal and event (days-weeks) time scales. Daily ranges in DO and pH at 7 m water depth (13 mab) could be as large as 220 ?mol kg-1 and 0.36 units, respectively. Sources of pH and DO variation include photosynthesis within the kelp forest ecosystem, which can elevate DO and pH by up to 60 ?mol kg-1 and 0.1 units over one week following the intrusion of high-density, nutrient-rich water. Accordingly, highly productive macrophyte-based ecosystems could serve as deoxygenation and acidification refugia by acting to elevate DO and pH relative to surrounding waters. DO and pH exhibited greater spatial variation over a 10 m increase in water depth (from 7 to 17 m) than along a 5 km stretch of shelf in a cross-shore or alongshore direction. Over a three-month time period, mean DO and pH at 17 m water depth were 168 ?mol kg-1 and 7.87, respectively. These values represent a 35% decrease in mean DO and 37% increase in [H+] relative to near-surface waters. High-frequency variation was also reduced at depth. The mean daily range in DO and pH was 39% and 37% less, respectively, at 17 m water depth relative to 7 m. As a consequence, the exposure history of an organism is largely a function of its depth of occurrence within the kelp forest. With knowledge of local alkalinity conditions and high-frequency temperature, salinity, and pH data, we estimated pCO2 and calcium carbonate saturation states with respect to calcite and aragonite (?calc and ?arag) for the La Jolla kelp forest at 7 m and 17 m water depth. pCO2 ranged from 246 to 1016 ?atm, ?calc was always supersaturated, and ?arag was undersaturated at the beginning of March for five days when pH was less than 7.75 and DO was less than 115 ?mol kg-1. These findings raise the possibility that the benthic communities along eastern boundary current systems are currently acclimatized and adapted to natural, variable, and low DO and pH. Still, future exposure of coastal California populations to even lower DO and pH may increase as upwelling intensifies and hypoxic boundaries shoal, compressing habitats and challenging the physiological capacity of intolerant species.

Frieder, C. A.; Nam, S. H.; Martz, T. R.; Levin, L. A.

2012-10-01

37

Effects of pH, Temperature, Dissolved Oxygen, and Flow Rate on Phosphorus Release Processes at the Sediment and Water Interface in Storm Sewer  

PubMed Central

The effects of pH, temperature, dissolved oxygen (DO), and flow rate on the phosphorus (P) release processes at the sediment and water interface in rainwater pipes were investigated. The sampling was conducted in a residential storm sewer of North Li Shi Road in Xi Cheng District of Beijing on August 3, 2011. The release rate of P increased with the increase of pH from 8 to 10. High temperature is favorable for the release of P. The concentration of total phosphorus (TP) in the overlying water increased as the concentration of DO decreased. With the increase of flow rate from 0.7?m?s?1 to 1.1?m?s?1, the concentration of TP in the overlying water increased and then tends to be stable. Among all the factors examined in the present study, the flow rate is the primary influence factor on P release. The cumulative amount of P release increased with the process of pipeline runoff in the rainfall events with high intensities and shorter durations. Feasible measures such as best management practices and low-impact development can be conducted to control the P release on urban sediments by slowing down the flow rate. PMID:24349823

Li, Haiyan; Li, Mingyi; Zhang, Xiaoran

2013-01-01

38

Evaluation of Total Dissolved Solids and Specific Conductance Water Quality Targets with Paired Single-Species and Mesocosm Community Exposures  

EPA Science Inventory

Isolated single-species exposures were conducted in parallel with 42 d mesocosm dosing studies that measured in-situ and whole community responses to different recipes of excess total dissolved solids (TDS). The studies were conducted with cultured species and native taxa from mo...

39

Stream Monitoring 1. Students learn how researchers test three stream parameters: temperature, dissolved  

E-print Network

: temperature, dissolved oxygen and pH. 2. Formulate a hypothesis and test it. Background Water quality flow, dissolved oxygen, temperature, pH, conductivity, nitrogen, phosphorus, total solids, turbidity, and fecal bacteria. Note: in this activity we are only measuring temperature, pH and dissolved oxygen

Schladow, S. Geoffrey

40

pH : a key control of the nature and distribution of dissolved organic matter and associated trace metals in soil  

NASA Astrophysics Data System (ADS)

Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size < 5 kDa and lower aromaticity. Thus, the DOC was mostly composed of simple organic compounds little complexing. Consequently, the soil solution was depleted in trace elements such as Th, REE, Y, U, Cr, Cu, Al, Fe, V, Pb and Ti, but also enriched in Ca, Sr, Ba, Mn, Mg, Co, Zn and in a lesser proportion in Rb, Li and Ni. The aromaticity in the fractions <5 kDa was higher than in the fractions <30 kDa or <0.2 µm. Complementary experiments were performed to understand the HS size distribution and aromaticity according to pH and ionic strength .The molecular size and shape of HS is usually explained by two concepts: (i) the macropolymeric structure with heavy organic molecules considered to be flexible linear polyelectrolytes and (ii) the supramolecular structure with an association of a complex mixture of different molecules held together by dispersive weak forces. Ours results supported the HA supramolecular structure at neutral or basic pH conditions. But, at acid pH, a disruption of the humic supramolecular associations involved the release of small organic molecules with a high aromaticity. Moreover, this aromaticity variation can be due also to the presence of fulvic acids in the fractions <5 kDa and a mixture of heavy organic molecules little complexing in the fractions >5 kDa. These latter molecules displayed a low aromaticity decreasing the global aromaticity of the fractions <30 kDa and <0.2 µm. To summarize, these new data demonstrated that the DOC and trace element concentrations of the soil solutions were strongly controlled by pH. This parameter influenced the nature and the size of the DOC as well as, the trace element concentrations in the soil solutions, with a decreasing contribution of HA when pH decreased. This pH dependence is a key issue of concern since local (human pressure) and/or global (climatic) warning result in pH water changes.

Pédrot, M.; Dia, A.; Davranche, M.

2009-04-01

41

The features of the correlation between the pH values and the dissolved oxygen at the Chistaya Balka test area in the Northern Caspian Sea  

Microsoft Academic Search

Abnormally high pH values (up to 9 NBS units and over) were registered by different expeditions at the seaward edge of the\\u000a Volga River delta. Within the report, the relationship of the pH values, the dissolved oxygen content, and the water temperature\\u000a are considered using the equations of the thermodynamic theory of carbonate equilibrium. It is shown that the changes

P. N. Makkaveev

2009-01-01

42

Freeze\\/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations  

Microsoft Academic Search

The UV-visible and fluorescence excitation-emission matrix spectrophotometric proper- ties of dissolved organic matter (DOM) were compared for the effects of both pH and freeze\\/ thaw on a wide range of freshwater DOM samples from the United Kingdom. It was observed that the spectrophotometric properties of our freshwater samples were sensitive to pH and that the recorded change varies with fluorescence

Robert G. M. Spencera; Lucy Boltond; Andy Bakere

43

Freeze\\/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations  

Microsoft Academic Search

The UV–visible and fluorescence excitation–emission matrix spectrophotometric properties of dissolved organic matter (DOM) were compared for the effects of both pH and freeze\\/thaw on a wide range of freshwater DOM samples from the United Kingdom. It was observed that the spectrophotometric properties of our freshwater samples were sensitive to pH and that the recorded change varies with fluorescence and absorbance

Robert G. M. Spencer; Lucy Bolton; Andy Baker

2007-01-01

44

Effects of Submersed Macrophytes on Dissolved Oxygen, pH, and Temperature under Different Conditions of Wind, Tide, and Bed Structure  

Microsoft Academic Search

Seasonal data on diurnal dissolved-oxygen concentration (DO), pH, temperature and chlorophyll-a were collected and species composition and vertical structure of macrophyte beds were analyzed in the tidal Potomac River during the 1987 growing season. The relationships among these variables and physical and climatic factors were analyzed. Elevated surface temperatures, DO and pH were found in macrophyte beds in June and

Virginia Carter; Nancy B. Rybicki; Richard Hammerschlag

1991-01-01

45

Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments  

PubMed Central

The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent. PMID:25251677

Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

2014-01-01

46

[Characteristics of precipitation pH and conductivity at Mt. Huang].  

PubMed

To understand the general characteristics of pH distribution and pollution in precipitation at Mt. Huang, statistical analyses were conducted for the routine measurements of pH and conductivity (K) at Mt. Huang during 2006-2011. The results showed that: (1) Over the period of study, the annual volume weighted mean (VWM) precipitation pH varied from 4.81 to 5.57, with precipitation acidity strengthening before 2009 and weakening thereafter. The precipitation acidity showed evident seasonal variations, with the VWM pH lowest in winter (4.78), and highest in summer (5.33). The occurrence frequency of acid rain was 46% , accounting for 45% of total rainfalls and with the most frequent pH falling into weak acid to neutral rain. (2) The annual VWM K varied from 16.91 to 27.84 microS x cm(-1), with no evident trend. As for ions pollution, the precipitation was relatively clean at Mt. Huang, with the most frequent K range being below 15 microS x cm(-1), followed by 15-25 microS x cm(-1). From February 2010 to December 2011, precipitation samples were collected on daily basis for ions analysis, as well as pH and K measurement in lab. Detailed comparisons were conducted between the two sets of pH and K, one set from field measurement and the other from lab measurement. The results indicated: (1) The lab measured pH (K) was highly correlated with the field pH (K); however, the lab pH tended to move towards neutral comparing with the corresponding field pH, and the shift range was closely correlated with the field pH and rainfall. The shift range of K from field to lab was highly correlated with the total ion concentration of precipitation. The field K showed evident negative correlation with the field pH with a correlation coefficient of -0.51. (2) When sampling with nylon-polyethylene bags, the statistics showed smaller bias between two sets of pH, with higher correlation coefficient between two sets of K. Furthermore, the lab K also showed evident negative correlation with the lab pH. Comparing with the observations at other alpine sites in central to eastern China, the natural precipitation at Mt. Huang was weaker in acidity and contains lower ion concentration. PMID:23914555

Shi, Chun-e; Deng, Xue-liang; Wu, Bi-wen; Hong, Jie; Zhang, Su; Yang, Yuan-jian

2013-05-01

47

Effects of temperature, medium composition, pH, salt and dissolved oxygen on haemolysin and cytotoxin production by Aeromonas hydrophila isolated from oyster  

Microsoft Academic Search

The effects of temperature, medium composition, pH, salt content and dissolved oxygen (DO) on the production of haemolysin and cytotoxin by one strain of Aeromonas hydrophila isolated from oyster were investigated. Four media were tested: brain heart infusion broth (BHIB), casamino acid-yeast extract broth (CAYEB), nutrient broth (NB), and trypticase soy broth (TSB). BHIB was the best for toxin production

Guo-Jane Tsai; Fong-Cheng Tsai; Zwe-Ling Kong

1997-01-01

48

Impact of pH, dissolved inorganic carbon, and polyphosphates for the initial stages of water corrosion of copper surfaces investigated by AFM and NEXAFS  

EPA Science Inventory

Nanoscale studies at the early stages of the exposure of copper surfaces after systematic treatments in synthesized water solutions can provide useful information about corrosion processes. The corrosion and passivation of copper surfaces as influenced by pH, dissolved inorganic ...

49

Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production  

Microsoft Academic Search

The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium

Neelakantam V. Narendranath; Ronan Power

2005-01-01

50

Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749.  

PubMed

A significant problem in scale-down cultures, rarely studied for metabolic characterization and curdlan-producing Agrobacterium sp. ATCC 31749, is the presence of dissolved oxygen (DO) gradients combined with pH control. Constant DO, between 5% and 75%, was maintained during batch fermentations by manipulating the agitation with PID system. Fermentation, metabolic and kinetic characterization studies were conducted in a scale-down system. The curdlan yield, intracellular nucleotide levels and glucose conversion efficiency into curdlan were significantly affected by DO concentrations. The optimum DO concentrations for curdlan production were 45-60%. The average curdlan yield, curdlan productivity and glucose conversion efficiency into curdlan were enhanced by 80%, 66% and 32%, respectively, compared to that at 15% DO. No apparent difference in the gel strength of the resulting curdlan was detected. The comparison of curdlan biosynthesis and cellular nucleotide levels showed that curdlan production had positive relationship with intracellular levels of UTP, ADP, AMP, NAD(+), NADH and UDP-glucose. The curdlan productivity under 45% DO and 60% DO was different during 20-50 h. However, after 60 h curdlan productivity of both conditions was similar. On that basis, a simple and reproducible two-stage DO control process for curdlan production was developed. Curdlan production yield reached 42.8 g/l, an increase of 30% compared to that of the single agitation speed control process. PMID:21739265

Zhang, Hong-Tao; Zhan, Xiao-Bei; Zheng, Zhi-Yong; Wu, Jian-Rong; English, Nike; Yu, Xiao-Bin; Lin, Chi-Chung

2012-01-01

51

The Impact of Environmental Factors on Changes in pH and Dissolved Oxygen Levels in Pond Water: A Probeware based activity  

NSDL National Science Digital Library

This teaching resource was developed by a K-12 science teacher in the American Physiologycal Society's 2006 Frontiers in Physiology Program. For more information on this program, please visit www.frontiersinphys.org. The purpose of this laboratory activity is to have students develop an experiment that tests the impact of environmental factors on levels of pH and dissolved oxygen in pond water using probeware.

Maria Winston (Edgemont Junior/Senior High School)

2006-08-01

52

Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity  

NASA Technical Reports Server (NTRS)

The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

Smolka, A. J. K.; Mcguire, J. K.

1978-01-01

53

The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH  

Microsoft Academic Search

Inorganic nitrogen in the soil is the source of N for non-legume plants. Rapid methods for monitoring changes in inorganic N concentrations would be helpful for N nutrient management. The effect of varying soil moisture content on soil mineral nitrogen, electrical conductivity (EC), and pH were studied in a laboratory experiment. Soil NO3-N increased as soil water-filled pore space (WFPS)

Rui Zhang; Brian J. Wienhold

2002-01-01

54

Effect of pH on the bioaccumulation of low level, dissolved methylmercury by rainbow trout (Oncorhynchus mykiss)  

Microsoft Academic Search

An inverse relationship has been observed between pH and McHg concentration in freshwater fish. Many hypotheses exist regarding\\u000a the mechanisms which lead to elevated levels of organic Hg in fish from low pH lakes. To determine if pH has a direct effect\\u000a on the rate of McHg bioaccumulation in fish, rainbow trout fingerlings (Oncorhynchus mykiss) were exposed to a low

R. A. Ponce; N. S. Bloom

1991-01-01

55

Lab-scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration.  

PubMed

This article shows the development and testing of a microchip with integrated electrochemical sensors for measurement of pH, temperature, dissolved oxygen and viable biomass concentration under yeast cultivation conditions. Measurements were done both under dynamic batch conditions as well as under prolonged continuous cultivation conditions. The response of the sensors compared well with conventional measurement techniques. The biomass sensor was based on impedance spectroscopy. The results of the biomass sensor matched very well with dry weight measurements and showed a limit of detection of approximately 1 g/L. The dissolved oxygen concentration was monitored amperometrically using an ultra-microelectrode array, which showed an accuracy of approximately 0.2 mg/L and negligible drift. pH was monitored using an ISFET with an accuracy well below 0.1 pH unit. The platinum thin-film temperature resistor followed temperature changes with approximately 0.1 degrees C accuracy. The dimensions of the multi sensor chip are chosen as such that it is compatible with the 96-well plate format. PMID:17929319

Krommenhoek, Erik E; van Leeuwen, Michiel; Gardeniers, Han; van Gulik, Walter M; van den Berg, Albert; Li, Xiaonan; Ottens, Marcel; van der Wielen, Luuk A M; Heijnen, Joseph J

2008-03-01

56

Impact of dissolved inorganic carbon concentrations and pH on growth of the chemolithoautotrophic epsilonproteobacterium Sulfurimonas gotlandica GD1T  

PubMed Central

Epsilonproteobacteria have been found globally distributed in marine anoxic/sulfidic areas mediating relevant transformations within the sulfur and nitrogen cycles. In the Baltic Sea redox zones, chemoautotrophic epsilonproteobacteria mainly belong to the Sulfurimonas gotlandica GD17 cluster for which recently a representative strain, S. gotlandica GD1T, could be established as a model organism. In this study, the potential effects of changes in dissolved inorganic carbon (DIC) and pH on S. gotlandica GD1T were examined. Bacterial cell abundance within a broad range of DIC concentrations and pH values were monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for achieving maximal cell numbers was already reached at 800??mol?L?1, which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6–7.1 there was no significant difference in substrate utilization; however, at lower pH values maximum cell abundance decreased sharply and cell-specific substrate consumption increased. PMID:24376054

Mammitzsch, Kerstin; Jost, Gunter; Jurgens, Klaus

2014-01-01

57

Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water-sediment interface of Erhai Lake, China  

NASA Astrophysics Data System (ADS)

Nitrogen (N), in the form of ammonia or nitrate, is a key limiting nutrient in many aquatic systems. Under certain environmental conditions it can be released from sediments into overlying water, which may have significant impact on water quality and result in continuous eutrophication. However, few studies have examined the long-term (nearly two months) coupling effect of environmental parameters on N dynamics at the sediment-water interface. This is particularly pertinent to improve the understanding of lake eutrophication processes. This study examines the coupling effects of pH and dissolved oxygen (DO) on N release at the sediment-water interface for the shallow Erhai Lake in China, and analyzes recent changes in environmental conditions and water quality to predict the risk of nitrogen release from sediment in the near future. Experimental results indicated that under anaerobic condition (DO?1 mg/L) and lower pH (pH = 6), ammonium was easily released into overlying water, potentially triggering algal blooms. Conversely aerobic conditions (DO = 8-10 mg/L) and higher pH (pH = 10) promoted nitrate release from sediment. The study also discusses possible mechanisms about the nitrogen dynamics at the sediment-water interface. Considering the overall effects of ammonium and nitrate on the trophic status of the water column, the recommended environmental condition in overlying water should be pH of around 8 under aerobic conditions. Based on the study findings, the nitrogen balance at the water-sediment interface was evaluated for different environmental conditions. Analysis of environmental conditions and water quality during 1992-2010 shows that present environmental conditions are not conducive to the release of nutrients from sediment, thereby protecting the water quality from serious endogenous pollution. However, the risk of nitrogen release from sediment sources might increase if environmental conditions change.

Zhang, Li; Wang, Shengrui; Wu, Zhihao

2014-08-01

58

Variation in Hydraulic Conductivity with Decreasing pH in a Biologically-Clogged Porous Medium  

NASA Astrophysics Data System (ADS)

Biological clogging can significantly lower the hydraulic conductivity of porous media, potentially helping to limit CO2 transport from geological carbon storage reservoirs. How clogging is affected by CO2 injection, however, is unclear. We used column experiments to examine how decreasing pH, a geochemical change associated with CO2 injection, will affect the hydraulic conductivity (K) of biologically clogged porous medium. Four biologically-active experiments and two control experiments were performed. Columns consisted of 1 mm2 capillary tubes filled with 105-150 ?m diameter glass beads. Artificial groundwater medium containing 1 mM glucose was pumped through the columns at a rate of 0.015 mL/min (q = 21.6 m/day; Re = 0.045). Each column was inoculated with 10^8 CFU of Pseudomonas fluorescens tagged with a green fluorescent protein; cells introduced to control columns were heat sterilized. Biomass distribution and transport was monitored using scanning laser confocal microscopy and effluent plating. Growth was allowed to occur for 5 days in medium with pH 7 in the biologically active columns. During that time, K decreased to values ranging from 10 to 27% of the average control K and effluent cell levels increased to about 10^8 CFU/mL. Next, the pH of the inflowing medium was lowered to 4 in three experiments and 5.5 in one experiment. After pH 4 medium was introduced, K increased to values ranging from 21 to 64% of the average control K and culturable cell levels in the effluent fell by about 4 log units. Confocal images show that clogging persisted in the columns at pH 4 because most of the microbial biomass remained attached to bead surfaces. In the experiment where pH was lowered to 5.5, K changed little because biological clogging remained entirely intact. The concentration of culturable cells in the effluent was also invariant. These results suggest that biomass in porous medium will largely remain in place following exposure to acidic water in a CO2 storage reservoir, particularly where buffering is able to limit the extent of acidification. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Kirk, M. F.; Santillan, E.; McGrath, L. K.; Altman, S. J.

2011-12-01

59

CONTINUOUS pH AND CONDUCTIVITY MEASURING OF DISTILLED WATER IN PRIMARY CYCLE OF CZECHOSLOVAK NUCLEAR REACTOR  

Microsoft Academic Search

The development of pH and conductivity measurements of water in primary ; cycle of an experimental reactor of the Czechoslovak Academy of Sciences is ; described. The experience gained during operation, and results of measurements, ; are reported as well. (auth);

F. Vozenilek; J. Vojta

1962-01-01

60

[Variations of pH value and electrical conductivity in the Dongkemadi basin, Tanggula range].  

PubMed

Investigation of meltwater chemistry may provide information to understand the significance of glacier in estimating of water provenance. Most notably, the role of electrical conductivity (EC) variation in meltwater during glacier melting season has attracted considerable attention, since this may reflect the water flux. Analyses for pH and EC in 229 bulk meltwater samples have provided information about water provenance at Dongkemadi Glacier basin, an outlet tongue from the Tanggula Pass, Tibetan Plateau. The samples were collected at 14:00 from 12th May to 27th September in 2005 at site of controlled meltwater flux. The results document the following findings. First phase of runoff was mainly supplied by snow and glacier ice meltwater, 31% and 65%, respectively, and the snow including fresh snow and winter deposited snow. Secondary phase of flux primarily was supplied by glacier ice meltwater and precipitation, but meltwater of frozen water in soil also has some contribute to flux, but only 2%. Third phase, ice bulk meltwater decreased and fresh snow meltwater increased. In different precipitation modalities variation trends of pH value and EC are following an orderd snow > rainwater > hailstone. PMID:18268996

Wang, Jian; Aihemaiti, Aximu; Ding, Yong-jian; Liu, Shi-yin; Wu, Jin-kui

2007-10-01

61

Dissolved trace elements in the Mississippi River: Seasonal, interannual, and decadal variability  

Microsoft Academic Search

A monthly trace element sampling of the lower Mississippi River, utilizing ultra-clean methods, was conducted from October 1991 to December 1993. Dissolved concentrations were determined for Fe, Mn, Zn, Ph, V, Mo, U, Cu, Ni, Cd, Rb, and Ba. The results show significant seasonal dissolved concentration changes for a number of elements. Specifically, dissolved Mn and Fe are found to

Alan M. Shiller

1997-01-01

62

Spatial and temporal patterns of temperature, alkalinity, dissolved oxygen and conductivity in an oligo-mesotrophic, deep-storage reservoir in central Texas  

Microsoft Academic Search

Impoundment behavior was determined for alkalinity, temperature, dissolved oxygen, and conductivity from stations located along the length of a bottom-draining, oligo-mesotrophic, hardwater, deep-storage reservoir located in central Texas. The epilimnion deepened the length of the reservoir throughout the summer as a result of drawdown. Bicarbonate alkalinity and conductivity exhibited both longitudinal and vertical stratification. Alkalinity and conductivity in the epilimnion

H. H. Hannan; I. R. Fuchs; D. C. Whitenberg

1979-01-01

63

Spatial and temporal variability of turbidity, dissolved oxygen, conductivity, temperature, and fluorescence in the lower Mekong River–Tonle Sap system identified using continuous monitoring  

Microsoft Academic Search

Continuous monitoring of turbidity, dissolved oxygen (DO), conductivity, temperature, and fluorescence was done at five locations on the Tonle Sap Lake and the Mekong–Bassac Rivers near Phnom Penh, Cambodia, between 2004 and 2010 using autonomous datasondes. Seasonal, daily, and spatial trends were clearly identified in the data and were related to the annual monsoon rainy season–dry season cycle, system metabolism,

K. N. Irvine; J. E. Richey; G. W. Holtgrieve; J. Sarkkula; M. Sampson

2011-01-01

64

Escherichia coli membrane proton conductance and proton efflux depend on growth pH and are sensitive to osmotic stress  

Microsoft Academic Search

The dependence of Escherichia coli membrane H+ conductance (Gm\\u000a H+) with a steady-state pH in the presence and absence of an external source of energy (glucose) was studied, when cells were\\u000a grown under anaerobic and aerobic conditions, with an assay pH of 7.0. Energy-dependent H+ efflux by intact cells growing at pH of 4.5–7.5 was also measured. The elevated H+

Karen Akopyan; Armen Trchounian

2006-01-01

65

Differences in conductance of M2 proton channels of two influenza viruses at low and high pH  

PubMed Central

The M2 protein of influenza A viruses forms a proton channel involved in modifying virion and trans Golgi pH during infection. Previous studies of the proton current using whole-cell patch clamp of mouse erythroleukaemia (MEL) cells expressing the M2 protein of the ‘Weybridge’ strain provided evidence for two protonation sites, one involved in permeation, the other in activation by acid pH. The present report compares the M2 channels of two different strains of influenza virus, ‘Weybridge’ (WM2) and ‘Rostock’ (RM2). Whereas with external acid pH the current-voltage relations showed similar small degrees of inward rectification, a similar apparent Kd of approximately 10 ?m for proton permeation and a high selectivity for protons over Na+, the two M2 proteins differed in whole-cell conductance at low and high pH. The proton conductance of unit membrane area was on average 7-fold greater in RM2- than WM2-expressing MEL cells. At high external pH WM2 was shown previously to have small conductance for outward current at positive driving potential. In contrast, RM2 shows high conductance for outward current with high external pH, but shows small conductance for inward current with high internal pH, conditions in which WM2 shows high conductance for inward current. The different properties of the conductances due to the two channels at high pH were determined by three amino acids in their transmembrane domains. All intermediate mutants possessed one or other property and transformation of the WM2 phenotype into that of RM2 required substitution in all three residues V27I, F38L and D44N; single substitutions in RM2 effected the opposite phenotypic change. The significance of this difference for virus replication is not clear and it may be that the higher proton flux associated with RM2 is the main factor determining its increased ability to dissipate pH gradients. It is apparent, however, from the specific differences in the sidedness of the pH-induced changes in voltage dependence of the whole-cell current that this is an intrinsic property of the virus proton channel which may have parallels with regulation of other proton channels. PMID:12527729

Chizhmakov, I V; Ogden, D C; Geraghty, F M; Hayhurst, A; Skinner, A; Betakova, T; Hay, A J

2003-01-01

66

Conducting Feminist Gender Research in the Information Systems Field1 Eileen M. Trauth, Ph.D.  

E-print Network

methods, feminist research, gender, gender research, Individual Differences Theory of Gender and ITConducting Feminist Gender Research in the Information Systems Field1 Eileen M. Trauth, Ph.814.865.6426 Anita Greenhill, Ph.D. Manchester School of Management, University of Manchester Institute of Science

Kvasny, Lynette

67

Assessing constructed wetland functional success using diel changes in dissolved oxygen, pH, and temperature in submerged, emergent, and open-water habitats in the Beaver Creek Wetlands Complex, Kentucky (USA)  

Microsoft Academic Search

We assessed the functional success of restored wetlands by determining if the patterns in dissolved oxygen (DO), temperature, and pH were similar to those conditions observed in natural wetlands. The Beaver Creek Wetlands Complex consists of dozens of marshes and ponds built in a former Licking River floodplain, in the hills of east Kentucky, USA. In natural wetland ecosystems, aquatic

Brian C. Reeder

2011-01-01

68

Summary statistics and graphical comparisons of specific conductance, temperature, and dissolved oxygen data, Buffalo Bayou, Houston, Texas, April 1986-March 1991  

USGS Publications Warehouse

Buffalo Bayou is the major stream that drains the Houston, Texas, metropolitan area. The U.S. Geological Survey has provided specific conductance, temperature, and dissolved oxygen data to the City of Houston for three sites along a 7.7-mile reach of Buffalo Bayou since 1986. Summary statistics and graphical comparisons of the data show substantial variability in the properties during 1986-91. Specific conductance ranged from about 100 microsiemens per centimeter at 25 degrees Celsius at each of the three sites to 17,100 microsiemens per centimeter at 25 degrees Celsius at the most downstream site, at the headwaters of the Houston Ship Channel. Water temperatures ranged from 5 to 33 degrees Celsius. Temperatures were very similar at the two upstream sites and slightly warmer at the most downstream site. Dissolved oxygen ranged from zero at the most downstream site to 11.7 milligrams per liter at the most upstream site.

Brown, D. W.; Paul, E. M.

1995-01-01

69

Sorption-desorption and transport of trimethoprim and sulfonamide antibiotics in agricultural soil: effect of soil type, dissolved organic matter, and pH.  

PubMed

Use of animal manure is a main source of veterinary pharmaceuticals (VPs) in soil and groundwater through a series of migration processes. The sorption-desorption and transport of four commonly used VPs including trimethoprim (TMP), sulfapyridine, sulfameter, and sulfadimethoxine were investigated in three soil layers taken from an agricultural field in Chongming Island China and two types of aqueous solution (0.01 M CaCl2 solution and wastewater treatment plant effluent). Results from sorption-desorption experiments showed that the sorption behavior of selected VPs conformed to the Freundlich isotherm equation. TMP exhibited higher distribution coefficients (K d?=?6.73-9.21) than other sulfonamides (K d?=?0.03-0.47), indicating a much stronger adsorption capacity of TMP. The percentage of desorption for TMP in a range of 8-12 % is not so high to be considered significant. Low pH (dissolved organic matter might affect their sorption behavior. Column studies indicated that the transport of VPs in the soil column was mainly influenced by sorption capacity. The weakly adsorbed sulfonamides had a high recovery rate (63.6-98.0 %) in the leachate, while the recovery rate of TMP was only 4.2-10.4 %. The sulfonamides and TMP exhibited stronger retaining capacity in 20-80 cm and 0-20 cm soil samples, respectively. The transport of VPs was slightly higher in the columns leached by WWTP effluent than by CaCl2 solution (0.01 M) due to their sorption interactions. PMID:24443047

Zhang, Ya-Lei; Lin, Shuang-Shuang; Dai, Chao-Meng; Shi, Lu; Zhou, Xue-Fei

2014-05-01

70

Defining Dissolving  

NSDL National Science Digital Library

In this introductory activity, learners discover that sugar and food coloring dissolve in water but neither dissolves in oil. Based on their observations, learners can conclude that both solids and liquids can dissolve, but they don't necessarily dissolve in all liquids. Through this activity, learners will refine their definition of dissolve.

Kessler, James H.; Galvan, Patricia M.

2007-01-01

71

Variation in hydraulic conductivity with decreasing pH in a biologically-clogged porous medium (Invited)  

NASA Astrophysics Data System (ADS)

Microbial biomass can clog porous media and ultimately affect both structural and mineral trapping of CO2 in geological carbon storage reservoirs. Whether biomass can remain intact following a sudden decrease in groundwater pH, a geochemical change associated with CO2 injection, is unclear. We examined this question using twelve biologically-active and three control column-reactor experiments. Cell abundance and distribution was monitored using confocal microscopy, plating, and direct counting. Hydraulic conductivity (K) was monitored using pressure sensors. Growth occurred for four days at neutral pH. During that time, K within the clogged portion of the reactors decreased from 0.013 to 0.0006 cm s-1 on average, a 1.47 log reduction. Next, the pH of the inflowing aqueous medium was lowered to pH 4 in six experiments and pH 5.7 in six experiments. As a result, K increased in five of the pH 4 experiments and two of the pH 5.7 experiments. Despite this increase, however, the columns remained largely clogged. Compared to pre-inoculation K values, log reductions averaged 1.13 and 1.44 in pH 4 and pH 5.7 experiments, respectively. Our findings show that biomass can largely remain intact following acidification and continue to reduce K, even when considerable cell stress and death occurs. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Altman, S. J.; Kirk, M. F.; Santillan, E. U.; McGrath, L. K.

2013-12-01

72

Conductivity and pH Dual Detection of Growth Profile of Healthy and Stressed  

E-print Network

. This dual detection system was used for evaluating the growth of acid-, temperature-, and salt- treated LH; conductivity; detection; Listeria mono- cytogenes; stressed bacteria INTRODUCTION Listeria monocytogenes has each year. Development of rapid, sensitive, simple, and cost effective methods for detecting

Bashir, Rashid

73

Early life stage brook trout (Salvelinus fontinalis) experiment to determine the effects of pH, calcium and aluminum in low conductivity water  

SciTech Connect

Recruitment failure has been suggested as a mechanism leading to loss of fish populations in acidified streams and lakes. Numerous laboratory studies have investigated the effects of pH, aluminum, and calcium, alone or in combination, on early life stages of fish; however, the exposures in these experiments have been of relatively short duration. The objective of the present study was to determine the chronic effects of elevated aluminum concentrations as a function of pH and calcium level on hatching success and subsequent fry survival of brook trout. Brook trout eyed eggs (25 per chamber) were exposed to a replicated matrix of four levels each of pH and calcium and five levels of aluminum totaling 64 different combinations in a 40-day test. The levels of pH, aluminum, and calcium were chosen to represent the chemistry of sensitive lakes and streams in eastern Canada, the northeastern United States, and Scandinavia. We exposed fish to higher aluminum concentrations at lower pH levels, based on the observation that in acidified natural waters, dissolved inorganic aluminum increases as pH decreases (e.g., Shofield 1982). The results presented are based on nominal pH, aluminum, and calcium levels. 9 refs., 12 figs., 4 tabs.

Ingersoll, C.G.; La Point, T.W.; Bergman, H.L.; Breck, J.

1984-01-01

74

Combined Esophageal Intraluminal Impedance, pH and Skin Conductance Monitoring to Detect Discomfort in GERD Infants  

PubMed Central

Background The clinical significance of weakly acidic reflux in infants is unclear. Skin conductance is a novel not-invasive method to evaluate discomfort. The aim of our study was to evaluate reflux-induced discomfort in infants with gastroesophageal reflux disease using simultaneously combined skin conductance and esophageal multichannel intraluminal impedance and pH monitoring. Methodology/Principal Findings Infants with gastroesophageal reflux symptoms were investigated for almost 20 hours divided into 120-second intervals. Temporal relationships between refluxes and discomfort were evaluated calculating the symptom association probability. Twelve infants aged 17–45 days were studied. Out of 194.38 hours of adequate artifact-free MII/pH and skin conductance monitoring, 584 reflux events were observed; 35.78% were positive for stress, of which 16.27% were acid and 83.73% weakly acidic. A significant association between refluxes and discomfort (p<0.05) was present in all infants. The intervals with reflux events showed increased skin conductance values compared to reflux-free intervals (p<0.001); SC values were similar for acid and weakly acidic reflux events. Conclusion/Signficance Discomfort was significantly associated with reflux events and did not differ between weakly acidic and acid refluxes. Our results may raise concerns about the over-prescription use of antacid drugs in the management of gastroesophageal reflux symptoms in infancy. PMID:22927972

Cresi, Francesco; Castagno, Emanuele; Storm, Hanne; Silvestro, Leandra; Miniero, Roberto; Savino, Francesco

2012-01-01

75

In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved Oâ, Mn, Fe, S(-2), and pH in porewaters  

Microsoft Academic Search

Solid-state microelectrodes have been used in situ in Raritan Bay, NJ to measure pore water profiles of dissolved Oâ, Mn, Fe, and sulfide at (sub)millimeter resolution by voltammetric techniques. The voltammetric sensor was positioned with microprofiling instrumentation mounted on a small remote operated vehicle (ROV). This instrumentation and the sensor were controlled and monitored in real time from a research

George W. Luther; Clare E. Reimers; Donald B. Nuzzio; David Lovalvo

1999-01-01

76

Stability of chemical parameters of tissue culture medium (pH, osmolarity, electrical conductivity) as a function of time of growth  

Microsoft Academic Search

Changes in medium pH, osmolarity (OS), and electrical conductivity (EC) were studied as a function of time in Murashige and Skoog (MS) liquid proliferation and rooting medium. Microshoots of wild pear (Pyrus syriaca), bitter almond, and ‘Spunta’ potato were targeted. Results indicated an acidic drift in pH in the different species on both proliferation and rooting medium. The EC was

R. A. Shibli; M. J. Mohammad; M. M. Ajlouni; M. A. Shatnawi; A. F. Obeidat

1999-01-01

77

Inhibition of a small-conductance cAMP-dependent Cl- channel in the mouse thick ascending limb at low internal pH.  

PubMed Central

1. A small-conductance Cl- channel that is stimulated by ATP and protein kinase A has been identified in the basolateral membranes of cortical thick ascending limbs (CTALs) of the mouse nephron. The present study uses the cell-attached and inside-out variants of the patch-clamp technique to investigate the pH sensitivity of this channel. 2. The open-state probability (Po) was dependent upon the internal pH in inside-out patches. Expressed as a percentage of the Po value at pH 7.2, Po increased to about 180% at pH 7.6, and decreased to 25% at pH 6.8. Po was close to zero at pH 6.4. The internal pH had no effect on the channel unit conductance. 3. The effect of pH on the CTAL Cl- channel was assessed in intact cells using NH4Cl to acidify the intracellular compartment. Experiments with the pH-sensitive fluorescent dye 2',7'-(carboxyethyl)-5'(6')-carboxy fluorescein penta-acetoxymethyl ester (BCECF) indicated that 1 mmol l-1 NH4Cl acidified the cytoplasm by 0.15 pH units and 5 mmol l-1 NH4Cl by 0.34 pH units. These concentrations of NH4Cl reduced the activity of the CTAL Cl- channel by 24 and 82% in cell-attached patches, showing that moderate changes in internal pH substantially altered the activity of this channel. NH4+ had no direct effect on channel activity. 4. Inhibition at low pH is a newly discovered property of small-conductance Cl- channels in epithelia, which might help discriminate between types of Cl- channel. Images Figure 4 Figure 5 PMID:8683473

Guinamard, R; Paulais, M; Teulon, J

1996-01-01

78

An Evaluation of In-Situ Measurements of Water Temperature, Specific Conductance, and pH in Low Ionic Strength Streams  

Microsoft Academic Search

The performance of minimonitors used by the U.S. Geological Survey for continuous measurement of water temperature, specific conductance, and pH in four low ionic strength streams in the Catskill Mountains of New York was evaluated through a calculation of their bias, precision, and accuracy and by comparison with laboratory measurements of specific conductance and pH on samples collected concurrently. Results

Anthony J. Ranalli

1998-01-01

79

Techniques for pollution monitoring in remote sites: III. Near real-time monitoring of cloud water conductivity and pH  

Microsoft Academic Search

A semi-portable flow-through cloud water monitoring system was developed for measurements of cloud water conductivity and pH in remote sites lacking AC line power. This system was tested from May to September on Camels Hump mountain, Vermont. High temporal resolution data from seven cloud events were collected during the 1991 growing season. Mean cloud water conductivity and pH for all

Mark T. Hemmerlein; Timothy D. Perkins

1993-01-01

80

Submersed macrophyte growth at low pH: contrasting responses of three species to dissolved inorganic carbon enrichment and sediment type  

Microsoft Academic Search

Responses of three ecologically and morphologically contrasting submersed freshwater macrophyte species to water column dissolved inorganic carbon (DIC) enrichment were determined for plants grown on different sediments. Relative growth rate (RGR) increased significantly (P<0.05, ANOVA) with DIC enrichment for the rooted, highly-branched Elodea canadensis (0.009 per day and 0.049 per day at 43 and 177?M DIC, respectively) and for the

Angela M. Pagano; John E. Titus

2004-01-01

81

Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling---Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid  

NASA Astrophysics Data System (ADS)

Due to the complex nature of the subprocesses involved in nucleate boiling, it has not been possible to develop comprehensive models or correlations despite decades of accumulated data and analysis. Complications such as the presence of dissolved gas in the liquid further confound attempts at modeling nucleate boiling. Moreover, existing empirical correlations may not be suitable for new applications, especially with regards to varying gravity level. More recently, numerical simulations of the boiling process have proven to be capable of reliably predicting bubble dynamics and associated heat transfer by showing excellent agreement with experimental data. However, most simulations decouple the solid substrate by assuming constant wall temperature. In the present study complete numerical simulations of the boiling process are performed---including conjugate transient conduction in the solid substrate and the effects of dissolved gas in the liquid at different levels of gravity. Finite difference schemes are used to discretize the governing equations in the liquid, vapor, and solid phases. The interface between liquid and vapor phases is tracked by a level set method. An iterative procedure is used at the interface between the solid and fluid phases. Near the three-phase contact line, temperatures in the solid are observed to fluctuate significantly over short periods. The results show good agreement with the data available in the literature. The results also show that waiting and growth periods can be related directly to wall superheat. The functional relationship between waiting period and wall superheat is found to agree well with empirical correlations reported in the literature. For the case of a single bubble in subcooled nucleate boiling, the presence of dissolved gas in the liquid is found to cause noncondensables to accumulate at the top of the bubble where most condensation occurs. This results in reduced local saturation temperature and condensation rates. The numerical predictions show reasonable agreement with the results from experiments performed at microgravity. For nucleate boiling at microgravity the simulations predict a drastic change in vapor removal pattern when compared to Earth normal gravity. The predictions match well with experimental results. However, simulated heat transfer rates were significantly under-predicted.

Aktinol, Eduardo

82

Modulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity and Genistein Binding by Cytosolic pH*  

PubMed Central

Potentiators are molecules that increase the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). Some potentiators can also inhibit CFTR at higher concentrations. The activating binding site is thought to be located at the interface of the dimer formed by the two nucleotide-binding domains. We have hypothesized that if binding of potentiators involves titratable residues forming salt bridges, then modifications of cytosolic pH (pHi) would alter the binding affinity. Here, we analyzed the effect of pHi on CFTR activation and on the binding of genistein, a well known CFTR potentiator. We found that pHi does modify CFTR maximum current (Im) and half-activation concentration (Kd): Im = 127.7, 185.5, and 231.8 ?A/cm2 and Kd = 32.7, 56.6 and 71.9 ?m at pH 6, 7.35, and 8, respectively. We also found that the genistein apparent dissociation constant for activation (Ka) increased at alkaline pHi, near cysteine pK (Ka = 1.83, 1.81 and 4.99 ?m at pHi 6, 7.35, and 8, respectively), suggesting the involvement of cysteines in the binding site. Mutations of cysteine residues predicted to be within (Cys-491) or outside (Cys-1344) the potentiator-binding site showed that Cys-491 is responsible for the sensitivity of potentiator binding to alkaline pHi. Effects of pHi on inhibition by high genistein doses were also analyzed. Our results extend previous data about multiple effects of pHi on CFTR activity and demonstrate that binding of potentiators involves salt bridge formation with amino acids of nucleotide-binding domain 1. PMID:20974851

Melani, Raffaella; Tomati, Valeria; Galietta, Luis J. V.; Zegarra-Moran, Olga

2010-01-01

83

Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida.  

PubMed

To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies. PMID:23739012

Heggelund, Laura R; Diez-Ortiz, Maria; Lofts, Stephen; Lahive, Elma; Jurkschat, Kerstin; Wojnarowicz, Jacek; Cedergreen, Nina; Spurgeon, David; Svendsen, Claus

2014-08-01

84

ANISOTROPIC THERMAL CONDUCTIVITY IN A DIRTY TYPE II SUPERCONDUCTOR J.P.M. Van der Veeken, P.H. Kes and D. de Klerk  

E-print Network

ANISOTROPIC THERMAL CONDUCTIVITY IN A DIRTY TYPE II SUPERCONDUCTOR J.P.M. Van der Veeken, P.H. Kes (PWTK) /l/. In this way they determined the electronic con- tribution to the thermal conductivity. If the mean free path of the electrons X. for inelastic ep scattering by phonons is much larger than the scale

Boyer, Edmond

85

How to Measure Dissolved Oxygen  

NSDL National Science Digital Library

This web page, hosted by the Washington State Department of Ecology, offers a general overview of dissolved oxygen and how it is measured. It includes protocols for measuring dissolved oxygen in turbulent waters as well as using the Winkler titration method. The site also features links to measuring other water quality parameters such as pH, nutrients, and turbidity.

Ecology, Washington S.

86

Air Breathing and Gill Ventilation Frequencies in Juvenile Tarpon, Megalops atlanticus: Responses to Changes in Dissolved Oxygen, Temperature, Hydrogen Sulfide, and PH  

Microsoft Academic Search

This study quantified the air-breathing frequency (ABf in breaths h-1) and gill ventilation frequency (Vf in ventilations min-1) of tarpon Megalops atlanticusas a function of PO2, temperature, pH, and sulphide concentration. Ten tarpon held at normoxia at 22–33°C without access to atmospheric oxygen survived for eight days, and seven survived for 14 days (at which point the experiment was terminated)

Stephen P. Geiger; Joseph J. Torres; Roy E. Crabtree

2000-01-01

87

Availability of dissolved oxygen in interstitial waters of a sandy creek  

Microsoft Academic Search

Dissolved oxygen, pH, conductivity and alkalinity of surface and subsurface interstitial waters were investigated at Mill\\u000a Creek (a small, rural, predominantly sandy stream in east Texas).\\u000a \\u000a Dissolved oxygen concentration tended to decrease with sediment depth, while conductivity and alkalinity did not significantly\\u000a change with substrate depth. Surface water pH was significantly higher than interstitial water (p = 0.05).\\u000a \\u000a \\u000a \\u000a Chemical analyses

Richard L. Whitman; William J. Clark

1982-01-01

88

DEVELOPMENT AND EVALUATION OF AN ACID PRECIPITATION MONITOR FOR FRACTIONAL EVENT SAMPLING WITH CAPABILITY FOR REAL-TIME PH AND CONDUCTIVITY MEASUREMENT  

EPA Science Inventory

An acid precipitation monitor has been developed that collects fractions of rain events, measures the pH and conductivity in real-time, and stores the remaining samples under refrigerated conditions. -80 microprocessor controls all operations of the monitor including sample colle...

89

Differential regulation of membrane potential and conductance via intra-and extracellular pH in fused proximal tubular cells of frog kidney  

Microsoft Academic Search

Intracellular pH (pH\\u000ai\\u000a), membrane potential (V\\u000a\\u000am\\u000a) and membrane conductance (G\\u000a\\u000am\\u000a) in fused proximal tubular cells of the frog kidney, were determined at three extracellular pH (pH\\u000ao\\u000a) values, 7.5, 8.5 and 6.5. Imposed changes of pH\\u000ao\\u000a by ±1 pH unit induced parallel but smaller shifts of pH\\u000ai\\u000a. The alkaline milieu

F. Belachgar; P. Hulin; G. Planelles; T. Anagnostopoulos

1995-01-01

90

In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O{sub 2}, Mn, Fe, S({minus}2), and pH in porewaters  

SciTech Connect

Solid-state microelectrodes have been used in situ in Raritan Bay, NJ to measure pore water profiles of dissolved O{sub 2}, Mn, Fe, and sulfide at (sub)millimeter resolution by voltammetric techniques. The voltammetric sensor was positioned with microprofiling instrumentation mounted on a small remote operated vehicle (ROV). This instrumentation and the sensor were controlled and monitored in real time from a research vessel anchored at the study site. The voltammetric analyzer was connected to the electrodes of the voltammetric cell with a 30 m cable which also bridged receiver-transmitter transducers to ensure signal quality along the cable. Single analyte O{sub 2}, pH, and resistivity microsensors were operated alongside the voltammetric sensor. The authors report on the technology of the system and the concentration changes of redox species observed from 2 to 3 cm above to approximately 4 cm below the sediment-water interface during three deployments. O{sub 2} measurements from both Clark and voltammetric electrodes were in excellent agreement. The profiles obtained show that there is no detectable overlap of O{sub 2} and Mn{sup 2+} in the sediments which is similar to previous reports from other continental margin sediments which were cored and analyzed in the laboratory. These data indicate that O{sub 2} is not a direct oxidant for Mn{sup 2+} when diffusive (rather than advective) processes control the transport of solutes within the sediment. Subsurface Mn{sup 2+} peaks were observed at about 2 cm and coincide with a subsurface pH maximum. The data can be explained by organic matter decomposition with alternate electron acceptors and by the formation of authigenic phases containing reduced Mn at depth.

Luther, G.W. III; Reimers, C.E.; Nuzzio, D.B.; Lovalvo, D.

1999-12-01

91

Statistical summary of daily values data and trend analysis of dissolved-solids data at National Stream Quality Accounting Network (NASQAN) stations  

USGS Publications Warehouse

A statistical summary is provided of the available continuous and once-daily discharge, specific-conductance, dissolved oxygen , water temperature, and pH data collected at NASQAN stations during the 1973-81 water years and documents the period of record on which the statistical calculations were based. In addition, dissolved-solids data are examined by regression analyses to determine the relation between dissolved solids and specific conductance and to determine if long-term trends can be detected in dissolved-solids concentrations. Statistical summaries, regression equations expressing the relation between dissolved solids and specific conductance, and graphical presentations of trend analyses of dissolved solids are presented for 515 NASQAN stations in the United States, Canada, Guam, and Puerto Rico. (USGS)

Wells, F.C.; Schertz, T.L.

1983-01-01

92

The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis  

NASA Technical Reports Server (NTRS)

Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

Didwall, E. M.

1981-01-01

93

Development and evaluation of a real-time pH and conductivity rain monitor. Final report for 1984-1986  

SciTech Connect

Acidic wet deposition (acid rain) is thought to be responsible for a variety of deleterious effects on ecosystems and on natural and man-made materials. Determining and quantitating these effects is complicated by the fact that rain is a low-ionic-strength solution of many different salts and organic compounds. The report describes the features and performance of a monitor that was designed to fractionate a rain event into samples corresponding to 0.3 mm of rain, determine the pH and conductivity of the sample within approximately one minute of collection, and store the remainder of the sample for more-detailed analysis.

Paur, R.J.

1987-04-01

94

Dissolved Oxygen and Temperature  

Microsoft Academic Search

Dissolved oxygen and temperature are two of the fundamental variables in lake and pond ecology. By measuring dissolved oxygen and temperature, scientists can gauge the overall condition of waterbodies. Aquatic organisms need dissolved oxygen for their survival. While water temperature also directly influences aquatic organ- isms, it regulates dissolved oxygen concentrations within a lake. Dissolved oxygen and temperature are also

Kelly Addy; Linda Green

95

Dissolved Organic Carbon Concentrations in Tempe Town Lake: biogDissolved Organic Carbon Concentrations in Tempe Town Lake: biogeochemical & hydrologic processeseochemical & hydrologic processes 1Department of Geological Sciences, 871404, Arizona State Un  

E-print Network

" to monitor basic water quality parameters (Temperature, pH, Conductivity, dissolved Oxygen, biogeochemical process that may include photo-chemical oxidation, microbial degradation, flocculation by high-temperature catalytic oxidation on a Shimadzu TOC V analyzer Methods Sampling Date Jan Feb Mar Apr

Hall, Sharon J.

96

cAMP/Protein Kinase A Activates Cystic Fibrosis Transmembrane Conductance Regulator for ATP Release from Rat Skeletal Muscle during Low pH or Contractions  

PubMed Central

We have shown that cystic fibrosis transmembrane conductance regulator (CFTR) is involved in ATP release from skeletal muscle at low pH. These experiments investigate the signal transduction mechanism linking pH depression to CFTR activation and ATP release, and evaluate whether CFTR is involved in ATP release from contracting muscle. Lactic acid treatment elevated interstitial ATP of buffer-perfused muscle and extracellular ATP of L6 myocytes: this ATP release was abolished by the non-specific CFTR inhibitor, glibenclamide, or the specific CFTR inhibitor, CFTRinh-172, suggesting that CFTR was involved, and by inhibition of lactic acid entry to cells, indicating that intracellular pH depression was required. Muscle contractions significantly elevated interstitial ATP, but CFTRinh-172 abolished the increase. The cAMP/PKA pathway was involved in the signal transduction pathway for CFTR-regulated ATP release from muscle: forskolin increased CFTR phosphorylation and stimulated ATP release from muscle or myocytes; lactic acid increased intracellular cAMP, pCREB and PKA activity, whereas IBMX enhanced ATP release from myocytes. Inhibition of PKA with KT5720 abolished lactic-acid- or contraction-induced ATP release from muscle. Inhibition of either the Na+/H+-exchanger (NHE) with amiloride or the Na+/Ca2+-exchanger (NCX) with SN6 or KB-R7943 abolished lactic-acid- or contraction-induced release of ATP from muscle, suggesting that these exchange proteins may be involved in the activation of CFTR. Our data suggest that CFTR-regulated release contributes to ATP release from contracting muscle in vivo, and that cAMP and PKA are involved in the activation of CFTR during muscle contractions or acidosis; NHE and NCX may be involved in the signal transduction pathway. PMID:23226244

Cai, Weisong; Ballard, Heather J.

2012-01-01

97

Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system  

Microsoft Academic Search

Bacterial and photochemical mineralization of dissolved organic matter were investigated in the Amazon River system. Dissolved oxygen, dissolved organic carbon (DOC), and bacterial growth were measured during incubations conducted under natural sunlight and in the dark. Substrate addition experiments indicated that the relatively low rates of bacterial activity in Amazon River water were caused by C limitation. Experiments to determine

R. M. W. Amon; R. Benner

1996-01-01

98

Dissolved Oxygen Protocol  

NSDL National Science Digital Library

The purpose of this resource is to measure the amount of oxygen dissolved in water. Students use a dissolved oxygen kit or meter to measure the dissolved oxygen in the water at their hydrology site. The exact procedure depends on the instructions in the dissolved oxygen kit or meter used. The meter requires calibration before use.

The GLOBE Program, UCAR (University Corporation for Atmospheric Research)

2003-08-01

99

Chemistry Review: Dissolving  

NSDL National Science Digital Library

This resource clearly defines and summarizes all the aspects of the dissolving of liquids, with detailed examples of different substances dissolving together. There are videos that show dissolving examples, as well as models that show substances at their molecular level. The chemical make-up of substances such as water and oil are included to better understand the dissolving process and to learn which substances dissolve and which ones do not.

Kessler, James; Galvan, Patti

2010-01-01

100

DISSOLVED OXYGEN DIURNAL FLUX STUDY  

EPA Science Inventory

Stream monitoring study of a 24 Western Corn Belt Plains streams designed to assess any correlation of nutrient loads and the level of dissolved oxygen in wadeable streams and any subsequent affect on aquatic life. Study currently being conducted under a cooperative agreement be...

101

Photobleaching of humic rich dissolved organic matter  

Microsoft Academic Search

Humic rich dissolved organic matter (DOM) from a bog lake in the Northern Black Forest was treated with simulated solar UV-light. The effects of irradiation time, initial pH values, and dissolved iron and copper on photobleaching were investigated. The DOC concentration and the UV\\/VIS absorption decreased with increasing amounts of absorbed light energy. The wavelengths of the maximum bleaching effect

Thomas Brinkmann; Daniel Sartorius; Fritz H. Frimmel

2003-01-01

102

Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: case study of Connecticut River at Middle Haddam Station, USA.  

PubMed

The prediction of colored dissolved organic matter (CDOM) using artificial neural network approaches has received little attention in the past few decades. In this study, colored dissolved organic matter (CDOM) was modeled using generalized regression neural network (GRNN) and multiple linear regression (MLR) models as a function of Water temperature (TE), pH, specific conductance (SC), and turbidity (TU). Evaluation of the prediction accuracy of the models is based on the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (CC), and Willmott's index of agreement (d). The results indicated that GRNN can be applied successfully for prediction of colored dissolved organic matter (CDOM). PMID:25112840

Heddam, Salim

2014-11-01

103

Partial nitrification under limited dissolved oxygen conditions  

Microsoft Academic Search

Partial nitrification to nitrite is technically feasible and economically favourable, especially when wastewaters contained high ammonium concentrations or low C\\/N ratios. Partial nitrification can be obtained by selectively inhibiting nitrite-oxidizing bacteria (NOB) through appropriate regulation of the pH, temperature and dissolved oxygen (DO) concentrations. The effect of pH, DO levels and temperature on ammonia oxidation rate and nitrite accumulation was

Wang Jianlong; Yang Ning

2004-01-01

104

Ph.D. Recipients listed by recipient. 1 1937 Ablard, James Elbert D.Sc. Advisor: J. C. Warner Equivalent conductance, dissociation constants and heats of dissociation of triethylamine in  

E-print Network

.D. Advisor: D. J. Hartshorne Regulation of Mg ++- ATPase and contraction in smooth muscle 1956 Albright Equivalent conductance, dissociation constants and heats of dissociation of triethylamine in alcohol to a nitroolefin 1978 Aromatorio, Debra Kay Ph.D. Advisor: D. J. Hartshorne Calcium regulation in smooth muscle

Kurnikova, Maria

105

Application and evaluation of scale dissolver treatments  

SciTech Connect

In order to provide an improved basis for the design of barium sulfate scale dissolver treatments both laboratory testing and monitoring of field applications were carried out. The deleterious effects of mixing produced water with dissolver prior to contacting scale are shown. Increasing total dissolved solids (TDS) levels can reduce dissolution depending upon temperature. Precomplexation with divalent cations reduces the capacity of the dissolver to solubilize solid scales. Magnesium may adversely affect dissolver performance at elevated temperatures. Several oil and gas wells were closely monitored during initial flowback after treatment. Samples were collected on a frequent basis and analyzed for pH, dissolver content, chlorides and various cations. The resulting data were used to construct flowback profiles for evaluation of the treatments. Evidence of scale dissolution is presented. The presence of an incompatible flush brine was discovered in one case and possible reverse order of addition of preflush and dissolver in another. The importance of establishing and following treatment procedures is briefly discussed.

Fielder, G.D. [Baker Performance Chemicals, Inc., Sand Springs, OK (United States)

1994-12-31

106

Quality-assurance results for field pH and specific-conductance measurements, and for laboratory analysis, National Atmospheric Deposition Program and National Trends Network; January 1980-September 1984  

USGS Publications Warehouse

Five intersite comparison studies for the field determination of pH and specific conductance, using simulated-precipitation samples, were conducted by the U.S.G.S. for the National Atmospheric Deposition Program and National Trends Network. These comparisons were performed to estimate the precision of pH and specific conductance determinations made by sampling-site operators. Simulated-precipitation samples were prepared from nitric acid and deionized water. The estimated standard deviation for site-operator determination of pH was 0.25 for pH values ranging from 3.79 to 4.64; the estimated standard deviation for specific conductance was 4.6 microsiemens/cm at 25 C for specific-conductance values ranging from 10.4 to 59.0 microsiemens/cm at 25 C. Performance-audit samples with known analyte concentrations were prepared by the U.S.G.S.and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The differences between the National Atmospheric Deposition Program and national Trends Network-reported analyte concentrations and known analyte concentrations were calculated, and the bias and precision were determined. For 1983, concentrations of calcium, magnesium, sodium, and chloride were biased at the 99% confidence limit; concentrations of potassium and sulfate were unbiased at the 99% confidence limit. Four analytical laboratories routinely analyzing precipitation were evaluated in their analysis of identical natural- and simulated precipitation samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple-range test on data produced by these laboratories, from the analysis of identical simulated-precipitation samples. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Interlaboratory comparability results may be used to normalize natural-precipitation chemistry data obtained from two or more of these laboratories. (Author 's abstract)

Schroder, L.J.; Brooks, M.H.; Malo, B.A.; Willoughby, T.C.

1986-01-01

107

Do pH changes in the leaf apoplast contribute to rapid inhibition of leaf elongation rate by water stress? Comparison of stress responses induced by polyethylene glycol and down-regulation of root hydraulic conductivity.  

PubMed

We have dissected the influences of apoplastic pH and cell turgor on short-term responses of leaf growth to plant water status, by using a combination of a double-barrelled pH-selective microelectrodes and a cell pressure probe. These techniques were used, together with continuous measurements of leaf elongation rate (LER), in the (hidden) elongating zone of the leaves of intact maize plants while exposing roots to various treatments. Polyethylene glycol (PEG) reduced water availability to roots, while acid load and anoxia decreased root hydraulic conductivity. During the first 30 min, acid load and anoxia induced moderate reductions in leaf growth and turgor, with no effect on leaf apoplastic pH. PEG stopped leaf growth, while turgor was only partially reduced. Rapid alkalinization of the apoplast, from pH 4.9 ± 0.3 to pH 5.8 ± 0.2 within 30 min, may have participated to this rapid growth reduction. After 60 min, leaf growth inhibition correlated well with turgor reduction across all treatments, supporting a growth limitation by hydraulics. We conclude that apoplastic alkalinization may transiently impair the control of leaf growth by cell turgor upon abrupt water stress, whereas direct hydraulic control of growth predominates under moderate conditions and after a 30-60 min delay following imposition of water stress. PMID:21477119

Ehlert, Christina; Plassard, Claude; Cookson, Sarah Jane; Tardieu, François; Simonneau, Thierry

2011-08-01

108

Pill Dissolving Demo  

NSDL National Science Digital Library

In a class demonstration, the teacher places different pill types ("chalk" pill, gel pill, and gel tablet) into separate glass beakers of vinegar, representing human stomach acid. After 20-30 minutes, the pills dissolve. Students observe which dissolve the fastest, and discuss the remnants of the various pills. What they learn contributes to their ongoing objective to answer the challenge question presented in lesson 1 of this unit.

Vu Bioengineering Ret Program

109

MEMS Needle-type Sensor Array for in Situ Measurements of Dissolved  

E-print Network

MEMS Needle-type Sensor Array for in Situ Measurements of Dissolved Oxygen and Redox Potential J I of dissolved oxygen (DO) and oxidation reduction potential (ORP) fabricated using microelectrome- chanical used to analyze redox potential, dissolved oxygen (DO), and pH in environmental samples

Papautsky, Ian

110

A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen  

Microsoft Academic Search

A new dissolved oxygen sensor based on a pH-ISFET is discussed. A working electrode surrounding a pH-sensing gate of the pH-ISFET electrolyzes dissolved oxygen, resulting in a corresponding pH change near the pH-sensing gate. The pH-ISFET is expected to determine dissolved oxygen concentration by detecting this pH change. The results suggest that the proposed sensor operated by a combined mechanism

Byung-Ki Sohn; Chang-Soo Kim

1996-01-01

111

Monitoring pH and ORP in a SHARON reactor.  

PubMed

This paper analyses the valuable information provided by the on-line measurements of pH and oxidation reduction potential (ORP) in a continuous single high ammonia removal over nitrite (SHARON) reactor. A laboratory-scale SHARON reactor equipped with pH, ORP, electric conductivity and dissolved oxygen (DO) probes has been operated for more than one year. Nitrogen removal over nitrite has been achieved by adding methanol at the beginning of anoxic stages. Time evolution of pH and ORP along each cycle allows identifying the decrease in nitritation rate when ammonia is consumed during the aerobic phase and the end of the denitrification process during the anoxic phase. Therefore, monitoring pH and ORP can be used to develop a real-time control system aimed at optimizing the length of both aerobic and anoxic stages. Real-time control of methanol addition can be carried out by using the information provided by these probes: excessive methanol addition in the anoxic stage is clearly detected in the ORP profile of the following aerobic phase, while a deficit of methanol is detected in both pH and ORP profiles of that anoxic phase. Moreover, other valuable information such as the amount of ammonia nitrified, failures in DO measurements, excessive stirring during the anoxic stage and methanol dosage in the aerobic phase was also provided by the pH and ORP profiles. PMID:22049741

Claros, J; Serralta, J; Seco, A; Ferrer, J; Aguado, D

2011-01-01

112

Dissolved Oxygen Activity  

NSDL National Science Digital Library

One of the most important measures of the health of the stream is the level of dissolved oxygen (DO) in the water. Oxygen (O2) dissolves in water through the mixing of the water surface with the atmosphere. The oxygen is used by fish and other animals in the water to "breath" through their gills or other respiratory systems and by plants. If the levels fall too low, many species of fish, macroinvertebrates, and plants cannot survive. At very low levels of oxygen, the stream becomes "septic" and smells rotten because low oxygen sulfur bacteria begin to dominate.

Gordon, Steve

113

Dissolved Oxygen Model  

NSDL National Science Digital Library

One of the most important measures of the health of the stream is the level of dissolved oxygen (DO) in the water. Oxygen (O2) dissolves in water through the mixing of the water surface with the atmosphere. The oxygen is used by fish and other animals in the water to "breath" through their gills or other respiratory systems and by plants. If the levels fall too low, many species of fish, macroinvertebrates, and plants cannot survive. At very low levels of oxygen, the stream becomes "septic" and smells rotten because low oxygen sulfur bacteria begin to dominate.

Gordon, Steve

114

Human radiation studies: Remembering the early years: Oral history of cell biologist Don Francis Petersen, Ph.D., conducted November 29, 1994  

SciTech Connect

This report is a transcript of an interview of Dr. Don Francis Petersen by representatives of the US DOE Office of Human Radiation Experiments. Dr. Petersen was selected for this interview because of his long research career at Los Alamos and his knowledge of the Atomic Energy Commission`s biomedical program. Dr. Petersen did not personally conduct research on human subjects. After a brief biographical sketch Dr. Petersen discusses his remembrances of the early use of radionuclides as biological tracers, aspects of nuclear weapons testing in the 1940`s and 1950`s including fallout studies, the means by which research projects were approved, use of humans in the whole-body counter, and the Health Division Biomedical responsibilities.

NONE

1995-08-01

115

A finite element model of conduction, convection, and phase change near a solid/melt interface. Ph.D. Thesis - Michigan Univ.  

NASA Technical Reports Server (NTRS)

Detailed understanding of heat transfer and fluid flow is required for many aerospace thermal systems. These systems often include phase change and operate over a range of accelerations or effective gravitational fields. An approach to analyzing such systems is presented which requires the simultaneous solution of the conservation laws of energy, momentum, and mass, as well as an equation of state. The variable property form of the governing equations are developed in two-dimensional Cartesian coordinates for a Newtonian fluid. A numerical procedure for solving the governing equations is presented and implemented in a computer program. The Galerkin form of the finite element method is used to solve the spatial variation of the field variables, along with the implicit Crank-Nicolson time marching algorithm. Quadratic Langrangian elements are used for the internal energy and the two components of velocity. Linear Lagrangian elements are used for the pressure. The location of the solid/liquid interface as well as the temperatures are determined form the calculated internal energy and pressure. This approach is quite general in that it can describe heat transfer without phase change, phase change with a sharp interface, and phase change without an interface. Analytical results from this model are compared to those of other researchers studying transient conduction, convection, and phase change and are found to be in good agreement. The numerical procedure presented requires significant computer resources, but this is not unusual when compared to similar studies by other researchers. Several methods are suggested to reduce the computational times.

Viterna, Larry A.

1991-01-01

116

A quality-control method for physical and chemical monitoring data. Application to dissolved oxygen levels in the river Loire (France)  

Microsoft Academic Search

A quality-control method is proposed for examining continuous physical and chemical measurements, including temperature, dissolved oxygen, pH and electrical conductivity. Firstly, measurement consistency is evaluated by various modelling approaches: internal series structure, inter-variable relations or relations with external variables, spatial coherence and deterministic models. Secondly, outliers or systematic errors are detected using classical statistical tests. The method was evaluated for

F. Moatar; J. Miquel; A. Poirel

2001-01-01

117

Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis  

NASA Technical Reports Server (NTRS)

A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

Ellis, David L.; Michal, Gary M.

1989-01-01

118

Dissolved-Oxygen Requirements of Three Species of Fish  

Microsoft Academic Search

Critical dissolved-oxygen levels and standard metabolic rates were determined for the bluegill, Lepomis macrochirus; largemouth bass, Micropterus salmoides; and the channel catfish, Ictalurus punctatus, at 25° C., 30° C., and 35° C. Two types of experiments were conducted: shock tests in which the dissolved oxygen was dropped rapidly from near saturation to a critically low point; and acclimation tests in

D. D. Moss; D. C. Scott

1961-01-01

119

Influence of hydrogen ion concentration on the minimum dissolved oxygen toleration of the silver salmon, Oncorhynuchus kisutch (walbaum)  

Microsoft Academic Search

The pH of the water has a definite effect upon the ability of small silver salmon to withstand low dissolved oxygen concentrations. Near the limit of low dissolved oxygen concentration tolerance increasing the hydrogen ion concentration produces the same effect as lowering the oxygen. Altering the pH by the use of hydrochloric, sulphuric, and ortho phosphoric acids and by carbon

L. D. Townsend; H. Cheyne

1944-01-01

120

Kinetics of the removal of dissolved aluminum by diatoms in seawater: A comparison with thorium  

SciTech Connect

Kinetic experiments were conducted using batch systems to investigate the removal of dissolved Al and [sup 234]Th tracer by dead Phaeodactylum tricornutum diatoms in seawater. Experiments were conducted at constant temperature (2 C), pH (7.8), and salinity (30 psu), using realistic oceanic concentrations of dissolved Al (50 nM), and 1, 2.5, 5, and 10 mg/l suspensions of dead diatoms in ultrafiltered (< 10,000 NMW) seawater. Results are characterized by a rapid initial removal followed by slower sorption of dissolved Al and [sup 234]Th by the diatoms on time scales ranging from hours to days. Both the removal rate and percentage of Al and [sup 234]Th removed are strong functions of the particle concentration (C[sub p]). Modelling the kinetic data as a reversible exchange of metal between solution and particles indicates a first-order dependence of the forward rate constants for Al and [sup 234]Th on C[sub p]. Extending these results to oceanic scavenging, it is shown that a first-order dependence exists between oceanic scavenging rate constants for Al and Th and suspended particle concentration for C[sub p] [approximately] 0.01-1 mg/l. This relationship is suggested to reflect the importance of physicochemical removal mechanisms (surface-adsorption, coagulation/sedimentation) rather than active biological uptake of dissolved Al and Th in oceanic waters. Oceanic scavenging rate constants for Al and Th qualitatively agree with removal rate constants predicted by the Brownian-pumping model for reactive metal scavenging.

Moran, S.B. (Woods Hole Oceanographic Inst., MA (United States)); Moore, R.M. (Dalhousie Univ., Halifax, NS (Canada))

1992-09-01

121

Microfabricated solid-state dissolved oxygen sensor  

Microsoft Academic Search

This paper describes the design, fabrication and testing of a microfabricated oxygen concentration sensor consisting of a microfabricated thin-film electrode matrix overlaid with a solid-state proton conductive matrix (PCM) and encapsulated in a bio-inert polytetrafluoroethelene (PTFE) film. Through cyclic voltammetry (CV) and voltage step (VS) measurements, the device was shown to have a linear response with respect to dissolved oxygen

Glen W. McLaughlin; Katie Braden; Benjamin Franc; Gregory T. A. Kovacs

2002-01-01

122

Boiling of Water Droplets Containing Dissolved Salts  

Microsoft Academic Search

We conducted experiments on the effect of dissolving three different salts (sodium chloride, sodium sulphate and magnesium sulphate) in water droplets boiling on a hot stainless steel surface. Substrate temperatures were varied from 100^oC to 300^oC. We photographed droplets as they evaporated, and recorded their evaporation time. At surface temperatures that were too low to initiate nucleate boiling, all three

Qiang Cui; Sanjeev Chandra; Susan McCahan

2000-01-01

123

Chemical characterization of dissolvable tobacco products promoted to reduce harm.  

PubMed

In 2009, the R. J. Reynolds Tobacco Co. released a line of dissolvable tobacco products that are marketed as an alternative to smoking in places where smoking is prohibited. These products are currently available in Indianapolis, IN, Columbus, OH, and Portland, OR. This paper describes the chemical characterization of four such products by gas chromatography-mass spectrometry (GC-MS). The dissolvable tobacco products were extracted and prepared by ultrasonic extraction using acetone, trimethylsilyl derivatization, and headspace solid phase microextraction (SPME). The following compounds were identified in the dissolvables using either ultrasonic extractions or trimethylsilyl derivatization: nicotine, ethyl citrate, palmitic acid, stearic acid, sorbitol, glycerol, and xylitol. The following compounds were identified in the dissolvables using headspace SPME: nicotine, ethyl citrate, cinnamaldehyde, coumarin, vanillin, and carvone. With the exception of nicotine, the compounds identified thus far in the dissolvables are either flavoring compounds or binders. The concentration of free nicotine in the dissolvables was determined from the Henderson-Hasselbalch equation and by measuring the pH and nicotine concentration by GC-MS. The results presented here are the first to reveal the complexity of dissolvable tobacco products and may be used to assess potential oral health effects. PMID:21332188

Rainey, Christina L; Conder, Paige A; Goodpaster, John V

2011-03-23

124

Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades  

SciTech Connect

Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca{sup 2+}. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in Dl water had no detectable dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates correlated positively with enhanced cinnabar dissolution. {zeta}-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

Ravichandran, M.; Ryan, J.N. [Univ. of Colorado, Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering] [Univ. of Colorado, Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering; Aiken, G.R.; Reddy, M.M. [Geological Survey, Boulder, CO (United States)] [Geological Survey, Boulder, CO (United States)

1998-11-01

125

Dissolved Oxygen Characteristics of Spring Algal Bloom in Xiangxi Bay of Three Gorges Reservoir  

Microsoft Academic Search

Dissolved oxygen characteristics of spring algal bloom in Xiangxi Bay of Three Gorges Reservoir were studied. In surveys, 12 stations have been investigated and 132 samples were collected weekly from February 24 to May 10 in 2008. Chlorophyll a, pH and water temperature could be the significant influence factors to dissolved oxygen in spring algal bloom by using stepwise multiple

Huajun Luo; Defu Liu; Daobin Ji; Yingping Huang

2010-01-01

126

Dissolved heavy metal determination and ecotoxicological assessment: a case study of the corumbataí river (são paulo, Brazil).  

PubMed

Abstract The aim of this one-year study (August 2009 to July 2010) was to evaluate the Corumbataí River water polluted by anthropogenic sources and see how it affects the reproduction of the microcrustacean Ceriodaphnia dubia (Richard, 1984) in laboratory conditions over seven days of exposure to water samples collected monthly at six different locations. We determined the concentrations of zinc (Zn), copper (Cu), nickel (Ni), lead (Pb), and cadmium (Cd), as well as physicochemical parameters such as dissolved oxygen, conductivity, water temperature, and pH. Dissolved oxygen and conductivity demonstrated anthropogenic influence, as dissolved oxygen concentration decreased and conductivity increased from the upstream to the downstream stretch of the river. The effects on C. dubia were observed in the months with high precipitation, but the toxicity cannot be associated with any particular contaminant. Heavy metal levels kept well below the limit values. Zn and Pb had the highest concentrations in the water during the sampling period, probably due to the industrial and agricultural influence. However, these levels do not seem to be associated with precipitation, which suggests that their primary source was industry. Physicochemical parameters, the ecotoxicological assay, and determination of heavy metals proved to be efficient tools to evaluate aquatic environments. PMID:25274936

Aparecida Maranho, Lucineide; Teresinha Maranho, Leila; Grossi Botelho, Rafael; Luiz Tornisielo, Valdemar

2014-01-01

127

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25

128

Dissolving Different Liquids in Water  

NSDL National Science Digital Library

In this activity, learners add different liquids to water and apply their working definition of âdissolvingâ to their observations. After observing isopropyl rubbing alcohol, vegetable oil, and corn syrup in water, learners can conclude that while some liquids may dissolve in water, different liquids dissolve in water to different extents. Adult supervision recommended.

Kessler, James H.; Galvan, Patricia M.

2007-01-01

129

Factor A (pH, 4-9) Factor B (temperature, 20C 37C)  

E-print Network

® Factor A (pH, 4-9) Factor B (temperature, 20C ­ 37C) Factor C (dissolved oxygen, 0% - 100%) 20 production in fermentation set up (such as temperature, dissolved oxygen, or pH for instance). Central

Strynadka, Natalie

130

Middle School Chemistry: The Water Molecule and Dissolving  

NSDL National Science Digital Library

This set of multimedia lessons, developed by the American Chemical Society, examines the process of dissolving materials in water. Videos, interactive simulations, hands-on labs, and demonstrations are all integrated into a 9-part unit of instruction that includes assessments and background information. Students will explore why water dissolves salt and sugar, conduct solubility tests, investigate how temperature affects dissolving, and more. Editor's Note: The authors designed this curriculum to help students understand basic chemistry within a framework of molecular interactions. The molecular models and related animations provide a foundation for understanding states of matter, atomic models and bonding, charge interactions, and chemical change.

Galvan, Patti; Kessler, Jim

2011-06-27

131

Linking fluorescence spectroscopy to diffuse soil source for dissolved humic substances in the Daning River, China.  

PubMed

Dissolved organic matter collected in Daning River (China) in July 2009 was investigated with parallel factor analysis (PARAFAC) and fluorescence spectroscopy with the aim of identifying the origin of dissolved humic substance (HS) components. Two HS-like fluorescence components (peak M and C) with excitation/emission (ex/em) maxima at 305/406 nm and 360/464 nm showed relatively uniform distribution in the vertical direction for each sampling site but a trend of accumulation down the river, independent of the highly heterogeneous water environment as implicated by water quality parameters (i.e., water temperature, algae density, chlorophyll a, dissolved oxygen, dissolved organic carbon, pH, conductivity and turbidity), while an amino acid/protein-like component (peak T; ex/em = 280/334 nm) was quite variable in its spatial distribution, implying strong influence from point sources (e.g. sewage discharge) and local microbial activities. The fluorescence intensity (F max in Raman units) at these ex/em wavelength pairs fell in the range of 0.031-0.358, 0.051-0.224 and 0.026-0.115 for peak T, M and C, respectively. In addition, the F max values of peak C covaried with M (i.e. C = 0.503 ×M, p < 0.01, R (2) = 0.973). Taken together, these results indicate that peak M and C originated primarily and directly from the same soil sources that were diffusive in the catchment, but peak T was more influenced by local point sources (e.g. wastewater discharge) and in situ microbial activities. This study presents new insights into the currently controversial origin of some HS components (e.g."peak M", as commonly referred to in the literature). This study highlights that natural water samples should be collected at various depths in addition to along a river/stream flow path so as to better evaluate the origin of HS fluorescence components. PMID:25208714

Chen, Hao; Zheng, Bing-Hui; Zhang, Lei

2013-02-01

132

Fast dissolving films: a review.  

PubMed

Fast-dissolving drug delivery systems have been developed as an alternative to conventional dosage form as an oral means of drug delivery in case of chronic conditions. Now a day's fast dissolving films are preferred over conventional tablets and capsules for masking the taste of bitter drugs to increase the patient compliance. Fast dissolving films consist of a very thin oral strip which dissolves in less than one minute when placed on the tongue. Dissolvable oral thin films are in the market since past few years in the form of breath strips and are widely accepted by consumers for delivering vitamins, vaccines and other drug products. The various manufacturing techniques for the preparation of films have also been detailed in the review. The present review details most of the patents on such fast dissolving films in recent years. A brief study has been made on various parameters which are used to evaluate such films. In case of chronic disorders these fast dissolving films are better for delivering drugs and obtaining faster therapeutic blood levels and superior in comparison to other oral conventional dosage forms. PMID:21453260

Chaturvedi, Ankita; Srivastava, Pranati; Yadav, Sunita; Bansal, Mayank; Garg, Garima; Sharma, Pramod Kumar

2011-07-01

133

Fiber-optic dissolved oxygen and dissolved carbon dioxide sensors using fluorophores encapsulated in sol gel matrices  

Microsoft Academic Search

Fiber optic chemical sensors (FOCS) for oxygen, dissolved oxygen (DO), and dissolved CO2 sensing using thin films of fluorophores encapsulated in sol-gel matrices were made and tested. The DO\\/O2 sensor used ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline) perchlorate (Ru(Ph 2Phen)Cl2) as the oxygen sensitive fluorophore and methyltrimethoxysilane (MTMS) sol-gel as the encapsulating matrix material. For the DCO2 sensor, 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) co-doped

Hyeog-Chan Kwon

2002-01-01

134

Ph.D. Assessment Form Student Name  

E-print Network

Ph.D. Assessment Form Student Name: Major Advisor: Date: Outcome 1: Graduates will be able to successfully design and conduct original research in their specialty areas. Criterion: Ph.D. candidates related disciplinary areas. Criterion: Ph.D. students will pass their initial preliminary examination

135

In situ removal of dissolved and suspended contaminants from a eutrophic pond using hybrid sand-filter.  

PubMed

In this study, in situ hybrid sand filters were designed to remove dissolved and suspended contaminants from eutrophic pond. Currently, there are no attempts made to eradicate dissolved as well as suspended contaminants from eutrophic water system in a single step. Monitoring studies revealed that examined pond contain high chlorophyll-a content (101.8 ?g L(-1)), turbidity (39.5 NTU) and total dissolved solids concentration (0.04 g L(-1)). Samples were further exposed to extensive water quality analysis, which include examining physicochemical parameters (pH, conductivity, total dissolved solids, salinity, turbidity and chlorophyll-a), metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Cr, and Ni) and anions (NO3, NO2, PO4, SO4, Cl, F and Br). To tackle pollutants, filtration system was designed to comprise of several components including fine sand, coarse sand/sorbent mix and gravel from top to bottom loaded in fiberglass tanks. All the filters (activated carbon, Sargassum and zeolite) completely removed algal biomass and showed potential to decrease pH during entire operational period of 20 h at 120 L h(-1). To examine the efficiency of filters in adverse conditions, the pond water was spiked with heavy metals (Cu, Cd, Pb, Zn, Cr, and Ni). Of the different filter systems, Sargassum-loaded filter performed exceedingly well with concentrations of heavy metals never exceeded the Environmental protection agency regulations for freshwater limits during total operational period. The total uptake capacities at the end of the fifth event were 24.9, 20.5, 0.58, 5.2, 0.091 and 2.8 mg/kg for Cr, Ni, Cu, Zn, Cd and Pb, respectively. PMID:24844899

Vijayaraghavan, K; Joshi, Umid Man; Ping, Han; Reuben, Sheela; Burger, David F

2014-01-01

136

The Measurement of Dissolved Oxygen  

ERIC Educational Resources Information Center

Describes an experiment in environmental chemistry which serves to determine the dissolved oxygen concentration in both fresh and saline water. Applications of the method at the undergraduate and secondary school levels are recommended. (CC)

Thistlethwayte, D.; And Others

1974-01-01

137

Clarification of LWR Dissolver Solutions.  

National Technical Information Service (NTIS)

When high-burnup LWR fuels are reprocessed, fission products cause solids formation during solvent extraction. Several methods for clarifying LWR dissolver solutions have been evaluated. Chemical treatment as well as centrifugation will be necessary to pr...

M. J. Plodinec

1978-01-01

138

Removal of dissolved metals by plant tissue  

SciTech Connect

Various types of microbial biomass have been shown to adsorb metals dissolved in aqueous media. It has now been demonstrated that certain plant tissues are also effective for this type of adsorption process. In particular, tomato and tobacco roots harvested from field-grown plants were shown to adsorb Sr from an aqueous solution of SrCl[sub 2]. Distribution coefficients in excess of 550 were measured and the adsorption isotherms at 25 C could be fitted to Langmuir-type expressions. The bioadsorbent could be regenerated and metals recovered by either a reduction in the pH to less than 2.0 or by use of a concentrated chloride salt solution.

Scott, C.D. (Oak Ridge National Lab., TN (United States))

1992-04-25

139

Formulation development and evaluation of fast dissolving film of telmisartan.  

PubMed

Hypertension is a major cause of concern not just in the elderly but also in the youngsters. An effort was made to formulate a fast dissolving film containing telmisartan which is used in the treatment of hypertension with a view to improve the onset of action, therapeutic efficacy, patient compliance and convenience. The major challenge in formulation of oral films of telmisatran is that it shows very less solubility in the pH range of 3-9. Various film forming agents and polyhydric alcohols were evaluated for optimizing composition of fast dissolving films. Fast dissolving films using hydroxypropyl methylcellulose, polyvinyl alcohol, glycerol, sorbitol, menthol and an alkalizer were formulated using solvent casting method. Optimized formulations were evaluated for their weight, thickness, folding endurance, appearance, tensile strength, disintegration time and dissolution profile. PMID:23325992

Londhe, Vaishali Y; Umalkar, Kashmira B

2012-03-01

140

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

SciTech Connect

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

NA

2004-11-22

141

Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks.  

PubMed

Diel dissolved oxygen (DO) time series measured continuously using proximal sensors in situ for a temperate lake were denoised using discrete wavelet transform (DWT) with the orthogonal wavelet families of coiflet, daubechies, and symmlet with order of 10. Diel DO time series denoised were modeled using nine temporal artificial neural networks (ANNs) as a function of water level, water temperature, electrical conductivity, pH, day of year, and hour. Our results showed that time-lag recurrent network (TLRN) using denoised data emulated diel DO dynamics better than the best-performing TLRN using the original data, time-delay neural network (TDNN), and recurrent network (RNN). Daubechies basis dealt with diel DO data slightly better than the other bases given its coefficient of determination (r (2)?=?87.1 %), while symmlet performed slightly better than the other bases in terms of root mean square error (RMSE?=?1.2 ppm) and mean absolute error (MAE?=?0.9 ppm). PMID:24100799

Evrendilek, Fatih; Karakaya, Nusret

2014-03-01

142

Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system  

NASA Astrophysics Data System (ADS)

Bacterial and photochemical mineralization of dissolved organic matter were investigated in the Amazon River system. Dissolved oxygen, dissolved organic carbon (DOC), and bacterial growth were measured during incubations conducted under natural sunlight and in the dark. Substrate addition experiments indicated that the relatively low rates of bacterial activity in Amazon River water were caused by C limitation. Experiments to determine the photoreactivity of this biologically refractory DOC revealed unusually high rates of photochemical consumption of DOC (~4.0 ?M C h -1) and dissolved oxygen (~3.6 ?M O 2 h -1) in Rio Negro surface waters. In additional experiments we observed that bacterial growth and respiration were not significantly stimulated or inhibited during periods of sunlight exposure. The molar ratio of DOC to O 2 consumed during photochemical processes was close to one (1.11-1.14) in all photooxidation experiments. Sunlight exposure over 27 h showed that at least 15% of Rio Negro DOM was photoreactive. The rate of photochemical consumption of DOC was approximately sevenfold greater than bacterial DOC utilization in Rio Negro surface waters; however, integrated over the entire water column microbial remineralization was the dominant process for oxygen and DOC consumption. Photomineralization of biologically refractory riverine DOM appears to be more important than previously believed and could be a major removal mechanism for terrestrially-derived DOM in the coastal ocean.

Amon, R. M. W.; Benner, R.

1996-05-01

143

Reducing emissions from uranium dissolving  

SciTech Connect

This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

1992-10-01

144

Reducing emissions from uranium dissolving  

SciTech Connect

This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

1992-10-01

145

Interactions Among Dissolved Nitrogen, Phosphate, and Dissolved Oxygen at Several Sites in Chesapeake Bay in 2000  

NSDL National Science Digital Library

We looked at the correlation between dissolved oxygen and two water quality variables: dissolved nitrogen and dissolved phosphorus. We thought that, if dissolved oxygen were highly correlated with dissolved nitrogen (for example), then that would imply that dissolved nitrogen was limiting or otherwise important at that site. Likewise for dissolved phosphorus. We found that different sites in the bay had different levels of correlation, but there was no spatial pattern to the data.

Charlie Hunter (Southwestern College;); Sarah Kenick (University of New Hampshire;); Brian White (University of Massachusettes ;); ;

2006-06-18

146

Dissolving a Substance in Different Liquids  

NSDL National Science Digital Library

In this activity, learners make colored sugar and add it to water, alcohol, and oil to discover some interesting differences in dissolving. The sugar will dissolve to a different extent in each liquid, and the color may or may not dissolve depending on the liquid. Learners also have an opportunity to refine their definition of the term dissolve. Adult supervision recommended.

Kessler, James H.; Galvan, Patricia M.

2007-01-01

147

Dissolved Organic Carbon Dynamics in Precipitation of Central Pennsylvania as Influenced by Climatic Variability  

NASA Astrophysics Data System (ADS)

Dissolved organic carbon (DOC) is ubiquitous in atmospheric water, plays an important role in cloud formation processes, and contributes to organic acidity of precipitation. Rain and snow deposited to the landscape is a source of acidity and nutrient enrichment to ecosystems and water bodies. Despite the significance of DOC to a plethora of ecosystem processes, knowledge about its contributions via precipitation remains limited. In this research project, we are quantifying temporal variations in the sources and concentrations of organic carbon in precipitation in the central Pennsylvania. Here, we present results of a study focusing on the dynamic variability of DOC in rainwater, at multiple time scales, at two sites located in the Appalachian Plateau Region. Sequential sampling during stormflow events at the first site, the Shale Hills Critical Zone Observatory, was conducted to address event-scale variability in rainfall DOC concentrations and is explored in the context of the types and the origins of the storms. Weekly sampling over many years at the second site, the Leading Ridge Experimental watershed, was conducted to address relationships among emissions sources, seasonal variability in storm tracks, antecedent atmospheric moisture conditions, and the temporal variability in DOC responses. In addition to DOC, other chemical analyses were conducted on the rainwater samples, including dissolved inorganic carbon, forms of nitrogen, major cations and anions, trace elements, water isotopes, pH and conductivity. These ancillary data, along with meteorological back trajectory analyses, help to identify sources and origins of DOC in the rainwater of central Pennsylvania over short and long time scales.

Iavorivska, L.; Boyer, E. W.; Grimm, J.; Fuentes, J. D.

2012-12-01

148

The Influence of pH on the Oxygen Isotope Composition of Calcium Carbonate  

NASA Astrophysics Data System (ADS)

Oxygen isotope fractionation between calcium carbonate and water is temperature-dependent and can therefore be used as a paleothermometer. Although oxygen isotope fractionation is expected from principles of equilibrium isotopic partitioning, the temperature-dependence remains uncertain because other factors, such as slow exchange between dissolved inorganic carbon (DIC) species and water, can obscure the temperature signal. Oxygen isotopic equilibrium between aqueous solution and calcium carbonate includes two distinct equilibria: equilibrium of the DIC species in solution (i.e., CO2(aq), H2CO3, HCO3-, and CO32-) with water, and equilibrium between the dissolved inorganic carbon with the precipitated carbonate. To isolate kinetic isotope effects that arise at the mineral-solution interface, isotopic equilibrium among DIC species must be maintained. This can be accomplished by dissolving the enzyme carbonic anhydrase (CA) into the solution, thereby reducing the time required for isotopic equilibration between DIC species by approximately two orders of magnitude between pH 7.7 and 9.3. We conduct calcite growth experiments aimed specifically at measuring the pH-dependence of kinetic oxygen isotope effects during precipitation of calcite. We precipitated calcite from aqueous solution at a constant pH and controlled supersaturation over the pH range 7.7-9.3. For each experiment, a gas mixture of N2 and CO2 is constantly bubbled through a beaker containing ~1300 mL of solution (30 mM CaCl2 + 5 mM NH4Cl + 0.1 mM SrCl2). As CO2 from the gas dissolves into solution, calcite crystals grow on the beaker walls. The pH of the solution is maintained by use of an autotitrator with NaOH as the titrant. We control the temperature, pH, the pCO2 of the gas inflow, and the gas inflow rate, and monitor the total alkalinity, the pCO2 of the gas outflow, and the amount of NaOH added. A constant crystal growth rate of ~1.6 mmol/m2/hr is maintained over all experiments. We will present results from this set of experiments and discuss kinetic oxygen isotope effects in the context of a recently-developed ion-by-ion growth model of calcite.

Hunt, J. D.; Watkins, J. M.; Ryerson, F. J.; DePaolo, D. J.

2013-12-01

149

Group of Microbes Change Dissolved  

E-print Network

't likely to be cost-effective. Photography by Araldo de Luca/CORBIS Ten years ago Derek Lovley their energy by breathing in dissolved forms of toxic metals, such as uranium and cadmium, and converting them sense, he said. "You couldn't use this process to harvest the gold from the ocean. The cost in pumping

Lovley, Derek

150

Wormhole formation in dissolving fractures  

Microsoft Academic Search

We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The

P. Szymczak; A. J. C. Ladd

2009-01-01

151

Dissolved oxygen and fish behavior  

Microsoft Academic Search

Synopsis This essay reviews the behavioral responses of fish to reduced levels of dissolved oxygen from the perspective of optimization theory as used in contemporary behavioral ecology. A consideration of oxygen as a resource suggests that net oxygen gain per unit of energy expenditure will be the most useful currency for ecological models of breathing. In the process of oxygen

Donald L. Kramer

1987-01-01

152

Phase fluorometric dissolved oxygen sensor  

Microsoft Academic Search

The design and performance of a ruggedised dissolved oxygen (DO) probe, which is based on phase fluorometric detection of the quenched fluorescence of an oxygen-sensitive ruthenium complex, is reported. The complex is entrapped in a porous hydrophobic sol–gel matrix that has been optimised for this application. The LED excitation and photodiode detection are employed in a dipstick probe configuration, with

C. McDonagh; C. Kolle; A. K. McEvoy; D. L. Dowling; A. A. Cafolla; S. J. Cullen; B. D. MacCraith

2001-01-01

153

The potential source of dissolved aluminum from resuspended sediments to the North Atlantic deep water  

Microsoft Academic Search

Laboratory and field studies were conducted to investigate the significance of resuspended sediments as a source of dissolved Al to the deep northwest Atlantic. Sediment resuspension experiments demonstrate the effect on dissolved Al concentration (initially 11 nM) of adding natural suspended sediments (ca. 0.1-10 mg\\/L) to seawater. The concentration of dissolved Al increased by the resuspension of sediments; for example,

S. B. Moran; R. M. Moore

1991-01-01

154

Use of iron salts to control dissolved sulfide in trunk sewers  

SciTech Connect

Sewer headspace H{sub 2}S reduction by precipitating dissolved sulfide in wastewater was investigated using iron salt (FeCl{sub 3} and FeCl{sub 2}). Full-scale experiments were conducted in a 40-km (25 mi) sewer with an average flow of 8.7 m{sup 3}/s (200 mgd). Results were sensitive to total Fe dosages and Fe(III)/Fe(II) blend ratios injected. A concentration of 16 mg/L total Fe and a blend ratio of 1.9:1 [Fe(III):Fe(II)] reduced dissolved sulfide levels by 97%. Total sulfide and headspace H{sub 2}S were reduced by 63% and 79%, respectively. Liquid and gas-phase sulfide reductions were largely due to the effective precipitation of sulfide with Fe(III) and Fe(II) and the limited volatilization of H{sub 2}S, respectively. Oxidation of sulfide in the presence of Fe(II) and minute amounts of O{sub 2} may have occurred. A combination of Fe(III) and Fe(II) proved more effective than either salt alone. By using excess Fe(III), dissolved sulfide can be reduced to undetectable levels. No specific relation between the concentration of Fe or Fe(III)/Fe(II) blend ratio and sewer crown pH was inferred. Iron salts may retard crown corrosion rates by precipitating free sulfide and reducing its release to the sewer headspace as H{sub 2}S. A mechanism to inhibit certain responsible bacteria was not established in the 40-km (25 mi) sewer.

Padival, N.A.; Kimbell, W.A. [County Sanitation District of Los Angeles County, Whittier, CA (United States); Redner, J.A. [County Sanitation District of Los Angeles County, Compton, CA (United States)

1995-11-01

155

Micromachined dissolved oxygen sensor based on solid polymer electrolyte  

Microsoft Academic Search

A silicon microprobe to measure dissolved oxygen levels is described. The sensors are prepared by overlaying platinum thin film electrodes with a solid state proton conductive matrix (PCM) coating. The platinum thin film electrodes are fabricated on silicon substrates by standard photolithographic techniques while the PCM coating is achieved by drop-casting methods. The size and materials of the device make

Peng Wang; Yi Liu; Héctor D. Abruña; Jason A. Spector; William L. Olbricht

2011-01-01

156

Ozonation of dissolved organic matter in substrate-varied and operationally-varied activated sludge effluents  

Microsoft Academic Search

The dissolved organic matter in activated sludge effluents includes microbial by-products, so manipulating bioreactor variables could indirectly affect downstream processes. This research studied ozonation and ozonated effluent character as affected by three activated sludge variables. These variables were each tested at two levels, including pH levels of 6.0 and 8.0, dissolved oxygen (DO) levels of 1 and 7 mg\\/L, and

Watt

1984-01-01

157

Polarographic behaviors of diclofenac sodium in the presence of dissolved oxygen and its analytical application  

Microsoft Academic Search

The polarographic response characteristics of diclofenac sodium were investigated in 0.25M HAc-NaAc (pH 5.0) supporting electrolyte in the absence and the presence of dissolved oxygen. The results demonstrate that the reduction peak at ca. ?1.10V is a catalytic hydrogen wave after deaeration, and the reduction peak in the presence of dissolved oxygen is a so-called parallel catalytic hydrogen wave. Based

Maotian Xu; Liangfeng Chen; Junfeng Song

2004-01-01

158

Small Changes in pH Have Direct Effects on Marine Bacterial Community Composition: A Microcosm Approach  

PubMed Central

As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15–8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments. PMID:23071704

Krause, Evamaria; Wichels, Antje; Gimenez, Luis; Lunau, Mirko; Schilhabel, Markus B.; Gerdts, Gunnar

2012-01-01

159

Fiber-optic dissolved oxygen and dissolved carbon dioxide sensors using fluorophores encapsulated in sol gel matrices  

NASA Astrophysics Data System (ADS)

Fiber optic chemical sensors (FOCS) for oxygen, dissolved oxygen (DO), and dissolved CO2 sensing using thin films of fluorophores encapsulated in sol-gel matrices were made and tested. The DO/O2 sensor used ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline) perchlorate (Ru(Ph 2Phen)Cl2) as the oxygen sensitive fluorophore and methyltrimethoxysilane (MTMS) sol-gel as the encapsulating matrix material. For the DCO2 sensor, 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) co-doped with sodium bicarbonate was used as the DCO2 sensitive fluorophore-chemical system and diisobutoxy-alumino triethoxysilane (ASE) sol-gel was used as the encapsulating matrix material. It was found that oxygen quenches the excited state Ru(Ph2Phen)Cl 2 by diffusing through the MTMS matrix. Continuous excitation of Ru(Ph 2Phen)Cl2 during MTMS drying resulted in long, single exponential lifetimes of the metal complex and increased sensor sensitivity. When the sensor was field tested, it was found to have an excellent match compared to conventional titration method for determining dissolved oxygen concentrations and had fast response times. It was determined that this sensor measured the vapor pressure of oxygen rather than the absolute concentration of dissolved oxygen. For DCO2 sensing, it was found that the dynamic response of the senor could be tuned by varying the HPTS to NaHCO3 ratios. The sensor had fast response times compared to other fiber optic DCO 2 sensors reported which typically have response times of minutes.

Kwon, Hyeog-Chan

160

EFFECTS OF LOW DISSOLVED OXYGEN ON SURVIVAL AND REPRODUCTION OF DAPHNIA, HYALELLA, AND GAMMARUS  

EPA Science Inventory

Daphnia magna, Daphnia pulex, Hyalella azteca, and Gammarus lacustris were exposed to low dissolved oxygen concentrations in the laboratory. Acute and chronic exposures were conducted to develop data for use in the EPA Water Quality Criteria document for dissolved oxygen. . magna...

161

Uranium Isotope Fractionation during Oxidation of Dissolved U(iv) and Synthetic Solid UO2  

NASA Astrophysics Data System (ADS)

U isotopes (238U/235U) show promise as a tool for environmental monitoring of U contamination as well as a proxy for paleo-redox conditions. However, the isotopic fractionation mechanisms of U are still poorly understood. In groundwater systems, U(VI), a mobile contaminant, can be reduced to immobile U(IV) and thus remediated. Previous work shows that 238U/235U of the remaining U(VI) changes with the extent of reduction. Therefore, U(VI) isotope composition in groundwater can potentially be used to detect and perhaps quantify the extent of reduction. However, knowing if isotopic fractionation occurs during U(IV) oxidation is equally important. First, the reduced U(IV) (either solid or as dissolved organic complexes) potentially can be reoxidized to U(VI). If isotope fractionation occurs during oxidation, it would complicate the use of U isotope composition as a monitoring technique. Further, in natural weathering processes, U(IV) minerals are oxidized to form dissolved U(VI), which is carried to rivers and eventually to the ocean and deposited in marine sediments. The weathering cycle is thus sensitive to redox conditions, meaning the sedimentary U isotope record may serve as a paleoredox indicator, provided U isotope fractionation during oxidation and reduction are well known. We conducted experiments oxidizing 2 different U(IV) species by O2 and measuring isotopic fractionation factors. In one experiment, dissolved U(IV) in 0.1 N HCl (pH 1) was oxidized by entrained air. As oxidation proceeds at pH 1, the remaining dissolved U(IV) becomes progressively enriched in 238U in a linear trend, while the product U(VI) paralleled, but was offset to 1.0‰ lighter in 238U/235U. This linear progression of both remaining reactant and product suggests equilibrium fractionation during oxidation of dissolved U(IV) by O2. A second experiment oxidized synthetic, solid UO2 (in 20 mM NaHCO3, pH 7) with entrained air. The oxidative fractionation is very weak in this case with product U(VI) ~0.1‰ heavier than the remaining UO2. We attribute the lack of strong fractionation during oxidation of solid UO2 to a 'rind effect', where the surface layer must be completely oxidized before the next layer is exposed to oxidant. Hence, nearly complete, congruent conversion of each layer of U(IV) to U(VI) results in minimal isotope fractionation. A small amount of transient fractionation probably occurs initially, but this is quickly negated as the surface becomes isotopically fractionated. Interestingly, our measured ~0.1‰ U isotope fractionation during oxidation of solid U(IV) agrees with the natural observation that 238U/235U ratios in river water (mainly U(VI)) are ~0.1‰ greater than those in fresh continental rocks (primarily U(IV) minerals). Application of these results to natural settings should be done with caution, however. Oxidation of natural uraninite in continental rocks is a much slower process. If the U(VI) product and the U(IV) reactant remain in contact for long periods of time (e.g., months), they may evolve toward isotopic equilibrium. Measurements of 238U/235U in various natural weathering environments should be undertaken to examine this idea.

Wang, X.; Johnson, T. M.; Lundstrom, C. C.

2013-12-01

162

Dissolved Oxygen and Biochemical Oxygen Demand  

NSDL National Science Digital Library

This EPA website provides general information about dissolved oxygen, including what it is, sampling and equipment considerations, and sampling and analysis protocols. The site also features a chart of dissolved oxygen solubility as a function of temperature.

Agency, U. S.

163

Dissolved Oxygen and Biochemical Oxygen Demand  

NSDL National Science Digital Library

This Environmental Protection Agency (EPA) website provides general information about dissolved oxygen, including what it is, sampling and equipment considerations, and sampling and analysis protocols. The site also features a chart of dissolved oxygen solubility as a function of temperature.

2010-03-02

164

Hanadi S. Rifai, Ph. D., P. E., F. ASCE Professor and Director  

E-print Network

Radiation Conductivity Taste, color, odor Total Organic Carbon Dissolved Oxygen Ammonia/nitrate Biochemical on the bottom which destroys animal habitats #12;Oxygen Demanding Material Dissolved Oxygen (DO) critical Temperature affects dissolved oxygen and microorganisms Oxygen use speeds up as the temperature increases

165

Azomethine H colorimetric method for determining dissolved boron in water  

USGS Publications Warehouse

An automated colorimetric method for determining dissolved boron in water is described. The boron is complexed with azomethine H, which is readily available as the condensation product of H acid (8-amino-1-naphthol-3,6-disulfonic acid) and salicylaldehyde. The absorbance of the yellow complex formed is then measured colorimetrically at 410 nm. Interference effects from other dissolved species are minimized by the addition of diethylenetriaminepentaacetic acid (DTPA); however, iron, zinc, and bicarbonate interfere at concentrations above 400 ??g/L, 2000 ??g/L, and 200 mg/L, respectively. The bicarbonate interference can be eliminated by careful acidification of the sample with concentrated HCl to a pH between 5 and 6. Thirty samples per hour can be routinely analyzed over the range of from 10 to 400 ??g/L, boron.

Spencer, R. R.; Erdmann, D. E.

1979-01-01

166

Determination of dissolved aluminum in water samples  

USGS Publications Warehouse

A technique has been modified for determination of a wide range of concentrations of dissolved aluminum (Al) in water and has been tested. In this technique, aluminum is complexed with 8-hydroxyquinoline at pH 8.3 to minimize interferences, then extracted with methyl isobutyl ketone (MIBK). The extract is analyzed colorimetrically at 395 nm. This technique is used to analyze two forms of monomeric Al, nonlabile (organic complexes) and labile (free, Al, Al sulfate, fluoride and hydroxide complexes). A detection limit 2 ug/L is possible with 25-ml samples and 10-ml extracts. The detection limit can be decreased by increasing the volume of the sample and (or) decreasing the volume of the methyl isobutyl ketone extract. The analytical uncertainty of this method is approximately + or - 5 percent. The standard addition technique provides a recovery test for this technique and ensures precision in samples of low Al concentrations. The average percentage recovery of the added Al plus the amount originally present was 99 percent. Data obtained from analyses of filtered standard solutions indicated that Al is adsorbed on various types of filters. However, the relationship between Al concentrations and adsorption remains linear. A test on standard solutions also indicated that Al is not adsorbed on nitric acid-washed polyethylene and polypropylene bottle wells. (USGS)

Afifi, A.A.

1983-01-01

167

A Study of Dissolved Gas Dynamics in Mixed Stream Electrolyzed Water  

Microsoft Academic Search

Supersaturated hydrogen and oxygen solutions of pH-neutral tap water were created through electrolysis and subsequently blended back together. The blended solution was monitored as a function of time with dissolved gas meters and time-lapse photography. While the pH of the blended anodic and cathodic electrolysis streams returned to neutral pH within seconds, the blended solution was observed to retain significantly

Kevin Klunder; Frederick A Hekman; Kenneth L Brown; Graham F Peaslee

2012-01-01

168

Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures  

Microsoft Academic Search

Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300°C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of

Hitoshi Chiba; Hitoshi Sakai

1985-01-01

169

Secret Agents of Dissolved Oxygen  

NSDL National Science Digital Library

This activity explores how water chemistry is altered by the biological processes of phytoplankton (microscopic photosynthetic organisms). Students will discover what some of these water chemistry changes are, and what influences these changes (type of water, exposure to light, etc.). The students will design an activity based on experience gained from the first activity. They will determine the changes and causes thereof in different types of water in a sealed container over time, and learn to measure dissolved oxygen, temperature, and carbon dioxide with a calculator/computer probe-ware or by other means.

Dawson, Besse

170

Recalcitrant dissolved organic carbon fractions.  

PubMed

Marine dissolved organic carbon (DOC) exhibits a spectrum of reactivity, from very fast turnover of the most bioavailable forms in the surface ocean to long-lived materials circulating within the ocean abyss. These disparate reactivities group DOC by fractions with distinctive functions in the cycling of carbon, ranging from support of the microbial loop to involvement in the biological pump to a hypothesized major source/sink of atmospheric CO(2) driving paleoclimate variability. Here, the major fractions constituting the global ocean's recalcitrant DOC pool are quantitatively and qualitatively characterized with reference to their roles in carbon biogeochemistry. A nomenclature for the fractions is proposed based on those roles. PMID:22881353

Hansell, Dennis A

2013-01-01

171

Fluvial dissolved inorganic C dynamics in the Western Amazonian basin: where does this carbon come from?  

NASA Astrophysics Data System (ADS)

The Amazon river and tributaries constitute globally a significant freshwater body and thus a source of atmospheric carbon dioxide. Aquatic carbon dioxide may originate from biological or physicochemical reprocessing of allochthonous dissolved, particulate or inorganic C (ecosystem-derived C, EDC) or it may derive from groundwater inputs of dissolved inorganic C through lithological weathering by soil-derived organic acids or by the dissolution of atmospheric carbon dioxide (minerogenic-derived C, MDC). In addition to quantifying and scaling catchment source import and export terms, accurate budgeting requires additional source differentiation. The significance of MDC is not usually considered by those assessing carbon dioxide efflux, yet differentiating MDC from EDC is crucial. For example, MDC should be less directly affected than EDC by future climatic change, becoming proportionally more important to fluvial carbon dioxide efflux in drought episodes. We are measuring the stable carbon isotopic ratio of dissolved inorganic C to determine the relative importance of MDC and EDC to total C loads in the Tambopata basin in Western Peru. This is an area little studied for C cycling, but important as the soils here are more nutrient rich than the remainder of the Amazon basin which is more studied. Our field station is in the Tambopata national park and since 2010 we have sampled four different river systems which vary in size and drainage characteristics: the Tambopata, (CA ~14,000 km sq.; ~30% of its in the Andes Mountains); La Torre (~2000 km sq.), New Colpita and Main Trail (both < 2 km sq. forest drainage but Main Trail only active in the wet season). Additionally the pH, conductivity, dissolved oxygen, water temperature and stage height have been monitored in these drainage systems where possible by logging at 15 minute intervals. Our data shows that there are statistically significant differences in carbon isotopic composition (ranging from -14 to -29 ‰) and [DIC] concentration (ranging from 0.1 to 0.7 mM) between rivers, which we interpret to represent differences in the MDC / EDC input. We will present this data and discuss in more detail local, seasonal and regional controls on composition, and its application in source contribution apportionment. Whilst we are utilising this DIC isotope tracer to differentiate the source of DIC (and ultimately effluxed carbon dioxide) this study shows the potential of utilising the DIC-C isotopic composition as a tracer of groundwater-surface water interaction.

Waldron, S.; Vihermaa, L. E.; Newton, J.; Krusche, A.; Salimon, C.

2012-04-01

172

Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA.  

PubMed

In this study, a comparison between generalized regression neural network (GRNN) and multiple linear regression (MLR) models is given on the effectiveness of modelling dissolved oxygen (DO) concentration in a river. The two models are developed using hourly experimental data collected from the United States Geological Survey (USGS Station No: 421209121463000 [top]) station at the Klamath River at Railroad Bridge at Lake Ewauna. The input variables used for the two models are water, pH, temperature, electrical conductivity, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), the mean absolute error (MAE), Willmott's index of agreement (d), and correlation coefficient (CC) statistics. Of the two approaches employed, the best fit was obtained using the GRNN model with the four input variables used. PMID:24956755

Heddam, Salim

2014-08-01

173

Bench-scale evaluation of ferrous iron oxidation kinetics in drinking water: effect of corrosion control and dissolved organic matter.  

PubMed

Corrosion control strategies are important for many utilities in maintaining water quality from the water treatment plant to the customers' tap. In drinking water with low alkalinity, water quality can become significantly degraded in iron-based pipes if water utilities are not diligent in maintaining proper corrosion control. This article reports on experiments conducted in bicarbonate buffered (5 mg-C/L) synthetic water to determine the effects of corrosion control (pH and phosphate) and dissolved organic matter (DOM) on the rate constants of the Fe(II) oxidation process. A factorial design approach elucidated that pH (P = 0.007, contribution: 42.5%) and phosphate (P = 0.025, contribution: 22.7%) were the statistically significant factors in the Fe(II) oxidation process at a 95% confidence level. The comprehensive study revealed a significant dependency relationship between the Fe(II) oxidation rate constants (k) and phosphate-to- Fe(II) mole ratio. At pH 6.5, the optimum mole ratio was found to be 0.3 to reduce the k values. Conversely, the k values were observed to increase for the phosphate-to- Fe(II) mole ratio > 1. The factorial design approach revealed that chlorine and DOM for the designated dosages did not cause a statistically significant (? = 0.05, P > 0.05)change in rate constants. However, an increment of the chlorine to ferrous iron mole ratio by a factor of ? 2.5 resulted in an increase k values by a factor of ? 10. This study conclusively demonstrated that the lowest Fe(II) oxidation rate constant was obtained under low pH conditions (pH ? 6.5), with chlorine doses less than 2.2 mg/L and with a phosphate-to-Fe(II) mole ratio ? 0.3 in the iron water systems. PMID:24117078

Rahman, Safiur; Gagnon, Graham A

2014-01-01

174

Abstract Ephemeral pools, which can have high animal biomass and low dissolved oxygen, may be  

E-print Network

biomass, or any factor, such as pH, sodium, or dissolved oxygen that differentially affects Nitrobacter to nitrite accumulation. As such, it is important to understand how exposure to nitrite might affect of previously unavail- able gaseous N2 for fertilizer, as well as other anthropogenic activities have doubled

Minnesota, University of

175

Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters  

Microsoft Academic Search

The zinc binding characteristics of natural organic matter (NOM) from several representative surface waters were studied and compared. NOM samples were concentrated by reverse osmosis. The samples were treated in the laboratory to remove trace metals. Square wave anodic stripping voltammetry (SWASV) was used to study zinc complexing properties of those NOM samples at fixed pH, ionic strength, and dissolved

Tao Cheng; Herbert E. Allen

2006-01-01

176

Solubility and Diffusivity of Water in Basic Silicate Melts at Low pH2O  

NASA Astrophysics Data System (ADS)

Solubility experiments were conducted at 1 atm by equilibrating melts corresponding to a synthetic Apollo 15 yellow glass (AY) [1] and the 1 atm eutectic composition on the anorthite-diopside join (AD) with H2O-CO2 gas mixtures at 1350°C. Each melt composition was equilibrated at a range of pH2O, pH2, and pO2 (by varying the H2/CO2 ratio of the gas); concentrations of hydroxyl (OH) in the quenched glasses were measured by FTIR and ranged from 10s to 100s of ppm. Our results confirm that the concentrations of OH dissolved in both the AY and AD melts are proportional to pH2O0.5 under these conditions. Moreover, the amount of dissolved OH depends only on pH2O and is independent of pH2 and pO2 across the significant experimental range (6 orders of magnitude in pO2 and 3 orders of magnitude in pH2/pH2O). Apparent diffusivities of total water (D*water [2, 3]) were determined in AD melt at 1350°C and 1 atm over significant ranges of pH2/pH2O (~0.013-1.4) and pO2 (IW-0.5 to IW+3.5). AD melts were fused in a Pt crucible at 1350°C and IW+1 for ~70 hr under a CO-CO2 gas mixture. Samples equilibrated in this way contain < 50 ppm water as OH (as measured by FTIR). With the dehydrated sample still hanging in the furnace, the gas mixture was changed to a H2-CO2 mixture, fixing pH2O and pH2 and maintaining the same pO2 as in the CO-CO2 gas mixture. After exposure to the H2-CO2 gas mixture for 5-10 min (which generated a ~103 ?m diffusion profile in OH inward from the sample edge), the sample was quenched in deionized H2O. The diffusively generated concentration profiles in four experimental AD charges were measured by FTIR and SIMS. The four diffusion experiments on AD melt yield best-fit values for D*water of 1-3 × 10-10 m2s-1. Our results demonstrate that D*water is approximately constant over two orders of magnitude in pH2/pH2O, implying that diffusion of H2 does not make a significant contribution to the transport of total water in AD melt under these conditions. D*water determined in this study is ~10-100 times greater than D*water predicted by extrapolations of the speciation model [2, 3] that assumes mobile H2O molecules (with constant DH2Omol) and immobile OH groups (DOH=0). However, our preliminary results are well described by a modified speciation model in which hydroxyl groups are allowed to diffuse. This is consistent with the findings of [4] for haploandesite melt. Extension of these measurements of the diffusivity of OH to closer analogues of lunar basaltic melts will improve understanding of the mobility of H-bearing species in nature and will be directly applicable to modeling degassing of lunar magmas [e.g., 5, 6]. [1] Delano (1986) JGR, 91(B4), D201-D213. [2] Zhang et al. (1991) GCA, 55, 441-456. [3] Zhang & Stolper (1991) Nature, 351, 306-309. [4] Ni et al. (2012) submitted. [5] Saal et al. (2008) Nature, 454, 192-195. [6] Hauri et al. (2011) Science, 333, 213-215.

Newcombe, M.; Brett, A.; Beckett, J.; Baker, M. B.; Newman, S.; Stolper, E. M.

2012-12-01

177

Size and Chemical Affinity Fractionated Dissolved Cadmium, Copper and Nickel in Gulf of Mexico Surface Waters  

NASA Astrophysics Data System (ADS)

Dissolved trace metals Cd, Cu, and Ni in the surface waters of Gulf of Mexico exhibit distinct chemical reactivity and physical size distributions when using cross-flow ultrafiltration and ion exchange methods during a field survey conducted in May 2006. Variations of total dissolved metal concentrations in surface waters were found across the salinity gradient, which ranged as follows; Cd: 87-187 pM; Cu: 1.4-18.3nM; and Ni: 2.6-18.8nM. Dissolved Cd was predominantly present as a truly dissolved (97%) and cationic-labile fraction (94%) in the surface waters. The anionic-organic metal fractions accounted for just 3±1 % on average for Cd, 24% for Cu, and 9% for Ni. The dissolved inert metal fractions, on average, were 31% of total dissolved Cu and 29% of total dissolved Ni concentrations. Small but noticeable amounts (6%) of dissolved inert Cd fractions were also present. Some fractions of the total dissolved Cu (17%) and Ni (8%) could be adsorbed by both cation and anion exchange resins, suggesting binding to zwitterionic molecules. Despite evidence that partitioning among chemically and physically defined species is dynamic, mixing between freshwater and seawater end-members across the Mississippi River plume produced linear mixing curves, while trace metal concentrations determined within warm core and cold core rings in the Gulf of Mexico maintained significantly different concentrations and species distributions.

Wen, L.; Warnken, K. W.; Santschi, P. H.

2008-12-01

178

Biodegradable Materials and Their Effect on Dissolved Oxygen Levels  

NSDL National Science Digital Library

In this laboratory exercise, students will design and conduct an experiment to evaluate the effect of the presence of biodegradable materials on dissolved oxygen levels. They will come to understand the effect of biodegradable pollutants on water quality, design and conduct an experiment, interpret data, suggest additional studies, and preform serial dilutions. The students will discover that in aquatic systems, aerobic microorganisms will consume biodegradable material for energy, and in doing so will also take up oxygen from the environment as part of the cellular respiration process. They will also learn that scientists use dissolved oxygen levels as an indication of contamination by such pollutants as sewage, agricultural runoff, and organic industrial effluents. This activity has an accompanying teacher site with hints and more information. There are also links to several related sites.

179

Exercise and Pulmonary Hypertension (PH)  

MedlinePLUS

... International PH News and Projects Let Me Breathe Music Video PATIENTS Patients Newly Diagnosed Request an Envelope ... International PH News and Projects Let Me Breathe Music Video Help spread PH awareness and share PH ...

180

Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection.  

PubMed

Dissolved organic nitrogen (DON) can act as a precursor of nitrogenous disinfection byproducts during oxidative water treatment. Quantification and characterization of DON are still challenging for waters with high concentrations of dissolved inorganic nitrogen (DIN, including ammonia, nitrate and nitrite) relative to total dissolved nitrogen (TDN) due to the cumulative analytical errors of independently measured nitrogen species (i.e., DON = TDN - NO2(-) - NO3(-) - NH4(+)/NH3) and interference of DIN species to TDN quantification. In this study, a novel electrodialysis (ED)-based treatment for selective DIN removal was developed and optimized with respect to type of ion-exchange membrane, sample pH, and ED duration. The optimized ED method was then coupled with size-exclusion chromatography with organic carbon, UV, and nitrogen detection (SEC-OCD-ND) for advanced DON analysis in wastewater effluents. Among the tested ion-exchange membranes, the PC-AR anion- and CMT cation-exchange membranes showed the lowest DOC loss (1-7%) during ED treatment of a wastewater effluent at ambient pH (8.0). A good correlation was found between the decrease of the DIN/TDN ratio and conductivity. Therefore, conductivity has been adopted as a convenient way to determine the optimal duration of the ED treatment. In the pH range of 7.0-8.3, ED treatment of various wastewater effluents with the PC-AR/CMT membranes showed that the relative residual conductivity could be reduced to less than 0.50 (DIN removal >90%; DIN/TDN ratio ? 0.60) with lower DOC losses (6%) than the previous dialysis and nanofiltration methods (DOC loss >10%). In addition, the ED method is shorter (0.5 h) than the previous methods (>1-24 h). The relative residual conductivity was further reduced to ? 0.20 (DIN removal >95%; DIN/TDN ratio ? 0.35) by increasing the ED duration to 0.7 h (DOC loss = 8%) for analysis by SEC-OCD-ND, which provided new information on distribution and ratio of organic carbon and nitrogen in different molecular weight fractions of effluent organic matter. PMID:23916154

Chon, Kangmin; Lee, Yunho; Traber, Jacqueline; von Gunten, Urs

2013-09-15

181

pH Scale  

NSDL National Science Digital Library

Test the pH of things like coffee, spit, and soap to determine whether each is acidic, basic, or neutral. Visualize the relative number of hydroxide ions and hydronium ions in solution. Switch between logarithmic and linear scales. Investigate whether changing the volume or diluting with water affects the pH. Or you can design your own liquid!

Simulations, Phet I.; Adams, Wendy; Barbera, Jack; Langdon, Laurie; Loeblein, Patricia; Malley, Chris

2008-07-01

182

pH Game  

NSDL National Science Digital Library

The purpose of this resource is to teach students about the acidity levels of liquids and other substances around their school so they understand what pH levels tell us about the environment. Students will create mixtures of water samples, soil samples, plants and other natural materials to better understand the importance of pH levels.

The GLOBE Program, UCAR (University Corporation for Atmospheric Research)

2003-08-01

183

Improved Technology for Dissolved Oxygen Measurement  

Microsoft Academic Search

The need for measurement and control of dissolved oxygen at very low concentrations in ultrapure water for some wafer processes has been recognized for many years. Dissolved oxygen instrumentation has been developed that increases the reliability and greatly reduces the maintenance requirements and costs of this specialized measurement. Combining the strengths of traditional diffusion membrane sensors with those of equilibrium-type

David M. Gray

184

Diffusion of dissolved oxygen through concrete  

Microsoft Academic Search

The rate of steel corrosion for concrete structures in the ocean is supposed to be controlled primarily by diffusion of dissolved oxygen through the concrete cover. Experiments were performed to study the diffusion rate of dissolved oxygen through submerged concrete of different qualities and thicknesses. Several test methods for studying the diffusion were developed, and from the test results it

O. E. Gjorv; O. Vennesland; A. H. S. El-Busaidy

1987-01-01

185

Dissolved gas analysis using expert system  

Microsoft Academic Search

This project is to study a dissolved gas analysis of transformer oil using an expert system. A prototype of an expert system based on the dissolved gas analysis techniques for diagnosis of a suspected transformer faults and the appropriate maintenance actions to be taken. This method is proposed to assist the conventional gas ratio method based on the International Electrotechnical

Maizun Binti Ahmad; Z. bin Yaacob

2002-01-01

186

Boiling of Water Droplets Containing Dissolved Salts  

NASA Astrophysics Data System (ADS)

We conducted experiments on the effect of dissolving three different salts (sodium chloride, sodium sulphate and magnesium sulphate) in water droplets boiling on a hot stainless steel surface. Substrate temperatures were varied from 100^oC to 300^oC. We photographed droplets as they evaporated, and recorded their evaporation time. At surface temperatures that were too low to initiate nucleate boiling, all three salts were found to reduce the evaporation rate since they lower the vapor pressure of water. In the nucleate boiling regime, sodium sulphate and magnesium sulphate enhanced heat transfer because they prevented coalescence of vapor bubbles and produced foaming in the droplet, significantly reducing droplet lifetime. The ability of salts to prevent coalescence is linked to their ionic strength: electric charge accumulated on the surfaces of bubbles produces a repulsive force, preventing them from approaching each other. Sodium chloride, which has a low ionic strength, had little effect on droplet evaporation. Low concentrations (<0.3 mol/liter) of magnesium sulphate enhanced droplet boiling by promoting foaming. However high concentrations (>0.3 mol/liter) reduce droplet evaporation rates by increasing the vapour pressure of water.

Cui, Qiang; Chandra, Sanjeev; McCahan, Susan

2000-11-01

187

The potential source of dissolved aluminum from resuspended sediments to the North Atlantic deep water  

SciTech Connect

Laboratory and field studies were conducted to investigate the significance of resuspended sediments as a source of dissolved Al to the deep northwest Atlantic. Sediment resuspension experiments demonstrate the effect on dissolved Al concentration (initially 11 nM) of adding natural suspended sediments (ca. 0.1-10 mg/L) to seawater. The concentration of dissolved Al increased by the resuspension of sediments; for example, addition of 0.15 mg/L sediments caused dissolved Al to increase by 10 nM. Distributions of dissolved and leachable particulate Al off the tail of the Grand Banks, near the high-energy western boundary current, show elevated levels in the near-bottom waters. The authors suggest that resuspended sediments associated with nepheloid layers along the western boundary of the North Atlantic are a source of dissolved Al. Strong western boundary currents provide the energy to resuspend and maintain intense nepheloid layers of sediments. Continued resuspension and deposition of sediments within the nepheloid layer promotes the release of Al from sediments to the overlying water. The Al-rich terrigenous sediments that predominate along the deep boundary of the Denmark Strait, Labrador Sea, Newfoundland and off Nova Scotia constitute a potentially significant source of dissolved Al. Release of Al from resuspended sediments associated with nepheloid layers at a more northern location (e.g., Denmark Strait) may contribute to the near-linear increase in dissolved Al with depth observed in the deep northwest Atlantic.

Moran, S.B.; Moore, R.M. (Dalhousie Univ., Halifax, Nova Scotia (Canada))

1991-10-01

188

Dynamics and Biodegradability of Chromophoric Dissolved Organic Matter in a Severely Polluted River  

NASA Astrophysics Data System (ADS)

The 70-kilometer long Kishon River is one of Israel's largest rivers. Its annual discharge may vary substantially, e.g. between 47 and 10 million m3. The lower section of the river has been severely polluted for dozens of years, by industrial effluents containing heavy metals, radionuclides, nutrients, and diverse organic contaminants. The total volume of effluents discharged from the plants into the river stream may contribute as much as 30% of the total water volume. Dissolved organic matter (DOM) and specifically its chromophoric components (CDOM) including humic-like and proteinous substances may form water-soluble complexes with multiple organic and inorganic pollutants and, thus, enhance their release from the sediments and their mobility. The volatility of pollutants, their bioavailability, toxicity and potential to undergo bio-, abiotic and photodegradation may be affected by interactions with CDOM. Therefore, the dynamics of CDOM is important for understanding the fate of pollutants in aquatic environments. In this study, we intended (i) to characterize the seasonal and spatial variability of CDOM at the most contaminated lower section of the Kishon River and (ii) to assess the impact of biodegradation, dilution by seawater and contribution of discharged effluents on the overall dynamics of DOM and CDOM. For this purpose, water was sampled during 11 months at 8 locations distributed along Lower Kishon River. Samples were characterized for concentrations of dissolved organic carbon (DOC), UV- absorbance at 254 nm, electrical-conductivity, pH, concentration of dissolved oxygen and excitation emission matrices (EEM) of fluorescence. Parallel factor analysis of EEM enabled quantifying two major groups of riverine fluorescent CDOM: humic-like substances and components spectrally similar to those associated with phytoplankton productivity. CDOM (including fluorescent matter and components absorbing light at 254 nm) was found resistant to biodegradation by riverine microorganisms. The fraction of easily degradable riverine DOM that was not included in the CDOM was estimated to be between 8 and 26% of the overall DOC. The variability in DOM and CDOM composition was strongly affected by dilution with seawater. Approaching the estuary, the DOM in the Kishon River becomes depleted in CDOM. At the same time, the UV-active components become relatively enriched in fluorescent matter. It was hypothesized that the concentration of humic-like substances may increase in the river due to DOM transformation. Effluent discharge from multiple industrial sites along the river did not result in a distinct increase in concentrations of CDOM components absorbing light at 254 nm or fluorescent humic-like substances. However, an increase in the fluorescent CDOM associated with phytoplankton productivity was observed in the central section of Lower Kishon River, probably linked to an increase of nutrients supply originating from discharged effluents, which enhanced biological activity. Thus, different processes appear to influence the concentrations of two major groups of fluorescent riverine CDOM. The collected data showed significant correlations between concentration of dissolved oxygen, pH and UV- absorbance at 254 nm which may suggest that as the content of aromatic components increases, the oxygen demand for DOM biodegradation decreases, since DOM is enriched in biodegradation-resistant substances. The different dynamics of DOC and CDOM as observed in this study needs to be considered when modeling the impact of DOM on the fate of pollutants in riverine ecosystems.

Borisover, Mikhail; Laor, Yael; Saadi, Ibrahim; Lado, Marcos; Bukhanovsky, Nadezhda

2010-05-01

189

Effect of dissolved oxygen on lubricating performance of oils containing organic sulfides  

Microsoft Academic Search

To elucidate the role of dissolved oxygen in the synergistic lubrication mechanism of oils containing organic sulfides, four-ball tests were conducted under increasing-temperature or two-step constant-temperature conditions by using oils with different concentrations of dissolved oxygen. In increasing-temperature tests, high oxygen concentration with DPDS (diphenyl disulfide) and antioxidant additives exhibited superior load-carrying capacity to reactive DBDS (dibenzyl disulfide) with the

Teruo Murakami; Hiroshi Sakamoto

1999-01-01

190

Effects of microbial activity on the d18O of dissolved inorganic phosphate and textural features of synthetic apatites  

Microsoft Academic Search

Laboratory growth experiments were conducted to investigate the oxygen isotope effects associated with bacterial metabolism of phosphatic compounds commonly available in nature. The observed oxygen isotope fractionations suggest complex patterns of exchange between dissolved inorganic phosphate (Pi) and water, and significant circulation of P i between intracellular and extracellular locations with extensive recycling of the dissolved Pi pool, even at

R. E. BLAKE; J. R. O'NEIL; G. A. GARCIA

1998-01-01

191

Use of a Ferrous Sulfate - Sodium Dithionite Blend to Treat a Dissolved Phase Cr(VI) Plume  

EPA Science Inventory

A field study was conducted to evaluate the use of a combination of sodium dithionite and ferrous sulfate in creating an in situ redox zone for treatment of a dissolved phase Cr(VI) plume at a former industrial site. The reductant blend was injected into the path of a dissolved ...

192

Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study.  

PubMed

The aims of this study are to create an artificial neural network (ANN) model using non-specific water quality parameters and to examine the accuracy of three different ANN architectures: General Regression Neural Network (GRNN), Backpropagation Neural Network (BPNN) and Recurrent Neural Network (RNN), for prediction of dissolved oxygen (DO) concentration in the Danube River. The neural network model has been developed using measured data collected from the Bezdan monitoring station on the Danube River. The input variables used for the ANN model are water flow, temperature, pH and electrical conductivity. The model was trained and validated using available data from 2004 to 2008 and tested using the data from 2009. The order of performance for the created architectures based on their comparison with the test data is RNN > GRNN > BPNN. The ANN results are compared with multiple linear regression (MLR) model using multiple statistical indicators. The comparison of the RNN model with the MLR model indicates that the RNN model performs much better, since all predictions of the RNN model for the test data were within the error of less than ± 10 %. In case of the MLR, only 55 % of predictions were within the error of less than ± 10 %. The developed RNN model can be used as a tool for the prediction of DO in river waters. PMID:23764983

Antanasijevi?, Davor; Pocajt, Viktor; Povrenovi?, Dragan; Peri?-Gruji?, Aleksandra; Risti?, Mirjana

2013-12-01

193

Fast Dissolving Sublingual Films of Ondansetron Hydrochloride: Effect of Additives on in vitro Drug Release and Mucosal Permeation.  

PubMed

Ondansetron hydrochloride, a 5 HT3 antagonist is a powerful antiemetic drug which has oral bioavailability of 60% due to hepatic first pass metabolism and has a short half-life of 5 h. To overcome the above draw back, the present study was carried out to formulate and evaluate fast dissolving films of ondansetron hydrochloride for sublingual administration. The films were prepared from polymers such as polyvinylalcohol, polyvinyl pyrrolidone, Carbopol 934P in different ratios by solvent casting method. Propylene glycol or PEG 400 as plasticizers and mannitol or sodium saccharin as sweeteners were also included. The IR spectral studies showed no interaction between drug and polymer or with other additives. Satisfactory results were obtained when subjected to physico-chemical tests such as uniformity of weight, thickness, surface pH, folding endurance, uniformity of drug content, swelling index, bioadhesive strength, and tensile strength. Films were also subjected to in vitro drug release studies by using USP dissolution apparatus. Ex vivo drug permeation studies were carried out using porcine membrane model. In vitro release studies indicated 81-96% release within 7 min and 66-80% within 7 min during ex vivo studies. Drug permeation of 66-77% was observed through porcine mucosa within 40 min. Higher percentage of drug release was observed from films containing the sweeteners. The stability studies conducted for a period of 8 weeks showed no appreciable change in drug content, surface pH, and in vitro drug release. PMID:21042474

Koland, M; Sandeep, Vp; Charyulu, Nr

2010-07-01

194

Fast Dissolving Sublingual Films of Ondansetron Hydrochloride: Effect of Additives on in vitro Drug Release and Mucosal Permeation  

PubMed Central

Ondansetron hydrochloride, a 5 HT3 antagonist is a powerful antiemetic drug which has oral bioavailability of 60% due to hepatic first pass metabolism and has a short half-life of 5 h. To overcome the above draw back, the present study was carried out to formulate and evaluate fast dissolving films of ondansetron hydrochloride for sublingual administration. The films were prepared from polymers such as polyvinylalcohol, polyvinyl pyrrolidone, Carbopol 934P in different ratios by solvent casting method. Propylene glycol or PEG 400 as plasticizers and mannitol or sodium saccharin as sweeteners were also included. The IR spectral studies showed no interaction between drug and polymer or with other additives. Satisfactory results were obtained when subjected to physico-chemical tests such as uniformity of weight, thickness, surface pH, folding endurance, uniformity of drug content, swelling index, bioadhesive strength, and tensile strength. Films were also subjected to in vitro drug release studies by using USP dissolution apparatus. Ex vivo drug permeation studies were carried out using porcine membrane model. In vitro release studies indicated 81–96% release within 7 min and 66–80% within 7 min during ex vivo studies. Drug permeation of 66–77% was observed through porcine mucosa within 40 min. Higher percentage of drug release was observed from films containing the sweeteners. The stability studies conducted for a period of 8 weeks showed no appreciable change in drug content, surface pH, and in vitro drug release. PMID:21042474

Koland, M; Sandeep, VP; Charyulu, NR

2010-01-01

195

Conducting Research in Corrections: Challenges  

E-print Network

practices in corrections. CHALLENGES OF CONDUCTING RESEARCH IN PRISONS History of Inmates as ResearchConducting Research in Corrections: Challenges and Solutions Sara Wakai, Ph.D.*, Deborah Shelton in correctional settings has progressed from the exploitation of a vulnerable population in the years prior

Oliver, Douglas L.

196

COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS  

EPA Science Inventory

Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

197

Dissolved Concentration Limits of Radioactive Elements.  

National Technical Information Service (NTIS)

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, ther...

2005-01-01

198

27 CFR 19.455 - Dissolving of denaturants.  

Code of Federal Regulations, 2010 CFR

...Dissolving of denaturants. Denaturants which are difficult to dissolve in spirits at usual working temperatures, which are highly...be liquefied or dissolved in a small quantity of spirits or water in advance of their use in the production of...

2010-04-01

199

Progress in dissolving modified LEU Cintichem targets  

Microsoft Academic Search

A process is under development to use low-enriched uranium (LEU) metal targets for production of ⁹⁹Mo. The first step is to dissolve the irradiated foil. In past work, this has been done by heating a closed (sealed) vessel containing the foil and a solution of nitric and sulfuric acids. In this work, the authors have demonstrated that (1) the dissolver

R. A. Leonard; L. Chen; C. J. Mertz; G. F. Vandegrift

1996-01-01

200

Sequestration of Dissolved CO2 in the Oriskany Formation  

SciTech Connect

Experiments were conducted to determine the solubility of CO2 in a natural brine solution of the Oriskany formation under elevated temperature and pressure conditions. These data were collected at temperatures of 22 and 75 °C and pressures between 100 and 450 bar. Experimentally determined data were compared with CO2 solubility predictions using a model developed by Duan and Sun (Chem. Geol. 2003, 193, 257-271). Model results compare well with Oriskany brine CO2 solubility data collected experimentally, suggesting that the Duan and Sun model is a reliable tool for estimating solution CO2 capacity in high salinity aquifers in the temperature and pressure range evaluated. The capacity for the Oriskany formation to sequester dissolved CO2 was calculated using results of the solubility models, estimation of the density of CO2 saturated brine, and available geographic information system (GIS) information on the formation depth and thickness. Results indicate that the Oriskany formation can hold approximately 0.36 gigatonnes of dissolved CO2 if the full basin is considered. When only the region where supercritical CO2 can exist (temperatures greater than 31° C and pressures greater than 74 bar) is considered, the capacity of the Oriskany formation to sequester dissolved CO2 is 0.31 gigatonnes. The capacity estimate considering the potential to sequester free-phase supercritical CO2 if brine were displaced from formation pore space is 8.8 gigatonnes in the Oriskany formation.

Dilmore, R.M.; Allen, D.E. (Salem State College, Salem, MA); McCarthy-Jones, J.R.; Hedges, S.W.; Soong, Yee

2008-04-15

201

Dissolved Trace Metals in Soft-Water Streams of the Northeast, USA  

NASA Astrophysics Data System (ADS)

The free dissolved fraction of trace metals is biologically available and correlated with acute toxicity in aquatic organisms that respire through gills. Consensus regarding prevalence of dissolved trace-metal occurrence in streams in the United States has varied, ranging from widespread occurrence in the 1 to 10's of micrograms per liter for cadmium, copper, chromium, lead, molybdenum, nickel, silver, and zinc, during 1975 to 1995, but less than 1 microgram per liter during the late 1990's to present. Whereas much of the earlier data is thought to have been affected by contamination during sampling and sample processing, later data after implementation of clean-sampling techniques indicates dissolved trace-metal concentrations in hard-water streams are very low because of sorption on suspended solids. In low-conductance, low-suspended-load streams of the northeast, USA, however, substantial dissolved metals concentrations have been measured with periods of record now approaching 6 years since implementation of clean sampling methods. The high concentrations are associated with industrial and domestic-development source, low surface area on suspended loads, and stabilizing dissolved organic ligands, including natural fulvic acids and chelating compounds of anthropogenic origin, such as EDTA. Although present at substantial concentrations, only a small part of the total dissolved metals is in a free state, unassociated with organic ligands, so that acute toxicity of the dissolved trace metals may be low.

Colman, J. A.

2004-05-01

202

Role of some organic inhibitors on the oxidation of dissolved sulfur dioxide by oxygen in rainwater medium.  

PubMed

In August 2012, eight rainwater samples were collected and analyzed for pH and metal ions, viz., iron, copper, and manganese. The pH was within the range 6.84-7.65. The rate of oxidation of dissolved sulfur dioxide was determined using these rainwater samples as reaction medium. Kinetics was defined by the rate law: -d[S(IV)]/dt = R o = k o[S(IV)

Dhayal, Yogpal; Chandel, C P S; Gupta, K S

2014-03-01

203

Effect of pH values on surface modification and solubility of phosphate bioglass-ceramics in the CaO-P 2O 5-Na 2O-SrO-ZnO system  

NASA Astrophysics Data System (ADS)

The bioactive glass-ceramics in the CaO-P 2O 5-Na 2O-SrO-ZnO system were synthesized by the sol-gel technique, and then chemically treated at different pH values to study the solubility and surface modification. Samples sintered at 650 °C for 4 h consisted of the crystalline phase ?-Ca 2P 2O 7 and the glass matrix. After soaking in the solution at pH 1.0, the residual glass matrix on the surface appeared entirely dissolved and no new phase could be detected. Whereas at pH 3.0, web-like layer exhibiting peaks corresponding to CaP 2O 6 was formed and covered the entire surface of the sample. When conducted at pH 10.0, only part of the glass matrix was dissolved and a new phase Ca 4P 6O 19 was precipitated, forming the petaline layer. The chemical treatment can easily change the surface morphologies and phase composition of this bioactive glass-ceramics. The higher level of surface roughness resulting from the new-formed layer would improve the interface bonding and benefit for cell adhesion.

Li, Xudong; Cai, Shu; Zhang, Wenjuang; Xu, Guohua; Zhou, Wei

2009-08-01

204

Dissolved Fe(II) in a river-estuary system rich in dissolved organic matter  

NASA Astrophysics Data System (ADS)

Reduced iron, Fe(II), accounts for a significant fraction of dissolved Fe across many natural surface waters despite its rapid oxidation under oxic conditions. Here we investigate the temporal and spatial variation in dissolved Fe redox state in a high dissolved organic matter (DOM) estuarine system, the River Beaulieu. We couple manual sample collection with the deployment of an autonomous in situ analyser, designed to simultaneously measure dissolved Fe(II) and total dissolved Fe, in order to investigate processes operating on the diurnal timescale and to evaluate the performance of the analyser in a high DOM environment. Concentrations of dissolved Fe available to the ligand ferrozine are elevated throughout the estuary (up to 21 ?M in freshwater) and notably higher than those previously reported likely due to seasonal variation. Fe(II) is observed to account for a large, varying fraction of the dissolved Fe available to ferrozine (25.5 ± 12.5%) and this fraction decreases with increasing salinity. We demonstrate that the very high DOM concentration in this environment and association of this DOM with dissolved Fe, prevents the accurate measurement of dissolved Fe concentrations in situ using a sensor reliant on rapid competitive ligand exchange.

Hopwood, Mark J.; Statham, Peter J.; Milani, Ambra

2014-12-01

205

40 CFR 258.41 - Project XL Bioreactor Landfill Projects.  

Code of Federal Regulations, 2012 CFR

... (A) pH; (B) Conductivity; (C) Dissolved oxygen; (D) Dissolved solids; (E) Biochemical...the following parameters: pH, Conductivity, Dissolved Oxygen, Dissolved Solids, Biochemical Oxygen Demand,...

2012-07-01

206

40 CFR 258.41 - Project XL Bioreactor Landfill Projects.  

Code of Federal Regulations, 2011 CFR

... (A) pH; (B) Conductivity; (C) Dissolved oxygen; (D) Dissolved solids; (E) Biochemical...the following parameters: pH, Conductivity, Dissolved Oxygen, Dissolved Solids, Biochemical Oxygen Demand,...

2011-07-01

207

40 CFR 258.41 - Project XL Bioreactor Landfill Projects.  

Code of Federal Regulations, 2013 CFR

... (A) pH; (B) Conductivity; (C) Dissolved oxygen; (D) Dissolved solids; (E) Biochemical...the following parameters: pH, Conductivity, Dissolved Oxygen, Dissolved Solids, Biochemical Oxygen Demand,...

2013-07-01

208

40 CFR 258.41 - Project XL Bioreactor Landfill Projects.  

Code of Federal Regulations, 2010 CFR

... (A) pH; (B) Conductivity; (C) Dissolved oxygen; (D) Dissolved solids; (E) Biochemical...the following parameters: pH, Conductivity, Dissolved Oxygen, Dissolved Solids, Biochemical Oxygen Demand,...

2010-07-01

209

Carbon Cycle - CDOM Activity: Chromophoric Dissolved Organic Matter (CDOM)  

NSDL National Science Digital Library

In this laboratory activity, students investigate chromophoric dissolved organic matter (CDOM) through gradual dilution of black, green and chamomile tea. Through this activity, students discover how CDOM can dominate the absorption of sunlight, how sunlight degrades CDOM through photochemical oxidation, and how CDOM levels are related to nutrient status, stratification and mixing of the ocean. Materials needed include coffee mugs, hot water, spoons, and tea. This resource is found in Rising Tides, a journal created for teachers and students reporting on current oceanography research conducted by NASA, NOAA, and university scientists, featuring articles, classroom activities, readings, teacher/student questions, and imagery for student investigation of marine science.

210

Semantic Social Network Ph.D. thesis  

E-print Network

Semantic Social Network Analysis Ph.D. thesis Defended on the 11th of April 2011 by Guillaume, with an original contribution that leverages Social Network Analysis with Semantic Web frameworks. Social Network-based representations, (2) to conduct a social network analysis that takes advantage of the rich semantics

Boyer, Edmond

211

Consolidated fuel reprocessing program: a mathematical model for liquid flow transients in a rotary dissolver  

SciTech Connect

A model describing the liquid outlet response to perturbations in the flow to a compartmented rotary dissolver has been developed. The model incorporates stagewise differential material balances coupled with the general equation for flow over a weir to calculate acid concentrations and liquid volumes in each stage. Data were taken from step-change flow experiments conducted on a 0.5-t/d rotary dissolver. The predicted response of the model was in good agreement with the data from the dissolver experiments. All constants in the model were obtained by independent tests. The model appears to be applicable over a wide range of dissolver operating conditions; however, temperature fluctuations and the presence of solids were not addressed.

Lewis, B. E.; Weber, F. E.

1980-10-01

212

Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation  

Microsoft Academic Search

The treatment of oil-in-water emulsions containing n-octane (used as simulated wastewater) was investigated by means of dissolved-air flotation jar-tests. The effect of several parameters on flotation efficiency for separation of the emulsified oil was examined, namely, (a) the presence the nonionic surfactant Tween 80, used for the stabilization of the emulsions, (b) the initial pH value of the emulsions, (c)

A. I Zouboulis; A Avranas

2000-01-01

213

Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions  

Microsoft Academic Search

Hydrogen peroxide (H2O2) was electro-generated in a parallel-plate electrolyzer by reduction of dissolved oxygen (DO) in acidic solutions containing dilute supporting electrolyte. Operational parameters such as cathodic potential, oxygen purity and mass flow rate, cathode surface area, pH, temperature, and inert supporting electrolyte concentration were systematically investigated as to improve the Faradic current efficiency of H2O2 generation. Results indicate that

Zhimin Qiang; Jih-Hsing Chang; Chin-Pao Huang

2002-01-01

214

THE REACTION RATE OF SODIUM SULFITE WITH DISSOLVED OXYGEN. Technical Report No. 73  

Microsoft Academic Search

The reaction rate of sodium sulfite was studied as a function of oxygen ;\\u000a concentration, NaâSOâ\\/Oâ ratio, temperature, catalyst, pH and ;\\u000a surface\\/volume ratio.The reaction rate of hydrazine with dissolved oxygen was ;\\u000a also studied. Oxygen removal is incomplete when the sulfite to oxygen ratio is ;\\u000a leas than the stoichiometric quantity. With the stoichiometric quantities of ;\\u000a oxygen and

1960-01-01

215

Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment  

Microsoft Academic Search

The influence of calcite and dissolved calcium on U(VI) adsorption was investigated using a calcite-containing sandy silt\\/clay sediment from the U. S. Department of Energy Hanford site. U(VI) adsorption to sediment, treated sediment, and sediment size fractions was studied in solutions that both had and had not been preequilibrated with calcite, at initial [U(VI)] - 10-7-10-5 mol\\/L and final pH

Wenming Dong; William P. Ball; Chongxuan Liu; Zheming Wang; Alan T. Stone; Jing Bai; John M. Zachara

2005-01-01

216

Characterization of hydraulic conductivity of the alluvium and basin fill, Pinal Creek Basin near Globe, Arizona  

USGS Publications Warehouse

Acidic waters containing elevated concentrations of dissolved metals have contaminated the regional aquifer in the Pinal Creek Basin, which is in Gila County, Arizona, about 100 kilometers east of Phoenix. The aquifer is made up of two geologic units: unconsolidated stream alluvium and consolidated basin fill. To better understand how contaminants are transported through these units, a better understanding of the distribution of hydraulic conductivity and processes that affect it within the aquifer is needed. Slug tests were done in September 1997 and October 1998 on 9 wells finished in the basin fill and 14 wells finished in the stream alluvium. Data from the tests were analyzed by using either the Bouwer and Rice (1976) method, or by using an extension to the method developed by Springer and Gellhar (1991). Both methods are applicable for unconfined aquifers and partially penetrating wells. The results of the analyses show wide variability within and between the two geologic units. Hydraulic conductivity estimates ranged from 0.5 to 250 meters per day for the basin fill and from 3 to 200 meters per day for the stream alluvium. Results of the slug tests also show a correlation coefficient of 0.83 between the hydraulic conductivity and the pH of the ground water. The areas of highest hydraulic conductivity coincide with the areas of lowest pH, and the areas of lowest hydraulic conductivity coincide with the areas of highest pH, suggesting that the acidic water is increasing the hydraulic conductivity of the aquifer by dissolution of carbonate minerals.

Angeroth, Cory E.

2002-01-01

217

Thresholds for Survival of Brown Trout during the Spring Flood Acid Pulse in Streams High in Dissolved Organic Carbon  

E-print Network

Thresholds for Survival of Brown Trout during the Spring Flood Acid Pulse in Streams High on the impact of acidity on brown trout, the streams in this study were high in dissolved organic carbon (DOC), and as a result organic acids play a primary role in controlling pH. During the spring flood period DOC

Buffam, Ishi

218

ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS  

SciTech Connect

Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top of each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.

Williamson, B.

2011-08-15

219

500 Langmuir 1994,10, 500-504 Retardation of Pt Adsorption over Oxide Supports at pH  

E-print Network

the oxides dissolve, has been studied with a series of experiments in which the possible causes of alumina in water becomes appreciable at a pH below about 3.5and of silica above a pH of about 9 (ref 2 quantification of Brunelle's electro- static scheme of things is the simplified electric double layer theory

Regalbuto, John R.

220

Suspended sediment, dissolved organic carbon, and dissolved nitrogen export during the dam removal process  

Microsoft Academic Search

(1) Total suspended solids (TSS), dissolved organic carbon (DOC), and total dissolved nitrogen (TDN) loads were calculated for all stages of the dam removal process (dewatering, breaching, and removal) at various points upstream, within, and downstream of Lowell Mill Impoundment on the Little River, North Carolina. The impoundment dewatering exported loads of TSS, DOC, and TDN which were all 1-2

J. Adam Riggsbee; Jason P. Julian; Martin W. Doyle; Robert G. Wetzel

2007-01-01

221

Method for dissolving hard-to-dissolve thorium and/or plutonium oxides  

SciTech Connect

Method for dissolving hard-to-dissolve thorium and/or plutonium oxides, especially dioxides such as ThO2, PuO2 or (U/Pu)O2 mixed oxides by heating the oxides in a hermetically sealed vessel in fluoride-free nitric acid. The use of a gas atmosphere containing oxygen in the sealed vessel is advantageous.

Ledebrink, F.-W.; Rosenkranz, W.; Stoll, W.

1985-07-09

222

Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties  

USGS Publications Warehouse

Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

Boyer, T. H.; Singer, P. C.; Aiken, G. R.

2008-01-01

223

IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS  

E-print Network

1 IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS Jacek Makinia*, Scott A and variations in the aeration intensity on changes in the predicted dissolved oxygen (DO) concentrations for dissolved oxygen. KEYWORDS Activated sludge; dispersion; dissolved oxygen dynamics; mass transfer

Wells, Scott A.

224

A review on mouth dissolving films.  

PubMed

The ultimate goal of any drug delivery system is the successful delivery of the drug to the body; however, patient compliance must not be overlooked. Fast dissolving drug delivery systems, such as, Mouth Dissolving Films (MDF), offer a convenient way of dosing medications, not only to special population groups with swallowing difficulties such as children and the elderly, but also to the general population. MDF are the novel dosage forms that disintegrate and dissolve within the oral cavity. Intra-oral absorption permits rapid onset of action and helps by-pass first-pass effects, thereby reducing the unit dose required to produce desired therapeutic effect. The present review provides an overview of various polymers that can be employed in the manufacture of MDF and highlights the effect of polymers and plasticizers on various physico-mechanical properties of MDF. It further gives a brief account of formulation of MDF and problems faced during its manufacture. PMID:19751197

Dahiya, Meenu; Saha, Sumit; Shahiwala, Aliasgar F

2009-10-01

225

A Quantitative Evaluation of Dissolved Oxygen Instrumentation  

NASA Technical Reports Server (NTRS)

The implications of the presence of dissolved oxygen in water are discussed in terms of its deleterious or beneficial effects, depending on the functional consequences to those affected, e.g., the industrialist, the oceanographer, and the ecologist. The paper is devoted primarily to an examination of the performance of five commercially available dissolved oxygen meters. The design of each is briefly reviewed and ease or difficulty of use in the field described. Specifically, the evaluation program treated a number of parameters and user considerations including an initial check and trial calibration for each instrument and a discussion of the measurement methodology employed. Detailed test results are given relating to the effects of primary power variation, water-flow sensitivity, response time, relative accuracy of dissolved-oxygen readout, temperature accuracy (for those instruments which included this feature), error and repeatability, stability, pressure and other environmental effects, and test results obtained in the field. Overall instrument performance is summarized comparatively by chart.

Pijanowski, Barbara S.

1971-01-01

226

Process for coal liquefaction in staged dissolvers  

DOEpatents

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

1983-01-01

227

Understanding and modelling the variability in Dissolved Organic Carbon concentrations in catchment drainage  

NASA Astrophysics Data System (ADS)

Our knowledge of dynamic natural habitats could be improved through the deployment of automated sensor technology. Dissolved organic carbon concentrations, [DOC], are of interest to water companies as purification removes this pool and currently in environmental science, due in part to rising DOC levels and also as respiration of this C pool can lead to an increased CO2 efflux. Manual sampling of catchment drainage systems has revealed seasonal patterns in DOC (Williams, P.J.L., 1995) and that hydrological events export most DOC(Raymond, P.A. and J.E. Saiers, 2010). However, manual sampling precludes detailed characterisation of the dynamic fluctuation of DOC over shorter but important time periods e.g. immediately prior to an event; the transition from base flow to a surface run-off dominated system as surface flow pathways defrost. Such insight is only gained through deployment of continuous-monitoring equipment. Since autumn 2010 we have deployed an S::CAN Spectrolyser (which from absorbance gives a measurement of [DOC]) in a 7.5 kilometre squared peaty catchment draining Europe's largest windfarm, Whitelee. Since autumn 2011, we have an almost complete time series of [DOC] every 30. Here [DOC] has ranged from 12.2 to 58.4 mg/l C and during event flow DOC had a maximum variation of 23.5 mg/l within a single day. Simultaneously with the Spectrolyser, we have logged stage height, pH and conductivity using an In-Situ Inc MD Troll 9000. Generally there is an inverse relationship between [DOC] and both pH and conductivity, but a positive relationship (albeit with seasonal differences) with [DOC] and stage height, from which we can infer hydrological changes in the source of the DOC. Here, in addition to presenting the time series of the data, and a more accurate export budget estimate, I will explore statistical methods for the handling of large datasets. Trends in the data of such large and dynamic data sets are challenging to model. Simple relationships with stage height or conductivity generally are not maintained over extended time periods and thus more complex statistical approaches are needed to understand trend and detail. For example wavelet analysis is being used to assess if periodicity in [DOC] occurs other than seasonally. Raymond, P.A. and J.E. Saiers (2010), Event controlled DOC export from forested watersheds. Biogeochemistry, 100,1-3, 197-209. Williams, P.J.L. (1995), Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and the consequential effect on net C/N assimilation ratios. Marine Chemistry, 51,1, 17-29.

Coleman, Martin; Waldron, Susan; Scott, Marian; Drew, Simon

2013-04-01

228

Effects of photodegradation of dissolved organic matter on the binding of benzo(a)pyrene.  

PubMed

Dissolved organic matter (DOM) in natural waters can bind various organic pollutants, and the affinity of this binding is strongly influenced by the chemical characteristics of the DOM and water pH. This study examined the effects of photochemically induced alteration of the DOM's chemical properties and water pH on the binding of benzo(a)pyrene (BaP). Time- and pH-series of solar-simulated irradiations were performed on a natural water sample and aqueous DOM solutions prepared from aquatic and soil humic substances. The binding affinity of BaP, expressed as a partition coefficient of a compound to DOM, decreased substantially after the DOM samples were irradiated over environmentally relevant radiation doses and pH ranges. The lowering of the pH due to the photoproduction of acidic products often partly offsets the reduction of the binding affinity caused by direct photoalteration of the DOM's chemical structure. The decrease of the binding affinity, after correction for the photoinduced pH change, was positively correlated with the decrease in the molecular weight and the aromaticity of the DOM in the course of irradiation. Increasing O(2) abundance accelerated the decrease of the binding affinity as a result of enhanced DOM photodegradation. Visible light played a more important role in reducing the molecular weight and aromaticity of the DOM than in reducing the content of dissolved organic carbon (DOC) via photoremineralization while the reverse was true for UV radiation, indicating that photochemical reduction of the binding affinity may occur in natural waters at depths greater than UV radiation can reach. A decrease of the affinity of DOM for binding BaP will increase the free dissolved fraction of BaP and thus its availability and toxicity to aquatic organisms. The results from this study may have similar implications for organic pollutants other than BaP. PMID:16406054

Lou, Tao; Xie, Huixiang; Chen, Guohua; Gagné, Jean-Pierre

2006-08-01

229

17-4 PH and 15-5 PH  

NASA Technical Reports Server (NTRS)

17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

Johnson, Howard T.

1995-01-01

230

Production of Dissolved Organic Matter During Fungal Wood Rot Decay  

NASA Astrophysics Data System (ADS)

Dissolved organic matter mediates numerous biogeochemical processes in soil systems impacting subsurface microbial activity, redox chemistry, soil structure, and carbon and nitrogen sequestration. The structure and chemistry of DOM is a function of the inherited chemistry of the source material, the type of microbial action that has occurred, and selective interaction with mineral substrates. The type of fungal decomposition imparted to woody tissue is a major factor in determining the nature of DOM in forest soils. In order to investigate the relationship between fungal decomposition and the nature of DOM in coniferous forest soils we conducted 32-week inoculation studies on spruce sapwood with basidiomycete brown-rot wood decay fungi where leachable dissolved and colloidal organic matter was separated from decayed residue. A detailed examination of the organic fractions was conducted using 13C-labeled tetramethylammonium hydroxide thermochemolysis, solid-state 13C-NMR, and electrospray mass spectrometry. The progressive stages of microbial decay (cellulolytic and ligninolytic) were manifested in the chemical composition of the DOM which showed an evolution from a composition initially polysaccharide rich to one dominated by mildly oxidized and demethylated lignin. Upon removal of all polysaccharides at 16 weeks the DOM (up to 10% by weight of the original tissue) looked chemically distinct from the degraded residue

Filley, T. R.; Jellison, J.; Goodell, B.; Kelley, S.; Davis, M.

2002-12-01

231

Seasonal and regional variability in dissolved and particulate iron fluxes via glacial runoff along the West Greenland coast  

NASA Astrophysics Data System (ADS)

Subglacial weathering, due to biogeochemical and physical weathering processes, can affect the chemical evolution of subglacial waters and release dissolved and particulate iron via glacial runoff. Iron is a growth limiting nutrient and plays a critical role in the biogeochemical cycles of coastal and marine waters. More recently, dissolved and colloidal iron derived from subglacial sources have been considered an important contributor of Fe fluxes to the ocean; however, their dependency on lithology, grain size, and microbial activity is not well understood. This study characterizes the solute chemistry, in particular iron mineralogy and dissolved iron concentrations, released from beneath the Greenland Ice Sheet (GrIS), from two locations along the West Greenland coast, Thule (76°N, 68°W) and Kangerlussuaq (67°N, 50°W). We hypothesize that the subglacial lithology has a control on Fe fluxes from the GrIS to coastal and marine systems. The underlying bedrock in Thule is the Precambrian Dundas and Narssarssuk sedimentary formations which include sandstone, siltstone, and shale. The bedrock in Kangerlussuaq is dominated by Archean granodioritic gneiss and amphibolite within the Nagssugtoqidian Orogen. Supra and subglacial meltwater samples were collected directly in front of the Ice Sheet over an entire melt season in 2011 (North River, Thule) and 2012 (Akuliarusiarsuup Kuua River, Kangerlussuaq). In situ parameters such as temperature, pH, dissolved oxygen, and electrical conductivity were recorded in order to interpret meltwater chemistry. Dissolved Fe(II) and Fe(III) species were fixed immediately and analyzed within 24 hours after sampling in the field laboratory using a spectrophotometer and 10 cm cell. Total dissolved iron (FeT) of different size fractions (<0.22 and <0.05 ?m) of iron were determined back in the home laboratory using reaction cell ICP MS. Preliminary results demonstrate that subglacial meltwater of North River has average FeT concentrations of 200 nM and 10 nM in the <0.22 and <0.05 ?m size fraction, respectively, indicating that FeT in the <0.22 ?m fraction is mostly (95%) in form of colloidal iron. In comparison, data from Kangerlussuaq show an average FeT of 580 nM in the <0.22 ?m size fraction and 150 nM in the <0.05 ?m fraction. Suspended load in North River increased throughout the ablation period in concurrence with variation in discharge, from an average of 0.08 g/L in the early melt stages (June), 0.21 g/L during the high melt (July-August), and 0.15 g/L during the late melt (end of August-September). Initial estimates for the suspended load for subglacial flow in Kangerlussuaq are 0.30 g/L on average. The suspended load will be analyzed for iron by sequential extraction in order to characterize how iron partitions between oxide and (oxyhydr)oxide minerals in the sediment. This comprehensive study will allow us to identify biogeochemical processes involved in the mobilization of iron and to evaluate how increased melting of GrIS will affect Fe fluxes to coastal and marine environments.

Choquette, K.; Hagedorn, B.; Sletten, R. S.; Harrold, Z.; Liu, L.; Dieser, M.; Cameron, K. A.; Christner, B. C.; Junge, K.

2012-12-01

232

Dissolved carbon and nitrogen quantity and quality at natural, drained and re-wetted bog sites in Lower Saxony (Germany)  

NASA Astrophysics Data System (ADS)

5 % of Germany's land area is covered with peatlands. Due to the large carbon and nitrogen stocks, changes in peatland hydrology for agricultural use have a huge impact on C and N cycling in the peatland and on the export to the atmosphere and adjacent ecosystems. Nonetheless, only a few studies focussed on the impact of drainage and re-wetting on C and N cycling in German raised bogs. Four study sites in the "Ahlenmoor" near Cuxhaven (Northwestern Germany) were chosen. This bog has a deep, medium to weakly decomposed peat layer. The sites represent a gradient of the groundwater level combined with land use differences (intensive and extensive grassland, natural site, re-wetted peat-cutting area). The mean annual groundwater level decreases from the natural and re-wetted sites (near surface) to the extensive grassland (30 cm below surface) and, finally, the intensive grassland (56 cm). The "Peeper" technique (dialysis sampler) was used to measure soil water chemistry in a high spatial resolution. At each site, three peepers (0-60 cm, 12 chambers each) collected soil water samples via diffusion. Monthly sampling was conducted from February 2012 till November 2012. The soil water solution was analysed for pH, EC, dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH4+, NO3- and SUVA(280). Samples taken in November 2012 were additionally analysed for dissolved CO2, CH4 and N2O. Average DOC concentrations ranged from 211 to 41 mg/L and decreased in order intensive > extensive grassland > re-wetted = natural site. After 10 years of restoration, the re-wetted and the natural site show similar DOC concentrations. Average SUVA(280) values of 3.7 to 3.3 L/(mg m) were higher at the grassland sites than at the re-wetted and the natural site. This indicates a distinct increase in aromaticity of DOC in grassland sites as a result of more intense humification of the upper peat layer. In contrast to mineral soils, SUVA(280) remained constant with depth at our sites. Total nitrogen decreased in same order as DOC and was mainly composed of DON. NH4+ dominates the inorganic nitrogen fraction. The comparison of peat C/N to DOC/DON ratios indicates that the more degraded upper layer is the main source of carbon and nitrogen in the soil solution. Dissolved inorganic carbon (DIC) was mainly measured as dissolved CO2-C (13.6 mg/L), followed by CH4-C (1.7 mg/L). While CH4-C was present over the whole profile at the re-wetted and the natural site, it was missing in the upper 40 cm of the grassland sites. Instead, dissolved N2O-N was found (19.8 µg/L). Especially in natural bogs with low DOC concentrations, DIC may be a relevant part of the carbon budget. Our results show that the groundwater level in combination with land use has a huge impact on C- and N-quality and quantity between sites and within the peat profile, and that re-wetting may result in a return to "natural" DOC concentration levels and properties.

Frank, Stefan; Tiemeyer, Bärbel; Freibauer, Annette

2013-04-01

233

Interlaboratory Test of pH Measurements in Rainwater.  

National Technical Information Service (NTIS)

An interlaboratory test of pH measurements in rainwater has been conducted. Various types of electrodes and junction materials were used in the test. The results of the exercise verify that there are significant differences in the pH values of low ionic s...

W. F. Koch, G. Marinenko, R. C. Paule

1985-01-01

234

Earth & Space Science PhDs, Class of 2001.  

ERIC Educational Resources Information Center

This study documents the employment patterns and demographic characteristics of recent PhDs in earth and space science. It summarizes the latest annual survey of recent earth and space science PhDs conducted by the American Geological Institute, the American Geophysical Union, and the Statistical Research Center of the American Institute of…

Claudy, Nicholas; Henly, Megan; Migdalski, Chet

235

Predicting Computer Science Ph.D. Completion: A Case Study  

ERIC Educational Resources Information Center

This paper presents the results of an analysis of indicators that can be used to predict whether a student will succeed in a Computer Science Ph.D. program. The analysis was conducted by studying the records of 75 students who have been in the Computer Science Ph.D. program of the University of Alabama in Huntsville. Seventy-seven variables were…

Cox, G. W.; Hughes, W. E., Jr.; Etzkorn, L. H.; Weisskopf, M. E.

2009-01-01

236

Technical description of parameters influencing the pH value of suspension absorbent used in flue gas desulfurization systems.  

PubMed

As a result of the large limestone deposits available in Poland, the low cost of reagent acquisition for the largescale technological use and relatively well-documented processes of flue gas desulfurization (FGD) technologies based on limestone sorbent slurry, wet scrubbing desulfurization is a method of choice in Poland for flue gas treatment in energy production facilities, including power plants and industrial systems. The efficiency of FGD using the above method depends on several technological and kinetic parameters, particularly on the pH value of the sorbent (i.e., ground limestone suspended in water). Consequently, many studies in Poland and abroad address the impact of various parameters on the pH value of the sorbent suspension, such as the average diameter of sorbent particles (related to the limestone pulverization degree), sorbent quality (in terms of pure calcium carbonate [CaCO3] content of the sorbent material), stoichiometric surfeit of CaCO3 in relation to sulfur dioxide (SO2) absorbed from flue gas circulating in the absorption node, time of absorption slurry retention in the absorber tank, chlorine ion concentration in sorbent slurry, and concentration of dissolved metal salts (Na, K, Mg, Fe, Al, and others). This study discusses the results of laboratory-scale tests conducted to establish the effect of the above parameters on the pH value of limestone slurry circulating in the SO2 absorption node. On the basis of the test results, a correlation equation was postulated to help maintain the desirable pH value at the design phase of the wet FGD process. The postulated equation displays good coincidence between calculated pH values and those obtained using laboratory measurements. PMID:20842941

G?omba, Micha?

2010-08-01

237

Dissolved-oxygen regimen of the Willamette River, Oregon, under conditions of basinwide secondary treatment  

USGS Publications Warehouse

For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor. (Woodard-USGS)

Hines, Walter G.; McKenzie, S. W.; Rickert, D. A.; Rinella, F. A.

1977-01-01

238

Evaluation of planning alternatives for maintaining desirable dissolved-oxygen concentrations in the Willamette River, Oregon  

USGS Publications Warehouse

For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor. (Woodard-USGS)

Rickert, David A.; Rinella, F. A.; Hines, W. G.; McKenzie, S. W.

1980-01-01

239

Steady-state dissolved oxygen model of the Willamette River, Oregon  

USGS Publications Warehouse

For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor. (Woodard-USGS)

McKenzie, Stuart W.; Hines, W. G.; Rickert, D. A.; Rinella, F. A.

1979-01-01

240

Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations  

USGS Publications Warehouse

Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.

Cravotta, C.A., III

2008-01-01

241

Industrial experience with dissolved-air flotation  

Microsoft Academic Search

Operating and analytical data relating to the application of dissolved-air flotation to the treatment of industrial wastewaters from various sources are presented including typical values for influent flow rate, rate of recycle, air-solid ratio, and hydraulic loading for the separation process, along with data on suspended solids, BOD, COD, and oil and grease fraction in the raw and treated wastewaters

M. G. Biesinger; I. S. Vining; G. L. Shell

1974-01-01

242

Dissolving polymer microneedle patches for influenza vaccination  

Microsoft Academic Search

Influenza prophylaxis would benefit from a vaccination method enabling simplified logistics and improved immunogenicity without the dangers posed by hypodermic needles. Here we introduce dissolving microneedle patches for influenza vaccination using a simple patch-based system that targets delivery to skin's antigen-presenting cells. Microneedles were fabricated using a biocompatible polymer encapsulating inactivated influenza virus vaccine for insertion and dissolution in the

Sean P Sullivan; Dimitrios G Koutsonanos; Maria del Pilar Martin; Jeong Woo Lee; Vladimir Zarnitsyn; Seong-O Choi; Niren Murthy; Richard W Compans; Ioanna Skountzou; Mark R Prausnitz

2010-01-01

243

An Biogeochemistry of Marine Dissolved Organic Matter  

E-print Network

Carbon Isotopic Composition u The Photochemistry and Cycling of Carbon u Sulfur, Nitrogen and Phosphorus of carbon, phosphorus, nitrogen, and other major elements in the oceans has been a pri- mary goal of marineAn Biogeochemistry of Marine Dissolved Organic Matter Edited by Dennis A. Hansell and Craig A

Hansell, Dennis

244

Dissolved zirconium in the north Pacific Ocean  

SciTech Connect

Picomolar levels of dissolved Zr in seawater were measured using an analytical technique developed with a Chelex-100 extraction/concentration step and subsequent detection by isotope-dilution inductively-coupled-plasma mass spectrometry (ID-ICP-MS). Here the authors present the first vertical profile of Zr in the oceans, from the central-North Pacific, and a horizontal surface transect across the western Pacific. Dissolved Zr ranges from 12--95 pmol/kg in the surface waters then increases linearly with depth to a maximum of 300 pmol/kg in the deep water. The vertical profile shows a strong correlation with Si in the mid-waters, with higher Zr/Si ratios in the surface and bottom waters. There is evidence of both a bottom source and a coastal source of dissolved Zr to the oceans. A comparison with dissolved Ti and Be shows similar depth dependence, but an enrichment in Zr/Ti and a depletion in Zr/Be ratios in seawater relative to average crustal materials. Zirconium appears to have a reactivity intermediate between these two elements. 24 refs., 4 figs., 1 tab.

McKelvey, B.A.; Orians, K.J. (Univ. of British Columbia, Vancouver (Canada))

1993-08-01

245

Modeling Fish Growth in Low Dissolved Oxygen  

ERIC Educational Resources Information Center

This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

Neilan, Rachael Miller

2013-01-01

246

DECONTAMINATION OF DISSOLVER VENT GASES AT HANFORD  

Microsoft Academic Search

The dissolver vent gases constitute the most highly contaminated gas ; stream in the present Hanford Separations Plants. From the health hazard ; viewpoint there are two principal contaminants, radio-iodine and an aerosol ; composed of other fission products. An extensive study has been made at Hanford ; of methods and equipment to remove effeciively these materials. Tbis ; investigation

A. G. Blasewitz; R. V. Carlisle; B. F. Judson; M. F. Katzer; E. F. Kurtz; W. C. Schmidt; B. Weidenbaum

1951-01-01

247

Dissolving microneedles for transdermal drug delivery  

Microsoft Academic Search

Microfabrication technology has been adapted to produce micron-scale needles as a safer and painless alternative to hypodermic needle injection, especially for protein biotherapeutics and vaccines. This study presents a design that encapsulates molecules within microneedles that dissolve within the skin for bolus or sustained delivery and leave behind no biohazardous sharp medical waste. A fabrication process was developed based on

Jeong W. Lee; Jung-Hwan Park; Mark R. Prausnitz

2008-01-01

248

DISSOLVED OXYGEN IMPACT FROM URBAN STORM RUNOFF  

EPA Science Inventory

The primary objective of the research reported here is to determine if on a national basis a correlation exists between strength of dissolved oxygen (DO) deficits and the presence of rainfall and/or storm runoff downstream of urban areas. A secondary objective is to estimate the ...

249

EFFECT OF DISSOLVED ORGANIC SUBSTANCES ON OYSTERS  

E-print Network

EF·FECT OF DISSOLVED ORGANIC SUBSTANCES· ON OYSTERS BY ALBERT COLLIER, S. M. RAY, A. W. MAGNITZKY FISH AND WILDLIFE SERVICE, John L. Farley, Director #12;ABSTRACT Sea. water contains unknown substances of the substances in sea water stored under con- trolled conditions established that light and air increase

250

Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter.  

PubMed

Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the 'MADOC' model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. Long-term trends in a range of acid waters were also reproduced. The model suggests that the sustained nature of observed DOC increases can best be explained by a continuously replenishing potentially-dissolved carbon pool, rather than dissolution of a large accumulated store. The simulations informed the development of hypotheses that: DOC increase is related to plant productivity increase as well as to pH change; DOC increases due to nitrogen pollution will become evident, and be sustained, after soil pH has stabilised. PMID:24077255

Rowe, E C; Tipping, E; Posch, M; Oulehle, F; Cooper, D M; Jones, T G; Burden, A; Hall, J; Evans, C D

2014-01-01

251

Conduction Activities  

NSDL National Science Digital Library

This page presents activities related to Conduction from the Science & Engineering in the Lives of Students project. Activities include Chemical Reactions in Construction, Everyday Heat Transfer, Heat Resistant Glass, Hot Cup, Speed Melting, and Wall R Value. Each activity includes a detailed description, list of the materials needed, science concepts covered, and reflection questions.

2013-07-10

252

Appropriate Conduct  

ERIC Educational Resources Information Center

Many years ago when the author assumed the role of assistant principal for school climate, discipline, and attendance, he inherited many school policies and guidelines that were outdated, unfair, and without merit in the current school climate. Because the school conduct code had not been revised since the school opened in 1960, many of the…

Di Lullo, Louis

2004-01-01

253

Dissolved-solids budget of Lake Okeechobee, Florida, October 1964 to September 1974  

USGS Publications Warehouse

Lake Okeechobee is a major surface-water storage facility for south Florida. A dissolved-solids budget for Lake Okeechobee was computed for Oct. 1964 to Sept. 1974, a 10-year budget period. Calculations were based on records of daily discharge, daily specific conductance measurements, and regression equations relating dissolved-solids concentrations and specific conductance. The lake received more than 13 million acre-feet of rainfall during the budget period and lost more than 18 million acre-feet of water to evaporation. Lake Okeechobee received more than 20 million acre-feet of inflow and released almost 16 million acre-feet to distributaries. A water budget of 34.48 million acre-feet for the 10-year budget period was computed. Rainfall produced an input of 460,000 tons of dissolved solids to Lake Okeechobee. Inflow from tributaries and distributaries added 5.51 million tons of dissolved solids to the lake and outflow to distributaries removed 6.71 million tons. A dissolved-solids budget of 6.99 million tons for the 10-year budget period was computed. (Woodard-USGS)

Maddy, David V.

1978-01-01

254

Dissolved oxygen extrema in the Arctic Ocean halocline from the North Pole to the Lincoln Sea  

Microsoft Academic Search

Dissolved oxygen (O2) profiling by new generation sensors was conducted in the Arctic Ocean via aircraft during May 2003 as part of the North Pole Environmental Observatory (NPEO) and Freshwater Switchyard (SWYD) projects. At stations extending from the North Pole to the shelf off Ellesmere Island, such profiles display what appear to be various O2 maxima (with concentrations 70% of

Kelly Kenison Falkner; Michael Steele; Rebecca A. Woodgate; James H. Swift; Knut Aagaard; James Morison

2005-01-01

255

Behavioral responses of red hake, Urophycis chuss , to decreasing concentrations of dissolved oxygen  

Microsoft Academic Search

Synopsis Laboratory experiments were conducted to examine changes in behavior of red hake,Urophycis chuss, under decreasing concentrations of dissolved oxygen (DO). Since the ecological requirements of this species change with age, responses were measured for three different groups: (1) age 0+, = 89 mm total length (TL); (2) age 1+, = 238 mm TL; and (3) age 2–3+, = 397

Allen J. Bejda; Anne L. Studholme; Bori L. Olla

1987-01-01

256

Dissolved Oxygen Extrema in the Arctic Ocean Halocline from the North Pole to the Lincoln Sea  

Microsoft Academic Search

Dissolved oxygen profiling by new generation sensors was conducted in the Arctic Ocean via aircraft during May 2003 as part of the North Pole Environmental Observatory (NPEO) and Freshwater Switchyard (SWYD) projects. At stations extending from the North Pole to the Lincoln Sea north of Ellesmere Island, such profiles display what appear to be various oxgyen maxima (with concentrations 70

K. K. Falkner; M. Steele; R. A. Woodgate; J. H. Swift; K. Aagaard; J. Morison

2004-01-01

257

Quantitative and Qualitative Aspects of Dissolved Organic Carbon Leached from Senescent Plants in an Oligotrophic Wetland  

Microsoft Academic Search

We conducted a series of experiments whereby dissolved organic matter (DOM) was leached from various wetland and estuarine\\u000a plants, namely sawgrass (Cladium  jamaicense), spikerush (Eleocharis  cellulosa), red mangrove (Rhizophora  mangle), cattail (Typha  domingensis), periphyton (dry and wet mat), and a seagrass (turtle grass; Thalassia  testudinum). All are abundant in the Florida Coastal Everglades (FCE) except for cattail, but this species

Nagamitsu Maie; RUDOLF JAFFE ´; Toshikazu Miyoshi; Daniel L. Childers

2006-01-01

258

Community-Level Effects of Excess Total Dissolved Solids Doses Using Model Streams  

EPA Science Inventory

Model stream chronic dosing studies (42 days) were conducted with four different total dissolved solids (TDS) recipes. The recipes differed in their relative dominance of major ions. One was made from sodium and calcium chloride salts only. Another was similar to the first, but a...

259

Performance study of the inverted absorber solar still with water depth and total dissolved solid  

Microsoft Academic Search

In this communication, an experimental study of inverted absorber solar still (IASS) and single slope solar still (SS) at different water depth and total dissolved solid (TDS) is presented. Experiments are conducted for the climatic condition of Muscat, Oman. A thermal model is also developed for the IASS and validated with experimental results. A fair agreement is found for the

Rahul Dev; Sabah A. Abdul-Wahab; G. N. Tiwari

2011-01-01

260

Evaluation of a vertical continuous centrifuge for clarification of HTGR dissolver slurries  

SciTech Connect

A series of statistically designed centrifuge performance tests was conducted to evaluate the solid-liquid separation efficiency of a vertical continuous centrifuge. Test results show that 100% of the particles greater than 4 microns in diameter were removed from simulated HTGR fuel reprocessing dissolver solutions. Centrifugal force and liquid density are the principal variables affecting separation efficiency.

Olguin, L.J.

1980-03-01

261

Removal of dissolved organic matter in water-hyacinth waste-water treatment lagoons  

Microsoft Academic Search

Secondary treatment of domestic wastewater in water hyacinth lagoons was evaluated under experimental conditions to assess the role of the roots' bacterial biofilm in the removal of dissolved organic matter (DOM). Research was conducted to (1) quantify removal rates by the biofilm as a function of bulk DOM concentration, (2) formulate an analytical model of DOM removal incorporating biofilm activity,

Victoria-Rueda

1991-01-01

262

Transformation and characterisation of dissolved organic matter during the thermophilic aerobic biodegradation of faeces  

Microsoft Academic Search

We conducted a comparison of the characteristics of dissolved organic matter (DOM) taken from the bio-toilet and other sources. A characterisation of DOM was carried out to assess the stability of the compost generated during the thermophilic and aerobic biodegradation of faeces. In addition, levels of soluble microbial products generated in the bio-toilet composting reactor were compared with those taken

Hiroki Narita; Miguel Angel Lopez Zavala; Kaori Iwai; Ryusei Ito; Naoyuki Funamizu

2005-01-01

263

DIEL DISSOLVED OXYGEN MONITORING OF THE SPOKANE RIVER DURING EXTREME LOW FLOW. KOOTENAI COUNTY, IDAHO, 1992  

EPA Science Inventory

Diel monitoring of dissolved oxygen and temperature was conducted on an impounded and free-flowing reach of the Spokane River, in north Idaho (17010303) on 2 occasions during an extreme low flow event in water year 1992. The objective was to document excursions from water qualit...

264

Stocks and dynamics of dissolved and particulate organic matter in the southern Ross Sea, Antarctica  

Microsoft Academic Search

Dissolved and particulate organic matter was measured during six cruises to the southern Ross Sea. The cruises were conducted during late austral winter to autumn from 1994 to 1997 and included coverage of various stages of the seasonal phytoplankton bloom. The data from the various years are compiled into a representative seasonal cycle in order to assess general patterns of

Craig A. Carlson; Dennis A. Hansell; Edward T. Peltzer; Walker O. Smith Jr

2000-01-01

265

A community-wide intercomparison exercise for the determination of dissolved iron in seawater  

Microsoft Academic Search

The first large-scale international intercomparison of analytical methods for the determination of dissolved iron in seawater was carried out between October 2000 and December 2002. The exercise was conducted as a rigorously “blind” comparison of 7 analytical techniques by 24 international laboratories. The comparison was based on a large volume (700 L), filtered surface seawater sample collected from the South

Andrew R. Bowie; Eric P. Achterberg; Peter L. Croot; Hein J. W. de Baar; Patrick Laan; James W. Moffett; Simon Ussher; Paul J. Worsfold

2006-01-01

266

Updated determination of particulate and dissolved thorium-234  

NASA Astrophysics Data System (ADS)

The determination of particulate and dissolved 234Th is similar to the procedure of Anderson and Fleer [1982]. Samples are collected using 30 L Niskin bottles with Teflon- or epoxy-coated internal springs. On deck, the sample is pumped with a delrin impeller pump through a 0.45 ?m pore size 147-mm diameter Millipore filter and into a pre-rinsed 6 gallon plastic cubitainer held in a plastic milk crate. An in-line plastic water meter records volumes in gallons. The particulate sample filter is folded twice and stored in a polyethylene sample bag. To the ˜20 L filtered sample is added: 30 mL reagent grade 16 N HNO3; 500 mL 230Th tracer of ˜30 dpm mL-l and 5 mL 50 mg mL-l iron carrier previously cleaned by extraction into isopropyl ether from an 8 M HCl solution and back-extracted into 0.1 M HCl. The acidified sample is allowed to equilibrate for from one day to a maximum of several days. The sample is weighed on a Heathkit digital scale and the pH is adjusted to approximately 8 with about 40 mL 10 M NH4OH to precipitate iron hydroxide, which carries the thorium and uranium from the solution. The precipitate is allowed to settle for 12 to 24 hours. The supernate is drawn off, and the precipitate is spun down in a centrifuge tube to about an 8 mL volume. The precipitate is resuspended in distilled water and spun down again, then dissolved in three times its volume with 12 N HCl to make a 9 N HCl solution. A 1.5 cm×12 cm ion exchange column is filled with AG1×8 100-200 mesh resin and conditioned with 9 N HCl. The sample solution is run slowly through.

Fleer, Alan P.

267

Conduction Countdown  

NSDL National Science Digital Library

In this quick SciGirls activity (page 1 of the PDF), learners will be introduced to the concept of thermal conductivity. A metal knife and a plastic knife are each poked into slices of cold butter then placed handle-first into a glass of warm water. Learners predict which butter slice will fall first and watch carefully for the result. Relates to the linked video, DragonflyTV GPS: Doghouse Design.

Twin Cities Public Television, Inc.

2006-01-01

268

Urine pH test  

MedlinePLUS

A urine pH test measures the level of acid in urine. ... pH - urine ... meat products or cranberries can decrease your urine pH. ... to check for changes in your body's acid levels.It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

269

Fractionation of Dissolved Solutes and Chromophoric Dissolved Organic Matter During Experimental Sea Ice Formation.  

E-print Network

In the past decade there has been an overall decrease in Arctic Ocean sea ice cover. Changes to the ice cover have important consequences for organic carbon cycling, especially over the continental shelves. When sea ice is formed, dissolved organic...

Smith, Stephanie 1990-

2012-04-16

270

Complexation of trace organic contaminants with fractionated dissolved organic matter: implications for mass spectrometric quantification.  

PubMed

Interaction with aqueous phase dissolved organic matter (DOM) can alter the fate of trace organic contaminants of emerging concern once they enter the water cycle. In order to probe possible DOM binding mechanisms and their consequences for contaminant detection and quantification in natural waters, a set of laboratory experiments was conducted with aqueous solutions containing various operationally-defined "hydrophilic" and "hydrophobic" freshwater DOM fractions isolated by resin adsorption techniques from reference Suwannee River natural organic matter (SROM). Per unit mass of SROM carbon, hydrophobic acids (HoA) comprised the largest C fraction (0.63±0.029), followed by hydrophilic-neutrals (HiN, 0.11±0.01) and acids (HiA, 0.09±0.017). Aqueous solutions comprising 8mgL(-1) DOC of each SROM fraction were spiked with a concentration range (10-1000?gL(-1)) of bisphenol A (BPA), carbamazepine (CBZ), or ibuprofen (IBU) as model target compounds in 24mM NH4HCO3 background electrolyte at pH 7.4. Contaminant interaction with the SROM fractions was probed using fluorescence spectroscopy, and effects on quantitative analysis of the target compounds were measured using direct aqueous-injection liquid chromatography tandem mass spectrometry (LC-MS/MS). Total quenching was greater for the hydrophilic fractions of SROM and associations were principally with protein-like and fulvic acid-like constituents. Whereas LC-MS/MS recoveries indicated relatively weak interactions with most SROM factions, an important exception was the HiA fraction, which diminished recovery of CBZ and IBU by ca. 30% and 70%, respectively, indicating relatively strong molecular interactions. PMID:23276460

Ruiz, Selene Hernandez; Wickramasekara, Samanthi; Abrell, Leif; Gao, Xiaodong; Chefetz, Benny; Chorover, Jon

2013-04-01

271

Effect of Elicitation and Changes in Extracellular pH on the Cytoplasmic and Vacuolar pH of Suspension-Cultured Soybean Cells 1  

PubMed Central

We have employed both 31P nuclear magnetic resonance spectroscopy and two intracellular fluorescent pH indicator dyes to monitor the pH of the vacuole and cytoplasm of suspension-cultured soybean cells (Glycine max Merr cv Kent). For the 31P nuclear magnetic resonance studies, a flow cell was constructed that allowed perfusion of the cells in oxygenated growth medium throughout the experiment. When the perfusion medium was transiently adjusted to a pH higher than that of the ambient growth medium, a rapid elevation of vacuolar pH was observed followed by a slow (approximately 30 minute) return to near resting pH. In contrast, the concurrent pH changes in the cytoplasm were usually fourfold smaller. These data indicate that extracellular pH changes are rapidly communicated to the vacuole in soybean cells without significantly perturbing cytoplasmic pH. When elicitors were dissolved in a medium of altered pH and introduced into the cell suspension, the pH of the vacuole, as above, quickly reflected the pH of the added elicitor solution. In contrast, when the pH of either a polygalacturonic acid or Verticillium dahliae elicitor preparation was adjusted to the same pH as the ambient medium, no significant change in either vacuolar or cytoplasmic pH was observed during the 35 minute experiment. These results were confirmed in experiments with pH-sensitive fluorescent dyes. We conclude that suspension-cultured soybean cells do not respond to elicitation by significantly changing the pH of their vacuolar or cytoplasmic compartments. ImagesFigure 1 PMID:16668695

Horn, Mark A.; Meadows, Robert P.; Apostol, Izydor; Jones, Claude R.; Gorenstein, David G.; Heinstein, Peter F.; Low, Philip S.

1992-01-01

272

Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, Southwestern India.  

PubMed

The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water. PMID:24374620

Gurumurthy, G P; Balakrishna, K; Tripti, M; Audry, Stéphane; Riotte, Jean; Braun, J J; Udaya Shankar, H N

2014-04-01

273

The effect of dissolved water on the oxidation state of silicic melts  

Microsoft Academic Search

Experiments have been conducted to study the effect of dissolved water on the ferric-ferrous ratio in natural rhyolite melts of metaluminous and peralkaline composition. The experiments were conducted at temperatures of 725–1150°C, pressures of 100–2000 bars, and oxygen fugacities from Ni?NiO (NNO) to MnO?Mn3O4 (MNO). The final water contents of the rhyolites ranged from 0.4–8 wt% H2O as measured by

Leslie L. Baker; Malcolm J. Rutherford

1996-01-01

274

Arsenic adsorption and oxidation at manganite surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species  

SciTech Connect

Arsenic occurs in the +III oxidation state as a metastable species in oxic waters. Under oxide conditions, As(III) is both more mobile in natural waters and less efficiently removed by water treatment processes than As(V). Other oxidants, however, can react with As(III) more rapidly than oxygen. The oxidation of As(III) by manganite occurs on the time scale of hours. Here, a method is introduced for the rapid determination of the total and dissolved concentrations of arsenic species in this heterogeneous system; absorbed arsenic concentrations are calculated by difference. The oxidation reaction is quenched by the addition of ascorbic acid to effect the reductive dissolution of manganite and concomitant release of adsorbed As(III) and As(V) into solution. Once in solution, As(III) and As(V) are separated using anion-exchange chromatography. Comparison of dissolved and total concentrations of As(III) and As(V) clearly illustrates that the overall conversion rate of As(III) to As(V) in this system would be overpredicted based solely on dissolved As(III) concentrations and underpredicted based solely on dissolved As(V) concentrations. The overall conversion of As(III) to As(V) was more rapid at pH 4 than at pH 6.3 and was unaffected by the presence of boric acid at 95 {micro}M or 3 mM. However, the presence of 200 {micro}M phosphate (at pH 4) decreased the overall rate of conversion of As(III) to As(V). Comparison of total and dissolved As(III) concentrations during the reaction time course demonstrates that the effects of pH and phosphate on adsorbed As(III) concentrations are generally consistent with these kinetic observations.

Chiu, V.Q.; Hering, J.G.

2000-05-15

275

Assessing Diurnal Variability in Riverine Dissolved Organic Carbon and Nitrate with Discrete and High Frequency In Situ Monitoring  

NASA Astrophysics Data System (ADS)

Understanding diurnal variability of nitrate (NO3) and dissolved organic carbon (DOC) in surface water is important for characterizing water quality and quantifying constituent loads. However, measuring NO3 and DOC at sufficiently high frequencies to detect diurnal patterns has historically been a challenge. Here we present results from a study examining high frequency variations of DOC and NO3 in the San Joaquin River in California during a period without rainfall (July 2005). In situ optical instrumentation was used to quantify NO3 concentrations and the intensity of chromophoric DOM at 30-minute intervals for a 5-day period. Discrete samples were also collected every 2 hours for 2 days of the study for lab analysis of bulk DOC and NO3 concentrations, as well as spectral absorbance and fluorescence. Ancillary in situ data (electrical conductivity, pH, dissolved oxygen, chlorophyll fluorescence, and flow) were also measured. In situ and lab NO3 concentrations were strongly correlated (r2=0.97) and varied diurnally by up to 25 % (0.6 mg/L). The general temporal pattern shows a daily minimum at night (ca. 2000 hr) and a daily maxima near noon. A second daily NO3 peak occurred but was less predictable and may reflect changes in external sources such as agricultural return flow. Temperature, dissolved oxygen, and chlorophyll fluorescence exhibited clear diurnal signals with late afternoon maxima and early morning minima but were not correlated with NO3 concentrations. Lab DOC concentrations ranged from 3.1-3.6 mg/L and showed no clear diurnal pattern during the 2-day sampling period. In contrast, high frequency CDOM values did show a clear diurnal variability with maxima at noon and minima at night. Differences between CDOM and lab DOC patterns may indicate diurnal changes in components of the bulk DOC pool (such as chromophoric material) or may reflect insufficient analytical precision of lab DOC analyses to detect small diurnal changes. Along with C and N isotopic data, observed high frequency data will provide important insights into the biological, physical and photolytic processes affecting NO3 and DOC on diurnal timescales.

Pellerin, B. A.; Kraus, T.; Downing, B. D.; Bergamaschi, B. A.

2005-12-01

276

Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy.  

PubMed

Interactions of glyphosate (N-phosphonomethylglycine) herbicide (GLY) with soluble fulvic acids (FAs) and humic acids (HAs) at pH 5.2 and 7 were studied by (1)H and (31)P NMR spectroscopy. Increasing concentrations of soluble humic matter determined broadening and chemical shift drifts of proton and phosphorus GLY signals, thereby indicating the occurrence of weak interactions between GLY and humic superstructures. Binding was larger for FAs and pH 5.2 than for HAs and pH 7, thus suggesting formation of hydrogen bonds between GLY carboxyl and phosphonate groups and protonated oxygen functions in humic matter. Changes in relaxation and correlation times of (1)H and (31)P signals and saturation transfer difference NMR experiments confirmed the noncovalent nature of GLY-humic interactions. Diffusion-ordered NMR spectra allowed calculation of the glyphosate fraction bound to humic superstructures and association constants (K(a)) and Gibbs free energies of transfer for GLY-humic complex formation at both pH values. These values showed that noncovalent interactions occurred most effectively with FAs and at pH 5.2. Our findings indicated that glyphosate may spontaneously and significantly bind to soluble humic matter by noncovalent interactions at slightly acidic pH and, thus, potentially pollute natural water bodies by moving through soil profiles in complexes with dissolved humus. PMID:22591574

Mazzei, Pierluigi; Piccolo, Alessandro

2012-06-01

277

Dissolved organic nitrogen in precipitation: Collection, analysis and atmospheric flux  

SciTech Connect

Recent studies have documented the importance of atmosphere inorganic nitrogen deposition to coastal waters. However, due to the limited number of field measurements and concerns about the reliability of measurement techniques, the aeolian flux of organic N is very uncertain. Coordinated studies have been initiated at Lewes, DE and Charlottesville, VA to evaluate collection and analysis techniques for dissolved organic nitrogen (DON) in precipitation and to provide preliminary estimate of DON wet fluxes. Sampling was conducted both manually and employing an automated wet-only collector (ACM) on a daily basis. A total of 37 events were analyzed from October 1993 through December 1994. Side-by-side comparisons of standard white HDPE buckets and stainless steel and glass collection vessels indicate sampling artifacts associate with plastic buckets. DON in precipitation appears to be highly labile, with significant losses observed in some samples within 12 hours. Analytical methods evaluated include persulfate wet chemical oxidation, UV photo-oxidation and a modified high temperature instrumental (ANTEK 7000) technique. Based on preliminary results, the volume-weighted average concentration of DON in precipitation at the mid-Atlantic coast is 9.1 {micro}moles/1. On an annual basis, DON compromises 23% of the total dissolved nitrogen in precipitation, varying from 0--64% on an event basis. From an ecological perspective, DON wet flux represents a quantitatively important exogenous source of N to coastal waters such as Chesapeake Bay.

Scudlark, J.R.; Church, T.M. [Univ. of Delaware, Lewes, DE (United States). Graduate Coll. of Marine Studies; Russell, K.M. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Environmental Sciences; [Univ. of Delaware, Lewes, DE (United States). Graduate Coll. of Marine Studies; Montag, J.A.; Maben, J.R.; Keene, W.C.; Galloway, J.N. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Environmental Sciences

1995-12-31

278

1. Constituents of rainwater 2. pH and pKa  

E-print Network

Acid Rain Outline: 1. Constituents of rainwater 2. pH and pKa 3. Sources of acid rain 4. Adverse e#11;ects of acid rain 5. Controls 1: Constituents of rainwater #15; Gases are soluble in water: Henry. Strong acids formed upon dissolving: H 2 SO 4 and H 2 SO 3 . #12; Chemistry of Acid Rain #15; NO 2

Schofield, Jeremy

279

Quantum Leaps in CO2 Detection Robert Byrne, Ph.D.  

E-print Network

to simultaneously measure pH (solution acidity), total dissolved inorganic carbon (DIC) and a parameter, called leaps in measuring carbon dioxide (CO2) in the oceans and measuring the interactions of CO2 between the water and the atmosphere. Such measurements are very important because of the rising amount of CO2

Meyers, Steven D.

280

Dissolving polymer microneedle patches for influenza vaccination.  

PubMed

Influenza prophylaxis would benefit from a vaccination method enabling simplified logistics and improved immunogenicity without the dangers posed by hypodermic needles. Here we introduce dissolving microneedle patches for influenza vaccination using a simple patch-based system that targets delivery to skin's antigen-presenting cells. Microneedles were fabricated using a biocompatible polymer encapsulating inactivated influenza virus vaccine for insertion and dissolution in the skin within minutes. Microneedle vaccination generated robust antibody and cellular immune responses in mice that provided complete protection against lethal challenge. Compared to conventional intramuscular injection, microneedle vaccination resulted in more efficient lung virus clearance and enhanced cellular recall responses after challenge. These results suggest that dissolving microneedle patches can provide a new technology for simpler and safer vaccination with improved immunogenicity that could facilitate increased vaccination coverage. PMID:20639891

Sullivan, Sean P; Koutsonanos, Dimitrios G; Del Pilar Martin, Maria; Lee, Jeong Woo; Zarnitsyn, Vladimir; Choi, Seong-O; Murthy, Niren; Compans, Richard W; Skountzou, Ioanna; Prausnitz, Mark R

2010-08-01

281

Upper ocean model of dissolved atmospheric gases  

SciTech Connect

The goal of this project is to estimate the rate of biological oxygen production at Hawaiian Ocean Time-series station ALOHA in the central North Pacific ocean. Our approach is to use an upper ocean model together with measurements to interpret an annual cycle of temperature, salinity, dissolved oxygen, argon, nitrogen, and the stable isotope ratio of oxygen at station ALOHA. This project represents the first upper ocean geochemical study in which model predictions are verifiable by independent measurements. Using the model, we will be able to assess the relative roles played by physical processes (air-sea gas exchange, air injection by bubbles, temperature-induced changes in gas solubility, trapping below the mixed layer, and diffusion) and biological processes (photosynthesis, respiration, and nutrient recycling) in producing the observed distribution of dissolved atmospheric gases. The long term goal of this project is to understand the utility of chemical tracers for quantifying biological processes in the ocean.

Schudlich, R.; Emerson, S.

1992-01-01

282

Dissolved silver in the Baltic Sea.  

PubMed

The increased use of silver as a biocide in nanoparticle formulations has heightened concern on possible environmental implications owing to its toxicity. There is however very little data on the concentration levels of silver in marine and freshwaters. Here, I report data on dissolved (<0.4 ?m filter) silver concentration in the surface waters of the Baltic Sea, the first such data reported for a European coastal water body. Levels of dissolved silver in the Baltic are comparable to those reported for other American estuarine waters and range from non-detectable in the open Baltic Sea Proper (<1 pM) to 9.4 pM (1 ng/L) in the Stockholm Archipelago, with a mean of 2.8 pM (0.2 ng/L). Inputs from wastewater treatment are clearly discernable and might constitute the main source of silver to the Stockholm Archipelago and possibly the Baltic Sea Proper. PMID:21075364

Ndungu, Kuria

2011-01-01

283

Performances of Small-Sized Generator of Ozone-Dissolved Water Using Boron-Doped Diamond Electrodes  

Microsoft Academic Search

A new electrochemical generator of ozone-dissolved water, which is comprised of an electro-conductive diamond electrode and an ion exchange membrane, was evaluated using tap water as source solution, in order to confirm general versatility. Although the current efficiency of tap water became lower than that obtained in the case of pure water, ozone-dissolved water of over 1 mg\\/L could be

Yoshinori Nishiki; Noriyuki Kitaori; Katsuhiko Nakamuro

2011-01-01

284

Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment  

NASA Astrophysics Data System (ADS)

Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics.

Zhang, Litao; Wang, Jianqiu

2014-03-01

285

Dissolved gases in seawater and sediments  

Microsoft Academic Search

Certainly the most controversial results derived from the study of any dissolved gas concerned oxygen utilization rates in the North Atlantic. Jenkins (1982) estimated a net oxy- gen utilization rate (OUR) for the Beta triangle region of the North Atlantic (apices 26.5°N x 38.5°W, 32.5°N x 30.0°W, and 22.5°N x 28.5°W) of 5.7 moles of oxygen consumed m?2 yr?1 for

R. M. Key

1987-01-01

286

Dissolved oxygen concentrations in hypersaline waters  

Microsoft Academic Search

Henry's law constants (kO) and equilibrium concentrations (CO*) of dissolved oxygen (DO) at 1 atm were measured in NaCl solutions of concentration (S) up to -260%~ and at temperatures (7') between 273 and 308K. An equation of the form In Co* = a, + $ + a,ln T + a,T + a,T2 + S(a, + a,T + a7P) + asS2

J. E. SHERWOOD; F. STAGNITTI; M. J. KOKKINN; W. D. WILLIAMS

1991-01-01

287

Measurements of the dissolved inorganic carbon system and associated biogeochemical parameters in the Canadian Arctic, 1974-2009  

NASA Astrophysics Data System (ADS)

We have assembled and conducted primary quality control on previously publicly unavailable water column measurements of the dissolved inorganic carbon system and associated biogeochemical parameters (oxygen, nutrients, etc.) made on 26 cruises in the subarctic and Arctic regions dating back to 1974. The measurements are primarily from the western side of the Canadian Arctic, but also include data that cover an area ranging from the North Pacific to the Gulf of St. Lawrence. The data were subjected to primary quality control (QC) to identify outliers and obvious errors. This data set incorporates over four thousand individual measurements of total inorganic carbon (TIC), alkalinity, and pH from the Canadian Arctic over a period of more than 30 years and provides an opportunity to increase our understanding of temporal changes in the inorganic carbon system in northern waters and the Arctic Ocean. The data set is available for download on the CDIAC (Carbon Dioxide Information Analysis Center) website: http://cdiac.ornl.gov/ftp/oceans/IOS_Arctic_Database/ (doi:10.3334/CDIAC/OTG.IOS_ARCT_CARBN).

Giesbrecht, K. E.; Miller, L. A.; Davelaar, M.; Zimmermann, S.; Carmack, E.; Johnson, W. K.; Macdonald, R. W.; McLaughlin, F.; Mucci, A.; Williams, W. J.; Wong, C. S.; Yamamoto-Kawai, M.

2014-03-01

288

A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC).  

PubMed

A submersible microbial fuel cell (SBMFC) was developed as a biosensor for in situ and real time monitoring of dissolved oxygen (DO) in environmental waters. Domestic wastewater was utilized as a sole fuel for powering the sensor. The sensor performance was firstly examined with tap water at varying DO levels. With an external resistance of 1000?, the current density produced by the sensor (5.6 ± 0.5-462.2 ± 0.5 mA/m(2)) increased linearly with DO level up to 8.8 ± 0.3mg/L (regression coefficient, R(2)=0.9912), while the maximum response time for each measurement was less than 4 min. The current density showed different response to DO levels when different external resistances were applied, but a linear relationship was always observed. Investigation of the sensor performance at different substrate concentrations indicates that the organic matter contained in the domestic wastewater was sufficient to power the sensing activities. The sensor ability was further explored under different environmental conditions (e.g. pH, temperature, conductivity, and alternative electron acceptor), and the results indicated that a calibration would be required before field application. Lastly, the sensor was tested with different environmental waters and the results showed no significant difference (p>0.05) with that measured by DO meter. The simple, compact SBMFC sensor showed promising potential for direct, inexpensive and rapid DO monitoring in various environmental waters. PMID:22726635

Zhang, Yifeng; Angelidaki, Irini

2012-01-01

289

Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis  

NASA Astrophysics Data System (ADS)

This paper describes the training, validation, testing and uncertainty analysis of general regression neural network (GRNN) models for the forecasting of dissolved oxygen (DO) in the Danube River. The main objectives of this work were to determine the optimum data normalization and input selection techniques, the determination of the relative importance of uncertainty in different input variables, as well as the uncertainty analysis of model results using the Monte Carlo Simulation (MCS) technique. Min-max, median, z-score, sigmoid and tanh were validated as normalization techniques, whilst the variance inflation factor, correlation analysis and genetic algorithm were tested as input selection techniques. As inputs, the GRNN models used 19 water quality variables, measured in the river water each month at 17 different sites over a period of 9 years. The best results were obtained using min-max normalized data and the input selection based on the correlation between DO and dependent variables, which provided the most accurate GRNN model, and in combination the smallest number of inputs: Temperature, pH, HCO3-, SO42-, NO3-N, Hardness, Na, Cl-, Conductivity and Alkalinity. The results show that the correlation coefficient between measured and predicted DO values is 0.85. The inputs with the greatest effect on the GRNN model (arranged in descending order) were T, pH, HCO3-, SO42- and NO3-N. Of all inputs, variability of temperature had the greatest influence on the variability of DO content in river body, with the DO decreasing at a rate similar to the theoretical DO decreasing rate relating to temperature. The uncertainty analysis of the model results demonstrate that the GRNN can effectively forecast the DO content, since the distribution of model results are very similar to the corresponding distribution of real data.

Antanasijevi?, Davor; Pocajt, Viktor; Peri?-Gruji?, Aleksandra; Risti?, Mirjana

2014-11-01

290

SUSPENDED AND DISSOLVED SOLIDS EFFECTS ON FRESHWATER BIOTA: A REVIEW  

EPA Science Inventory

It is widely recognized that suspended and dissolved solids in lakes, rivers, streams, and reservoirs affect water quality. In this report the research needs appropriate to setting freshwater quality criteria or standards for suspended solids (not including bedload) and dissolved...

291

Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony  

NASA Astrophysics Data System (ADS)

Oxidation state is a major factor affecting the mobility of arsenic (As) and antimony (Sb) in soil and aquatic systems. Metal (hydr)oxides and clay minerals are effective sorbents, and may also promote redox reactions on their surfaces via direct or indirect facilitation of electron transfer. Iron substituted for Al in the octahedral sites of aluminosilicate clay minerals has the potential to be in variable oxidation states and is a key constituent of electron transfer reactions in clay minerals. This experimental work was conducted to determine whether structural Fe in clays can affect the oxidation state of As and Sb adsorbed at the clay surface. Another goal of our study was to compare the reactivity of clay structural Fe(II) with systems containing Fe(II) present in dissolved/adsorbed forms. The experimental systems included batch reactors with various concentrations of As(III), Sb(III), As(V), or Sb(V) equilibrated with oxidized (NAu-1) or partially reduced (NAu-1-Red) nontronite, hydrous aluminum oxide (HAO) and kaolinite (KGa-1b) suspensions under oxic and anoxic conditions. The reaction times ranged from 0.5 to 720 h, and pH was constrained at 5.5 (for As) and at 5.5 or 8.0 (for Sb). The oxidation state of As and Sb in the liquid phase was determined by liquid chromatography in line with an inductively coupled plasma mass spectrometer, and in the solid phase by X-ray absorption spectroscopy. Our findings show that structural Fe(II) in NAu-1-Red was not able to reduce As(V)/Sb(V) under the conditions examined, but reduction was seen when aqueous Fe(II) was present in the systems with kaolinite (KGa-1b) and nontronite (NAu-1). The ability of the structural Fe in nontronite clay NAu-1 to promote oxidation of As(III)/Sb(III) was greatly affected by its oxidation state: if all structural Fe was in the oxidized Fe(III) form, no oxidation was observed; however, when the clay was partially reduced (˜20% of structural Fe was reduced to Fe(II)), NAu-1-Red promoted the most extensive oxidation under both oxic and anoxic conditions. Electron balance considerations suggest that structural Fe(III) in the NAu-1-Red was the sole oxidant in the anoxic setup, while dissolved O2 also contributes in oxic conditions. Long-term batch experiments revealed the complex dynamics of As aqueous speciation in anoxic and oxic systems when reduced arsenic was initially added: rapid disappearance of As(III) was observed due to oxidation to As(V) followed by a slow increase of aqueous As(III). This behavior is explained by two reactions: fast initial oxidation of As(III) by structural Fe(III) (anoxic) or Fe(III) and dissolved O2 (oxic) followed by the slow reduction of As(V) by dissolved Fe(II). The resulting re-mobilization of As due to As(V) reduction by aqueous Fe(II) occurs on time scales on the order of days. These reactions are likely significant in a natural soil or aquifer environment with seasonal cycling or slightly reducing conditions with an abundance of clay minerals and dissolved Fe(II).

Ilgen, Anastasia G.; Foster, Andrea L.; Trainor, Thomas P.

2012-10-01

292

Dissolved Organic Matter Concentration and Composition in Hot Spring Ecosystems  

NASA Astrophysics Data System (ADS)

Hot springs host dynamic ecosystems with wide ranges in temperature, pH, major and minor element content, as well as diverse microbial communities. As temperatures decrease from boiling, chemolithotrophic communities give way to phototrophic communities that include heterotrophs. As a consequence, the cycling of carbon is likely to undergo dramatic changes over fairly narrow spatial and temporal ranges. It may, therefore, not be surprising that hot springs exhibit broad ranges in dissolved organic carbon (DOC) concentrations. As an example, water samples collected in July 2005 from Yellowstone National Park hot spring ecosystems have DOC concentrations that range from less than 0.5 mg C/kg to greater than 75 mg C/kg. There are no obvious relationships between pH and DOC concentration, or temperature and DOC concentration for these systems. DOC concentrations generally decrease by 10 to 90% from the source hot spring down outflow channels, presumably due to heterotrophic activity. New results using electrospray ionization mass spectrometry (ESI-MS) indicate that hot spring DOC compounds range in molecular weight from 30 up to 1500 amu, with the most abundant peaks occurring at <400 amu. The DOC in hot springs exhibits predominantly positive-mode detected (basic-type) compounds and negative-mode detected (acidic- type) compounds. ESI-MS provides a molecular-level fingerprint of the DOC from hot springs, outflow channels and surface water sources that suggest the composition of the hot spring DOC is the result of multiple organic matter sources and a variety of biogeochemical processes. ESI-MS results allow us to begin to assess which fraction (molecular weight and general chemical character) of the DOC pool is bioavailable to heterotrophs, and how the bioavailable pool of DOC varies among hot spring systems.

Hartnett, H.; Alexander, K.; Shock, E.; Klonowski, S.; Windman, T.

2006-12-01

293

Water What-ifs: Water Quality and Dissolved Oxygen  

NSDL National Science Digital Library

This Science Junction website features general information and three lesson plans about dissolved oxygen geared toward middle and high school students. Lessons cover topics such as what dissolved oxygen is, why it is important, and how decomposition of organic material affects dissolved oxygen. The third lesson includes an activity in which students are instructed to design an experiment to test effects of changes in dissolved oxygen concentration. The lessons meet several National Science Education Standards, Delaware science standards, and North Carolina competency goals.

Cleveland, April J.; Science Junction, Nc S.

294

Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite  

NASA Astrophysics Data System (ADS)

Dolomite is a common mineral in the rock record. However, the rarity of modern dolomite and the notorious difficulty in synthesizing dolomite abiotically under normal Earth-surface conditions result in the long-standing “dolomite problem” in sedimentary geology. Some modern dolomites are associated with sediments where microbial sulfate reduction is active; however, the role of sulfate-reducing bacteria in dolomite formation is still under debate. In this study, we tested the effect of dissolved sulfide on the precipitation of Ca-Mg carbonates, which has been never explored before although dissolved sulfide is one of the major products of microbial sulfate reduction. Our results demonstrated that dissolved sulfide with a concentration of as low as several millimoles can enhance the Mg2+ incorporation into the calcitic structure, and promote the crystallization of high magnesian calcite and disordered dolomite. We also conducted seeded precipitation in experimental solutions containing dissolved sulfide, which showed that calcite seeds can inhibit the precipitation of aragonite and monohydrocalcite (CaCO3·H2O), and induce more Mg2+ incorporation. We propose that accumulated dissolved sulfide in pore waters in organic-rich sediments may trigger the precipitation of disordered dolomite which can be considered as a precursor of some sedimentary dolomite. Our adsorption experiments revealed a strong adsorption of dissolved sulfide onto calcite faces. We suggest that adsorbed dissolved sulfide can lower the energy barrier to the dehydration of Mg2+-water complexes on the growing carbonate surfaces. This study sheds new light on understanding the role of sulfate-reducing bacteria in dolomite formation and the formation mechanism of sedimentary dolomite.

Zhang, Fangfu; Xu, Huifang; Konishi, Hiromi; Kemp, Joshua M.; Roden, Eric E.; Shen, Zhizhang

2012-11-01

295

Benthic flux of dissolved nickel into the water column of south San Francisco Bay  

USGS Publications Warehouse

Field and laboratory studies were conducted between April, 1998 and May, 1999 to provide the first direct measurements of the benthic flux of dissolved (0.2-micron filtered) nickel between the bottom sediment and water column at three sites in the southern component of San Francisco Bay (South Bay), California. Dissolved nickel and predominant ligands (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest, although a variety of ancillary measurements were also performed to provide a framework for interpretation. Results described herein integrate information needs identified by the State Water Resources Control Board and local stakeholders with fundamental research associated with the U.S. Geological Survey Toxic Substances Hydrology Program. Dissolved-Ni concentrations in the bottom water over the three sampling dates ranged from 34 to 43 nanomoles per liter. Dissolved-macronutrient concentrations in the bottom water were consistently higher (frequently by orders of magnitude) than surface-water determinations reported for similar times and locations (Regional Monitoring Program, 2001). This is consistent with measured positive benthic fluxes for the macronutrients. Benthic-flux estimates for dissolved nickel from core-incubations, when areally averaged over the South Bay, were significant (that is, of equivalent or greater order of magnitude) relative to previously reported freshwater point and non-point sources. This observation is consistent with previous determinations for other metals, and with the potential remobilization of sediment-associated metals that have been ubiquitously distributed in the South Bay. Similar to dissolved-nickel results, benthic flux of macronutrients was also consistently significant relative to surface-water inputs. These results add to a growing body of knowledge that strongly suggests a need to consider contaminant transport across the sediment-water interface when establishing future management strategies for the watershed.

Topping, B. R.; Kuwabara, J. S.; Parchaso, Francis; Hager, S. W.; Arnsberg, A. J.; Murphy, Fred

2001-01-01

296

Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy  

NASA Technical Reports Server (NTRS)

The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

Ganoe, Rene; DeYoung, Russell J.

2013-01-01

297

Kaolinite dissolution and precipitation kinetics at 22oC and pH 4  

SciTech Connect

Dissolution and precipitation rates of low defect Georgia kaolinite (KGa-1b) as a function of Gibbs free energy of reaction (or reaction affinity) were measured at 22 C and pH 4 in continuously stirred flowthrough reactors. Steady state dissolution experiments showed slightly incongruent dissolution, with a Si/Al ratio of about 1.12 that is attributed to the re-adsorption of Al on to the kaolinite surface. No inhibition of the kaolinite dissolution rate was apparent when dissolved aluminum was varied from 0 and 60 {micro}M. The relationship between dissolution rates and the reaction affinity can be described well by a Transition State Theory (TST) rate formulation with a Temkin coefficient of 2 R{sub diss} (mol/m{sup 2}s) = 1.15 x 10{sup -13} [1-exp(-{Delta}G/2RT)]. Stopping of flow in a close to equilibrium dissolution experiment yielded a solubility constant for kaolinite at 22 C of 10{sup 7.57}. Experiments on the precipitation kinetics of kaolinite showed a more complex behavior. One conducted using kaolinite seed that had previously undergone extensive dissolution under far from equilibrium conditions for 5 months showed a quasi-steady state precipitation rate for 105 hours that was compatible with the TST expression above. After this initial period, however, precipitation rates decreased by an order of magnitude, and like other precipitation experiments conducted at higher supersaturation and without kaolinite seed subjected to extensive prior dissolution, could not be described with the TST law. The initial quasi-steady state rate is interpreted as growth on activated sites created by the dissolution process, but this reversible growth mechanism could not be maintained once these sites were filled. Long-term precipitation rates showed a linear dependence on solution saturation state that is generally consistent with a two dimensional nucleation growth mechanism following the equation R{sub ppt}(mol/m{sup 2}s) = 3.38 x 10{sup -14} exp[- 181776/T{sup 2} 1n{Omega}]. Further analysis using Synchrotron Scanning Transmission X-ray Microscopy (STXM) in Total Electron Yield (TEY) mode of the material from the precipitation experiments showed spectra for newly precipitated material compatible with kaolinite. An idealized set of reactive transport simulations of the chemical weathering of albite to kaolinite using rate laws from HELLMANN and TISSERAND (2006) and this study respectively indicate that while pore waters are likely to be close to equilibrium with respect to kaolinite at pH 4, significant kaolinite supersaturation may occur at higher pH if its precipitation rate is pH dependent.

Steefel, Carl; Yang, L.; Steefel, C.I.

2008-04-01

298

Fluorescent dissolved organic matter in marine sediment pore waters  

E-print Network

Fluorescent dissolved organic matter in marine sediment pore waters David J. Burdige*, Scott W of organic matter diagenesis (e.g., dissolved peptides and proteins) produced near the sediment­water February 2004 Available online 1 June 2004 Abstract Fluorescent dissolved organic matter (FDOM) in sediment

Burdige, David

299

Nature and Transformation of Dissolved Organic Matter in  

E-print Network

, and dissolved oxygen (DO). Water was collected for analysis of total organic carbon (TOC), dissolved (Nature and Transformation of Dissolved Organic Matter in Treatment Wetlands L A R R Y B . B A R B E to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature

300

Determination of Dissolved Oxygen in the Cryosphere: A Comprehensive  

E-print Network

Determination of Dissolved Oxygen in the Cryosphere: A Comprehensive Laboratory and Field communities, whose function and dynamics are often controlled by the concentrations of dissolved oxygen (DO tests and superior to traditional methods. Introduction Dissolved oxygen (DO) is a key parameter

Fountain, Andrew G.

301

VARIATIONS IN THE DISSOLVED OXYGEN CONTENT OF INTRAGRAVEL WATER IN  

E-print Network

^402: VARIATIONS IN THE DISSOLVED OXYGEN CONTENT OF INTRAGRAVEL WATER IN FOUR SPAWNING STREAMS IN THE DISSOLVED OXYGEN CONTENT OF INTRAGRAVEL WATER IN FOUR SPAWNING STREAMS OF SOUTHEASTERN ALASKA by William J Introduction 1 Sampling intragravel water for dissolved oxygen content 2 Obtaining water samples from

302

Optical dissolved oxygen sensor utilizing molybdenum chloride cluster phosphorescence  

E-print Network

Optical dissolved oxygen sensor utilizing molybdenum chloride cluster phosphorescence Ruby N. Ghosh collisional quenching, as evidenced by a linear fit to the Stern­Volmer equation for dissolved oxygen of dissolved oxygen DO in aqueous media is necessary for a wide range of chemical and biological processes

Ghosh, Ruby N.

303

Relating dissolved organic matter fluorescence to functional properties  

Microsoft Academic Search

The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the

E. Tipping; A. Baker; S. Thacker; D. Gondar

2007-01-01

304

Remote Sensing of Dissolved Oxygen and Nitrogen in Water using Raman Spectroscopy  

NASA Astrophysics Data System (ADS)

The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle experiment has demonstrated the ability to remotely detect dissolved oxygen and nitrogen in pure water (also Chesapeake Bay water) using a 355nm Nd:YAG laser and a simple monochromater to detect the shifted Raman oxygen and nitrogen backscattered signals at 376.2 and 387.5 nm respectively. The theoretical basis for the research, components of the experimental system, and key findings are presented. A 1.3-m water cell had an attached vertical column to house a Troll 9500 dissolved oxygen in-situ monitor (In-Situ Inc Troll 9500). The Raman oxygen signal could be calibrated with this devise. While Raman backscattered water signals are low a potential aircraft remote system was designed and will be presented.

De Young, R.; Ganoe, R.

2013-12-01

305

The measurement of dissolved and gaseous carbon dioxide concentration  

NASA Astrophysics Data System (ADS)

In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO2. In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements.

Zosel, J.; Oelßner, W.; Decker, M.; Gerlach, G.; Guth, U.

2011-07-01

306

Conducting a thermal conductivity survey  

NASA Technical Reports Server (NTRS)

A physically transparent approximate theory of phonon decay rates is presented starting from a pair potential model of the interatomic forces in an insulator or semiconductor. The theory applies in the classical regime and relates the 3-phonon decay rate to the third derivative of the pair potential. Phonon dispersion relations do not need to be calculated, as sum rules relate all the needed quantities directly to the pair potential. The Brillouin zone averaged phonon lifetime turns out to involve a dimensionless measure of the anharmonicity multiplied by an effective density of states for 3-phonon decay. Results are given for rare gas and alkali halide crystals. For rare gases, the results are in good agreement with more elaborate perturbation calculations. Comparison to experimental data on phonon linewidths and thermal conductivity are made.

Allen, P. B.

1985-01-01

307

Chiral Discrimination in Dimers of Diphosphines PH2 ?PH2 and PH2 ?PHF.  

PubMed

A theoretical study of the conformational profile of two diphosphines, PH2 ?PH2 and PH2 ?PHF, is carried using second-order Møller-Plesset perturbation theory (MP2) computational methods. The chiral minima found are used to build homo- and heterochiral dimers. Six minima are found for the (PH2 ?PH2 )2 dimers and 27 for the (PH2 ?PHF)2 dimers. Pnicogen and hydrogen bonds, the non-covalent forces that stabilize the complexes, are characterized by Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) methodologies. Those with several pnicogen bonds are more stable than those with hydrogen bonds. The chirodiastaltic energies amount to a total of 1.77 kJ?mol(-1) for the Ra :Ra versus Ra :Sa (PH2 ?PH2 )2 dimers, 0.81 kJ?mol(-1) for the RSa :RSa versus RSa :SRa (PH2 ?PHF)2 dimers, and 2.93 kJ?mol(-1) for the RRa :RRa versus RRa :SSa (PH2 ?PHF)2 dimers. In the first and second cases, the heterochiral complex is favored whereas in the third case, the homochiral complex is favored. PMID:24838830

Azofra, Luis M; Alkorta, Ibon; Elguero, José

2014-11-10

308

Liquid crystalline conducting polymers  

SciTech Connect

Recently we developed side chain liquid crystalline polyacetylene derivatives and achieved a substantial enhancement of electrical conductivity through magnetically forced alignment of the side chain of the polymer. When an electric field is employed as an alternative external force instead of the magnetic force, a ferroelectric liquid crystal should the more favorable than usual liquid crystals. This is because the former can respond more smoothly to the electric field owing to its spontaneous polarization than the latter. Here, in order to develop a novel liquid crystalline conducting polymer, we have synthesized a chiroptical liquid crystalline polyacetylene derivative. The liquid crystalline side chain of the polymer consists of a chiral alkyl moiety as a terminal group and a biphenyl moiety as a mesogenic core and a trimethylene segment as a spacer. The polymerization was carried out using a metathesis catalyst of MoCl{sub 5}-SnPh{sub 4}. Both the monomer and polymer showed the same signs in CD (circular dichroism) bands, indicating that the chirality of the monomer is maintained in the polymer. Measurements of DSC (differential scanning calorimeter) and polarizing microscope indicated that the polymer has a chiral smectic C (S{sub m} C*) phase assignable to the ferroelectric liquid crystal. Electrical and chemical properties of the polymer, including dielectric constant, electrical conductivity upon iodine doping and morphological alignment under an external force, are to be presented.

Akagi, K.; Goto, H.; Shirakawa, H. [Univ. of Tsukuba, Ibaraki (Japan)

1996-10-01

309

Temporal dynamics of dissolved combined neutral sugars and the quality of dissolved organic matter in the Northwestern Sargasso Sea  

E-print Network

Temporal dynamics of dissolved combined neutral sugars and the quality of dissolved organic matter) supported its use as a diagenetic indicator of DOM quality. Higher DCNS yields in surface waters suggested quality at this site. & 2008 Elsevier Ltd. All rights reserved. 1. Introduction Dissolved organic matter

California at Santa Barbara, University of

310

Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH  

PubMed Central

We explored changes in ocean pH in coastal Washington state, USA, by extending a decadal-scale pH data series, by reporting independent measures of dissolved inorganic carbon (DIC), spectrophotometric pH, and total alkalinity (TA), by exploring pH patterns over larger spatial scales, and by probing for long-term trends in environmental variables reflecting potentially important drivers of pH. We found that pH continued to decline in this area at a rapid rate, that pH exhibited high natural variability within years, that our measurements of pH corresponded well to spectrophotometric pH measures and expected pH calculated from DIC/TA, and that TA estimates based on salinity predicted well actual alkalinity. Multiple datasets reflecting upwelling, including water temperature, nutrient levels, phytoplankton abundance, the NOAA upwelling index, and data on local wind patterns showed no consistent trends over the period of our study. Multiple datasets reflecting precipitation change and freshwater runoff, including precipitation records, local and regional river discharge, salinity, nitrate and sulfate in rainwater, and dissolved organic carbon (DOC) in rivers also showed no consistent trends over time. Dissolved oxygen did not decline over time, indicating that long-term changes did not result from shifts in contributions of respiration to pH levels. These tests of multiple potential drivers of the observed rapid rate of pH decline indicate a primary role for inorganic carbon and suggest that geochemical models of coastal ocean carbon fluxes need increased investigation. PMID:23285290

Wootton, J. Timothy; Pfister, Catherine A.

2012-01-01

311

Ph.D. Astronomy Program Ph.D. in Astronomy  

E-print Network

Ph.D. Astronomy Program Ph.D. in Astronomy Department(s) Physics and Astronomy College Sciences 1 physics at the graduate level 4. understand observational astronomy techniques 5. understand astrophysics strong background of knowledge and expertise in physics and astronomy #12;2. Curriculum Alignment

Hemmers, Oliver

312

Ph.D. Physics Program Ph.D. in Physics  

E-print Network

Ph.D. Physics Program Ph.D. in Physics Department(s) Physics and Astronomy College Sciences Program Assessment Coordinator Michael Pravica pravica@physics.unlv.edu 895-1723 Five-Year Implementation Dates (2010 for physics at the graduate level 4. understand statistical physics at the graduate level 5. perform

Hemmers, Oliver

313

Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems.  

PubMed Central

Hydrogen transformation kinetic parameters were measured in sediments from anaerobic systems covering a wide range of environmental pH values to assess the influence of pH on hydrogen metabolism. The concentrations of dissolved hydrogen were measured and hydrogen transformation kinetics of the sediments were monitored in the laboratory by monitoring hydrogen consumption progress curves. The hydrogen turnover rate constants (kt) decreased directly as a function of decreasing sediment pH, and the maximum hydrogen uptake velocities (Vmax) varied as a function of pH within each of the trophic states. Conversely, the half-saturation concentrations (Km) were independent of pH. The steady-state hydrogen concentrations were at least 2 orders of magnitude lower than the half-saturation constants for hydrogen uptake. Dissolved hydrogen concentrations were at least fivefold higher in sediments from eutrophic systems than from oligotrophic and dystrophic systems. The rates of hydrogen production determined from the assumption of steady state decreased with sediment pH. These data indicate that progressively lower pH values inhibit microbial hydrogen-producing and -consuming processes within sedimentary ecosystems. PMID:3355143

Goodwin, S; Conrad, R; Zeikus, J G

1988-01-01

314

The influence of pH on biotite dissolution and alteration kinetics at low temperature  

USGS Publications Warehouse

Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.

Acker, J.G.; Bricker, O.P.

1992-01-01

315

The marine geochemistry of dissolved gallium: A comparison with dissolved aluminum  

SciTech Connect

Dissolved Ga concentrations in the pacific Ocean range from 2 to 30 picomolar: they are low in surface waters (2-12 pM), with a subsurface maximum at 150-300 m (6-17 pM), a mid-depth minimum from 500 to 1,000 m (4-10 pM) and increasing values with depth to a maximum in the bottom waters (12-30 pM). The highest concentrations are in the central gyre, with lower values toward the north and east where productivity and particle scavenging increase. Dissolved Ga concentrations in the surface waters of the northwest Atlantic are nearly an order of magnitude higher than in the central North pacific, with higher values in the Gulf Stream than in the continental slope boundary region. The vertical distributions and horizontal transects indicate three sources of dissolved Ga to the oceans. The surface distribution reflects an eolian source with no net fluvial input to the open ocean; the subsurface maximum (a feature not seen for North Pacific dissolved Al) is attributed to vertical exchange processes; the source for the deep waters of the North Pacific is from a sediment surface remineralization process or a pore water flux. Scavenging removal throughout the water column is evident in the vertical profiles for both dissolved Ga and Al, with intensified removal in the boundary regions where productivity and particle scavenging are at a maximum. Residence times of dissolved Ga in surface waters are nearly an order of magnitude longer than the corresponding values for Al.

Orians, K.J.; Bruland, K.W. (Univ. of California, Santa Cruz (USA))

1988-12-01

316

Improved Arterial Blood Oxygenation Following Intravenous Infusion of Cold Supersaturated Dissolved Oxygen Solution  

PubMed Central

BACKGROUND One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. METHODS Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer’s lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. RESULTS Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. CONCLUSIONS A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model. PMID:25249764

Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

2014-01-01

317

Coping with PH over the Long Term  

MedlinePLUS

... International PH News and Projects Let Me Breathe Music Video PATIENTS Patients Newly Diagnosed Request an Envelope ... International PH News and Projects Let Me Breathe Music Video Help spread PH awareness and share PH ...

318

The effect of dissolved water on the oxidation state of silicic melts  

NASA Astrophysics Data System (ADS)

Experiments have been conducted to study the effect of dissolved water on the ferric-ferrous ratio in natural rhyolite melts of metaluminous and peralkaline composition. The experiments were conducted at temperatures of 725-1150°C, pressures of 100-2000 bars, and oxygen fugacities from Ni?NiO (NNO) to MnO?Mn 3O 4 (MNO). The final water contents of the rhyolites ranged from 0.4-8 wt% H 2O as measured by difference on the electron microprobe. Ferrous iron contents of the quenched glasses were measured by micro-titration. Results suggest that addition of dissolved water does change the ferric-ferrous ratio over part of P-T-X-- fO2 space. At NNO and high temperatures, addition of water greatly increases the ferric-ferrous ratio in peraluminous rhyolites. The increase is linear with increasing melt hydroxyl content. At MNO, or at low temperatures, water has no effect on the ferric-ferrous ratio in metaluminous rhyolites. In peralkaline rhyolites, addition of water increases the ferric-ferrous ratio at both the MNO and NNO buffers. The observed effect of water on redox ratio at some conditions may be due to interaction between ferric iron and dissolved hydroxyl ions. It is possible to add a dissolved water term to expressions which relate ferric-ferrous ratio to melt conditions; this term is similar to those for the alkali content of the melt.

Baker, Leslie L.; Rutherford, Malcolm J.

1996-06-01

319

Conductivity mechanisms of isotropic conductive adhesives (ICAs)  

Microsoft Academic Search

Isotropic conductive adhesives (ICAs) are usually composites of adhesive resins with conductive fillers (mainly silver flakes). The adhesive pastes before cure usually have low electrical conductivity. The conductive adhesives become highly conductive only after the adhesives are cured and solidified. The mechanisms of conductivity achievement in conductive adhesives were discussed. Experiments were carefully designed in order to determine the roles

Daoqiang Lu; Quinn K. Tong; C. P. Wong

1999-01-01

320

PH as a stress signal  

Microsoft Academic Search

The pH of the xylem sap of plants experiencing a range of environmental conditions can increase by over a whole pH unit. This results in an increased ABA concentration in the apoplast adjacent to the stomatal guard cells in the leaf epidermis, by reducing the ability of the mesophyll and epidermal symplast to sequester ABA away from this compartment. As

Sally Wilkinson

1999-01-01

321

Dissolved gas supersaturation associated with the thermal effluent of an electric generating station and some effects on fishes  

E-print Network

at station 11, Fairfield Reservoir, determined f rom measurements at se I ected depths 29 Seasonal variation of hydrogen ion concentra- tion (pH) at the surface in the intake and discharge canals, Big Brown Steam Electric Station, determined from samples... variation of hydrogen ion concentration (pH) at the surface in the intake and discharge canals, Big Brown Steam Electric Station, determined from samples at stations I and 2, respect i ve I y. TABLE 2. ? Percent saturation values of dissolved from 28...

Ciesluk, Alexander Frank

2012-06-07

322

Preservation of samples for dissolved mercury  

SciTech Connect

Water samples for dissolved mercury require special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms. Because this acid-oxidant preservative acts as a sink for airborne mercury and plastic containers are permeable to mercury vapor, glass bottles are preferred for sample collection. To maintain a healthy work environment and minimize the potential for contamination of water samples, mercury and its compounds are isolated from the atmosphere while in storage. Concurrently, a program to monitor environmental levels of mercury vapor in areas of potential contamination is needed to define the extent of mercury contamination and to assess the effectiveness of mercury clean-up procedures.

Hamlin, S.N. (Geological Survey, Sacramento, CA (United States))

1989-04-01

323

A novel biosensor for specific determination of hydrogen peroxide: catalase enzyme electrode based on dissolved oxygen probe  

Microsoft Academic Search

A biosensor for the specific determination of hydrogen peroxide was developed using catalase (EC 1.11.1.6) in combination with a dissolved oxygen probe. Catalase was immobilized with gelatin by means of glutaraldehyde and fixed on a pretreated teflon membrane served as enzyme electrode. The electrode response was maximum when 50 mM phosphate buffer was used at pH 7.0 and at 35°C.

Sinan Akgöl; Erhan Dinçkaya

1999-01-01

324

Role of dissolved organic carbon in the attenuation of photosynthetically active and ultraviolet radiation in Adirondack lakes  

Microsoft Academic Search

SUMMARY 1. We surveyed eighty-five lakes located in the Adirondack Mountain Region of New York State, U.S.A., to characterize the attenuation of photosynthetically active (PAR) and ultraviolet radiation (UVR) in relation to dissolved organic carbon (DOC) concentrations and pH. Attenuation of PAR was quantified in situ. Attenuation was also inferred by measuring the light absorption of filtered lake water samples

Paul A. Bukaveckas; MARISE ROBBINS-FORBESy

2000-01-01

325

Oxidative dissolution of 4C- and NC-pyrrhotite: Intrinsic reactivity differences, pH dependence, and the effect of anisotropy  

NASA Astrophysics Data System (ADS)

The crystallographic diversity of pyrrhotite (Fe1-xS), one of the most common iron sulfide minerals, offers insights into how mineral-fluid interactions are controlled by crystal structures. We have conducted oxidative dissolution experiments on monoclinic 4C-pyrrhotite and 'hexagonal' NC-pyrrhotite in aqueous H2O2/H2SO4 and FeCl3/HCl media at pH between 1.8 and 2.9 using polished surfaces of single crystals. Quantification and detailed characterization of the reaction interfaces has been accomplished by confocal 3D topometry and transmission electron microscopy (TEM) in conjunction with focused ion beam (FIB) preparation. Crystallographically coherent intergrowths of 4C- and NC-pyrrhotite in a single sample allowed unambiguous identification of strong intrinsic reactivity differences between the two closely related phases. On {1 1 0} faces in the H2O2 medium at 35 °C and pH below 2.70, NC-pyrrhotite (N ˜ 4.85) reacts about 50-80% faster than 4C-pyrrhotite. Above pH 2.70, the behavior inverts and 4C-pyrrhotite dissolves faster, while overall reaction rates drop drastically by up to two orders of magnitude. Because the two pyrrhotite phases show only marginally different Fe/S ratios but substantial differences in structural complexity with regards to vacancy ordering, we attribute the reactivity differences to structurally controlled processes at the mineral-water interface. The transition at pH 2.70 is close to the reported isoelectric point of pyrrhotite. We attribute the pH dependent changes in reaction rates and behaviors to protonation/deprotonation of surface sulfhydryl groups and related changes in speciation and bonding mode of reactive oxygen species at the mineral interface. At pH <2.70, we find elemental sulfur as a frequent reaction product in H2O2 and FeCl3 media, indicating incomplete sulfur oxidation. Above pH 2.70, elemental sulfur was not found in H2O2 experiments (no data for FeCl3). Our results show that the effects of crystal anisotropy are strong and directional preference of dissolution changes at the pH 2.70 transition point as well, leading to complex sub-?m-scale textural development at the reaction interfaces throughout the pH range studied. High resolution TEM imaging of cross sections through reacted mineral surfaces show crystalline pyrrhotite up to the reaction interface and the absence of significant non-equilibrium layers or S-enriched (poly)sulfides.

Harries, Dennis; Pollok, Kilian; Langenhorst, Falko

2013-02-01

326

Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean  

Microsoft Academic Search

Changes in oxygen concentrations at the sediment-water interface play a major role in controlling benthic foraminiferal assemblages and morphologic characteristics; such changes are reflected in size, wall thickness, porosity, and also taxa (genera and species) of foraminifera present. These morphologic and taxonomic differences have been quantified as a dissolved-oxygen index. This paper demonstrates that the foraminiferal oxygen index derived from

Kunio Kaiho

1994-01-01

327

Sampling and analytical methods of stable isotopes and dissolved inorganic carbon from CO2 injection sites  

NASA Astrophysics Data System (ADS)

The isotopic composition (?13C) of dissolved inorganic carbon (DIC), in combination with DIC concentration measurements, can be used to quantify geochemical trapping of CO2 in water. This is of great importance in monitoring the fate of CO2 in the subsurface in CO2 injection projects. When CO2 mixes with water, a shift in the ?13C values, as well as an increase in DIC concentrations is observed in the CO2-H2O system. However, when using standard on-site titration methods, it is often challenging to determining accurate in-situ DIC concentrations. This may be due to CO2 degassing and CO2-exchange between the sample and the atmosphere during titration, causing a change in the pH value or due to other unfavourable conditions such as turbid water samples or limited availability of fluid samples. A way to resolve this problem is by simultaneously determining the DIC concentration and carbon isotopic composition using a standard continuous flow Isotope Ratio Mass Spectrometry (CF-IRMS) setup with a Gasbench II coupled to Delta plusXP mass spectrometer. During sampling, in order to avoid atmospheric contact, water samples taken from the borehole-fluid-sampler should be directly transferred into a suitable container, such as a gasbag. Also, to avoid isotope fractionation due to biological activity in the sample, it is recommended to stabilize the gasbags prior to sampling with HgCl2 for the subsequent stable isotope analysis. The DIC concentration of the samples can be determined from the area of the sample peaks in a chromatogram from a CF-IRMS analysis, since it is directly proportional to the CO2 generated by the reaction of the water with H3PO4. A set of standards with known DIC concentrations should be prepared by mixing NaHCO3 with DIC free water. Since the DIC concentrations of samples taken from CO2 injection sites are expected to be exceptionally high due to the additional high amounts of added CO2, the DIC concentration range of the standards should be set high enough to cover the sample concentrations. In order to assure methodological reproducibility, this 'calibration set' should be included in every sequence analysed with the Gasbench CF-IRMS system. The standards, therefore, should also be treated in the same way as the samples. For accurate determination, it is essential to know the exact amount of water in the vial and the density of the sample. This requires weighing of each vial before and after injection of the water sample. For stable isotope analysis, the required signal height can be adjusted by the sample amount. Therefore this method is suitable for analysing samples with highly differing DIC concentrations. Reproducibility and accuracy of the quantitative analysis of the dissolved inorganic carbon need to be verified by independent control standards, treated as samples. This study was conducted as a part of the R&D programme CLEAN, which is funded by the German Federal Ministry of Education in the framework of the programme GEOTECHNOLOGIEN. We would like to thank GDF SUEZ for permitting us to conduct sampling campaigns at their site.

van Geldern, Robert; Myrttinen, Anssi; Becker, Veith; Barth, Johannes A. C.

2010-05-01

328

Author s note: Marie F. Smith, CRA;Valerie T. Eviner, PhD; Kathie Weathers, PhD; Maria Uriarte, PhD; Holly Ewing, PhD; Jonathan M. Jeschke, PhD; Peter Groffman, PhD; Clive G. Jones, PhD; Institute of Ecosystem Studies, 65 Sharon Turnpike (PO  

E-print Network

Uriarte, PhD; Holly Ewing, PhD; Jonathan M. Jeschke, PhD; Peter Groffman, PhD; Clive G. Jones, Ph. Eviner, PhD Kathie C. Weathers, PhD Maria Uriarte, PhD Holly A. Ewing, PhD Jonathan M. Jeschke, PhD Peter

Berkowitz, Alan R.

329

Mobilisation of Amorphous and Dissolved Silica on Small Agricultural Plots  

NASA Astrophysics Data System (ADS)

In recent years awareness has grown that biogeochemical cycles are strongly affected by processes occurring in the critical zone. Global carbon dynamics, for instance, may be affected by soil erosion and deposition processes that affect carbon dynamics within the critical zone. Silica is another element of which the cycling may be strongly influenced: weathering is a major source of dissolved silica (DSi) that may be transformed to amorphous silica (ASi) through reprecipitation in the soil and/or in vegetation. As Si is a crucial nutrient for diatoms, which are a base component for a well-balanced food-system in estuarine and coastal zones, it is important to understand how anthropogenic modifications of critical-zone processes, including agricultural erosion, may affect global Si cycling. According to our knowledge, studies on the effects of erosion and deposition on Si cycling and mobilisation are almost nonexistent. In this paper we report the first results of a series of rainfall simulation experiments that were set up to (i) quantify Si mobilisation through erosion at the small plot scale and (ii) investigate to what extent Si mobilisation by erosion may be dependent on crop type and tillage technique. We quantified ASi and Dsi fluxes during rainfall experiments on small scale plots (~0.73m2). Experiments are conducted for various crop and tillage types. Our results indicate that soil erosion mobilises significant quantities of ASi and DSi. Overall ASi mobilisation is more important: ca. 80% of total silica export is ASi, only 20% of the Si is exported as dissolved silica. There is a near-linear relationship between ASi and sediment concentration in the runoff: tillage technique and crop type have only a secondary influence. Thus, in a first approximation, a good estimate of ASi mobilisation through erosion can be made if total sediment mobilisation can be correctly assessed.

Clymans, W.; Govers, G.; Struyf, E.; Vandamme, S.; van Wesemael, B.; Langhans, C.; van den Putte, A.; Meire, P.

2009-04-01

330

Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam  

SciTech Connect

At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.

Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

2007-01-30

331

Influence of current density and pH on electrokinetics  

Microsoft Academic Search

Two series of electrokinetic experiments have been conducted on kaolinite to study the effects of current density and influent pH on electrokinetic processing. In the first series, eleven tests were conducted at different current densities ranging from 0.123 mA\\/cm2 (10 mA) to 0.615 mA\\/cm2 (50 mA) using distilled water as the influent. In the second series, ten tests were conducted

Jihad T. Hamed; Ashish Bhadra

1997-01-01

332

The effect of some dissolved constituents on the redox potential of water  

E-print Network

?Sa ?t the whee meC. 4SSSbseaaea. Rhea, basest, saalS?s4 shah the eeeye at each each ?SSSsh 'be e?st lesms. CHANGE IN Eh WITH DISSOLVED OXYGEN, KEEPING THE pH CONSTANT IO t- LU x 0 CURVE pH D 4J 0 I EO 40 O 0. 5 I 2 3 4 S 6 8O za 7...83 10+79 10, 70 10ol3 491 3' 3e39 3+63 3+63 5 g01 3400 Xa13 34+23 34elP No00 96 362 17$ 193 Ce62 8+36 8i38 0~30 1A7 2e00 58 TA. ". % 5 Df~ &ter Coat~hCag ~~ C~ Change oZ i~ I"oteaQa1;Nh Champed in Mssolved 0~ Conooatxet4cn...

Wales, Robert David

2012-06-07

333

Dissolved and particulate heavy metals distribution in coastal lagoons. A case study from Mar Chiquita Lagoon, Argentina  

NASA Astrophysics Data System (ADS)

Mar Chiquita Coastal Lagoon is located on the Atlantic coast of Argentina, and it has been declared a Biosphere Reserve under the UNESCO Man and Biosphere Programme (MAB). This coastal lagoon constitutes an estuarine environment with a very particular behaviour and it is ecologically important due to its biological diversity. The aim of the present study was to evaluate the distribution and geochemical behaviour of several heavy metals in this coastal system, focusing on their distribution in both the dissolved phase (<0.45 ?m) and the suspended particulate matter. Therefore, the general hydrochemical parameters (salinity, temperature, turbidity, pH and dissolved oxygen) and concentration of total particulate and dissolved metals (Cd, Cu, Ni, Zn, Fe, Pb, Cr and Mn) were measured along 2 years (2004-2006) at two different sites. As regards their distribution, hydrological parameters did not present any evidence of deviation with respect to historical values. Suspended particulate matter showed no seasonal variation or any relationship with the tide, thus indicating that in this shallow coastal lagoon neither tides nor freshwater sources regulate the particulate matter input. Heavy metals behaviour, both in dissolved and particulate phases did not reveal any relationship with tide or seasons. Mar Chiquita Coastal Lagoon showed a large input of dissolved and particulate metals, which is probably due to intensive agriculture within the drainage basin of this system.

Beltrame, María Ornela; De Marco, Silvia G.; Marcovecchio, Jorge E.

2009-10-01

334

Nanostructured conductive polymeric materials  

NASA Astrophysics Data System (ADS)

Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry mixing with pure polymer powder followed by compression molding. The EMI shielding material was developed using copper nanowires. CuNW/Polystyrene composites exhibit EMI shielding effectiveness exceeding that of metal microfillers and carbon nanotube/polymer composites and approaching that of coating techniques have been formulated by solution processing and dry mixing.

Al-Saleh, Mohammed H.

335

Method for dissolving delta-phase plutonium  

SciTech Connect

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate and potassium fluoride (HAN) to a temperature between 40 and 70 C, then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not ore than 2M, the HAN approximately 0.66M, and the potassium fluoride 1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

Karraker, D.G.

1992-12-31

336

Fast-response sensors for dissolved oxygen  

NASA Astrophysics Data System (ADS)

In this work we have been developing fast response optical sensors for dissolved oxygen determination based on measuring the luminescence lifetime of a metalloporphyrin polymer. The sensor is produced by electropolymerization of the metalloporphyrin monomer units of platinum tetraphenylporphyrin (Pt-TPP), platinum octaethylporphyrin (Pt-OEP), palladium tetraphenylporphyrin (Pd-TPP) or palladium octaethylporphyrin (Pd-OEP). The polymerization process results in films which are in the region of micrometers thick. The Stern-Volmer quenching constants as determined from luminescence lifetime measurements for these sensors range from 0.90 (mg 1-1)-1) for Pt-TPP to 1.83 (mg 1-1)-1) for Pd-OEP. The response time of these sensors to a step change from an oxygen free to an oxygen saturated solution is in the millisecond region.

Smith, Sheila; Hamill, Alan; Uttamlal, Mahesh; Campbell, Michael; Bailly, David

1999-12-01

337

Method for dissolving delta-phase plutonium  

DOEpatents

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

Karraker, David G. (1600 Sherwood Pl., SE., Aiken, SC 29801)

1992-01-01

338

Centrifugo-pneumatic valving utilizing dissolvable films.  

PubMed

In this article we introduce a novel technology that utilizes specialized water dissolvable thin films for valving in centrifugal microfluidic systems. In previous work (William Meathrel and Cathy Moritz, IVD Technologies, 2007), dissolvable films (DFs) have been assembled in laminar flow devices to form efficient sacrificial valves where DFs simply open by direct contact with liquid. Here, we build on the original DF valving scheme to leverage sophisticated, merely rotationally actuated vapour barriers and flow control for enabling comprehensive assay integration with low-complexity instrumentation on "lab-on-a-disc" platforms. The advanced sacrificial valving function is achieved by creating an inverted gas-liquid stack upstream of the DF during priming of the system. At low rotational speeds, a pocket of trapped air prevents a surface-tension stabilized liquid plug from wetting the DF membrane. However, high-speed rotation disrupts the metastable gas/liquid interface to wet the DF and thus opens the valve. By judicious choice of the radial position and geometry of the valve, the burst frequency can be tuned over a wide range of rotational speeds nearly 10 times greater than those attained by common capillary burst valves based on hydrophobic constrictions. The broad range of reproducible burst frequencies of the DF valves bears the potential for full integration and automation of comprehensive, multi-step biochemical assay protocols. In this report we demonstrate DF valving, discuss the biocompatibility of using the films, and show a potential sequential valving system including the on-demand release of on-board stored liquid reagents, fast centrifugal sedimentation and vigorous mixing; thus providing a viable basis for use in lab-on-a-disc platforms for point-of-care diagnostics and other life science applications. PMID:22692574

Gorkin, Robert; Nwankire, Charles E; Gaughran, Jennifer; Zhang, Xin; Donohoe, Gerard G; Rook, Martha; O'Kennedy, Richard; Ducrée, Jens

2012-08-21

339

Influence of pH on Transungual Passive and Iontophoretic Transport  

PubMed Central

The present study investigated the effects of pH on nail permeability and the transport of ions such as sodium (Na) and chloride (Cl) ions endogenous to nail and hydronium and hydroxide ions present at low and high pH, which might compete with drug transport across hydrated nail plate during iontophoresis. Nail hydration and passive transport of water across the nail at pH 1–13 were assessed. Subsequently, passive and iontophoretic transport experiments were conducted using 22Na and 36Cl ions under various pH conditions. Nail hydration was independent of pH under moderate pH conditions and increased significantly under extreme pH conditions (pH>11). Likewise, nail permeability for water was pH independent at pH 1–10 and an order of magnitude higher at pH 13. The results of passive and iontophoretic transport of Na and Cl ions are consistent with the permselective property of nail. Interestingly, extremely acidic conditions (e.g., pH 1) altered nail permselectivity with the effect lasting several days at the higher pH conditions. Hydronium and hydroxide ion competition in iontophoretic transport was generally negligible at pH 3–11 was significant at the extreme pH conditions studied. PMID:19904826

SMITH, KELLY A.; HAO, JINSONG; LI, S. KEVIN

2010-01-01

340

Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity  

NASA Astrophysics Data System (ADS)

The boreal landscape is a complex, spatio-temporally varying mosaic of forest and mire landscape elements that control surface water hydrology and chemistry. Here, we assess long-term water quality time series from three nested headwater streams draining upland forest (C2), peat/mire (C4) and mixed (C7) (forest and mire) catchments. Acid deposition in this region is low and is further declining. Temporal trends in weather and runoff (1981-2008), dissolved organic carbon concentration [DOC] (1993-2010) and other water quality parameters (1987-2011) were assessed. There was no significant annual trend in precipitation or runoff. However, runoff increased in March and declined in May. This suggested an earlier snowmelt regime in recent years. Significant monotonic increasing trends in air temperature and length of growing season suggested a decrease in snowfall and less spring runoff. Stream [DOC] was positively correlated with some trace metals (copper, iron and zinc) and negatively with several other chemical parameters (e.g. sulfate, conductivity, calcium). Both sulfate and conductivity showed declining trends, while a significant increase was observed in pH during winter and spring. Calcium and magnesium showed monotonic decreasing trends. The declining trajectories of stream base cation and sulfate concentrations during other times of the year were not accompanied by changes in pH and alkalinity. These results indicate subtle effects of recovery from acidification. Water temperature increased significantly both annually and in most months. A simultaneous monotonic increase in iron (Fe) and [DOC] in autumn suggests co-transport of Fe-DOC in the form of organometallic complexes. A monotonic increase in UV absorbance in most months without co-occurring changes in DOC trend suggests a shift in DOC quality to a more humic-rich type. The observed increase in soil solution [DOC] and subtle trends in stream [DOC] suggest that climate rather than recovery from acidification is the dominant driver of DOC trends in the Svartberget catchment.

Oni, S. K.; Futter, M. N.; Bishop, K.; Köhler, S. J.; Ottosson-Löfvenius, M.; Laudon, H.

2013-04-01

341

Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics.  

PubMed

Although numerous studies have been conducted to discern colloid transport and stability processes, the mechanistic understanding of how dissolved organic matter (DOM) affects colloid fate in unsaturated soils (i.e., the vadose zone) remains unclear. This study aims to bridge the gap between the physicochemical responses of colloid complexes and porous media interfaces to solution chemistry, and the effect these changes have on colloid transport and fate. Measurements of adsorbed layer thickness, density, and charge of DOM-colloid complexes and transport experiments with tandem internal process visualization were conducted for key constituents of DOM, humic (HA) and fulvic acids (FA), at acidic, neutral and basic pH and two CaCl(2) concentrations. Polymeric characteristics reveal that, of the two tested DOM constituents, only HA electrosterically stabilizes colloids. This stabilization is highly dependent on solution pH which controls DOM polymer adsorption affinity, and on the presence of Ca(+2) which promotes charge neutralization and inter-particle bridging. Transport experiments indicate that HA improved colloid transport significantly, while FA only marginally affected transport despite having a large effect on particle charge. A transport model with deposition and pore-exclusion parameters fit experimental breakthrough curves well. Trends in deposition coefficients are correlated to the changes in colloid surface potential for bare colloids, but must include adsorbed layer thickness and density for sterically stabilized colloids. Additionally, internal process observations with bright field microscopy reveal that, under optimal conditions for retention, experiments with FA or no DOM promoted colloid retention at solid-water interfaces, while experiments with HA enhanced colloid retention at air-water interfaces, presumably due to partitioning of HA at the air-water interface and/or increased hydrophobic characteristics of HA-colloid complexes. PMID:21193215

Morales, Verónica L; Zhang, Wei; Gao, Bin; Lion, Leonard W; Bisogni, James J; McDonough, Brendan A; Steenhuis, Tammo S

2011-02-01

342

Predation on fish larvae by moon jellyfish Aurelia aurita under low dissolved oxygen concentrations  

Microsoft Academic Search

Laboratory experiments were conducted to test the hypothesis that low dissolved oxygen concentrations have the potential to\\u000a enhance the predation rate on fish larvae by moon jellyfish Aurelia aurita which is increasing in abundance in the coastal waters of Japan. Larvae of the red sea bream Pagrus major in four size classes (2.9, 4.1, 6.2 and 8.6 mm in standard

Jun Shoji; Reiji Masuda; Yoh Yamashita; Masaru Tanaka

2005-01-01

343

Analysis of RFSA Campaign No.2 Dissolver Solution for Hg(I) and Hg(II)  

SciTech Connect

TA 2-1083, under which RFSA processing is conducted, calls for a nominal mercuric ion concentration in the dissolver solution of 0.006M with a maximum of 0.01 M. The second RFSA campaign operated according to these guidelines with the initial Hg(II) concentration being 0.0068 M. Part of this study is to ascertain optimum excess Hg(I) for chloride removal.

Holcomb, H.P.

2001-05-17

344

Significant contribution of dissolved organic matter to seawater alkalinity  

NASA Astrophysics Data System (ADS)

The present study shows a previously undocumented role of dissolved organic matter in the marine carbonate system. During photosynthesis, phytoplankton release dissolved organic compounds containing basic functional groups that readily react with protons during seawater titration, and thereby contribute to alkalinity (a measure of buffering capacity). The magnitude of the contribution of dissolved organic compounds to seawater alkalinity is species dependent, suggesting that individual phytoplankton species exude dissolved organic compounds with unique proton accepting capacities. Our study shows that dissolved organic matter produced by marine phytoplankton during photosynthesis is a newly identified buffering component in the ocean, and indicates that the contribution of dissolved organic matter to seawater alkalinity can be significant in the biologically productive upper ocean, where to date it has been unrecognized or considered insignificant.

Kim, Hyun-Cheol; Lee, Kitack

2009-10-01

345

Economic & Reliable The Easy Introduction to the World of pH  

E-print Network

FiveEasyTM Economic & Reliable The Easy Introduction to the World of pH FiveEasyTM Bench Instruments FiveEasy Plus FiveEasy pH mV / ORP Conductivity TDS Salinity #12;FiveEasyPlusTM /FiveEasyTM Water No matter whether it's a lake or a sewage plant ­ compliance to cer- tain pH and conductivity values

Woodall, Jerry M.

346

Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions  

SciTech Connect

Mercuric mercury, Hg(II), forms strong complexes with thiol compounds that commonly dominate Hg(II) speciation in natural freshwater. However, reactions between dissolved elemental Hg(0) and thiols are not well understood although these processes are likely to be important in determining Hg speciation and geochemical cycling in the environment. In this study, reaction rates and mechanisms between dissolved Hg(0) and a number of selected organic ligands with varying molecular structures and sulfur (S) oxidation states were determined to assess the role of these ligands in Hg(0) redox transformation. We found that all thiols caused oxidation of Hg(0) under anoxic conditions but, contrary to expectation, compounds with higher S-oxidation states (e.g., disulfide) than thiols exhibited little or no reactivity with Hg(0) at pH 7. The rate and extent of Hg(0) oxidation varied widely, with smaller aliphatic thiols showing the greatest degree of oxidation. The mechanism of the oxidation is attributed to a two-step process involving adsorption of Hg(0) to thiols followed by the charge transfer from Hg(0) to electron acceptors. These observations demonstrate a unique thiol-induced oxidation pathway of dissolved Hg(0), with important implications for the redox transformation, speciation, and bioavailability of Hg for microbial methylation in anoxic environments.

Zheng, Wang [ORNL] [ORNL; Lin, Hui [ORNL] [ORNL; Mann, Benjamin F [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL

2013-01-01

347

Growth limitation of three Arctic sea ice algal species: effects of salinity, pH, and inorganic carbon availability  

Microsoft Academic Search

The effect of salinity, pH, and dissolved inorganic carbon (TCO2) on growth and survival of three Arctic sea ice algal species, two diatoms (Fragilariopsis nana and Fragilariopsis sp.), and one species of chlorophyte (Chlamydomonas sp.) was assessed in controlled laboratory experiments. Our results suggest that the chlorophyte and the two diatoms have\\u000a different tolerance to fluctuations in salinity and pH.

Dorte Haubjerg SøgaardPer; Per Juel Hansen; Søren Rysgaard; Ronnie Nøhr Glud

2011-01-01

348

Ris-PhD-26(EN) Light Harvesting by Dye Linked  

E-print Network

Risø-PhD-26(EN) Light Harvesting by Dye Linked Conducting Polymers Kim Troensegaard Nielsen Risø by Dye Linked Conducting Polymers Department: The Danish Polymer Centre Risø-PhD-26(EN) June 2006 silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells

349

Calcium and pH in north and central Swedish mire waters  

Microsoft Academic Search

Summary 1 We present data on calcium concentrations and pH in mire waters collected from different mire types in central and northern Sweden, compiled from published literature or calculated from field determinations of electrical conductivity and pH. 2 Measurements of electrical conductivity (after subtracting that of H + ions) were used to calculate the most probable Ca concentrations, but only

H. Sjors; U. Gunnarsson

2002-01-01

350

Method to Estimate the Dissolved Air Content in Hydraulic Fluid  

NASA Technical Reports Server (NTRS)

In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.

Hauser, Daniel M.

2011-01-01

351

Philip Prorok, PhD  

Cancer.gov

Philip Prorok, PhD, mirum est notare quam littera gothica, quam nunc putamus parum claram, anteposuerit litterarum formas humanitatis per seacula quarta decima et quinta decima. Eodem modo typi, qui nunc nobis videntur parum clari, fiant sollemnes in futurum.

352

David Cheresh, PhD  

Cancer.gov

Meetings & Events Home Agenda Speaker Biosketches Abstracts Logistics Contact Speaker Biosketches David Cheresh, PhD(University of California, San Diego) Dr. David Cheresh studies the mechanism of action of signaling networks that regulate

353

PhD-Buddy-Programme A PhD-buddy is an experienced PhD-student  

E-print Network

and their services available to you. Win great prizes at our Hannover Quiz and meet fellow PhD Students. FoodPhD-Buddy-Programme A PhD-buddy is an experienced PhD-student who will help a newly arrived PhD-student 14.03. Pub Night // Stammtisch 19.03. Workshop "Working effectively in intercultural settings" April

Nejdl, Wolfgang

354

[Dynamic distributions of dissolved oxygen env in Lake Qiandaohu and its environmental influence factors].  

PubMed

Based on monthly in situ data collected at six sampling sites in Qiandaohu Lake between 2011 and 2012, the dynamic distributions of dissolved oxygen (DO) were analyzed and the relationships between DO and the environmental factors were investigated. The results showed that there were obviously vertical and temporal variations in the distributions of DO. In winter, the average values of DO were generally higher than those in other seasons, but no significant vertical distribution variation was found except Dabaqian. However, the vertical differences of DO in summer were larger than those in spring and autumn. Moreover, the maximum values of DO found in euphotic zone at the sites of Xiaojinshan, Santandao, Dabaqian in summer were 11.59, 12.52, 10.96 mg x L(-1), respectively. The maximum DO at surface layer was found in spring while the minimum value appeared in autumn. Seasonal differences in relationships between dissolved oxygen and water temperature, pH, and Chla concentration were discussed. In summer, highly significant linear correlation between DO and water temperature was found indicating that the temperature thermal stratification was the key factor to influence the vertical distribution of DO. The relative higher correlation coefficients between DO and pH, Chla concentration in spring and summer were due to the phytoplankton photosynthesis. PMID:25244835

Yin, Yan; Wu, Zhi-Xu; Liu, Ming-Liang; He, Jian-Bo; Yu, Zuo-Ming

2014-07-01

355

Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves.  

PubMed

In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe and Mn), dissolved organic carbon, pH and biological activity were studied for industrial contaminated poplar leaves. Moreover, the distribution of the IE through the size fractions of the associated top soil was measured. High quantities of Mn, Zn and As and polysaccharides were released in the solution from the strongly contaminated leaves. The kinetic of release varied with time and metal type. The solution pH decreased while dissolved organic contents increased with time after 30 days. Therefore, these contaminated leaves could constitute a source of more available organic metals and metalloids than the initial inorganic process particles. However, the distribution of the IE through the size fractions of the top soil suggested that a great part of the released IE was adsorbed, reducing in consequence their transfers and bioavailability. It's concluded that mobility/bioavailability and speciation of metals and metalloids released from the decomposition of polluted tree leaves depends on soil characteristics, pollutant type and litter composition, with consequences for environmental risk assessment. PMID:24649677

Shahid, Muhammad; Xiong, Tiantian; Castrec-Rouelle, Maryse; Leveque, Tibo; Dumat, Camille

2013-12-01

356

Removal of actinides from dissolved ORNL MVST sludge using the TRUEX process  

SciTech Connect

Experiments were conducted to evaluate the transuranium extraction process for partitioning actinides from actual dissolved high-level radioactive waste sludge. All tests were performed at ambient temperature. Time and budget constraints permitted only two experimental campaigns. Samples of sludge from Melton Valley Storage Tank W-25 were rinsed with mild caustic (0.2 M NaOH) to reduce the concentrations of nitrates and fission products associated with the interstitial liquid. In one campaign, the rinsed sludge was dissolved in nitric acid to produce a solution containing total metal concentrations of ca. 1.8 M with a nitric acid concentration of ca. 2.9 M. About 50% of the dry mass of the sludge was dissolved. In the other campaign, the sludge was neutralized with nitric acid to destroy the carbonates, then leached with ca. 2.6 M NaOH for ca. 6 h before rinsing with the mild caustic. The sludge was then dissolved in nitric acid to produce a solution containing total metal concentrations of ca. 0.6 M with a nitric acid concentration of ca. 1.7 M. About 80% of the sludge dissolved. The dissolved sludge solution form the first campaign began gelling immediately, and a visible gel layer was observed after 8 days. In the second campaign, the solution became hazy after ca. 8 days, indicating gel formation, but did not display separated gel layers after aging for 20 days. Batch liquid-liquid equilibrium tests of both the extraction and stripping operations were conducted. Chemical analyses of both phases were used to evaluate the process. Evaluation was based on two metrics: the fraction of TRU elements removed from the dissolved sludge and comparison of the results with predictions made with the Generic TRUEX Model (GTM). The fractions of Eu, Pu, Cm, Th, and U species removed from aqueous solution in only one extraction stage were > 95% and were close to the values predicted by the GTM. Mercury was also found to be strongly extracted, with a one-stage removal of > 92%.

Spencer, B.B.; Egan, B.Z.; Chase, C.W.

1997-07-01

357

Influence of microenvironmental pH on adriamycin resistance.  

PubMed

Resistance to Adriamycin (ADR) is frequently dependent upon enhanced efflux associated with the expression of the MDR1-encoded P membrane glycoprotein. Since enhanced expression of the MDR1 gene in ADR-resistant cells may be the result of spontaneous genetic mutation or amplification, it is presumed to be relatively stable and unalterable. Yet, reducing ADR efflux could increase sensitivity, and has been attempted using calcium channel blockers and other drugs. However, since the tumor cell microenvironment varies with respect to pH because of differences in vascularization, oxygenation, and metabolite clearance, the possibility exists that these factors could influence drug transport and the critical biochemical pathways which determine cytotoxicity, even in resistant cells. Using flow cytometric analysis of ADR fluorescence, the influx and efflux of 10 microM ADR dissolved in MES buffer (pH 6.5) and 4-(2-hydroxyethylene)-1-piperazineethanesulfonic acid buffer (pH 7.5 and 8.5) was measured in sensitive P388 and resistant P388/R84 cells in vitro. Substantially enhanced uptake of ADR was detected at alkaline pH in both cell populations, while the proportion of ADR-positive cells and the level of ADR uptake was decreased at lower pH. Acidification reduced ADR efflux, whereas alkalinization increased efflux when the uptake pH was 6.5 or 7.5. At uptake pH 8.5, the pH of the external buffer had little effect, even in resistant cells. In resistant cells in an alkaline microenvironment, ADR transport and retention were superior to that observed in sensitive cells in an acidic microenvironment. No differences were observed in ADR transport when the transmembrane pH gradient was equilibrated. These observations are especially relevant to the effect of ADR on tumor cell subpopulations that are acidic, and in which drug diffusion is inefficient. Efforts to alkalinize tumor cells prior to ADR therapy might reduce ADR resistance, even of genetic origin. PMID:2790781

Alabaster, O; Woods, T; Ortiz-Sanchez, V; Jahangeer, S

1989-10-15

358

Electrically conductive bacterial nanowires in bisphosphonate-related osteonecrosis of the jaw biofilms  

E-print Network

biofilms Greg Wanger, PhD,a Yuri Gorby, PhD,b Mohamed Y. El-Naggar, PhD,c Thomas D. Yuzvinsky, Ph biofilms play a role in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ in biofilms associated with BRONJ contain electrically conductive nanowires. Study Design. Bone samples

Yuzvinsky, Tom

359

Concentrations of dissolved oxygen in the lower Puyallup and White rivers, Washington, August and September 2000 and 2001  

USGS Publications Warehouse

The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by photosynthesis and respiration. The upper limit on oxygen demand caused by the scour of anoxic bed sediment and subsequent oxidation of reduced iron and manganese is less than 1 mg/L. The actual demand, if any, is probably negligible.In August and September 2001, concentrations of dissolved oxygen in the lower Puyallup River did not fall below the water-quality standard of 8 mg/L, except at high tide when the saline water from Commencement Bay reached the monitor at river mile 2.9. The minimum concentration of dissolved oxygen (7.6 mg/L) observed at river mile 2.9 coincided with the maximum value of specific conductance. Because the dissolved-oxygen standard for marine water is 6.0 mg/L, the standard was not violated at river mile 2.9. The concentration of dissolved oxygen at river mile 1.8 in the White River dropped below the water-quality standard on two occasions in August 2001. The minimum concentration of 7.8 mg/L occurred on August 23, and a concentration of 7.9 mg/L was recorded on August 13. Because there was some uncertainty in the monitoring record for those days, it cannot be stated with certainty that the actual concentration of dissolved oxygen in the river dropped below 8 mg/L. However, at other times when the quality of the monitoring record was good, concentrations as low as 8.2 mg/L were observed at river mile 1.8 in the White River.

Ebbert, J. C.

2002-01-01

360

Automated Dispersive Solid-Phase Extraction Using Dissolvable Fe3O4-Layered Double Hydroxide Core-Shell Microspheres as Sorbent.  

PubMed

Automation of dispersive solid-phase extraction (d-SPE) presents significant challenges. Separation of the sorbent from the spent sample cannot be conducted without manual operations, including centrifugation, a widely used means of isolating a solid material from solution. In this work, we report an approach to d-SPE using dissolvable magnetic Fe3O4-layered double hydroxide core-shell microspheres as sorbent to enable automation of the integrative extraction and analytical processes. Through magnetic force, the sorbent, after extraction, was isolated from the sample and then dissolved by acid to release the analytes. Thus the customary analyte elution step in conventional SPE was unnecessary. The automated d-SPE step was coupled to high-performance liquid chromatography (HPLC) with photodiode array detection for determination of several pharmaceuticals and personal care products (PPCPs) [acetylsalicylic acid (ASA), 2,5-dihydroxybenzoic acid (DBA), 2-phenylphenol (PP), and fenoprofen (FP)] in aqueous samples. For the automated d-SPE process, experimental parameters such as agitation speed, temperature, time, and pH were optimized. The results showed that this method provided low limits of detection (between 0.021 and 0.042 ?g/L), good linearity (r(2) ? 0.9956), and good repeatability of extractions (relative standard deviations ?4.1%, n = 6). The optimized procedure was then applied to determination of PPCPs in a sewage sample and ASA and FP in drug preparations. This fully automated extraction-HPLC approach was demonstrated to be an efficient procedure for extraction and analysis of ASA, DBA, PP, and FP in these samples. PMID:25320871

Tang, Sheng; Chia, Guo Hui; Chang, Yuepeng; Lee, Hian Kee

2014-11-18

361

Formation of haloacetic acids from dissolved organic matter fractions during chloramination.  

PubMed

The objective of this study was to investigate the roles of dissolved organic matter (DOM) fractions, pH and bromide concentration in the formation of haloacetic acids (HAA) during chloramination. DOM from two surface waters with a low (2.9 L/mg-m) and high (5.1 L/mg-m) specific UV absorbance (SUVA(254)) values was isolated and fractionated into three fractions based on the hydrophobicity [i.e., hydrophobic (HPO), transphilic (TPH) and hydrophilic (HPI)]. DOM mass balances and DBP reactivity checks were performed to characterize the effects of isolation and fractionation steps. The fractions were chloraminated at three pHs and three bromide concentrations. The results showed that pH was the most important factor controlling HAA formation and speciation. The HAA yields significantly decreased with increase in pH from 6.3 to 9.0. The impact of bromide in the formation of brominated HAA species also became less important with increasing pH, and no brominated specie was detectable at pH 9. HPO fractions of the two source waters consistently showed higher HAA yields than TPH and HPI fractions. On the other hand, HPI fractions showed higher bromine incorporation than HPO and TPH fractions. To maintain higher and relatively stable combined chlorine residuals while reducing HAA formation, water utilities may consider keeping pH above 7.5 as one strategy. This will also lower the formation of brominated HAA species which have been shown to be more cyto- and geno-toxic than their chlorinated analogs. PMID:23245540

Hong, Ying; Song, Hocheol; Karanfil, Tanju

2013-03-01

362

Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight  

USGS Publications Warehouse

Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

Davis, J. A.; Gloor, R.

1981-01-01

363

Dissolved organic C export is highly dynamic - capturing this variability and challenges in modelling  

NASA Astrophysics Data System (ADS)

High resolution, field-deployable sensors offer opportunities to deepen our understanding of natural environmental systems, and measure the ';riverine pulse'. Studies utilising high-resolution equipment have demonstrated that sampling hydrological variables on traditional low frequency rates (such as once a week) creates a simplified picture of conditions that does not capture a true reflection of how fluvial systems operate. Dissolved organic carbon (DOC) represents a large and diverse mixture of compounds (including sugars, amino acids and humic substances) and concentration and composition of this pool varies globally. Understanding transport of this C pool in fluvial systems is important as it 1) represents the lateral export of C no longer sequestered in the terrestrial system, 2) surface water concentrations have been observed to have increased globally and we need to know if this trend is continuing and 3) when water is abstracted the purification processes removing DOC from the water, can create harmful by-products and so prior knowledge of inflow loading is valuable. Traditionally [DOC] has been measured using manual sampling methods, where a water sample would be collected in the field and returned to the lab. This approach can provide reliable data but the resource required to sustain this make it nearly impossible to measure the ';riverine pulse' through the information in long and detailed time series. In recent years new technology designed to estimate [DOC] in-situ has been developed. We have used one of these devices, which measures absorption in both the visible and UV wavelength regions of the electromagnetic spectrum and from this absorbance profile an algorithm estimates [DOC]. We have deployed this system in the field environment and after overcoming initial challenges have an almost continuous time series of [DOC], measured at 30 minute intervals, since May 2012. The logger has been functioning over a temperature range of 0.5 - 23 °C and a [DOC] range of 8 - 55.6 mg/l C, with the greatest shift in a single day being 23.5 mg/l C. We will present this highly dynamic [DOC] time series and also contemporaneous data from an in-situ water chemistry sonde profiling other measures of the ';riverine circulation system': pH, conductivity, temperature and stage height. The challenge now is how to allow data series of ~17,500 measurements per annum to interact to better understand and model drivers of carbon export. We are exploring the application of wavelet analysis to identify periods of coherence between [DOC] and these other variables. Our initial results indicate show that coherence with [DOC] can be intermittent and irregular, and so the challenge sensor technology presents continues.

Waldron, S.; Coleman, M.; Scott, E. M.; Drew, S.

2013-12-01

364

Effects of gold nanoparticles and lithium hexafluorophosphate on the electrical conductivity of PMMA  

Microsoft Academic Search

An increase in electrical conductivity of a polymeric system can be realized by adding conductive fillers and\\/or dissolving a salt in a suitable solvent or polymer through formation of ionic conduction. An appropriate solvent that can form complexes with alkali metal cations is critical to providing electrical conductivity enhancements to a wide variety of polymers. In this study, we investigated

Soumen Jana; Amin Salehi-Khojin; Wei-Hong Zhong; Hui Chen; Xiong Liu; Qun Huo

2007-01-01

365

The MD-PhD researcher: what species of investigator?  

PubMed

Though MD-PhD programs have grown rapidly since their introduction in the mid-1960s, and are widely regarded as fostering excellent young investigators and future leaders in research and academic medicine, the types of research careers their graduates can be expected to pursue have been a point of some confusion. Some regard MD-PhD programs as a flexible approach to scientific training, producing both basic scientists and clinical investigators, while others tend to view these programs as generating either one type of researcher or the other. This range of expectations associated with dual-degree programs and their graduates has perplexed observers over the years and complicated the efforts of planners and policymakers in projecting workforce needs and generating recommendations for research training. To learn more about the research careers of MD-PhDs and how these investigators fit into the larger biomedical research workforce, the authors undertook a review of the types of research proposed by dual-degree and other investigators in 12,116 applications to the National Institutes of Health in 1993 and 1994. In comparing the types of research projects proposed by investigators of various degree types (MDs, MD-PhDs, and PhDs) the authors found that the research interests of the MD-PhDs studied were more closely aligned with the laboratory pursuits of most of their PhD counterparts than with the more clinically-oriented endeavors of those with the MD degree alone. During a time when there are persistent concerns about a shortage of investigators to conduct clinical research and growing fears that America's universities may be producing more PhDs than can be meaningfully employed in the scientific enterprise, the authors' finding indicates a need for future workforce planning to better reflect the respective roles played by MDs, MD-PhDs, and PhDs in biomedical and behavioral research. PMID:9114861

Sutton, J; Killian, C D

1996-05-01

366

Heat conduction in conducting polyaniline nanofibers  

NASA Astrophysics Data System (ADS)

Thermal conductivity and specific heat of conducting polyaniline nanofibers are measured to identify the nature of heat carrying modes combined with their inhomogeneous structure. The low temperature thermal conductivity results reveal crystalline nature while the high temperature data confirm the amorphous nature of the material suggesting heterogeneous model for conducting polyaniline. Extended acoustic phonons dominate the low temperature (<100 K) heat conduction, while localized optical phonons hopping, assisted by the extended acoustic modes, account for the high temperature (>100 K) heat conduction.

Nath, Chandrani; Kumar, A.; Syu, K.-Z.; Kuo, Y.-K.

2013-09-01

367

Burrowing activity in Mercenaria mercenaria (L.) and Spisula solidissima (Dillwyn) as a function of temperature and dissolved oxygen  

Microsoft Academic Search

Burrowing activity was utilized as a measure of the ability of the hard shell clam (Mercenaria mercenaria) and the Atlantic surf clam (Spisula solidissima) to cope with extremes of temperature and dissolved oxygen. Clams were removed from clean sand substrate and the progress of reburial timed. Experiments were conducted in a once through circulating seawater system in which temperatures were

N. B. Savage

1976-01-01

368

Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene  

Microsoft Academic Search

Batch experiments were conducted to determine the effect of temperature and dissolved oxygen concentration on the rates of growth and substrate (benzene and toluene) degradation by the toluene degrading strain, Pseudomonas putida F1. Over a range of temperature from 15 to 35 °C the maximum specific growth rate followed the Topiwala–Sinclair relationship when either benzene or toluene served as the

Gunaseelan Alagappan; Robert M. Cowan

2004-01-01

369

Laryngopharyngeal pH measurement  

PubMed Central

Methods: Cohorts of unconscious adult ED and elective surgical patients were recruited. The posterior pharyngeal wall pH was measured immediately before and after intubation. Pharyngeal pH was used to indicate risk of aspiration, and pH change to assess the efficacy of cricoid pressure. Results: Eight ED and 48 control patients were recruited. In the ED cohort, pH ranged from 6.0 to 8.0 before intubation and 4.7 to 8.0 after intubation: a mean decrease of 0.3 (95% CI 1.5 decrease to 0.9 increase). In the control cohort pH ranged from 5.8 to 8.0 before intubation and 6.0 to 8.0 after intubation: a mean increase of 0.4 (95% CI 0.1 to 0.6 increase). Conclusions: This is a simple, cheap, and repeatable technique for assessing aspiration risk in emergency intubations. A larger study is required to assess the efficacy of cricoid pressure. PMID:15208239

Spurrier, E; Clancy, M; Deakin, C

2004-01-01

370

Fast dissolving films made of maltodextrins.  

PubMed

This work aimed to study maltodextrins (MDX) with a low dextrose equivalent as film forming material and their application in the design of oral fast-dissolving films. The suitable plasticizer and its concentration were selected on the basis of flexibility, tensile strength and stickiness of MDX films, and the MDX/plasticizer interactions were investigated by ATR-FTIR spectroscopy. Flexible films were obtained by using 16-20% w/w glycerin (GLY). This basic formulation was adapted to the main production technologies, casting and solvent evaporation (Series C) or hot-melt extrusion (Series E), by adding sorbitan monoleate (SO) or cellulose microcrystalline (MCC), respectively. MCC decreased the film ductility and significantly affected the film disintegration time both in vitro and in vivo (Series C<10s; Series E approximately 1min). To assess the film loading capacity, piroxicam (PRX), a water insoluble drug, was selected. The loading of a drug as a powder decreased the film ductility, but the formulation maintained satisfactory flexibility and resistance to elongation for production and packaging procedures. The films present a high loading capacity, up to 25mg for a surface of 6cm(2). The PRX dissolution rate significantly improved in Series C films independently of the PRX/MDX ratio. PMID:18667164

Cilurzo, Francesco; Cupone, Irma E; Minghetti, Paola; Selmin, Francesca; Montanari, Luisa

2008-11-01

371

Dissolved methane in Indian freshwater reservoirs.  

PubMed

Emission of methane (CH4), a potent greenhouse gas, from tropical reservoirs is of interest because such reservoirs experience conducive conditions for CH4 production through anaerobic microbial activities. It has been suggested that Indian reservoirs have the potential to emit as much as 33.5 MT of CH4 per annum to the atmosphere. However, this estimate is based on assumptions rather than actual measurements. We present here the first data on dissolved CH4 concentrations from eight freshwater reservoirs in India, most of which experience seasonal anaerobic conditions and CH4 buildup in the hypolimnia. However, strong stratification prevents the CH4-rich subsurface layers to ventilate CH4 directly to the atmosphere, and surface water CH4 concentrations in these reservoirs are generally quite low (0.0028-0.305 ?M). Moreover, only in two small reservoirs substantial CH4 accumulation occurred at depths shallower than the level where water is used for power generation and irrigation, and in the only case where measurements were made in the outflowing water, CH4 concentrations were quite low. In conjunction with short periods of CH4 accumulation and generally lower concentrations than previously assumed, our study implies that CH4 emission from Indian reservoirs has been greatly overestimated. PMID:23397538

Narvenkar, G; Naqvi, S W A; Kurian, S; Shenoy, D M; Pratihary, A K; Naik, H; Patil, S; Sarkar, A; Gauns, M

2013-08-01

372

Dissolved Humic Matter in Arctic Estuaries  

NASA Astrophysics Data System (ADS)

As part of the German-Russian bilateral SIRRO(Siberian River Runoff)-project we studied the distribution of dissolved humic matter isolated by XAD-8 in the estuarine waters of the Ob and Yenisei rivers. The relative contributions of humic matter carbon to total DOC decreased from 61-77 percent in the river freshwater endmember to 35-40 percent in the marine waters of the open Kara Sea at salinities 33 psu. Humic carbon mixed conservatively in the Yenisei and non-conservatively in the Ob, where partial removal was indicated in the low salinity range. Changes in the relative contribution of humic matter to different molecular weight classes of DOM (ultrafiltration cutoffs 150 KDa, 450 KDa, 800 KDa) were studied along the salinity gradient in the Yenisei. High molecular weight DOM is relatively enriched in humics in fresh-water compared to sea-water HMW-DOM. Low molecular weight DOM is realtively enriched in humics in sea-water compared to fresh-water LMW-DOM. Throughout the estuary humic matter is depleted in 13C and nitrogen compared to total DOM, reflecting a dominant soil source. We estimate an annual input of 5 Tg humic matter carbon by the two rivers into the Kara Sea.

Spitzy, A.; Koehler, H.; Ertl, S.

2002-12-01

373

Calculating pH from EC and SAR values in salinity models and SAR from soil and bore water pH and EC data  

Microsoft Academic Search

Currently used soil salinity models do not contain a mechanism for including exchangeable sodium effects on soil pH. A method is needed that allows pH calculation from the sodium adsorption ratio (SAR) or exchangeable sodium percentage (ESP) and electrical conductivity (EC) data. This study developed a simple method for calculating saturated soil paste and aqueous solution pH from SAR (or

C. W. Robbins; W. S. Meyer

1990-01-01

374

What controls dissolved iron concentrations in the world ocean?  

Microsoft Academic Search

Dissolved (< 0.4 ?m) iron has been measured in 354 samples at 30 stations in the North and South Pacific, Southern Ocean and North Atlantic by the Trace Metals Laboratory at Moss Landing Marine Laboratories. These stations are all more than 50 km from a continental margin. The global distribution of dissolved iron, which is derived from these profiles, is

Kenneth S. Johnson; R. Michael Gordon; Kenneth H. Coale

1997-01-01

375

Tissue oxygenation with graded dissolved oxygen delivery during cardiopulmonary bypass  

Microsoft Academic Search

Background: Intravascular perfluorochemical emulsions together with a high oxygen tension may increase the delivery of dissolved oxygen to useful levels. The hypothesis of this study is that increasing the dissolved oxygen content of blood with incremental doses of a perfluorochemical emulsion improves tissue oxygenation during cardiopulmonary bypass in a dose-related fashion. Methods and Results: Oxygen utilization was studied in a

William L. Holman; Russell D. Spruell; Edward R. Ferguson; Janice J. Clymer; Walter V. A. Vicente; C. Patrick Murrah; Albert D. Pacifico

1995-01-01

376

ForPeerReview Inversion of Chromophoric Dissolved Organic Matter  

E-print Network

of Chromophoric Dissolved Organic Matter (CDOM) from EO-1 Hyperion Imagery for Turbid Estuarine and Coastal WatersForPeerReview Inversion of Chromophoric Dissolved Organic Matter (CDOM) from EO-1 Hyperion Imagery for Turbid Estuarine and Coastal Waters Journal: Transactions on Geoscience and Remote Sensing Manuscript ID

Yu, Qian

377

Dissolved organic matter in Chesapeake Bay sediment pore waters  

E-print Network

Dissolved organic matter in Chesapeake Bay sediment pore waters David J. Burdige * Department of recent studies of dissolved organic matter (DOM) in Chesapeake Bay sediment pore waters are summar- ized water DOM. This analysis shows that much of the DOM accumulating in sediment pore waters appears

Burdige, David

378

Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter  

NASA Technical Reports Server (NTRS)

Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

Mannino, Antonio; Harvey, H. Rodger

2003-01-01

379

Dissolved oxygen convection and diffusion numerical simulation of stokes wave  

Microsoft Academic Search

In order to study the reoxygenation of the coastal wave, the two-dimensional renormalized-group (2-D RNG) k-epsilon ( ?-? ) mathematical model and Volume of Fluid (VOF) method are employed to compute the motion of a stokes wave. Dissolved oxygen convection and diffusion model is established to simulate the dissolved oxygen concentration with user defined scalar method. The computational results of

Zegao Yin; Lianchun Zhang; Xianwei Cao; Le Wang; Dongsheng Cheng

2011-01-01

380

Enhanced Dissolution of Cinnabar (Mercuric Sulfide) by Dissolved  

E-print Network

Enhanced Dissolution of Cinnabar (Mercuric Sulfide) by Dissolved Organic Matter Isolated from Everglades caused a dramatic increase in mercury release (up to 35 µM total dissolved mercury) from cinnabar). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations

Ryan, Joe

381

Intra-arterial injection of dissolved flunitrazepam tablets.  

PubMed

Intra-arterial application of dissolved tablets is associated with a high risk of tissue necrosis. An early active vasodilatating and recanalising treatment is necessary. We present the case of 21-year-old female who applied three dissolved Flunitrazepam tablets into the ulnar artery and was successfully treated with prostaglandin E1 and recombinant tissue plasminogen activator. PMID:15061050

Pratikto, T H; Strubel, G; Biro, F; Kröger, K

2004-02-01

382

Free Zinc Ion and Dissolved Orthophosphate Effects on  

E-print Network

. This phosphorus-limited lake has been subjected to decades of mining (primarily for zinc and silver) and otherFree Zinc Ion and Dissolved Orthophosphate Effects on Phytoplankton from Coeur d'Alene Lake, Idaho of free (uncomplexed) zinc ion and dissolved- orthophosphate concentrations on phytoplankton that were

383

Interactions of Arsenic and the Dissolved Substances Derived from  

E-print Network

Interactions of Arsenic and the Dissolved Substances Derived from Turf Soils Z H A N G R O N G C H with substances of molecular weight (MW) between 500 and 3500 Da; (3) the association of As and dissolved organic

Florida, University of

384

Dissolved humic substances of the Amazon River system1  

Microsoft Academic Search

Aquatic humic and fulvic acids from nine mainstem and seven major tributary sites in the Amazon River Basin are characterized by their elemental and lignin phenol compositions. Com- bined humic substances represent 60% of the riverine dissolved organic carbon (DOC), with fulvic to humic acid (FA : HA) ratios in the mainstem averaging 4.7 -t 1 .O. All dissolved humic

John R. Ertel; John I. Hedges; Allan H. Devol; Jefrey E. Richey

1986-01-01

385

Salicylhydroxamic acid (SHAM) inhibition of the dissolved inorganic carbon concentrating process in unicellular green algae  

SciTech Connect

Rates of photosynthetic O{sub 2} evolution, for measuring K{sub 0.5}(CO{sub 2} + HCO{sub 3}{sup {minus}}) at pH 7, upon addition of 50 micromolar HCO{sub 3}{sup {minus}} to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K{sub i}(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO{sub 2} uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O{sub 2} evolution dependent on low levels of dissolved inorganic carbon (50 micromolar NaHCO{sub 3}), and the rate of {sup 14}CO{sub 2} fixation with 100 micromolar ({sup 14}C)HCO{sub 3}{sup {minus}}. Salicylhydroxamic acid inhibition of O{sub 2} evolution and {sup 14}CO{sub 2}-fixation was reversed by higher levels of NaHCO{sub 3}. Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO{sub 2} accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.

Goyal, A.; Tolbert, N.E. (Michigan State Univ., East Lansing (USA))

1990-03-01

386

Dissolved Oxygen in Guadalupe Slough and Pond A3W, South San Francisco Bay, California, August and September 2007  

USGS Publications Warehouse

Initial restoration of former salt evaporation ponds under the South Bay Salt Pond Restoration Project in San Francisco Bay included the changing of water-flow patterns and the monitoring of water quality of discharge waters from the ponds. Low dissolved oxygen (DO) concentrations became evident in discharge waters when the ponds first were opened in 2004. This was a concern, because of the potential for low-DO pond discharge to decrease the DO concentrations in the sloughs that receive water from the ponds. However, as of summer 2007, only limited point-measurements of DO concentrations had been made in the receiving sloughs adjacent to the discharge ponds. In this report, we describe two short studies aimed at understanding the natural variability of slough DO and the effect of pond discharge on the DO concentrations in the sloughs. Pond A3W (a discharge pond) and the adjacent Guadalupe Slough were instrumented in August and September 2007 to measure DO, temperature, conductivity, and pH. In addition, Mowry and Newark Sloughs were instrumented during the August study to document DO variability in nearby sloughs that were unaffected by pond discharge. The results showed that natural tidal variability in the slough appeared to dominate and control the slough DO concentrations. Water-quality parameters between Guadalupe Slough and Mowry and Newark Sloughs could not be directly compared because deployment locations were different distances from the bay. Pond-discharge water was identified in Guadalupe Slough using the deployed instruments, but, counter to the previous assumption, the pond discharge, at times, increased DO concentrations in the slough. The effects of altering the volume of pond discharge were overwhelmed by natural spring-neap tidal variability in the slough. This work represents a preliminary investigation by the U.S. Geological Survey of the effects of pond discharge on adjacent sloughs, and the results will be used in designing a comprehensive DO study to determine normal variability for this region.

Shellenbarger, Gregory G.; Schoellhamer, David H.; Morgan, Tara L.; Takekawa, John Y.; Athearn, Nicole D.; Henderson, Kathleen D.

2008-01-01

387

A multi-scale comparison of dissolved Al, Fe and S in a boreal acid sulphate soil.  

PubMed

Acid sulphate (AS) soils are most prevalent in the tropics, but the acidic discharge from cultivated AS soils also threatens water bodies under boreal conditions. Feasible options to reduce the acid load are needed. In this study, the groundwater of an AS field was monitored for 3.5years, and the efficiency of waterlogging in mitigating the environmental risks caused by acidic discharge was investigated in a 2.5-year experiment with 10 monolithic lysimeters taken from the same field. In order to unravel the transferability of the results from lysimeters to the field scale, the Al, Fe and S concentrations in discharge water from the lysimeters were compared with those in the groundwater of the AS field (pedon and field scale), and in pore water (pedon and horizon scale). In the waterlogged bare lysimeters (HWB), the Al, Fe and S concentrations in discharge waters were broadly similar to those measured in the groundwater and followed the changes in the pore water. In the waterlogged cropped (reed canary grass, Phalaris arundinacea) lysimeters (HWC), in contrast, the discharge waters were markedly higher in Fe and lower in Al than the groundwater in the field. This outcome was attributable to the reduction of Fe(3+) to the more soluble Fe(2+) and the reduction-induced increase in pH, which enhanced the formation of Al(3+) hydroxy species. Lowering of the water table (LWC) caused soil ripening, which resulted in increased saturated hydraulic conductivity and porosity and enhanced the oxidation of sulphidic materials and acid formation. The responses of Al, Fe and S in drainage waters from HWC and LWC lysimeters resembled previous findings in AS soils. Based on this and the similarity between dissolved element concentrations in the discharge water of HWB lysimeters and groundwater in the field, we conclude that our monolithic lysimeters yielded realistic results concerning the efficiency of various methods in mitigating environmental risks related to cultivated AS soils. PMID:25203826

Virtanen, Seija; Simojoki, Asko; Rita, Hannu; Toivonen, Janne; Hartikainen, Helinä; Yli-Halla, Markku

2014-11-15

388

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters the water by diffusion from air, as a by-product of photosynthesis and  

E-print Network

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters Trenk Time of day and dissolved oxygen Background 3/26 4/2 4/9 #12; and rapids. There is an inverse relationship between temperature and DO, i.e. colder water holds more oxygen

Tyler, Christy

389

Speciation of Aqueous Silica at High pH Using Raman Spectroscopy  

Microsoft Academic Search

This study presents Raman spectra of silica solutions taken at ambient conditions with varying pH (11.4-14.2) and SiO2 concentrations (0.005-5.5 molal). These results are the foundation of a comprehensive set of hydrothermal diamond anvil cell experiments aimed at exploring the effects of temperature, pressure, and concentration on silica polymerization. Dissolved silica in basic aqueous solution plays an important role in

J. D. Hunt; A. Kavner; E. A. Schauble; N. L. Doltsinis; C. E. Manning

2008-01-01

390

A Sodium Bicarbonate Dosing Methodology for pH Management in Freshwater-Recirculating Aquaculture Systems  

Microsoft Academic Search

High-density water-recirculating aquaculture systems with hydraulic retention times above about 5 d must be monitored for alkalinity, and in the vast majority of cases, the alkalinity must be adjusted upwards to assure maintenance of desirable pH levels. Sodium bicarbonate is the preferred additive for increasing alkalinity because it is inexpensive, dissolves rapidly, and is safe for both personnel and fish.

J. Clay Loyless; Ronald F. Malone

1997-01-01

391

Solubility of pentachlorophenol in aqueous solutions: The pH effect  

Microsoft Academic Search

As indicated in most literature reports, the solubility of pentachlorophenol (PCP) in water ranges between 10 and 20 mg l?1. Since PCP is a weak acid (pKa 4.35), its solubility increases drastically with increasing pH. When PCP dissolves in water two forms are normally present: undissociated PCP (PCP°) and a dissociated anionic form, i.e. pentachlorophenolate (PCP?). Both forms differ in

Yves Arcand; Jalal Hawari; Serge R. Guiot

1995-01-01

392

pH Meter Calibration  

NSDL National Science Digital Library

The North Carolina Community College System BioNetwork's interactive eLearning tools (IETs) are reusable chunks of training that can be deployed in a variety of courses or training programs. IETs are designed to enhance, not replace hands-on training. Learners are able to enter a hands-on lab experience better prepared and more confident. This particular IET delves into pH Meter Calibration, where visitors practice performing a three point calibration of a pH meter using buffer solutions.

2013-08-06

393

Radka Stoyanova, PhD  

Cancer.gov

Dr. Radka Stoyanova, PhD has extensive background in developing approaches to best utilize imaging techniques in cancer research, diagnosis and treatment, as well as in developing approaches for the analysis, mining, and interpretation of "big data" generated by high-throughput approaches such as genomics, proteomics, and metabolomics. She received her Masters Degree in Mathematics from the University of Sofia, Bulgaria. Dr. Stoyanova obtained her doctoral training and PhD degree at the Imperial College London, under the mentorship of Profs.

394

PhET: Masses & Springs  

NSDL National Science Digital Library

This simulation provides a realistic virtual mass-and-spring laboratory. Users can explore spring motion by manipulating stiffness of the spring and mass of the hanging weight. Concepts of Hooke's Law and elastic potential energy are further clarified through charts showing kinetic, potential, and thermal energy for each spring. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments in which students learn through exploration. All of the sims are freely available from the PhET website for incorporation into classes.

2008-07-29

395

High dissolved methane concentrations in the deep-water Ulleung Basin, East Sea of Korea  

NASA Astrophysics Data System (ADS)

As a part of the Korean National Gas Hydrate Program, a production test in the Ulleung Basin is planned to be performed in 2015. The targets are the gas hydrate-bearing sand reservoirs, which were found during the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) in 2010. To ensure a safe production test, an environmental program has been conducted by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2012. This program includes a baseline survey using a KIGAM Seafloor Observation System (KISOS) and R/V TAMHAE II of KIGAM, development of a KIGAM Seafloor Monitoring System (KIMOS), and seafloor monitoring on various potential hazards associated with the dissociated gas from gas hydrates using the KIMOS during the production test. A survey for measuring the dissolved methane concentrations in the area at and nearby the gas hydrate production testing site was performed using R/V TAMHAE II and the KISOS. The water samples were also collected and analyzed to measure the dissolved methane concentrations by the SBE carousel water sampler installed in the KISOS and gas chromatography (GC) at KIGAM. The dissolved methane concentrations were also measured using a Frantech METS methane sensor installed in the KISOS. No dissolved methane anomaly was detected at the site where any evidence of gas hydrate presence has not been observed. On the other hand, the water analysis showed high dissolved methane concentrations at the water depth above and within the gas hydrate stability zone (GHSZ) at the site where gas hydrates were identified by drilling. However, these dissolved methane anomalies within the GHSZ were not detected by methane sensor. To examine these uncertain dissolved methane anomalies within the GHSZ, the water samples will be collected and analyzed once again, and the analytical result will be also carefully compared with the data collected using the methane sensor and deep ocean mass spectrometer (DOMS) developed by the University of Hawaii. The results of baseline surveys will be used to set up the KIMOS efficiently.

Ryu, Byong-Jae; Chun, Jong-Hwa

2014-05-01

396

Acidity of machine-made snow and its effect on pH and aluminum speciation in New England streams during spring thaw  

Microsoft Academic Search

The pH of machine-made snow and its effect on an acid-sensitive watershed in Vermont were studied. Spring runoff from snowmaking was found to be less acidic and to contain less dissolved inorganic aluminum. Dissolved inorganic aluminum has been associated with damage to aquatic life. The extensive use of machine-made snow by the ski industry in most of the northeast region

David E. Henderson; Susan K. Henderson

2008-01-01

397

The attenuation of ultraviolet radiation in high dissolved organic carbon waters of wetlands and lakes on the northern Great Plains  

Microsoft Academic Search

We used a scanning spectroradiometer to conduct underwater optical surveys of 44 waterbodies during the ice-free seasons of three consecutive years in wetlands and lakes in central Saskatchewan, Canada. The waterbodies ranged widely in dissolved organic carbon (DOC) concentration (4.1-156.2 mg L 21 ) and conductivity (270-74,300 mohms cm 21 ). Although penetration of UV radiation (UV-R; 280-400 nm) in

Michael T. Arts; Richard D. Robarts; Fumie Kasai; Marley J. Waiser; Vijay P. Tumber; Amanda J. Plante; Lange de H. J; Hendrika J. de Lange

2000-01-01

398

A Device to Continuously Monitor Dissolved Oxygen and Temperature at User-Selected Depths and Locations in Culture Ponds  

Microsoft Academic Search

Continuous measurement of dissolved oxygen concentration and temperature at two depths in the water column were needed for a 2004 field study conducted during actual harvests of channel catfish Ictalurus punctatus and for a small-scale research study conducted in 2005. In the on-farm field study, we collected data in grading nets loaded with high densities of channel catfish. The small-scale

Philip R. Pearson; Bartholomew W. Green

2006-01-01

399

Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA  

USGS Publications Warehouse

Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

2012-01-01

400

Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA  

NASA Astrophysics Data System (ADS)

Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

2012-09-01

401

Distribution of dissolved pesticides and other water quality constituents in small streams, and their relation to land use, in the Willamette River Basin, Oregon, 1996  

USGS Publications Warehouse

Water quality samples were collected at sites in 16 randomly selected agricultural and 4 urban subbasins as part of Phase III of the Willamette River Basin Water Quality Study in Oregon during 1996. Ninety-five samples were collected and analyzed for suspended sediment, conventional constituents (temperature, dissolved oxygen, pH, specific conductance, nutrients, biochemical oxygen demand, and bacteria) and a suite of 86 dissolved pesticides. The data were collected to characterize the distribution of dissolved pesticide concentrations in small streams (drainage areas 2.6? 13 square miles) throughout the basin, to document exceedances of water quality standards and guidelines, and to identify the relative importance of several upstream land use categories (urban, agricultural, percent agricultural land, percent of land in grass seed crops, crop diversity) and seasonality in affecting these distributions. A total of 36 pesticides (29 herbicides and 7 insecticides) were detected basinwide. The five most frequently detected compounds were the herbicides atrazine (99% of samples), desethylatrazine (93%), simazine (85%), metolachlor (85%), and diuron (73%). Fifteen compounds were detected in 12?35% of samples, and 16 compounds were detected in 1?9% of samples. Water quality standards or criteria were exceeded more frequently for conventional constituents than for pesticides. State of Oregon water quality standards were exceeded at all but one site for the indicator bacteria E. coli, 3 sites for nitrate, 10 sites for water temperature, 4 sites for dissolved oxygen, and 1 site for pH. Pesticide concentrations, which were usually less than 1 part per billion, exceeded State of Oregon or U.S. Environmental Protection Agency aquatic life toxicity criteria only for chlorpyrifos, in three samples from one site; such criteria have been established for only two other detected pesticides. However, a large number of unusually high concentrations (1?90 parts per billion) were detected, indicating that pesticides in the runoff sampled in these small streams were more highly concentrated than in the larger streams sampled in previous studies. These pulses could have had short term toxicological implications for the affected streams; however, additional toxicological assessment of the detected pesticides was limited because of a lack of available information on the response of aquatic life to the observed pesticide concentrations. Six pesticides, including atrazine, diuron, and metolachlor, had significantly higher (p<0.08 for metolachlor, p<0.05 for the other five) median concentrations at agricultural sites than at urban sites. Five other compounds ?carbaryl, diazinon, dichlobenil, prometon, and tebuthiuron?had significantly higher (p<0.05) concentrations at the urban sites than at the agricultural sites. Atrazine, metolachlor, and diuron also had significantly higher median concentrations at southern agricultural sites (dominated by grass seed crops) than northern agricultural sites. Other compounds that had higher median concentrations in the south included 2,4-D and metribuzin, which are both used on grass seed crops, and triclopyr, bromacil, and pronamide. A cluster analysis of the data grouped sites according to their pesticide detections in a manner that was almost identical to a grouping made solely on the basis of their upstream land use patterns (urban, agricultural, crop diversity, percentage of basin in agricultural production). In this way inferences about pesticide associations with different land uses could be drawn, illustrating the strength of these broad land use categories in determining the types of pesticides that can be expected to occur. Among the associations observed were pesticides that occurred at a group of agricultural sites, but which have primarily noncropland uses such as vegetation control along rights-of-way. Also, the amount of forested land in a basin was negatively associated with pesticide occurrence, sugges

Anderson, Chauncey W.; Wood, Tamara M.; Morace, Jennifer L.

1997-01-01

402

Amr Abdelrahman, PhD Professor of Concrete Structures,  

E-print Network

Amr Abdelrahman, PhD Professor of Concrete Structures, Structural Engineering Dept., Ain Shams Behavior and Design of Reinforced and Prestressed Concrete Structures and Masonry Wall Design. He conducts concrete members and design of prestressed concrete members. He is a member in the Egyptian Code for Design

403

Live, Learn, and Thrive TM Shanna Ivey, PhD  

E-print Network

-precision compositional analysis of algae oil extracts and derived biofuel. Collaborating with engi- neers, biologists team. She is conducting re- search evaluating the usefulness of biofuel co-products and other of algae derived samples by means of advanced mass spectrometry. Adrian Unc, PhD College of Agricultural

Johnson, Eric E.

404

PhDs by Publications: An "Easy Way Out"?  

ERIC Educational Resources Information Center

PhDs by publications are a relatively new model for doctoral research, especially in the context of the Humanities or Education. This paper describes two writers' experiences of conducting doctoral studies in this genre and in these faculties. Each discover alternative ways of employing a body of published research papers in development of an…

Niven, Penelope; Grant, Carolyn

2012-01-01

405

Soil pH influences the growth of Phalaris arundinacea  

Microsoft Academic Search

In an effort to discover the impact that soil characteristics have upon the growth of the wetland species Phalaris arundinacea, we compared soil in wetland and forest regions of the Conard Environmental Research Area for pH levels, soil temperature, water percentage, total Carbon percentage and total Nitrogen percentage. We also conducted a greenhouse study to compare total biomass produced by

JAMES BIRD; RAMIRO CARRILLO

406

Dissolved oxygen, temperature and salinity effects on the ecophysiology and survival of juvenile Atlantic sturgeon in estuarine waters: I. Laboratory results  

Microsoft Academic Search

Dissolved oxygen and salinity are relevant structuring factors which should be incorporated into habitat and bioenergetic models for estuarine fishes. We measured growth, food consumption, routine and postprandial metabolism, egestion and survival responses of juvenile Atlantic sturgeon (young-of-the-year: YOY, 6–48g) in an incomplete factorial array of temperature, salinity and dissolved oxygen levels. Complementary measures were also conducted on yearlings (1year-old,

Edwin J. Niklitschek; David H. Secor

2009-01-01

407

Arsenic distribution in the dissolved, colloidal and particulate size fraction of experimental solutions rich in dissolved organic matter and ferric iron  

NASA Astrophysics Data System (ADS)

Due to the widespread contamination of groundwater resources with arsenic (As), controls on As mobility have to be identified. In this study we focused on the distribution of As in the dissolved, colloidal and particulate size fraction of experimental solutions rich in ferric iron, dissolved organic matter (DOM) and As(V). Size fractions between <5 kDa and >0.2 ?m were separated by filtration and their elemental composition was analyzed. A steady-state particle size distribution with stable element concentration in the different size classes was attained within 24 h. The presence of DOM partly inhibited the formation of large Fe-(oxy)hydroxide aggregates, thus stabilized Fe in complexed and colloidal form, when initially adjusted molar Fe/C ratios in solution were <0.1. Dissolved As concentrations and the quantity of As bound to colloids (<0.2 ?m) increased in the presence of DOM as well. At intermediate Fe/C ratios of 0.02-0.1, a strong correlation between As and Fe concentration occurred in all size fractions ( R2 = 0.989). At Fe/C ratios <0.02, As was mainly present in the dissolved size fraction. These observations indicate that As mobility increased in the presence of DOM due to (I) competition between As and organic molecules for sorption sites on Fe particles; and (II) due to a higher amount of As bound to more abundant Fe colloids or complexes <0.2 ?m in size. The amount of As contained in the colloidal size fractions also depended strongly on the initial size of the humic substance, which was larger for purified humic acids than for natural river or soil porewater samples. Arsenic in the particle size fraction >0.2 ?m additionally decreased in the order of pH 4 ? 6 > 8. The presence of DOM likely increases the mobility of As in iron rich waters undergoing oxidation, a finding that has to be considered in the investigation of organic-rich terrestrial and aquatic environments.

Bauer, Markus; Blodau, Christian

2009-02-01

408

Effects of Dissolved Carbonate on Arsenate Adsorption and Surface Speciation at the Hematite-Water Interface  

USGS Publications Warehouse

Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [PCO2 = 10 -3.5 atm and ???0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L -1, [As(V)]0 = 1.5 mM and / = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L-1, [As(V)] 0 = 0.5 mM and / = 0.01 M NaCl], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (PCO2 = 10-3.5 atm)than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear (???2.8 A??) and bidentate binuclear (???3.3 A??) bonding at pH 4.5-8 and loading levels of 0.46-3.10 ??M m-2. Using the results of the pseudoequilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the PCO2 = 10-3.5 atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption was strongly affected by changes to electrical double-layer potentials caused by the adsorption of carbonate in the air-equilibrated system. Overall results suggest that the effects of dissolved carbonate on As(V) adsorption were influenced by the reaction conditions [e.g., available surface sites, initial As(V) concentrations, and reaction times]. Quantifying the effects of adsorbed carbonate may be important in predicting As(V) transport processes in groundwater, where iron oxide-coated aquifer materials are exposed to seasonally fluctuating partial pressures of CO2(g).

Arai, Y.; Sparks, D. L.; Davis, J. A.

2004-01-01

409

Karl Krueger, PhD  

Cancer.gov

Dr. Karl Krueger received a PhD in biochemistry from Vanderbilt University and continued his research training at NIH as a postdoctoral fellow before joining the faculty at Georgetown University School of Medicine. His research throughout this period focused on different aspects of drug receptors and their role in the nervous system.

410

Making pH Tangible.  

ERIC Educational Resources Information Center

Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

McIntosh, Elizabeth; Moss, Robert

1995-01-01

411

Complexation of Arsenite with Dissolved Organic Matter: Conditional Distribution Coefficients and Apparent Stability Constants  

PubMed Central

The complexation of arsenic (As) with dissolved organic matter (DOM), although playing an important role in regulating As mobility and transformation, is poorly characterized, as evidenced by scarce reporting of fundamental parameters of As-DOM complexes. The complexation of arsenite (AsIII) with Aldrich humic acid (HA) at different pHs was characterized using a recently developed analytical technique to measure both free and DOM-bound As. Conditional distribution coefficient (KD), describing capacity of DOM in binding AsIII from the mass perspective, and apparent stability constant (Ks), describing stability of resulting AsIII-DOM complexes, were calculated to characterize AsIII-DOM complexation. Log KD of AsIII ranged from 3.7 to 2.2 (decreasing with increase of As/DOM ratio) at pH 5.2, from 3.6 to 2.6 at pH 7, and from 4.3 to 3.2 at pH = 9.3, respectively. Two-site ligand binding models can capture the heterogeneity of binding sites and be used to calculate Ks by classifying the binding sites into strong (S1) and weak (S2) groups. Log Ks for S1 sites are 7.0, 6.5, and 5.9 for pH 5.2, 7, and 9.3, respectively, which are approximately 1–2 orders of magnitude higher than for weak S2 sites. The results suggest that AsIII complexation with DOM increases with pH, as evidenced by significant spikes in concentrations of DOM-bound AsIII and in KD values at pH 9.3. In contrary to KD, log Ks decreased with pH, in particular for S1 sites, probably due to the presence of negatively charged H2AsO3? and the involvement of metal-bridged AsIII-DOM complexation at pH 9.3. PMID:20801484

Liu, Guangliang; Cai, Yong

2010-01-01

412

Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.  

PubMed

Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants. PMID:23863442

Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

2013-01-01

413

How much does fluvial dissolved organic carbon export from blanket bogs vary at the regional scale? An example from the Pennine region of Yorkshire, UK  

NASA Astrophysics Data System (ADS)

Often only one or a very small number of stream sampling points are used to infer wider regional export of fluvial carbon from peatlands. However, we suggest that the amount of fluvial carbon being exported varies enormously within regions even when blanket peat is the dominant land cover type. Here we present results from an extensive and comprehensive monitoring project covering blanket peat dominated catchments across the Pennine region of the UK using data from 2006 onwards. Up to the start of January 2014 the dataset contained dissolved organic carbon (DOC) data for approximately 11500 stream water samples (both routine spot samples and storm event samples). The majority of these DOC measurements also have associated UV-Vis absorbance data allowing an insight into the composition of the DOC present, specifically the dominance of humic versus fulvic acids and the degree of aromaticity (SUVA254). Additional data to support interpretation of the regional variability of DOC includes particulate organic carbon, discharge, pH, conductivity and turbidity, water table depth, soil water chemistry and meteorological data. We provide an unparalleled insight into the spatial and temporal variability of DOC in a region of blanket bogs showing how catchment attributes influence fluvial DOC, how there are hotspots of DOC production and how high flow events regulating DOC export and its composition.

Grayson, Richard; Blundell, Antony; Holden, Joseph

2014-05-01

414

PH 312 Spring 2013 Syllabus Northwestern University Program in Public Health PH 312 Topics in Public Health  

E-print Network

to inform, influence, or motivate populations about health issues. Public Health Emergency Preparedness. Discuss key concepts in PHI. 4. Gain expertise in conducting a PHP drill by actually doing one. 5. Gain or homework 2. Plagiarism 3. Fabrication 4. Falsification or manipulation of academic records #12;PH 312

Contractor, Anis

415

Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater.  

PubMed

Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA(254)) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems. PMID:21707614

Chapelle, Francis H; Bradley, Paul M; McMahon, Peter B; Kaiser, Karl; Benner, Ron

2012-01-01

416

Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater  

USGS Publications Warehouse

Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA254) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.

Chapelle, Francis H.; Bradley, Paul M.; McMahon, Peter B.; Kaiser, Karl; Benner, Ron

2012-01-01

417

Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel  

NASA Astrophysics Data System (ADS)

Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the hydrogen induced failure mechanism in this material during cyclic loading. The secondary objective of this investigation was to determine the role of inclusions and their influence in affecting the fatigue crack growth rate of this material. Compact tension and tensile specimens were prepared as per ASTM E-647, E-399 and E-8 standards. The specimens were tested in three different heat treated conditions i.e. annealed (as received) as well as two austempered conditions. These specimens were precharged with hydrogen (ex situ) using cathodic charging method at a constant current density at three different time periods ranging from 150 to 250 hours before conducting fatigue crack growth tests. Mode 1 type fatigue tests were then performed in ambient atmosphere at constant amplitude using load ratio R of 0.1. The near threshold fatigue crack growth rate, fatigue threshold and the fatigue crack growth rate in the linear region were determined. Fatigue crack growth behaviour of specimens without any dissolve hydrogen were then compared with the specimens with different concentration of dissolved hydrogen. The test results show that the dissolved hydrogen concentration increases with the increase in charging time in all three heat treated conditions and the hydrogen uptake shows a strong dependence on the microstructure of the alloy. It was also observed that the microstructure has a significant influence of on the fatigue crack growth and SCC behaviour of the alloy with dissolved hydrogen. As the dissolved hydrogen concentration increases, the fatigue threshold was found to decrease and the near threshold crack growth rate increases in all three heat treated conditions showing the deleterious effect of hydrogen, but to a different extent in each condition. Current test results also indicate that the fatigue crack growth rates in the linear region increases as the dissolved hydrogen content increases in all three heat treated conditions. It is also observed that increasing the austempering temperature decreases the resistance to hydrogen embrittlement. An interesting p

Ramasagara Nagarajan, Varun

418

Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters  

NASA Astrophysics Data System (ADS)

Fe(III) and Fe(II) organic complexes were determined by spectroscopic methods after sephadex gel fractionation of salt marsh porewaters during June and July 1993. Fe(III), which is a significant anaerobic oxidant for sulfide mineral oxidation, was typically found in the 100-5000 molecular weight (MW) fraction indicative of humic and other organic complexing agents. Fe(II) was found in both the <100 and the 100-5000 MW fractions with most of the Fe(II) found in the smaller MW class. Both forms of Fe precipitated with humic material when the pH of the porewaters became less than 3. There was a twofold decrease in the <5000 MW fractions, a ninefold increase in the >5000 MW class, and a tenfold decrease in dissolved Fe concentration in sephadex gel fractions as the pH decreased from 5.0 to <3 for porewater samples. Low pH values are attributed to sulfide mineral oxidation from severe drought conditions that caused significant dessication of the vegetated marsh. Microelectrode measurements demonstrated that O 2 was not detected below 2 mm and that Fe(III) organic complexes should be significant oxidants in anoxic waters.

Luther, George W.; Shellenbarger, P. Ann; Brendel, Paul J.

1996-03-01

419

Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean  

E-print Network

Impact of circulation on export production, dissolved organic matter, and dissolved oxygen) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model

Follows, Mick

420

Chapter A6. Section 6.2. Dissolved Oxygen  

USGS Publications Warehouse

Accurate data for the concentration of dissolved oxygen in surface and ground waters are essential for documenting changes in environmental water resources that result from natural phenomena and human activities. Dissolved oxygen is necessary in aquatic systems for the survival and growth of many aquatic organisms and is used as an indicator of the health of surface-water bodies. This section of the National Field Manual (NFM) includes U.S. Geological Survey (USGS) guidance and protocols for four methods to determine dissolved-oxygen concentrations: the amperometric, luminescent-sensor, spectrophotometric, and iodometric (Winkler) methods.

Revised by Lewis, Michael Edward

2006-01-01

421

GLOBE Videos: Hydrology Protocols - Dissolved Oxygen (12:06 min)  

NSDL National Science Digital Library

This video introduces the measurement of dissolved oxygen in a water body as an important indicator of ecosystem health, and demonstrates students analyzing a water sample for dissolved oxygen. The resource includes a video and a written transcript, and is supported by the Dissolved Oxygen Protocol in the GLOBE Teacher's Guide. This is one of seven videos on hydrology in the 24-part instructional video series describing scientific protocols used by GLOBE (Global Learning and Observation to Benefit the Environment), a worldwide, hands-on, K-12 school-based science education program.

422

Biologically derived water soluble conducting polyaniline  

Microsoft Academic Search

An enzymatic, polyelectrolyte (matrix) assisted polymerization of aniline that directly leads to the formation of water soluble, electrically conducting polyaniline is reported. This new biological route is advantageous in that it offers a mild (pH 4–5), benign, one pot synthesis where the desired product requires minimal purification prior to processing. UV-visnear-IR spectroscopy, FTIR, GPC and conductivity measurements all confirm that

W. Liu; A. Anagnostopoulos; F. F. Bruno; K. Senecal; J. Kumar; S. Tripathy; L. Samuelson

1999-01-01

423

Effects of pH on aquatic biodegradation processes  

NASA Astrophysics Data System (ADS)

To date, little is known about the pH-stimulated mineralization of organic matter in aquatic environments. In this study, we investigated biodegradation processes in alkaline waters. Study site is a large shallow soda lake in Central Europe (Neusiedler See/Ferto). The decomposition rate of plant litter was measured as a function of pH by incubating air-saturated lake-water samples in contact with Phragmites litter (leaves) from the littoral vegetation. All samples showed high decomposition rates (up to 32% mass loss within 35 days) and a characteristic two-step degradation mechanism. During the degradation process, the solid plant litter was dissolved forming humic colloids. Subsequently, the humic colloids were mineralized to CO2 in the water column. The decomposition rate was linearly related to pH. Increasing pH values accelerated significantly the leaching of humic colloids as well as the final degradation process. The observed two-step mechanism controls the wetland/lake/air carbon fluxes, since large quantities of humic colloids are currently produced in the reed belt, exported through wind-driven circulations and incorporated into the open lake foodweb. At present, the lake is rapidly shrinking due to peat deposition in the littoral zone, whereas it has been resistant to silting-up processes for thousands of years. In order to investigate the cause of this abrupt change, the chemical composition of the lake-water was measured during 1995-2007. A thorough analysis of these data revealed that major lake-water discharges through the lake's artificial outlet channel led to a decline in salinity and alkalinity. According to our estimates, the lake's original salinity and alkalinity was 70-90% higher compared to the present conditions, with the consequence of substantially lower pH values in the present lake. The observed pH dependence of reed litter biodegradation rates points to a causal connection between low pH values and accumulation of peat in the lake basin. Our results suggest that the pH stimulated remineralisation of organic matter plays a major role in maintaining the long-term integrity of saline lake/wetland systems.

Krachler, R. F.; Krachler, R.; Stojanovic, A.; Wielander, B.; Herzig, A.

2009-01-01

424

Dissolved gas and isotopic tracers of denitrification  

SciTech Connect

We present results from field studies in California (USA) where tritium-helium age dating is used in conjunction with major gases (N{sub 2}, O{sub 2}, CH{sub 4}, CO{sub 2}), noble gases (He, Ne, Ar, Kr, Xe), and stable isotopes ({sup 15}N/{sup 14}N, {sup 18}O/{sup 16}O) in order to document nitrate loading and denitrification associated with confined animal agricultural operations and septic systems. Preliminary results show that in-field extraction of the full suite of dissolved gases will be possible using a new Gas Extraction System under development to augment the current Noble Gas Mass Spectrometry and Membrane Inlet Mass Spectrometry techniques. Ascribing observed groundwater nitrate levels to specific current and past land use practices is often complicated by uncertainty in groundwater age and the degree and locus of dentrification. Groundwater age dating at dairy field sites using the {sup 3}H-{sup 3}He method indicates that the highest nitrate concentrations (150-260 mg/L-NO3) occur in waters with apparent ages of <5 yrs, whereas older waters contain excess N{sub 2} from saturated zone denitrification [1]. At a residential septic system site in Livermore, CA, waters with young apparent ages (<1 yr) proximal to leach line drainage have lower nitrate concentrations and elevated nitrate {delta}{sup 15}N and {delta}{sup 18}O values consistent with denitrification, but little evidence for excess N{sub 2}, indicating that denitrification is occurring in the unsaturated zone. Degassing of groundwater can complicate efforts to calculate travel times [2] and to quantify denitrification. Degassed groundwater underlying dairy operations is formed by two distinct mechanisms: (1) recharge of manure lagoon water affected by biogenic gas ebullition [3] and (2) saturated zone denitrification producing N{sub 2} gas above solubility in groundwater. Gas loss due to both mechanisms is evident in the concentrations of noble gases and major gases in dairy groundwater samples.

Singleton, M J; Moran, J E; Esser, B K; McNab, W W; Carle, S F; Cey, B D

2008-02-28

425

Effect of bacteria and dissolved organics on mineral dissolution kinetics:  

NASA Astrophysics Data System (ADS)

Quantification of the effect of microorganisms and associated organic ligands on mineral dissolution rate is one among the last remaining challenges in modeling of water-rock interactions under earth surface and subsurface environments. This is especially true for deep underground settings within the context of CO2 capture, sequestration and storage. First, elevated CO2 pressures create numerous experimental difficulties for performing robust flow-through experiments at a given saturation state. Second, reactivity of main rock-forming minerals in abiotic systems at pCO2 >> 1 atm and circumneutral pH is still poorly constrained. And third, most of microbial habitats of the subsurface biosphere are not suitable for routine culturing in the laboratory, many of them are anaerobic and even strictly anaerobic, and many bacteria and archae cultures can live only in the consortium of microorganisms which is very hard to maintain at a controlled and stable biomass concentration. For experimental modeling of bio-mineral interactions in the laboratory, two other main conceptual challenges exist. Typical concentration of dissolved organic carbon that serves as a main nutrient for heterotrophic bacteria in underground waters rarely exceeds 3-5 mg/L. Typical concentration of DOC in nutrient media used for bacteria culturing is between 100 and 10,000 mg/L. Therefore, performing mineral-bacteria interactions in the laboratory under environmentally-sound conditions requires significant dilution of the nutrient media or the use of flow-through reactors. Concerning the effect of organic ligands and bacterial excudates on rock-forming mineral dissolution, at the present time, mostly empirical (phenomenological) approach can be used. Indeed, the pioneering studies of Stumm and co-workers have established a firm basis for modeling the catalyzing and inhibiting effects of ligands on metal oxide dissolution rate. This approach, very efficient for studying the interaction of organic and inorganic ligands with trivalent metal oxides, is based on applying multiple spectroscopic techniques allowing to reveal the chemical structure of adsorbed complexes. However, due to i) low surface area of most rock-forming minerals (carbonates, non-clay silicates), ii) difficulties of applying surface spectroscopic techniques at elevated pressures, and iii) very complex nature of bacterial exometabolites, it is not possible at the present time, to use rigorous surface complexation approach for rationalizing ligand- and bacteria-affected mineral dissolution under sub-surface CO2 storage environment. In this work, we present examples of overcoming these difficulties via concerted study of olivine, wollastonite and calcite interaction with heterotrophic bacteria and methanogenic archaes.

Pokrovsky, Oleg; Shirokova, Liudmila; Benezeth, Pascale; Zabelina, Svetlana

2010-05-01

426

Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon  

USGS Publications Warehouse

Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content i