Science.gov

Sample records for configuration interaction treatment

  1. A hybrid configuration interaction treatment based on seniority number and excitation schemes

    SciTech Connect

    Alcoba, Diego R.; Capuzzi, Pablo; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri

    2014-12-28

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.

  2. A hybrid configuration interaction treatment based on seniority number and excitation schemes

    NASA Astrophysics Data System (ADS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Capuzzi, Pablo; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri

    2014-12-01

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.

  3. A hybrid configuration interaction treatment based on seniority number and excitation schemes.

    PubMed

    Alcoba, Diego R; Torre, Alicia; Lain, Luis; Oña, Ofelia B; Capuzzi, Pablo; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri

    2014-12-28

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method. PMID:25554144

  4. The Configuration Interaction Method

    NASA Astrophysics Data System (ADS)

    Sherrill, C. David; Schaefer, Henry F., III

    Highly correlated configuration interaction (CI) wavefunctions going beyond the simple singles and doubles (CISD) model space can provide very reliable potential energy surfaces, describe electronic excited states, and yield benchmark energies and molecular properties for use in calibrating more approximate methods. Unfortunately, such wavefunctions are also notoriously difficult to evaluate due to their extreme computational demands. The dimension of a full CI procedure, which represents the exact solution of the electronic Schrödinger equation for a fixed one-particle basis set, grows factorially with the number of electrons and basis functions. For very large configuration spaces, the number of CI coupling coefficients becomes prohibitively large to store on disk; these coefficients must be evaluated as needed in a so-called direct CI procedure. Work done by several groups since 1980 has focused on using Slater determinants rather than spin (S2) eigenfunctions because coupling coefficients are easier to compute with the former. We review the fundamentals of the configuration interaction method and discuss various determinant-based CI algorithms. Additionally, we consider some applications of highly correlated CI methods.

  5. Spin contamination-free N-electron wave functions in the excitation-based configuration interaction treatment

    NASA Astrophysics Data System (ADS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.; Capuzzi, Pablo

    2016-07-01

    This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator S ˆ 2 , avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and < S ˆ 2 > expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.

  6. Spin contamination-free N-electron wave functions in the excitation-based configuration interaction treatment.

    PubMed

    Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oña, Ofelia B; Capuzzi, Pablo

    2016-07-01

    This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator Sˆ(2), avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and 〈Sˆ(2)〉 expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs. PMID:27394101

  7. Unlimited full configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-08-01

    In very large full configuration interaction (full CI), nearly all of the CI coefficients are very small. Calculations, using a newly developed algorithm which exploits this fact, on NH3 with a DZP basis are reported, involving 2×108 Slater determinants. Such calculations are impossible with other existing full CI codes. The new algorithm opens up the opportunity of full CI calculations which are unlimited in size.

  8. Relatedness with different interaction configurations.

    PubMed

    Taylor, Peter D; Grafen, A

    2010-02-01

    In an inclusive fitness model of social behaviour, a key concept is that of the relatedness between two interactants. This is typically calculated with reference to a "focal" actor taken to be representative of all actors, but when there are different interaction configurations, relatedness must be constructed as an average over all such configurations. We provide an example of such a calculation in an island model with local reproduction but global mortality, leading to variable island size and hence variable numbers of individual interactions. We find that the analysis of this example significantly sharpens our understanding of relatedness. As an application, we obtain a version of Hamilton's rule for a tag-based model of altruism in a randomly mixed population. For large populations, the selective advantage of altruism is enhanced by low (but not too low) tag mutation rates and large numbers of tags. For moderate population sizes and moderate numbers of tags, we find a window of tag mutation rates with critical benefit/cost ratios of between 1 and 3. PMID:19833134

  9. Rare Relativistic Configuration Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Dinov, Konstantin Dimitrov

    1995-01-01

    Valence shell Relativistic Configuration Interaction (RCI) Calculations for several Rare Earth elements resulted the following electron affinities: (1) Ce^ - 6p attachment to the 4f 5d 6s^2 ^1G_sp{4 }{circ} ground state: (2J,EA) = (9,259 meV), (7,147 meV), [7_ {rm first exc.},55 rm meV], (5,105 meV), (3,43 meV). The electron affinity of the 5d attachment in 4f 5d^2 6s^2 ^5H _{7/2} is 178 meV. (2) Pr ^- 6p attachment to the 4f^3 6s^2 ^4I_sp {9/2}{circ} ground state gives 128 meV for the 4f^3 6s^2 6p J = 5 state (^5K 60%), and 110 meV for the J = 4 state (^5I 42%). No evidence for 5d attachment was found. (3) U^- 7p attachment to the 5f ^3 6d 7s^2 ^5L _sp{6}{circ} ground state gives: 175 meV for the 2J = 13 state (^6M 54%). No other 7p or 6d bound states were found. The hyperfine structure constants for the 5f^3 6d 7s^2 7p, 2J = 13 state are A = -72.4 MHz, B = 2644 MHz. No evidence is found to support f attachment in these species. We investigated two low lying 4f ^2 thresholds in Ce, to which one could attach s or p electron, but neither attachment gives enough energy to bind the negative ion. The missing core-valence effects may reduce the EAs by 0.06 eV, based on the difference between the theoretical predictions and experimental measurements for the electron affinity of Strontium. These results correspond to the observed negative ion yields: high for Ce^ -, moderate for Pr^-, and small for U^-.. The REDUCE method was extensively used for the U^- case. The current version of the RCI program allows up to 7 000 vectors (10M elements) in RAM. The enhancement of the computer programs is by a speed factor of 6, and 7 times bigger matrices. A parallel version of the RCI programs was developed. All of these systems are unbound at the MCDF level (single manifold). By far the biggest contributor to the binding is nsto (n-1)d correlation, while the biggest unbinding comes from ns^2 to np^2 correlation. Other important correlations are: ns^2to (n-1)d^2, (n-1)d nsto np^2 & np

  10. Configuration based Collisional-Radiative Model including configuration interaction

    NASA Astrophysics Data System (ADS)

    Busquet, Michel

    2007-11-01

    Atomic levels mixing through Configuration Interaction (CI) yields important effects. It transfers oscillator strengthes from allowed lines to forbidden lines, and produces strong shift and broadening of line arrays, although the total emissivity is almost insensitive to CI, being proportional to the average wave number. However for hi Z material, like Xe or Sn (potential xuv-ray source for micro-lithography), a non-LTE calculation accounting for all relevant levels wiill be untractable with billions of states. The model we constructed, CAVCRM (caf'e-crème), is a non-LTE C.R.M. where states are configurations but it includes C.I. to give full richness of spectral quantities, using the latest version of the HULLAC-v9 suite of codes and our newly developped algorithm for large set of states with as many as 50,000 states [1]. [1] M.Klapisch et al, this conference

  11. A determinant based full configuration interaction program

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-04-01

    The program FCI solves the Full Configuration Interaction (Full CI) problem of quantum chemistry, in which the electronic Schrödinger equation is solved exactly within a given one particle basis set. The Slater determinant based algorithm leads to highly efficient implementation on a vector computer, and has enabled Full CI calculations of dimension more than 10 7 to be performed.

  12. Minimum induced drag configurations with jet interaction

    NASA Technical Reports Server (NTRS)

    Pao, J. L.; Lan, C. E.

    1978-01-01

    A theoretical method is presented for determining the optimum camber shape and twist distribution for the minimum induced drag in the wing-alone case without prescribing the span loading shape. The same method was applied to find the corresponding minimum induced drag configuration with the upper-surface-blowing jet. Lan's quasi-vortex-lattice method and his wing-jet interaction theory was used. Comparison of the predicted results with another theoretical method shows good agreement for configurations without the flowing jet. More applicable experimental data with blowing jets are needed to establish the accuracy of the theory.

  13. Very large full configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.

    1989-03-01

    The extreme sparsity of the solution of the full configuration interaction (full CI) secular equations is exploited in a new algorithm. For very large problems, the high speed memory, disk storage, and CPU requirements are reduced considerably, compared to previous techniques. This allows the possibility of full CI calculations with more than 10 8 Slater determinants. The power of the method is demonstrated in preliminary full CI calculations for the NH molecule, including up to 27901690 determinants.

  14. Configuration interaction wave functions: A seniority number approach

    SciTech Connect

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.

    2014-06-21

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.

  15. Configuration interaction wave functions: A seniority number approach

    NASA Astrophysics Data System (ADS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.

    2014-06-01

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.

  16. Microscopic Approaches to Nuclear Structure: Configuration Interaction

    SciTech Connect

    Ormand, W E

    2007-09-21

    The configuration interaction (CI) approach to solving the nuclear many-body problem, also known as the interacting shell model, has proven to be powerful tool in understanding the structure of nuclei. The principal criticism of past applications of the shell model is the reliance on empirical tuning to interaction matrix elements. If an accurate description of nuclei far from the valley of stability, where little or no data is available, a more fundamental approach is needed. This starts with recent ab initio approaches with effective interactions in the no-core shell model (NCSM). Using effective-field theory for guidance, fully ab initio descriptions of nuclei up to {sup 16}O with QCD based NN, NNN, and NNNN interactions will be possible within the next five years. An important task is then to determine how to use these NCSM results to develop effective interactions to describe heavier nuclei without the need to resort to an empirical retuning with every model space. Thus, it is likely that more traditional CI applications utilizing direct diagonalization and more fundamental interactions will be applicable to nuclei with perhaps up to one hundred constituents. But, these direct diagonalization CI applications will always be computationally limited due to the rapid increase in the number of configurations with particle number. Very recently, the shifted-contour method has been applied to the Auxiliary-field Monte Carlo approach to the Shell Model (AFMCSM), and preliminary applications exhibit a remarkable taming of the notorious sign problem. If the mitigation of the sign problem holds true, the AFMCSM will offer a method to compute quantum correlations to mean-field applications for just about all nuclei; giving exact results for CI model spaces that can approach 10{sup 20-25}. In these lectures, I will discuss modern applications of CI to the nuclear many-body problem that have the potential to guide nuclear structure theory into the next decade.

  17. Configuration interaction calculations with infinite angular = expansions

    SciTech Connect

    Goldman, S.P.; Glickman, T.

    1996-05-01

    The Modified Configuration Interaction (MCI) method improves the angular convergence of Configuration Interaction (CI) calculations by several orders of magnitude by mixing a priori a large number of angular basis functions. With MCI one can therefore use basis functions with very large angular momentum quantum numbers, overcoming an important limitation of conventional CI. Although this is desirable given the excellent convergence obtained, the large number of angular integrations and the calculation of n-j symbols with large values of l to high accuracy, make the angular calculations lengthy. In this work a new angular representation for CI calculations is presented that is much more efficient and powerful. Instead of the large number of angular functions of MCI the authors use a basis set containing an infinite linear combination of angular functions. All the necessary integrations involving these infinite expansions are done in closed form and are actually easy and fast to compute. The linear coefficients in the angular expansion are optimized in terms of a few non-linear parameters. Several examples will be presented with applications to two-electron systems.

  18. Configuration interaction with antisymmetrized geminal powers

    NASA Astrophysics Data System (ADS)

    Uemura, Wataru; Kasamatsu, Shusuke; Sugino, Osamu

    2015-06-01

    To avoid the combinatorial computational cost of configuration interaction (CI), we previously introduced the symmetric tensor decomposition CI (STD-CI) method, which takes advantage of the antisymmetric nature of the electronic wave function and expresses the CI coefficients compactly as a series of Kronecker product states (STD series) [W. Uemura and O. Sugino, Phys. Rev. Lett. 109, 253001 (2012), 10.1103/PhysRevLett.109.253001]. Here we extend the variational degrees of freedom by using different molecular orbitals for different terms in the STD series. This scheme is equivalent to the linear combination of the Hartree-Fock-Bogoliubov state or the antisymmetrized geminal powers (AGPs). The total energy converges very rapidly within 0.72 μ hartree taking only 10 terms for the water molecule, and the convergence is likewise fast for Hubbard tetramers. The computational cost scales as the fifth power of the number of electrons and the square of the number of terms in the STD series, indicating the promise of this AGP-based scheme for highly accurate and efficient computation of quantum systems.

  19. Positronic molecule calculations using Monte Carlo configuration interaction

    NASA Astrophysics Data System (ADS)

    Coe, Jeremy P.; Paterson, Martin J.

    2016-02-01

    We modify the Monte Carlo configuration interaction procedure to model atoms and molecules combined with a positron. We test this method with standard quantum chemistry basis sets on a number of positronic systems and compare results with the literature and full configuration interaction when appropriate. We consider positronium hydride, positronium hydroxide, lithium positride and a positron interacting with lithium, magnesium or lithium hydride. We demonstrate that we can capture much of the full configuration interaction results, but often require less than 10% of the configurations of these multireference wavefunctions. The effect of the number of frozen orbitals is also discussed.

  20. Modeling the IR Spectra of Acetaldehyde from a New Vibrational Configuration Interaction Method

    SciTech Connect

    Begue, Didier; Pouchan, Claude

    2007-12-26

    In this paper we present a new vibrational configuration interaction method known as a parallel vibrational multiple window configuration interaction P lowbar VMWCI which generates several VCI matrices and enables the variational treatment of medium size molecular systems. Application to acetaldehyde gives a new interpretation of the MIR experimental data.

  1. Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling.

    PubMed

    Holmes, Adam A; Tubman, Norm M; Umrigar, C J

    2016-08-01

    We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the trade-off between speed and accuracy, one which controls the selection of determinants to add to a variational wave function and one which controls the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few minutes on a single core. These systems have full variational spaces of 3 × 10(14) and 2 × 10(22) determinants, respectively. PMID:27428771

  2. Configurating a supercomputer for an interactive scientific workload

    SciTech Connect

    Anderson, W.; Brice, R.; Alexander, W.

    1982-01-01

    A detailed, validated simulation model of an existing Cray-1 running under an interactive operating system was used to investigate configurations of a new supercomputer recently announced by the same vendor. The goal was to determine the optimum configuration for a known interactive scientific workload. Questions considered included how much main memory would be needed and whether to acquire an optional fast swapping device.

  3. Full configuration interaction benchmark calculations for TiH

    SciTech Connect

    Bauschlicher, C.W. Jr.

    1988-06-02

    Full configuration interaction (FCI) calculations have been performed for the /sup 3/F and /sup 5/F states of Ti atom and the /sup 4/Phi and /sup 2/..delta.. states of TiH. The FCI calculations are compared to approximate treatments of the correlation problem; for the /sup 2/..delta.. state, the CASSCF/MRCI treatment agrees with the FCI results for r/sub e/, omega/sub e/, the dipole moment, and the dipole derivative. For the /sup 4/Phi state, the CASSCF/MRCI approach agrees well with the FCI for r/sub e/, omega/sub e/, and D/sub e/. However, the agreement between CASSCF/MRCI and FCI treatments for the dipole moment is not as good, even when the CASSCF and MRCI reference spaces contain up to 800 CSFs. Natural orbital iterations improve the dipole moment but have a smaller effect on the other spectroscopic parameters. The CPF and MCPF methods agree well with the FCI for the /sup 4/Phi state, which is reasonably well described by the SCF; this is true even for the dipole moment, where a natural orbital iteration must be performed for the CASSCF/MRCI treatment. The CPF and MCPF treatments do not agree as well for the /sup 2/..delta.. state, which is not as well described by the SCF.

  4. General purpose computer program for interacting supersonic configurations: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Crill, W.; Dale, B.

    1977-01-01

    The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing.

  5. Configuration interaction studies using biorthogonal approach to VB basis

    SciTech Connect

    Kadolkar, C.; Sarma, C.R.; Rettrup, S.

    1995-01-15

    In the present article, we have attempted a systematic procedure for use of biorthogonal techniques to the configuration interaction studies in molecules using nonorthogonal valence bond (VB) orbitals. The procedure developed is integral-driven and a program based on this has been developed. Test runs of the program have been carried out in case of full and truncated configuration spaces. 29 refs., 3 tabs.

  6. Coupling interaction of electromagnetic wave in a groove doublet configuration.

    PubMed

    Ding, Lan; Liu, Jinsong; Wang, Dong; Wang, Kejia

    2010-09-27

    Based on the waveguide mode (WGM) method, coupling interaction of electromagnetic wave in a groove doublet configuration is studied. The formulation obtained by WGM method for a single groove [Prog. Electromagn. Res. 18, 1-17 (1998)] is extended to two grooves. By exploring the total scattered field of the configuration, coupling interaction ratios are defined to describe the interaction between grooves quantitatively. Since each groove in this groove doublet configuration is regarded as the basic unit, the effects of coupling interaction on the scattered fields of each groove can be investigated respectively. Numerical results show that an oscillatory behavior of coupling interaction is damped with increasing groove spacing. The incident and scattering angle dependence of coupling interaction is symmetrical when the two grooves are the same. For the case of two subwavelength grooves, the coupling interaction is not sensitive to the incident angle and scattering angle. Although the case of two grooves is discussed for simplicity, the formulation developed in this article can be generalized to arbitrary number of grooves. Moreover, our study offers a simple alternative to investigate and design metallic gratings, compact directional antennas, couplers, and other devices especially in low frequency regime such as THz and microwave domain. PMID:20941004

  7. Configuration interaction in LTE spectra of heavy elements

    SciTech Connect

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.

    1992-11-01

    We present a method for including the effects of configuration interaction (CI) between relativistic subconfigurations of an electron configuration in the calculation of emission and absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions for the correction to the intensities, owing to Cl, of an unresolved transition array (UTA) and of a supertransition array (STA) are obtained when the correction is small compared to the spin-orbit splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects are significant. Examples of the effect are presented.

  8. Interaction of configuration in spectral opacity calculations for stellar physics

    NASA Astrophysics Data System (ADS)

    Gilles, D.; Turck-Chièze, S.; Busquet, M.; Thais, F.; Loisel, G.; Piau, L.; Ducret, J. E.; Blenski, T.; Poirier, M.; Blancard, C.; Cossé, P.; Faussurier, G.; Gilleron, F.; Pain, J. C.; Guzik, J. A.; Kilcrease, D. P.; Magee, N. H.; Harris, J.; Bastiani-Ceccotti, S.; Delahaye, F.; Zeippen, C. J.

    2012-02-01

    We discuss the role of Configuration Interaction (CI) and the influence of the number of configurations taken into account in the calculations of nickel and iron spectral opacities provided by the OPAC international collaboration, including statistical approaches (SCO, CASSANDRA, STA), detailed accounting (OPAS, LEDCOP, OP, HULLAC-v9) or hybrid method (SCO-RCG). Opacity calculations are presented for a temperature T of 27.3 eV and a density of 3.4 mg/cm3, conditions relevant for pulsating stellar envelopes.

  9. Hypersonic shock-interaction phenomena applicable to space shuttle configurations

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Graumann, B. W.

    1972-01-01

    The convective heat transfer distribution for space shuttle configurations is discussed. The viscous/inviscid interactions associated with the complex three dimensional flow fields are examined. Two basic conditions are considered as follows: (1) models consisting of basic elemental combinations and (2) models of specific flight vehicles. The test facilities and test programs used to obtain data on the fuselage flow field and the wing flow field are described.

  10. Analytic energy gradients for constrained DFT-configuration interaction

    NASA Astrophysics Data System (ADS)

    Kaduk, Benjamin; Tsuchimochi, Takashi; Van Voorhis, Troy

    2014-05-01

    The constrained density functional theory-configuration interaction (CDFT-CI) method has previously been used to calculate ground-state energies and barrier heights, and to describe electronic excited states, in particular conical intersections. However, the method has been limited to evaluating the electronic energy at just a single nuclear configuration, with the gradient of the energy being available only via finite difference. In this paper, we present analytic gradients of the CDFT-CI energy with respect to nuclear coordinates, which gives the potential for accurate geometry optimization and molecular dynamics on both the ground and excited electronic states, a realm which is currently quite challenging for electronic structure theory. We report the performance of CDFT-CI geometry optimization for representative reaction transition states as well as molecules in an excited state. The overall accuracy of CDFT-CI for computing barrier heights is essentially unchanged whether the energies are evaluated at geometries obtained from quadratic configuration-interaction singles and doubles (QCISD) or CDFT-CI, indicating that CDFT-CI produces very good reaction transition states. These results open up tantalizing possibilities for future work on excited states.

  11. Full configuration interaction benchmark calculations for TiH

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1988-01-01

    Full configuration interaction (FCI) results for the 3F and 5F states of Ti and the 4Phi and 2Delta states of TiH are presented. While the coupled pair functional (CPF) or modified CPF approaches are found to work well for the 4Phi state of TiH, they do not perform as well for the 2Delta state. Although for mu, the CASSCF/MRCI methods do well for the 2Delta state, when the active space is expanded outside the normal valence definition, the dipole moment is only brought into agreement with the FCI results by natural orbital iterations.

  12. Semi-stochastic full configuration interaction quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Holmes, Adam; Petruzielo, Frank; Khadilkar, Mihir; Changlani, Hitesh; Nightingale, M. P.; Umrigar, C. J.

    2012-02-01

    In the recently proposed full configuration interaction quantum Monte Carlo (FCIQMC) [1,2], the ground state is projected out stochastically, using a population of walkers each of which represents a basis state in the Hilbert space spanned by Slater determinants. The infamous fermion sign problem manifests itself in the fact that walkers of either sign can be spawned on a given determinant. We propose an improvement on this method in the form of a hybrid stochastic/deterministic technique, which we expect will improve the efficiency of the algorithm by ameliorating the sign problem. We test the method on atoms and molecules, e.g., carbon, carbon dimer, N2 molecule, and stretched N2. [4pt] [1] Fermion Monte Carlo without fixed nodes: a Game of Life, death and annihilation in Slater Determinant space. George Booth, Alex Thom, Ali Alavi. J Chem Phys 131, 050106, (2009).[0pt] [2] Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo. Deidre Cleland, George Booth, and Ali Alavi. J Chem Phys 132, 041103 (2010).

  13. Improved implementation and application of the individually selecting configuration interaction method.

    PubMed

    Stampfuss, P; Wenzel, W

    2005-01-01

    We report on the progress of our implementation of the configuration-selecting multireference configuration interaction method on massively parallel architectures with distributed memory, which now permits the treatment of Hilbert spaces of dimension O(10(12)). Of these about 50,000,000 can be selected in the variational subspace. We provide scaling data for the running time of the code for the IBM/SP3 and the CRAY-T3E. We present benchmark results for two selected applications: the energetics of the isomers of dinitrosoethylene and the benchmark results for the ring closure reaction of enediyene. PMID:15638575

  14. An optimized configuration interaction method for calculating electronic excitations in nanostructures

    SciTech Connect

    Troparevsky, M Claudia; Franceschetti, Alberto G

    2008-01-01

    The configuration interaction method has been widely used to calculate electronic excitations in nanostructures, but it suffers from a slow rate of convergence with the number of configurations in the basis set and from the inability to select a priori the most important configurations. The optimized configuration interaction method presented here removes the limitations of the conventional approach by identifying at the outset the configurations that are most relevant for describing electronic excitations. We show that the best configurations are remarkably different from the configurations that one would expect on the basis of the single-particle energy ladder, and that a small, optimized set of configurations predicts excitation energies with accuracy comparable to that for much larger, non-optimized sets of configurations. This approach opens the way to a new generation of configuration interaction methods where the configurations are pre-selected using heuristic search methods.

  15. Minimising biases in full configuration interaction quantum Monte Carlo.

    PubMed

    Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W

    2015-03-14

    We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step. PMID:25770522

  16. Explicitly correlated multireference configuration interaction: MRCI-F12

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru; Knizia, Gerald; Werner, Hans-Joachim

    2011-01-01

    An internally contracted multireference configuration interaction is developed which employs wave functions that explicitly depend on the electron-electron distance (MRCI-F12). This MRCI-F12 method has the same applicability as the MRCI method, while having much improved basis-set convergence with little extra computational cost. The F12b approximation is used to arrive at a computationally efficient implementation. The MRCI-F12 method is applied to the singlet-triplet separation of methylene, the dissociation energy of ozone, properties of diatomic molecules, and the reaction barrier and exothermicity of the F + H{}_2 reaction. These examples demonstrate that already with basis sets of moderate size the method provides near complete basis set MRCI accuracy, and hence quantitative agreement with the experimental data. As a side product, we have also implemented the explicitly correlated multireference averaged coupled pair functional method (MRACPF-F12).

  17. Explicitly correlated multireference configuration interaction: MRCI-F12.

    PubMed

    Shiozaki, Toru; Knizia, Gerald; Werner, Hans-Joachim

    2011-01-21

    An internally contracted multireference configuration interaction is developed which employs wave functions that explicitly depend on the electron-electron distance (MRCI-F12). This MRCI-F12 method has the same applicability as the MRCI method, while having much improved basis-set convergence with little extra computational cost. The F12b approximation is used to arrive at a computationally efficient implementation. The MRCI-F12 method is applied to the singlet-triplet separation of methylene, the dissociation energy of ozone, properties of diatomic molecules, and the reaction barrier and exothermicity of the F + H(2) reaction. These examples demonstrate that already with basis sets of moderate size the method provides near complete basis set MRCI accuracy, and hence quantitative agreement with the experimental data. As a side product, we have also implemented the explicitly correlated multireference averaged coupled pair functional method (MRACPF-F12). PMID:21261336

  18. Accelerating Full Configuration Interaction Calculations for Nuclear Structure

    SciTech Connect

    Yang, Chao; Sternberg, Philip; Maris, Pieter; Ng, Esmond; Sosonkina, Masha; Le, Hung Viet; Vary, James; Yang, Chao

    2008-04-14

    One of the emerging computational approaches in nuclear physics is the full configuration interaction (FCI) method for solving the many-body nuclear Hamiltonian in a sufficiently large single-particle basis space to obtain exact answers - either directly or by extrapolation. The lowest eigenvalues and correspondingeigenvectors for very large, sparse and unstructured nuclear Hamiltonian matrices are obtained and used to evaluate additional experimental quantities. These matrices pose a significant challenge to the design and implementation of efficient and scalable algorithms for obtaining solutions on massively parallel computer systems. In this paper, we describe the computational strategies employed in a state-of-the-art FCI code MFDn (Many Fermion Dynamics - nuclear) as well as techniques we recently developed to enhance the computational efficiency of MFDn. We will demonstrate the current capability of MFDn and report the latest performance improvement we have achieved. We will also outline our future research directions.

  19. A Multireference Configuration Interaction Study of the Photodynamics of Nitroethylene

    PubMed Central

    2014-01-01

    Extended multireference configuration interaction with singles and doubles (MR-CISD) calculations of nitroethylene (H2C=CHNO2) were carried out to investigate the photodynamical deactivation paths to the ground state. The ground (S0) and the first five valence excited electronic states (S1–S5) were investigated. In the first step, vertical excitations and potential energy curves for CH2 and NO2 torsions and CH2 out-of-plane bending starting from the ground state geometry were computed. Afterward, five conical intersections, one between each pair of adjacent states, were located. The vertical calculations mostly confirm the previous assignment of experimental spectrum and theoretical results using lower-level calculations. The conical intersections have as main features the torsion of the CH2 moiety, different distortions of the NO2 group and CC, CN, and NO bond stretchings. In these conical intersections, the NO2 group plays an important role, also seen in excited state investigations of other nitro molecules. Based on the conical intersections found, a photochemical nonradiative deactivation process after a π–π* excitation to the bright S5 state is proposed. In particular, the possibility of NO2 release in the ground state, an important property in nitro explosives, was found to be possible. PMID:25158277

  20. Leadership Class Configuration Interaction Code - Status and Opportunities

    NASA Astrophysics Data System (ADS)

    Vary, James

    2011-10-01

    With support from SciDAC-UNEDF (www.unedf.org) nuclear theorists have developed and are continuously improving a Leadership Class Configuration Interaction Code (LCCI) for forefront nuclear structure calculations. The aim of this project is to make state-of-the-art nuclear structure tools available to the entire community of researchers including graduate students. The project includes codes such as NuShellX, MFDn and BIGSTICK that run a range of computers from laptops to leadership class supercomputers. Codes, scripts, test cases and documentation have been assembled, are under continuous development and are scheduled for release to the entire research community in November 2011. A covering script that accesses the appropriate code and supporting files is under development. In addition, a Data Base Management System (DBMS) that records key information from large production runs and archived results of those runs has been developed (http://nuclear.physics.iastate.edu/info/) and will be released. Following an outline of the project, the code structure, capabilities, the DBMS and current efforts, I will suggest a path forward that would benefit greatly from a significant partnership between researchers who use the codes, code developers and the National Nuclear Data efforts. This research is supported in part by DOE under grant DE-FG02-87ER40371 and grant DE-FC02-09ER41582 (SciDAC-UNEDF).

  1. Convergence of configuration-interaction single-center calculations of positron-atom interactions

    SciTech Connect

    Mitroy, J.; Bromley, M. W. J.

    2006-05-15

    The configuration interaction (CI) method using orbitals centered on the nucleus has recently been applied to calculate the interactions of positrons interacting with atoms. Computational investigations of the convergence properties of binding energy, phase shift, and annihilation rate with respect to the maximum angular momentum of the orbital basis for the e{sup +}Cu and PsH bound states, and the e{sup +}-H scattering system were completed. The annihilation rates converge very slowly with angular momentum, and moreover the convergence with radial basis dimension appears to be slower for high angular momentum. A number of methods of completing the partial wave sum are compared; an approach based on a {delta}X{sub J}=a(J+(1/2)){sup -n}+b(J+(1/2)){sup -(n+1)} form [with n=4 for phase shift (or energy) and n=2 for the annihilation rate] seems to be preferred on considerations of utility and underlying physical justification.

  2. A program of generation and selection of configurations for the configuration interaction method in atomic calculations SELECTCONF

    NASA Astrophysics Data System (ADS)

    Bogdanovich, P.; Karpuškienė, R.; Momkauskaitė, A.

    2005-11-01

    This program written in FORTRAN is aimed at generation and selection of the admixed configurations which are used in the theoretical calculations of atomic states by the configuration interaction (CI) method. The admixed configurations are generated and selected using the file of radial orbitals written down in the form adopted in the code [C. Froese Fischer, Comput. Phys. Comm. 43 (1987) 355] and other analogous codes. Selection of configurations is performed on the ground of evaluations in the second order of the perturbation theory [P. Bogdanovich, R. Karpu\\vskienė, Comput. Phys. Comm. 134 (2001) 321; R. Karpu\\vskienė, R. Karazija, P. Bogdanovich, Phys. Scripta 64 (2001) 333]. Output of selected configurations is arranged in a format suitable for the codes generating the configuration states [C. Froese Fischer, B. Liu, Comput. Phys. Comm. 64 (1991) 406; P. Bogdanovich, A. Momkauskaitė, Comput. Phys. Comm. 157 (2004) 217]. Program summaryTitle of program:SELECTCONF Catalogue identifier:ADWD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers:Any computer with a FORTRAN 77 compiler Operating systems under which the program has been tested:Linux Programming language used:FORTRAN 77 Memory required to execute with typical data:4 MB No. of lines in distributed program, including test data, etc.:7459 No. of bytes in distributed program, including test data, etc.:108 420 Distribution format:gzip file Nature of the physical problem:Due to the restricted possibilities of the computers and codes, which are employed, the practice of CI requires one to select and superpose those configurations the usage of which happens to be the most effective. This program is designed for the selection of such admixed configurations. Method of solution:All admixed configurations possible in the specified basis set of radial orbitals (RO) are constructed

  3. A full-configuration-interaction nuclear orbital approach and application for small doped He clusters

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, M. P.; Aguirre, N. F.; Delgado-Barrio, G.; Villarreal, P.; Mitrushchenkov, A. O.

    2015-01-01

    An efficient full-configuration-interaction "nuclear orbital" treatment was developed as a benchmark quantum-chemistry-like method to calculate, ground and excited, fermionic "solvent" wave-functions and applied to 3HeN clusters with atomic or molecular impurities [J. Chem. Phys. (Communication) 125, 221101 (2006)]. The main difficulty in handling doped 3HeN clusters lies in the Fermi-Dirac nuclear statistics, the wide amplitudes of the He-dopant and He-He motions, and the hard-core He-He interaction at short distances. This paper overviews the theoretical approach and its recent applications to energetic, structural and spectroscopic aspects of different dopant-3HeN clusters. Preliminary results by using the latest version of the FCI-NO computational implementation, to bosonic Cl2(X)-(4He )N clusters, are also shown.

  4. A full-configuration-interaction nuclear orbital approach and application for small doped He clusters

    SciTech Connect

    Lara-Castells, M. P. de Aguirre, N. F. Delgado-Barrio, G. Villarreal, P.; Mitrushchenkov, A. O.

    2015-01-22

    An efficient full-configuration-interaction 'nuclear orbital' treatment was developed as a benchmark quantum-chemistry-like method to calculate, ground and excited, fermionic 'solvent' wave-functions and applied to {sup 3}He{sub N} clusters with atomic or molecular impurities [J. Chem. Phys. (Communication) 125, 221101 (2006)]. The main difficulty in handling doped {sup 3}He{sub N} clusters lies in the Fermi-Dirac nuclear statistics, the wide amplitudes of the He-dopant and He-He motions, and the hard-core He-He interaction at short distances. This paper overviews the theoretical approach and its recent applications to energetic, structural and spectroscopic aspects of different dopant-{sup 3}He{sub N} clusters. Preliminary results by using the latest version of the FCI-NO computational implementation, to bosonic Cl{sub 2}(X)-({sup 4}He){sub N} clusters, are also shown.

  5. Using full configuration interaction quantum Monte Carlo in a seniority zero space to investigate the correlation energy equivalence of pair coupled cluster doubles and doubly occupied configuration interaction.

    PubMed

    Shepherd, James J; Henderson, Thomas M; Scuseria, Gustavo E

    2016-03-01

    Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure. PMID:26957162

  6. Using full configuration interaction quantum Monte Carlo in a seniority zero space to investigate the correlation energy equivalence of pair coupled cluster doubles and doubly occupied configuration interaction

    NASA Astrophysics Data System (ADS)

    Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-03-01

    Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.

  7. Theoretical predictions of jet interaction effects for USB and OWB configurations

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Campbell, J. F.

    1976-01-01

    A wing jet interaction theory is presented for predicting the aerodynamic characteristics of upper surface blowing and over wing blowing configurations. For the latter configurations, a new jet entrainment theory is developed. Comparison of predicted results with some available data showed good agreement. Some applications of the theory are also presented.

  8. Decomposition of the configuration-interaction coefficients in the multiconfiguration time-dependent Hartree-Fock method.

    PubMed

    Lötstedt, Erik; Kato, Tsuyoshi; Yamanouchi, Kaoru

    2016-04-21

    An approximate implementation of the multiconfiguration time-dependent Hartree-Fock method is proposed, in which the matrix of configuration-interaction coefficients is decomposed into a product of matrices of smaller dimension. The applicability of this method in which all the configurations are kept in the expansion of the wave function, while the configuration-interaction coefficients are approximately calculated, is discussed by showing the results on three model systems: a one-dimensional model of a beryllium atom, a one-dimensional model of a carbon atom, and a one-dimensional model of a chain of four hydrogen atoms. The time-dependent electronic dynamics induced by a few-cycle, long-wavelength laser pulse is found to be well described at a lower computational cost compared to the standard multiconfiguration time-dependent Hartree-Fock treatment. Drawbacks of the method are also discussed. PMID:27389213

  9. Decomposition of the configuration-interaction coefficients in the multiconfiguration time-dependent Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Lötstedt, Erik; Kato, Tsuyoshi; Yamanouchi, Kaoru

    2016-04-01

    An approximate implementation of the multiconfiguration time-dependent Hartree-Fock method is proposed, in which the matrix of configuration-interaction coefficients is decomposed into a product of matrices of smaller dimension. The applicability of this method in which all the configurations are kept in the expansion of the wave function, while the configuration-interaction coefficients are approximately calculated, is discussed by showing the results on three model systems: a one-dimensional model of a beryllium atom, a one-dimensional model of a carbon atom, and a one-dimensional model of a chain of four hydrogen atoms. The time-dependent electronic dynamics induced by a few-cycle, long-wavelength laser pulse is found to be well described at a lower computational cost compared to the standard multiconfiguration time-dependent Hartree-Fock treatment. Drawbacks of the method are also discussed.

  10. Configuration interaction matrix elements for the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wooten, Rachel; Macek, Joseph

    2015-03-01

    In the spherical model of the quantum Hall system, the two-body matrix elements and pseudopotentials can be found analytically in terms of a general scalar pair interaction potential by expressing the pair interaction as a weighted sum over Legendre polynomials. For non-infinite systems, only a finite set of terms in the potential expansion contribute to the interactions; the contributing terms define an effective spatial potential for the system. The connection between the effective spatial potential and the pseudopotential is one-to-one for finite systems, and any completely defined model pseudopotential can be analytically inverted to give a unique corresponding spatial potential. This technique of inverting the pseudopotential to derive effective spatial potentials may be of use for developing accurate model spatial potentials for quantum Monte Carlo simulations. We demonstrate the technique and the corresponding spatial potentials for a few example model pseudopotentials. Supported by Office of Basic Energy Sciences, U.S. DOE, Grant DE-FG02-02ER15283 to the University of Tennessee.

  11. Variational study of λ and N atomic configurations interacting with an electromagnetic field of two modes

    NASA Astrophysics Data System (ADS)

    Cordero, S.; Castaños, O.; López-Peña, R.; Nahmad-Achar, E.

    2016-07-01

    A study of the λ and N atomic configurations under dipolar interaction with two modes of electromagnetic radiation is presented. The corresponding quantum phase diagrams are obtained by means of a variational procedure. Both configurations exhibit normal and collective (super-radiant) regimes. While the latter in the λ configuration divides itself into two subregions, corresponding to each of the modes, that in the N configuration may be divided into two or three subregions depending on whether the field modes divide the atomic system into two separate subsystems or not. Our variational procedure compares well with the exact quantum solution. The properties of the relevant field and matter observables are obtained.

  12. Full configuration-interaction study of the ionic-neutral curve crossing in LiF

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1988-01-01

    Full configuration-interaction (FCI) calculations are used to assess the relative ability of methods for truncating the n-particle expansion in describing the ionic-neutral curve crossing between the two lowest Sigma(+) states of LiF. While the FCI calculations yield a smooth dipole moment function, MRCI calculations based on CASSCF orbitals optimized for the lowest state at all r values yield a discontinuous dipole moment function. However, when the orbitals are optimized using a state-averaged CASSCF procedure, with equal weights for the ionic and neutral solutions, both the CASSCF and MRCI dipole moment functions are smooth and in reasonable agreement with the FCI. No single-reference-based method is found to work satisfactorily. Potential curves for the lowest two Sigma(+) states are determined in both the adiabatic and diabatic representations using a large atomic natural orbit Gaussian basis set and a state-averaged CASSCF/MRCI treatment of electron correlation.

  13. HORIZONTAL CONFIGURATION OF THE LASAGNA (TM) TREATMENT TECHNOLOGY USER GUIDE

    EPA Science Inventory

    This report is a user's guide that discusses the technology and operations unique to the installation and operation of the horizontal configuration of the Lasagna? integrated soil remediation technology. This technology, called Lasagna? because of the layers of electrodes and tr...

  14. HORIZONTAL CONFIGURATION OF THE LASAGNA TREATMENT TECHNOLOGY - USER GUIDE

    EPA Science Inventory

    This report is a user's guide that discusses the technology and operations unique to the installation and operation of the horizontal configuration of the LasagnaTM integrated soil remediation technology. This technology, called LasagnaTM because of the layers of electrodes and t...

  15. Configuration interaction effect on open M shell Fe and Ni LTE spectral opacities, Rosseland and Planck means

    NASA Astrophysics Data System (ADS)

    Gilles, D.; Busquet, M.; Gilleron, F.; Klapisch, M.; Pain, J.-C.

    2016-05-01

    We have recently shown that iron and nickel open M-shell opacity spectra, up to Δn = 2 are very sensitive to Configuration Interaction (CI) treatments at temperature around 15 eV and for various densities. To do so we had compared extensive CI calculations obtained with two opacity codes HULLAC-v9 and SCO-RCG. In this work we extend these comparisons to a first evaluation of CI effects on Rosseland and Planck means.

  16. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 4: Summary

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Wallace, H. W.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.

  17. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Mraz, M. R.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.

  18. Effect of benzimidazole configuration in polybenzimidazole chain on interaction with phosphoric acid: a DFT study.

    PubMed

    Shirata, Kei; Kawauchi, Susumu

    2015-01-15

    Polybenzimidazole doped with phosphoric acid (PA) is a candidate for polymer electrolyte membranes in fuel cells. Understanding the interaction of benzimidazole in polybenzimidazole with PA is important for fuel-cell applications. Herein, the interaction of a PA-benzimidazole complex was investigated using density functional theory, with calculations performed at the ωB97X-D/6-311G(d,p) level of theory, with an aim to investigate the effects of bibenzimidazole configuration on the interaction energy. Benzimidazole and three different bibenzimidazole configurations (2,2'-bibenzo[d]imidazole (1), 2,5'-bibenzo[d]imidazole (2), and 5,5'-bibenzo[d]imidazole (3)) were used as models for bulk polybenzimidazole. Calculation of various types of hydrogen bond interaction showed that the interaction between the imino moiety of the monomer and the hydroxyl group of PA is the strongest, which agrees with previous studies. Our calculations indicated that π-H interactions between the hydrogen atoms of the PA molecule and the benzene rings should be considered, and these contribute to the interaction energy for some interaction complexes. The interaction energy between the monomer and PA is smaller than that of the PA dimer. However, the interaction energy between bibenzimidazole and PA is comparable to that of the PA dimer for bibenzimidazole configurations 1 and 2, highlighting the importance of considering the adjacent monomer unit. PMID:25514498

  19. Effects of configuration interaction on dielectronic recombination ofFe(XXIV).

    NASA Astrophysics Data System (ADS)

    Roszman, L. J.; Weiss, A. W.

    1983-07-01

    The rate of dielectronic recombination for Fe23+ has been computed in the non-relativistic approximation, with and without configuration interaction. All possible doubly excited states with n = 3-6, and l = 0-4 were included in the calculation.

  20. Numerically accurate linear response-properties in the configuration-interaction singles (CIS) approximation.

    PubMed

    Kottmann, Jakob S; Höfener, Sebastian; Bischoff, Florian A

    2015-12-21

    In the present work, we report an efficient implementation of configuration interaction singles (CIS) excitation energies and oscillator strengths using the multi-resolution analysis (MRA) framework to address the basis-set convergence of excited state computations. In MRA (ground-state) orbitals, excited states are constructed adaptively guaranteeing an overall precision. Thus not only valence but also, in particular, low-lying Rydberg states can be computed with consistent quality at the basis set limit a priori, or without special treatments, which is demonstrated using a small test set of organic molecules, basis sets, and states. We find that the new implementation of MRA-CIS excitation energy calculations is competitive with conventional LCAO calculations when the basis-set limit of medium-sized molecules is sought, which requires large, diffuse basis sets. This becomes particularly important if accurate calculations of molecular electronic absorption spectra with respect to basis-set incompleteness are required, in which both valence as well as Rydberg excitations can contribute to the molecule's UV/VIS fingerprint. PMID:25913482

  1. Massively parallel full configuration interaction. Benchmark electronic structure calculations on the Intel Touchstone Delta

    SciTech Connect

    Harrison, R.J.; Stahlberg, E.A.

    1994-10-01

    We describe an implementation of the benchmark ab initio electronic structure full configuration interaction model on the Intel Touchstone Delta. Its performance is demonstrated with several calculations, the largest of which (95 million configurations, 418 million determinants) is the largest full-CI calculation yet completed. The feasibility of calculations with over one billion configurations is discussed. A sustained computation rate in excess of 4 GFLOP/s on 512 processors is achieved, with an average aggregate communication rate of 155 Mbytes/s. Data-compression techniques and a modified diagonalization method were required to minimize I/O. The object-oriented design has increased portability and provides the distinction between local and non-local data essential for use of a distributed-data model.

  2. Evaluation of helicopter noise due to b blade-vortex interaction for five tip configurations. [conducted in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1979-01-01

    The effect of tip shape modification on blade vortex interaction induced helicopter blade slap noise was investigated. Simulated flight and descent velocities which have been shown to produce blade slap were tested. Aerodynamic performance parameters of the rotor system were monitored to ensure properly matched flight conditions among the tip shapes. The tunnel was operated in the open throat configuration with treatment to improve the acoustic characteristics of the test chamber. Four promising tips were used along with a standard square tip as a baseline configuration. A detailed acoustic evaluation on the same rotor system of the relative applicability of the various tip configurations for blade slap noise reduction is provided.

  3. An exploratory study of alternative configurations of governing boards of substance abuse treatment centers

    PubMed Central

    Blum, Terry C.; Roman, Paul M.

    2011-01-01

    Boards of directors are the ultimate governing authorities for most organizations providing substance abuse treatment. A governing board may establish policies, monitor and improve operations, and represent a treatment organization to the public. This paper explores alternative configurations of governing boards in a national sample of 500 substance abuse treatment centers. The study proceeds from the premise that boards may be configured with varying levels of engagement in five aspects of internal management and external connections in treatment center operating environments. Based on interviews with treatment center administrative directors, four clusters emerge, describing boards that are: (1) active and balanced across internal and external domains; (2) active boundary spanners concentrating primarily on external relationships; (3) focused primarily on internal organizational management; and (4) relatively inactive. In post hoc analysis, we found that placement in these clusters is associated with treatment center attributes such as rate of growth and financial results, use of evidence based practices and provision of integrated care. PMID:21489737

  4. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    SciTech Connect

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-14

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.

  5. Emergence of rotational bands in ab initio no-core configuration interaction calculations of light nuclei

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; Maris, Pieter; Vary, James P.

    2014-03-01

    The emergence of rotational bands has recently been observed in no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results demonstrate the possibility of well-developed rotational structure in NCCI calculations, using realistic nucleon-nucleon interactions, and within finite, computationally-accessible configuration spaces. This talk will focus on results for rotation in both the even-mass and odd-mass Be isotopes (7 <= A <= 12). Supported by US DOE (DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, DE-FG02-87ER40371), US NSF (0904782), and Research Corporation for Science Advancement (Cottrell Scholar Award). Computational resources provided by NERSC (US DOE DE-AC02-05CH11231).

  6. Relativistic K-LL Auger spectra in the intermediate-coupling scheme with configuration interaction

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Mark, H.

    1980-01-01

    Theoretical K-LL Auger spectra from relativistic Dirac-Hartree-Slater calculations in intermediate coupling with configuration interaction (ICWCI) are considered. Calculated transition rates for 25 elements with Z between 18 and 96, inclusive, are listed and compare well with experimental data. Relativistic effects are found to be important above Z equal to about 35, and ICWCI is necessary to describe the spectra for Z less than about 60.

  7. A systematic approach to vertically excited states of ethylene using configuration interaction and coupled cluster techniques

    SciTech Connect

    Feller, David Peterson, Kirk A.; Davidson, Ernest R.

    2014-09-14

    A systematic sequence of configuration interaction and coupled cluster calculations were used to describe selected low-lying singlet and triplet vertically excited states of ethylene with the goal of approaching the all electron, full configuration interaction/complete basis set limit. Included among these is the notoriously difficult, mixed valence/Rydberg {sup 1}B{sub 1u} V state. Techniques included complete active space and iterative natural orbital configuration interaction with large reference spaces which led to variational spaces of 1.8 × 10{sup 9} parameters. Care was taken to avoid unintentionally biasing the results due to the widely recognized sensitivity of the V state to the details of the calculation. The lowest vertical and adiabatic ionization potentials to the {sup 2}B{sub 3u} and {sup 2}B{sub 3} states were also determined. In addition, the heat of formation of twisted ethylene {sup 3}A{sub 1} was obtained from large basis set coupled cluster theory calculations including corrections for core/valence, scalar relativistic and higher order correlation recovery.

  8. Reduced matrix elements of spin–spin interactions for the atomic f-electron configurations

    SciTech Connect

    Yeung, Y.Y.

    2014-03-15

    A re-examination of some major references on the intra-atomic magnetic interactions over the last six decades reveals that there exist some gaps or puzzles concerning the previous studies of the spin–spin interactions for the atomic f-shell electrons. Hence, tables are provided for the relevant reduced matrix elements of the four double-tensor operators z{sub r} (r=1,2,3, and 4) of rank 2 in both the orbital and spin spaces. The range of the tables covers all states of the configurations from f{sup 4} to f{sup 7}.

  9. Configuration interaction singles natural orbitals: An orbital basis for an efficient and size intensive multireference description of electronic excited states

    SciTech Connect

    Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.

    2015-01-14

    Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCF in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.

  10. Spin-orbit-resolved static polarizabilities of group-13 atoms: Four-component relativistic configuration interaction and coupled cluster calculations

    SciTech Connect

    Fleig, Timo

    2005-11-15

    This study reports static electric dipole polarizabilities of the group 13 atoms in their lowest J=(1/2),(3/2) states including resolution of the property in the corresponding M{sub J} components. The polarizabilities are obtained by a numerical finite-field technique applying weak external electric fields. Special relativity is accounted for in the four-component Dirac framework. Two large-scale configuration interaction programs which can be applied either including or neglecting spin-dependent terms in the Dirac Hamiltonian, respectively, are used for the treatment of dynamic electron correlation. Coupled cluster calculations are performed for obtaining highly accurate J=(1/2) ground-state polarizabilities and for calibrating the configuration interaction calculations. The heavier atoms show large differences in the properties for different J states, and the effect of spin-orbit coupling is elucidated by separating it off from scalar relativistic contributions. The impact of spin-orbit interaction is also demonstrated for polarizability anisotropy components.

  11. Full configuration interaction approach to the few-electron problem in artificial atoms

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo; Cavazzoni, Carlo; Bellucci, Devis; Goldoni, Guido

    2006-03-01

    We present a new high performance configuration interaction code optimally designed for the calculation of the lowest-energy eigenstates of a few electrons in semiconductor quantum dots (also called artificial atoms) in the strong interaction regime. The implementation relies on a single-particle representation, but it is independent of the choice of the single-particle basis and, therefore, of the details of the device and configuration of external fields. Assuming no truncation of the Fock space of Slater determinants generated from the chosen single-particle basis, the code may tackle regimes where Coulomb interaction very effectively mixes many determinants. Typical strongly correlated systems lead to very large diagonalization problems; in our implementation, the secular equation is reduced to its minimal rank by exploiting the symmetry of the effective-mass interacting Hamiltonian, including square total spin. The resulting Hamiltonian is diagonalized via parallel implementation of the Lanczos algorithm. The code gives access to both wave functions and energies of first excited states. Excellent code scalability in a parallel environment is demonstrated; accuracy is tested for the case of up to eight electrons confined in a two-dimensional harmonic trap as the density is progressively diluted up to the Wigner regime, where correlations become dominant. Comparison with previous quantum Monte Carlo simulations in the Wigner regime demonstrates power and flexibility of the method.

  12. Particle-hole configuration interaction and many-body perturbation theory: Application to Hg+

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.

    2016-07-01

    The combination of configuration interaction and many-body perturbation theory methods is extended to nonperturbatively include configurations with electron holes below the designated Fermi level, allowing us to treat systems where holes play an important role. For example, the method can treat valence-hole systems like Ir17 +, particle-hole excitations in noble gases, and difficult transitions such as the 6 s →5 d-16 s2 optical clock transition in Hg+. We take the latter system as our test case for the method and obtain very good accuracy (˜1 %) for the low-lying transition energies. The α dependence of these transitions is calculated and used to reinterpret the existing best laboratory limits on the time dependence of the fine-structure constant.

  13. Calculation of converged rovibrational energies and partition function for methane using vibrational-rotational configuration interaction.

    PubMed

    Chakraborty, Arindam; Truhlar, Donald G; Bowman, Joel M; Carter, Stuart

    2004-08-01

    The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J = 0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. PMID:15260761

  14. Evaluation of the interaction losses in a transonic turbine HP rotor/LP vane configuration

    SciTech Connect

    Jennions, I.K.; Adamczyk, J.J.

    1997-01-01

    Transonic turbine rotors produce shock waves, wakes, tip leakage flows, and other secondary flows that the downstream stators have to ingest. While the physics of wake ingestion and shock interaction have been studied quite extensively, few ideas for reducing the aerodynamic interaction losses have been forthcoming. This paper aims to extend previously reported work performed by GE Aircraft Engines in this area. It reports on both average-passage (steady) and unsteady three-dimensional numerical simulations of a candidate design to shed light on the interaction loss mechanisms and evaluate the design. The results from these simulations are first shown against test data for a baseline configuration to engender confidence in the numerical approach. Simulations with the proposed newly designed rotor are then performed to show the trade-offs that are being made in such designs. The new rotor does improve the overall efficiency of the group and physical explanations are presented based on examining entropy production.

  15. Multi-scale multireference configuration interaction calculations for large systems using localized orbitals: partition in zones.

    PubMed

    Chang, Cristian; Calzado, Carmen J; Ben Amor, Nadia; Sanchez Marin, Jose; Maynau, Daniel

    2012-09-14

    A new multireference configuration interaction method using localised orbitals is proposed, in which a molecular system is divided into regions of unequal importance. The advantage of dealing with local orbitals, i.e., the possibility to neglect long range interaction is enhanced. Indeed, while in the zone of the molecule where the important phenomena occur, the interaction cut off may be as small as necessary to get relevant results, in the most part of the system it can be taken rather large, so that results of good quality may be obtained at a lower cost. The method is tested on several systems. In one of them, the definition of the various regions is not based on topological considerations, but on the nature, σ or π, of the localised orbitals, which puts in evidence the generality of the approach. PMID:22979845

  16. Multi-scale multireference configuration interaction calculations for large systems using localized orbitals: Partition in zones

    NASA Astrophysics Data System (ADS)

    Chang, Cristian; Calzado, Carmen J.; Amor, Nadia Ben; Marin, Jose Sanchez; Maynau, Daniel

    2012-09-01

    A new multireference configuration interaction method using localised orbitals is proposed, in which a molecular system is divided into regions of unequal importance. The advantage of dealing with local orbitals, i.e., the possibility to neglect long range interaction is enhanced. Indeed, while in the zone of the molecule where the important phenomena occur, the interaction cut off may be as small as necessary to get relevant results, in the most part of the system it can be taken rather large, so that results of good quality may be obtained at a lower cost. The method is tested on several systems. In one of them, the definition of the various regions is not based on topological considerations, but on the nature, σ or π, of the localised orbitals, which puts in evidence the generality of the approach.

  17. A comparison of two methods for selecting vibrational configuration interaction spaces on a heptatomic system: ethylene oxide.

    PubMed

    Bégué, Didier; Gohaud, Neil; Pouchan, Claude; Cassam-Chenaï, Patrick; Liévin, Jacques

    2007-10-28

    Two recently developed methods for solving the molecular vibrational Schrodinger equation, namely, the parallel vibrational multiple window configuration interaction and the vibrational mean field configuration interaction, are presented and compared on the same potential energy surface of ethylene oxide, c-C(2)H(4)O. It is demonstrated on this heptatomic system with strong resonances that both approaches converge towards the same fundamental frequencies. This confirms their ability to tackle the vibrational problem of large molecules for which full configuration interaction calculations are not tractable. PMID:17979327

  18. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential

    SciTech Connect

    Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard

    2014-05-07

    Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.

  19. A wing-jet interaction theory for USB configurations. [Upper Surface Blowing

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Campbell, J. F.

    1976-01-01

    The aerodynamic interaction between the wing and an inviscid upper-surface blowing (USB) thick jet with Mach number nonuniformity is treated within the framework of a linear inviscid subsonic compressible flow theory. A two-vortex-sheet model for the jet surface is used to represent the induced flowfields inside and outside the jet. Comparison of the predicted results with experimental data shows good agreement in lift, induced drag, and pitching moment. It is shown that the thin jet flap theory is inadequate for USB configurations with thick jet.

  20. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Nazé, C.; Verdebout, S.; Godefroid, M.

    2014-09-15

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  1. Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy

    NASA Astrophysics Data System (ADS)

    Schriber, Jeffrey B.; Evangelista, Francesco A.

    2016-04-01

    We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N2 with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.

  2. Self-interaction in the von Kármán cosmic string street configuration

    NASA Astrophysics Data System (ADS)

    Carvalho, J.; Furtado, C.; Moraes, F.

    2008-11-01

    We study the problem of electromagnetic self-interaction of line sources in the presence of an array of parallel cosmic strings akin to the von Kármán vortex street configuration. Keeping in mind possible applications in condensed matter physics we consider also a mixed array where both deficit angle and excess angle cosmic strings appear. We obtain explicit expressions for both the electric and magnetic self-energies for the cases studied and demonstrate that these results reproduce the known self-energies in the single-string limit.

  3. Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy.

    PubMed

    Schriber, Jeffrey B; Evangelista, Francesco A

    2016-04-28

    We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N2 with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group. PMID:27131524

  4. Reducing CAS-SDCI space. Using selected spaces in configuration interaction calculations in an efficient way.

    PubMed

    Pitarch-Ruiz, José; Sánchez-Marín, José; Maynau, Daniel

    2002-09-01

    A new method is presented, which allows an important reduction of the size of some Configuration Interaction (CI) matrices. Starting from a Complete Active Space (CAS), the numerous configurations that have a small weight in the CAS wave function are eliminated. When excited configurations (e.g., singly and doubly excited) are added to the reference space, the resulting MR-SDCI space is reduced in the same proportion as compared with the full CAS-SDCI. A set of active orbitals is chosen, but some selection of the most relevant excitations is performed because not all the possible excitations act as SDCI generators. Thanks to a new addressing technique, the computational time is drastically reduced, because the new addressing of the selected active space is as efficient as the addressing of the CAS. The presentation of the method is followed by two test calculations on the N(2) and HCCH molecules. For the N(2) the FCI results are taken as a benchmark reference. The outer valence ionization potentials of HCCH are compared to the experimental values. Both examples allow to test the accuracy of the MR-SDCI compared to that of the corresponding CAS-SDCI, despite the noticeable reduction of the CI space. The algorithm is suitable for the dressing techniques that allow for the correction of the size-extensivity error. The corrected results are also shown and discussed. PMID:12116385

  5. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2015-03-01

    The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f9)(6s2)(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f10)(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T0 = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f9)(6s)(6p), but these configurations are not consistent with the large Re's (˜3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f10)(6p3/2,1/2), (4f10)(6p3/2,3/2), and (4f9)(6s)(6p3/2,1/2) at around 3 eV. The former two states have larger Re (3.88 a.u.) than the third, so that it is reasonable to assign (4f10)(6p3/2,1/2) to [19.3]8.5 and (4f10)(6p3/2,3/2) to [20.3]8.5.

  6. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods.

    PubMed

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2015-03-01

    The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f(9))(6s(2))(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f(10))(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T0 = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f(9))(6s)(6p), but these configurations are not consistent with the large Re's (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f(10))(6p3/2,1/2), (4f(10))(6p3/2,3/2), and (4f(9))(6s)(6p3/2,1/2) at around 3 eV. The former two states have larger Re (3.88 a.u.) than the third, so that it is reasonable to assign (4f(10))(6p3/2,1/2) to [19.3]8.5 and (4f(10))(6p3/2,3/2) to [20.3]8.5. PMID:25747086

  7. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods

    SciTech Connect

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2015-03-07

    The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f{sup 9})(6s{sup 2})(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f{sup 10})(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T{sub 0} = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f{sup 9})(6s)(6p), but these configurations are not consistent with the large R{sub e}’s (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f{sup 10})(6p{sub 3/2,1/2}), (4f{sup 10})(6p{sub 3/2,3/2}), and (4f{sup 9})(6s)(6p{sub 3/2,1/2}) at around 3 eV. The former two states have larger R{sub e} (3.88 a.u.) than the third, so that it is reasonable to assign (4f{sup 10})(6p{sub 3/2,1/2}) to [19.3]8.5 and (4f{sup 10})(6p{sub 3/2,3/2}) to [20.3]8.5.

  8. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    SciTech Connect

    Monine, Michael; Posner, Richard; Savage, Paul; Faeder, James; Hlavacek, William S

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  9. Large-scale ab initio configuration interaction calculations for light nuclei

    NASA Astrophysics Data System (ADS)

    Maris, Pieter; Metin Aktulga, H.; Caprio, Mark A.; Çatalyürek, Ümit V.; Ng, Esmond G.; Oryspayev, Dossay; Potter, Hugh; Saule, Erik; Sosonkina, Masha; Vary, James P.; Yang, Chao; Zhou, Zheng

    2012-12-01

    In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.

  10. Polynomial scaling approximations and dynamic correlation corrections to doubly occupied configuration interaction wave functions.

    PubMed

    Van Raemdonck, Mario; Alcoba, Diego R; Poelmans, Ward; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Van Neck, Dimitri; Bultinck, Patrick

    2015-09-14

    A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation. PMID:26374017

  11. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    SciTech Connect

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-12

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As a result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP3 through IP6.

  12. Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction

    NASA Astrophysics Data System (ADS)

    Coe, J. P.; Paterson, M. J.

    2014-09-01

    We propose using sum-over-states calculations with the compact wavefunctions of Monte Carlo configuration interaction to approach accurate values for higher-order dipole properties up to second hyperpolarizabilities in a controlled way. We apply the approach to small systems that can generally be compared with full configuration interaction (FCI) results. We consider hydrogen fluoride with a 6-31g basis and then look at results, including frequency dependent properties, in an aug-cc-pVDZ basis. We extend one calculation beyond FCI by using an aug-cc-pVTZ basis. The properties of an H4 molecule with multireference character are calculated in an aug-cc-pVDZ basis. We then investigate this method on a strongly multireference system with a larger FCI space by modelling the properties of carbon monoxide with a stretched geometry. The behavior of the approach with increasing basis size is considered by calculating results for the neon atom using aug-cc-pVDZ to aug-cc-pVQZ. We finally test if the unusual change in polarizability between the first two states of molecular oxygen can be reproduced by this method in a 6-31g basis.

  13. Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction.

    PubMed

    Coe, J P; Paterson, M J

    2014-09-28

    We propose using sum-over-states calculations with the compact wavefunctions of Monte Carlo configuration interaction to approach accurate values for higher-order dipole properties up to second hyperpolarizabilities in a controlled way. We apply the approach to small systems that can generally be compared with full configuration interaction (FCI) results. We consider hydrogen fluoride with a 6-31g basis and then look at results, including frequency dependent properties, in an aug-cc-pVDZ basis. We extend one calculation beyond FCI by using an aug-cc-pVTZ basis. The properties of an H4 molecule with multireference character are calculated in an aug-cc-pVDZ basis. We then investigate this method on a strongly multireference system with a larger FCI space by modelling the properties of carbon monoxide with a stretched geometry. The behavior of the approach with increasing basis size is considered by calculating results for the neon atom using aug-cc-pVDZ to aug-cc-pVQZ. We finally test if the unusual change in polarizability between the first two states of molecular oxygen can be reproduced by this method in a 6-31g basis. PMID:25273423

  14. Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction

    SciTech Connect

    Coe, J. P.; Paterson, M. J.

    2014-09-28

    We propose using sum-over-states calculations with the compact wavefunctions of Monte Carlo configuration interaction to approach accurate values for higher-order dipole properties up to second hyperpolarizabilities in a controlled way. We apply the approach to small systems that can generally be compared with full configuration interaction (FCI) results. We consider hydrogen fluoride with a 6-31g basis and then look at results, including frequency dependent properties, in an aug-cc-pVDZ basis. We extend one calculation beyond FCI by using an aug-cc-pVTZ basis. The properties of an H{sub 4} molecule with multireference character are calculated in an aug-cc-pVDZ basis. We then investigate this method on a strongly multireference system with a larger FCI space by modelling the properties of carbon monoxide with a stretched geometry. The behavior of the approach with increasing basis size is considered by calculating results for the neon atom using aug-cc-pVDZ to aug-cc-pVQZ. We finally test if the unusual change in polarizability between the first two states of molecular oxygen can be reproduced by this method in a 6-31g basis.

  15. Symmetric tensor decomposition-configuration interaction study of BeH2

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Shusuke; Uemura, Wataru; Sugino, Osamu

    2014-03-01

    The configuration interaction (CI) is a straightforward approach to describing interacting fermions. However, its application is hampered by the non-polynomially increasing computational time and memory requirements with the system size. To overcome this problem, we have been developing a variational method based on the canonical decomposition of the full-CI coefficients, which we call the symmetric tensor decomposition (STD)-CI. The applicability of STD-CI was tested for simple molecular systems, but here we test it using a stringent benchmark system, i.e., the insertion of Be into H2. The Be + H2 system is known for strong configurational degeneracy along the insertion pathway, and has been used for assessing a method's capability to treat correlated systems. We obtained errors compared to full CI results of ~10 mHartrees when using a rank 2 decomposition of the full CI coefficients. This is a huge improvement over Hartree-Fock results having errors of up to ~100 mHartrees in worst cases, although not as good as, e.g., CAS-CCSD with errors less than 1 mHartree.

  16. Polynomial scaling approximations and dynamic correlation corrections to doubly occupied configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Van Raemdonck, Mario; Alcoba, Diego R.; Poelmans, Ward; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Van Neck, Dimitri; Bultinck, Patrick

    2015-09-01

    A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation.

  17. Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo

    SciTech Connect

    Thomas, Robert E.; Overy, Catherine; Opalka, Daniel; Alavi, Ali; Knowles, Peter J.; Booth, George H.

    2015-08-07

    Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation.

  18. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    DOE PAGESBeta

    Bross, David H.; Parmar, Payal; Peterson, Kirk A.

    2015-11-12

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As amore » result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP3 through IP6.« less

  19. Communications: Survival of the fittest: accelerating convergence in full configuration-interaction quantum Monte Carlo.

    PubMed

    Cleland, Deidre; Booth, George H; Alavi, Ali

    2010-01-28

    We provide a very simple adaptation of our recently published quantum Monte Carlo algorithm in full configuration-interaction (Slater determinant) spaces which dramatically reduces the number of walkers required to achieve convergence. A survival criterion is imposed for newly spawned walkers. We define a set of initiator determinants such that progeny of walkers spawned from such determinants onto unoccupied determinants are able to survive, while the progeny of walkers not in this set can survive only if they are spawned onto determinants which are already occupied. The set of initiators is originally defined to be all determinants constructable from a subset of orbitals, in analogy with complete-active spaces. This set is dynamically updated so that if a noninitiator determinant reaches an occupation larger than a preset limit, it becomes an initiator. The new algorithm allows sign-coherent sampling of the FCI space to be achieved with relatively few walkers. Using the N(2) molecule as an illustration, we show that rather small initiator spaces and numbers of walkers can converge with submilliHartree accuracy to the known full configuration-interaction (FCI) energy (in the cc-pVDZ basis), in both the equilibrium geometry and the multiconfigurational stretched case. We use the same method to compute the energy with cc-pVTZ and cc-pVQZ basis sets, the latter having an FCI space of over 10(15) with very modest computational resources. PMID:20113011

  20. Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cleland, Deidre; Booth, George H.; Alavi, Ali

    2010-01-01

    We provide a very simple adaptation of our recently published quantum Monte Carlo algorithm in full configuration-interaction (Slater determinant) spaces which dramatically reduces the number of walkers required to achieve convergence. A survival criterion is imposed for newly spawned walkers. We define a set of initiator determinants such that progeny of walkers spawned from such determinants onto unoccupied determinants are able to survive, while the progeny of walkers not in this set can survive only if they are spawned onto determinants which are already occupied. The set of initiators is originally defined to be all determinants constructable from a subset of orbitals, in analogy with complete-active spaces. This set is dynamically updated so that if a noninitiator determinant reaches an occupation larger than a preset limit, it becomes an initiator. The new algorithm allows sign-coherent sampling of the FCI space to be achieved with relatively few walkers. Using the N2 molecule as an illustration, we show that rather small initiator spaces and numbers of walkers can converge with submilliHartree accuracy to the known full configuration-interaction (FCI) energy (in the cc-pVDZ basis), in both the equilibrium geometry and the multiconfigurational stretched case. We use the same method to compute the energy with cc-pVTZ and cc-pVQZ basis sets, the latter having an FCI space of over 1015 with very modest computational resources.

  1. The electronic mean-field configuration interaction method. I. Theory and integral formulas

    NASA Astrophysics Data System (ADS)

    Cassam-Chenaï, Patrick

    2006-05-01

    In this article, we introduce a new method for solving the electronic Schrödinger equation. This new method follows the same idea followed by the mean-field configuration interaction method already developed for molecular vibrations; i.e., groups of electronic degrees of freedom are contracted together in the mean field of the other degrees. If the same partition of electronic degrees of freedom is iterated, a self-consistent field method is obtained. Making coarser partitions (i.e., including more degrees in the same groups) and discarding the high energy states, the full configuration interaction limit can be approached. In contrast with the usual group function theory, no strong orthogonality condition is enforced. We have made use of a generalized version of the fundamental formula defining a Hopf algebra structure to derive Hamiltonian and overlap matrix element expressions which respect the group structure of the wave function as well as its fermionic symmetry. These expressions are amenable to a recursive computation.

  2. Emergence of rotational bands in ab initio no-core configuration interaction calculations of the Be isotopes

    NASA Astrophysics Data System (ADS)

    Maris, P.; Caprio, M. A.; Vary, J. P.

    2015-01-01

    The emergence of rotational bands is observed in no-core configuration interaction (NCCI) calculations for the Be isotopes (7 ≤A ≤12 ), as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results indicate well-developed rotational structure in NCCI calculations, using the JISP16 realistic nucleon-nucleon interaction within finite, computationally accessible configuration spaces.

  3. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    PubMed

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS. PMID:19778110

  4. Direct selected multireference configuration interaction calculations for large systems using localized orbitals

    NASA Astrophysics Data System (ADS)

    Ben Amor, Nadia; Bessac, Fabienne; Hoyau, Sophie; Maynau, Daniel

    2011-07-01

    A selected multireference configuration interaction (CI) method and the corresponding code are presented. It is based on a procedure of localization that permits to obtain well localized occupied and virtual orbitals. Due to the local character of the electron correlation, using local orbitals allows one to neglect long range interactions. In a first step, three topological matrices are constructed, which determine whether two orbitals must be considered as interacting or not. Two of them concern the truncation of the determinant basis, one for occupied/virtual, the second one for dispersive interactions. The third one concerns the truncation of the list of two electron integrals. This approach permits a fine analysis of each kind of approximation and induces a huge reduction of the CI size and of the computational time. The procedure is tested on linear polyene aldehyde chains, dissociation potential energy curve, and reaction energy of a pesticide-Ca2+ complex and finally on transition energies of a large iron system presenting a light-induced excited spin-state trapping effect.

  5. Hearing shapes of few electrons quantum drums: A configuration-interaction study

    NASA Astrophysics Data System (ADS)

    Ţolea, F.; Ţolea, M.

    2015-02-01

    The - highly remarkable - existence of non-congruent yet vibrationally isospectral shapes has been first proved theoretically and then also tested experimentally - by using electromagnetic waves in cavities, vibrating smectic films or electrons in nanostructures. In this context, we address the question whether isospectrality holds if two or more electrons interact electrostatically, using the accurate configuration-interaction method, in a discrete representation of the Bilby and Hawk shapes. Isospectral pairs offer an unique possibility to test how identical sets of single-particle energies may combine differently in the few-electrons eigenmodes, due to different wave functions spatial distributions. Our results point towards the break down of isospectrality in the presence of interactions. Thus one should be able to "hear" the shapes of few electrons quantum drums. Interestingly however, for the analyzed two and three electrons cases, there exists an interaction strength (which can be tuned by changing the size of the shapes), for which the ground states energies of Bilby and Hawk coincide, but not the excited states as well. Wigner localization is studied and shown to occur at about the same size for both Bilby and Hawk shapes. Next, an exercise is proposed to use the two-electrons charge density of the Bilby and Hawk ground states in the phase extraction scheme as proposed by Moon et al. (2008). Results show that out-of-phase regions appear if the linear size of the shapes exceeds the Bohr radius as occupation of higher Slater determinants becomes significant.

  6. Configuration interaction studies on the spectroscopic properties of PbO including spin–orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Luo; Rui, Li; Zhiqiang, Gai; RuiBo, Ai; Hongmin, Zhang; Xiaomei, Zhang; Bing, Yan

    2016-07-01

    Lead oxide (PbO), which plays the key roles in a range of research fields, has received a great deal of attention. Owing to the large density of electronic states and heavy atom Pb including in PbO, the excited states of the molecule have not been well studied. In this work, high level multireference configuration interaction calculations on the low-lying states of PbO have been carried out by utilizing the relativistic effective core potential. The effects of the core-valence correlation correction, the Davidson modification, and the spin–orbital coupling on the electronic structure of the PbO molecule are estimated. The potential energy curves of 18 Λ-S states correlated to the lowest dissociation limit (Pb (3Pg) + O(3Pg)) are reported. The calculated spectroscopic parameters of the electronic states below 30000 cm‑1, for instance, X1Σ+, 13Σ+, and 13Σ‑, and their spin–orbit coupling interaction, are compared with the experimental results, and good agreements are derived. The dipole moments of the 18 Λ-S states are computed with the configuration interaction method, and the calculated dipole moments of X1Σ+ and 13Σ+ are consistent with the previous experimental results. The transition dipole moments from 11Π, 21Π, and 21Σ+ to X1Σ+ and other singlet excited states are estimated. The radiative lifetime of several low-lying vibrational levels of 11Π, 21Π, and 21Σ+ states are evaluated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404180 and 11574114), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2015010), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC).

  7. Directed self-assembly of diblock copolymers in cylindrical confinement: effect of underfilling and air-polymer interactions on configurations

    NASA Astrophysics Data System (ADS)

    Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.

    2015-03-01

    Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.

  8. Software Configuration Management Plan for the K West Basin Integrated Water Treatment System (IWTS) Project A.9

    SciTech Connect

    GREEN, J.W.

    2000-05-01

    This document provides a configuration control plan for the software associated with the operation and control of the Integrated Water Treatment System (IWTS). It establishes requirements for ensuring configuration item identification, configuration control, configuration status accounting, defect reporting and resolution of computer software. It is written to comply with HNF-SD-SNF-CM-001, Spent Nuclear Fuel Configuration Management Plan (Forehand 1998) and HNF-PRO-309 Computer Software Quality Assurance Requirements, and applicable sections of administrative procedure CM-6-037-00, SNF Project Process Automation Software and Equipment.

  9. Balancing accuracy and efficiency in selecting vibrational configuration interaction basis states using vibrational perturbation theory

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-08-01

    This work describes the benchmarking of a vibrational configuration interaction (VCI) algorithm that combines the favourable computational scaling of VPT2 with the algorithmic robustness of VCI, in which VCI basis states are selected according to the magnitude of their contribution to the VPT2 energy, for the ground state and fundamental excited states. Particularly novel aspects of this work include: expanding the potential to 6th order in normal mode coordinates, using a double-iterative procedure in which configuration selection and VCI wavefunction updates are performed iteratively (micro-iterations) over a range of screening threshold values (macro-iterations), and characterisation of computational resource requirements as a function of molecular size. Computational costs may be further reduced by a priori truncation of the VCI wavefunction according to maximum extent of mode coupling, along with discarding negligible force constants and VCI matrix elements, and formulating the wavefunction in a harmonic oscillator product basis to enable efficient evaluation of VCI matrix elements. Combining these strategies, we define a series of screening procedures that scale as O ( Nmode 6 ) - O ( Nmode 9 ) in run time and O ( Nmode 6 ) - O ( Nmode 7 ) in memory, depending on the desired level of accuracy. Our open-source code is freely available for download from http://www.sourceforge.net/projects/pyvci-vpt2.

  10. Deformation and cluster structures in 12C studied with configuration mixing using Skyrme interactions

    NASA Astrophysics Data System (ADS)

    Fukuoka, Y.; Shinohara, S.; Funaki, Y.; Nakatsukasa, T.; Yabana, K.

    2013-07-01

    We report an investigation of the structure of the 12C nucleus employing a newly developed configuration-mixing method. In the three-dimensional coordinate-space representation, we generate a number of Slater determinants with various correlated structures using the imaginary-time algorithm. We then diagonalize a many-body Hamiltonian with the Skyrme interaction in the space spanned by the Slater determinants with parity and angular momentum projections. Our calculation reasonably describes the ground and excited states of the 12C nucleus, both for shell-model-like and cluster-like states. The excitation energies and transition strengths of the ground-state rotational band are well reproduced. Negative-parity excited states, 11-, 21-, and 31-, are also reasonably described. The second and third 0+ states, 02+ and 03+, appear at around 8.8 and 15 MeV, respectively. The 02+ state shows a structure consistent with former results of the α-cluster models. However, the calculated radius of the 02+ state is smaller than in those calculations. The three-α linear-chain configuration dominates in the 03+ state.

  11. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  12. Electronic spectra and photodissociation of vinyl chloride: A symmetry-adapted cluster configuration interaction study

    SciTech Connect

    Arulmozhiraja, Sundaram; Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi

    2006-01-21

    The vertical absorption spectrum and photodissociation mechanism of vinyl chloride (VC) were studied by using symmetry-adapted cluster configuration interaction theory. The important vertical {pi}{yields}{pi}* excitation was intensively examined with various basis sets up to aug-cc-pVTZ augmented with appropriate Rydberg functions. The excitation energy for {pi}{yields}{pi}* transition obtained in the present study, 6.96 eV, agrees well with the experimental value, 6.7-6.9 eV. Calculated excitation energies along with the oscillator strengths clarify that the main excitation in VC is the {pi}{yields}{pi}* excitation. Contrary to the earlier theoretical reports, the results obtained here support that the C-Cl bond dissociation takes place through the n{sub Cl}-{sigma}{sub C-Cl}* state.

  13. Compound I in horseradish peroxidase enzyme: Magnetic state assessment by quadratric configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Zazza, Costantino; Sanna, Nico; Tatoli, Simone; Aschi, Massimiliano; Palma, Amedeo

    Quadratic configuration interaction procedure with single and double electronic excitations (QCISD) has been used, for the first time, to calculate the electronic structure of the Compound I (CpdI), which represents a key intermediate in the catalytic cycle of Horseradish Peroxidase (HRP) enzyme. The QCISD method is applied to lowest quasi-isoenergetic doublet and quartet spin multiplicity and results compared with density functional theory (DFT/B3LYP) data. This investigation shows that, at present, QCISD is more accurate than DFT-based approach in discriminating between the two lowest magnetic states of CpdI complex in HRP enzyme. Such a result opens the possibility of theoretically addressing the reaction mechanism leading to CpdI complex in HRP using a correlated wavefunction based approach.

  14. Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application

    SciTech Connect

    Blunt, N. S. Kersten, J. A. F.; Smart, Simon D.; Spencer, J. S.; Booth, George H.; Alavi, Ali

    2015-05-14

    We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable.

  15. Hyperfine-structure studies of Nb ii: Experimental and relativistic configuration-interaction results

    NASA Astrophysics Data System (ADS)

    Young, L.; Hasegawa, S.; Kurtz, C.; Datta, Debasis; Beck, Donald R.

    1995-05-01

    We report an experimental and theoretical study of the hyperfine structure (hfs) in various metastable states in 93Nb ii. Hyperfine structures of five levels in Nb ii have been measured using a combination of the laser-rf double resonance and laser-induced fluorescence methods in a collinear laser-ion-beam geometry. Theoretically, for J=2, a multireference calculation of energies and hfs based on a relativistic configuration-interaction methodology of the lowest ten levels in the (4d+5s)4 manifold is reported. The average energy error is 450 cm-1. Many of the hyperfine constants show large changes from the Dirac-Fock values and the magnetic dipole constant has a 4% accuracy for the one J=2 level measured. We have also identified all the core-valence and core-core effects that dominate the energy differences and hfs.

  16. On the performance of atomic natural orbital basis sets: A full configuration interaction study

    SciTech Connect

    Illas, F. Departament de Quimica Fisica, Grup de Quimica Quantica, Facultat de Quimica, Universitat de Barcelona, C Ricart, J.M. ); Rubio, J. ); Bagus, P.S. )

    1990-10-01

    The performance of atomic natural orbital (ANO) basis sets has been studied by comparing self-consistant field (SCF) and full configuration interaction (CI) results obtained for the first row atoms and hydrides. The ANO results have been compared with those obtained using a segmented basis set containing the same number of contracted basis functions. The total energies obtained with the ANO basis sets are always lower than the one obtained by using the segmented one. However, for the hydrides, differential electronic correlation energy obtained with the ANO basis set may be smaller than the one recovered with the segmented set. We relate this poorer differential correlation energy for the ANO basis set to the fact that only one contracted {ital d} function is used for the ANO and segmented basis sets.

  17. Full configuration-interaction calculations with the simplest iterative complement method: Merit of the inverse Hamiltonian

    SciTech Connect

    Nakatsuji, Hiroshi

    2011-12-15

    The simplest iterative complement (SIC) calculations starting from Hartree-Fock and giving full configuration interaction (CI) at convergence were performed using regular and inverse Hamiltonians. Each iteration step is variational and involves only one variable. The convergence was slow when we used the regular Hamiltonian, but became very fast when we used the inverse Hamiltonian. This difference is due to the Coulomb singularity problem inherent in the regular Hamiltonian; the inverse Hamiltonian does not have such a problem. For this reason, the merit of the inverse Hamiltonian over the regular one becomes even more dramatic when we use a better-quality basis set. This was seen by comparing the calculations due to the minimal and double-{zeta} basis sets. Similar problematic situations exist in the Krylov sequence and in the Lanczos and Arnoldi methods.

  18. A Doubles Correction to Electronic Excited States from Configuration Interaction in the Space of Single Substitutions

    NASA Technical Reports Server (NTRS)

    Head-Gordon, Martin; Rico, Rudolph J.; Lee, Timothy J.; Oumi, Manabu

    1994-01-01

    A perturbative correction to the method of configuration interaction with single substitutions (CIS) is presented. This CIS(D) correction approximately introduces the effect of double substitutions which are absent in CIS excited states. CIS(D) is a second-order perturbation expansion of the coupled-cluster excited state method, restricted to single and double substitutions, in a series in which CIS is zeroth order, and the first-order correction vanishes. CIS (D) excitation energies are size consistent and the calculational complexity scales with the fifth power of molecular size, akin to second-order Moller-Plesset theory for the ground state. Calculations on singlet excited states of ethylene, formaldehyde, acetaldehyde, butadiene and benzene show that CIS (D) is a uniform improvement over CIS. CIS(D) appears to be a promising method for examining excited states of large molecules, where more accurate methods are not feasible.

  19. Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application.

    PubMed

    Blunt, N S; Smart, Simon D; Kersten, J A F; Spencer, J S; Booth, George H; Alavi, Ali

    2015-05-14

    We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable. PMID:25978883

  20. Configuration Interaction as an Impurity Solver: Benchmark Dynamical Mean-Field Theory for the Hubbard Model

    NASA Astrophysics Data System (ADS)

    Go, Ara; Millis, Andrew J.

    2013-03-01

    The configuration interaction technique has been widely used in quantum chemistry to solve quantum many body systems with lower computational costs than exact diagonalization and was introduced by Dominika Zgid, Emanuel Gull, and Garnet Kin-Lic Chan [Phys. Rev. B 86, 165128 (2012)] as a solver for the impurity models of dynamical mean field theory. We extend their work, demonstrating for the one and two dimensional Hubbard model how the method reproduces the known results and allows convergence with bath size to be studied in cluster dynamical mean field theory. As an example of the power of the method, cluster dynamical mean field studies of the three band copper-oxygen model are presented. This work was supported by the CMCSN program of the US Department of Energy.

  1. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo

    SciTech Connect

    Overy, Catherine; Blunt, N. S.; Shepherd, James J.; Booth, George H.; Cleland, Deidre; Alavi, Ali

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.

  2. Electric dipole transition moments and permanent dipole moments for spin-orbit configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Roostaei, B.; Ermler, W. C.

    2012-03-01

    A procedure for calculating electric dipole transition moments and permanent dipole moments from spin-orbit configuration interaction (SOCI) wave functions has been developed in the context of the COLUMBUS ab initio electronic structure programs. The SOCI procedure requires relativistic effective core potentials and their corresponding spin-orbit coupling operators to define the molecular Hamiltonian, electric dipole transition moment and permanent dipole moment matrices. The procedure can be used for any molecular system for which the COLUMBUS SOCI circuits are applicable. Example applications are reported for transition moments and dipole moments for a series of electronic states of LiBe and LiSr defined in diatomic relativistic ωω-coupling.

  3. Quasidegenerate second-order perturbation corrections to single excitation configuration interaction

    NASA Astrophysics Data System (ADS)

    Head-Gordon, Martin

    1999-02-01

    A family of quasidegenerate second-order perturbation theories that correct excitation energies from single-excitation configuration interaction (CIS) are introduced which generalize the earlier non-degenerate second-order method, CIS(D). The new methods are termed CIS(D), where n ranges from 0 to x, according to the number of terms retained in a doubles denominator expansion. Truncation at either n = 0 or n = 1 yields methods which involve the diagonalization of a dressed singles-only response matrix, where the dressing is state-independent. Hence CIS(D0) and CIS(D1) can be implemented efficiently using semidirect methods, which are discussed. Test calculations on formaldehyde, ethylene, chlorine nitrate, styrene, benzaldehyde, and chalcone are presented to assess the performance of these methods. CIS(D0) and CIS(D1) both show significant improvements relative to CIS(D) in cases of near-degeneracy.

  4. Large-dimension configuration-interaction calculations of positron binding to the group-II atoms

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2006-03-15

    The configuration-interaction (CI) method is applied to the calculation of the structures of a number of positron binding systems, including e{sup +}Be, e{sup +}Mg, e{sup +}Ca, and e{sup +}Sr. These calculations were carried out in orbital spaces containing about 200 electron and 200 positron orbitals up to l=12. Despite the very large dimensions, the binding energy and annihilation rate converge slowly with l, and the final values do contain an appreciable correction obtained by extrapolating the calculation to the l{yields}{infinity} limit. The binding energies were 0.00317 hartree for e{sup +}Be, 0.0170 hartree for e{sup +}Mg, 0.0189 hartree for e{sup +}Ca, and 0.0131 hartree for e{sup +}Sr.

  5. An excited-state approach within full configuration interaction quantum Monte Carlo

    SciTech Connect

    Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali

    2015-10-07

    We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available.

  6. Family interaction and treatment adherence after stroke.

    PubMed

    Evans, R L; Bishop, D S; Matlock, A L; Stranahan, S; Smith, G G; Halar, E M

    1987-08-01

    Caregivers of 60 stroke patients were assessed five months after patient discharge from a stroke care unit to determine the relationship between family function and poststroke treatment adherence. Areas of family interaction which were significantly related to ratings of treatment adherence included problem solving, communication, and affective involvement. Better functioning families were consistently high on signs of treatment adherence. Findings suggest that families with specific dysfunction may not be as capable of helping patients comply with rehabilitation efforts as families who function more effectively. Thorough family assessment to identify which areas of family interaction are most problematic in relation to adherence issues is recommended. PMID:3619615

  7. State-averaged Monte Carlo configuration interaction applied to electronically excited states

    NASA Astrophysics Data System (ADS)

    Coe, J. P.; Paterson, M. J.

    2013-10-01

    We introduce state-averaging into the method of Monte Carlo configuration interaction (SA-MCCI) to allow the stable and efficient calculation of excited states. We show that excited potential curves for H3, including a crossing with the ground state, can be accurately reproduced using a small fraction of the full configuration interaction (FCI) space. A recently introduced error measure for potential curves [J. P. Coe and M. J. Paterson, J. Chem. Phys. 137, 204108 (2012)] is also shown to be a fair approach when considering potential curves for multiple states. We demonstrate that potential curves for LiF using SA-MCCI agree well with the FCI results and the avoided crossing occurs correctly. The seam of conical intersections for CH2 found by Yarkony [J. Chem. Phys. 104, 2932 (1996)] is used as a test for SA-MCCI and we compare potential curves from SA-MCCI with FCI results for this system for the first three triplet states. We then demonstrate the improvement from using SA-MCCI on the dipole of the 2 1A1 state of carbon monoxide. We then look at vertical excitations for small organic molecules up to the size of butadiene where the SA-MCCI energies and oscillator strengths are compared with CASPT2 values [M. Schreiber, M. R. Silva-Junior, S. P. A. Sauer, and W. Thiel, J. Chem. Phys. 128, 134110 (2008)]. We finally see if the SA-MCCI results for these excitation energies can be improved by using MCCIPT2 with approximate natural orbitals when the PT2 space is not onerously large.

  8. Jet-Pylon Interaction of High Bypass Ratio Separate Flow Nozzle Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Kinzie, Kevin W.

    2004-01-01

    NASA Langley Research Center, Hampton, Virginia, 23681-0001 USA An experimental investigation was performed of the acoustic effects of jet-pylon interaction for separate flow and chevron nozzles of both bypass ratio five and eight. The models corresponded to an approximate scale factor of nine. Cycle conditions from approach to takeoff were tested at wind tunnel free jet Mach numbers of 0.1, 0.2 and 0.28. An eight-chevron core nozzle, a sixteen chevron fan nozzle, and a pylon were primary configuration variables. In addition, two orientations of the chevrons relative to each other and to the pylon were tested. The effect of the pylon on the azimuthal directivity was investigated for the baseline nozzles and the chevron nozzles. For the bypass ratio five configuration, the addition of the pylon reduces the noise by approximately 1 EPNdB compared to the baseline case and there is little effect of azimuthal angle. The core chevron produced a 1.8 EPNdB reduction compared to the baseline nozzle. Adding a pylon to the chevron core nozzle produces an effect that depends on the orientation of the chevron relative to the pylon. The azimuthal directivity variation remains low at less than 0.5 EPNdB. For the bypass ratio eight configuration the effect of adding a pylon to the baseline nozzle is to slightly increase the noise at higher cycle points and for the case with a core chevron the pylon has little additional effect. The azimuthal angle effect continues to be very small for the bypass ratio eight configurations. A general impact of the pylon was observed for both fan and core chevrons at both bypass ratios. The pylon reduces the typical low frequency benefit of the chevrons, even eliminating it in some cases, while not impacting the high frequency. On an equal ideal thrust basis, the bypass ratio eight baseline nozzle was about 5 EPNdB lower than the bypass ratio five baseline nozzle at the highest cycle condition, however, with a pylon installed the difference

  9. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  10. Ankle fracture configuration following treatment with and without arthroscopic-assisted reduction and fixation

    PubMed Central

    Angthong, Chayanin

    2016-01-01

    AIM: To report ankle fracture configurations and bone quality following arthroscopic-assisted reduction and internal-fixation (ARIF) or open reduction and internal-fixation (ORIF). METHODS: The patients of ARIF (n = 16) or ORIF (n = 29) to treat unstable ankle fracture between 2006 and 2014 were reviewed retrospectively. Baseline data, including age, sex, type of injury, immediate postoperative fracture configuration (assessed on X-rays and graded by widest gap and largest step-off of any intra-articular site), bone quality [assessed with bone mineral density (BMD) testing] and arthritic changes on X-rays following surgical treatments were recorded for each group. RESULTS: Immediate-postoperative fracture configurations did not differ significantly between the ARIF and ORIF groups. There were anatomic alignments as 8 (50%) and 8 (27.6%) patients in ARIF and ORIF groups (P = 0.539) respectively. There were acceptable alignments as 12 (75%) and 17 (58.6%) patients in ARIF and ORIF groups (P = 0.341) respectively. The arthritic changes in follow-up period as at least 16 wk following the surgeries were shown as 6 (75%) and 10 (83.3%) patients in ARIF and ORIF groups (P = 0.300) respectively. Significantly more BMD tests were performed in patients aged > 60 years (P < 0.001), ARIF patients (P = 0.021), and female patients (P = 0.029). There was no significant difference in BMD test t scores between the two groups. CONCLUSION: Ankle fracture configurations following surgeries are similar between ARIF and ORIF groups, suggesting that ARIF is not superior to ORIF in treatment of unstable ankle fractures. PMID:27114933

  11. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 1: Wind tunnel test pressure data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Devereaux, P. A.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.

  12. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    NASA Astrophysics Data System (ADS)

    Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo; Vavassori, Paolo; Sarella, Anandakumar; Bisero, Diego

    2016-05-01

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.

  13. Comparison of fully internally and strongly contracted multireference configuration interaction procedures

    NASA Astrophysics Data System (ADS)

    Sivalingam, Kantharuban; Krupicka, Martin; Auer, Alexander A.; Neese, Frank

    2016-08-01

    Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO+, OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ˜0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu [NH 3 ] 4 2 + model complex. The benchmark is supplemented with the

  14. Comparison of fully internally and strongly contracted multireference configuration interaction procedures.

    PubMed

    Sivalingam, Kantharuban; Krupicka, Martin; Auer, Alexander A; Neese, Frank

    2016-08-01

    Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO(+), OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ∼0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu[NH3]4 (2+) model complex. The benchmark is supplemented with the

  15. Ab initio configuration interaction study of the B- and C-band photodissociation of methyl iodide

    NASA Astrophysics Data System (ADS)

    Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Buenker, Robert J.

    2011-01-01

    Multireference spin-orbit configuration interaction calculations have been carried out for the valence and low-lying Rydberg states of CH_3I. Potential energy surfaces along the C-I dissociation coordinate (minimal energy paths with respect to the umbrella angle) have been obtained as well as transition moments for excitation of the Rydberg states. It is shown that the B and C absorption bands of CH_3I are dominated by the perpendicular {}^3{R}_1, {^1R} (E) leftarrow tilde{X} A_1 transitions, while the {}^3R_2(E), ^3R_{0^+}(A_1) leftarrow tilde{X} A_1 transitions are very weak. It is demonstrated that the bound Rydberg states of the B and C bands are predissociated due to the interaction with the repulsive E and A_2 components of the {}^3A_1 state, with the {}^3A_1(E) state being the main decay channel. It is predicted that the only possibility to obtain the I(^2P_{3/2}) ground state atoms from the CH_3I photodissociation in the B band is by interaction of the {}^3R_1(E) state with the repulsive {}^1Q(E) valence state at excitation energies above 55 000 cm^{-1}. The calculated ab initio data are used to analyze the influence of the Rydberg state vibrational excitation on the decay process. It is shown that, in contrast to intuition, excitation of the ν _3 C-I stretching mode supresses the predissociation, whereas the ν _6 rocking vibration enhances the predissociation rate.

  16. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Logan, Bruce E

    2015-09-01

    Efficient treatment of domestic wastewater under continuous flow conditions using microbial fuel cells (MFCs) requires hydraulic retention times (HRTs) that are similar to or less than those of conventional methods such as activated sludge. Two MFCs in series were compared at theoretical HRTs of 8.8, 4.4 and 2.2 h using two different brush-electrode MFC configurations: a full brush evenly spaced between two cathodes (S2C); and trimmed brush anodes near a single cathode (N1C). The MFCs with two cathodes produced more power than the MFCs with a single cathode, with 1.72 mW for the S2C, compared to and 1.12 mW for the N1C at a set HRT = 4.4 h. The single cathode MFCs with less cathode area removed slightly more COD (54.2 ± 2.3%, N1C) than the two-cathode MFCs (48.3 ± 1.0%, S2C). However, the higher COD removal was due to the longer HRTs measured for the MFCs with the N1C configuration (10.7, 5.3 and 3.1 h) than with the S2C configuration (7.2, 3.7 and 2.2 h), despite the same theoretical HRT. The longer HRTs of the N1C MFCs also resulted in slightly higher coulombic efficiencies (≤37%) than those of the S2C MFCs (≤29%). While the S2C MFC configuration would be more advantageous based on electrical power production, the N1C MFC might be more useful on the basis of capital costs relative to COD removal efficiency due to the use of less cathode surface area per volume of reactor. PMID:25996751

  17. Three-dimensional particle-in-cell modeling of terahertz gyrotrons with cylindrical and planar configurations of the interaction space

    SciTech Connect

    Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Zheleznov, I. V.; Zotova, I. V.

    2013-04-15

    We perform 3D particle-in-cell simulations of terahertz gyrotrons with two different configurations of the interaction space. For a gyrotron with conventional cylindrical configuration of the interaction cavity, we demonstrate reasonable agreement between simulations and experimental results, including output frequency, structure of the higher-order operating mode (TE{sub 17,4}), output power, and ohmic losses. For a novel planar gyrotron scheme with transverse energy extraction, a possibility of further increasing the oversized factor with the single-mode operation regime retained is shown. Frequency detuning by mechanical variation of the gap between waveguide plates is also demonstrated.

  18. Configuration interaction study on the ground and excited electronic states of the SrH molecule

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoting; Liang, Guiying; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing

    2016-02-01

    High-level ab initio calculations on the ground and the excited states of the SrH molecule have been carried out utilizing the multi-reference configuration interaction method plus Davidson correction (MRCI+Q) method, with small-core relativistic effective core potentials together with the corresponding correlation consistent polarized valence basis sets. The potential energy curves (PECs) of the 16 Λ-S states have been obtained with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound states were calculated, most of which have been reported for the first time, with those pertaining to the X2Σ+, A2П, B2Σ+, and A‧2Δ states being in line with the available experimental and theoretical values. The calculated spin-orbit matrix element indicates a strong interaction between the X2Σ+ and A2П states in the Franck-Condon region. The spin-orbit coupling (SOC) splits the lowest strongly bound X2Σ+, A2П, A‧2Δ, B2Σ+, and D2Σ+ states into 9 Ω states. For the D2Σ+ state, the SOC shifts the potential-well minimum to higher energy and shortens the bond length. The transition properties of the bound Λ-S states were predicated, including the transition dipole moments (TDMs), the Franck-Condon factors, and the radiative lifetimes. The lifetimes were calculated to be 34.2 ns (v‧=0) and 55.0 ns (v‧=0) for A2П and B2Σ+, in good agreement with the experimental results of 33.8±1.9 ns and 48.4±2.0 ns.

  19. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    NASA Astrophysics Data System (ADS)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  20. Stability of resonant configurations during the migration of planets and constraints on disk-planet interactions

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.; Correia, A. C. M.; Laskar, J.

    2015-07-01

    We study the stability of mean-motion resonances (MMR) between two planets during their migration in a protoplanetary disk. We use an analytical model of resonances and describe the effect of the disk by a migration timescale (Tm,i) and an eccentricity damping timescale (Te,i) for each planet (i = 1,2 for the inner and outer planets, respectively). We show that the resonant configuration is stable if Te,1/Te,2> (e1/e2)2. This general result can be used to put constraints on specific models of disk-planet interactions. For instance, using classical prescriptions for type-I migration, we show that when the angular momentum deficit (AMD) of the inner orbit is greater than the outer's orbit AMD, resonant systems must have a locally inverted disk density profile to stay locked in resonance during the migration. This inversion is very atypical of type-I migration and our criterion can thus provide an evidence against classical type-I migration. That is indeed the case for the Jupiter-mass resonant systems HD 60532b, c (3:1 MMR), GJ 876b, c (2:1 MMR), and HD 45364b, c (3:2 MMR). This result may be evidence of type-II migration (gap-opening planets), which is compatible with the high masses of these planets.

  1. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo.

    PubMed

    Kersten, J A F; Booth, George H; Alavi, Ali

    2016-08-01

    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses and compares two contrasting "universal" explicitly correlated approaches that fit into the FCIQMC framework: the [2]R12 method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mEh to 3-4 mEh. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach. PMID:27497549

  2. Tensor representation techniques for full configuration interaction: A Fock space approach using the canonical product format.

    PubMed

    Böhm, Karl-Heinz; Auer, Alexander A; Espig, Mike

    2016-06-28

    In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N(5) scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ϵ = 10(-4) and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N(10) and future work has to be directed towards reduction-free algorithms. PMID:27369492

  3. Highly correlated configuration interaction calculations on water with large orbital bases

    SciTech Connect

    Almora-Díaz, César X.

    2014-05-14

    A priori selected configuration interaction (SCI) with truncation energy error [C. F. Bunge, J. Chem. Phys. 125, 014107 (2006)] and CI by parts [C. F. Bunge and R. Carbó-Dorca, J. Chem. Phys. 125, 014108 (2006)] are used to approximate the total nonrelativistic electronic ground state energy of water at fixed experimental geometry with CI up to sextuple excitations. Correlation-consistent polarized core-valence basis sets (cc-pCVnZ) up to sextuple zeta and augmented correlation-consistent polarized core-valence basis sets (aug-cc-pCVnZ) up to quintuple zeta quality are employed. Truncation energy errors range between less than 1 μhartree, and 100 μhartree for the largest orbital set. Coupled cluster CCSD and CCSD(T) calculations are also obtained for comparison. Our best upper bound, −76.4343 hartree, obtained by SCI with up to sextuple excitations with a cc-pCV6Z basis recovers more than 98.8% of the correlation energy of the system, and it is only about 3 kcal/mol above the “experimental” value. Despite that the present energy upper bounds are far below all previous ones, comparatively large dispersion errors in the determination of the extrapolated energies to the complete basis set do not allow to determine a reliable estimation of the full CI energy with an accuracy better than 0.6 mhartree (0.4 kcal/mol)

  4. A deterministic alternative to the full configuration interaction quantum Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Tubman, Norm M.; Lee, Joonho; Takeshita, Tyler Y.; Head-Gordon, Martin; Whaley, K. Birgitta

    2016-07-01

    Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr2 molecule. We demonstrate for systems like Cr2 that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C2.

  5. Relativistic [4] Configuration Interaction Hyperfine Structure Constants for ^133CsII

    NASA Astrophysics Data System (ADS)

    O'Malley, Steven M.; Beck, Donald R.

    1996-05-01

    RCI hfs constants have been obtained for all ^133CsII levels belonging to the 5p^5(6s+5d+6p) configurations using methodology presented elsewhere(e.g. D. Datta and D. R. Beck, Phys. Rev. A 52), 3622 (1995).. Except for 2 levels, all A's agree with experiment(C. J. Sansonetti and K. L. Andrew, J. Opt. Soc. Am. 3), 386 (1986). to 10% or better. There are large many body effects present for the odd J=1,2 levels as a result of the interaction of nearby 5p^5 6s and 5p^5 5d, and the large discrepancy (60.77%) in A for 5d3/2[3/2]2 and 5d3/2[1/2]1 disappears once the residual errors in energy differences (300 - 600 cm-1) are removed. Our values for the small quadruple hfs constants show large discrepancies with the few experimental values(E. Alvarez et al Phys. Rev. A 21), 710 (1980). available. We think the fault lies mainly with experiment, and the B's should be remeasured.

  6. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    SciTech Connect

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-03-07

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with {sup 4}Σ{sup −} and {sup 2}Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm{sup −1} above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm{sup −1} of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm{sup −1}, which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths.

  7. Tensor representation techniques for full configuration interaction: A Fock space approach using the canonical product format

    NASA Astrophysics Data System (ADS)

    Böhm, Karl-Heinz; Auer, Alexander A.; Espig, Mike

    2016-06-01

    In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N5 scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ɛ = 10-4 and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N10 and future work has to be directed towards reduction-free algorithms.

  8. Design and Construction of Field Reversed Configuration Plasma Chamber for Plasma Material Interaction Studies

    NASA Astrophysics Data System (ADS)

    Smith, DuWayne L.

    A Field Reversed Configuration (FRC) plasma source was designed and constructed to conduct high energy plasma-materials interaction studies. The purpose of these studies is the development of advanced materials for use in plasma based electric propulsion systems and nuclear fusion containment vessels. Outlined within this thesis is the basic concept of FRC plasmoid creation, an overview of the device design and integration of various diagnostics systems for plasma conditions and characterization, discussion on the variety of material defects resulting from the plasma exposure with methods and tools designed for characterization. Using a Michelson interferometer it was determined that the FRC plasma densities are on the order of ~1021 m-3. A novel dynamic pressure probe was created to measure ion velocities averaging 300 km/s. Compensating flux loop arrays were used to measure magnetic field strength and verify the existence of the FRC plasmoid and when used in combination with density measurements it was determined that the average ion temperatures are ~130 eV. X-ray Photoelectron Spectroscopy (XPS) was employed as a means of characterizing the size and shape of the plasma jet in the sample exposure positions. SEM results from preliminary studies reveal significant morphological changes on plasma facing material surfaces, and use of XRD to elucidate fuel gas-ion implantation strain rates correlated to plasma exposure energies.

  9. Redetermined structure, inter-molecular inter-actions and absolute configuration of royleanone.

    PubMed

    Fun, Hoong-Kun; Chantrapromma, Suchada; Salae, Abdul Wahab; Razak, Ibrahim Abdul; Karalai, Chatchanok

    2011-05-01

    The structure of the title diterpenoid, C(20)H(28)O(3), {systematic name: (4bS,8aS)-3-hy-droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa-hydro-phenanthrene-1,4-dione} is confirmed [Eugster et al. (1993 ▶). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclo-hexane ring adopts a chair conformation whereas the other cyclo-hexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intra-molecular O-H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol-ecules are linked into chains along [010] by O-H⋯O hydrogen bonds and weak C-H⋯O inter-actions. The packing also features C⋯O [3.131 (3) Å] short contacts. PMID:21754362

  10. An explicitly correlated approach to basis set incompleteness in full configuration interaction quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Booth, George H.; Cleland, Deidre; Alavi, Ali; Tew, David P.

    2012-10-01

    By performing a stochastic dynamic in a space of Slater determinants, the full configuration interaction quantum Monte Carlo (FCIQMC) method has been able to obtain energies which are essentially free from systematic error to the basis set correlation energy, within small and systematically improvable error bars. However, the weakly exponential scaling with basis size makes converging the energy with respect to basis set costly and in larger systems, impossible. To ameliorate these basis set issues, here we use perturbation theory to couple the FCIQMC wavefunction to an explicitly correlated strongly orthogonal basis of geminals, following the { [2]_{{R12}} } approach of Valeev et al. The required one- and two-particle density matrices are computed on-the-fly during the FCIQMC dynamic, using a sampling procedure which incurs relatively little additional computation expense. The F12 energy corrections are shown to converge rapidly as a function of sampling, both in imaginary time and number of walkers. Our pilot calculations on the binding curve for the carbon dimer, which exhibits strong correlation effects as well as substantial basis set dependence, demonstrate that the accuracy of the FCIQMC-F12 method surpasses that of all previous FCIQMC calculations, and that the F12 correction improves results equivalent to increasing the quality of the one-electron basis by two cardinal numbers.

  11. The effect of quantization on the full configuration interaction quantum Monte Carlo sign problem

    NASA Astrophysics Data System (ADS)

    Kolodrubetz, M. H.; Spencer, J. S.; Clark, B. K.; Foulkes, W. M. C.

    2013-01-01

    The sign problem in full configuration interaction quantum Monte Carlo (FCIQMC) without annihilation can be understood as an instability of the psi-particle population to the ground state of the matrix obtained by making all off-diagonal elements of the Hamiltonian negative. Such a matrix, and hence the sign problem, is basis dependent. In this paper, we discuss the properties of a physically important basis choice: first versus second quantization. For a given choice of single-particle orbitals, we identify the conditions under which the fermion sign problem in the second quantized basis of antisymmetric Slater determinants is identical to the sign problem in the first quantized basis of unsymmetrized Hartree products. We also show that, when the two differ, the fermion sign problem is always less severe in the second quantized basis. This supports the idea that FCIQMC, even in the absence of annihilation, improves the sign problem relative to first quantized methods. Finally, we point out some theoretically interesting classes of Hamiltonians where first and second quantized sign problems differ, and others where they do not.

  12. Quasidegenerate scaled opposite spin second order perturbation corrections to single excitation configuration interaction

    NASA Astrophysics Data System (ADS)

    Casanova, David; Rhee, Young Min; Head-Gordon, Martin

    2008-04-01

    Scaled opposite spin (SOS) second order perturbative corrections to single excitation configuration interaction (CIS) are extended to correctly treat quasidegeneracies between excited states. Two viable methods, termed as SOS-CIS(D0) and SOS-CIS(D1), are defined, implemented, and tested. Each involves one empirical parameter (plus a second for the SOS-MP2 ground state), has computational cost that scales with the fourth power of molecule size, and has storage requirements that are cubic, with only quantities of the rank of single excitations produced and stored during iterations. Tests on a set of low-lying adiabatic valence excitation energies and vertical Rydberg excitations of organic and inorganic molecules show that the empirical parameter can be acceptably transferred from the corresponding nondegenerate perturbation theories without any further fitting. Further tests on higher excited states show that the new methods correctly perform for surface crossings for which nondegenerate approaches fail. Numerical results show that SOS-CIS(D0) appears to treat Rydberg excitations in a more balanced way than SOS-CIS(D1) and is, therefore, likely to be the preferred approach. It should be useful for exploring excited state geometries, transition structures, and conical intersections for states of medium to large organic molecules that are dominated by single excitations.

  13. Photoelectron spectra of some important biological molecules: symmetry-adapted-cluster configuration interaction study.

    PubMed

    Farrokhpour, Hossein; Ghandehari, Maryam

    2013-05-23

    In this work, the valence vertical ionization energies (up to 5) of some important biologically active molecules including 2,4-dinitrophenol, 2,4-dinitroanisole, nicotinic acid, nicotinic acid methyl ester, nicotinamide, N,N-diethylnicotinamide, barbituric acid, uric acid, cytosine, β-carotene, and menadione were calculated in the gas phase and compared with the experimental data reported in the literature. The symmetry-adapted-cluster configuration interaction (SAC-CI) general-R method was used to calculate the ionization energies. The intensity of each ionization band was evaluated using the monopole approximation. Comparison of the calculated photoelectron spectrum of each molecule with its corresponding experimental spectra allowed for assigning the photoelectron bands by natural bonding orbital (NBO) calculations even though some of the associated bands were significantly overlapped for some molecules. Among the considered molecules, there was no agreement between the experimental and calculated photoelectron spectrum of β-carotene. The reason for this disagreement was theoretically investigated and attributed to the degradation and decomposition of β-carotene. The calculated first ionization energies of the considered molecules were correlated with their Hückel k-index to obtain Coulomb (α) and resonance (β) integrals of the Hückel molecular orbital theory for the biomolecules considered in this study. A linear correlation was found between the first ionization energy and the Hückel k-index. PMID:23659524

  14. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kersten, J. A. F.; Booth, George H.; Alavi, Ali

    2016-08-01

    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses and compares two contrasting "universal" explicitly correlated approaches that fit into the FCIQMC framework: the [2]R12 method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mEh to 3-4 mEh. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.

  15. Ab initio no core configuration interaction calculations in the natural orbital basis

    NASA Astrophysics Data System (ADS)

    Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter

    2015-10-01

    The natural orbital basis has been successfully used in the past in atomic and molecular structure calculations. The natural orbitals used in those calculations are calculated by diagonalizing the electron one-body density matrix. Here we develop natural orbitals for nuclear no-core configuration interaction (NCCI) calculations. A NCCI calculation using an initial single particle basis, such as the harmonic oscillator basis, must first be performed in order to obtain a one-body density matrix. The eigenvectors of the one-body density matrix are the natural orbitals, and the corresponding eigenvalues are the occupations of these natural orbitals in the nuclear wave function. According to these occupancies, the most important natural orbitals, in the sense of the most occupied, can then be selected and used in a NCCI calculation. We discuss ab initio nuclear NCCI calculations for light nuclei and assess their ability to provide faster convergence. Supported by the US DOE (under Grants DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, and DE-FG02-87ER40371), and the US NSF (under Grant 0904782). Computational resources provided by NERSC (supported by US DOE Contract DE-AC02-05CH11231), and NDCRC.

  16. Investigation of the full configuration interaction quantum Monte Carlo method using homogeneous electron gas models

    NASA Astrophysics Data System (ADS)

    Shepherd, James J.; Booth, George H.; Alavi, Ali

    2012-06-01

    Using the homogeneous electron gas (HEG) as a model, we investigate the sources of error in the "initiator" adaptation to full configuration interaction quantum Monte Carlo (i-FCIQMC), with a view to accelerating convergence. In particular, we find that the fixed-shift phase, where the walker number is allowed to grow slowly, can be used to effectively assess stochastic and initiator error. Using this approach we provide simple explanations for the internal parameters of an i-FCIQMC simulation. We exploit the consistent basis sets and adjustable correlation strength of the HEG to analyze properties of the algorithm, and present finite basis benchmark energies for N = 14 over a range of densities 0.5 ⩽ rs ⩽ 5.0 a.u. A single-point extrapolation scheme is introduced to produce complete basis energies for 14, 38, and 54 electrons. It is empirically found that, in the weakly correlated regime, the computational cost scales linearly with the plane wave basis set size, which is justifiable on physical grounds. We expect the fixed-shift strategy to reduce the computational cost of many i-FCIQMC calculations of weakly correlated systems. In addition, we provide benchmarks for the electron gas, to be used by other quantum chemical methods in exploring periodic solid state systems.

  17. State-of-the-art molecular applications of full configuration interaction quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Thomas, Robert; Overy, Catherine; Shepherd, James; Booth, George; Alavi, Ali

    2013-03-01

    Full configuration interaction quantum Monte Carlo (FCIQMC)1 and its initiator adaptation (i-FCIQMC)2 provide, in principle, exact (FCI) energies via a population dynamics algorithm of an ensemble of discrete, signed walkers in Slater-determinant space. We demonstrate that a novel choice of reference state has the potential to widen the scope of this already versatile method, and corroborate the finding that an extension of the algorithm to allow non-integer walkers can yield significantly reduced stochastic error without a commensurate increase in computational cost3. New applications of FCIQMC to transition-metal systems of general and biological interest are presented, many of which have, to date, posed serious challenges for traditional quantum chemical methods 45. 1 G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys., 131, 054106 (2009) 2 D. M. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys., 132, 041103 (2010) 3 F. R. Petruzielo, A. A. Holmes, H. J. Changlani, M. P. Nightingale and C. J. Umrigar, arXiv:1207.6138 4 N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 125, 074110 (2006) 5 C. J. Cramer, M. Wloch, P. Piecuch, C. Puzzarini and L. Gagliardi, J. Phys. Chem. A, 110, 1991 (2006)

  18. A study of electron affinities using the initiator approach to full configuration interaction quantum Monte Carlo.

    PubMed

    Cleland, D M; Booth, George H; Alavi, Ali

    2011-01-14

    For the atoms with Z ≤ 11, energies obtained using the "initiator" extension to full configuration interaction quantum Monte Carlo (i-FCIQMC) come to within statistical errors of the FCIQMC results. As these FCIQMC values have been shown to converge onto FCI results, the i-FCIQMC method allows similar accuracy to be achieved while significantly reducing the scaling with the size of the Slater determinant space. The i-FCIQMC electron affinities of the Z ≤ 11 atoms in the aug-cc-pVXZ basis sets are presented here. In every case, values are obtained to well within chemical accuracy [the mean absolute deviation (MAD) from the relativistically corrected experimental values is 0.41 mE(h)], and significantly improve on coupled cluster with singles, doubles and perturbative triples [CCSD(T)] results. Since the only remaining source of error is basis set incompleteness, we have investigated using CCSD(T)-F12 contributions to correct the i-FCIQMC results. By doing so, much faster convergence with respect to basis set size may be achieved for both the electron affinities and the FCIQMC ionization potentials presented in a previous paper. With this F12 correction, the MAD can be further reduced to 0.13 mE(h) for the electron affinities and 0.31 mE(h) for the ionization potentials. PMID:21241085

  19. Symmetry Breaking and Broken Ergodicity in Full Configuration Interaction Quantum Monte Carlo.

    PubMed

    Thomas, Robert E; Overy, Catherine; Booth, George H; Alavi, Ali

    2014-05-13

    The initiator full configuration interaction quantum Monte Carlo method (i-FCIQMC) is applied to the binding curve of N2 in Slater-determinant Hilbert spaces formed of both canonical restricted Hartree-Fock (RHF) and symmetry-broken unrestricted Hartree-Fock (UHF) orbitals. By explicit calculation, we demonstrate that the technique yields the same total energy for both types of orbital but that as the bond is stretched, FCI expansions expressed in unrestricted orbitals are substantially more compact than their restricted counterparts and more compact than those expressed in split-localized orbitals. These unrestricted Hilbert spaces, however, become nonergodic toward the dissociation limit, and the total wave function may be thought of as the sum of two weakly coupled, spin-impure, functions whose energies are nonetheless very close to the exact energy. In this limit, it is a challenge for i-FCIQMC to resolve a spin-pure wave function. The use of unrestricted natural orbitals is a promising remedy for this problem, as their expansions are more strongly weighted toward lower excitations of the reference, and they provide stronger coupling to higher excitations than do UHF orbitals. PMID:26580521

  20. Relativistic configuration interaction calculations of atomic properties of cesium plus, tin minus, and lanthanum minus

    NASA Astrophysics Data System (ADS)

    O'Malley, Steven Michael

    The work presented here is a compilation of three separate Relativistic Configuration Interaction (RCI) projects: 133Cs II hyperfine structure (HFS): HFS Constants have been obtained for all 5p5(5d + 6s + 6p) 133Cs II levels. The 22 magnetic dipole constants, A, agree with experiment to 12% or better for all but three levels. Many of the odd J = 1,2 levels, which include these three, exhibit large many body effects. Our values for the quadrupole HFS constants are considerably smaller than the few highly uncertain experimental values, which we believe need remeasurement. For the first time, we have found certain excitations from the 4d subshell to be important; we ascribe this to the presence of an open 5p subshell. Sn- bound excited state electron affinities (EA): Theoretical results have been computed to complement recent measurements by Scheer et al [Bull. Am. Phys. Soc. 42, 1026 (1997); Bull. Am. Phys. Soc. 43, 1357 (1998)] which yielded electron affinities of excited states of the ground configuration of Sn- . Our RCI values for the position of the excited Sn - with respect to the negative ion ground state are EA( 2D3/2) = 5903 cm-1 (0.732 eV), EA( 2D5/2) = 6493 cm-1 (0.805 eV). Triple excitations make a significant contribution. Magnetic dipole HFS constants (A) and M1 transition probabilities are also reported. La- EAs: RCI calculations, including valence and some shallow core-valence correlation indicate that La- has 11 bound states. The seven odd states arising from 6p attachment have EAs(in meV) of 462 (1D2), 282 (3F 2), 247 (3F3), 235 (3D 1), 145 (3D2), 84 (3F 4) and 56 (3D3). The remaining four bound states are even 5d attachments with EAs of 434 (3F2), 375 (3F3), 312 (3F4) and 62 (1D2). The majority of these levels are reported here for the first time. Two of these EAs are in good agreement with the recent experimental values of Covington et al [J. Phys. B 31, L855 (1998)]. The largest 5d-6p f-value is ~.00565.

  1. Pseudopotential treatment of two body interactions

    NASA Astrophysics Data System (ADS)

    Kanjilal, Krittika

    Ultracold atomic gases have been of great theoretical and experimental interest in the last two decades. In these systems, the de Broglie wavelength of the particles is much greater than the two body van der Waals length. As a result, the details of the two body interaction potential are irrelevant for a large number of applications and the realistic two body interaction potential can be replaced by a simple finite range or zero range model potential that reproduces the scattering quantities of the full interaction potential. This thesis develops zero range pseudopotentials and applies them to trapped two-particle systems. Ultracold gases loaded into optical lattices can be used to realize two particle systems under approximately harmonic confinement. We use pseudopotentials to obtain the eigenspectrum of two particles under external harmonic confinement semi-analytically. Advancements in trapping technology have resulted in the realization of low-dimensional systems. We develop pseudopotentials to treat two body interactions in one and two dimensions. We also elaborate on the physics that is unique to one and two dimensional systems. Feshbach resonances allow for the tunability of the effective two body interaction strength in the presence of a magnetic field. To model Feshbach resonances in two and three dimensions we develop coupled two channel zero range potentials. Dipole-dipole interactions in Chromium and polar molecules have been the subject of a lot of recent research. Unlike the interactions between two alkali atoms, these interactions are long range and anisotropic. We explore the scattering properties of two aligned dipoles using a simple shape dependent model potential. To understand a system two aligned dipoles under confinement, we develop a pseudopotential treatment for cylindrically symmetric interaction potentials under cylindrically symmetric harmonic confinement. This pseudopotential can be used to model any cylindrically symmetric interaction

  2. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    NASA Astrophysics Data System (ADS)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-01

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  3. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    PubMed

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN. PMID:27179472

  4. An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations

    NASA Astrophysics Data System (ADS)

    Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.

    2013-12-01

    In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations

  5. The densities produced by the density functional theory: Comparison to full configuration interaction

    NASA Astrophysics Data System (ADS)

    Bochevarov, Arteum D.; Friesner, Richard A.

    2008-01-01

    We investigate one of the fundamental observables, electronic charge density, as produced by a number of popular functionals of the density functional theory (DFT): SVWN5, B3LYP, B3LYP, OLYP, O3LYP, BP86, B3P86, O3P86, and PBE using restricted and unrestricted orbitals. Measuring and comparing the quality of the densities could tell us more about the physical soundness of the functional models. The study is performed on the small molecules He, H2, LiH, H4 in an extensive range of correlation-consistent basis sets. We compare DFT densities to those of full configuration interaction (FCI) under the assumption that the FCI density in the largest employed basis set is sufficiently close to the exact one. For LiH and H4, we also compare the DFT densities to those of CCSD. The SVWN5 functional consistently shows the worst performance. The OPTX exchange functional regularly beats the Becke exchange. Among the best performers are all the hybrid functionals, the novel O3P86 being the most accurate in most cases. The popular functional B3LYP was consistently outmatched by O3LYP, and produced, in fact, some of the poorest densities among the hybrids. CCSD was found to produce much more accurate densities than any DFT functional in the case of LiH in equilibrium geometry, but was sometimes outperformed by DFT in the case of slightly stretched H4, where CCSD theory itself starts to break down. Surprisingly, as one stretches the H2 molecule, BP86 and PBE improve the description of density although such behavior is not observed in other systems. We conclude by reasoning how functionals such as B3LYP, despite being quite average for density, could still be very successful in predicting thermodynamic properties.

  6. No-core configuration-interaction model for the isospin- and angular-momentum-projected states

    NASA Astrophysics Data System (ADS)

    Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.

    2016-08-01

    Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.

  7. Scaled Second Order Perturbation Corrections to Configuration Interaction Singles: Efficient and Reliable Excitation Energy Methods

    SciTech Connect

    Rhee, Young Min; Head-Gordon, Martin

    2007-02-01

    Two modifications of the perturbative doubles correction to configuration interaction with single substitutions (CIS(D)) are suggested, which are excited state analogs of ground state scaled second order Moeller-Plesset (MP2) methods. The first approach employs two parameters to scale the two spin components of the direct term of CIS(D), starting from the two-parameter spin-component scaled (SCS) MP2 ground state, and is termed SCS-CIS(D). An efficient resolution-of-the-identity (RI) implementation of this approach is described. The second approach employs a single parameter to scale only the opposite-spin direct term of CIS(D), starting from the one-parameter scaled opposite spin (SOS) MP2 ground state, and is called SOS-CIS(D). By utilizing auxiliary basis expansions and a Laplace transform, a fourth order algorithm for SOS-CIS(D) is described and implemented. The parameters describing SCS-CIS(D) and SOS-CIS(D) are optimized based on a training set including valence excitations of various organic molecules and Rydberg transitions of water and ammonia, and they significantly improve upon CIS(D) itself. The accuracy of the two methods is found to be comparable. This arises from a strong correlation between the same-spin and opposite-spin portions of the excitation energy terms. The methods are successfully applied to the zincbacteriochlorin-bacteriochlorin charge transfer transition, for which time-dependent density functional theory, with presently available exchange-correlation functionals, is known to fail. The methods are also successfully applied to describe various electronic transitions outside of the training set. The efficiency of SOS-CIS(D) and the auxiliary basis implementation of CIS(D) and SCS-CIS(D) are confirmed with a series of timing tests.

  8. SU-E-T-258: Parallel Optimization of Beam Configurations for CyberKnife Treatments

    SciTech Connect

    Viulet, T; Blanck, O; Schlaefer, A

    2014-06-01

    Purpose: The CyberKnife delivers a large number of beams originating at different non-planar positions and with different orientation. We study how much the quality of treatment plans depends on the beams considered during plan optimization. Particularly, we evaluate a new approach to search for optimal treatment plans in parallel by running optimization steps concurrently. Methods: So far, no deterministic, complete and efficient method to select the optimal beam configuration for robotic SRS/SBRT is known. Considering a large candidate beam set increases the likelihood to achieve a good plan, but the optimization problem becomes large and impractical to solve. We have implemented an approach that parallelizes the search by solving multiple linear programming problems concurrently while iteratively resampling zero weighted beams. Each optimization problem contains the same set of constraints but different variables representing candidate beams. The search is synchronized by sharing the resulting basis variables among the parallel optimizations. We demonstrate the utility of the approach based on an actual spinal case with the objective to improve the coverage. Results: The objective function is falling and reaches a value of 5000 after 49, 31, 25 and 15 iterations for 1, 2, 4, and 8 parallel processes. This corresponds to approximately 97% coverage in 77%, 59%, and 36% of the mean number of iterations with one process for 2, 4, and 8 parallel processes, respectively. Overall, coverage increases from approximately 91.5% to approximately 98.5%. Conclusion: While on our current computer with uniform memory access the reduced number of iterations does not translate into a similar speedup, the approach illustrates how to effectively parallelize the search for the optimal beam configuration. The experimental results also indicate that for complex geometries the beam selection is critical for further plan optimization.

  9. Effect of reactor configuration on performance during anaerobic treatment of low strength wastewater.

    PubMed

    Das, Suprotim; Chaudhari, Sanjeev

    2015-01-01

    The efficiency of the up-flow anaerobic sludge blanket (UASB) reactor is quite low for the treatment of low strength wastewaters (LSWs) due to less biogas production leading to poor mixing. LSW may be treated efficiently by providing adequate mixing in the UASB reactor when gas production is low, and sufficient mixing can be achieved by modifying reactor geometry. Hence, modifying UASB reactor geometry for enhanced mixing and evaluating its performance for the treatment of LSWs would be a worthwhile effort. In the present study, UASB reactor configuration was modified by providing a vertical baffle along the height to promote mixing of reactor contents, and is termed as modified UASB (MUASB). The performance of an on-site pilot-scale MUASB reactor was evaluated for 375 days under ambient condition for the treatment of municipal sewage as LSW and compared with that of the conventional UASB and hybrid UASB (HUASB) reactors. The MUASB reactor showed better performance in terms of chemical oxygen demand (COD) removal efficiency as compared with UASB and HUASB reactors during this study. At 4 h hydraulic retention time, the total COD removal efficiency of UASB and HUASB reactors was 53.7% and 61%, respectively, which were much lower than the total COD removal efficiency of the MUASB reactor (72.7%). The better performance observed in the MUASB reactor is possibly due to improved mixing. Depth-wise analysis of reactor liquid showed that better mixing in the MUASB reactor enhances the contact of wastewater with biomass, which contributes to the improved treatment efficiency. It seems that MUASB holds promise for LSW treatment. PMID:25751650

  10. TIGER: A user-friendly interactive grid generation system for complicated turbomachinery and axis-symmetric configurations

    NASA Technical Reports Server (NTRS)

    Shih, Ming H.; Soni, Bharat K.

    1993-01-01

    The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.

  11. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    NASA Astrophysics Data System (ADS)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  12. Toward Optimum Configuration of Circumferential Groove Casing Treatment in Transonic Compressor Rotors

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2011-01-01

    The current paper first reviews experimental and numerical investigations to understand flow physics and to develop optimum configurations of circumferential grooves in compressor rotors. Circumferential grooves are used mainly to increase stall margin in axial compressors with small decrease in aerodynamic efficiency. Although circumferential groove casing treatment has been used widely, flow mechanisms of the circumferential grooves at near stall conditions are not well understood yet. Detailed time-dependent flow measurement inside tip gap in a high speed compressor is still a big challenge even though significant advance has been made in non-intrusive flow measurement technique. Therefore numerical approaches have been used to study relevant flow physics. However, optimum design of circumferential grooves to a given compressor with the computational tools is not practical yet. In the present paper, various investigations to study flow physics of circumferential groove casing treatment in axial compressor are reviewed first. Possible missing flow physics are identified and future research efforts for the optimum design are discussed.

  13. Single and double valence configuration interactions for recovering the exponential decay law while tunneling through a molecular wire.

    PubMed

    Portais, Mathilde; Hliwa, Mohamed; Joachim, Christian

    2016-01-22

    The exponential decay of the electronic transmission through a molecular wire with its length is calculated using a configuration interaction elastic scattering quantum chemistry (CI-ESQC) theory [1, 2]. In the HOMO-LUMO gap and in a one-electron approximation, this decay is exponential since the scattering matrix comes from a product of spatial propagators along the wire. In a valence SD-CI (single and double-configurations interaction) description, such a product does not exist. An effective one was numerically obtained from the CI-ESQC scattering matrix. Fluctuations over the effective CI-exponential decay come from the truncation of the full CI basis set and also from many-body exchange-correlation effects along the molecular wire. PMID:26636919

  14. Hylleraas-configuration-interaction nonrelativistic energies for the 1S ground states of the beryllium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Sims, James S.; Hagstrom, Stanley A.

    2014-06-01

    In a previous work, Sims and Hagstrom ["Hylleraas-configuration-interaction study of the 1 1S ground state of neutral beryllium," Phys. Rev. A 83, 032518 (2011)] reported Hylleraas-configuration-interaction (Hy-CI) method variational calculations for the 1S ground state of neutral beryllium with an estimated accuracy of a tenth of a microhartree. In this work, the calculations have been extended to higher accuracy and, by simple scaling of the orbital exponents, to the entire Be 2 1S isoelectronic sequence. The best nonrelativistic energies for Be, B+, and C++ obtained are -14.6673 5649 269, -24.3488 8446 36, and -36.5348 5236 25 hartree, respectively. Except for Be, all computed nonrelativistic energies are superior to the known reference energies for these states.

  15. Single and double valence configuration interactions for recovering the exponential decay law while tunneling through a molecular wire

    NASA Astrophysics Data System (ADS)

    Portais, Mathilde; Hliwa, Mohamed; Joachim, Christian

    2016-01-01

    The exponential decay of the electronic transmission through a molecular wire with its length is calculated using a configuration interaction elastic scattering quantum chemistry (CI-ESQC) theory [1, 2]. In the HOMO-LUMO gap and in a one-electron approximation, this decay is exponential since the scattering matrix comes from a product of spatial propagators along the wire. In a valence SD-CI (single and double-configurations interaction) description, such a product does not exist. An effective one was numerically obtained from the CI-ESQC scattering matrix. Fluctuations over the effective CI-exponential decay come from the truncation of the full CI basis set and also from many-body exchange-correlation effects along the molecular wire.

  16. Hylleraas-configuration-interaction nonrelativistic energies for the {sup 1}S ground states of the beryllium isoelectronic sequence

    SciTech Connect

    Sims, James S.; Hagstrom, Stanley A.

    2014-06-14

    In a previous work, Sims and Hagstrom [“Hylleraas-configuration-interaction study of the 1 {sup 1}S ground state of neutral beryllium,” Phys. Rev. A 83, 032518 (2011)] reported Hylleraas-configuration-interaction (Hy-CI) method variational calculations for the {sup 1}S ground state of neutral beryllium with an estimated accuracy of a tenth of a microhartree. In this work, the calculations have been extended to higher accuracy and, by simple scaling of the orbital exponents, to the entire Be 2 {sup 1}S isoelectronic sequence. The best nonrelativistic energies for Be, B{sup +}, and C{sup ++} obtained are −14.6673 5649 269, −24.3488 8446 36, and −36.5348 5236 25 hartree, respectively. Except for Be, all computed nonrelativistic energies are superior to the known reference energies for these states.

  17. Treatment of distal humeral fractures using conventional implants. Biomechanical evaluation of a new implant configuration

    PubMed Central

    2010-01-01

    Background In the face of costly fixation hardware with varying performance for treatment of distal humeral fractures, a novel technique (U-Frame) is proposed using conventional implants in a 180° plate arrangement. In this in-vitro study the biomechanical stability of this method was compared with the established technique which utilizes angular stable locking compression plates (LCP) in a 90° configuration. Methods An unstable distal 3-part fracture (AO 13-C2.3) was created in eight pairs of human cadaveric humeri. All bone pairs were operated with either the "Frame" technique, where two parallel plates are distally interconnected, or with the LCP technique. The specimens were cyclically loaded in simulated flexion and extension of the arm until failure of the construct occurred. Motion of all fragments was tracked by means of optical motion capturing. Construct stiffness and cycles to failure were identified for all specimens. Results Compared to the LCP constructs, the "Frame" technique revealed significant higher construct stiffness in extension of the arm (P = 0.01). The stiffness in flexion was not significantly different (P = 0.16). Number of cycles to failure was found significantly larger for the "Frame" technique (P = 0.01). Conclusions In an in-vitro context the proposed method offers enhanced biomechanical stability and at the same time significantly reduces implant costs. PMID:20684752

  18. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function

    NASA Astrophysics Data System (ADS)

    Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi

    2013-07-01

    We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.

  19. Plasma-wall interaction in Hall thrusters with magnetic lens configuration

    SciTech Connect

    Brieda, Lubos; Keidar, Michael

    2012-06-15

    Some recently developed Hall thrusters utilize a magnetic field configuration in which the field lines penetrate the thruster walls at a high incidence angle. This so-called magnetic lens leads to an electric field pointing away from the walls, which is expected to reduce ion losses and improve thruster efficiency. This configuration also introduces an interesting behavior in the sheath formation. At sufficiently large angles, ions are repelled from the wall, and sheath collapse is expected. We use a plasma simulation code to investigate this phenomenon in detail. We consider the role of the magnetic field incidence angle, secondary electron emission, and a magnetic mirror. Numerical study confirms the theoretical predictions, and at large angles, ions are seen to turn away from the wall. We also consider the role of the magnetic field geometry on ion wall flux and channel erosion, and observe reduction in both quantities as the magnetic field incidence angle is increased.

  20. Nanomechanics modeling of carbon nanotubes interacting with surfaces in various configurations

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Chiao

    Carbon nanotubes (CNTs) have been widely used as potential components in reported nanoelectromechanical (NEM) devices due to their excellent mechanical and electrical properties. This thesis models the experiments by the continuum mechanics in two distinct scenarios. In the first situation, measurements are made of CNT configurations after manipulations. Modeling is then used to determine the interfacial properties during the manipulation which led to the observed configuration. This technique is used to determine the shear stress between a SWNT bundle and other materials. During manipulation, a SWNT bundle slipped on two micro-cantilevers. According to the slack due to the slippage after testing and the device configuration, the shear stress between a SWNT bundle and other materials can be determined. In another model, the work of adhesion was determined on two accidentally fabricated devices. Through the configuration of two SWNT adhered bundles and the force-distance curves measured by an atomic force microscope (AFM), modeling was used to determine the work of adhesion between two bundles and the shear stress at the SWNT-substrate interface. In the second situation, modeling is used in a more traditional fashion to make theoretical predictions as to how a device will operate. Using this technique, the actuation mechanism of a single-trench SWNT-based switch was investigated. During the actuation, the deflection-induced tension causes the SWNT bundle to slip on both platforms and to be partially peeled from two side recessed electrodes. These effects produce a slack which reduces the threshold voltages subsequent to the first actuation. The result shows excellent agreement between the theory and the measurement. Furthermore, the operation of a double-trenched SWNT-based switch was investigated. A slack is produced in the 1st actuated trench region by the slip and peeling effects. This slack reduces the 2nd actuation voltage in the neighbor trench. Finally, the

  1. Viscous-inviscid interaction method including wake effects for three-dimensional wing-body configurations

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    1981-01-01

    A viscous-inviscid interaction method has been developed by using a three-dimensional integral boundary-layer method which produces results in good agreement with a finite-difference method in a fraction of the computer time. The integral method is stable and robust and incorporates a model for computation in a small region of streamwise separation. A locally two-dimensional wake model, accounting for thickness and curvature effects, is also included in the interaction procedure. Computation time spent in converging an interacted result is, many times, only slightly greater than that required to converge an inviscid calculation. Results are shown from the interaction method, run at experimental angle of attack, Reynolds number, and Mach number, on a wing-body test case for which viscous effects are large. Agreement with experiment is good; in particular, the present wake model improves prediction of the spanwise lift distribution and lower surface cove pressure.

  2. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.

    PubMed

    Huang, Rixiang; Carney, Randy P; Ikuma, Kaoru; Stellacci, Francesco; Lau, Boris L T

    2014-06-24

    As nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated. Different interaction modes and BSA conformations were studied by dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching and isothermal titration calorimetry (ITC). Depending on the surface structure of AuNPs, BSA seems to adopt either a "side-on" or an "end-on" conformation on AuNPs. ITC demonstrated that the adsorption of BSA onto AuNPs with randomly distributed polar and nonpolar groups was primarily driven by electrostatic interaction, and all BSA were adsorbed in the same process. The adsorption of BSA onto AuNPs covered with alternating domains of polar and nonpolar groups was a combination of different interactions. Overall, the results of this study point to the potential for utilizing nanoscale manipulation of NP surfaces to control the resulting NP-protein interactions. PMID:24882660

  3. Full configuration interaction pseudopotential determination of the ground-state potential energy curves of Li2 and LiH

    NASA Astrophysics Data System (ADS)

    Maniero, Angelo M.; Acioli, Paulo H.

    A full configuration interaction (CI) with a norm-conserving pseudopotential procedure to determine potential energy surfaces is proposed. Analysis of the potentiality and the possible sources of inaccuracies of the methodology is given in terms of its application to the generation of the ground-state potential energy curves of the LiH and Li2 molecules. The vibrational energy levels were obtained using the discrete variable representation. The agreement between our results and those from Rydberg-Klein-Ress-derived potentials is very good. The extension of this procedure to larger systems is straightforward.

  4. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    NASA Technical Reports Server (NTRS)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  5. Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth's magnetosphere.

    PubMed

    Faganello, M; Califano, F; Pegoraro, F

    2008-01-11

    Two-dimensional simulations of the Kelvin-Helmholtz instability in an inhomogeneous compressible plasma with a density gradient show that, in a transverse magnetic field configuration, the vortex pairing process and the Rayleigh-Taylor secondary instability compete during the nonlinear evolution of the vortices. Two different regimes exist depending on the value of the density jump across the velocity shear layer. These regimes have different physical signatures that can be crucial for the interpretation of satellite data of the interaction of the solar wind with the magnetospheric plasma. PMID:18232777

  6. Multireference configuration interaction based electronic Floquet states for molecules in an intense radiation field: Theory and application to Li2+

    NASA Astrophysics Data System (ADS)

    Khait, Yuriy G.; Azenkeng, Alexander; Wang, Hefeng; Dudley, Timothy J.; Hoffmann, Mark R.

    2005-03-01

    A multireference configuration interaction (CI) method which includes single and double excitations based description of adiabatic Floquet states for the electronic structure of a molecule in an intense laser field is introduced. Using a variant of a recently introduced configuration state function (CSF) based Table-CI methodology, it is shown that the multiple states of several irreducible representations required for a good description of low-lying Floquet states can be obtained using modifications of computational molecular electronic structure techniques. In particular, formulas for all components of the transition dipole moment matrix elements within the CSF-based Table-CI method are derived and presented. Moreover, the flexibility of the recently introduced macroconfiguration description of model and external configuration spaces is shown to lead to multiple potential energy surfaces of sufficiently uniform quality to allow construction of useful Floquet states. The formalism and computer programs developed are demonstrated on Li2+ in a 0.9×1012W/cm2 field. In analogy with Na2+, the 1,2Σg+2, 1,2Σu+2, 1Πg2, and 1Πu2 states are of relevance, although the pattern of couplings is shown to be more complex. A hitherto unnoticed metastable state, which correlates asymptotically with 2Σu+2, is described.

  7. Effective on-site Coulomb interaction and electron configurations in transition-metal complexes from constraint density functional theory

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    Effective on-site Coulomb interactions (Ueff) and electron configurations in the localized d and f orbitals of metal complexes in transition-metal oxides and organometallic molecules, play a key role in the first-principles search for the true ground-state. However, wide ranges of values in the Ueff parameter of a material, even in the same ionic state, are often reported. Here, we revisit this issue from constraint density functional theory (DFT) by using the full-potential linearized augmented plane wave method. The Ueff parameters for prototypical transition-metal oxides, TMO (TM =Mn, Fe, Co, Ni), were calculated by the second derivative of the total energy functional with respect to the d occupation numbers inside the muffin-tin (MT) spheres as a function of the sphere radius. We find that the calculated Ueff values depend significantly on the MT radius, with a variation of more than 3 eV when the MT radius changes from 2.0 to 2.7 a.u., but importantly an identical valence band structure can be produced in all the cases, with an approximate scaling of Ueff. This indicates that a simple transferability of the Ueff value among different calculation methods is not allowed. We further extend the constraint DFT to treat various electron configurations of the localized d-orbitals in organometallic molecules, TMCp2 (TM =Cr, Mn, Fe, Co, Ni), and find that the calculated Ueff values can reproduce the experimentally determined ground-state electron configurations.

  8. Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Ren, Jingyu; Wang, Tiecheng; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2015-12-01

    A discharge plasma reactor with a point-to-plane structure was widely studied experimentally in wastewater treatment. In order to improve the utilization efficiency of active species and the energy efficiency of this kind of discharge plasma reactor during wastewater treatment, the electrode configuration of the point-to-plane corona discharge reactor was studied by evaluating the effects of discharge spacing and adjacent point distance on discharge power and discharge energy density, and then dye-containing wastewater decoloration experiments were conducted on the basis of the optimum electrode configuration. The experimental results of the discharge characteristics showed that high discharge power and discharge energy density were achieved when the ratio of discharge spacing to adjacent point distance (d/s) was 0.5. Reactive Brilliant Blue (RBB) wastewater treatment experiments presented that the highest RBB decoloration efficiency was observed at d/s of 0.5, which was consistent with the result obtained in the discharge characteristics experiments. In addition, the biodegradability of RBB wastewater was enhanced greatly after discharge plasma treatment under the optimum electrode configuration. RBB degradation processes were analyzed by GC-MS and IC, and the possible mechanism for RBB decoloration was also discussed. supported by China's Postdoctoral Science Foundation (No. 2014M562460), the Initiative Funding Programs for Doctoral Research of Northwest A&F University (No. 2013BSJJ121), and National Natural Science Foundation of China (No. 21107085)

  9. An investigation of bleed configurations and their effect on shock wave/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Hamed, Awatef

    1995-01-01

    The design of high efficiency supersonic inlets is a complex task involving the optimization of a number of performance parameters such as pressure recovery, spillage, drag, and exit distortion profile, over the flight Mach number range. Computational techniques must be capable of accurately simulating the physics of shock/boundary layer interactions, secondary corner flows, flow separation, and bleed if they are to be useful in the design. In particular, bleed and flow separation, play an important role in inlet unstart, and the associated pressure oscillations. Numerical simulations were conducted to investigate some of the basic physical phenomena associated with bleed in oblique shock wave boundary layer interactions that affect the inlet performance.

  10. Simulations of two sedimenting-interacting spheres with different sizes and initial configurations using immersed boundary method

    NASA Astrophysics Data System (ADS)

    Liao, Chuan-Chieh; Hsiao, Wen-Wei; Lin, Ting-Yu; Lin, Chao-An

    2015-06-01

    Numerical investigations are carried out for the drafting, kissing and tumbling (DKT) phenomenon of two freely falling spheres within a long container by using an immersed-boundary method. The method is first validated with flows induced by a sphere settling under gravity in a small container for which experimental data are available. The hydrodynamic interactions of two spheres are then studied with different sizes and initial configurations. When a regular sphere is placed below the larger one, the duration of kissing decreases in pace with the increase in diameter ratio. On the other hand, the time duration of the kissing stage increases in tandem with the increase in diameter ratio as the large sphere is placed below the regular one, and there is no DKT interactions beyond threshold diameter ratio. Also, the gap between homogeneous spheres remains constant at the terminal velocity, whereas the gaps between the inhomogeneous spheres increase due to the differential terminal velocity.

  11. Re-appraisal of the hyperfine-structure constants in YbF: relativistic configuration interaction approach

    NASA Astrophysics Data System (ADS)

    Naik, Deepali; Sikarwar, Manu; Nayak, Malaya K.; Ghosh, Swapan K.

    2014-11-01

    Ab initio calculation of the spin rotational Hamiltonian parameters A and Ad has been performed using a fully-relativistic restricted active space (RAS) configuration interaction (CI) method for the YbF molecule. These calculations lead to the results for the hyperfine-structure constants as A = 6725 MHz, and Ad = 86 MHz, which agree favorably well with some previous correlated calculations and experimental findings. The convergence behavior of the parameters A and Ad with respect to the size of the active space and basis set has been tested satisfactorily for the reliability of the present results (within an uncertainty of ˜7%). Further, we believe that the theoretical estimates of some symmetry violating interaction constants like Wd can also be predicted with similar accuracy using the RASCI method.

  12. Slender body treatment of some specialized problems associated with elliptic-cross-section missile configurations

    NASA Technical Reports Server (NTRS)

    Barger, R. L.

    1977-01-01

    Slender body methods were applied to some specialized problems associated with missile configurations with elliptic cross sections. Expressions are derived for computing the velocity distribution on the nose section when the ellipse eccentricity is varying longitudinally on the missile. The cross flow velocity on a triform fin section is also studied.

  13. The ionic states of iodobenzene studied by photoionization and ab initio configuration interaction and DFT computations

    SciTech Connect

    Palmer, Michael H. E-mail: tr01@staffmail.ed.ac.uk E-mail: nykj@phys.au.dk E-mail: desimone@iom.cnr.it Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C.; Coreno, Marcello; Grazioli, Cesare; Biczysko, Malgorzata; Baiardi, Alberto

    2015-04-07

    New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X{sup 2}B{sub 1}

  14. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    SciTech Connect

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  15. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons.

    PubMed

    Oyeyemi, Victor B; Krisiloff, David B; Keith, John A; Libisch, Florian; Pavone, Michele; Carter, Emily A

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs. PMID:25669533

  16. The time-dependent generalized active space configuration interaction approach to correlated ionization dynamics of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Bauch, S.; Larsson, H. R.; Hinz, C.; Bonitz, M.

    2016-03-01

    In this contribution, we review the time-dependent generalized-active-space configuration interaction (TD-GAS-CI) approach to the photoionization dynamics of atoms and molecules including electron correlation effects. It is based on the configuration interaction (CI) expansion of the many-body wave function and the restriction of the determinantal space to a reduced subspace. For its numerically efficient application to photoionization, a partially-rotated basis set is used which adopts features of a localized basis with a good reference description and a grid representation for escaping wave packets. After reviewing earlier applications of the theory, we address the strong-field ionization of a one-dimensional model of the four-electron LiH molecule using TD-GAS-CI and demonstrate the importance of electron-electron correlations in the ionization yield for different orientations of the molecule w.r.t the peak of the linearly polarized laser field. A pronounced orientation-dependent variation of the yield with the pulse duration and the level of considered electron-electron correlations is observed.

  17. Adaptive vibrational configuration interaction (A-VCI): A posteriori error estimation to efficiently compute anharmonic IR spectra.

    PubMed

    Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2016-05-28

    A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%. PMID:27250295

  18. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-01

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  19. ESR study of 2-substituted 2-adamantyl radicals. Configuration and long-range hyperfine interaction

    SciTech Connect

    Kira, Mitsuo; Akiyama, Mieko; Ichinose, Michiko; Sakurai, Hideki )

    1989-10-11

    Structure and long-range hyperfine interaction in 2-adamantyl, 5,7-dimethyl-2-adamantyl, and the various 2-substituted radicals (substituent = CH{sub 3}, CH{sub 2}SiMe{sub 3}, OSiMe{sub 3}, SSiMe{sub 3}, CH{sub 2}GeMe{sub 3}, etc.) were studied by ESR. The origin of the long-range hyperfine interaction is discussed on the basis of the comparison between experimental and theoretical hfs values. The analyses of hfs values for persistent 2-bis(trimethylsilyl)methyl-2-adamantyl radical and the 5,7-dimethyl derivative were made by the assistance of the ENDOR spectrum.

  20. An approach to simultaneous control of trajectory and interaction forces in dual-arm configurations

    NASA Technical Reports Server (NTRS)

    Yun, Xiaoping; Kumar, Vijay R.

    1991-01-01

    An approach to the control of constrained dynamic systems such as multiple arm systems, multifingered grippers, and walking vehicles is described. The basic philosophy is to utilize a minimal set of inputs to control the trajectory and the surplus input to control the constraint or interaction forces and moments in the closed chain. A dynamic control model for the closed chain is derived that is suitable for designing a controller in which the trajectory and the interaction forces and moments are explicitly controlled. Nonlinear feedback techniques derived from differential geometry are then applied to linearize and decouple the nonlinear model. These ideas are illustrated through a planar example in which two arms are used for cooperative manipulation. Results from a simulation are used to illustrate the efficacy of the method.

  1. Benchmark calculations of the complete configuration-interaction limit of Born-Oppenheimer diagonal corrections to the saddle points of isotopomers of the H + H2 reaction.

    PubMed

    Mielke, Steven L; Schwenke, David W; Peterson, Kirk A

    2005-06-01

    We present a detailed ab initio study of the effect that the Born-Oppenheimer diagonal correction (BODC) has on the saddle-point properties of the H3 system and its isotopomers. Benchmark values are presented that are estimated to be within 0.1 cm(-1) of the complete configuration-interaction limit. We consider the basis set and correlation treatment requirements for accurate BODC calculations, and both are observed to be more favorable than for the Born-Oppenheimer energies. The BODC raises the H + H2 barrier height by 0.1532 kcal/mol and slightly narrows the barrier--with the imaginary frequency increasing by approximately 2%. PMID:15974674

  2. Benchmark calculations of the complete configuration-interaction limit of Born-Oppenheimer diagonal corrections to the saddle points of isotopomers of the H +H2 reaction

    NASA Astrophysics Data System (ADS)

    Mielke, Steven L.; Schwenke, David W.; Peterson, Kirk A.

    2005-06-01

    We present a detailed ab initio study of the effect that the Born-Oppenheimer diagonal correction (BODC) has on the saddle-point properties of the H3 system and its isotopomers. Benchmark values are presented that are estimated to be within 0.1cm-1 of the complete configuration-interaction limit. We consider the basis set and correlation treatment requirements for accurate BODC calculations, and both are observed to be more favorable than for the Born-Oppenheimer energies. The BODC raises the H+H2 barrier height by 0.1532kcal/mol and slightly narrows the barrier—with the imaginary frequency increasing by ˜2%.

  3. Dynamics of N-configuration four-level atom interacting with one-mode cavity field

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, N. H.; Thabet, Lamia

    2014-07-01

    In this paper, a model is presented to investigate the interaction between a four-level atom and a single mode of the radiation field. The relative phase, the detuning and the Kerr-like medium are taken into consideration. The exact solution is given when the atom is initially prepared in superposition coherent state. The influences of the relative phase, and the Kerr-like medium on the collapses-revivals, the field entropy and the amplitude-squared squeezing phenomena for the considered system are examined. It is found that these parameters have important effects on the properties of these phenomena.

  4. Spin configuration of magnetic multi-layers: effect of exchange, dipolar and Dzyalozhinski-Moriya interactions.

    PubMed

    Franco, A F; Kachkachi, H

    2013-08-01

    We investigate the effect of coupling (intensity and nature), applied field, and anisotropy on the spin dynamics of a multi-layer system composed of a hard magnetic layer coupled to a soft magnetic layer through a nonmagnetic spacer. The soft layer is modeled as a stack of several atomic planes while the hard layer, of a different material, is either considered as a pinned macroscopic magnetic moment or again as a stack of atomic planes. We compute the magnetization profile and hysteresis loop of the whole multi-layer system by solving the Landau-Lifshitz equations for the net magnetic moment of each (atomic) plane. We study the competition between the intra-layer anisotropy and exchange interaction, applied magnetic field, and the interface exchange, dipolar or Dzyalozhinski-Moriya interaction. Compared with the exchange coupling, the latter two couplings present peculiar features in the magnetization profile and hysteresis loop that may help identify the nature of the interface coupling in multi-layer magnetic systems. PMID:23838366

  5. General purpose computer program for interacting supersonic configurations. User's manual. [determining unsteady aerodynamic foreces

    NASA Technical Reports Server (NTRS)

    Crill, W.; Dale, B.

    1977-01-01

    The input data required to execute the computer program ISCON are described. The program generates a numerical procedure for the determination of unsteady aerodynamic forces on arbitrarily interacting wings and tails in supersonic flow. A velocity potential gradient method is used. Constant Mach number is assumed throughout the flow field. Lifting surfaces are represented by trapezoidal elements which can be generated automatically by the program. The wake field is represented by rectangular strip elements. The formulation is reviewed as well as input overview and input format. Instruction on how to use ISCON, a sample problem, and the restart feature are discussed. Program size limitations, computer program flow, and error messages are also included along with a description of the SS31 program used to compute the coefficients of surface spline.

  6. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Tsuchimochi, Takashi

    2015-10-01

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  7. Accurate Bond Energies of Hydrocarbons from Complete Basis Set Extrapolated Multi-Reference Singles and Doubles Configuration Interaction

    SciTech Connect

    Oyeyemi, Victor B.; Pavone, Michele; Carter, Emily A.

    2011-11-03

    Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: (1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; (2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and (3) DFT-B3LYP calculations of minimumenergy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of C*C and C*H bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules.

  8. Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes

    SciTech Connect

    Escudero, Daniel E-mail: thiel@kofo.mpg.de; Thiel, Walter E-mail: thiel@kofo.mpg.de

    2014-05-21

    We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.

  9. Configuration-interaction plus many-body-perturbation-theory calculations of Si i transition probabilities, oscillator strengths, and lifetimes

    NASA Astrophysics Data System (ADS)

    Savukov, I. M.

    2016-02-01

    The precision of the mixed configuration-interaction plus many-body-perturbation-theory (CI+MBPT) method is limited in multivalence atoms by the large size of valence CI space. Previously, to study this problem, the CI+MBPT method was applied to calculations of energies in a four-valence electron atom, Si i. It was found that by using a relatively small cavity of 30 a.u. and by choosing carefully the configuration space, quite accurate agreement between theory and experiment at the level of 100 cm-1 can be obtained, especially after subtraction of systematic shifts for groups of states of the same J and parity. However, other properties are also important to investigate. In this work, the CI+MBPT method is applied to studies of transition probabilities, oscillator strengths, and lifetimes. A close agreement with accurate experimental measurements and other elaborate theories is obtained. The long-term goal is to extend the CI+MBPT approach to applications in more complex atoms, such as lantanides and actinides.

  10. Time-dependent generalized-active-space configuration-interaction approach to photoionization dynamics of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Bauch, S.; Sørensen, L. K.; Madsen, L. B.

    2014-12-01

    We present a wave-function-based method to solve the time-dependent many-electron Schrödinger equation with special emphasis on strong-field ionization phenomena. The theory builds on the configuration-interaction (CI) approach supplemented by the generalized-active-space concept from quantum chemistry. The latter allows for a controllable reduction in the number of configurations in the CI expansion by imposing restrictions on the active orbital space. The method is similar to the recently formulated time-dependent restricted-active-space CI method [D. Hochstuhl and M. Bonitz, Phys. Rev. A 86, 053424 (2012), 10.1103/PhysRevA.86.053424]. We present details of our implementation and address convergence properties with respect to the active spaces and the associated account of electron correlation in both ground-state and excitation scenarios. We apply the time-dependent generalized-active-space CI theory to strong-field ionization of polar diatomic molecules and illustrate how the method allows us to uncover a strong correlation-induced shift of the preferred direction of emission of photoelectrons.

  11. A 0.15-scale study of configuration effects on the aerodynamic interaction between main rotor and fuselage

    NASA Technical Reports Server (NTRS)

    Trept, Ted

    1984-01-01

    Hover and forward flight tests were conducted to investigate the mutual aerodynamic interaction between the main motor and fuselage of a conventional helicopter configuration. A 0.15-scale Model 222 two-bladed teetering rotor was combined with a 0.15-scale model of the NASA Ames 40x80-foot wind tunnel 1500 horsepower test stand fairing. Configuration effects were studied by modifying the fairing to simulate a typical helicopter forebody. Separation distance between rotor and body were also investigated. Rotor and fuselage force and moment as well as pressure data are presented in graphical and tabular format. Data was taken over a range of thrust coefficients from 0.002 to 0.007. In forward flight speed ratio was varied from 0.1 to 0.3 with shaft angle varying from +4 to -12 deg. The data show that the rotors effect on the fuselage may be considerably more important to total aircraft performance than the effect of the fuselage on the rotor.

  12. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems

    SciTech Connect

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  13. Density Fitting and Cholesky Decomposition of the Two-Electron Integrals in Local Multireference Configuration Interaction Theory.

    PubMed

    Krisiloff, David B; Krauter, Caroline M; Ricci, Francis J; Carter, Emily A

    2015-11-10

    To treat large molecules with accurate ab initio quantum chemistry, reduced scaling correlated wave function methods are now commonly employed. Optimization of these wave functions in practice requires some approximation of the two-electron integrals. Both Cholesky decomposition (CD) and density fitting (DF) are widely used approaches to approximate these integrals. Here, we compare CD and DF for use in local multireference singles and doubles configuration interaction (LMRSDCI). DF-LMRSDCI provides less accurate total energies than CD-LMRSDCI, but both methods are accurate for energy differences. However, DF-LMRSDCI is significantly less computationally expensive than CD-LMRSDCI on the molecules tested, suggesting that DF-LMRSDCI is an efficient, often sufficiently accurate alternative to our previously reported CD-LMRSDCI method. PMID:26574318

  14. Derivative couplings and analytic gradients for diabatic states, with an implementation for Boys-localized configuration-interaction singles

    NASA Astrophysics Data System (ADS)

    Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E.

    2013-09-01

    We demonstrate that Boys-localized diabatic states do indeed exhibit small derivative couplings, as is required of quasidiabatic states. In doing so, we present a general formalism for calculating derivative couplings and analytic gradients for diabatic states. We then develop additional equations specific to the case of Boys-localized configuration-interaction singles (CIS)—in particular, the analytic gradient of the CIS dipole matrix—and we validate our implementation against finite-difference results. In a forthcoming paper, we will publish additional algorithmic and computational details and apply our method to the Closs energy-transfer systems as a further test of the validity of Boys-localized diabatic states.

  15. Second-order perturbative corrections to the restricted active space configuration interaction with the hole and particle approach

    NASA Astrophysics Data System (ADS)

    Casanova, David

    2014-04-01

    Second-order corrections to the restricted active space configuration interaction (RASCI) with the hole and particle truncation of the excitation operator are developed. Theoretically, the computational cost of the implemented perturbative approach, abbreviated as RASCI(2), grows like its single reference counterpart in MP2. Two different forms of RASCI(2) have been explored, that is the generalized Davidson-Kapuy and the Epstein-Nesbet partitions of the Hamiltonian. The preliminary results indicate that the use of energy level shift of a few tenths of a Hartree might systematically improve the accuracy of the RASCI(2) energies. The method has been tested in the computation of the ground state energy profiles along the dissociation of the hydrogen fluoride and N2 molecules, the computation of correlation energy in the G2/97 molecular test set, and in the computation of excitation energies to low-lying states in small organic molecules.

  16. Complex multireference configuration interaction calculations for the K-vacancy Auger states of Nq+ (q = 2-5) ions

    NASA Astrophysics Data System (ADS)

    Peng, Yi-Geng; Wu, Yong; Zhu, Lin-Fan; Zhang, Song Bin; Wang, Jian-Guo; Liebermann, H.-P.; Buenker, R. J.

    2016-02-01

    K-vacancy Auger states of Nq+ (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly in the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future.

  17. Automated calculation of anharmonic vibrational contributions to first hyperpolarizabilities: Quadratic response functions from vibrational configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Hansen, Mikkel Bo; Christiansen, Ove; Hättig, Christof

    2009-10-01

    Quadratic response functions are derived and implemented for a vibrational configuration interaction state. Combined electronic and vibrational quadratic response functions are derived using Born-Oppenheimer vibronic product wave functions. Computational tractable expressions are derived for determining the total quadratic response contribution as a sum of contributions involving both electronic and vibrational linear and quadratic response functions. In the general frequency-dependent case this includes a new and more troublesome type of electronic linear response function. Pilot calculations for the FH, H2O, CH2O, and pyrrole molecules demonstrate the importance of vibrational contributions for accurate comparison to experiment and that the vibrational contributions in some cases can be very large. The calculation of transition properties between vibrational states is combined with sum-over-states expressions for analysis purposes. On the basis of this some simple analysis methods are suggested. Also, a preliminary study of the effect of finite lifetimes on quadratic response functions is presented.

  18. Second-order perturbative corrections to the restricted active space configuration interaction with the hole and particle approach

    SciTech Connect

    Casanova, David

    2014-04-14

    Second-order corrections to the restricted active space configuration interaction (RASCI) with the hole and particle truncation of the excitation operator are developed. Theoretically, the computational cost of the implemented perturbative approach, abbreviated as RASCI(2), grows like its single reference counterpart in MP2. Two different forms of RASCI(2) have been explored, that is the generalized Davidson-Kapuy and the Epstein-Nesbet partitions of the Hamiltonian. The preliminary results indicate that the use of energy level shift of a few tenths of a Hartree might systematically improve the accuracy of the RASCI(2) energies. The method has been tested in the computation of the ground state energy profiles along the dissociation of the hydrogen fluoride and N{sub 2} molecules, the computation of correlation energy in the G2/97 molecular test set, and in the computation of excitation energies to low-lying states in small organic molecules.

  19. [Drug-drug interactions in antirheumatic treatment].

    PubMed

    Krüger, K

    2012-04-01

    Clinically relevant drug-drug interactions contribute considerably to potentially dangerous drug side-effects and are frequently the reason for hospitalization. Nevertheless they are often overlooked in daily practice. For most antirheumatic drugs a vast number of interactions have been described but only a minority with clinical relevance. Several potentially important drug interactions exist for non-steroidal anti-inflammatory drugs (NSAIDs), methotrexate, azathioprine, mycophenolate-mofetil and especially for cyclosporin A. Most importantly co-medication with methotrexate and sulfmethoxazole trimethoprim as well as azathioprine and allopurinol carries the risk of severe, sometimes life-threatening consequences. Nevertheless, besides these well-known high-risk combinations in each case of polypharmacy with antirheumatic drugs it is necessary to bear in mind the possibility of drug interactions. As polypharmacy is a common therapeutic practice in older patients with rheumatic diseases, they are at special risk. PMID:22527215

  20. Controls-structures-interaction dynamics during RCS control of the Orbiter/SRMS/SSF configuration

    NASA Technical Reports Server (NTRS)

    Schliesing, J. A.; Shieh, L. S.

    1993-01-01

    During the assembly flights of the Space Station Freedom (SSF), the Orbiter will either dock with the SSF and retract to the final berthed position, or will grapple the SSF using the Shuttle Remote Manipulator System (SRMS) and maneuver the SRMS coupled vehicles to their final berthed position. The SRMS method is expected to take approximately one to one and a half hours to complete and require periodic attitude corrections by either the Orbiter or the SSF reaction control system (RCS) or continuous control by a control moment gyro (CMG) system with RCS desaturation as required. Free drift of the attached vehicles is not currently thought to be acceptable because the desired system attitude will quickly deteriorate due to unbalanced gravity gradient and aerodynamic torques resulting in power generation problems, thermodynamic control problems, and communications problems. This paper deals with the simulation and control of the SRMS during trunnion/latch interaction dynamics and during RCS maneuvers. The SRMS servo drive joints have highly non-linear elastic characteristics which tend to degrade sensitive control strategies. In addition the system natural frequencies are extremely low and depend on the drive joint deflections and SRMS geometric position. The lowest mean period of oscillation for the Orbiter/SRMS/SSF(MB6) system in brakes hold mode positioned near the final berthed position is approximately 120 seconds. A detailed finite element model of the SRMS has been developed and used in a newly developed SRMS systems dynamics simulation to investigate the non-linear transient response dynamics of the Orbiter/SRMS/SSF systems. The present SRMS control strategy of brakes only recommended by the Charles Draper Labs is contrasted with a robust controller developed by the authors. The robust controller uses an optimal inear quadratic regulator (LQR) to optimally place the closed-loop poles of a multivariable continuous-time system within the common region of an

  1. Controls-structures-interaction dynamics during RCS control of the Orbiter/SRMS/SSF configuration

    NASA Astrophysics Data System (ADS)

    Schliesing, J. A.; Shieh, L. S.

    1993-02-01

    During the assembly flights of the Space Station Freedom (SSF), the Orbiter will either dock with the SSF and retract to the final berthed position, or will grapple the SSF using the Shuttle Remote Manipulator System (SRMS) and maneuver the SRMS coupled vehicles to their final berthed position. The SRMS method is expected to take approximately one to one and a half hours to complete and require periodic attitude corrections by either the Orbiter or the SSF reaction control system (RCS) or continuous control by a control moment gyro (CMG) system with RCS desaturation as required. Free drift of the attached vehicles is not currently thought to be acceptable because the desired system attitude will quickly deteriorate due to unbalanced gravity gradient and aerodynamic torques resulting in power generation problems, thermodynamic control problems, and communications problems. This paper deals with the simulation and control of the SRMS during trunnion/latch interaction dynamics and during RCS maneuvers. The SRMS servo drive joints have highly non-linear elastic characteristics which tend to degrade sensitive control strategies. In addition the system natural frequencies are extremely low and depend on the drive joint deflections and SRMS geometric position. The lowest mean period of oscillation for the Orbiter/SRMS/SSF(MB6) system in brakes hold mode positioned near the final berthed position is approximately 120 seconds. A detailed finite element model of the SRMS has been developed and used in a newly developed SRMS systems dynamics simulation to investigate the non-linear transient response dynamics of the Orbiter/SRMS/SSF systems. The present SRMS control strategy of brakes only recommended by the Charles Draper Labs is contrasted with a robust controller developed by the authors. The robust controller uses an optimal inear quadratic regulator (LQR) to optimally place the closed-loop poles of a multivariable continuous-time system within the common region of an

  2. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  3. Cancer treatment by photothermal, photochemical, and photobiological interactions

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Korbelik, Mladen; Liu, Hong; Nordquist, Robert E.

    2005-01-01

    Laser tissue interactions hold great promise in cancer treatment. Photothermal interaction aims at the direct cell destruction through the increase of local tissue temperature, while photochemical interaction aims at the cell destruction using free radicals produced through the activation of photosensitizers in the target tissue. Photobiological interaction can target the immune host system to induce long-term control. Photothermal and photochemical interactions can be significantly enhanced by photobiological interaction through the use of immunoadjuvants. In our experiments, three different immunoadjuvants, complete Freund"s adjuvant (CF), incomplete Freund"s adjuvant (IF), and c-parvum (CP), were used in the treatment of metastatic mammary tumors in conjunction with photothermal interaction. In addition, a specific adjuvant, Glycated chitosan (GC), has been used in combination with photodynamic therapy (PDT) in the treatment of mouse tumors. In the treatment of rat tumors, CF, IF and CP raised the cure-rates from 0% to 18%, 7% and 9%, respectively. In comparison, GC resulted in a 29% long-term survival. In the treatment of EMT6 mammary sarcoma in mice, GC of 0.5% and 1.5% concentrations increased the cure rates of Photofrin-based PDT treatment from 38% to 63% and 75%, respectively. In the treatment of Line 1 lung adenocarcinoma in mice, a 1.67% GC solution enabled a non-curative mTHPC-based PDT to cure a 37% of the tumor bearing mice.

  4. Positron-attachment to small molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    SciTech Connect

    Tachikawa, Masanori

    2015-12-31

    To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.

  5. Electronic circular dichroism of highly conjugated π-systems: breakdown of the Tamm-Dancoff/configuration interaction singles approximation.

    PubMed

    Bannwarth, Christoph; Grimme, Stefan

    2015-04-16

    We show that the electronic circular dichroism (ECD) of delocalized π-systems represents a worst-case scenario for Tamm-Dancoff approximated (TDA) linear response methods. We mainly consider density functional theory (TDA-DFT) variants together with range-separated hybrids, but the conclusions also apply for other functionals as well as the configuration interaction singles (CIS) approaches. We study the effect of the TDA for the computation of ECD spectra in some prototypical extended π-systems. The C76 fullerene, a chiral carbon nanotube fragment, and [11]helicene serve as model systems for inherently chiral, π-chromophores. Solving the full linear response problem is inevitable in order to obtain accurate ECD spectra for these systems. For the C76 fullerene and the nanotube fragment, TDA and CIS approximated methods yield spectra in the origin-independent velocity gauge formalism of incorrect sign which would lead to the assignment of the opposite (wrong) absolute configuration. As a counterexample, we study the ECD of an α-helix polypeptide chain. Here, the lowest-energy transitions are dominated by localized excitations within the individual peptide units, and TDA methods perform satisfactorily. The results may have far-reaching implications for simple semiempirical methods which often employ TDA and CIS for huge molecules. Our recently presented simplified time-dependent DFT approach proves to be an excellent low-cost linear response method which together with range-separated density functionals like ωB97X-D3 produces ECD spectra in very good agreement with experiment. PMID:25798823

  6. Hyperfine structures and Landé gJ-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Nazé, C.; Jönsson, P.; Rynkun, P.; Godefroid, M.; Gaigalas, G.

    2014-09-01

    Energy levels, hyperfine interaction constants, and Landé gJ-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core-valence, and core-core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  7. Temporary Stabilization with External Fixator in ‘Tripolar’ Configuration in Two Steps Treatment of Tibial Pilon Fractures

    PubMed Central

    Daghino, Walter; Messina, Marco; Filipponi, Marco; Alessandro, Massè

    2016-01-01

    Background: The tibial pilon fractures represent a complex therapeutic problem for the orthopedic surgeon, given the frequent complications and outcomes disabling. The recent medical literature indicates that the best strategy to reduce amount of complications in tibial pilon fractures is two-stages procedure. We describe our experience in the primary stabilization of these fractures. Methods: We treated 36 cases with temporary external fixation in a simple configuration, called "tripolar": this is an essential structure (only three screws and three rods), that is possible to perform even without the availability of X-rays and with simple anesthesia or sedation. Results: We found a sufficient mechanical stability for the nursing post-operative, in absence of intraoperative and postoperative problems. The time between trauma and temporary stabilization ranged between 3 and 144 hours; surgical average time was 8.4 minutes. Definitive treatment was carried out with a delay of a minimum of 4 and a maximum of 15 days from the temporary stabilization, always without problems, both in case of ORIF (open reduction, internal fixation) or circular external fixation Conclusion: Temporary stabilization with external fixator in ‘tripolar’ configuration seems to be the most effective strategy in two steps treatment of tibial pilon fractures. These preliminary encouraging results must be confirmed by further studies with more cases. PMID:27123151

  8. Relativistic configuration-interaction calculations of electric dipole n=2−n=3 transitions for medium-charge Li-like ions

    SciTech Connect

    Deng, Banglin; Jiang, Gang; Zhang, Chuanyu

    2014-09-15

    In this work, the multi-configuration Dirac–Fock and relativistic configuration-interaction methods have been used to calculate the transition wavelengths, electric dipole transition probabilities, line strengths, and absorption oscillator strengths for the 2s–3p, 2p–3s, and 2p–3d transitions in Li-like ions with nuclear charge Z=7–30. Our calculated values are in good agreement with previous experimental and theoretical results. We took the contributions from Breit interaction, finite nuclear mass corrections, and quantum electrodynamics corrections to the initial and final levels into account, and also found that the contributions from Breit interaction, self-energy, and vacuum polarization grow fast with increasing nuclear charge for a fixed configuration. The ratio of the velocity to length form of the transition rate (A{sub v}/A{sub l}) was used to estimate the accuracy of our calculations.

  9. Step-feed biofiltration: a low cost alternative configuration for off-gas treatment.

    PubMed

    Estrada, José M; Quijano, Guillermo; Lebrero, Raquel; Muñoz, Raúl

    2013-09-01

    Clogging due to biomass accumulation and the loss of structural stability of the packing media are common operational drawbacks of standard gas biofiltration inherent to the traditional biofilter design, which result in prohibitive pressure drop buildups and media channeling. In this work, an innovative step-feed biofilter configuration, with the air emission supplied in either two or three locations along the biofilter height, was tested and compared with a standard biofilter using toluene as a model pollutant and two packing materials: compost and perlite. When using compost, the step-feed biofilter supported similar elimination capacities (EC ≈ 80 g m(-3) h(-1)) and CO2 production rates (200 g m(-3) h(-1)) to those achieved in the standard biofilter. However, while the pressure drop in the step-feed system remained below 300 Pa m bed(-1) for 61 days, the standard biofilter reached this value in only 14 days and 4000 Pa m bed(-1) by day 30, consuming 75% more compression energy throughout the entire operational period. Operation with perlite supported lower ECs compared to compost in both the step-feed and standard biofilters (≈ 30 g m(-3) h(-1)), probably due to the high indigenous microbial diversity present in this organic packing material. The step-feed biofilter exhibited 65% lower compression energy requirements than the standard biofilter during operation with perlite, while supporting similar ECs. In brief, step-feed biofiltration constitutes a promising operational strategy capable of drastically reducing the operating costs of biofiltration due to a reduced energy consumption and an increased packing material lifespan. PMID:23764582

  10. INTERACTIONS OF SILICA PARTICLES IN DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    EPA Identifier: U915331
    Title: Interactions of Silica Particles in Drinking Water Treatment Processes
    Fellow (Principal Investigator): Christina L. Clarkson
    Institution: Virginia Polytechnic Institute and State University
    EPA GRANT R...

  11. Report on subcontract from Lawrence Livermore National Lab, "Development of Large-Dimension Configuration-Interaction Shell-Model Code"

    SciTech Connect

    Johnson, C W

    2012-01-24

    The project period was devoted to several developments in the technical capabilities of the BIGSTIC large-dimension configuration-interaction shell-model code, written in Fortran 90. The specific computational goals for the project period were: (1) store Lanczos vectors on core in RAM to minimize I/O; (2) rewrite reorthogonalization with Lanczos vectors stored in core, consult with personnel at LLNL, LBL, ORNL, Iowa State University to maximize performance; (3) restrict creation of N-body jumps to those needed by an individual node; and (4) distribute 3-body interaction over many cores. Significant progress was made towards these goals, especially (1) and (2), although in the process they discovered intermediate tasks that had to be accomplished first. The achievements were as follows - I put into place structures and algorithms to facility fragmenting very large-dimension Lanczos intermediate vectors. Only by fragmenting the vectors can we carry out (1) and (2). In addition, I reorganized the action of the Hamiltonian matrix and created a new division of operations for MPI. Based upon earlier work, I made plans of a revised algorithm for distribution of work with MPI, with a particular eye towards breaking up the Lanczos vectors. I introduce a new derived type (opbundles) which collects the parameters for the Hamiltonian, and rewrote the application routines to use it. It has been validated and verified. I made progress towards revised MPI parallelization. Using the opbundles, I was able to compute a distribution of work over compute nodes, which should be very efficient. This new distribution is easier to derive and more efficient, in principle, than the old distribution. Furthermore, it should make applications with fragmented Lanczos vectors easier. Implementation is still in progress.

  12. Use of complex configuration interaction calculations and the stationary principle for the description of metastable electronic states of HCl-

    NASA Astrophysics Data System (ADS)

    Honigmann, Michael; Liebermann, Heinz-Peter; Buenker, Robert J.

    2010-07-01

    The complex multireference single- and double-excitation configuration interaction method has been employed to compute potential curves for the anion of the hydrogen chloride molecule. First, conventional CI calculations with real basis functions have been carried out to determine the potential curves of both HCl and its anion over a large range of internuclear distance. It is shown that adding basis functions with very small exponents leads to sharply avoided crossings for the HCl- potentials that greatly complicate the search for resonance states thought to be responsible for features observed in electron collision experiments. By limiting the number of such diffuse-type functions it is possible to describe resonance states at a highly correlated level and still account for their interaction with the continuum in which they are embedded. In the present study of the HCl- anion the complex basis function technique of Moiseyev-Corcoran and McCurdy-Resigno is employed to calculate the energy positions and line-widths of the resonance states. Two states of Σ2+ symmetry are calculated which have potentials that have significantly different shapes than that of the neutral ground state and thus contribute to the cross section for vibrational excitation of the neutral HCl molecule induced by low-energy electron collisions. The lower of these (1 Σ2+) correlates smoothly with the bound anionic ground state at large internuclear distances and is seen to be responsible for the sharp peaks observed in the low-energy region of the spectrum. The upper state (3 Σ2+) has a much larger bond length and is assigned to the broad bands observed with a maximum in the 2.5-3.0 eV range. The present calculations thus stand in contradiction to earlier claims that the above peaks are caused by so-called virtual states without a definite autoionization lifetime.

  13. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    DOE PAGESBeta

    Savukov, I. M.; Filin, D. V.

    2014-12-29

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreementmore » with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.« less

  14. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    SciTech Connect

    Savukov, I. M.; Filin, D. V.

    2014-12-29

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.

  15. Manipulation of Goos-Hänchen shifts in the atomic configuration of mercury via interacting dark-state resonances

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Radmehr, Arash; Sahrai, M.

    2014-11-01

    We study the manipulation of Goos-Hänchen (GH) shifts for the reflected and transmitted probe light pulses injected into a cavity containing four-level configuration mercury atoms where the probe transition is in the ultraviolet (UV) region with a wavelength of 253.7 nm . Different behaviors of the GH shifts can be observed in the absence, or presence, of two driving fields as well as an incoherent pump field. When neither coherent driving fields nor incoherent pumping is turned on, we realize negative reflected GH shifts for anomalous dispersion. Including only one driving field leads to subluminal-based light propagation with positive lateral shifts at certain incident angles. Taking into account the impact of both driving fields, negative GH shifts reappear in the reflected part of the incident light. The origin of this defect is attributed to interacting double dark resonances due to a high-resolution absorption peaks with a very steep negative slope of dispersion in the susceptibility profile. We then show that one can surpass this defect by applying a weak incoherent pumping field to obtain positive GH shifts for both reflected and transmitted light beams. Finally, using the 6 1P1↔6 1S0 transition of Hg, we generalize our study to the case where the wavelength of the probe transition is 185 nm which is in the vacuum-ultraviolet domain. Although the number of oscillations is now increased, however, similar results are reported with respect to the case of UV transition.

  16. Transonic Navier-Stokes computations of strake-generated vortex interactions for a fighter-like configuration

    NASA Technical Reports Server (NTRS)

    Reznick, Steve

    1988-01-01

    Transonic Euler/Navier-Stokes computations are accomplished for wing-body flow fields using a computer program called Transonic Navier-Stokes (TNS). The wing-body grids are generated using a program called ZONER, which subdivides a coarse grid about a fighter-like aircraft configuration into smaller zones, which are tailored to local grid requirements. These zones can be either finely clustered for capture of viscous effects, or coarsely clustered for inviscid portions of the flow field. Different equation sets may be solved in the different zone types. This modular approach also affords the opportunity to modify a local region of the grid without recomputing the global grid. This capability speeds up the design optimization process when quick modifications to the geometry definition are desired. The solution algorithm embodied in TNS is implicit, and is capable of capturing pressure gradients associated with shocks. The algebraic turbulence model employed has proven adequate for viscous interactions with moderate separation. Results confirm that the TNS program can successfully be used to simulate transonic viscous flows about complicated 3-D geometries.

  17. Comparison of the quadratic configuration interaction and coupled cluster approaches to electron correlation including the effect of triple excitations

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Lee, Timothy J.; Rendell, Alistair P.

    1990-01-01

    The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results.

  18. Sign problem in full configuration interaction quantum Monte Carlo: Linear and sublinear representation regimes for the exact wave function

    NASA Astrophysics Data System (ADS)

    Shepherd, James J.; Scuseria, Gustavo E.; Spencer, James S.

    2014-10-01

    We investigate the sign problem for full configuration interaction quantum Monte Carlo (FCIQMC), a stochastic algorithm for finding the ground-state solution of the Schrödinger equation with substantially reduced computational cost compared with exact diagonalization. We find k -space Hubbard models for which the solution is yielded with storage that grows sublinearly in the size of the many-body Hilbert space, in spite of using a wave function that is simply a linear combination of states. The FCIQMC algorithm is able to find this sublinear scaling regime without bias and with only a choice of the Hamiltonian basis. By means of a demonstration we solve for the energy of a 70-site half-filled system (with a space of 1038 determinants) in 250 core hours, substantially quicker than the ˜1036 core hours that would be required by exact diagonalization. This is the largest space that has been sampled in an unbiased fashion. The challenge for the recently developed FCIQMC method is made clear: Expand the sublinear scaling regime while retaining exact-on-average accuracy. We comment upon the relationship between this and the scaling law previously observed in the initiator adaptation (i-FCIQMC). We argue that our results change the landscape for the development of FCIQMC and related methods.

  19. Breaking the carbon dimer: The challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Booth, George H.; Cleland, Deidre; Thom, Alex J. W.; Alavi, Ali

    2011-08-01

    The full configuration interaction quantum Monte Carlo (FCIQMC) method, as well as its "initiator" extension (i-FCIQMC), is used to tackle the complex electronic structure of the carbon dimer across the entire dissociation reaction coordinate, as a prototypical example of a strongly correlated molecular system. Various basis sets of increasing size up to the large cc-pVQZ are used, spanning a fully accessible N-electron basis of over 1012 Slater determinants, and the accuracy of the method is demonstrated in each basis set. Convergence to the FCI limit is achieved in the largest basis with only O[10^7] walkers within random errorbars of a few tenths of a millihartree across the binding curve, and extensive comparisons to FCI, CCSD(T), MRCI, and CEEIS results are made where possible. A detailed exposition of the convergence properties of the FCIQMC methods is provided, considering convergence with elapsed imaginary time, number of walkers and size of the basis. Various symmetries which can be incorporated into the stochastic dynamic, beyond the standard abelian point group symmetry and spin polarisation are also described. These can have significant benefit to the computational effort of the calculations, as well as the ability to converge to various excited states. The results presented demonstrate a new benchmark accuracy in basis-set energies for systems of this size, significantly improving on previous state of the art estimates.

  20. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2014-08-14

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H{sub 3} near its D{sub 3h} geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.

  1. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    SciTech Connect

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  2. Analytic derivative couplings between configuration-interaction-singles states with built-in electron-translation factors for translational invariance

    NASA Astrophysics Data System (ADS)

    Fatehi, Shervin; Alguire, Ethan; Shao, Yihan; Subotnik, Joseph E.

    2011-12-01

    We present a method for analytically calculating the derivative couplings between a pair of configuration-interaction-singles (CIS) excited states obtained in an atom-centered basis. Our theory is exact and has been derived using two completely independent approaches: one inspired by the Hellmann-Feynman theorem and the other following from direct differentiation. (The former is new, while the latter is in the spirit of existing approaches in the literature.) Our expression for the derivative couplings incorporates all Pulay effects associated with the use of an atom-centered basis, and the computational cost is minimal, roughly comparable to that of a single CIS energy gradient. We have validated our method against CIS finite-difference results and have applied it to the lowest lying excited states of naphthalene; we find that naphthalene derivative couplings include Pulay contributions sufficient to have a qualitative effect. Going beyond standard problems in analytic gradient theory, we have also constructed a correction, based on perturbative electron-translation factors, for including electronic momentum and eliminating spurious components of the derivative couplings that break translational symmetry. This correction is general and can be applied to any level of electronic structure theory.

  3. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length. PMID:25381499

  4. A Trait-Treatment Interaction in a College Physics Course

    ERIC Educational Resources Information Center

    Ott, Mary Diederich; Macklin, David B.

    1975-01-01

    This study investigated interactions between student traits and treatments. Engineering and physics majors were enrolled in either a lecture-recitation-laboratory section, or an audio-tutorial section of an introductory physics course. No significant differences were found between the two groups, but an interaction was found between two traits…

  5. Comparison of spin-orbit configuration interaction methods employing relativistic effective core potentials for the calculation of zero-field splittings of heavy atoms with a 2Po ground state

    NASA Astrophysics Data System (ADS)

    Buenker, Robert J.; Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Lingott, Rainer; Hirsch, Gerhard

    1998-03-01

    Computational strategies for the treatment of relativistic effects including spin-orbit coupling at a highly correlated level are compared for a number of heavy atoms: indium, iodine, thallium, and astatine. Initial tests with perturbation theory emphasize the importance of high-energy singly excited configurations which possess large spin-orbit matrix elements with the ground state. A contracted basis consisting of L-S CI eigenfunctions (LSC-SO-CI) is found to give an accurate representation of both spin-perturbed 2Po components as long as key np→pi* singly excited configurations are included. Comparison is made with a more extensive treatment in which all selected configurations of various L-S symmetries form the basis for the multireference-spin-orbit-configuration interaction (MR-SO-CI). Good agreement is obtained with experimental SO splittings for the In, I, and At atoms at a variety of levels of treatment, indicating that the L-S contracted SO-CI approach can be implemented quite effectively with relativistic effective core potentials (RECPs) for both very electronegative atoms and also for lighter electropositive elements up through the fifth row of the periodic table. The thallium atom SO splitting is more difficult to obtain accurately because of greater differences between its valence p1/2 and p3/2 spinors than in the other cases studied, but good results are also possible with the contracted SO-CI approach in this instance, provided proper care is given to the inclusion of key singly excited L-S states. The relationship between all-electron two-component SO-CI treatments and those employing RECPs is also analyzed, and it is concluded that triply excited configurations relative to the 2Po ground state are far less important than previously reported.

  6. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: application to transition metal L-edge X-ray absorption spectroscopy.

    PubMed

    Roemelt, Michael; Maganas, Dimitrios; DeBeer, Serena; Neese, Frank

    2013-05-28

    A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S' = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with MS = S,..., -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory∕ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row transition metals. These

  7. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Roemelt, Michael; Maganas, Dimitrios; DeBeer, Serena; Neese, Frank

    2013-05-01

    A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S' = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with MS = S, …, -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory/ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row transition metals. These

  8. The Regression Trunk Approach to Discover Treatment Covariate Interaction

    ERIC Educational Resources Information Center

    Dusseldorp, Elise; Meulman, Jacqueline J.

    2004-01-01

    The regression trunk approach (RTA) is an integration of regression trees and multiple linear regression analysis. In this paper RTA is used to discover treatment covariate interactions, in the regression of one continuous variable on a treatment variable with "multiple" covariates. The performance of RTA is compared to the classical method of…

  9. Between difference and belonging: configuring self and others in inpatient treatment for eating disorders.

    PubMed

    Eli, Karin

    2014-01-01

    Dedicated inpatient care for eating disorders has profound impact on patients' embodied practices and lived realities. Analyses of inpatients' accounts have shown that participants endorse complex and conflicting attitudes toward their experiences in eating disorders wards, yet the apparent ambivalence that characterizes inpatient experiences has not been subject to critical examination. This paper examines the narrated experiences of 13 participants (12 women and one man; age 18-38 years at first interview) with past or present anorexia nervosa, bulimia nervosa, or eating disorder not otherwise specified, who had been hospitalized in an inpatient eating disorders ward for adults in central Israel. The interviews, which took place in 2005-2006, and again in 2011, were part of a larger longitudinal study exploring the subjective experiences of eating disorders and recovery among Israeli adults. Employing qualitative analysis, this study finds that the participants' accounts were concerned with dynamics of difference and belonging, as they played out in various aspects of inpatient care, including diagnosis, treatment, relationships with fellow patients and staff, and everyday life in hospital. Notably, participants simultaneously defined themselves as connected to, but also distinct from, the eating disordered others who formed their reference group at the ward. Through negotiating a protectively ambivalent positioning, participants recognized their eating disordered identities and connected with others on the ward, while also asserting their non-disordered individuality and distancing themselves from the potential dangers posed by 'excessive' belonging. The paper suggests that this ambivalent positioning can usefully be understood through the anthropological concept of liminality: being both a part of and apart from one's community. PMID:25210886

  10. Between Difference and Belonging: Configuring Self and Others in Inpatient Treatment for Eating Disorders

    PubMed Central

    Eli, Karin

    2014-01-01

    Dedicated inpatient care for eating disorders has profound impact on patients' embodied practices and lived realities. Analyses of inpatients' accounts have shown that participants endorse complex and conflicting attitudes toward their experiences in eating disorders wards, yet the apparent ambivalence that characterizes inpatient experiences has not been subject to critical examination. This paper examines the narrated experiences of 13 participants (12 women and one man; age 18–38 years at first interview) with past or present anorexia nervosa, bulimia nervosa, or eating disorder not otherwise specified, who had been hospitalized in an inpatient eating disorders ward for adults in central Israel. The interviews, which took place in 2005–2006, and again in 2011, were part of a larger longitudinal study exploring the subjective experiences of eating disorders and recovery among Israeli adults. Employing qualitative analysis, this study finds that the participants' accounts were concerned with dynamics of difference and belonging, as they played out in various aspects of inpatient care, including diagnosis, treatment, relationships with fellow patients and staff, and everyday life in hospital. Notably, participants simultaneously defined themselves as connected to, but also distinct from, the eating disordered others who formed their reference group at the ward. Through negotiating a protectively ambivalent positioning, participants recognized their eating disordered identities and connected with others on the ward, while also asserting their non-disordered individuality and distancing themselves from the potential dangers posed by ‘excessive’ belonging. The paper suggests that this ambivalent positioning can usefully be understood through the anthropological concept of liminality: being both a part of and apart from one's community. PMID:25210886

  11. Hybrid, Y-configured, dual stent-assisted coil embolization in the treatment of wide-necked bifurcation aneurysms

    PubMed Central

    Balli, Tugsan; Aksungur, Erol H

    2015-01-01

    In Y-stenting, stabilization of the first stent may be problematic as in some cases it migrates during second stent insertion. This report evaluates the safety and effectiveness of the technique and presents the long-term results of hybrid, Y-configured, dual stent-assisted coil embolization in the treatment of wide-necked bifurcation aneurysms. We retrospectively evaluated the patients treated endovascularly due to cerebral aneurysms. Twenty patients treated with hybrid Y-stent-assisted coil embolization were enrolled in the study. In hybrid stenting, an open-cell intracranial stent (Neuroform) was used as a first stent to prevent stent migration. A closed-cell stent (Enterprise or Acclino) was used as a second stent and the aneurysm was embolized with coils between the stent struts. In all patients, hybrid Y-stenting and coil embolization were accomplished successfully. No stent migration occurred. Clinically, neither symptomatic neurologic complication nor death was seen. Of 20 wide-necked bifurcation aneurysms, nine were at the basilar tip, while seven were at the middle cerebral artery and three at the anterior communicating artery. In one patient, the aneurysm was at the A2-3 junction of the anterior cerebral artery. One of the patients had a subarachnoid hemorrhage. The mean angiographic follow-up was 25.6 months. No in-stent stenosis was seen in any of the patients and recanalization in only one. Hybrid, Y-configured, dual stent-assisted coil embolization is a safe and effective method in the treatment of wide-necked bifurcation aneurysms to prevent stent migration and aneurysm recanalization, and is a viable alternative to microsurgery. PMID:25934772

  12. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    NASA Astrophysics Data System (ADS)

    Jafarinejad, Shahryar

    2016-07-01

    The activated sludge (AS) process is a type of suspended growth biological wastewater treatment that is used for treating both municipal sewage and a variety of industrial wastewaters. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs). In this study, three configurations containing conventional activated sludge (CAS), extended aeration activated sludge (EAAS), and sequencing batch reactor (SBR) processes for a wastewater treatment plant in Tehran city were proposed and the total project construction, operation labor, maintenance, material, chemical, energy and amortization costs of these WWTPs were calculated and compared. Besides, effect of mixed liquor suspended solid (MLSS) amounts on costs of WWTPs was investigated. Results demonstrated that increase of MLSS decreases the total project construction, material and amortization costs of WWTPs containing EAAS and CAS. In addition, increase of this value increases the total operation, maintenance and energy costs, but does not affect chemical cost of WWTPs containing EAAS and CAS.

  13. Solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations

    NASA Technical Reports Server (NTRS)

    Koenig, Keith

    1986-01-01

    The theoretical and numerical bases of a program for the solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations are explained. The emphasis is upon the logic behind the equation development. The program is fully detailed so that the user can quickly become familiar with its operation.

  14. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations

    SciTech Connect

    Palmer, Michael H. Ridley, Trevor E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Hoffmann, Søren Vrønning E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it Jones, Nykola C. E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Coreno, Marcello E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Grazioli, Cesare; Zhang, Teng; and others

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.

  15. Polarizabilities and first hyperpolarizabilities of HF, Ne, and BH from full configuration interaction and coupled cluster calculations

    NASA Astrophysics Data System (ADS)

    Larsen, Helena; Olsen, Jeppe; Hättig, Christof; Jørgensen, Poul; Christiansen, Ove; Gauss, Jürgen

    1999-08-01

    Static and frequency-dependent polarizabilities and first hyperpolarizabilities have been calculated for HF and Ne using full configuration interaction (FCI) and a hierarchy of coupled cluster models: coupled cluster singles (CCS), an approximate coupled cluster singles and doubles model (CC2), coupled cluster singles and doubles (CCSD), an approximate coupled cluster singles, doubles, and triples model (CC3), and coupled cluster singles, doubles, and triples (CCSDT). A previous study of BH concerning FCI benchmarking has been extended to include CC3 and static CCSDT values. Systematic improvements of the polarizabilities and the hyperpolarizabilities are found going from CCS to CCSD and from CCSD to CC3 or CCSDT. Little or no improvement of the polarizabilities and no improvement of the hyperpolarizabilities are seen when going from CCS to CC2. The CCSD results represent a significant improvement over CCS and CC2 but are again surpassed by the CC3 results which agree very well with the FCI values. The relative error for the static polarizability at the CC3 level is 0.11% for Ne and, respectively, 0.16% and 0.20% for αxx and αzz of HF. For βzzz and βzxx the errors are 0.50% and 1.7%, respectively. Only in the challenging case of BH does CCSDT improve the CC3 values. The dispersion for the polarizabilities and hyperpolarizabilities is predicted with increasing accuracy in the CCS-CC2-CCSD-CC3 sequence as expected from the increasing accuracy of the electronic excitation energies. For all molecules the effect of orbital relaxation has been investigated for the static properties. The inclusion of orbital relaxation gives results that are somewhat different from the unrelaxed results but are in general no improvement.

  16. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Zhang, Teng; Biczysko, Malgorzata; Baiardi, Alberto; Peterson, Kirk

    2015-10-01

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of 1A1 (higher oscillator strength) and 1B2 (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 22B1 ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b13s and 6b23s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.

  17. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study.

    PubMed

    Arulmozhiraja, Sundaram; Coote, Michelle L; Hasegawa, Jun-ya

    2015-11-28

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning's cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n-π(∗) state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π(∗) and n-π(∗) states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm(-1) band in the S1←S0 transition when compared to that of the zero-point level of the S1 state. The present study, however, shows that all the four lowest lying excited states, (1)Lb π-π(∗), (1)La π-π(∗), n-π(∗), and π-σ(∗), cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm(-1) band in the S1←S0 transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S1 excited vibrational level. This multistate mixing, and especially the involvement of π-σ(∗) state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study. PMID:26627956

  18. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    SciTech Connect

    Arulmozhiraja, Sundaram Coote, Michelle L.; Hasegawa, Jun-ya

    2015-11-28

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning’s cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n–π{sup ∗} state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π{sup ∗} and n-π{sup ∗} states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition when compared to that of the zero-point level of the S{sub 1} state. The present study, however, shows that all the four lowest lying excited states, {sup 1}L{sub b} π-π{sup ∗}, {sup 1}L{sub a} π-π{sup ∗}, n-π{sup ∗}, and π-σ{sup ∗}, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S{sub 1} excited vibrational level. This multistate mixing, and especially the involvement of π-σ{sup ∗} state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  19. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations.

    PubMed

    Palmer, Michael H; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Zhang, Teng; Biczysko, Malgorzata; Baiardi, Alberto; Peterson, Kirk

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of (1)A1 (higher oscillator strength) and (1)B2 (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2(2)B1 ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b13s and 6b23s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures. PMID:26520509

  20. Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule

    NASA Astrophysics Data System (ADS)

    Wang, Jie-Min; Liu, Qiang

    2013-09-01

    The potential energy curves (PECs) of four electronic states (X1Σg+, e3Δu, a3Σu-, and d3Πg) of an As2 molecule are investigated employing the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent aug-cc-pV5Z basis set. The effect on PECs by the relativistic correction is taken into account. The way to consider the relativistic correction is to employ the second-order Douglas-Kroll Hamiltonian approximation. The correction is made at the level of a cc-pV5Z basis set. The PECs of the electronic states involved are extrapolated to the complete basis set limit. With the PECs, the spectroscopic parameters (Te, Re, ωe, ωexe, ωeye, αe, βe, γe, and Be) of these electronic states are determined and compared in detail with those reported in the literature. Excellent agreement is found between the present results and the experimental data. The first 40 vibrational states are studied for each electronic state when the rotational quantum number J equals zero. In addition, the vibrational levels, inertial rotation and centrifugal distortion constants of d3Πg electronic state are reported which are in excellent agreement with the available measurements. Comparison with the experimental data shows that the present results are both reliable and accurate.

  1. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    NASA Astrophysics Data System (ADS)

    Arulmozhiraja, Sundaram; Coote, Michelle L.; Hasegawa, Jun-ya

    2015-11-01

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning's cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n-π∗ state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π∗ and n-π∗ states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm-1 band in the S1←S0 transition when compared to that of the zero-point level of the S1 state. The present study, however, shows that all the four lowest lying excited states, 1Lb π-π∗, 1La π-π∗, n-π∗, and π-σ∗, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm-1 band in the S1←S0 transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S1 excited vibrational level. This multistate mixing, and especially the involvement of π-σ∗ state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  2. Electronically Excited States of Higher Acenes up to Nonacene: A Density Functional Theory/Multireference Configuration Interaction Study.

    PubMed

    Bettinger, Holger F; Tönshoff, Christina; Doerr, Markus; Sanchez-Garcia, Elsa

    2016-01-12

    While the optical spectra of the acene series up to pentacene provide textbook examples for the annulation principle, the spectra of the larger members are much less understood. The present work provides an investigation of the optically allowed excited states of the acene series from pentacene to nonacene, the largest acene observed experimentally, using the density functional based multireference configuration method (DFT/MRCI). For this purpose, the ten lowest energy states of the B2u and B3u irreducible representations were computed. In agreement with previous computational investigations, the electronic wave functions of the acenes acquire significant multireference character with increasing acene size. The HOMO → LUMO excitation is the major contributor to the (1)La state (p band, B2u) also for the larger acenes. The oscillator strength decreases with increasing length. The (1)Lb state (α band, B3u), so far difficult to assign for the larger acenes due to overlap with photoprecursor bands, becomes almost insensitive to acene length. The (1)Bb state (β band, B3u) also moves only moderately to lower energy with increasing acene size. Excited states of B3u symmetry that formally result from double excitations involving HOMO, HOMO-1, LUMO, and LUMO+1 decrease in energy much faster with system size. One of them (D1) has very small oscillator strength but becomes almost isoenergetic with the (1)La state for nonacene. The other (D2) also has low oscillator strength as long as it is higher in energy than (1)Bb. Once it is lower in energy than the (1)Bb state, both states interact strongly resulting in two states with large oscillator strengths. The emergence of two strongly absorbing states is in agreement with experimental observations. The DFT/MRCI computations reproduce experimental excitation energies very well for pentacene and hexacene (within 0.1 eV). For the larger acenes deviations are larger (up to 0.2 eV), but qualitative agreement is observed. PMID

  3. Intersystem-crossing and phosphorescence rates in fac-Ir(III)(ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions.

    PubMed

    Kleinschmidt, Martin; van Wüllen, Christoph; Marian, Christel M

    2015-03-01

    We have employed combined density functional theory and multi-reference configuration interaction methods including spin-orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy)3). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin-orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin-orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy)3 is C3 symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy)3. For the S1↝T1 non-radiative transition, we compute a rate constant of kISC = 6.9 × 10(12) s(-1) which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T1 state, the T1 → S0 transition densities are localized on one of the phenylpyridyl moieties. In our best quantum chemical model, we obtain phosphorescence

  4. Intersystem-crossing and phosphorescence rates in fac-Ir{sup III}(ppy){sub 3}: A theoretical study involving multi-reference configuration interaction wavefunctions

    SciTech Connect

    Kleinschmidt, Martin; Marian, Christel M.; Wüllen, Christoph van

    2015-03-07

    We have employed combined density functional theory and multi-reference configuration interaction methods including spin–orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy){sub 3}). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin–orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin–orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy){sub 3} is C{sub 3} symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy){sub 3}. For the S{sub 1}↝T{sub 1} non-radiative transition, we compute a rate constant of k{sub ISC} = 6.9 × 10{sup 12} s{sup −1} which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T{sub 1} state, the T{sub 1} → S{sub 0} transition densities are localized on one of the

  5. Intersystem-crossing and phosphorescence rates in fac-IrIII(ppy)3: A theoretical study involving multi-reference configuration interaction wavefunctions

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Martin; van Wüllen, Christoph; Marian, Christel M.

    2015-03-01

    We have employed combined density functional theory and multi-reference configuration interaction methods including spin-orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy)3). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin-orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin-orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy)3 is C3 symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy)3. For the S1↝T1 non-radiative transition, we compute a rate constant of kISC = 6.9 × 1012 s-1 which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T1 state, the T1 → S0 transition densities are localized on one of the phenylpyridyl moieties. In our best quantum chemical model, we obtain phosphorescence

  6. Verifying radiotherapy treatment setup by interactive image registration.

    PubMed Central

    Boxwala, A. A.; Chaney, E. L.; Friedman, C. P.

    1996-01-01

    Digital image analysis techniques can be used to assist the physician in diagnostic or therapeutic decision making. In radiation oncology, portal image registration can improve the accuracy of detection of errors during radiation treatment. Following a discussion of the general paradigm of interactive image registration, we describe PortFolio, a workstation for portal image analysis. Images Figure 1 Figure 2 PMID:8947672

  7. Electron-correlation effects in enhanced ionization of molecules: A time-dependent generalized-active-space configuration-interaction study

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Bauch, S.; Madsen, L. B.

    2015-12-01

    We numerically study models of H2 and LiH molecules, aligned collinearly with the linear polarization of the external field, to elucidate the possible role of correlation in the enhanced-ionization (EI) phenomena. Correlation is considered at different levels of approximation with the time-dependent generalized-active-space configuration-interaction method. The results of our studies show that enhanced ionization occurs in multielectron molecules and that correlation is important, and they also demonstrate significant deviations between the results of the single-active-electron approximation and more accurate configuration-interaction methods. We further investigate the role of low-lying excited states in the EI phenomena. With the inclusion of correlation we show strong carrier-envelope-phase effects in the enhanced ionization of the asymmetric heteronuclear LiH -like molecule. The correlated calculation shows an intriguing feature of crossover in enhanced ionization with two carrier-envelope phases at critical internuclear separation.

  8. A robust quasi-simultaneous interaction method for a full potential flow with a boundary layer with application to wing/body configurations

    NASA Technical Reports Server (NTRS)

    Vanderwees, A. J.; Vanmuijden, J.

    1992-01-01

    The MATRICS flow solver calculates the inviscid transonic potential flow about a wing/body semi-configuration. At present, work is in progress to extend MATRICS to take viscous effects into account through coupling with a boundary layer solver. This solver, MATRICS-V, is based on robust calculation methods for the boundary layer, the outer wing flow and their interaction. MATRICS-V is intended for (inverse) design purposes. The boundary layer and wake are based on an integral formulation of the unsteady first order boundary layer equations, the inviscid method is the existing MATRICS potential flow solver, and the interaction algorithm is of the quasi-simultaneous type. The paper gives a progress report on the coupled potential-flow boundary-layer method for transonic wing/body configurations.

  9. A large-scale relativistic configuration-interaction calculation for the 4s-4p and 4p-4d transition energies of copperlike heavy ions

    SciTech Connect

    Cheng, K T; Chen, M H

    2005-06-21

    The 4s-4p and 4p-4d transition energies for high-Z copperlike ions are calculated using the relativistic configuration-interaction (RCI) method. Mass polarization (MP) and quantum electrodynamic (QED) corrections are also evaluated. For the 4s-4p transitions, the present RCI energies agree very well with results from the relativistic many-body perturbation theory. With QED and MP corrections included, our total transition energies are in very good agreement with recent high precision measurements.

  10. Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F{sub 2} using selected configuration interaction trial wavefunctions

    SciTech Connect

    Giner, Emmanuel; Scemama, Anthony; Caffarel, Michel

    2015-01-28

    The potential energy curve of the F{sub 2} molecule is calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC) using Configuration Interaction (CI)-type trial wavefunctions. To keep the number of determinants reasonable and thus make FN-DMC calculations feasible in practice, the CI expansion is restricted to those determinants that contribute the most to the total energy. The selection of the determinants is made using the CIPSI approach (Configuration Interaction using a Perturbative Selection made Iteratively). The trial wavefunction used in FN-DMC is directly issued from the deterministic CI program; no Jastrow factor is used and no preliminary multi-parameter stochastic optimization of the trial wavefunction is performed. The nodes of CIPSI wavefunctions are found to reduce significantly the fixed-node error and to be systematically improved upon increasing the number of selected determinants. To reduce the non-parallelism error of the potential energy curve, a scheme based on the use of a R-dependent number of determinants is introduced. Using Dunning’s cc-pVDZ basis set, the FN-DMC energy curve of F{sub 2} is found to be of a quality similar to that obtained with full configuration interaction/cc-pVQZ.

  11. Multi-reference Hartree-Fock configuration interaction calculations of LiH and Be using a new double-zeta atomic base.

    PubMed

    de Cerqueira Sobrinho, Antonio Moreira; de Andrade, Micael Dias; Nascimento, Marco Antônio Chaer; Malbouisson, Luiz Augusto Carvalho

    2014-08-01

    In this work, we propose new double-zeta atomic bases for the Li and Be atoms. These were obtained by applying the Hartree-Fock-Gauss generalized simulated annealing (GSA) method-a modified form of the GSA algorithm. The new bases were generated through optimization of the atomic electronic energy functional with regards to the linear combination of atomic orbitals-molecular orbital (LCAO-MO) coefficients, and exponent and contraction coefficients of the primitive Gaussian functions, simultaneously. These new bases were tested by performing calculations of the ground state energy of the Be atom, and the ground state energy and permanent electrical dipole moment of the LiH molecule, using the multi-reference Hartree-Fock (HF) configuration interaction method-a multi-reference method based on multiple HF solutions. In addition, multi-reference HF configuration interaction calculations were performed for the Be atom using the standard double-zeta, triple-zeta and polarized double-zeta bases. With the new double-zeta bases and with reduced multi-reference HF bases, it was possible to obtain lower energies than those obtained with the full configuration interaction calculations using the standard double-zeta bases and dipole moment values in close agreement with experimental values. PMID:25102937

  12. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction

    SciTech Connect

    Luppi, Eleonora; Head-Gordon, Martin

    2013-10-28

    We study the role of Rydberg bound-states and continuum levels in the field-induced electronic dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital (AO) expansions (up to L= 4 with sextuple augmentation and off-center functions) to describe the bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the ionization potential. The heuristic lifetime model is compared against the conventional atomic orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using conventional TD-CI do not converge with increasing AO basis set size, while the zero lifetime and heuristic lifetime models converge to qualitatively similar spectra, with implications for how best to apply bound state electronic structure methods to simulate HHG. The origin of HHG spectral features including the cutoff and extent of interference between peaks is uncovered by separating field-induced coupling between different types of levels (ground state, bound Rydberg levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between the predictions of the semi-classical three step model and the full simulation can be associated with particular physical contributions, which helps to explain both the successes and the limitations of the three step model.

  13. A Large-scale Relativistic Configuration-Interaction Calculation for the 4s-4p Transition Energies of Copperlike Heavy Ions

    SciTech Connect

    Cheng, K T; Chen, M H

    2005-06-30

    The 4s-4p transition energies for high-Z copperlike ions are calculated using the relativistic configuration-interaction (RCI) method. These calculations are based on the relativistic no-pair Hamiltonian which includes Coulomb and frequency-dependent, retarded Breit interactions and use B-spline orbitals as basis functions. Mass polarization and quantum electrodynamic (QED) corrections are also calculated. The present RCI energies agree very well with results from the relativistic many-body perturbation theory. With QED corrections included, our total transition energies are in very good agreement with recent high-precision measurements.

  14. Subsonic investigations of vortex interaction control for enhanced high-alpha aerodynamics of a chine forebody/Delta wing configuration

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Bhat, M. K.

    1992-01-01

    A proposed concept to alleviate high alpha asymmetry and lateral/directional instability by decoupling of forebody and wing vortices was studied on a generic chine forebody/ 60 deg. delta configuration in the NASA Langley 7 by 10 foot High Speed Tunnel. The decoupling technique involved inboard leading edge flaps of varying span and deflection angle. Six component force/moment characteristics, surface pressure distributions and vapor-screen flow visualizations were acquired, on the basic wing-body configuration and with both single and twin vertical tails at M sub infinity = 0.1 and 0.4, and in the range alpha = 0 to 50 deg and beta = -10 to +10 degs. Results are presented which highlight the potential of vortex decoupling via leading edge flaps for enhanced high alpha lateral/directional characteristics.

  15. The electronic states of pyridine-N-oxide studied by VUV photoabsorption and ab initio configuration interaction computations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Hoffmann, Søren Vrønning; Jones, Nykola C.; Smith, Elliott R.; Lichtenberger, Dennis L.

    2013-06-01

    The first vacuum-ultraviolet absorption spectrum of pyridine-N-oxide has been obtained, and has led to the identification of nearly 30 Rydberg states. These states were identified by use of the vibrational envelope ("footprint") of the UV-photoelectron spectrum, and are based on the first to the third ionization energies (IE). The adiabatic IE order, central to the Rydberg state symmetry identification, is confirmed by multi-configuration SCF calculations as: 12B1 < 12B2 < 12A2 < 22B1. Several excited valence state equilibrium structures were determined by multi-configuration SCF and coupled cluster procedures. Multi-reference multi-root CI was used to calculate both Rydberg and valence state vertical excitation energies and oscillator strengths, which were correlated with the experimental measurements.

  16. Kinetics of drug interactions in the treatment of epilepsy.

    PubMed

    van der Kleijn, E; Vree, T; Guelen, P; Schobten, F; Westenberg, H; Knop, H

    1978-10-01

    The interactions of antiepileptic drugs in multiple drug treatment have been discussed. Although some combinations may lead to predictable increase or decrease of clearance of the respective drugs, most combinations will individually lead to a reduced predictability. Monitoring plasma concentrations may lead to adaptations of the choice of the drug and of the dosage regimen. Also physiological conditions control the individual clearance of antiepileptic drugs. PMID:700910

  17. Fully Internally Contracted Multireference Configuration Interaction Theory Using Density Matrix Renormalization Group: A Reduced-Scaling Implementation Derived by Computer-Aided Tensor Factorization.

    PubMed

    Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi

    2015-11-10

    We present an extended implementation of the multireference configuration interaction (MRCI) method combined with the quantum-chemical density matrix renormalization group (DMRG). In the previous study, we introduced the combined theory, referred to as DMRGMRCI, as a method to calculate high-level dynamic electron correlation on top of the DMRG wave function that accounts for active-space (or strong) correlation using a large number of active orbitals. The DMRG-MRCI method is built on the full internal-contraction scheme for the compact reference treatment and on the cumulant approximation for the treatment of the four-particle rank reduced density matrix (4-RDM). The previous implementation achieved the MRCI calculations with the active space (24e,24o), which are deemed the record largest, whereas the inherent Nact 8 × N complexity of computation was found a hindrance to using further large active space. In this study, an extended optimization of the tensor contractions is developed by explicitly incorporating the rank reduction of the decomposed form of the cumulant-approximated 4-RDM into the factorization. It reduces the computational scaling (to Nact7 × N) as well as the cache-miss penalty associated with direct evaluation of complex cumulant reconstruction. The present scheme, however, faces the increased complexity of factorization patterns for optimally implementing the tensor contraction terms involving the decomposed 4-RDM objects. We address this complexity using the enhanced symbolic manipulation computer program for deriving and coding programmable equations. The new DMRG-MRCI implementation is applied to the determination of the stability of the iron(IV)-oxo porphyrin relative to the iron(V) electronic isomer (electromer) using the active space (29e,29o) (including four second d-shell orbitals of iron) with triple-ζ-quality atomic orbital basis sets. The DMRG-cu(4)-MRCI+Q model is shown to favor the triradicaloid iron(IV)-oxo state as the lowest

  18. Pharmacokinetics and interactions of headache medications, part II: prophylactic treatments.

    PubMed

    Sternieri, Emilio; Coccia, Ciro Pio Rosario; Pinetti, Diego; Guerzoni, Simona; Ferrari, Anna

    2006-12-01

    The present part II review highlights pharmacokinetic drug-drug interactions (excluding those of minor severity) of medications used in prophylactic treatment of the main primary headaches (migraine, tension-type and cluster headache). The principles of pharmacokinetics and metabolism, and the interactions of medications for acute treatment are examined in part I. The overall goal of this series of two reviews is to increase the awareness of physicians, primary care providers and specialists regarding pharmacokinetic drug-drug interactions (DDIs) of headache medications. The aim of prophylactic treatment is to reduce the frequency of headache attacks using beta-blockers, calcium-channel blockers, antidepressants, antiepileptics, lithium, serotonin antagonists, corticosteroids and muscle relaxants, which must be taken daily for long periods. During treatment the patient often continues to take symptomatic drugs for the attack, and may need other medications for associated or new-onset illnesses. DDIs can, therefore, occur. As a whole, DDIs of clinical relevance concerning prophylactic drugs are a limited number. Their effects can be prevented by starting the treatment with low dosages, which should be gradually increased depending on response and side effects, while frequently monitoring the patient and plasma levels of other possible coadministered drugs with a narrow therapeutic range. Most headache medications are substrates of CYP2D6 (e.g., beta-blockers, antidepressants) or CYP3A4 (e.g., calcium-channel blockers, selective serotonin re-uptake inhibitors, corticosteroids). The inducers and, especially, the inhibitors of these isoenzymes should be carefully coadministered. PMID:17125412

  19. A multireference configuration interaction study of the hyperfine structure of the molecules CCO, CNN, and NCN in their triplet ground states

    NASA Astrophysics Data System (ADS)

    Suter, H. U.; Huang, M.-B.; Engels, B.

    1994-11-01

    The hyperfine structures of the isoelectronic molecules CCO, CNN, and NCN in their triplet ground states (X 3Σ-) are investigated by means of ab initio methods. The infrared frequencies and geometries are determined and compared with experiment. Configuration selected multireference configuration interaction calculations in combination with perturbation theory to correct the wave function (MRD-CI/BK) employing extended atomic orbital (AO) basis sets yielded very accurate hyperfine properties. The theoretical values for CCO are in excellent agreement with the experimental values determined by Smith and Weltner [J. Chem. Phys. 62, 4592 (1975)]. For CNN, the first assignment of Smith and Weltner for the two nitrogen atoms has to be changed. A qualitative discussion of the electronic structure discloses no simple relation between the structure of the singly occupied orbitals and the measured hyperfine coupling constants. Vibrational effects were found to be of little importance.

  20. Nitric oxide interaction with insect nitrophorins and thoughts on the electron configuration of the {FeNO}6 complex.

    PubMed

    Walker, F Ann

    2005-01-01

    The nitrophorins are NO-carrying heme proteins that are found in the saliva of two species of blood-sucking insects, the kissing bug (Rhodnius prolixus) and the bedbug (Cimex lectularius). In both insects the NO is bound to the ferric form of the protein, which gives rise to Kds in the micromolar to nanomolar range, and thus upon injection of the saliva into the tissues of the victim the NO can dissociate to cause vasodilation and inhibition of platelet aggregation. The structures of the proteins from each of these insects are unique, and each has a large component of beta-sheet structure, which is unusual for heme proteins. While the Rhodnius nitrophorins increase the effectiveness of their NO-heme proteins by also binding histamine, secreted by the victim in response to the bite, to the heme, the Cimex nitrophorin does not bind histamine but rather binds two molecules of NO reversibly, one to the heme and the other to the cysteine thiolate which serves as the heme ligand in the absence of NO. This requires homolytic cleavage of the Fe-S-Cys bond, which produces an EPR-active Fe(II)-NO complex having the {FeNO}7 electron configuration. For the Rhodnius nitrophorins, the heme of the {FeNO}6 stable NO complex could have the limiting electron configurations Fe(III)-NO+ or Fe(II)-NO+. While vibrational spectroscopy suggests the latter and Mossbauer spectroscopy cannot differentiate between a purely diamagnetic Fe(II) center and a strongly antiferromagnetically coupled Fe(III)-NO* center, the strong ruffling of the heme (with alternate meso-carbons shifted significantly above and below the mean plane of the porphyrin, and concomitant shifts of the beta-pyrrole carbons above and below the mean plane of the porphyrin ring, to produce a very nonplanar porphyrin macrocycle) may suggest at least an important contribution of the latter. The strong ruffling would help to stabilize the (dxz, dyz)4(dxy)1 electron configuration of low-spin Fe(III) (but not low-spin Fe(II)), and

  1. Novel methods for configuration interaction and orbital optimization for wave functions containing non-orthogonal orbitals with applications to the chromium dimer and trimer

    NASA Astrophysics Data System (ADS)

    Olsen, Jeppe

    2015-09-01

    A novel algorithm for performing configuration interaction (CI) calculations using non-orthogonal orbitals is introduced. In the new algorithm, the explicit calculation of the Hamiltonian matrix is replaced by the direct evaluation of the Hamiltonian matrix times a vector, which allows expressing the CI-vector in a bi-orthonormal basis, thereby drastically reducing the computational complexity. A new non-orthogonal orbital optimization method that employs exponential mappings is also described. To allow non-orthogonal transformations of the orbitals, the standard exponential mapping using anti-symmetric operators is supplemented with an exponential mapping based on a symmetric operator in the active orbital space. Expressions are obtained for the orbital gradient and Hessian, which involve the calculation of at most two-body density matrices, thereby avoiding the time-consuming calculation of the three- and four-body density matrices of the previous approaches. An approach that completely avoids the calculation of any four-body terms with limited degradation of convergence is also devised. The novel methods for non-orthogonal configuration interaction and orbital optimization are applied to the chromium dimer and trimer. For internuclear distances that are typical for chromium clusters, it is shown that a reference configuration consisting of optimized singly occupied active orbitals is sufficient to give a potential curve that is in qualitative agreement with complete active space self-consistent field (CASSCF) calculations containing more than 500 × 106 determinants. To obtain a potential curve that deviates from the CASSCF curve by less than 1 mHartree, it is sufficient to add single and double excitations out from the reference configuration.

  2. Novel methods for configuration interaction and orbital optimization for wave functions containing non-orthogonal orbitals with applications to the chromium dimer and trimer.

    PubMed

    Olsen, Jeppe

    2015-09-21

    A novel algorithm for performing configuration interaction (CI) calculations using non-orthogonal orbitals is introduced. In the new algorithm, the explicit calculation of the Hamiltonian matrix is replaced by the direct evaluation of the Hamiltonian matrix times a vector, which allows expressing the CI-vector in a bi-orthonormal basis, thereby drastically reducing the computational complexity. A new non-orthogonal orbital optimization method that employs exponential mappings is also described. To allow non-orthogonal transformations of the orbitals, the standard exponential mapping using anti-symmetric operators is supplemented with an exponential mapping based on a symmetric operator in the active orbital space. Expressions are obtained for the orbital gradient and Hessian, which involve the calculation of at most two-body density matrices, thereby avoiding the time-consuming calculation of the three- and four-body density matrices of the previous approaches. An approach that completely avoids the calculation of any four-body terms with limited degradation of convergence is also devised. The novel methods for non-orthogonal configuration interaction and orbital optimization are applied to the chromium dimer and trimer. For internuclear distances that are typical for chromium clusters, it is shown that a reference configuration consisting of optimized singly occupied active orbitals is sufficient to give a potential curve that is in qualitative agreement with complete active space self-consistent field (CASSCF) calculations containing more than 500 × 10(6) determinants. To obtain a potential curve that deviates from the CASSCF curve by less than 1 mHartree, it is sufficient to add single and double excitations out from the reference configuration. PMID:26395682

  3. Relativistic Configuration Interaction calculations of the atomic properties of selected transition metal positive ions; Ni II, V II and W II

    NASA Astrophysics Data System (ADS)

    Abdalmoneam, Marwa Hefny

    Relativistic Configuration Interaction (RCI) method has been used to investigate atomic properties of the singly ionized transition metals including Nickel (Ni II), Vanadium (V II), and Tungsten (W II). The methodology of RCI computations was also improved. Specifically, the method to shift the energy diagonal matrix of the reference configurations was modified which facilitated including the effects of many electronic configurations that used to be difficult to be included in the energy matrix and speeded-up the final calculations of the bound and continuum energy spectrum. RCI results were obtained for three different cases: i. Atomic moments and polarizabilities of Ni II; ii. Hyperfine structure constants of V II; iii. Lifetime, Lande g-values, and Oscillator strength of W II. Four atomic quantities of Ni II were calculated; scalar dipole polarizability, off-diagonal electric dipole polarizability, non-adiabatic scalar dipole polarizability, and quadrupole polarizability of Ni II. These quantities appear as effective parameters in an effective potential model. These quantities are computed for the first time. The two hyperfine structure (HFS) constants ; magnetic dipole interaction constant, A, and the electric quadrupole interaction constant, B, have been calculated for the V II 3d4, 3d3 4s, and 3d 2 4s2 J=1 to 5 even parity states . Analysis of the results shows the sum of HFS A of nearby energy levels to be conserved. The Lande g-value and the vector composition percentages for all the wavefunctions of those configurations have also been calculated. RCI results are in good agreement with most of the available experimental data. Lifetimes of 175 decay branches in W II have been calculated. Also, Lande g-values have been calculated for all measured W II odd parity levels J=1/2-11/2. The RCI oscillator strengths and branching fraction values of the lowest 10 energy levels for each odd parity J are presented. The calculated results are only in semi

  4. Directed-inquiry approach to learning science process skills: treatment effects and aptitude-treatment interactions

    NASA Astrophysics Data System (ADS)

    Germann, Paul J.

    The directed-inquiry approach to learning science process skills and scientific problem solving [DIAL(SPS)2] was developed to help high-school students gain the critical thinking skills required to solve problems in the biology lab. This curriculum integrated several learning strategies into a single approach: advance organizers, the learning cycle, concept maps, Vee diagrams, a focusing strategy, and writing. Two general questions were addressed. First, was the DIAL(SPS)2 treatment more effective than a conventional treatment? Second, was there evidence of an aptitude-treatment interaction? Four high-school biology classes taught by this investigator were used to test the DIAL(SPS)2 curriculum. Scheduling of students involved ability grouping. To test the curriculum in the most rigorous way, the experimental group consisted of average ability students and the comparison group consisted of above-average students. Both the groups were pretested in August and posttested in May. In the intervening time, the experimental group received the DIAL(SPS)2 treatment while the comparison group received a more traditional approach. Analysis of covariance revealed that the DIAL(SPS)2 curriculum had no significant effect on the learning of science process skills or on cognitive development. Aptitude-treatment interaction analyses revealed an interaction of DIAL(SPS)2 treatment and cognitive development.

  5. Fe{sup 15+} dielectronic recombination and the effects of configuration interaction between resonances with different captured electron principal quantum numbers

    SciTech Connect

    Kwon, Duck-Hee; Savin, Daniel Wolf

    2011-01-15

    Dielectronic recombination (DR) of Na-like Fe{sup 15+} forming Mg-like Fe{sup 14+} via excitation of a 2l core electron has been investigated. We find that configuration interaction (CI) between DR resonances with different captured electron principal quantum numbers n can lead to a significant reduction in resonance strengths for n{>=}5. Previous theoretical work for this system has not considered this form of CI. Including it accounts for most of the discrepancy between previous theoretical and experimental results.

  6. Module Configuration

    DOEpatents

    Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  7. Fitting coupled potential energy surfaces for large systems: Method and construction of a 3-state representation for phenol photodissociation in the full 33 internal degrees of freedom using multireference configuration interaction determined data

    SciTech Connect

    Zhu, Xiaolei Yarkony, David R.

    2014-01-14

    A recently reported algorithm for representing adiabatic states coupled by conical intersections using a quasi-diabatic state Hamiltonian in four and five atom systems is extended to treat nonadiabatic processes in considerably larger molecules. The method treats all internal degrees of freedom and uses electronic structure data from ab initio multireference configuration interaction wave functions with nuclear configuration selection based on quasi-classical surface hopping trajectories. The method is shown here to be able to treat ∼30 internal degrees of freedom including dissociative and large amplitude internal motion. Two procedures are introduced which are essential to the algorithm, a null space projector which removes basis functions from the fitting process until they are needed and a partial diagonalization technique which allows for automated, but accurate, treatment of the vicinity of extended seams of conical intersections of two or more states. These procedures are described in detail. The method is illustrated using the photodissociaton of phenol, C{sub 6}H{sub 5}OH(X{sup ~1}A{sup ′}) + hv → C{sub 6}H{sub 5}OH(A{sup ~1}A{sup ′}, B{sup ~1}A{sup ′′}) → C{sub 6}H{sub 5}O(X{sup ~2}B{sub 1}, A{sup ~2}B{sub 2}) + H as a test case. Ab initio electronic structure data for the 1,2,3{sup 1}A states of phenol, which are coupled by conical intersections, are obtained from multireference first order configuration interaction wave functions. The design of bases to simultaneously treat large amplitude motion and dissociation is described, as is the ability of the fitting procedure to smooth the irregularities in the electronic energies attributable to the orbital changes that are inherent to nonadiabatic processes.

  8. Protein interactions central to stabilizing the K[superscript +] channel selectivity filter in a four-sited configuration for selective K[superscript +] permeation

    SciTech Connect

    Sauer, David B.; Zeng, Weizhong; Raghunathan, Srinivasan; Jiang, Youxing

    2011-11-18

    The structural and functional conversion of the nonselective NaK channel to a K{sup +} selective channel (NaK2K) allows us to identify two key residues, Tyr and Asp in the filter sequence of TVGYGD, that participate in interactions central to stabilizing the K{sup +} channel selectivity filter. By using protein crystallography and channel electrophysiology, we demonstrate that the K{sup +} channel filter exists as an energetically strained structure and requires these key protein interactions working in concert to hold the filter in the precisely defined four-sited configuration that is essential for selective K{sup +} permeation. Disruption of either interaction, as tested on both the NaK2K and eukaryotic K{sub v}1.6 channels, can reduce or completely abolish K{sup +} selectivity and in some cases may also lead to channel inactivation due to conformational changes at the filter. Additionally, on the scaffold of NaK we recapitulate the protein interactions found in the filter of the Kir channel family, which uses a distinct interaction network to achieve similar stabilization of the filter.

  9. The convergence of complete active space self-consistent-field configuration interaction including all single and double excitation energies to the complete basis set limit.

    PubMed

    Petersson, George A; Malick, David K; Frisch, Michael J; Braunstein, Matthew

    2006-07-28

    Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N(2) with the sequence of n-tuple-zeta augmented polarized (nZaP) basis sets (n=2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e(-),8orb)-CISD/3ZaP calculations gives the R(e), omega(e), omega(e)X(e), T(e), and D(e) for these eight states with rms errors of 0.0006 Angstrom, 4.43 cm(-1), 0.35 cm(-1), 0.063 eV, and 0.018 eV, respectively. PMID:16942134

  10. Spatial Correlations and the Insulating Phase of the High-Tc Cuprates: Insights from a Configuration-Interaction-Based Solver for Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Go, Ara; Millis, Andrew J.

    2015-01-01

    A recently proposed configuration-interaction-based impurity solver is used in combination with the single-site and four-site cluster dynamical mean field approximations to investigate the three-band copper oxide model believed to describe the electronic structure of high transition temperature copper-oxide superconductors. Use of the configuration interaction solver enables verification of the convergence of results with respect to the number of bath orbitals. The spatial correlations included in the cluster approximation substantially shift the metal-insulator phase boundary relative to the prediction of the single-site approximation and increase the predicted energy gap of the insulating phase by about 1 eV above the single-site result. Vertex corrections occurring in the four-site approximation act to dramatically increase the value of the optical conductivity near the gap edge, resulting in better agreement with the data. The calculations reveal two distinct correlated insulating states: the "magnetically correlated insulator," in which nontrivial intersite correlations play an essential role in stabilizing the insulating state, and the strongly correlated insulator, in which local physics suffices. Comparison of the calculations to the data places the cuprates in the magnetically correlated Mott insulator regime.

  11. Ab initio molecular orbital-configuration interaction based quantum master equation (MOQME) approach to the dynamic first hyperpolarizabilities of asymmetric π-conjugated systems

    SciTech Connect

    Kishi, Ryohei; Fujii, Hiroaki; Minami, Takuya; Shigeta, Yasuteru; Nakano, Masayoshi

    2015-01-22

    In this study, we apply the ab initio molecular orbital - configuration interaction based quantum master equation (MOQME) approach to the calculation and analysis of the dynamic first hyperpolarizabilities (β) of asymmetric π-conjugated molecules. In this approach, we construct the excited state models by the ab initio configuration interaction singles method. Then, time evolutions of system reduced density matrix ρ(t) and system polarization p(t) are calculated by the QME approach. Dynamic β in the second harmonic generation is calculated based on the nonperturbative definition of nonlinear optical susceptibility, using the frequency domain system polarization p(ω). Spatial contributions of electrons to β are analyzed based on the dynamic hyperpolarizability density map, which visualizes the second-order response of charge density oscillating with a frequency of 2ω. We apply the present method to the calculation of the dynamic β of a series of donor/acceptor substituted polyene oligomers, and then discuss the applicability of the MOQME method to the calculation and analysis of dynamic NLO properties of molecular systems.

  12. A low-speed wind tunnel study of vortex interaction control techniques on a chine-forebody/delta-wing configuration

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Bhat, M. K.

    1992-01-01

    A low speed wind tunnel evaluation was conducted of passive and active techniques proposed as a means to impede the interaction of forebody chine and delta wing vortices, when such interaction leads to undesirable aerodynamic characteristics particularly in the post stall regime. The passive method was based on physically disconnecting the chine/wing junction; the active technique employed deflection of inboard leading edge flaps. In either case, the intent was to forcibly shed the chine vortices before they encountered the downwash of wing vortices. Flow visualizations, wing pressures, and six component force/moment measurements confirmed the benefits of forced vortex de-coupling at post stall angles of attack and in sideslip, viz., alleviation of post stall zero beta asymmetry, lateral instability and twin tail buffet, with insignificant loss of maximum lift.

  13. Flow Changes after Endovascular Treatment of a Wide-Neck Anterior Communicating Artery Aneurysm by using X-configured Kissing Stents (Cross-Kissing Stents) Technique

    SciTech Connect

    Zelenak, Kamil; Zelenakova, Jana; DeRiggo, Julius; Kurca, Egon; Boudny, Jaroslav; Polacek, Hubert

    2011-12-15

    Endovascular treatment for a wide-neck anterior communicating artery (AcomA) aneurysm remains technically challenging. Stent-assisted embolization has been proposed as an alternative of treatment of complex aneurysms. The X-configuration double-stent-assisted technique was used to achieve successful coiling of wide-neck AcomA aneurysm. Implanted stent can alter intra-arterial flow. Follow-up angiograms 4 months later showed flow changes due to used X-technique of stents implantation and filling of the anterior cerebral artery from the opposite internal carotid artery.

  14. Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Fartoukh, Stéphane; Valishev, Alexander; Papaphilippou, Yannis; Shatilov, Dmitry

    2015-12-01

    Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J. P. Koutchouk, CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project), and compare it to alternative scenarios, or so-called "configurations," where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. For all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.

  15. SU-E-T-387: Achieving Optimal Patient Setup Imaging and Treatment Workflow Configurations in Multi-Room Proton Centers

    SciTech Connect

    Zhang, H; Prado, K; Langen, K; Yi, B; Mehta, M; Regine, W; D'Souza, W

    2014-06-01

    Purpose: To simulate patient flow in proton treatment center under uncertainty and to explore the feasibility of treatment preparation rooms to improve patient throughput and cyclotron utilization. Methods: Three center layout scenarios were modeled: (S1: In-Tx room imaging) patient setup and imaging (planar/volumetric) performed in treatment room, (S2: Patient setup in preparation room) each treatment room was assigned with preparation room(s) that was equipped with lasers only for patient setup and gross patient alignment, and (S3: Patient setup and imaging in preparation room) preparation room(s) was equipped with laser and volumetric imaging for patient setup, gross and fine patient alignment. A 'snap' imaging was performed in treatment room. For each scenario, the number of treatment rooms and the number of preparation rooms serving each treatment room were varied. We examined our results (average of 100 16-hour (two shifts) working days) by evaluating patient throughput and cyclotron utilization. Results: When the number of treatment rooms increased ([from, to]) [1, 5], daily patient throughput increased [32, 161], [29, 184] and [27, 184] and cyclotron utilization increased [13%, 85%], [12%, 98%], and [11%, 98%] for scenarios S1, S2 and S3 respectively. However, both measures plateaued after 4 rooms. With the preparation rooms, the throughput and the cyclotron utilization increased by 14% and 15%, respectively. Three preparation rooms were optimal to serve 1-3 treatment rooms and two preparation rooms were optimal to serve 4 or 5 treatment rooms. Conclusion: Patient preparation rooms for patient setup may increase throughput and decrease the need for additional treatment rooms (cost effective). Optimal number of preparation rooms serving each gantry room varies as a function of treatment rooms and patient setup scenarios. A 5th treatment room may not be justified by throughput or utilization.

  16. Newly Designed Y-configured Single-Catheter Stenting for the Treatment of Hilar-Type Nonanastomotic Biliary Strictures After Orthotopic Liver Transplantation

    SciTech Connect

    Wang Changming; Li Xuan; Song Shibing; Lv Xianjun; Luan Jingyuan; Dong Guoxiang

    2012-02-15

    Purpose: This study was designed to introduce our novel technique of percutaneous single catheter placement into the hilar bile ducts strictures while fulfilling the purpose of bilateral biliary drainage and stenting. We investigated the efficacy and safety of the technique for the treatment of hilar nonanastomotic biliary strictures. Methods: Ten patients who were post-orthotopic liver transplantation between July 2000 and July 2010 were enrolled in this study. Percutaneous Y-configured single-catheter stenting for bilateral bile ducts combined with balloon dilation was designed as the main treatment approach. Technical success rate, clinical indicators, complications, and recurrent rate were analyzed. Results: Technical success rate was 100%. Nine of the ten patients had biochemical normalization, cholangiographic improvement, and clinical symptoms relief. None of them experienced recurrence in a median follow-up of 26 months after completion of therapy and removal of all catheters. Complications were minor and limited to two patients. The one treatment failure underwent a second liver transplantation but died of multiple system organ failure. Conclusions: Percutaneous transhepatic Y-configured single-catheter stenting into the hilar bile ducts is technically feasible. The preliminary trial of this technique combined with traditional PTCD or choledochoscopy for the treatment of hilar biliary strictures after orthotopic liver transplantation appeared to be effective and safe. Yet, further investigation is needed.

  17. Software Design for Interactive Graphic Radiation Treatment Simulation Systems*

    PubMed Central

    Kalet, Ira J.; Sweeney, Christine; Jacky, Jonathan

    1990-01-01

    We examine issues in the design of interactive computer graphic simulation programs for radiation treatment planning (RTP), as well as expert system programs that automate parts of the RTP process, in light of ten years of experience at designing, building and using such programs. An experiment in object-oriented design using standard Pascal shows that while some advantage is gained from the design, it is still difficult to achieve modularity and to integrate expert system components. A new design based on the Common LISP Object System (CLOS) is described. This series of designs for RTP software shows that this application benefits in specific ways from object-oriented design methods and appropriate languages and tools.

  18. NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at coarse and eddy-permitting resolution

    NASA Astrophysics Data System (ADS)

    Marsh, R.; Ivchenko, V. O.; Skliris, N.; Alderson, S.; Bigg, G. R.; Madec, G.; Blaker, A.; Aksenov, Y.

    2014-08-01

    NEMO-ICB features interactive icebergs in the NEMO ocean model. Simulations with coarse (2°) and eddy-permitting (0.25°) global configurations of NEMO-ICB are undertaken to evaluate the influence of icebergs on sea-ice, hydrography and transports, through comparison with control simulations in which the equivalent iceberg mass flux is applied as coastal runoff, the default forcing in NEMO. Comparing a short (14 year) spin-up of the 0.25° model with a computationally cheaper 105 year spin-up of the 2° configuration, calving, drift and melting of icebergs is evidently near equilibrium in the shorter simulation, justifying closer examination of iceberg influences in the eddy-permitting configuration. Freshwater forcing due to iceberg melt is most pronounced in southern high latitudes, where it is locally dominant over precipitation. Sea ice concentration and thickness in the Southern Ocean are locally increased with icebergs, by up to ~ 8 and ~ 25% respectively. Iceberg melting reduces surface salinity by ~ 0.2 psu around much of Antarctica, with compensating increases immediately adjacent to Antarctica, where coastal runoff is suppressed. Discernible effects on salinity and temperature extend to 1000 m. At many locations and levels, freshening and cooling indicate a degree of density compensation. However, freshening is a dominant influence on upper ocean density gradients across much of the high-latitude Southern Ocean, leading to weaker meridional density gradients, a reduced eastward transport tendency, and hence an increase of ~ 20% in westward transport of the Antarctic Coastal Current.

  19. Importance of the completeness of the configuration interaction and close coupling expansions in R-matrix calculations for highly charged ions: electron-impact excitation of Fe20+

    NASA Astrophysics Data System (ADS)

    Fernández-Menchero, L.; Giunta, A. S.; Del Zanna, G.; Badnell, N. R.

    2016-04-01

    We have carried out two intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of {{C}}-like {{Fe}}20+, both of which use the same expansions for their configuration interaction (CI) and close-coupling (CC) representations. The first expansion arises from the configurations 2{{{s}}}2 2{{{p}}}2,2{{s}} 2{{{p}}}3,2{{{p}}}4, \\{2{{{s}}}2 2{{p}},2{{s}} 2{{{p}}}2,2{{{p}}}3\\} {nl}, with n = 3, 4, for l=0-3, which give rise to 564 CI/CC levels. The second adds configurations 2{{{s}}}2 2{{p}} 5{{l}}, for l=0-2, which give rise to 590 CI/CC levels in total. Comparison of oscillator strengths and effective collision strengths from these two calculations demonstrates the lack of convergence in data for n = 4 from the smaller one. Comparison of results for the 564 CI/CC level calculation with an earlier ICFT R-matrix calculation which used the exact same CI expansion but truncated the CC expansion to only 200 levels demonstrates the lack of convergence of the earlier data, particularly for n = 3 levels. Also, we find that the results of our 590 CC R-matrix calculation are significantly and systematically larger than those of an earlier comparable DW-plus-resonances calculation. Thus, it is important still to take note of the (lack of) convergence in both atomic structural and collisional data, even in such a highly charged ion as Fe20+, and to treat resonances non-perturbatively. This is of particular importance for Fe ions given their importance in the spectroscopic diagnostic modelling of astrophysical plasmas.

  20. Hepatic Arterial Configuration in Relation to the Segmental Anatomy of the Liver; Observations on MDCT and DSA Relevant to Radioembolization Treatment

    SciTech Connect

    Hoven, Andor F. van den Leeuwen, Maarten S. van Lam, Marnix G. E. H. Bosch, Maurice A. A. J. van den

    2015-02-15

    PurposeCurrent anatomical classifications do not include all variants relevant for radioembolization (RE). The purpose of this study was to assess the individual hepatic arterial configuration and segmental vascularization pattern and to develop an individualized RE treatment strategy based on an extended classification.MethodsThe hepatic vascular anatomy was assessed on MDCT and DSA in patients who received a workup for RE between February 2009 and November 2012. Reconstructed MDCT studies were assessed to determine the hepatic arterial configuration (origin of every hepatic arterial branch, branching pattern and anatomical course) and the hepatic segmental vascularization territory of all branches. Aberrant hepatic arteries were defined as hepatic arterial branches that did not originate from the celiac axis/CHA/PHA. Early branching patterns were defined as hepatic arterial branches originating from the celiac axis/CHA.ResultsThe hepatic arterial configuration and segmental vascularization pattern could be assessed in 110 of 133 patients. In 59 patients (54 %), no aberrant hepatic arteries or early branching was observed. Fourteen patients without aberrant hepatic arteries (13 %) had an early branching pattern. In the 37 patients (34 %) with aberrant hepatic arteries, five also had an early branching pattern. Sixteen different hepatic arterial segmental vascularization patterns were identified and described, differing by the presence of aberrant hepatic arteries, their respective vascular territory, and origin of the artery vascularizing segment four.ConclusionsThe hepatic arterial configuration and segmental vascularization pattern show marked individual variability beyond well-known classifications of anatomical variants. We developed an individualized RE treatment strategy based on an extended anatomical classification.

  1. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.

    PubMed

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R

    2015-01-01

    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes. PMID:25746652

  2. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: Equilateral triangle and collinear configurations

    SciTech Connect

    Salam, A.

    2013-12-28

    The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-ordered diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R{sup −11} dependence on separation distance for the DDQ interaction, and an R{sup −13} behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R{sup −1} in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift.

  3. A nearly exact MCSCF+CI calculation of the dissociation energy of OH. [Multiconfiguration, Self-Consistent Field plus Configuration Interaction

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Whiting, E. E.; Sharbaugh, L. F.

    1976-01-01

    The dissociation energy and dipole moment of the ground state of OH have been obtained with a newly developed multiconfiguration, self-consistent field plus configuration interaction CDC 7600 computer program. The computed value of the dissociation energy is 4.62 eV, which is within the uncertainty limits for the experimental value of 4.63 plus or minus 0.01 eV. The computed value of the dipole moment is 1.645 D, which is very close to the experimental result of 1.66 plus or minus 0.01 D. The present results are also compared to the data obtained from similar calculations with the BISON-MC computer program developed by Das and Wahl.

  4. Spatial Correlation in the Three-band Copper Oxide Model: Dynamical Mean-field Study with Configuration Interaction Based Impurity Solver

    NASA Astrophysics Data System (ADS)

    Go, Ara; Millis, Andrew J.

    2014-03-01

    The three-band copper oxide model is studied using the single-site and four-site dynamical mean-field theory with configuration interaction based impurity solver. Comparison of the single and four site approximations shows that short ranged antiferromagnetic correlations are crucial to the physics. In the undoped case, they increase the gap size, shift the metal-insulator phase boundary and enhance the conductivity at the gap edge. The relation of antiferromagnetism and the pseudogap is discussed for the doped case. The new solver permits the inclusion of more bath orbitals which are crucial for accurate studies of spectral properties near the gap edge. This work was supported by the US Department of Energy under Grants No. DOE FG02-04ER46169 and DE-SC0006613.

  5. Development of the configuration-interaction + all-order method and application to the parity-nonconserving amplitude and other properties of Pb

    NASA Astrophysics Data System (ADS)

    Porsev, S. G.; Kozlov, M. G.; Safronova, M. S.; Tupitsyn, I. I.

    2016-01-01

    We have developed a significantly more flexible variant of the relativistic atomic method of calculation that combines configuration-interaction and coupled-cluster approaches. The new version is no longer restricted to a specific choice of the initial approximation corresponding to the self-consistent field of the atomic core. We have applied this approach to calculation of different properties of atomic lead, including the energy levels, hyperfine structure constants, electric-dipole transition amplitudes, and E 1 parity nonconserving (PNC) amplitude for the 6 p2P30-6 p2P31 transition. The uncertainty of the E 1 PNC amplitude was reduced by a factor of two in comparison with the previous most accurate calculation [V. A. Dzuba et al., Europhys. Lett. 7, 413 (1988), 10.1209/0295-5075/7/5/006]. Our value for the weak charge QW=-117 (5 ) is in agreement with the standard-model prediction.

  6. Complex multireference configuration interaction calculations for the K-vacancy Auger states of N(q+) (q = 2-5) ions.

    PubMed

    Peng, Yi-Geng; Wu, Yong; Zhu, Lin-Fan; Zhang, Song Bin; Wang, Jian-Guo; Liebermann, H-P; Buenker, R J

    2016-02-01

    K-vacancy Auger states of N(q+) (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly in the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future. PMID:26851920

  7. Relativistic configuration-interaction calculations for atoms with one valence electron based on altering hydrogenlike or Dirac-Fock spin orbitals

    NASA Astrophysics Data System (ADS)

    Głowacki, Leszek

    2015-12-01

    Relativistic configuration-interaction calculations using hydrogenlike or Dirac-Fock spin orbitals of the transition from the ground state to some n p1 /2 , n p3 /2 low-lying excited states for the alkali metals are presented. In these calculations each virtual spin orbital corresponds to a unique noninteger atomic number determined iteratively using the virtual-particle model. The virtual-particle model based on "condensed-space" idea is here adopted to many electron systems consisting of a single valence electron and the core. The transition energy and the oscillator strength values were computed for sodium, potassium, rubidium, cesium, and francium. Both hydrogenlike and Dirac-Fock basis functions have been used in the computations for comparison.

  8. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    SciTech Connect

    Fukuda, Ryoichi Ehara, Masahiro

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.

  9. Ab initio configuration interaction study of excited states of LiNa3 and Li2Na2 clusters: Interpretation of absorption spectra

    NASA Astrophysics Data System (ADS)

    Bonačić-Koutecký, V.; Gaus, J.; Guest, M. F.; Koutecký, J.

    1992-04-01

    The ab initio configuration-interaction (CI) study of excited states of mixed alkali metal tetramers LiNa3 and Li2Na2 accounts for spectroscopic patterns obtained from the depletion spectra of neutral species, reproduces observed excitation energies and intensities for allowed transitions, and permits an assignment of cluster structures. For both mixed tetramers, the rhombic forms with a Li atom or atoms on the short diagonal are the most stable structures and give rise to predicted spectra in full agreement with the measured ones. The exact location of Li atoms seems to be more important in Li2Na2 than in LiNa3 since in the former case, only one isomer reproduces all features of the recorded spectrum.

  10. Placebo and other psychological interactions in headache treatment.

    PubMed

    Autret, A; Valade, D; Debiais, S

    2012-04-01

    administration was limited, the control of attacks uncertain as well as the evolution of the co-morbid psycho-pathology. Considering the reviews and meta-analysis of complex prophylactic procedures, it must be concluded that their effect is mostly linked to a placebo and non-specific psychological effects. Acupuncture may have a slight specific effect on tension type headache, but not on migraine. Manual therapy studies do not exhibit difference between manipulation, mobilization, and controls; touch has no proven specific effect. A comprehensive efficacy review of biofeedback studies concludes to a small specific effect on tension type headache but not on migraine. A review of behavioral treatment conclude to an interesting mean improvement but did not demonstrated a specific effect with the exception of a four arm study including a pseudo meditation control group. Expectation-linked placebo, conditioning, and non-specific psychological effects vary according clinical situations and psychological context; likely low in RCT, high after anempathic medical contact, and at its maximum with a desired charismatic healer. The announcements of doctors strongly influence the beliefs of patients, and in consequence their pain and anxiety sensibilities; this modulates the amplitude of the placebo and the non-specific psychological effects and is therefore a major determinant of the therapeutic success. Furthermore, any repetitive contact, even through a placebo, may interfere positively with the psychopathological co-morbidity. One has to keep in mind that the non-specific psychological interactions play a major role in the improvement of the majority of the headache sufferers. PMID:22367630

  11. Fingernail Configuration

    PubMed Central

    Jung, Jin Woo; Shin, Jun Ho; Kwon, Yu Jin; Hwang, Jae Ha; Lee, Sam Yong

    2015-01-01

    Background A number of conditions can alter a person's fingernail configuration. The ratio between fingernail width and length (W/L) is an important aesthetic criterion, and some underlying diseases can alter the size of the fingernail. Fingernail curvature can be altered by systemic disorders or disorders of the fingernail itself. Although the shape and curvature of the fingernail can provide diagnostic clues for various diseases, few studies have precisely characterized normal fingernail configuration. Methods We measured the W/L ratio of the fingernail, transverse fingernail curvature, hand length, hand breadth, and distal interphalangeal joint width in 300 volunteers with healthy fingernails. We also investigated whether age, sex, height, and handedness influenced the fingernail W/L ratio and transverse fingernail curvature. Results In women, fingernail W/L ratios were similar across all five fingers, and were lower than those in men. The highest value of transverse fingernail curvature was found in the thumb, followed by the index, middle, ring, and little fingers. Handedness and aging influenced transverse fingernail curvature, but not the fingernail W/L ratio. Fingernails were flatter on the dominant hand than on the non-dominant hand. The radius of transverse fingernail curvature increased with age, indicating that fingernails tended to flatten with age. Conclusions Our quantitative data on fingernail configuration can be used as a reference range for diagnosing various diseases and deformities of the fingernail, and for performing reconstructive or aesthetic fingernail surgery. PMID:26618124

  12. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge.

    PubMed

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2013-07-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes. PMID:23397107

  13. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Verdebout, S.; Nazé, C.; Rynkun, P.; Godefroid, M.

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  14. Electronic Problem-Solving Treatment: Description and Pilot Study of an Interactive Media Treatment for Depression

    PubMed Central

    Locke, Steven E; Buckey, Jay C; Sandoval, Luis; Hegel, Mark T

    2012-01-01

    Background Computer-automated depression interventions rely heavily on users reading text to receive the intervention. However, text-delivered interventions place a burden on persons with depression and convey only verbal content. Objective The primary aim of this project was to develop a computer-automated treatment for depression that is delivered via interactive media technology. By using branching video and audio, the program simulates the experience of being in therapy with a master clinician who provides six sessions of problem-solving therapy. A secondary objective was to conduct a pilot study of the program’s usability, acceptability, and credibility, and to obtain an initial estimate of its efficacy. Methods The program was produced in a professional multimedia production facility and incorporates video, audio, graphics, animation, and text. Failure analyses of patient data are conducted across sessions and across problems to identify ways to help the user improve his or her problem solving. A pilot study was conducted with persons who had minor depression. An experimental group (n = 7) used the program while a waitlist control group (n = 7) was provided with no treatment for 6 weeks. Results All of the experimental group participants completed the trial, whereas 1 from the control was lost to follow-up. Experimental group participants rated the program high on usability, acceptability, and credibility. The study was not powered to detect clinical improvement, although these pilot data are encouraging. Conclusions Although the study was not powered to detect treatment effects, participants did find the program highly usable, acceptable, and credible. This suggests that the highly interactive and immersive nature of the program is beneficial. Further clinical trials are warranted. Trial Registration ClinicalTrials.gov NCT00906581; http://clinicaltrials.gov/ct2/show/NCT00906581 (Archived by WebCite at http://www.webcitation.org/6A5Ni5HUp) PMID:23611902

  15. Inference on treatment-covariate interaction based on a nonparametric measure of treatment effects and censored survival data.

    PubMed

    Jiang, Shan; Chen, Bingshu; Tu, Dongshengn

    2016-07-20

    The investigation of the treatment-covariate interaction is of considerable interest in the design and analysis of clinical trials. With potentially censored data observed, non-parametric and semi-parametric estimates and associated confidence intervals are proposed in this paper to quantify the interactions between the treatment and a binary covariate. In addition, comparison of interactions between the treatment and two covariates are also considered. The proposed approaches are evaluated and compared by Monte Carlo simulations and applied to a real data set from a cancer clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887976

  16. The landscape configuration of zoonotic transmission of Ebola virus disease in West and Central Africa: interaction between population density and vegetation cover.

    PubMed

    Walsh, Michael G; Haseeb, Ma

    2015-01-01

    Ebola virus disease (EVD) is an emerging infectious disease of zoonotic origin that has been responsible for high mortality and significant social disruption in West and Central Africa. Zoonotic transmission of EVD requires contact between susceptible human hosts and the reservoir species for Ebolaviruses, which are believed to be fruit bats. Nevertheless, features of the landscape that may facilitate such points of contact have not yet been adequately identified. Nor have spatial dependencies between zoonotic EVD transmission and landscape structures been delineated. This investigation sought to describe the spatial relationship between zoonotic EVD transmission events, or spillovers, and population density and vegetation cover. An inhomogeneous Poisson process model was fitted to all precisely geolocated zoonotic transmissions of EVD in West and Central Africa. Population density was strongly associated with spillover; however, there was significant interaction between population density and green vegetation cover. In areas of very low population density, increasing vegetation cover was associated with a decrease in risk of zoonotic transmission, but as population density increased in a given area, increasing vegetation cover was associated with increased risk of zoonotic transmission. This study showed that the spatial dependencies of Ebolavirus spillover were associated with the distribution of population density and vegetation cover in the landscape, even after controlling for climate and altitude. While this is an observational study, and thus precludes direct causal inference, the findings do highlight areas that may be at risk for zoonotic EVD transmission based on the spatial configuration of important features of the landscape. PMID:25648654

  17. Analytical energy gradient of the symmetry-adapted-cluster configuration-interaction general-R method for singlet to septet ground and excited states.

    PubMed

    Ishida, Mayumi; Toyota, Kazuo; Ehara, Masahiro; Frisch, Michael J; Nakatsuji, Hiroshi

    2004-02-01

    A method of calculating analytical energy gradients of the singlet and triplet excited states, ionized states, electron-attached states, and high-spin states from quartet to septet states by the symmetry-adapted-cluster configuration-interaction general-R method is developed and implemented. This method is a powerful tool in the studies of geometries, dynamics, and properties of the states of molecules in which not only one-electron processes but also two- and multielectron processes are involved. The performance of the present method was confirmed by calculating the geometries and the spectroscopic constants of the diatomic and polyatomic molecules in various electronic states involving the ground state and the one- to three-electron excited states. The accurate descriptions were obtained for the equilibrium geometries, vibrational frequencies, and adiabatic excitation energies, which show the potential usefulness of the present method. The particularly interesting applications were to the C' 1Ag state of acetylene, the A 2Deltau and B 2Sigmau+ states of CNC and the 4B1 and a 4Piu states of N3 radical. PMID:15268403

  18. Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method.

    PubMed

    Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael

    2015-06-28

    The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future. PMID:26018044

  19. Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction.

    PubMed

    Yost, Shane R; Head-Gordon, Martin

    2016-08-01

    In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the number of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis. PMID:27497537

  20. Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction

    NASA Astrophysics Data System (ADS)

    Yost, Shane R.; Head-Gordon, Martin

    2016-08-01

    In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the number of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis.

  1. Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH

    NASA Astrophysics Data System (ADS)

    Knecht, Stefan; Jensen, Hans Jørgen Aa.; Fleig, Timo

    2010-01-01

    We present a parallel implementation of a large-scale relativistic double-group configuration interaction (CI) program. It is applicable with a large variety of two- and four-component Hamiltonians. The parallel algorithm is based on a distributed data model in combination with a static load balancing scheme. The excellent scalability of our parallelization scheme is demonstrated in large-scale four-component multireference CI (MRCI) benchmark tests on two of the most common computer architectures, and we also discuss hardware-dependent aspects with respect to possible speedup limitations. With the new code we have been able to calculate accurate spectroscopic properties for the ground state and the first excited state of the BiH molecule using extensive basis sets. We focused, in particular, on an accurate description of the splitting of these two states which is caused by spin-orbit coupling. Our largest parallel MRCI calculation thereby comprised an expansion length of 2.7×109 Slater determinants.

  2. A new electronic structure method for doublet states: configuration interaction in the space of ionized 1h and 2h1p determinants.

    PubMed

    Golubeva, Anna A; Pieniazek, Piotr A; Krylov, Anna I

    2009-03-28

    An implementation of gradient and energy calculations for configuration interaction variant of equation-of-motion coupled cluster with single and double substitutions for ionization potentials (EOM-IP-CCSD) is reported. The method (termed IP-CISD) treats the ground and excited doublet electronic states of an N-electron system as ionizing excitations from a closed-shell N+1-electron reference state. The method is naturally spin adapted, variational, and size intensive. The computational scaling is N(5), in contrast with the N(6) scaling of EOM-IP-CCSD. The performance and capabilities of the new approach are demonstrated by application to the uracil cation and water and benzene dimer cations by benchmarking IP-CISD against more accurate IP-CCSD. The equilibrium geometries, especially relative differences between different ionized states, are well reproduced. The average absolute errors and the standard deviations averaged for all bond lengths in all electronic states (58 values in total) are 0.014 and 0.007 A, respectively. IP-CISD systematically underestimates intramolecular distances and overestimates intermolecular ones, because of the underlying uncorrelated Hartree-Fock reference wave function. The IP-CISD excitation energies of the cations are of a semiquantitative value only, showing maximum errors of 0.35 eV relative to EOM-IP-CCSD. Trends in properties such as dipole moments, transition dipoles, and charge distributions are well reproduced by IP-CISD. PMID:19334814

  3. Decoupling electrons and nuclei without the Born-Oppenheimer approximation: The electron-nucleus mean-field configuration-interaction method

    NASA Astrophysics Data System (ADS)

    Cassam-Chenaï, Patrick; Suo, Bingbing; Liu, Wenjian

    2015-07-01

    We introduce the electron-nucleus mean-field configuration-interaction (EN-MFCI) approach. It consists in building an effective Hamiltonian for the electrons taking into account a mean field due to the nuclear motion and, conversely, in building an effective Hamiltonian for the nuclear motion taking into account a mean field due to the electrons. The eigenvalue problems of these Hamiltonians are solved in basis sets giving partial eigensolutions for the active degrees of freedom (DOF's), that is to say, either for the electrons or for nuclear motion. The process can be iterated or electron and nuclear motion DOF's can be contracted in a CI calculation. In the EN-MFCI reduction of the molecular Schrödinger equation to an electronic and a nuclear problem, the electronic wave functions do not depend parametrically upon nuclear coordinates. So, it is different from traditional adiabatic methods. Furthermore, when contracting electronic and nuclear functions, a direct product basis set is built in contrast with methods which treat electrons and nuclei on the same footing, but where electron-nucleus explicitly correlated coordinates are used. Also, the EN-MFCI approach can make use of the partition of molecular DOF's into translational, rotational, and internal DOF's. As a result, there is no need to eliminate translations and rotations from the calculation, and the convergence of vibrational levels is facilitated by the use of appropriate internal coordinates. The method is illustrated on diatomic molecules.

  4. Quantum mechanical reaction rate constants by vibrational configuration interaction: the OH + H2->H2O + H reaction as a function of temperature.

    PubMed

    Chakraborty, Arindam; Truhlar, Donald G

    2005-05-10

    The thermal rate constant of the 3D OH + H(2)-->H(2)O + H reaction was computed by using the flux autocorrelation function, with a time-independent square-integrable basis set. Two modes that actively participate in bond making and bond breaking were treated by using 2D distributed Gaussian functions, and the remaining (nonreactive) modes were treated by using harmonic oscillator functions. The finite-basis eigenvalues and eigenvectors of the Hamiltonian were obtained by solving the resulting generalized eigenvalue equation, and the flux autocorrelation function for a dividing surface optimized in reduced-dimensionality calculations was represented in the basis formed by the eigenvectors of the Hamiltonian. The rate constant was obtained by integrating the flux autocorrelation function. The choice of the final time to which the integration is carried was determined by a plateau criterion. The potential energy surface was from Wu, Schatz, Lendvay, Fang, and Harding (WSLFH). We also studied the collinear H + H(2) reaction by using the Liu-Siegbahn-Truhlar-Horowitz (LSTH) potential energy surface. The calculated thermal rate constant results were compared with reported values on the same surfaces. The success of these calculations demonstrates that time-independent vibrational configuration interaction can be a very convenient way to calculate converged quantum mechanical rate constants, and it opens the possibility of calculating converged rate constants for much larger reactions than have been treated until now. PMID:15774583

  5. Choice of atomic basis set for the study of two electrons in a harmonic anisotropic quantum dot using a configuration interaction approach

    NASA Astrophysics Data System (ADS)

    Olavo, L. S. F.; Maniero, A. M.; de Carvalho, C. R.; Prudente, F. V.; Jalbert, Ginette

    2016-07-01

    We have developed a computational code based on the Hartree–Fock and full interaction configuration approaches which allows the study of N-electron confined quantum systems with different confining potentials and external conditions. The code employs Cartesian anisotropic Gaussian-type orbitals as the atomic basis set, which enables the use of different exponents for each direction space in order to better exploit the characteristics of the confining potential. As an illustration, we have employed it to study a system consisting of two electrons confined by a three-dimensional harmonic potential for different values of confinement strength, leading to different confinement conditions: an isotropic three-dimensional and an anisotropic oblate (or quasi-two dimensional) quantum dot. A central aspect of this study is to propose efficient procedures for choosing the exponents of the atomic basis functions. In particular, we note that the use of more than one function for each atomic orbital can improve the convergence of the electronic energy levels. The present results are compared with other theoretical values published previously.

  6. Configuration Interaction-Corrected Tamm-Dancoff Approximation: A Time-Dependent Density Functional Method with the Correct Dimensionality of Conical Intersections.

    PubMed

    Li, Shaohong L; Marenich, Aleksandr V; Xu, Xuefei; Truhlar, Donald G

    2014-01-16

    Linear response (LR) Kohn-Sham (KS) time-dependent density functional theory (TDDFT), or KS-LR, has been widely used to study electronically excited states of molecules and is the method of choice for large and complex systems. The Tamm-Dancoff approximation to TDDFT (TDDFT-TDA or KS-TDA) gives results similar to KS-LR and alleviates the instability problem of TDDFT near state intersections. However, KS-LR and KS-TDA share a debilitating feature; conical intersections of the reference state and a response state occur in F - 1 instead of the correct F - 2 dimensions, where F is the number of internal degrees of freedom. Here, we propose a new method, named the configuration interaction-corrected Tamm-Dancoff approximation (CIC-TDA), that eliminates this problem. It calculates the coupling between the reference state and an intersecting response state by interpreting the KS reference-state Slater determinant and linear response as if they were wave functions. Both formal analysis and test results show that CIC-TDA gives similar results to KS-TDA far from a conical intersection, but the intersection occurs with the correct dimensionality. We anticipate that this will allow more realistic application of TDDFT to photochemistry. PMID:26270707

  7. Synthesis and determination of absolute configuration of a non-peptidic αvβ6 integrin antagonist for the treatment of idiopathic pulmonary fibrosis.

    PubMed

    Anderson, Niall A; Campbell, Ian B; Fallon, Brendan J; Lynn, Sean M; Macdonald, Simon J F; Pritchard, John M; Procopiou, Panayiotis A; Sollis, Steven L; Thorp, Lee R

    2016-07-01

    A diastereoselective synthesis of (S)-3-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl)-4-((R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid (1), a potential therapeutic agent for the treatment of Idiopathic Pulmonary Fibrosis, which is currently undergoing Phase I clinical trials is reported. The key steps in the synthesis involved alkylation of 2-methylnaphthyridine with (R)-N-Boc-3-(iodomethyl)-pyrrolidine, and an asymmetric Rh-catalysed addition of an arylboronic acid to a 4-(N-pyrrolidinyl)crotonate ester. The overall yield of the seven linear step synthesis was 8% and the product was obtained in >99.5% ee proceeding with 80% de. The absolute configuration of 1 was established by an alternative asymmetric synthesis involving alkylation of an arylacetic acid using Evans oxazolidinone chemistry, acylation using the resulting 2-arylsuccinic acid, and reduction. The absolute configuration of the benzylic asymmetric centre was established as (S). PMID:27226381

  8. Impact on reactor configuration on the performance of anaerobic MBRs: treatment of settled sewage in temperate climates.

    PubMed

    Martin Garcia, I; Mokosch, M; Soares, A; Pidou, M; Jefferson, B

    2013-09-15

    The treatment efficiency and membrane performance of a granular and suspended growth anaerobic membrane bioreactor (G-AnMBR and AnMBR respectively) were compared and evaluated. Both anaerobic MBRs were operated in parallel during 250 days with low strength wastewater and under UK weather conditions. Both systems presented COD and BOD removal efficiencies of 80-95% and >90% respectively. Effluent BOD remained between 5 and 15 mgBOD L(-1) through the experimental period while effluent COD increased from 25 mg L(-1) to 75 mg L(-1) as temperature decreased from 25 °C to 10 °C respectively indicating the production of non biodegradable organics at lower temperatures. Although similar levels of low molecular weight organics were present in the sludge supernatant, recycling of the mixed liquor from the membrane tank to the bioreactor at a low upflow velocity enhanced interception of solids in the sludge bed of the G-AnMBR limiting the solid and colloidal load to the membrane as compared to the suspended system. Results from flux step test showed that critical flux increased from 4 to 13 L m(-2) h(-1) and from 3 to 5 L m(-2) h(-1) with gas sparging intensities varying from 0.007 m s(-1) to 0.041. Additional long term trials in which the effect of gas sparging rate and backwashing efficiency were assessed confirmed the lower fouling propensity of the G-AnMBR. PMID:23863382

  9. Behavioral Objectives, Sequence, and Aptitude Treatment Interactions in CAI.

    ERIC Educational Resources Information Center

    Tobias, Sigmund; Duchastel, Philippe C.

    The interaction of behavioral objectives, sequence order, and test and state anxiety were investigated. The study had four purposes: 1) to examine the effects of objectives on achievement; 2) to investigate the effects of sequencing; 3) to study the interaction of availability of objectives and sequence; 4) to study the effects of objectives and…

  10. Aptitude-Treatment Interaction Effects on Explicit Rule Learning: A Latent Growth Curve Analysis

    ERIC Educational Resources Information Center

    Hwu, Fenfang; Pan, Wei; Sun, Shuyan

    2014-01-01

    Finding the match between individuals and educational treatments is the aim of both educators and the aptitude-treatment interaction research paradigm. Using the latent growth curve analysis, the present study investigates the interaction between the type of explicit instructional approaches (deductive vs. explicit-inductive) and the level of…

  11. Configuration and local elastic interaction of ferroelectric domains and misfit dislocation in PbTiO3/SrTiO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Kiguchi, Takanori; Aoyagi, Kenta; Ehara, Yoshitaka; Funakubo, Hiroshi; Yamada, Tomoaki; Usami, Noritaka; Konno, Toyohiko J.

    2011-06-01

    We have studied the strain field around the 90° domains and misfit dislocations in PbTiO3/SrTiO3 (001) epitaxial thin films, at the nanoscale, using the geometric phase analysis (GPA) combined with high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark field--scanning transmission electron microscopy (HAADF-STEM). The films typically contain a combination of a/c-mixed domains and misfit dislocations. The PbTiO3 layer was composed from the two types of the a-domain (90° domain): a typical a/c-mixed domain configuration where a-domains are 20-30 nm wide and nano sized domains with a width of about 3 nm. In the latter case, the nano sized a-domain does not contact the film/substrate interface; it remains far from the interface and stems from the misfit dislocation. Strain maps obtained from the GPA of HRTEM images show the elastic interaction between the a-domain and the dislocations. The normal strain field and lattice rotation match each other between them. Strain maps reveal that the a-domain nucleation takes place at the misfit dislocation. The lattice rotation around the misfit dislocation triggers the nucleation of the a-domain; the normal strains around the misfit dislocation relax the residual strain in a-domain; then, the a-domain growth takes place, accompanying the introduction of the additional dislocation perpendicular to the misfit dislocation and the dissociation of the dislocations into two pairs of partial dislocations with an APB, which is the bottom boundary of the a-domain. The novel mechanism of the nucleation and growth of 90° domain in PbTiO3/SrTiO3 epitaxial system has been proposed based on above the results.

  12. Electronic excitation spectra of molecules in solution calculated using the symmetry-adapted cluster-configuration interaction method in the polarizable continuum model with perturbative approach

    SciTech Connect

    Fukuda, Ryoichi Ehara, Masahiro; Cammi, Roberto

    2014-02-14

    A perturbative approximation of the state specific polarizable continuum model (PCM) symmetry-adapted cluster-configuration interaction (SAC-CI) method is proposed for efficient calculations of the electronic excitations and absorption spectra of molecules in solutions. This first-order PCM SAC-CI method considers the solvent effects on the energies of excited states up to the first-order with using the zeroth-order wavefunctions. This method can avoid the costly iterative procedure of the self-consistent reaction field calculations. The first-order PCM SAC-CI calculations well reproduce the results obtained by the iterative method for various types of excitations of molecules in polar and nonpolar solvents. The first-order contribution is significant for the excitation energies. The results obtained by the zeroth-order PCM SAC-CI, which considers the fixed ground-state reaction field for the excited-state calculations, are deviated from the results by the iterative method about 0.1 eV, and the zeroth-order PCM SAC-CI cannot predict even the direction of solvent shifts in n-hexane for many cases. The first-order PCM SAC-CI is applied to studying the solvatochromisms of (2,2{sup ′}-bipyridine)tetracarbonyltungsten [W(CO){sub 4}(bpy), bpy = 2,2{sup ′}-bipyridine] and bis(pentacarbonyltungsten)pyrazine [(OC){sub 5}W(pyz)W(CO){sub 5}, pyz = pyrazine]. The SAC-CI calculations reveal the detailed character of the excited states and the mechanisms of solvent shifts. The energies of metal to ligand charge transfer states are significantly sensitive to solvents. The first-order PCM SAC-CI well reproduces the observed absorption spectra of the tungsten carbonyl complexes in several solvents.

  13. Retrieval/ex situ thermal treatment scoring interaction report

    SciTech Connect

    Raivo, B.D.; Richardson, J.G.

    1993-11-01

    A retrieval/ex situ thermal treatment technology process for the Idaho National Engineering Laboratory transuranic waste pits and trenches is present. A system performance score is calculated, and assumptions, requirements, and reference baseline technologies for all subelements are included.

  14. Vibrational solvatochromism. III. Rigorous treatment of the dispersion interaction contribution.

    PubMed

    Błasiak, Bartosz; Cho, Minhaeng

    2015-10-28

    A rigorous first principles theory of vibrational solvatochromism including the intermolecular dispersion interaction, which is based on the effective fragment potential method, is developed. The present theory is an extended version of our previous vibrational solvatochromism model that took into account the Coulomb, exchange-repulsion, and induction interactions. We show that the frequency shifts of the amide I mode of N-methylacetamide in H2O and CDCl3, when combined with molecular dynamics simulations, can be quantitatively reproduced by the theory, which indicates that the dispersion interaction contribution to the vibrational frequency shift is not always negligibly small. Nonetheless, the reason that the purely Coulombic interaction model for vibrational solvatochromism works well for describing amide I mode frequency shifts in polar solvents is because the electrostatic contribution is strong and highly sensitive to the relative orientation of surrounding solvent molecules, which is in stark contrast with polarization, dispersion, and exchange-repulsion contributions. It is believed that the theory presented and discussed here will be of great use in quantitatively describing vibrational solvatochromism and electrochromism of infrared probes in not just polar solvent environments but also in biopolymers such as proteins. PMID:26520502

  15. Vibrational solvatochromism. III. Rigorous treatment of the dispersion interaction contribution

    NASA Astrophysics Data System (ADS)

    Błasiak, Bartosz; Cho, Minhaeng

    2015-10-01

    A rigorous first principles theory of vibrational solvatochromism including the intermolecular dispersion interaction, which is based on the effective fragment potential method, is developed. The present theory is an extended version of our previous vibrational solvatochromism model that took into account the Coulomb, exchange-repulsion, and induction interactions. We show that the frequency shifts of the amide I mode of N-methylacetamide in H2O and CDCl3, when combined with molecular dynamics simulations, can be quantitatively reproduced by the theory, which indicates that the dispersion interaction contribution to the vibrational frequency shift is not always negligibly small. Nonetheless, the reason that the purely Coulombic interaction model for vibrational solvatochromism works well for describing amide I mode frequency shifts in polar solvents is because the electrostatic contribution is strong and highly sensitive to the relative orientation of surrounding solvent molecules, which is in stark contrast with polarization, dispersion, and exchange-repulsion contributions. It is believed that the theory presented and discussed here will be of great use in quantitatively describing vibrational solvatochromism and electrochromism of infrared probes in not just polar solvent environments but also in biopolymers such as proteins.

  16. Group Treatment of Separated Parent and Child Interaction

    ERIC Educational Resources Information Center

    Briggs, Harold E.; Leary, Joy D.; Briggs, Adam C.; Cox, Wendell H.; Shibano, Matsujiro

    2005-01-01

    Effective child-behavior management is an important characteristic in facilitating positive parent and child interaction. The current study examines the impact of a behavioral parent-training group methodology on problem behaviors and goals for a single mother and two young boys. Results indicate that the procedures were valuable for enhancing…

  17. Feasibility assessment of the interactive use of a Monte Carlo algorithm in treatment planning for intraoperative electron radiation therapy

    NASA Astrophysics Data System (ADS)

    Guerra, Pedro; Udías, José M.; Herranz, Elena; Santos-Miranda, Juan Antonio; Herraiz, Joaquín L.; Valdivieso, Manlio F.; Rodríguez, Raúl; Calama, Juan A.; Pascau, Javier; Calvo, Felipe A.; Illana, Carlos; Ledesma-Carbayo, María J.; Santos, Andrés

    2014-12-01

    This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning

  18. Predictors of treatment attrition and treatment length in Parent-Child Interaction Therapy in Taiwanese families✩,✩✩

    PubMed Central

    Chen, Yi-Chuen; Fortson, Beverly L.

    2015-01-01

    Parent–Child Interaction Therapy (PCIT) has been used successfully in the United States and in other countries around the world, but its use in Asian countries has been more limited. The present study is the first of its kind to examine the predictors of treatment attrition and length in a sample of Taiwanese caregivers and their children. It is also the first to examine PCIT outcomes in Taiwanese families. Maladaptive personality characteristics of the caregiver were the best predictor of attrition, followed by single-parent, removal of the child from the home, and lower levels of caregiver education. Treatment length was predicted by child minority status and parent–child interactions (i.e., parent commands and negative parent talk). In terms of outcomes, statistically significant treatment changes were noted for all treatment outcome variables at post-treatment and at 3-month follow-up. These findings suggest that PCIT is a promising intervention for this population. The predictors of treatment attrition and length can be used when Taiwanese caregiver–child dyads present for services so that additional assistance can be provided prior to or during treatment to increase adherence to the recommended number of treatment sessions for maximal impact. Future studies may replicate the present study with a larger clinical sample to examine the long-term effects of PCIT and to include a no-treatment control condition to afford a more robust empirical evaluation. PMID:26705373

  19. NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution

    NASA Astrophysics Data System (ADS)

    Marsh, R.; Ivchenko, V. O.; Skliris, N.; Alderson, S.; Bigg, G. R.; Madec, G.; Blaker, A. T.; Aksenov, Y.; Sinha, B.; Coward, A. C.; Le Sommer, J.; Merino, N.; Zalesny, V. B.

    2015-05-01

    An established iceberg module, ICB, is used interactively with the Nucleus for European Modelling of the Ocean (NEMO) ocean model in a new implementation, NEMO-ICB (v1.0). A 30-year hindcast (1976-2005) simulation with an eddy-permitting (0.25°) global configuration of NEMO-ICB is undertaken to evaluate the influence of icebergs on sea ice, hydrography, mixed layer depths (MLDs), and ocean currents, through comparison with a control simulation in which the equivalent iceberg mass flux is applied as coastal runoff, a common forcing in ocean models. In the Southern Hemisphere (SH), drift and melting of icebergs are in balance after around 5 years, whereas the equilibration timescale for the Northern Hemisphere (NH) is 15-20 years. Iceberg drift patterns, and Southern Ocean iceberg mass, compare favourably with available observations. Freshwater forcing due to iceberg melting is most pronounced very locally, in the coastal zone around much of Antarctica, where it often exceeds in magnitude and opposes the negative freshwater fluxes associated with sea ice freezing. However, at most locations in the polar Southern Ocean, the annual-mean freshwater flux due to icebergs, if present, is typically an order of magnitude smaller than the contribution of sea ice melting and precipitation. A notable exception is the southwest Atlantic sector of the Southern Ocean, where iceberg melting reaches around 50% of net precipitation over a large area. Including icebergs in place of coastal runoff, sea ice concentration and thickness are notably decreased at most locations around Antarctica, by up to ~ 20% in the eastern Weddell Sea, with more limited increases, of up to ~ 10% in the Bellingshausen Sea. Antarctic sea ice mass decreases by 2.9%, overall. As a consequence of changes in net freshwater forcing and sea ice, salinity and temperature distributions are also substantially altered. Surface salinity increases by ~ 0.1 psu around much of Antarctica, due to suppressed coastal

  20. Textbook treatments of quantum electromagnetic interaction: pedagogical and conceptual problems

    NASA Astrophysics Data System (ADS)

    Fraile-Peláez, F. Javier

    2001-07-01

    In this paper we review and discuss the approaches used, almost universally, in textbooks dealing with quantum mechanics, and particularly those focused on optoelectronics devices, to explain the atom-field interactions. For this purpose, a true understanding and careful use of the first-order perturbation theory are necessary. By providing two alternative full derivations of the absorption/emission processes when the radiation is in a coherent multimode state, we highlight a number of conceptual and didactical failures in the usual textbook presentations, and propose more suitable and convincing strategies to improve them.

  1. An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis.

    PubMed

    Ali, Murtaza N; Rehman, Ihtesham Ur

    2011-11-01

    Oesophageal cancer is the ninth leading cause of malignant cancer death and its prognosis remains poor. Dysphagia which is an inability to swallow is a presenting symptom of oesophageal cancer and is indicative of incurability. The goal of this study was to design and manufacture an Auxetic structure film and to configure this film as an Auxetic stent for the palliative treatment of oesophageal cancer, and for the prevention of dysphagia. Polypropylene was used as a material for its flexibility and non-toxicity. The Auxetic (rotating-square geometry) structure was made by laser cutting the polypropylene film. This flat structure was welded together to form a tubular form (stent), by an adjustable temperature control soldering iron station: following this, an annealing process was also carried out to ease any material stresses. Poisson's ratio was estimated and elastic and plastic deformation of the Auxetic structure was evaluated. The elastic and plastic deformation behaviours of the Auxetic polypropylene film were evaluated by applying repetitive uniaxial tensile loads. Observation of the structure showed that it was initially elastically deformed, thereafter plastic deformation occurred. This research discusses a novel way of fabricating an Auxetic structure (rotating-squares connected together through hinges) on Polypropylene films, by estimating the Poisson's ratio and evaluating the plastic deformation relevant to the expansion behaviour of an Auxetic stent within the oesophageal lumen. PMID:21894537

  2. Wind tunnel investigation of effects of variations in Reynolds number and leading-edge treatment on the aerodynamic characteristics of an externally blown jet-flap configuration

    NASA Technical Reports Server (NTRS)

    Parlett, L. P.; Smith, C. C., Jr.; Megrail, J. L.

    1973-01-01

    An investigation has been conducted in a full-scale tunnel to determine the effects of variations in Reynolds number and leading-edge treatment on the aerodynamic characteristics of an externally blown jet-flap transport configuration. The model had a double-slotted trailing-edge flap and was powered by four high-bypass-ratio turbofan engines. Tests were performed by using each of three leading-edge devices (a 30-percent-chord flap and 15- and 25-percent-chord slats) at Reynolds numbers from 0.47 x one million to 1.36 x one million thrust coefficients up to 3.5. The use of a 25-percent-chord slat was found to be more effective than a 15-percent-chord slat or a 30-percent-chord flap in extending the stall angle of attack and in minimizing the loss of lift after the stall. The large slat was also effective in reducing the rolling moments that occurred when the engine-out wing stalled first.

  3. Aptitude-Treatment Interactions in Preservice Teachers' Behavior Change during Computer-Simulated Teaching

    ERIC Educational Resources Information Center

    Yeh, Yu-Chu

    2007-01-01

    Adapting training methods to specific teacher traits to best facilitate the training effects for preservice teachers is an important, yet neglected, topic in aptitude-treatment interaction research. This study investigated interactions between four personal traits (CT-dispositions, thinking styles, CT-skills, and intrapersonal intelligence) and…

  4. Client-Treatment Interaction in the Study of Differential Change Processes.

    ERIC Educational Resources Information Center

    Shoham-Salomon, Varda; Hannah, Mo Therese

    1991-01-01

    Discusses epistemological and methodological issues regarding aptitude-treatment interactions (ATI) in psychotherapy. Noting that track record of interactional research is not very encouraging, argues that ATI research should focus on heuristic goal of illuminating mechanisms and processes that make therapies differentially effective. Suggests…

  5. A Meta-Analysis of Three Types of Interaction Treatments in Distance Education

    ERIC Educational Resources Information Center

    Bernard, Robert M.; Abrami, Philip C.; Borokhovski, Eugene; Wade, C. Anne; Tamim, Rana M.; Surkes, Michael A.; Bethel, Edward Clement

    2009-01-01

    This meta-analysis of the experimental literature of distance education (DE) compares different types of interaction treatments (ITs) with other DE instructional treatments. ITs are the instructional and/or media conditions designed into DE courses, which are intended to facilitate student-student (SS), student-teacher (ST), or student-content…

  6. Interaction between Cryptosporidium oocysts and water treatment coagulants.

    PubMed

    Bustamante, H A; Shanker, S R; Pashley, R M; Karaman, M E

    2001-09-01

    The electrokinetic properties of gamma-irradiated Cryptosporidium oocysts in the presence of coagulants (ferric chloride and alum) and coagulant aids (DADMAC based cationic polyelectrolytes) have been studied. The zeta potential of the oocysts was unaffected by the addition of ferric chloride at all pH values (3-10) studied. Addition of alum resulted in reversal of the oocysts charge, which suggests that the initial stage in the coagulation process leading to floc formation proceeds via the adsorption of hydrolysed aluminium species. The cationic polyelectrolyte Magnafloc LT35 was adsorbed onto iron flocs at doses of 0.1 mg/L even against an electrostatic barrier. The cationic polyelectrolyte only adsorbed and caused charge reversal at the oocyst surface at around 0.4 mg/L, suggesting a lower affinity for this surface. These results indicate that the oocysts, unlike inorganic colloidal materials such as metal oxides, appear to possess a lower surface density of active or charged sites. The lower density of sites, combined with the rapid precipitation of iron salts, may be responsible for the lack of specific adsorption of either hydroxylated ferric species or primary iron hydroxide particles on the oocysts. Further, this suggests that a process of sweep flocculation, where oocysts are engulfed in flocs during coagulation and floc formation, is the more likely mechanism involved. By comparison, it is likely that the specific interaction of hydrolysed aluminium species with the oocysts surface would result in a stronger link at the oocyst-floc interface and that the flocculation process may initially proceed via charge neutralisation. PMID:11487115

  7. Qualitative Treatment-Subgroup Interactions in a Randomized Clinical Trial of Treatments for Adolescents with ADHD: Exploring What Cognitive-Behavioral Treatment Works for Whom

    PubMed Central

    Geurts, Hilde M.; Prins, Pier J. M.; Van Mechelen, Iven; Van der Oord, Saskia

    2016-01-01

    Objective This study explored qualitative treatment-subgroup interactions within data of a RCT with two cognitive behavioral treatments (CBT) for adolescents with ADHD: a planning-focused (PML) and a solution-focused CBT (SFT). Qualitative interactions imply that which treatment is best differs across subgroups of patients, and are therefore most relevant for personalized medicine. Methods Adolescents with ADHD (N = 159) received either PML or SFT. Pre-, post- and three-month follow-up data were gathered on parent-rated ADHD symptoms and planning problems. Pretreatment characteristics were explored as potential qualitative moderators of pretest to follow-up treatment effects, using an innovative analyses technique (QUINT; Dusseldorp & Van Mechelen, 2014). In addition, qualitative treatment-subgroup interactions for the therapeutic changes from pre- to posttest and from post- to follow-up test were investigated. Results For the entire time span from pretest to follow-up only a quantitative interaction was found, while from posttest to follow-up qualitative interactions were found: Adolescents with less depressive symptoms but more anxiety symptoms showed more improvement when receiving PML than SFT, while for other adolescents the effects of PML and SFT were comparable. Discussion Whereas subgroups in both treatments followed different trajectories, no subgroup was found for which SFT outperformed PML in terms of the global change in symptoms from pretest to three months after treatment. This implies that, based on this exploratory study, there is no need for personalized treatment allocation with regard to the CBTs under study for adolescents with ADHD. However, for a subgroup with comorbid anxiety symptoms but low depression PML clearly appears the treatment of preference. Trial Registration Nederlands Trial Register NTR2142 PMID:26977602

  8. Laser-tissue photobiological interaction: a new mechanism for laser sensitizer immunoadjuvant treatment of metastatic cancers

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Okrongly, David A.; Adams, Robert L.; Nordquist, Robert E.

    1997-06-01

    Photophysical reactions have been the focus of laser-tissue interactions. However, these interactions usually have localized and short-term effect, hence only resulting in limited success against systemic lesions, especially against metastatic tumors. Could laser induce a photobiological reaction, specifically a long-term reaction in cancer treatment. Our experimental results on treatment of rat breast cancer indicated that a systemic and long term response against the tumors could be stimulated by a new laser-sensitizer-immunoadjuvant treatment. Long term impact of our method was observed; survival tumor rats and apparent ability against tumor re-challenge. The long term effect was also confirmed by our histochemical studies. Our results pointed to a humoral immune response. A new mechanism of laser-tissue interaction, namely laser-sensitizer- immunoadjuvant induced photobiological reaction, may prove to be crucial in laser cancer treatment.

  9. Review of Top 10 Prescribed Drugs and Their Interaction with Dental Treatment.

    PubMed

    Weinstock, Robert J; Johnson, Michael P

    2016-04-01

    The proportion of people over age 60 is growing faster than any other group. Many patients take several medications to manage multiple chronic medical conditions. Poor oral health is common and dental visits by patients over the age of 65 are increasing. The dentist must recognize that these medications may interact with dental treatment. This article reviews the top 10 prescribed drugs as listed in the IMS Institute national prescription audit in January 2015 and reviews the interactions between these medications and dental treatment. The medications reviewed include levothyroxine, acetaminophen/hydrocodone, lisinopril, metoprolol, atorvastatin, amlodipine, metformin, omeprazole, simvastatin, and albuterol. PMID:27040293

  10. A Simple Method for Estimating Interactions between a Treatment and a Large Number of Covariates

    PubMed Central

    Tian, Lu; Alizadeh, Ash A; Gentles, Andrew J

    2015-01-01

    We consider a setting in which we have a treatment and a potentially large number of covariates for a set of observations, and wish to model their relationship with an outcome of interest. We propose a simple method for modeling interactions between the treatment and covariates. The idea is to modify the covariate in a simple way, and then fit a standard model using the modified covariates and no main effects. We show that coupled with an efficiency augmentation procedure, this method produces clinically meaningful estimators in a variety of settings. It can be useful for practicing personalized medicine: determining from a large set of biomarkers the subset of patients that can potentially benefit from a treatment. We apply the method to both simulated datasets and real trial data. The modified covariates idea can be used for other purposes, for example, large scale hypothesis testing for determining which of a set of covariates interact with a treatment variable. PMID:25729117

  11. A numerical investigation of photo-thermal interactions during laser sebaceous gland treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-zhuang; Ma, Jing-bo

    2010-11-01

    Aberrations of sebaceous follicles usually cause great mental suffering and unconfidence to the patients. A new time-dependent mathematical model was built up to investigate the photo-thermal interactions during laser sebaceous gland treatment. With this model, effects of treatment-affecting parameters, such as diameter and depth of the sebaceous gland, laser energy density, pulse repetition, and especially cooling methods, were numerically investigated. The simulated results showed that skin cooling is essentially necessary for achieving ideal therapeutical outcomes in laser sebaceous gland treatment, and CSC is the most effective cooling method. A simple but valid method to improve the therapeutical outcomes of laser sebaceous gland treatment, named as adaptive temperature control (ATC), was proposed. The results and conclusions are useful for optimizing laser sebaceous gland treatments and for designing new treatment procedures.

  12. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS. PMID:20192297

  13. Assessment of the accuracy of shape-consistent relativistic effective core potentials using multireference spin-orbit configuration interaction singles and doubles calculations of the ground and low-lying excited states of U(4+) and U(5+).

    PubMed

    Beck, Eric V; Brozell, Scott R; Blaudeau, Jean-Philippe; Burggraf, Larry W; Pitzer, Russell M

    2009-11-12

    Multireference spin-orbit configuration interaction calculations were used to determine the accuracy of 60-, 68-, and 78-electron shape-consistent relativistic effective core potentials (RECPs) for uranium V and VI ground and low-lying excited states. Both 5f(n) and (5f6d)(n), (n = 1, 2) reference spaces were investigated using correlation-consistent double-zeta quality basis sets. Accuracy was assessed against gas-phase experimental spectra. The 68-electron RECP calculations yielded low relative and rms errors and predicted the empirical ordering of states most consistently. PMID:19888778

  14. A Large-scale Relativistic Configuration-interaction Approach: Application to the 4s2 - 4s4p Transition Energies and E1 Rates for Zn-like Ions

    SciTech Connect

    Chen, M H; Cheng, K T

    2009-08-28

    Relativistic configuration-interaction calculations of the 4s4p excitation energies and 4s{sup 2} - 4s4p E1 transitions for Zn-like ions from Z = 30 to 92 are shown. B-spline basis functions are used for these large-scale calculations. QED corrections to the excitation energies are also calculated. Results are in good agreement with other theories and with experiment, and demonstrate the utility of this method for high-precision atomic structure calculations not just for few-electron systems but also for large atomic systems such as Zn-like ions along the entire isoelectronic sequence.

  15. A Computer-Assisted Interactive Treatment Planning System for Mental Health

    PubMed Central

    Hammond, Kenric W.; Munnecke, Thomas H.

    1981-01-01

    The authors describe a MUMPS based system capable of assisting clinicians in developing written psychiatric treatment plans in inpatient and outpatient services in a VA hospital. This interactive system relies upon a series of hierarchically arranged topical frames addressing a broad range of psychosocial and medical problems, treatment goals, and methods. It speeds multi-disciplinary treatment planning, employs objective language, serves an educational purpose, and structures hierarchically organized entry of detailed information into the data base. Significantly, this system is compatible with other MUMPS applications developed in the VA. Future modifications, expansions, and export of methodology can be accomplished without extensive reworking of existing software or data storage design.

  16. Runway configuration improvement programming model.

    NASA Technical Reports Server (NTRS)

    Yu, J. C.; Gibson, D. R.

    1973-01-01

    The basic objectives of the study were to subject a set of runway configurations to cost analysis and to develop a dynamic programming model which would enable an airport to economically match the ground capacity to its air traffic demand. Quantitative differences in the capacity of runway configurations result from the various aircraft/aircraft and aircraft/air-system interactions. A problem formulation and solution procedure is presented which is intended to be a meaningful technique for the long-range planning of runway expansion programs.

  17. Methodological Considerations in Aptitude-Treatment Interaction Research with Intact Groups.

    ERIC Educational Resources Information Center

    Ysseldyke, James E.; Salvia, John

    1980-01-01

    The paper cites difficulties in aptitude-treatment interaction (ATI) research which investigates relationships between test performance and the extent of profiting from instruction. Two methods for ATI research (regression analysis and analysis of variance) are described, assumptions and potential mininterpretations are noted, and correct…

  18. An Aptitude-Treatment Interaction Approach to Writing-to-Learn

    ERIC Educational Resources Information Center

    Kieft, Marleen; Rijlaarsdam, Gert; van den Bergh, Huub

    2008-01-01

    In this article, we propose to link the study of writing-to-learn to the theory of aptitude-treatment interaction (ATI). In an experimental study we examined the effects of a course on ''Writing-to-learn about literary stories'' consisting of writing tasks adapted to either a planning or a revising writing strategy. We hypothesized that the…

  19. The aggregation behavior and interactions of yak milk protein under thermal treatment.

    PubMed

    Wang, T T; Guo, Z W; Liu, Z P; Feng, Q Y; Wang, X L; Tian, Q; Ren, F Z; Mao, X Y

    2016-08-01

    The aggregation behavior and interactions of yak milk protein were investigated after heat treatments. Skim yak milk was heated at temperatures in the range of 65 to 95°C for 10 min. The results showed that the whey proteins in yak milk were denatured after heat treatment, especially at temperatures higher than 85°C. Sodium dodecyl sulfate-PAGE analysis indicated that heat treatment induced milk protein denaturation accompanied with aggregation to a certain extent. When the heating temperature was 75 and 85°C, the aggregation behavior of yak milk proteins was almost completely due to the formation of disulfide bonds, whereas denatured α-lactalbumin and β-lactoglobulin interacted with κ-casein. When yak milk was heated at 85 and 95°C, other noncovalent interactions were found between proteins including hydrophobic interactions. The particle size distributions and microstructures demonstrated that the heat stability of yak milk proteins was significantly lowered by heat treatment. When yak milk was heated at 65 and 75°C, no obvious changes were found in the particle size distribution and microstructures in yak milk. When the temperature was 85 and 95°C, the particle size distribution shifted to larger size trend and aggregates were visible in the heated yak milk. PMID:27209140

  20. Are Contextual and Designed Student-Student Interaction Treatments Equally Effective in Distance Education?

    ERIC Educational Resources Information Center

    Borokhovski, Eugene; Tamim, Rana; Bernard, Robert M.; Abrami, Philip C.; Sokolovskaya, Anna

    2012-01-01

    This systematic review draws from and builds upon the results of a meta-analysis of the achievement effects of three types of interaction treatments in distance education: student-student, student-teacher, and student-content (Bernard et al., "Review of Educational Research," 79(3), 1243-1289, 2009). This follow-up study considers two forms of…

  1. Dentist-Patient Interactions in Treatment Decision-Making: A Qualitative Study.

    ERIC Educational Resources Information Center

    Redford, Maryann; Gift, Helen C.

    1997-01-01

    A University of North Carolina study using focus groups of dentists and patients found dentist-patient interactions play an important role in treatment decision-making, and are predicated on non-clinical factors, including dentists' intuition and judgment and patient impressions of dentists' examination styles, personalities, and interpersonal…

  2. The Interactive Seminar: An Educational Approach for Voluntary HIV Testing in a Drug Dependence Treatment Unit.

    ERIC Educational Resources Information Center

    Sedhom, Laila; And Others

    1994-01-01

    A survey of 118 male patients in a drug dependence treatment unit before and after an interactive seminar with a nonjudgmental professional showed that seminar participants, especially intravenous drug users, had higher rates of voluntary HIV testing than nonparticipants. Drug users who completed detoxification and attended the seminar also had…

  3. Annehurst Curriculum Classification System Variables as Dimensions of Aptitude Treatment Interactions.

    ERIC Educational Resources Information Center

    Clark, Ginny; Grady, M. Tim

    The objective of this study was to determine if the Annehurst Curriculum Classification System (ACCS) learner characteristics and curriculum materials classifications among elementary mathematics students, can be used as the dimensions of an aptitude-treatment interaction analysis. The subjects were 34 fourth and fifth graders in three open-space…

  4. Interaction of treatment with a continuous variable: simulation study of power for several methods of analysis.

    PubMed

    Royston, Patrick; Sauerbrei, Willi

    2014-11-30

    In a large simulation study reported in a companion paper, we investigated the significance levels of 21 methods for investigating interactions between binary treatment and a continuous covariate in a randomised controlled trial. Several of the methods were shown to have inflated type 1 errors. In the present paper, we report the second part of the simulation study in which we investigated the power of the interaction procedures for two sample sizes and with two distributions of the covariate (well and badly behaved). We studied several methods involving categorisation and others in which the covariate was kept continuous, including fractional polynomials and splines. We believe that the results provide sufficient evidence to recommend the multivariable fractional polynomial interaction procedure as a suitable approach to investigate interactions of treatment with a continuous variable. If subject-matter knowledge gives good arguments for a non-monotone treatment effect function, we propose to use a second-degree fractional polynomial approach, but otherwise a first-degree fractional polynomial (FP1) function with added flexibility (FLEX3) is the method of choice. The FP1 class includes the linear function, and the selected functions are simple, understandable, and transferable. Furthermore, software is available. We caution that investigation of interactions in one dataset can only be interpreted in a hypothesis-generating sense and needs validation in new data. PMID:25244679

  5. Operational Dynamic Configuration Analysis

    NASA Technical Reports Server (NTRS)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  6. Heat transfer analysis of the Bridgman-Stockbarger configuration for crystal growth. Part 1: Analytical treatment of the axial temperature distribution

    NASA Technical Reports Server (NTRS)

    Jasinski, T. J.; Rohsenow, W. M.; Witt, A. F.

    1982-01-01

    All first order effects on the axial temperature distribution in a solidifying charge in a Bridgman-Stockbarger configuration for crystal growth are analyzed on the basis of a one dimensional model whose validity can be verified through comparison with published finite difference ana;uses of two dimensional models. The model presented includes an insulated region between axially aligned heat pipes and considers the effects of charge diameter, charge motion, thickness, and thermal conductivity of a confining crucible, thermal conductivity change at the crystal-melt interface, generation of latent heat at the interface, and finite charge length. Results are primarily given in analytical form and can be used without recourse to computer work for both improve furnace design and optimization of growth conditions in a given thermal configuration.

  7. Configuration Effects on Liner Performance

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2012-01-01

    The acoustic performance of a duct liner depends not only on the intrinsic properties of the liner but also on the configuration of the duct in which it is used. A series of experiments is performed in the NASA Langley Research Center Curved Duct Test Rig (at Mach 0.275) to evaluate the effect of duct configuration on the acoustic performance of single degree of freedom perforate-over-honeycomb liners. The liners form the sidewalls of the duct's test section. Variations of duct configuration include: asymmetric (liner on one side and hard wall opposite) and symmetric (liner on both sides) wall treatment; inlet and exhaust orientation, in which the sound propagates either against or with the flow; and straight and curved flow path. The effect that duct configuration has on the overall acoustic performance, particularly the shift in frequency and magnitude of peak attenuation, is quantified. The redistribution of incident mode content is shown. The liners constitute the side walls of the liner test section and the scatter of incident horizontal order 1 mode by the asymmetric treatment and order 2 mode by the symmetric treatment into order 0 mode is shown. Scatter of order 0 incident modes into higher order modes is also shown. This redistribution of mode content is significant because it indicates that the liner design can be manipulated such that energy is scattered into more highly attenuated modes, thus enhancing liner performance.

  8. The electronic states of 1,2,4-triazoles: A study of 1H- and 1-methyl-1,2,4-triazole by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy and a comparison with ab initio configuration interaction computations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Camp, Philip J.; Hoffmann, Søren Vrønning; Jones, Nykola C.; Head, Ashley R.; Lichtenberger, Dennis L.

    2012-03-01

    The first vacuum ultraviolet absorption spectrum of a 1,2,4-triazole has been obtained and analyzed in detail, with assistance from both an enhanced UV photoelectron spectroscopic study and ab initio multi-reference multi-root configuration interaction procedures. For both 1H- and 1-methyl-1,2,4-triazoles, the first ionization energy bands show complex vibrational structure on the low-energy edges of otherwise unstructured bands. Detailed analysis of these bands confirms the presence of three ionized states. The 6-7 eV VUV spectral region shows an unusual absorption plateau, which is interpreted in terms of the near degeneracy of the first two ionization energies, leading to a pseudo Jahn-Teller effect. The "fingerprint" of the ionization spectrum yields band origins for several Rydberg states. The configuration interaction study shows that although the equilibrium structure for the first cation is effectively planar, the second cation shows significant twisting of the ring system. Some calculated singlet electronic states also show skeletal twisting in which the ring C-H is substantially out of plane.

  9. Stochastic extinction of tumor cells due to synchronization effect through time periodic treatment in a tumor-immune interaction model

    NASA Astrophysics Data System (ADS)

    Aisu, Ryota; Horita, Takehiko

    The response to a time periodic treatment of the immunotherapy in a stochastic model of tumor-immune interaction is numerically investigated. Due to the effect of synchronization among the intrinsic oscillation and the treatment, an enhanced extinction of the tumor cells is observed. It suggests that compared with the static treatment, by controlling the period of the treatment, the time periodic treatment could be an effective way of treatment leading to tumor extinction.

  10. Pharmacokinetics and interactions of headache medications, part I: introduction, pharmacokinetics, metabolism and acute treatments.

    PubMed

    Sternieri, Emilio; Coccia, Ciro Pio Rosario; Pinetti, Diego; Ferrari, Anna

    2006-12-01

    Recent progress in the treatment of primary headaches has made available specific, effective and safe medications for these disorders, which are widely spread among the general population. One of the negative consequences of this undoubtedly positive progress is the risk of drug-drug interactions. This review is the first in a two-part series on pharmacokinetic drug-drug interactions of headache medications. Part I addresses acute treatments. Part II focuses on prophylactic treatments. The overall aim of this series is to increase the awareness of physicians, either primary care providers or specialists, regarding this topic. Pharmacokinetic drug-drug interactions of major severity involving acute medications are a minority among those reported in literature. The main drug combinations to avoid are: i) NSAIDs plus drugs with a narrow therapeutic range (i.e., digoxin, methotrexate, etc.); ii) sumatriptan, rizatriptan or zolmitriptan plus monoamine oxidase inhibitors; iii) substrates and inhibitors of CYP2D6 (i.e., chlorpromazine, metoclopramide, etc.) and -3A4 (i.e., ergot derivatives, eletriptan, etc.), as well as other substrates or inhibitors of the same CYP isoenzymes. The risk of having clinically significant pharmacokinetic drug-drug interactions seems to be limited in patients with low frequency headaches, but could be higher in chronic headache sufferers with medication overuse. PMID:17125411

  11. Increasing wastewater system performance--the importance of interactions between sewerage and wastewater treatment.

    PubMed

    Langeveld, J G; Clemens, F H L R; van der Graaf, J H J M

    2002-01-01

    The necessity to assess sewer systems and wastewater treatment plants (WWTPs) as integral parts of the wastewater system has been well known for several years and discussed in many conferences. Until recently, sewer systems and WWTPs were improved (or optimised) separately or independently, which resulted in suboptimal solutions. Nowadays, in The Netherlands as well as in other European countries, a trend can be recognised towards more integral solutions. Nevertheless, due to a lack of knowledge on the interactions between the sewer systems and the WWTPs the implementation of this way of thinking in practice takes a long time. This paper describes the results of two cases in which the interactions between sewerage and wastewater treatment are incorporated within the optimisation of a wastewater system. The first case illustrates the importance of taking the interactions into account, while the second case shows how to deal with the interactions within a wastewater system optimisation study. It is concluded that the combination of total wastewater system analysis, incorporating the interactions within the wastewater system, with efficient search algorithms is expected to be very valuable in future wastewater system optimisation studies. PMID:11905443

  12. A design-by-treatment interaction model for network meta-analysis with random inconsistency effects

    PubMed Central

    Jackson, Dan; Barrett, Jessica K; Rice, Stephen; White, Ian R; Higgins, Julian PT

    2014-01-01

    Network meta-analysis is becoming more popular as a way to analyse multiple treatments simultaneously and, in the right circumstances, rank treatments. A difficulty in practice is the possibility of ‘inconsistency’ or ‘incoherence’, where direct evidence and indirect evidence are not in agreement. Here, we develop a random-effects implementation of the recently proposed design-by-treatment interaction model, using these random effects to model inconsistency and estimate the parameters of primary interest. Our proposal is a generalisation of the model proposed by Lumley and allows trials with three or more arms to be included in the analysis. Our methods also facilitate the ranking of treatments under inconsistency. We derive R and I2 statistics to quantify the impact of the between-study heterogeneity and the inconsistency. We apply our model to two examples. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24777711

  13. Interaction between SERTPR and stressful life events on response to antidepressant treatment.

    PubMed

    Mandelli, Laura; Marino, Elena; Pirovano, Adele; Calati, Raffaella; Zanardi, Raffaella; Colombo, Cristina; Serretti, Alessandro

    2009-01-01

    A polymorphism within the serotonin transporter gene (SERTPR) has been repeatedly associated to mood disorders and response to SSRIs treatment. Recent evidence suggested that influence of genetic effect of SERTPR might be modulated by stress, particularly as regard the development of anxious-depressive symptoms. Nevertheless, there is no information about the role of stressors as potential modulator of SERTPR effects on depressive outcome during pharmacological treatment. In a sample of 159 mood disorder patients treated with fluvoxamine, we found stressors preceding the onset of the illness significantly influencing the genetic effect exerted by SERTPR on response after 6 weeks of treatment. This preliminary finding supports the idea of complex interaction between biological and environmental factors underlying the efficacy of biological treatments, other than liability for mood disorders. Nevertheless, many limitations characterize the present investigation and well-funded studies on larger samples are required. PMID:18815011

  14. Interaction effects of age and contingency management treatments in cocaine-dependent outpatients.

    PubMed

    Weiss, Lindsay M; Petry, Nancy M

    2011-04-01

    As the American population ages, older adults are accounting for a larger percentage of the drug-abusing population, but little attention has been given to this age group especially in regards to evaluating responsivity to different treatment modalities. Contingency management (CM) is a highly effective behavioral treatment that provides positive tangible reinforcers for objective evidence of behavior change. The purpose of this study was to examine main and interactive effects of age on outcomes in cocaine-dependent patients receiving CM with standard care (SC) or SC alone. Patients (N = 393) participating in 1 of 3 randomized trials of CM for cocaine dependence were divided into young, middle, and older age cohorts. Baseline characteristics and outcomes were compared across the age groups. The oldest age group had more medical problems than the youngest and middle age groups but had fewer legal difficulties and psychiatric symptoms. The oldest age group remained in treatment significantly longer than the other age groups, regardless of the type of treatment received. Although all age groups benefited from CM in terms of retention and longest duration of abstinence achieved, a significant age by treatment interaction effect emerged, with the older cohort improving relatively less from CM than the younger age groups. These findings demonstrate that age may play a role in moderating intervention outcomes, and tailoring CM to the needs of older and middle-aged substance abusers may be important for improving outcomes in this growing population. PMID:21463074

  15. Stability of the patient-by-treatment interaction in the Menninger Psychotherapy Research Project.

    PubMed

    Blatt, Sidney J; Shahar, Golan

    2004-01-01

    Consistent with the call to consider person-by-treatment interactions in intervention research, Blatt (1992) found that anaclitic and introjective patients responded differently to psychoanalysis and supportive-expressive therapy (SEP) in the Menninger Psychotherapy Research Project (MPRP). Psychoanalysis was significantly more effective than SEP in reducing malevolent, destructive imagery on the Rorschach among introjective patients, those patients who are primarily preoccupied with control and self-definition. Conversely, SEP was significantly more effective than psychoanalysis in reducing these malevolent, destructive images among anaclitic patients, those patients who are primarily preoccupied with interpersonal relatedness. The present analyses of data from the MPRP demonstrate the stability of this statistically significant patient-by-treatment interaction even in the subsample of patients for whom the anaclitic-introjective distinction was ambiguous, reaffirming the validity of both the anaclitic-introjective distinction and the importance of considering patient characteristics in psychotherapy research and practice. PMID:15113032

  16. Dapoxetine, a novel treatment for premature ejaculation, does not have pharmacokinetic interactions with phosphodiesterase-5 inhibitors.

    PubMed

    Dresser, M J; Desai, D; Gidwani, S; Seftel, A D; Modi, N B

    2006-01-01

    Potential pharmacokinetic interactions between dapoxetine, a serotonin transporter inhibitor developed for the treatment of premature ejaculation (PE), and the phosphodiesterase-5 inhibitors tadalafil and sildenafil, agents used in the treatment of erectile dysfunction (ED), were investigated in an open-label, randomized, crossover study (n=24 men) comparing dapoxetine 60 mg, dapoxetine 60 mg+tadalafil 20 mg, and dapoxetine 60 mg+sildenafil 100 mg. Plasma concentrations of dapoxetine, tadalafil, and sildenafil were determined by liquid chromatography-tandem mass spectrometry. Tadalafil did not affect the pharmacokinetics of dapoxetine, whereas sildenafil increased the dapoxetine AUCinf by 22%; these effects were deemed not clinically important. Dapoxetine did not appear to affect the pharmacokinetics of tadalafil or sildenafil. Most adverse events were mild in nature. Thus, dapoxetine has no clinically important pharmacokinetic interactions with tadalafil or sildenafil, and the combinations are well tolerated. PMID:16307008

  17. Accurately solving the electronic Schrodinger equation of atoms and molecules using explicitly correlated (r12-) multireference configuration interaction. VII. The hydrogen fluoride molecule.

    PubMed

    Cardoen, Wim; Gdanitz, Robert J

    2005-07-01

    We compute the potential-energy curve of the hydrogen fluoride molecule (HF) using a novel variant of the explicitly correlated multireference averaged coupled-pair functional method with a carefully selected basis set and reference space. After correcting for scalar relativistic effects and spin-orbit coupling, the potential is used to compute the dissociation energy, the equilibrium bond distance, the harmonic frequency, the anharmonicity, and the vibrational levels up to the dissociation limit. The errors in the equilibrium geometry constants compare favorably with the most elaborate (single reference) calculations of the literature. Starting at the region of RA/angstroms approximately 2,...,3, where the covalent HF bond begins to break and where single-reference methods become impractical, our potential begins to slightly underestimate the atomic interaction, which is reflected in an estimated error in the well depth of -0.2 kcal/mol. PMID:16050742

  18. Interaction between nanoparticles generated by zinc chloride treatment and oxidative responses in rat liver.

    PubMed

    Azzouz, Inès; Trabelsi, Hamdi; Hanini, Amel; Ferchichi, Soumaya; Tebourbi, Olfa; Sakly, Mohsen; Abdelmelek, Hafedh

    2014-01-01

    The aim of the present study was to investigate the interaction of zinc chloride (3 mg/kg, intraperitoneally [ip]) in rat liver in terms of the biosynthesis of nanoparticles. Zinc treatment increased zinc content in rat liver. Analysis of fluorescence revealed the presence of red fluorescence in the liver following zinc treatment. Interestingly, the co-exposure to zinc (3 mg/kg, ip) and selenium (0.20 mg/L, per os [by mouth]) led to a higher intensity of red fluorescence compared to zinc-treated rats. In addition, X-ray diffraction measurements carried out on liver fractions of zinc-treated rats point to the biosynthesis of zinc sulfide and/or selenide nanocomplexes at nearly 51.60 nm in size. Moreover, co-exposure led to nanocomplexes of about 72.60 nm in size. The interaction of zinc with other mineral elements (S, Se) generates several nanocomplexes, such as ZnS and/or ZnSe. The nanocomplex ZnX could interact directly with enzyme activity or indirectly by the disruption of mineral elements' bioavailability in cells. Subacute zinc or selenium treatment decreased malondialdehyde levels, indicating a drop in lipid peroxidation. In addition, antioxidant enzyme assays showed that treatment with zinc or co-treatment with zinc and selenium increased the activities of glutathione peroxidase, catalase, and superoxide dismutase. Consequently, zinc complexation with sulfur and/or selenium at nanoscale level could enhance antioxidative responses, which is correlated to the ratio of number of ZnX nanoparticles (X=sulfur or X=selenium) to malondialdehyde level in rat liver. PMID:24403828

  19. Interaction between nanoparticles generated by zinc chloride treatment and oxidative responses in rat liver

    PubMed Central

    Azzouz, Inès; Trabelsi, Hamdi; Hanini, Amel; Ferchichi, Soumaya; Tebourbi, Olfa; Sakly, Mohsen; Abdelmelek, Hafedh

    2014-01-01

    The aim of the present study was to investigate the interaction of zinc chloride (3 mg/kg, intraperitoneally [ip]) in rat liver in terms of the biosynthesis of nanoparticles. Zinc treatment increased zinc content in rat liver. Analysis of fluorescence revealed the presence of red fluorescence in the liver following zinc treatment. Interestingly, the co-exposure to zinc (3 mg/kg, ip) and selenium (0.20 mg/L, per os [by mouth]) led to a higher intensity of red fluorescence compared to zinc-treated rats. In addition, X-ray diffraction measurements carried out on liver fractions of zinc-treated rats point to the biosynthesis of zinc sulfide and/or selenide nanocomplexes at nearly 51.60 nm in size. Moreover, co-exposure led to nanocomplexes of about 72.60 nm in size. The interaction of zinc with other mineral elements (S, Se) generates several nanocomplexes, such as ZnS and/or ZnSe. The nanocomplex ZnX could interact directly with enzyme activity or indirectly by the disruption of mineral elements’ bioavailability in cells. Subacute zinc or selenium treatment decreased malondialdehyde levels, indicating a drop in lipid peroxidation. In addition, antioxidant enzyme assays showed that treatment with zinc or co-treatment with zinc and selenium increased the activities of glutathione peroxidase, catalase, and superoxide dismutase. Consequently, zinc complexation with sulfur and/or selenium at nanoscale level could enhance antioxidative responses, which is correlated to the ratio of number of ZnX nanoparticles (X=sulfur or X=selenium) to malondialdehyde level in rat liver. PMID:24403828

  20. Comparative Study of Absorption Spectra of V2+, Cr3+, and Mn4+ in α-Al2O3 Based on First-Principles Configuration--Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Novita, Mega; Ogasawara, Kazuyoshi

    2012-10-01

    First-principles configuration--interaction (CI) calculations of the multiplet structures and the ground-state (GS) absorption spectra of isoelectronic 3d3 ions such as V2+, Cr3+, and Mn4+ in α-Al2O3 have been performed. The results of the molecular orbital (MO) calculations without lattice-relaxation effect indicated that the GSMOs are not appropriate for the calculation of the absorption spectra in the case of V2+ in α-Al2O3 (α-Al2O3:V2+) due to the strong mixing between the V 3d orbitals and the conduction band. Therefore we investigated the effect of orbital-relaxation by tentatively performing CI calculations using MOs obtained for several excited states and the CI calculation using the MOs in the intermediate t2g{}1.5eg{}1.5 configuration was found to give reasonable theoretical spectra. The theoretical peak energies and the relative peak intensities were improved further for α-Al2O3:V2+ and α-Al2O3:Cr3+ by consideration of energy corrections such as configuration-dependent correction (CDC) and correlation correction (CC). The comparison between the theoretical spectra and the experimental ones indicated that the theoretical spectra were significantly improved for α-Al2O3:V2+ and α-Al2O3:Cr3+ by consideration of the lattice-relaxation effect. As a result, the tendency of the variation of the peak energies among the isoelectronic 3d3 ions was clearly reproduced by the first-principles calculations. It was also found that none of the orbital-relaxation, the lattice-relaxation, CDC, and CC has significant effects on the absorption spectra of Mn4+ in α-Al2O3.

  1. Computer Lab Configuration.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2003-01-01

    Describes the layout and elements of an effective school computer lab. Includes configuration, storage spaces, cabling and electrical requirements, lighting, furniture, and computer hardware and peripherals. (PKP)

  2. Aptitude-Dimension-Interactions--ADI's. Psychological dimensions within instructional treatments and their potential interaction with learners differing in verbal ability, field dependence and creativity.

    ERIC Educational Resources Information Center

    Langrehr, John; And Others

    The psychological dimensions hypothesized to describe common instructional treatments and materials, and the relevant psychological characteristics assumed to describe students are discussed in their relationship to studies of aptitude-treatment interaction (ATI). The Annehurst Curriculum Classification System is described as a practical model…

  3. Configuration-interaction-induced dynamic spin polarization of the Ar*(2p{sub 1/2,3/2}{sup -1}4s{sub 1/2}){sub J=1} resonant Auger decay

    SciTech Connect

    Lohmann, B.; Langer, B.; Snell, G.; Canton, S.; Berrah, N.; Kleiman, U.; Becker, U.; Martins, M.

    2005-02-01

    Spin-resolved measurements of the Ar{sup *}(2p{sub 1/2,3/2}{sup -1}4s{sub 1/2}){sub J=1} resonantly excited L{sub 2,3}M{sub 2,3}M{sub 2,3} Auger decay have been performed. The low resolution Auger spectrum, which due to cancellation between different multiplet components should exhibit virtually zero dynamic spin polarization, reveals an unexpected nonvanishing polarization effect. Calculations within a relativistic distorted wave approximation explain this effect as configuration-interaction (CI) induced. The CI generates experimentally unresolved fine structure components with low and high total angular momentum, giving rise to asymmetric cases where the high J part of certain multiplets is suppressed by internal selection rules for diagram lines. In this case, only the low J components survive with no partner for spin-polarization cancellation.

  4. Parent feeding interactions and practices during childhood cancer treatment. A qualitative investigation.

    PubMed

    Fleming, Catharine A K; Cohen, Jennifer; Murphy, Alexia; Wakefield, Claire E; Cohn, Richard J; Naumann, Fiona L

    2015-06-01

    In the general population it is evident that parent feeding practices can directly shape a child's life long dietary intake. Young children undergoing childhood cancer treatment may experience feeding difficulties and limited food intake, due to the inherent side effects of their anti-cancer treatment. What is not clear is how these treatment side effects are influencing the parent-child feeding relationship during anti-cancer treatment. This retrospective qualitative study collected telephone based interview data from 38 parents of childhood cancer patients who had recently completed cancer treatment (child's mean age: 6.98 years). Parents described a range of treatment side effects that impacted on their child's ability to eat, often resulting in weight loss. Sixty-one percent of parents (n = 23) reported high levels of stress in regard to their child's eating and weight loss during treatment. Parents reported stress, feelings of helplessness, and conflict and/or tension between parent and the child during feeding/eating interactions. Parents described using both positive and negative feeding practices, such as: pressuring their child to eat, threatening the insertion of a nasogastric feeding tube, encouraging the child to eat and providing home cooked meals in hospital. Results indicated that parent stress may lead to the use of coping strategies such as positive or negative feeding practices to entice their child to eat during cancer treatment. Future research is recommended to determine the implication of parent feeding practice on the long term diet quality and food preferences of childhood cancer survivors. PMID:25576664

  5. Interactive Dose Shaping - efficient strategies for CPU-based real-time treatment planning

    NASA Astrophysics Data System (ADS)

    Ziegenhein, P.; Kamerling, C. P.; Oelfke, U.

    2014-03-01

    Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.

  6. Mother-infant interaction in mother and baby unit patients: before and after treatment.

    PubMed

    Kenny, Maeve; Conroy, Susan; Pariante, Carmine M; Seneviratne, Gertrude; Pawlby, Susan

    2013-09-01

    Maternal severe mental illness (SMI) disrupts mother-infant interaction in the immediate postpartum and is associated with less than optimal offspring development. In-patient mother and baby units (MBUs) provide the opportunity of supporting mothers with SMI in developing their relationships with their infants in order to minimise this disruption. One way is through an individualised video feedback intervention, delivered as part of a multidisciplinary inpatient treatment package. The present study prospectively measured changes in mother-infant interaction following video feedback intervention, during admission to an MBU (N = 49). Comparisons were made with mother-infant interactions of (1) a community-based ill group of mothers (N = 67) with a mental health diagnosis of similar severity, living at home and without the intervention and (2) a group of healthy mothers (N = 22). Maternal sensitivity and unresponsiveness, and infant cooperativeness and passiveness, were measured from a 3-min videotaped play session, using the CARE-Index. Following admission and the video feedback intervention, the MBU mothers (irrespective of diagnosis) and their infants showed improvements in their interactions. Moreover, on discharge the MBU dyads were significantly more sensitive, cooperative and responsive than the community ill group, and as attuned as the healthy group. While the design of the study does not allow us to conclude unequivocally that the video feedback intervention has effects on the outcome for the mothers and babies independent from the whole inpatient therapeutic package, the results do show that the dyadic interaction of mothers with SMI and their infants improves following the focussed treatment package in a specialised MBU. PMID:23786913

  7. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study.

    PubMed

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L; Ruedenberg, Klaus

    2016-03-14

    The metastable ring structure of the ozone 1(1)A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two (1)A1 states. In the present work, valence correlated energies of the 1(1)A1 state and the 2(1)A1 state were calculated at the 1(1)A1 open minimum, the 1(1)A1 ring minimum, the transition state between these two minima, the minimum of the 2(1)A1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 1(1)A1 state, the present calculations yield the estimates of (ring minimum-open minimum) ∼45-50 mh and (transition state-open minimum) ∼85-90 mh. For the (2(1)A1-(1)A1) excitation energy, the estimate of ∼130-170 mh is found at the open minimum and 270-310 mh at the ring minimum. At the transition state, the difference (2(1)A1-(1)A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 1(1)A1 surface and that of the minimum on the 2(1)A1 surface

  8. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study

    NASA Astrophysics Data System (ADS)

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L.; Ruedenberg, Klaus

    2016-03-01

    The metastable ring structure of the ozone 11A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A1 states. In the present work, valence correlated energies of the 11A1 state and the 21A1 state were calculated at the 11A1 open minimum, the 11A1 ring minimum, the transition state between these two minima, the minimum of the 21A1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 11A1 state, the present calculations yield the estimates of (ring minimum—open minimum) ˜45-50 mh and (transition state—open minimum) ˜85-90 mh. For the (21A1-1A1) excitation energy, the estimate of ˜130-170 mh is found at the open minimum and 270-310 mh at the ring minimum. At the transition state, the difference (21A1-1A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 11A1 surface and that of the minimum on the 21A1 surface nearly coincide. More accurate

  9. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study

    DOE PAGESBeta

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L.; Ruedenberg, Klaus

    2016-03-10

    The metastable ring structure of the ozone 11A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A1 states. In the present work, valence correlated energies of the 11A1 state and the 21A1 state were calculated at the 11A1 open minimum, the 11A1 ring minimum, the transition state between these two minima, the minimum of the 21A1more » state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of CorrelationEnergy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 11A1 state, the present calculations yield the estimates of (ring minimum—open minimum) ~45–50 mh and (transition state—open minimum) ~85–90 mh. For the (21A1–1A1) excitation energy, the estimate of ~130–170 mh is found at the open minimum and 270–310 mh at the ring minimum. At the transition state, the difference (21A1–1A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 11A1 surface and that of the minimum on the 21A1 surface nearly coincide

  10. An electromagnetic finite difference time domain analog treatment of small signal acoustic interactions

    NASA Astrophysics Data System (ADS)

    Kunz, K.; Steich, D.; Lewis, K.; Landrum, C.; Barth, M.

    1994-03-01

    Hyperbolic partial differential equations encompass an extremely important set of physical phenomena including electromagnetics and acoustics. Small amplitude acoustic interactions behave much the same as electromagnetic interactions for longitudinal acoustic waves because of the similar nature of the governing hyperbolic equations. Differences appear when transverse acoustic waves are considered; nonetheless, the strong analogy between the acoustic and electromagnetic phenomena prompted the development of a Finite Difference Time Domain (FDTD) acoustic analog to the existing electromagnetic FDTD technique. The advantages of an acoustic FDTD (AFDTD) code are as follows: (1) boundary condition-free treatment of the acoustic scatterer--only the intrinsic properties of the scatterer's material are needed, no shell treatment or other set of special equations describing the macroscopic behavior of a sheet of material or a junction, etc. are required; this allows completely general geometries and materials in the model. (2) Advanced outer radiation boundary condition analogs--in the electromagnetics arena, highly absorbing outer radiation boundary conditions were developed that can be applied with little modification to the acoustics arena with equal success. (3) A suite of preexisting capabilities related to electromagnetic modeling--this includes automated model generation and interaction visualization as its most important components and is best exemplified by the capabilities of the LLNL generated TSAR electromagnetic FDTD code.

  11. Novel tools for stepping source brachytherapy treatment planning: Enhanced geometrical optimization and interactive inverse planning

    SciTech Connect

    Dinkla, Anna M. Laarse, Rob van der; Koedooder, Kees; Petra Kok, H.; Wieringen, Niek van; Pieters, Bradley R.; Bel, Arjan

    2015-01-15

    Purpose: Dose optimization for stepping source brachytherapy can nowadays be performed using automated inverse algorithms. Although much quicker than graphical optimization, an experienced treatment planner is required for both methods. With automated inverse algorithms, the procedure to achieve the desired dose distribution is often based on trial-and-error. Methods: A new approach for stepping source prostate brachytherapy treatment planning was developed as a quick and user-friendly alternative. This approach consists of the combined use of two novel tools: Enhanced geometrical optimization (EGO) and interactive inverse planning (IIP). EGO is an extended version of the common geometrical optimization method and is applied to create a dose distribution as homogeneous as possible. With the second tool, IIP, this dose distribution is tailored to a specific patient anatomy by interactively changing the highest and lowest dose on the contours. Results: The combined use of EGO–IIP was evaluated on 24 prostate cancer patients, by having an inexperienced user create treatment plans, compliant to clinical dose objectives. This user was able to create dose plans of 24 patients in an average time of 4.4 min/patient. An experienced treatment planner without extensive training in EGO–IIP also created 24 plans. The resulting dose-volume histogram parameters were comparable to the clinical plans and showed high conformance to clinical standards. Conclusions: Even for an inexperienced user, treatment planning with EGO–IIP for stepping source prostate brachytherapy is feasible as an alternative to current optimization algorithms, offering speed, simplicity for the user, and local control of the dose levels.

  12. Interactions among Low Dose of Methotrexate and Drugs Used in the Treatment of Rheumatoid Arthritis.

    PubMed

    Patanè, Marinella; Ciriaco, Miriam; Chimirri, Serafina; Ursini, Francesco; Naty, Saverio; Grembiale, Rosa Daniela; Gallelli, Luca; De Sarro, Giovambattista; Russo, Emilio

    2013-01-01

    Methotrexate (MTX) is a nonbiological disease-modifying antirheumatic drug that has shown both a good control of clinical disease and a good safety. Usually drug-drug interactions (DDIs) represent the most limiting factor during the clinical management of any disease, in particular when several drugs are coadministered to treat the same disease. In this paper, we report the interactions among MTX and the other drugs commonly used in the management of rheumatoid arthritis. Using Medline, PubMed, Embase, Cochrane libraries, and Reference lists, we searched for the articles published until June 30, 2012, and we reported the most common DDIs between MTX and antirheumatic drugs. In particular, clinically relevant DDIs have been described during the treatment with MTX and NSAIDs, for example, diclofenac, indomethacin, or COX-2 inhibitors, and between MTX and prednisone or immunosuppressant drugs (e.g., leflunomide and cyclosporine). Finally, an increase in the risk of infections has been recorded during the combination treatment with MTX plus antitumor necrosis factor- α agents. In conclusion, during the treatment with MTX, DDIs play an important role in both the development of ADRs and therapeutic failure. PMID:23737767

  13. Interactive approach to segment organs at risk in radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Dolz, Jose; Kirisli, Hortense A.; Viard, Romain; Massoptier, Laurent

    2014-03-01

    Accurate delineation of organs at risk (OAR) is required for radiation treatment planning (RTP). However, it is a very time consuming and tedious task. The use in clinic of image guided radiation therapy (IGRT) becomes more and more popular, thus increasing the need of (semi-)automatic methods for delineation of the OAR. In this work, an interactive segmentation approach to delineate OAR is proposed and validated. The method is based on the combination of watershed transformation, which groups small areas of similar intensities in homogeneous labels, and graph cuts approach, which uses these labels to create the graph. Segmentation information can be added in any view - axial, sagittal or coronal -, making the interaction with the algorithm easy and fast. Subsequently, this information is propagated within the whole volume, providing a spatially coherent result. Manual delineations made by experts of 6 OAR - lungs, kidneys, liver, spleen, heart and aorta - over a set of 9 computed tomography (CT) scans were used as reference standard to validate the proposed approach. With a maximum of 4 interactions, a Dice similarity coefficient (DSC) higher than 0.87 was obtained, which demonstrates that, with the proposed segmentation approach, only few interactions are required to achieve similar results as the ones obtained manually. The integration of this method in the RTP process may save a considerable amount of time, and reduce the annotation complexity.

  14. Predicted occupancies in gas hydrates on Titan and Mars: sensitivity on treatment of intermolecular interactions.

    NASA Astrophysics Data System (ADS)

    Thomas, Caroline; Picaud, Sylvain; Ballenegger, Vincent; Mousis, Olivier

    2010-05-01

    We investigate here the sensitivity of gas hydrate occupancies predicted on the basis of van der Waals-Platteeuw theory, as a function of the treatment of the intermolecular guest-water interaction potential. First, we determine the minimum number of water molecules that have to be taken into account in the calculations of this interaction potential. We show that analytical correction terms that account for the interactions with the water molecules beyond the cutoff distance (typically chosen to take into account at least 4 water layers around the guest molecule) must be introduced to improve significantly the convergence rate, and hence the efficiency of the computation of the Langmuir constants. Then we use different recent guest-water interaction potential models to calculate the cage occupancies in pure methane or carbon dioxide clathrates. We show that the corresponding predicted cage occupancies can vary significantly depending on the model, although all the results are within the uncertainties of the available experimental data. That sensitivity becomes especially strong in the case of multiple guest clathrates, and, for instance, the results obtained for guest clathrate hydrates potentially formed on the surface of Mars can vary by more than two orders of magnitude depending on the model. These results underline the strong need for experimental data on pure and multiple guest clathrate hydrates, in particular in the temperature and pressure range that are relevant in extreme environment conditions, to discriminate among the theoretical models.

  15. INTERACTIVE SIMULATION OF THE FATE OF HAZARDOUS CHEMICALS DURING LAND TREATMENT OF OILY WASTES: RITZ (REGULATORY AND INVESTIGATIVE TREATMENT ZONE) USER'S GUIDE

    EPA Science Inventory

    An interactive software system was developed to enable decision makers to simulate the movement and fate of hazardous chemicals during land treatment of oily wastes. The mathematical model known as the Regulatory and Investigative Treatment Zone Model or RITZ was developed and pu...

  16. An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster-configuration interaction method: The accuracy of excitation energies and intuitive charge-transfer indices

    NASA Astrophysics Data System (ADS)

    Fukuda, Ryoichi; Ehara, Masahiro

    2014-10-01

    Solvent effects on electronic excitation spectra are considerable in many situations; therefore, we propose an efficient and reliable computational scheme that is based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the polarizable continuum model (PCM) for describing electronic excitations in solution. The new scheme combines the recently proposed first-order PCM SAC-CI method with the PTE (perturbation theory at the energy level) PCM SAC scheme. This is essentially equivalent to the usual SAC and SAC-CI computations with using the PCM Hartree-Fock orbital and integrals, except for the additional correction terms that represent solute-solvent interactions. The test calculations demonstrate that the present method is a very good approximation of the more costly iterative PCM SAC-CI method for excitation energies of closed-shell molecules in their equilibrium geometry. This method provides very accurate values of electric dipole moments but is insufficient for describing the charge-transfer (CT) indices in polar solvent. The present method accurately reproduces the absorption spectra and their solvatochromism of push-pull type 2,2'-bithiophene molecules. Significant solvent and substituent effects on these molecules are intuitively visualized using the CT indices. The present method is the simplest and theoretically consistent extension of SAC-CI method for including PCM environment, and therefore, it is useful for theoretical and computational spectroscopy.

  17. An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster–configuration interaction method: The accuracy of excitation energies and intuitive charge-transfer indices

    SciTech Connect

    Fukuda, Ryoichi Ehara, Masahiro

    2014-10-21

    Solvent effects on electronic excitation spectra are considerable in many situations; therefore, we propose an efficient and reliable computational scheme that is based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the polarizable continuum model (PCM) for describing electronic excitations in solution. The new scheme combines the recently proposed first-order PCM SAC-CI method with the PTE (perturbation theory at the energy level) PCM SAC scheme. This is essentially equivalent to the usual SAC and SAC-CI computations with using the PCM Hartree-Fock orbital and integrals, except for the additional correction terms that represent solute-solvent interactions. The test calculations demonstrate that the present method is a very good approximation of the more costly iterative PCM SAC-CI method for excitation energies of closed-shell molecules in their equilibrium geometry. This method provides very accurate values of electric dipole moments but is insufficient for describing the charge-transfer (CT) indices in polar solvent. The present method accurately reproduces the absorption spectra and their solvatochromism of push-pull type 2,2{sup ′}-bithiophene molecules. Significant solvent and substituent effects on these molecules are intuitively visualized using the CT indices. The present method is the simplest and theoretically consistent extension of SAC-CI method for including PCM environment, and therefore, it is useful for theoretical and computational spectroscopy.

  18. Results of test MA22 in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction, volume 1. [wind tunnel tests for interactions of aerodynamic heating on jet flow

    NASA Technical Reports Server (NTRS)

    Kanipe, D. B.

    1976-01-01

    A wind tunnel test was conducted in the Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel from May 6, 1975 through June 3, 1975. The primary objectives of this test were the following: (1) to study the ability of the wind tunnel to repeat, on a run-to-run basis, data taken for identical configurations to determine if errors in repeatability could have a significant effect on jet interaction data, (2) to determine the effect of aerodynamic heating of the scale model on jet interaction, (3) to investigate the effects of elevon and body flap deflections on jet interaction, (4) to determine if the effects from jets fired separately along different axes can be added to equal the effects of the jets fired simultaneously (super position effects), (5) to study multiple jet effects, and (6) to investigate area ratio effects, i.e., the effect on jet interaction measurements of using wind tunnel nozzles with different area ratios in the same location. The model used in the test was a .010-scale model of the Space Shuttle Orbiter Configuration 3. The test was conducted at Mach 10.3 and a dynamic pressure of 150 psf. RCS chamber pressure was varied to simulate free flight dynamic pressures of 5, 7.5, 10, and 20 psf.

  19. FEL phased array configurations

    NASA Astrophysics Data System (ADS)

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  20. CFD Simulations of Tiltrotor Configurations in Hover

    NASA Technical Reports Server (NTRS)

    Potsdam, Mark a.; Strawn, Roger C.

    2002-01-01

    Navier-Stokes computational fluid dynamics calculations are presented for isolated, half-span, and full-span V-22 tiltrotor hover configurations. These computational results extend the validity of CFD hover methodology beyond conventional rotorcraft applications to tiltrotor configurations. Computed steady-state, isolated rotor performance agrees well with experimental measurements, showing little sensitivity to grid resolution. However, blade-vortex interaction flowfield details are sensitive to numerical dissipation and are more difficult to model accurately. Time-dependent, dynamic, half- and full-span installed configurations show sensitivities in performance to the tiltrotor fountain flow. As such, the full-span configuration exhibits higher rotor performance and lower airframe download than the half-span configuration. Half-span rotor installation trends match available half-span data, and airframe downloads are reasonably well predicted. Overall, the CFD solutions provide a wealth of flowfield details that can be used to analyze and improve tiltrotor aerodynamic performance.

  1. ION Configuration Editor

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.

    2013-01-01

    The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.

  2. Care interaction adding challenges to old patients’ well-being during surgical hospital treatment

    PubMed Central

    Uhrenfeldt, Lisbeth; Høybye, Mette Terp

    2015-01-01

    Today, hospitals offer surgical treatment within a short hospital admission. This brief interaction may challenge the well-being of old patients. The aim of this study was to explore how the well-being of old hospitalized patients was affected by the interaction with staff during a fast-track surgical treatment and hospital admission for colon cancer. We used an ethnographic methodology with field observations and unstructured interviews focusing on one patient at a time (n=9) during a full day; the hours ranging from 7:45 a.m. to 8 p.m. Participants were between 74 and 85 years of age and of both sexes. The study was reported to the Danish Data Protection Agency with reference number (2007-58-0010). The encounter between old patients and the staff was a main theme in our findings elucidating a number of care challenges. The identified care challenges illustrated “well-being as a matter of different perspectives,” “vulnerability in contrast to well-being,” and “staff mix influencing the care encounter.” The experience of well-being in old cancer patients during hospital admission was absent or challenged when staff did not acknowledge their individual vulnerability and needs. PMID:26499314

  3. Toward a Phonetic Representation of Hand Configuration: The Thumb

    ERIC Educational Resources Information Center

    Johnson, Robert E.; Liddell, Scott K.

    2012-01-01

    In this article, we present a system for the representation of the configurations of the thumb in the hand configurations of signed languages and for the interactions of the thumb with the four fingers proper. The configuration of the thumb is described as a componential combination of the descriptions of thumb opposition, abduction of the CM…

  4. Promoting productive interactions between parents and physicians in the treatment of children with attention-deficit/hyperactivity disorder

    PubMed Central

    Brinkman, William B; Epstein, Jeffery N

    2011-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common neurobehavioral condition that impairs functioning throughout childhood and adolescence. Evidence-based guidelines for the treatment of ADHD recommend recognizing ADHD as a chronic condition. The chronic care model for child health emphasizes the need for productive interactions between an informed, activated family and a prepared, proactive practice team. Key parent–physician interactions in the treatment of a child with ADHD include: family education, treatment goal setting, treatment plan formation, cardiovascular screening, medication titration and ongoing monitoring and treatment plan revision. Most care for children/adolescents with ADHD is provided in community-based primary care settings where there are significant barriers to delivering high-quality care to children with chronic conditions. This article reviews recommended physician–parent interactions, examines current practice patterns and identifies facilitators and barriers to the implementation of recommended practices for ADHD care. PMID:21469930

  5. Exposure to virtual social interactions in the treatment of social anxiety disorder: A randomized controlled trial.

    PubMed

    Kampmann, Isabel L; Emmelkamp, Paul M G; Hartanto, Dwi; Brinkman, Willem-Paul; Zijlstra, Bonne J H; Morina, Nexhmedin

    2016-02-01

    This randomized controlled trial investigated the efficacy of a stand-alone virtual reality exposure intervention comprising verbal interaction with virtual humans to target heterogeneous social fears in participants with social anxiety disorder. Sixty participants (Mage = 36.9 years; 63.3% women) diagnosed with social anxiety disorder were randomly assigned to individual virtual reality exposure therapy (VRET), individual in vivo exposure therapy (iVET), or waiting-list. Multilevel regression analyses revealed that both treatment groups improved from pre-to postassessment on social anxiety symptoms, speech duration, perceived stress, and avoidant personality disorder related beliefs when compared to the waiting-list. Participants receiving iVET, but not VRET, improved on fear of negative evaluation, speech performance, general anxiety, depression, and quality of life relative to those on waiting-list. The iVET condition was further superior to the VRET condition regarding decreases in social anxiety symptoms at post- and follow-up assessments, and avoidant personality disorder related beliefs at follow-up. At follow-up, all improvements were significant for iVET. For VRET, only the effect for perceived stress was significant. VRET containing extensive verbal interaction without any cognitive components can effectively reduce complaints of generalized social anxiety disorder. Future technological and psychological improvements of virtual social interactions might further enhance the efficacy of VRET for social anxiety disorder. PMID:26752328

  6. Interactive dose shaping part 1: a new paradigm for IMRT treatment planning.

    PubMed

    Ziegenhein, Peter; Ph Kamerling, Cornelis; Oelfke, Uwe

    2016-03-21

    In this work we present a novel treatment planning technique called interactive dose shaping (IDS) to be employed for the optimization of intensity modulated radiation therapy (IMRT). IDS does not rely on a Newton-based optimization algorithm which is driven by an objective function formed of dose volume constraints on pre-segmented volumes of interest (VOIs). Our new planning technique allows for direct, interactive adaptation of localized planning features. This is realized by a dose modification and recovery (DMR) planning engine which implements a two-step approach: firstly, the desired localized plan adaptation is imposed on the current plan (modification) while secondly inevitable, undesired disturbances of the dose pattern elsewhere are compensated for automatically by the recovery module. Together with an ultra-fast dose update calculation method the DMR engine has been implemented in a newly designed 3D therapy planning system Dynaplan enabling true real-time interactive therapy planning. Here we present the underlying strategy and algorithms of the DMR based planning concept. The functionality of the IDS planning approach is demonstrated for a phantom geometry of clinical resolution and size. PMID:26948145

  7. Interactive dose shaping part 1: a new paradigm for IMRT treatment planning

    NASA Astrophysics Data System (ADS)

    Ziegenhein, Peter; Kamerling, Cornelis Ph; Oelfke, Uwe

    2016-03-01

    In this work we present a novel treatment planning technique called interactive dose shaping (IDS) to be employed for the optimization of intensity modulated radiation therapy (IMRT). IDS does not rely on a Newton-based optimization algorithm which is driven by an objective function formed of dose volume constraints on pre-segmented volumes of interest (VOIs). Our new planning technique allows for direct, interactive adaptation of localized planning features. This is realized by a dose modification and recovery (DMR) planning engine which implements a two-step approach: firstly, the desired localized plan adaptation is imposed on the current plan (modification) while secondly inevitable, undesired disturbances of the dose pattern elsewhere are compensated for automatically by the recovery module. Together with an ultra-fast dose update calculation method the DMR engine has been implemented in a newly designed 3D therapy planning system Dynaplan enabling true real-time interactive therapy planning. Here we present the underlying strategy and algorithms of the DMR based planning concept. The functionality of the IDS planning approach is demonstrated for a phantom geometry of clinical resolution and size.

  8. Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats.

    PubMed

    Briggs, Scott A; Hall, Brandon J; Wells, Corinne; Slade, Susan; Jaskowski, Paul; Morrison, Margaret; Rezvani, Amir H; Rose, Jed E; Levin, Edward D

    2016-03-01

    Combining effective treatments with diverse mechanisms of action for smoking cessation may provide better therapy by targeting multiple points of control in the neural circuits underlying addiction. Previous research in a rat model has shown that dextromethorphan, which has α3β4 nicotinic and NMDA glutamatergic antagonist actions, significantly decreases nicotine self-administration. We have found in the rat model that the H1 histamine antagonist pyrilamine and the serotonin 5HT2C agonist lorcaserin also significantly reduce nicotine self-administration. The current studies were conducted to determine the interactive effects of dextromethorphan with pyrilamine and lorcaserin on nicotine self-administration in rats. Young adult female rats were fitted with jugular IV catheters and trained to self-administer a nicotine infusion dose of 0.03-mg/kg/infusion. In an initial dose-effect function study of dextromethorphan, we found a monotonic decrease in nicotine self-administration over a dose range of 1 to 30-mg/kg with the lowest effective dose of 3-mg/kg. Then, with two separate cohorts of rats, dextromethorphan (0, 3.3, and 10-mg/kg) interactions with pyrilamine (0, 4.43, and 13.3-mg/kg) were investigated as well as interactions with lorcaserin (0, 0.3125 and 0.625-mg/kg). In the pyrilamine-dextromethorphan interaction study, an acute dose of pyrilamine (13.3-mg/kg) as well as an acute dose of dextromethorphan caused a significant decrease in nicotine self-administration. There were mutually augmenting effects of these two drugs. The combination of dextromethorphan (10-mg/kg) and pyrilamine (13.3-mg/kg) significantly lowered nicotine self-administration relative to either 10-mg/kg of dextromethorphan alone (p<0.05) or 13.3-mg/kg of pyrilamine alone (p<0.0005). In the lorcaserin-dextromethorphan study, an acute dose of lorcaserin (0.312-mg/kg) as well as an acute dose of dextromethorphan (10-mg/kg) caused a significant decrease in nicotine self

  9. Interaction Structures between a Child and Two Therapists in the Psychodynamic Treatment of a Child with Asperger's Disorder

    ERIC Educational Resources Information Center

    Goodman, Geoff; Athey-Lloyd, Laura

    2011-01-01

    Leading the charge to link intervention research with clinical practice is the development of process research, which involves a detailed analysis of specific therapeutic processes over the course of treatment. The delineation of interaction structures--repetitive patterns of interactions between patient and therapist over the course of…

  10. Parent-Child Interaction Therapy for Treatment of Separation Anxiety Disorder in Young Children: A Pilot Study

    ERIC Educational Resources Information Center

    Choate, Molly L.; Pincus, Donna B.; Eyberg, Sheila M.; Barlow, David H.

    2005-01-01

    Research suggests that Parent-Child Interaction therapy (PCIT) works to improve the child's behavior by changing the child-parent interaction. PCIT has been effective in treating disruptive behavior in young children. This article describes a pilot study to apply PCIT to the treatment of separation anxiety disorder (SAD). A multiple-baseline…

  11. Female partners of patients after surgical prostate cancer treatment: interactions with physicians and support needs

    PubMed Central

    2010-01-01

    Background Few studies have explored the women's experiences as a result of a partners' diagnosis of prostate cancer. This study begins to explore women's interactions with physicians (primary care and urologist) and the support needs associated with the diagnosis and treatment of their partners' prostate cancer. Methods Two focus groups (n = 14) of women whose partners were diagnosed with prostate cancer (diagnoses' 1 - 18 months). A trained facilitator used open-ended questions to explore ideas. The framework approach was used to analyze the transcripts. Results Three main themes emerged: 1. More support. Validation and information is needed for women including emotional support and opportunities to share experiences. 2. Role of the physician. The transfer of care once specialized treatment is no longer needed remained poorly defined, which increased confusion and feelings of abandonment related to the role of the primary physician. 3. Partners' relationship changes. Men became more dependent on their partners for support and to act as the primary communicator and caregiver. Conclusions Additional research is needed in this field to confirm the importance of training primary care physicians to consider holistic treatment approaches that recognize the partner and family needs as important in the complete physical and emotional healing of their patients. PMID:20211019

  12. Gender-stratified gene and gene-treatment interactions in smoking cessation.

    PubMed

    Lee, W; Bergen, A W; Swan, G E; Li, D; Liu, J; Thomas, P; Tyndale, R F; Benowitz, N L; Lerman, C; Conti, D V

    2012-12-01

    We conducted gender-stratified analyses on a systems-based candidate gene study of 53 regions involved in nicotinic response and the brain-reward pathway in two randomized clinical trials of smoking cessation treatments (placebo, bupropion, transdermal and nasal spray nicotine replacement therapy). We adjusted P-values for multiple correlated tests, and used a Bonferroni-corrected α-level of 5 × 10(-4) to determine system-wide significance. Four single-nucleotide polymorphisms (rs12021667, rs12027267, rs6702335, rs12039988; r2 > 0.98) in erythrocyte membrane protein band 4.1 (EPB41) had a significant male-specific marginal association with smoking abstinence (odds ratio (OR) = 0.5; 95% confidence interval (CI): 0.3-0.6) at end of treatment (adjusted P < 6 × 10(-5)). rs806365 in cannabinoid receptor 1 (CNR1) had a significant male-specific gene-treatment interaction at 6-month follow-up (adjusted P = 3.9 × 10(-5)); within males using nasal spray, rs806365 was associated with a decrease in odds of abstinence (OR = 0.04; 95% CI: 0.01-0.2). While the role of CNR1 in substance abuse has been well studied, we report EPB41 for the first time in the nicotine literature. PMID:21808284

  13. Treatment of cosmetic effluent in different configurations of ceramic UF membrane based bioreactor: Toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis).

    PubMed

    Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-03-01

    Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse. PMID:26714296

  14. Aptitude-Treatment Interactions during Creativity Training in E-Learning: How Meaning-Making, Self-Regulation, and Knowledge Management Influence Creativity

    ERIC Educational Resources Information Center

    Yeh, Yu-chu; Lin, Chun Fu

    2015-01-01

    The goal of aptitude-treatment interactions (ATIs) is to find the interactions between treatments and learners' aptitudes and therefore to achieve optimal learning. This study aimed at understanding whether the aptitudes of meaning-making, self-regulation, and knowledge management (KM) would interact with the treatment of 17-week KM-based training…

  15. INTERACTIVE SIMULATION OF THE FATE OF HAZARDOUS CHEMICAL DURING LAND TREATMENT OF OILY WASTES: RITZ USER'S GUIDE

    EPA Science Inventory

    An interactive software system was developed to enable decision makers to simulate the movement and fate of hazardous chemicals during land treatment of oily wastes. The mathematical model known as the Regulatory and Investigative Treatment Zone Model or RITZ was developed and pu...

  16. Configuration optimization of space structures

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos; Crivelli, Luis A.; Vandenbelt, David

    1991-01-01

    The objective is to develop a computer aid for the conceptual/initial design of aerospace structures, allowing configurations and shape to be apriori design variables. The topics are presented in viewgraph form and include the following: Kikuchi's homogenization method; a classical shape design problem; homogenization method steps; a 3D mechanical component design example; forming a homogenized finite element; a 2D optimization problem; treatment of volume inequality constraint; algorithms for the volume inequality constraint; object function derivatives--taking advantage of design locality; stiffness variations; variations of potential; and schematics of the optimization problem.

  17. Software Configuration Management Guidebook

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The growth in cost and importance of software to NASA has caused NASA to address the improvement of software development across the agency. One of the products of this program is a series of guidebooks that define a NASA concept of the assurance processes which are used in software development. The Software Assurance Guidebook, SMAP-GB-A201, issued in September, 1989, provides an overall picture of the concepts and practices of NASA in software assurance. Lower level guidebooks focus on specific activities that fall within the software assurance discipline, and provide more detailed information for the manager and/or practitioner. This is the Software Configuration Management Guidebook which describes software configuration management in a way that is compatible with practices in industry and at NASA Centers. Software configuration management is a key software development process, and is essential for doing software assurance.

  18. First principles calculations of the structure and V L-edge X-ray absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and spin-orbit coupled configuration interaction approaches.

    PubMed

    Maganas, Dimitrios; Roemelt, Michael; Hävecker, Michael; Trunschke, Annette; Knop-Gericke, Axel; Schlögl, Robert; Neese, Frank

    2013-05-21

    A detailed study of the electronic and geometric structure of V2O5 and its X-ray spectroscopic properties is presented. Cluster models of increasing size were constructed in order to represent the surface and the bulk environment of V2O5. The models were terminated with hydrogen atoms at the edges or embedded in a Madelung field. The structure and interlayer binding energies were studied with dispersion-corrected local, hybrid and double hybrid density functional theory as well as the local pair natural orbital coupled cluster method (LPNO-CCSD). Convergence of the results with respect to cluster size was achieved by extending the model to up to 20 vanadium centers. The O K-edge and the V L2,3-edge NEXAFS spectra of V2O5 were calculated on the basis of the newly developed Restricted Open shell Configuration Interaction with Singles (DFT-ROCIS) method. In this study the applicability of the method is extended to the field of solid-state catalysis. For the first time excellent agreement between theoretically predicted and experimentally measured vanadium L-edge NEXAFS spectra of V2O5 was achieved. At the same time the agreement between experimental and theoretical oxygen K-edge spectra is also excellent. Importantly, the intensity distribution between the oxygen K-edge and vanadium L-edge spectra is correctly reproduced, thus indicating that the covalency of the metal-ligand bonds is correctly described by the calculations. The origin of the spectral features is discussed in terms of the electronic structure using both quasi-atomic jj coupling and molecular LS coupling schemes. The effects of the bulk environment driven by weak interlayer interactions were also studied, demonstrating that large clusters are important in order to correctly calculate core level absorption spectra in solids. PMID:23575467

  19. Spin-flip, tensor equation-of-motion configuration interaction with a density-functional correction: A spin-complete method for exploring excited-state potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Herbert, John M.

    2015-12-01

    We revisit the formalism of the spin-adapted, spin-flip (SA-SF) configuration-interaction singles (CIS) method based on a tensor equation-of-motion formalism that affords proper spin eigenstates without sacrificing single-reference simplicity. Matrix elements for SA-SF-CIS are then modified in a manner similar to collinear spin-flip time-dependent density functional theory (SF-TDDFT), to include a DFT exchange-correlation correction. The performance of this method, which we call SA-SF-DFT, is evaluated numerically and we find that it systematically improves the energies of electronic states that exhibit significant spin contamination within the conventional SF-TDDFT approach. The new method cures the state assignment problem that plagues geometry optimizations and ab initio molecular dynamics simulations using traditional SF-TDDFT, without sacrificing computational efficiency, and furthermore provides correct topology at conical intersections, including those that involve the ground state, unlike conventional TDDFT. As such, SA-SF-DFT appears to be a promising method for generating excited-state potential energy surfaces at DFT cost.

  20. Excited-state geometries and vibrational frequencies studied using the analytical energy gradients of the direct symmetry-adapted cluster-configuration interaction method. I. HAX-type molecules

    NASA Astrophysics Data System (ADS)

    Ehara, Masahiro; Oyagi, Fumito; Abe, Yoko; Fukuda, Ryoichi; Nakatsuji, Hiroshi

    2011-07-01

    In this series of studies, we systematically apply the analytical energy gradients of the direct symmetry-adapted cluster-configuration interaction singles and doubles nonvariational method to calculate the equilibrium geometries and vibrational frequencies of excited and ionized states of molecules. The harmonic vibrational frequencies were calculated using the second derivatives numerically computed from the analytical first derivatives and the anharmonicity was evaluated from the three-dimensional potential energy surfaces around the local minima. In this paper, the method is applied to the low-lying valence singlet and triplet excited states of HAX-type molecules, HCF, HCCl, HSiF, HSiCl, HNO, HPO, and their deuterium isotopomers. The vibrational level emission spectra of HSiF and DSiF and absorption spectra of HSiCl and DSiCl were also simulated within the Franck-Condon approximation and agree well with the experimental spectra. The results show that the present method is useful and reliable for calculating these quantities and spectra. The change in geometry in the excited states was qualitatively interpreted in the light of the electrostatic force theory. The effect of perturbation selection with the localized molecular orbitals on the geometrical parameters and harmonic vibrational frequencies is also discussed.

  1. Spin-flip, tensor equation-of-motion configuration interaction with a density-functional correction: A spin-complete method for exploring excited-state potential energy surfaces

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2015-12-21

    We revisit the formalism of the spin-adapted, spin-flip (SA-SF) configuration-interaction singles (CIS) method based on a tensor equation-of-motion formalism that affords proper spin eigenstates without sacrificing single-reference simplicity. Matrix elements for SA-SF-CIS are then modified in a manner similar to collinear spin-flip time-dependent density functional theory (SF-TDDFT), to include a DFT exchange-correlation correction. The performance of this method, which we call SA-SF-DFT, is evaluated numerically and we find that it systematically improves the energies of electronic states that exhibit significant spin contamination within the conventional SF-TDDFT approach. The new method cures the state assignment problem that plagues geometry optimizations and ab initio molecular dynamics simulations using traditional SF-TDDFT, without sacrificing computational efficiency, and furthermore provides correct topology at conical intersections, including those that involve the ground state, unlike conventional TDDFT. As such, SA-SF-DFT appears to be a promising method for generating excited-state potential energy surfaces at DFT cost.

  2. Oxygen configurations in silica

    SciTech Connect

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-07-15

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O{sub 2} bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society.

  3. In vitro parasite-monocyte interactions in human leishmaniasis: effect of enzyme treatments on attachment.

    PubMed Central

    Wyler, D J; Suzuki, K

    1983-01-01

    Essential to the pathogenesis of leishmaniasis is the ability of Leishmania spp. to attach to mononuclear phagocyte surfaces before entering this host cell which they parasitize. We have investigated the attachment phase of infection in vitro by quantitating the percent of human peripheral blood monocytes pretreated with cytochalasin (to prevent parasite entry) to which tissue-derived L. tropica amastigotes will attach during coincubation at 37 degrees C in serum-free medium. We determined that pretreatment of parasites with trypsin, chymotrypsin, Pronase, and neuraminidase reduced attachment. In contrast, parasites treated with beta-galactosidase had an enhanced ability to attach to host cells. Treatment of monocytes with chymotrypsin and Pronase, but not with trypsin or neuraminidase, reduced attachment of untreated amastigotes. We propose that in vitro amastigote attachment under serum-free conditions depends on the interaction of protein determinants on the surface of both parasite and host cell. Images PMID:6413414

  4. [Chronification of chronic patients from the viewpoint of interaction in the medical treatment system].

    PubMed

    Schindler, R

    1980-01-01

    Though chronicity in psychiatry seems to have undergone a favorable modification, it has, nevertheless, increased and evolved so to adopte itself to a more liberal society (group techniques having no doubt contributed to this modification). Chronicity is no longer the end result of the asylum and solitude. Stades of chronicity are found in each and every branch of medicine, its development being parallel to the expressive of medicine itself. Due to intensification of preventive medicine and post-cure, chronicity touches not only patients undergoing long-term treatment, but also those attending ambulatories and post-cure institutions, and individuals who are considered ill in their environmental interactions, living recluded lives in order to avoid contact, friction and treatment. Chronification, deriving from the interaction with the therapeutic system, can be avoided if the patient and his milieu, in a common effort, give up the idea of illness and allow confrontation to the aggressive stimuli of society. The lack of understanding on the therapist's side, concerning the above-mentioned effort, in the demonstration that the therapist has a preconceived position in the system. This fact is not surprising since chronification is a target in medicine which defines health as a sort of negative of the illness it treats. On the other hand Freudian psychology should enable us to renounce all absolute idealization and help us seek health conceived as a libidinal blend of Eros and Thanatos. The question is not, therefore, how to avoid chronicity, but how to find a chronicity adapted to the patients biography and not to our own. PMID:7455615

  5. The additive and interactive effects of parenting style and temperament in obese youth seeking treatment

    PubMed Central

    Zeller, MH; Boles, RE; Reiter-Purtill, J

    2009-01-01

    Objective To examine maternal parenting behaviors, child temperament and their potential interactions in families of obese children and demographically similar families of nonoverweight children. Design A total of 77 obese youth (M body mass index (BMI) z-score values, zBMI = 2.4; ages 8–16, 59% female, 50% African American) and their parents were recruited from a pediatric weight management clinic and compared to 69 families of nonoverweight youth (M zBMI = − 0.03). Comparison youth were classmates of each obese participant matched on gender, race and age. Measurements Maternal report of child temperament, parenting style and anthropometric assessments were obtained. Results Compared to nonoverweight youth, mothers of obese youth described their child as having a more difficult temperament and their parenting style as lower in behavioral control. A logistic regression model indicated that difficult temperament, lower behavioral control and the interaction of low maternal warmth and difficult child temperament were associated with increased odds of a child being classified as obese. Conclusions Treatment-seeking obese youth and their parents are characterized by different parent and child factors when compared to nonoverweight comparison families. These findings direct investigators to test more complex models of the relation between parent and child characteristics and their mutual role in the weight-related behavior change process. PMID:18698318

  6. [Feeding disorders in infancy: feeding interaction concept in diagnosis and treatment].

    PubMed

    Keren, M; Tyano, S

    1998-09-01

    In infancy clinical manifestations of psychological distress are mainly somatic. Feeding disorders are one of the most common and nonspecific manifestations of different kinds of disturbed parent-child relationships. These disturbances may have their origins in the baby's constitution and physical status, in the parent's personality structure, or both, as has been conceptualized in the transactional model of normal and abnormal development. Among the daily interactions a baby has with parents, feeding has special inherent impact on the early parent-child relationship because of its psychological meanings. Therefore, feeding disorders, with or without failure to thrive, often reflect various disorders of infancy, still not well recognized in the medical community, such as regulatory disorders, attachment disorders, depression of infancy, disorders of separation-individuation, and post-traumatic eating disorder. 3 clinical cases are brought to increase awareness of psychological distress in the infant, and of feeding disorders as 1 of its manifestations. Each illustrates a different kind of feeding disorder in terms of etiology and pathogenesis. Through these cases we emphasize the need for a multi-disciplinary, integrative approach in diagnosis and treatment. Our conceptual background is based both on the transactional model of development (infant and parental factors impact on each other) in a very dynamic paradigm, and on psychodynamic premises. Intrapsychic conflicts and past representations impact heavily on the parenting characteristics. We emphasize the psychological significance of disturbed feeding interactions, with or without failure to thrive. PMID:9885634

  7. Understanding treatment effectiveness for aggressive youth: the importance of regulation in mother-child interactions.

    PubMed

    De Rubeis, Sera; Granic, Isabela

    2012-02-01

    Reviews summarizing hundreds of studies cite parent management training (PMT) and cognitive-behavior therapy (CBT) as some of the most effective interventions for aggressive youth. However, studies continue to report variability in outcomes, and researchers have yet to understand why certain interventions only produce behavior change in some children. Using a clinical sample of 57 children (53 boys, 4 girls; mean age = 9.33, standard deviation = 1.16) and their mothers enrolled in a combined PMT/CBT program, the current study examined the relation between changes in real-time mother-child interactions, and children's externalizing outcomes from pre- to posttreatment. Results showed that dyads who were regulated in their interactions over time reported greater reductions in externalizing symptoms from pre- to posttreatment as compared with dysregulated dyads. Changes in mean levels of affective content (e.g., negativity) were not associated with externalizing outcomes. Findings suggest that dyadic regulation may be an important process associated with treatment success for aggressive youth. PMID:22309818

  8. Sonic boom configuration minimization

    NASA Technical Reports Server (NTRS)

    Sohn, Robert A.

    1992-01-01

    The topics covered include the following: the sonic boom 'big picture'; current low boom technology; Mach number impact on gross weight; equal loudness equivalent areas; performance and sizing results; potential configuration modifications; equivalent area matching; and impact of nose bluntness on aerodynamic characteristics.

  9. Space Station Final Configuration

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An artist's conception of what the final configuration of the International Space Station (ISS) will look like when it is fully built and deployed. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  10. Inclusive Services Innovation Configuration

    ERIC Educational Resources Information Center

    Holdheide, Lynn R.; Reschly, Daniel J.

    2011-01-01

    Teacher preparation to deliver inclusive services to students with disabilities is increasingly important because of changes in law and policy emphasizing student access to, and achievement in, the general education curriculum. This innovation configuration identifies the components of inclusive services that should be incorporated in teacher…

  11. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  12. Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Bloem, Michael J.

    2014-01-01

    In air traffic management systems, airspace is partitioned into regions in part to distribute the tasks associated with managing air traffic among different systems and people. These regions, as well as the systems and people allocated to each, are changed dynamically so that air traffic can be safely and efficiently managed. It is expected that new air traffic control systems will enable greater flexibility in how airspace is partitioned and how resources are allocated to airspace regions. In this talk, I will begin by providing an overview of some previous work and open questions in Dynamic Airspace Configuration research, which is concerned with how to partition airspace and assign resources to regions of airspace. For example, I will introduce airspace partitioning algorithms based on clustering, integer programming optimization, and computational geometry. I will conclude by discussing the development of a tablet-based tool that is intended to help air traffic controller supervisors configure airspace and controllers in current operations.

  13. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  14. Tip clearance flow interaction with circumferential groove casing treatment in a transonic axial compressor

    NASA Astrophysics Data System (ADS)

    Ross, Mark Hamilton

    Experimental and computational studies were conducted to study the role of the tip leakage flow in axial compressor stall and the relationship between the tip clearance flow flow field and surge margin extension from circumferential groove casing treatment. The CFD results were used to identify the existence of an interface between the approach ow and the tip-leakage flow. The experiments used a surface streaking visualization method to identify the time-averaged location of this interface as a line of zero axial shear stress at the casing. The axial position of this line, denoted xzs, moved upstream with decreasing ow coefficient in both the experiments and computations. The line was consistently located at the rotor leading edge plane at the stalling flow coefficient, regardless of in flow boundary condition. These results were successfully modeled using a control volume approach that balanced the reverse axial momentum ux of the tip-leakage flow with the momentum flux of the approach fluid. Non-uniform tip clearance measurements demonstrated that movement of the interface upstream of the rotor leading edge plane leads to the generation of short length scale rotating disturbances. Therefore, stall was interpreted as a critical point in the momentum flux balance of the approach ow and the reverse axial momentum flux of the tip-leakage flow. Experimental measurements of surge margin extension from seven CGCT configurations with a fixed groove geometry demonstrated that the contribution of individual grooves in a multi-groove casing to surge margin extension is an (a) additive and (b) linear function of the smooth wall tip clearance axial momentum ux at the location of a each groove. Extending the axial momentum model to include the in uence of a CGCT showed that circumferential grooves reduce the tip leakage flow axial momentum through radial transport. The equivalent force due to a circumferential groove was demonstrated to be related to the smooth wall tip

  15. Nuclear-interaction correction of integrated depth dose in carbon-ion radiotherapy treatment planning.

    PubMed

    Inaniwa, T; Kanematsu, N; Hara, Y; Furukawa, T

    2015-01-01

    In treatment planning of charged-particle therapy, tissue heterogeneity is conventionally modeled as water with various densities, i.e. stopping effective densities ρ(S), and the integrated depth dose measured in water (IDD) is applied accordingly for the patient dose calculation. Since the chemical composition of body tissues is different from that of water, this approximation causes dose calculation errors, especially due to difference in nuclear interactions. Here, we propose and validate an IDD correction method for these errors in patient dose calculations. For accurate handling of nuclear interactions, ρ(S) of the patient is converted to nuclear effective density ρ(N), defined as the ratio of the probability of nuclear interactions in the tissue to that in water using a recently formulated semi-empirical relationship between the two. The attenuation correction factor Φ(w)(p), defined as the ratio of the attenuation of primary carbon ions in a patient to that in water, is calculated from a linear integration of ρ(N) along the beam path. In our treatment planning system, a carbon-ion beam is modeled to be composed of three components according to their transverse beam sizes: primary carbon ions, heavier fragments, and lighter fragments. We corrected the dose contribution from primary carbon ions to IDD as proportional to Φ(w)(p), and corrected that from lighter fragments as inversely proportional to Φ(w)(p). We tested the correction method for some non-water materials, e.g. milk, lard, ethanol and water solution of potassium phosphate (K2HPO4), with un-scanned and scanned carbon-ion beams. In un-scanned beams, the difference in IDD between a beam penetrating a 150 mm-thick layer of lard and a beam penetrating water of the corresponding thickness amounted to -4%, while it was +6% for a 150 mm-thick layer of 40% K2HPO4. The observed differences were accurately predicted by the correction method. The corrected IDDs agreed with the measurements within

  16. Weighted Configuration Model

    NASA Astrophysics Data System (ADS)

    Serrano, M. Ángeles; Boguñá, Marián

    2005-06-01

    The configuration model is one of the most successful models for generating uncorrelated random networks. We analyze its behavior when the expected degree sequence follows a power law with exponent smaller than two. In this situation, the resulting network can be viewed as a weighted network with non trivial correlations between strength and degree. Our results are tested against large scale numerical simulations, finding excellent agreement.

  17. Fuel cell system configurations

    DOEpatents

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  18. Aquarius main structure configuration

    NASA Astrophysics Data System (ADS)

    Eremenko, A.

    The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.

  19. Analyzing Visibility Configurations.

    PubMed

    Dachsbacher, C

    2011-04-01

    Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and performance of our method in synthetic scenes, as well as real applications. PMID:20498504

  20. Computational methods for stellerator configurations

    NASA Astrophysics Data System (ADS)

    Betancourt, O.

    This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings.

  1. Survey of methadone-drug interactions among patients of methadone maintenance treatment program in Taiwan

    PubMed Central

    2012-01-01

    Background Although methadone has been used for the maintenance treatment of opioid dependence for decades, it was not introduced in China or Taiwan until 2000s. Methadone-drug interactions (MDIs) have been shown to cause many adverse effects. However, such effects have not been scrutinized in the ethnic Chinese community. Methods The study was performed in two major hospitals in southern Taiwan. A total of 178 non-HIV patients aged ≥ 20 years who had participated in the Methadone Maintenance Treatment Program (MMTP) ≥ 1 month were recruited. An MDI is defined as concurrent use of drug(s) with methadone that may result in an increase or decrease of effectiveness and/or adverse effect of methadone. To determine the prevalence and clinical characteristics of MDIs, credible data sources, including the National Health Insurance (NHI) database, face-to-face interviews, medical records, and methadone computer databases, were linked for analysis. Socio-demographic and clinical factors associated with MDIs and co-medications were also examined. Results 128 (72%) MMTP patients took at least one medication. Clinically significant MDIs included withdrawal symptoms, which were found among MMTP patients co-administered with buprenorphine or tramadol; severe QTc prolongation effect, which might be associated with use of haloperidol or droperidol; and additive CNS and respiratory depression, which could result from use of methadone in combination with chlorpromazine or thioridazine. Past amphetamine use, co-infection with hepatitis C, and a longer retention in the MMTP were associated with increased odds of co-medication. Among patients with co-medication use, significant correlates of MDIs included the male gender and length of co-medication in the MMTP. Conclusions The results demonstrate clinical evidence of significant MDIs among MMTP patients. Clinicians should check the past medical history of MMTP clients carefully before prescribing medicines. Because combinations of

  2. Interaction between behavioral and pharmacological treatment strategies to decrease cocaine choice in rhesus monkeys.

    PubMed

    Banks, Matthew L; Blough, Bruce E; Negus, S Stevens

    2013-02-01

    Behavioral and pharmacotherapeutic approaches constitute two prominent strategies for treating cocaine dependence. This study investigated interactions between behavioral and pharmacological strategies in a preclinical model of cocaine vs food choice. Six rhesus monkeys, implanted with a chronic indwelling double-lumen venous catheter, initially responded under a concurrent schedule of food delivery (1-g pellets, fixed-ratio (FR) 100 schedule) and cocaine injections (0-0.1 mg/kg/injection, FR 10 schedule) during continuous 7-day treatment periods with saline or the agonist medication phenmetrazine (0.032-0.1 mg/kg/h). Subsequently, the FR response requirement for cocaine or food was varied (food, FR 100; cocaine, FR 1-100; cocaine, FR 10; food, FR 10-300), and effects of phenmetrazine on cocaine vs food choice were redetermined. Decreases in the cocaine FR or increases in the food FR resulted in leftward shifts in the cocaine choice dose-effect curve, whereas increases in the cocaine FR or decreases in the food FR resulted in rightward shifts in the cocaine choice dose-effect curve. The efficacy of phenmetrazine to decrease cocaine choice varied systematically as a function of the prevailing response requirements, such that phenmetrazine efficacy was greatest when cocaine choice was maintained by relatively low unit cocaine doses. These results suggest that efficacy of pharmacotherapies to modulate cocaine use can be influenced by behavioral contingencies of cocaine availability. Agonist medications may be most effective under contingencies that engender choice of relatively low cocaine doses. PMID:22968813

  3. Accurate and general treatment of electrostatic interaction in Hamiltonian adaptive resolution simulations

    NASA Astrophysics Data System (ADS)

    Heidari, M.; Cortes-Huerto, R.; Donadio, D.; Potestio, R.

    2016-07-01

    In adaptive resolution simulations the same system is concurrently modeled with different resolution in different subdomains of the simulation box, thereby enabling an accurate description in a small but relevant region, while the rest is treated with a computationally parsimonious model. In this framework, electrostatic interaction, whose accurate treatment is a crucial aspect in the realistic modeling of soft matter and biological systems, represents a particularly acute problem due to the intrinsic long-range nature of Coulomb potential. In the present work we propose and validate the usage of a short-range modification of Coulomb potential, the Damped shifted force (DSF) model, in the context of the Hamiltonian adaptive resolution simulation (H-AdResS) scheme. This approach, which is here validated on bulk water, ensures a reliable reproduction of the structural and dynamical properties of the liquid, and enables a seamless embedding in the H-AdResS framework. The resulting dual-resolution setup is implemented in the LAMMPS simulation package, and its customized version employed in the present work is made publicly available.

  4. Protein solvation from theory and simulation: Exact treatment of Coulomb interactions in three-dimensional theories

    NASA Astrophysics Data System (ADS)

    Perkyns, John S.; Lynch, Gillian C.; Howard, Jesse J.; Pettitt, B. Montgomery

    2010-02-01

    Solvation forces dominate protein structure and dynamics. Integral equation theories allow a rapid and accurate evaluation of the effect of solvent around a complex solute, without the sampling issues associated with simulations of explicit solvent molecules. Advances in integral equation theories make it possible to calculate the angle dependent average solvent structure around an irregular molecular solution. We consider two methodological problems here: the treatment of long-ranged forces without the use of artificial periodicity or truncations and the effect of closures. We derive a method for calculating the long-ranged Coulomb interaction contributions to three-dimensional distribution functions involving only a rewriting of the system of integral equations and introducing no new formal approximations. We show the comparison of the exact forms with those implied by the supercell method. The supercell method is shown to be a good approximation for neutral solutes whereas the new method does not exhibit the known problems of the supercell method for charged solutes. Our method appears more numerically stable with respect to thermodynamic starting state. We also compare closures including the Kovalenko-Hirata closure, the hypernetted-chain (HNC) and an approximate three-dimensional bridge function combined with the HNC closure. Comparisons to molecular dynamics results are made for water as well as for the protein solute bovine pancreatic trypsin inhibitor. The proposed equations have less severe approximations and often provide results which compare favorably to molecular dynamics simulation where other methods fail.

  5. Protein solvation from theory and simulation: Exact treatment of Coulomb interactions in three-dimensional theories

    PubMed Central

    Perkyns, John S.; Lynch, Gillian C.; Howard, Jesse J.; Pettitt, B. Montgomery

    2010-01-01

    Solvation forces dominate protein structure and dynamics. Integral equation theories allow a rapid and accurate evaluation of the effect of solvent around a complex solute, without the sampling issues associated with simulations of explicit solvent molecules. Advances in integral equation theories make it possible to calculate the angle dependent average solvent structure around an irregular molecular solution. We consider two methodological problems here: the treatment of long-ranged forces without the use of artificial periodicity or truncations and the effect of closures. We derive a method for calculating the long-ranged Coulomb interaction contributions to three-dimensional distribution functions involving only a rewriting of the system of integral equations and introducing no new formal approximations. We show the comparison of the exact forms with those implied by the supercell method. The supercell method is shown to be a good approximation for neutral solutes whereas the new method does not exhibit the known problems of the supercell method for charged solutes. Our method appears more numerically stable with respect to thermodynamic starting state. We also compare closures including the Kovalenko–Hirata closure, the hypernetted-chain (HNC) and an approximate three-dimensional bridge function combined with the HNC closure. Comparisons to molecular dynamics results are made for water as well as for the protein solute bovine pancreatic trypsin inhibitor. The proposed equations have less severe approximations and often provide results which compare favorably to molecular dynamics simulation where other methods fail. PMID:20151732

  6. Protein Solvation from Theory and Simulation: Exact Treatment of Coulomb Interactions in Three-Dimensional Theories

    SciTech Connect

    Perkyns, John S.; Lynch, Gillian C.; Howard, Jesse J.; Pettitt, Bernard M.

    2010-02-14

    Solvation forces dominate protein structure and dynamics. Integral equation theories allow a rapid and accurate evaluation of the effect of solvent around a complex solute, without the sampling issues associated with simulations of explicit solvent molecules. Advances in integral equation theories make it possible to calculate the angle dependent average solvent structure around an irregular molecular solution. We consider two methodological problems here: the treatment of long-ranged forces without the use of artificial periodicity or truncations and the effect of closures. We derive a method for calculating the long-ranged Coulomb interaction contributions to three-dimensional distribution functions involving only a rewriting of the system of integral equations and introducing no new formal approximations. We show the comparison of the exact forms with those implied by the supercell method. The supercell method is shown to be a good approximation for neutral solutes whereas the new method does not exhibit the known problems of the supercell method for charged solutes. Our method appears more numerically stable with respect to thermodynamic starting state. We also compare closures including the Kovalenko–Hirata closure, the hypernetted-chain _HNC_ and an approximate three-dimensional bridge fu nction combined with the HNC closure. Comparisons to molecular dynamics results are made for water as well as for the protein solute bovine pancreatic trypsin inhibitor. The proposed equations have less severe approximations and often provide results which compare favorably to molecular dynamics simulation where other methods fail.

  7. Interaction of organic carbon, reduced sulphur and nitrate in anaerobic baffled reactor for fresh leachate treatment.

    PubMed

    Yin, Zhixuan; Xie, Li; Khanal, Samir Kumar; Zhou, Qi

    2016-01-01

    Interaction of organic carbon, reduced sulphur and nitrate was examined using anaerobic baffled reactor for fresh leachate treatment by supplementing nitrate and/or sulphide to compartment 3. Nitrate was removed completely throughout the study mostly via denitrification (>80%) without nitrite accumulation. Besides carbon source, various reduced sulphur (e.g. sulphide, elemental sulphur and organic sulphur) could be involved in the nitrate reduction process via sulphur-based autotrophic denitrification when dissolved organic carbon/nitrate ratio decreased below 1.6. High sulphide concentration not only stimulated autotrophic denitrification, but it also inhibited heterotrophic denitrification, resulting in a shift (11-20%) from heterotrophic denitrification to dissimilatory nitrate reduction to ammonia. High-throughput 16S rRNA gene sequencing analysis further confirmed that sulphur-oxidizing nitrate-reducing bacteria were stimulated with increase in the proportion of bacterial population from 18.6% to 27.2% by high sulphide concentration, meanwhile, heterotrophic nitrate-reducing bacteria and fermentative bacteria were inhibited with 25.5% and 66.6% decrease in the bacterial population. PMID:26495763

  8. Fast interactive registration tool for reproducible multi-spectral imaging for wound healing and treatment evaluation

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke J.; de Roode, Rowland; Verdaasdonk, Rudolf

    2007-02-01

    Multi-spectral images of human tissue taken in-vivo often contain image alignment problems as patients have difficulty in retaining their posture during the acquisition time of 20 seconds. Previously, it has been attempted to correct motion errors with image registration software developed for MR or CT data but these algorithms have been proven to be too slow and erroneous for practical use with multi-spectral images. A new software package has been developed which allows the user to play a decisive role in the registration process as the user can monitor the progress of the registration continuously and force it in the right direction when it starts to fail. The software efficiently exploits videocard hardware to gain speed and to provide a perfect subvoxel correspondence between registration field and display. An 8 bit graphic card was used to efficiently register and resample 12 bit images using the hardware interpolation modes present on the graphic card. To show the feasibility of this new registration process, the software was applied in clinical practice evaluating the dosimetry for psoriasis and KTP laser treatment. The microscopic differences between images of normal skin and skin exposed to UV light proved that an affine registration step including zooming and slanting is critical for a subsequent elastic match to have success. The combination of user interactive registration software with optimal addressing the potentials of PC video card hardware greatly improves the speed of multi spectral image registration.

  9. GSC configuration management plan

    NASA Technical Reports Server (NTRS)

    Withers, B. Edward

    1990-01-01

    The tools and methods used for the configuration management of the artifacts (including software and documentation) associated with the Guidance and Control Software (GCS) project are described. The GCS project is part of a software error studies research program. Three implementations of GCS are being produced in order to study the fundamental characteristics of the software failure process. The Code Management System (CMS) is used to track and retrieve versions of the documentation and software. Application of the CMS for this project is described and the numbering scheme is delineated for the versions of the project artifacts.

  10. Counselor Nonverbal Self-Disclosure and Fear of Intimacy during Employment Counseling: An Aptitude-Treatment Interaction Illustration

    ERIC Educational Resources Information Center

    Carrein, Cindy; Bernaud, Jean-Luc

    2010-01-01

    This study investigated the effects of nonverbal self-disclosure within the dynamic of aptitude-treatment interaction. Participants (N = 94) watched a video of a career counseling session aimed at helping the jobseeker to find employment. The video was then edited to display 3 varying degrees of nonverbal self-disclosure. In conjunction with the…

  11. Some aerodynamic considerations for advanced aircraft configurations

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Johnson, J. L., Jr.; Yip, L. P.

    1984-01-01

    Recent NASA wind-tunnel investigations of advanced unconventional configurations are surveyed, with an emphasis on those applicable to general-aviation aircraft. Photographs of typical models and graphs of aerodynamic parameters are provided. The designs discussed include aft installation of tractor or pusher-propellor engines; forward-swept wings; canards; combinations of canard, wing, and horizontal tail; and propeller-over-the-wing configurations. Consideration is given to canard-wing flow-field interactions, natural laminar flow, the choice of canard airfoil, directional stability and control, and propulsion-system location.

  12. Random matrix treatment of intramolecular vibrational redistribution. II. Coriolis interactions in 1-butyne and ethanol

    SciTech Connect

    Go, J.; Perry, D.S.

    1995-10-01

    The measures are the dilution factor {phi}{sub {ital d}}, the interaction width {Delta}{epsilon}, and the effective level density {rho}{sub eff}{sup {ital c}}. In the presence of multiple coupling mechanisms (near the best fit to the ethanol {nu}{sub 14} band), the correlations between {phi}{sub {ital d}} and {Delta}{epsilon} and the bright-bath Coriolis coupling mechanisms follow the expected trends. It was also found that {rho}{sub eff}{sup {ital c}} is sensitive to the {ital x}, {ital y} Coriolis coupling {ital among} the bath states. The results were not sensitive to the {ital z}-type Coriolis coupling among the bath states in the region of the ethanol simulation, but {rho}{sub eff}{sup {ital c}} was sensitive to it in the simulation of the 1-butyne {nu}{sub 16} band. Best-fit coupling parameters were obtained for both simulated bands. The rms bright-bath {ital z}-type Coriolis coupling was found to be 0.028{plus_minus}0.005 cm{sup {minus}1} which is about three times the value obtained from a naive approach which neglects the interaction of the multiple coupling mechanisms. A direct count vibrational level density, {rho}{sub vib}, provided good agreement with the experiments when a full treatment of the torsional modes was included and a 20% enhancement of the density from neglected diagonal anharmonicities was added. A method of quantifying the conservation of the rotational quantum number, {ital K}, is provided by the inequalities, {rho}{sub vib}{le}{rho}{sub eff}{sup {ital c}}{le}(2{ital J}+1){rho}{sub vib}. For 1-butyne, {rho}{sub eff}{sup {ital c}} is closer to {rho}{sub vib} than for ethanol indicating that {ital K} is more nearly conserved. While this work treats only anharmonic and Coriolis coupling, the random matrix formalism provides the ability to treat a wide variety of coupling schemes. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. Configurational Entropy Revisited

    NASA Astrophysics Data System (ADS)

    Lambert, Frank L.

    2007-09-01

    Entropy change is categorized in some prominent general chemistry textbooks as being either positional (configurational) or thermal. In those texts, the accompanying emphasis on the dispersal of matter—independent of energy considerations and thus in discord with kinetic molecular theory—is most troubling. This article shows that the variants of entropy can be treated from a unified viewpoint and argues that to decrease students' confusion about the nature of entropy change these variants of entropy should be merged. Molecular energy dispersal in space is implicit but unfortunately tacit in the cell models of statistical mechanics that develop the configurational entropy change in gas expansion, fluids mixing, or the addition of a non-volatile solute to a solvent. Two factors are necessary for entropy change in chemistry. An increase in thermodynamic entropy is enabled in a process by the motional energy of molecules (that, in chemical reactions, can arise from the energy released from a bond energy change). However, entropy increase is only actualized if the process results in a larger number of arrangements for the system's energy, that is, a final state that involves the most probable distribution for that energy under the new constraints. Positional entropy should be eliminated from general chemistry instruction and, especially benefiting "concrete minded" students, it should be replaced by emphasis on the motional energy of molecules as enabling entropy change.

  14. SIM Configuration Evolution

    NASA Technical Reports Server (NTRS)

    Aaron, Kim M.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10 m baseline Michelson interferometer. Planned for launch in 2005 aboard a Delta III launch vehicle, or equivalent, its primary objective is to measure the positions of stars and other celestial objects with an unprecedented accuracy of 4 micro arc seconds. With such an instrument, tremendous advancement can be expected in our understanding of stellar and galactic dynamics. Using triangulation from opposite sides of the orbit around the sun (i.e. by using parallax) one can measure the distance to any observable object in our galaxy. By directly measuring the orbital wobble of nearby stars, the mass and orbit of planets can be determined over a wide range of parameters. The distribution of velocity within nearby galaxies will be measurable. Observations of these and other objects will improve the calibration of distance estimators by more than an order of magnitude. This will permit a much better determination of the Hubble Constant as well as improving our overall understanding of the evolution of the universe. SIM has undergone several transformations, especially over the past year and a half since the start of Phase A. During this phase of a project, it is desirable to perform system-level trade studies, so the substantial evolution of the design that has occurred is quite appropriate. Part of the trade-off process has addressed two major underlying architectures: SIM Classic; and Son of SIM. The difference between these two architectures is related to the overall arrangement of the optical elements and the associated metrology system. Several different configurations have been developed for each architecture. Each configuration is the result of design choices that are influenced by many competing considerations. Some of the more important aspects will be discussed. The Space Interferometry Mission has some extremely challenging goals: millikelvin thermal stability, nanometer stabilization of optics

  15. Ames Optimized TCA Configuration

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.

    1999-01-01

    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  16. Concealed configuration mixing and shape coexistence in the platinum nuclei

    SciTech Connect

    Garcia-Ramos, J. E.; Hellemans, V.; Heyde, K.

    2012-10-20

    The role of configuration mixing in the Pt region is investigated. The nature of the ground state changes smoothly, being spherical around mass A{approx} 174 and A{approx} 192 and deformed around the mid-shell N= 104 region. Interacting Boson Model with configuration mixing calculations are presented for deformations and isotope shifts. The assumption of the existence of two configurations with very different deformation provides a simple framework to explain the observed isotope shifts systematics.

  17. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces

    NASA Astrophysics Data System (ADS)

    Olsen, Jeppe; Roos, Björn O.; Jørgensen, Poul; Jensen, Hans Jørgen Aa.

    1988-08-01

    A restricted active space (RAS) wave function is introduced, which encompasses many commonly used restricted CI expansions. A highly vectorized algorithm is developed for full CI and other RAS calculations. The algorithm is based on Slater determinants expressed as products of alphastrings and betastrings and lends itself to a matrix indexing C(Iα, Iβ ) of the CI vector. The major features are: (1) The intermediate summation over determinants is replaced by two intermediate summations over strings, the number of which is only the square root of the number of determinants. (2) Intermediate summations over strings outside the RAS CI space is avoided and RAS calculations are therefore almost as efficient as full CI calculations with the same number of determinants. (3) An additional simplification is devised for MS =0 states, halving the number of operations. For a case with all single and double replacements out from 415 206 Slater determinants yielding 1 136 838 Slater determinants each CI iteration takes 161 s on an IBM 3090/150(VF).

  18. Power converter connection configuration

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2008-11-11

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  19. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  20. Software Configurable Multichannel Transceiver

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  1. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-10-14

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  2. Inductrack magnet configuration

    DOEpatents

    Post, Richard Freeman

    2003-12-16

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  3. Assessing Program Effects in the Presence of Treatment-Baseline Interactions: A Latent Curve Approach.

    ERIC Educational Resources Information Center

    Khoo, Siek-Toon; Muthen, Bengt

    The aim of this paper is to explore methods for evaluating the effects of randomized interventions in a longitudinal design. The focus is on methods for modeling the possibly nonlinear relationship between treatment effect and baseline and evaluating the treatment effect taking this nonlinear relationship into account. A control/treatment growth…

  4. Everyday Interactions with University Authorities: Authority Treatment Quality, Outcome Favorability and First-Year Students' University Adjustment.

    PubMed

    Smith, Heather J; Olson, Gerryann; Agronick, Gail; Tyler, Tom

    2009-03-01

    Two hundred and twelve first-year undergraduates completed an authority interaction checklist every time they had a (self-defined) meaningful interaction with university authorities during the first two weeks of their first semester. Students' degree of university identification before they began the term moderated the influence of campus authorities' treatment quality on academic engagement three months later. These longitudinal data provide support for the argument that people who identify with the group the authority represents will interpret the authority's behavior as indicative of their value to the group. PMID:20228896

  5. Everyday Interactions with University Authorities: Authority Treatment Quality, Outcome Favorability and First-Year Students’ University Adjustment

    PubMed Central

    Smith, Heather J.; Olson, Gerryann; Agronick, Gail; Tyler, Tom

    2009-01-01

    Two hundred and twelve first-year undergraduates completed an authority interaction checklist every time they had a (self-defined) meaningful interaction with university authorities during the first two weeks of their first semester. Students’ degree of university identification before they began the term moderated the influence of campus authorities’ treatment quality on academic engagement three months later. These longitudinal data provide support for the argument that people who identify with the group the authority represents will interpret the authority’s behavior as indicative of their value to the group. PMID:20228896

  6. Assessment, Objectivity, and Interaction: The Case of Patient Compliance with Medical Treatment Regimens

    ERIC Educational Resources Information Center

    Lutfey, Karen

    2004-01-01

    Much of the daily work of professional organizations is accomplished via interaction between representatives of those institutions and laypeople. Scholars of talk in institutional settings have argued that lay-professional interaction is often assumed mistakenly to operate as a neutral conduit for professionals to gain information relevant to…

  7. Interaction between anthelmintic treatment and vaccine responses in ponies naturally infected with cyathostomins.

    PubMed

    Nielsen, M K; Rubinson, E F; Chambers, T M; Horohov, D W; Wagner, B; Betancourt, A; Reedy, S E; Jacobsen, S

    2015-04-15

    Anthelmintics and vaccines are commonly given concurrently in routine equine management, but it is unknown to what extent an interaction between the two exists. Cyathostomins can modulate the local immune response by stimulating a type 2 helper T cell (Th2) response. In addition, anti-inflammatory effects of ivermectin have been found in rodent models. It is unknown whether these anti-inflammatory effects affect the acute phase response elicited by commonly used vaccines. This study evaluated how the acute phase inflammatory response, leukocyte expression of pro-inflammatory cytokines, and vaccine-specific titers induced by simultaneous injection of three vaccines (West Nile Virus, Equine Herpes Rhinopneumonitis, and Keyhole Limpet Hemocyanin) were modulated by concurrent administration of ivermectin or pyrantel pamoate in ponies naturally infected with cyathostomins. Mixed-breed yearling ponies were blocked by gender and fecal strongyle egg count, then randomly assigned to three treatment groups: ivermectin (n=8), pyrantel pamoate (n=8), and control (n=7). All ponies received vaccinations intramuscularly on days 0 and 29, and anthelmintics were administered on the same days. Whole blood, serum and plasma samples were collected one, three and 14 days after each vaccination. Samples were analyzed for concentrations of acute phase reactants (haptoglobin, serum amyloid A, fibrinogen and iron), mRNA expression levels of cytokines (interleukin (IL)-1β, IL-4, IL-10, tumor necrosis factor (TNF)-α and interferon (IFN)-γ) in leukocytes, and vaccine-specific antibody titers. A marked acute-phase response was noted following both vaccinations. In contrast, the pattern of change in cytokine expression was less pronounced and more variable. Statistical differences were observed between groups for haptoglobin, fibrinogen, IL-1β, IL-4, and IL-10, but differences were generally small and none of the vaccine titers were different between the groups. Taken together, the study

  8. Clinically significant drug–drug interactions involving opioid analgesics used for pain treatment in patients with cancer: a systematic review

    PubMed Central

    Kotlinska-Lemieszek, Aleksandra; Klepstad, Pål; Haugen, Dagny Faksvåg

    2015-01-01

    Background Opioids are the most frequently used drugs to treat pain in cancer patients. In some patients, however, opioids can cause adverse effects and drug–drug interactions. No advice concerning the combination of opioids and other drugs is given in the current European guidelines. Objective To identify studies that report clinically significant drug–drug interactions involving opioids used for pain treatment in adult cancer patients. Design and data sources Systematic review with searches in Embase, MEDLINE, and Cochrane Central Register of Controlled Trials from the start of the databases (Embase from 1980) through January 2014. In addition, reference lists of relevant full-text papers were hand-searched. Results Of 901 retrieved papers, 112 were considered as potentially eligible. After full-text reading, 17 were included in the final analysis, together with 15 papers identified through hand-searching of reference lists. All of the 32 included publications were case reports or case series. Clinical manifestations of drug–drug interactions involving opioids were grouped as follows: 1) sedation and respiratory depression, 2) other central nervous system symptoms, 3) impairment of pain control and/or opioid withdrawal, and 4) other symptoms. The most common mechanisms eliciting drug–drug interactions were alteration of opioid metabolism by inhibiting the activity of cytochrome P450 3A4 and pharmacodynamic interactions due to the combined effect on opioid, dopaminergic, cholinergic, and serotonergic activity in the central nervous system. Conclusion Evidence for drug–drug interactions associated with opioids used for pain treatment in cancer patients is very limited. Still, the cases identified in this systematic review give some important suggestions for clinical practice. Physicians prescribing opioids should recognize the risk of drug–drug interactions and if possible avoid polypharmacy. PMID:26396499

  9. Self-consistent treatment of spin-orbit interactions with efficient Hartree-Fock and density functional methods.

    PubMed

    Armbruster, Markus K; Weigend, Florian; van Wüllen, Christoph; Klopper, Wim

    2008-04-01

    Efficient self-consistent field (SCF) schemes including both scalar relativistic effects and spin-orbit (SO) interactions at Hartree-Fock (HF) and density functional (DFT) levels are presented. SO interactions require the extension of standard procedures to two-component formalisms. Efficiency is achieved by using effective core potentials (ECPs) and by employing the resolution-of-the-identity approximation for the Coulomb part (RI-J) in pure DFT calculations as well as also for the HF-exchange part (RI-JK) in the case of HF or hybrid-DFT treatments. The procedures were implemented in the program system TURBOMOLE; efficiency is demonstrated for comparably large systems, such as Pb54. Relevance of SO effects for electronic structure and stability is illustrated by treatments of small Pb and Po clusters with and without accounting for SO effects. PMID:18350180

  10. Predictors and Correlates of Homework Completion and Treatment Outcomes in Parent-Child Interaction Therapy

    ERIC Educational Resources Information Center

    Danko, Christina M.; Brown, Tasha; Van Schoick, Lauren; Budd, Karen S.

    2016-01-01

    Background: Behavioral parent training has been demonstrated to be an effective treatment for child behavior problems; however, lack of parent engagement can limit the effectiveness of treatment. Understanding more about predictors and correlates of a specific measure of parent engagement--homework completion--in parent training can help to…

  11. Ethnicity as a Moderator of Treatment Effects on Parent-Child Interaction for Children with ADHD

    ERIC Educational Resources Information Center

    Jones, Heather A.; Epstein, Jeffery N.; Hinshaw, Stephen P.; Owens, Elizabeth B.; Chi, Terry C.; Arnold, L. Eugene; Hoza, Betsy; Wells, Karen C.

    2010-01-01

    Objective: To examine ethnic differences in observed parenting and child behavior and the moderating effects of ethnicity on the relationship between treatment and parent and child behavior. Method: Observations of 508 children with ADHD (ages 7-9) and their caregivers, collected during the Multimodal Treatment Study of ADHD, were analyzed using…

  12. INTERACTIVE ABANDONED MINE LANDS WORKSHOP SERIES - ACID MINE WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    The purpose of this interactive workshop is to present and discuss active and passive acid mine wastes cleanup technologies and to discuss the apparent disconnect between their development and their implementation. The workshop addressed five main barriers to implementing innovat...

  13. Hubble Space Telescope Configuration

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. Multi-configuration time-dependent density-functional theory based on range separation.

    PubMed

    Fromager, Emmanuel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2013-02-28

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration-Self-Consistent Field (MCSCF) treatment with an adiabatic short-range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H2, Be, and ferrocene, considering both short-range local density (srLDA) and generalized gradient (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)], the description of both the 1(1)D doubly-excited state in Be and the 1(1)Σu(+) state in the stretched H2 molecule are improved, although the latter is still significantly underestimated. Exploratory TD-MC-srDFT/GGA calculations for ferrocene yield in general excitation energies at least as good as TD-DFT using the Coulomb attenuated method based on the three-parameter Becke-Lee-Yang-Parr functional (TD-DFT/CAM-B3LYP), and superior to wave-function (TD-MCSCF, symmetry adapted cluster-configuration interaction) and TD-DFT results based on LDA, GGA, and hybrid functionals. PMID:23464134

  15. CFRP bonding pre-treatment with laser radiation of 3 μm wavelength: laser/material interaction

    NASA Astrophysics Data System (ADS)

    Blass, David; Kreling, Stefan; Nyga, Sebastian; Westphalen, Thomas; Jungbluth, Bernd; Hoffman, Hans-Dieter; Dilger, Klaus

    2016-03-01

    Laser radiation of 3 μm wavelength was generated by frequency conversion of an industrial IR laser and applied in the context of CFRP bonding pre-treatment. Reinforced and non-reinforced epoxy resins were treated with this radiation varying the relevant parameters such as laser power or treatment time. The interaction between laser radiation of 3012 nm and 1064 nm wavelength and matrix resin was analyzed mechanically (e.g. ablation depth), optically (such as fiber exposure) and chemically (e.g. contamination removal). The results gathered show that, even with the small achievable pulse fluences, a sufficient treatment of the specimens and a sensitive removing of the contaminated layers are possible.

  16. Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology

    PubMed Central

    Mundt, James C.; Snyder, Peter J.; Cannizzaro, Michael S.; Chappie, Kara; Geralts, Dayna S.

    2011-01-01

    Efforts to develop more effective depression treatments are limited by assessment methods that rely on patient-reported or clinician judgments of symptom severity. Depression also affects speech. Research suggests several objective voice acoustic measures affected by depression can be obtained reliably over the telephone. Thirty-five physician-referred patients beginning treatment for depression were assessed weekly, using standard depression severity measures, during a six-week observational study. Speech samples were also obtained over the telephone each week using an IVR system to automate data collection. Several voice acoustic measures correlated significantly with depression severity. Patients responding to treatment had significantly greater pitch variability, paused less while speaking, and spoke faster than at baseline. Patients not responding to treatment did not show similar changes. Telephone standardization for obtaining voice data was identified as a critical factor influencing the reliability and quality of speech data. This study replicates and extends previous research with a larger sample of patients assessing clinical change associated with treatment. The feasibility of obtaining voice acoustic measures reflecting depression severity and response to treatment using computer-automated telephone data collection techniques is also established. Insight and guidance for future research needs are also identified. PMID:21253440

  17. Non-perturbative treatment of strongly-interacting fields: Insights from liquid theory

    NASA Astrophysics Data System (ADS)

    Trachenko, K.; Brazhkin, V. V.

    2014-08-01

    We outline a new programme of solving the problem of treating strong interactions in field theories. The programme does not involve perturbation theories and associated problems of divergences. We apply our recent idea of treating strongly interacting liquids to field theories by showing the equivalence of Hamiltonians of liquids and interacting fields. In this approach, the motion of the field results in the disappearance of n-1 transverse modes with frequency smaller than the Frenkel frequency ωF, similar to the loss of two transverse modes in a liquid with frequency ω<ωF. We illustrate the proposed programme with the calculation of the energy and propagator, and show that the results cannot be obtained in perturbation theory to any finite order. Importantly, the Frenkel energy gap EF=ħωF and the associated massive Frenkel particle naturally appear in our consideration, the result that is relevant for current efforts to demonstrate a mass gap in interacting field theories such as Yang-Mills theory. Notably, our mechanism involves a physically sensible starting point in terms of real masses (frequencies) in the harmonic non-interacting field, in contrast to the Higgs effect involving the imaginary mass as a starting point. We further note that the longitudinal mode in our approach remains gapless, implying that both short-range and long-range forces with massive and massless particles naturally emerge and unify in a single interacting field, a result not hitherto anticipated. Finally, we comment on the relationship between our results and hydrodynamic description of the quark-gluon plasma.

  18. Interactive effects of dietary composition and hormonal treatment on reproductive development of cultured female European eel, Anguilla anguilla.

    PubMed

    da Silva, Filipa F G; Støttrup, Josianne G; Kjørsvik, Elin; Tveiten, Helge; Tomkiewicz, Jonna

    2016-08-01

    Farmed female eels were fed two experimental diets with similar proximate composition but different n-3 polyunsaturated fatty acid (PUFA) levels. Both diets had similar levels of arachidonic acid (ARA), while levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in one diet were approximately 4.5 and 2.6 times higher compared to the other diet, respectively. After the feeding period, each diet group was divided into two and each half received one of two hormonal treatments using salmon pituitary extract (SPE) for 13 weeks: i) a constant hormone dose of 18.75mg SPE/kg initial body weight (BW) and ii) a variable hormone dosage that increased from 12.5mg SPE/kg initial BW to 25mg SPE/kg initial BW. Results showed a significant interaction between diets and hormonal treatments on gonadosomatic index (GSI), indicating that the effect of broodstock diets on ovarian development depends on both nutritional status and hormonal regime. Females fed with higher levels of n-3 series PUFAs and stimulated with the constant hormonal treatment reached higher GSIs than those receiving the variable hormonal treatment. However, when females were fed lower levels of n-3 series PUFAs there was no difference in the effect of hormonal treatments on GSI. We also found that, independent of hormonal treatment, the diet with higher levels of n-3 series PUFAs led to the most advanced stages of oocyte development, such as germinal vesicle migration. Concentration of sex steroids (E2, T, and 11-KT) in the plasma did not differ between diets and hormonal treatments, but was significantly correlated with ovarian developmental stage. In conclusion, increasing dietary levels of n-3 PUFAs seemed to promote oocyte growth, leading to a more rapid progression of ovarian development in European eel subjected to hormonal treatment. PMID:27264530

  19. ByMuR model: interaction among risks and uncertainty treatment in long-term multi-hazard/risk assessments

    NASA Astrophysics Data System (ADS)

    Selva, J.

    2012-12-01

    Multi-risk approaches have been recently proposed to assess and compare different risks in the same target area. The key point of multi-risk assessments are the development of homogeneous risk definitions and the treatment of risk interaction. The lack of treatment of interaction may lead to significant biases and thus to erroneous risk hierarchization, which is one of primary output of risk assessments for decision makers. Within the framework of the Italian project "ByMuR - Bayesian Multi-Risk assessment", a formal model (ByMuR model) to assess multi-risk for a target area is under development, aiming (i) to perform multi-risk analyses treating interaction between different hazardous phenomena, accounting for possible effects of interaction at hazard, vulnerability and exposure levels, and (ii) to explicitly account for all uncertainties (aleatory and epistemic) through a Bayesian approach, allowing a meaningful comparison among different risks. The model is meant to be general, but it is targeted to the assessment of volcanic, seismic and tsunami risks for the city of Naples (Italy). Here, it is presented the preliminary development of the ByMuR model. The applicability of the methodology is demonstrated through illustrative examples, in which the effects of uncertainties and the bias in single-risk estimation induced by the assumption of independence among risks are explicitly assessed. An extensive application of this methodology at regional and sub-regional scale would allow to identify where a given interaction has significant effects in long-term risk assessments, and thus when multi-risk analyses should be considered in order to provide unbiased risk estimations.

  20. The Aptitude-Treatment Interaction Effects on the Learning of Grammar Rules

    ERIC Educational Resources Information Center

    Hwu, Fenfang; Sun, Shuyan

    2012-01-01

    The present study investigates the interaction between two types of explicit instructional approaches, deduction and explicit-induction, and the level of foreign language aptitude in the learning of grammar rules. Results indicate that on the whole the two equally explicit instructional approaches did not differentially affect learning…

  1. Learning as Longitudinal Interactional Change: From "Other"-Repair to "Self"-Repair in Physiotherapy Treatment

    ERIC Educational Resources Information Center

    Martin, Cathrin; Sahlstrom, Fritjof

    2010-01-01

    The aims of this article are to address how learning is constituted and can be studied as a phenomenon in interaction and to discuss how teaching and learning are related. Theoretically, the article argues for and discusses constraints and affordances for relating sociocultural understandings of learning as changing participation to "conversation…

  2. Parent-Child Interaction Therapy in a Community Setting: Examining Outcomes, Attrition, and Treatment Setting

    ERIC Educational Resources Information Center

    Lanier, Paul; Kohl, Patrica L.; Benz, Joan; Swinger, Dawn; Moussette, Pam; Drake, Brett

    2011-01-01

    Objectives: The purpose of this study was to evaluate Parent-Child Interaction Therapy (PCIT) deployed in a community setting comparing in-home with the standard office-based intervention. Child behavior, parent stress, parent functioning, and attrition were examined. Methods: Using a quasi-experimental design, standardized measures at three time…

  3. Feasibility Study of an Interactive Multimedia Electronic Problem Solving Treatment Program for Depression: A Preliminary Uncontrolled Trial

    PubMed Central

    Berman, Margit I.; Jr., Jay C. Buckey; Hull, Jay G.; Linardatos, Eftihia; Song, Sueyoung L.; McLellan, Robert K.; Hegel, Mark T.

    2014-01-01

    Computer-based depression interventions lacking live therapist support have difficulty engaging users. This study evaluated the usability, acceptability, credibility, therapeutic alliance and efficacy of a stand-alone multimedia, interactive, computer-based Problem Solving Treatment program (ePST™) for depression. The program simulated live treatment from an expert PST therapist, and delivered 6 ePST™ sessions over 9 weeks. Twenty-nine participants with moderate-severe symptoms received the intervention; 23 completed a mini mally adequate dose of ePST™ (at least 4 sessions). Program usability, acceptability, credibility, and therapeutic alliance were assessed at treatment midpoint and endpoint. Depressive symptoms and health-related functioning were assessed at baseline, treatment midpoint (4 weeks), and study endpoint (10 weeks). Depression outcomes and therapeutic alliance ratings were also compared to previously published research on live PST and computer-based depression therapy. Participants rated the program as highly usable, acceptable, and credible, and reported a therapeutic alliance with the program comparable to that observed in live therapy. Depressive symptoms improved significantly over time. These findings also provide preliminary evidence that ePST™ may be effective as a depression treatment. Larger clinical trials with diverse samples are indicated. PMID:24680231

  4. Space Station reference configuration update

    NASA Technical Reports Server (NTRS)

    Bonner, Tom F., Jr.

    1985-01-01

    The reference configuration of the NASA Space Station as of November 1985 is presented in a series of diagrams, drawings, graphs, and tables. The configurations for components to be contributed by ESA, Canada, and Japan are included. Brief captions are provided, along with answers to questions raised at the conference.

  5. Interaction of low-energy ions (< 10 eV) with polymethylmethacrylate during plasma treatment

    NASA Astrophysics Data System (ADS)

    Gröning, P.; Küttel, O. M.; Collaud-Coen, M.; Dietler, G.; Schlapbach, L.

    1995-05-01

    Using in-situ X-ray photoelectron spectroscopy (XPS) we investigated the chemical modification of the polymethyl-methacrylate (PMMA) surfaces after plasma and low-energy ion beam treatment. A comparison between plasma and ion beam treatment has shown, that for noble gases both treatments produce absolutely the same modifications of the chemical composition on the PMMA surface. In reactive gases (O 2, N 2) molecular ions were found to decompose polar bonds at the polymer surface, but they do not contribute to the incorporation of reactive gas atoms. Reactive atomic ions and radicals are responsible for this incorporation. We found that in the case of PMMA less than three ions are needed to decompose the ester group (OCO) completely. Therefore, we conclude that the decomposition of the ester group by ions is a chemical and not a physical effect due to the kinetic energy of the ions.

  6. Radiant-interchange Configuration Factors

    NASA Technical Reports Server (NTRS)

    Hamilton, D C :; Morgan, W R

    1952-01-01

    A study is presented of the geometric configuration factors required for computing radiant heat transfer between opaque surfaces separated by a nonabsorbing medium and various methods of determining the configuration factors are discussed. Configuration-factor solutions available in the literature have been checked and the more complicated equations are presented as families of curves. Cases for point, line, and finite-area sources are worked out over a wide range of geometric proportions. These cases include several new configurations involving rectangles, triangles, and cylinders of finite length which are integrated and tabulated. An analysis is presented, in which configuration factors are employed of the radiant heat transfer to the rotor blades of a typical gas turbine under different conditions of temperature and pressure. (author)

  7. Parametric analysis of ATT configurations.

    NASA Technical Reports Server (NTRS)

    Lange, R. H.

    1972-01-01

    This paper describes the results of a Lockheed parametric analysis of the performance, environmental factors, and economics of an advanced commercial transport envisioned for operation in the post-1985 time period. The design parameters investigated include cruise speeds from Mach 0.85 to Mach 1.0, passenger capacities from 200 to 500, ranges of 2800 to 5500 nautical miles, and noise level criteria. NASA high performance configurations and alternate configurations are operated over domestic and international route structures. Indirect and direct costs and return on investment are determined for approximately 40 candidate aircraft configurations. The candidate configurations are input to an aircraft sizing and performance program which includes a subroutine for noise criteria. Comparisons are made between preferred configurations on the basis of maximum return on investment as a function of payload, range, and design cruise speed.

  8. Rational prescription of drugs within similar therapeutic or structural class for gastrointestinal disease treatment: Drug metabolism and its related interactions

    PubMed Central

    Zhou, Quan; Yan, Xiao-Feng; Zhang, Zhong-Miao; Pan, Wen-Sheng; Zeng, Su

    2007-01-01

    AIM: To review and summarize drug metabolism and its related interactions in prescribing drugs within the similar therapeutic or structural class for gastrointestinal disease treatment so as to promote rational use of medicines in clinical practice. METHODS: Relevant literature was identified by performing MEDLINE/Pubmed searches covering the period from 1988 to 2006. RESULTS: Seven classes of drugs were chosen, including gastric proton pump inhibitors, histamine H2-receptor antagonists, benzamide-type gastroprokinetic agents, selective 5-HT3 receptor antagonists, fluoroquinolones, macrolide antibiotics and azole antifungals. They showed significant differences in metabolic profile (i.e., the fraction of drug metabolized by cytochrome P450 (CYP), CYP reaction phenotype, impact of CYP genotype on interindividual pharmacokinetics variability and CYP-mediated drug-drug interaction potential). Many events of severe adverse drug reactions and treatment failures were closely related to the ignorance of the above issues. CONCLUSION: Clinicians should acquaint themselves with what kind of drug has less interpatient variability in clearance and whether to perform CYP genotyping prior to initiation of therapy. The relevant CYP knowledge helps clinicians to enhance the management of patients with gastrointestinal disease who may require treatment with polytherapeutic regimens. PMID:17948937

  9. Delayed conifer mortality after fuel reduction treatments: Interactive effects of fuel, fire intensity, and bark beetles

    USGS Publications Warehouse

    Youngblood, A.; Grace, J.B.; Mciver, J.D.

    2009-01-01

    Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin+burn), and control. Burn and thin+burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which in

  10. The Use of Nonspeech Oral Motor Treatments for Developmental Speech Sound Production Disorders: Interventions and Interactions

    ERIC Educational Resources Information Center

    Powell, Thomas W.

    2008-01-01

    Purpose: The use of nonspeech oral motor treatments (NSOMTs) in the management of pediatric speech sound production disorders is controversial. This article serves as a prologue to a clinical forum that examines this topic in depth. Method: Theoretical, historical, and ethical issues are reviewed to create a series of clinical questions that…

  11. Relating Field Independence and a Discovery Approach to Learning Mathematics: A Trait-treatment Interaction Study.

    ERIC Educational Resources Information Center

    McLeod, Douglas B.; Adams, Verna M.

    Preservice elementary teachers enrolled in a mathematics course were randomly assigned to one of two treatment groups for instruction on computation in bases other than 10. Group 1 (Min-M) involved minimal guidance and a concrete level of abstraction, while group 2 (Max-S) had a large amount of guidance and dealt with concepts at a symbolic level.…

  12. Therapeutic Treatment of Early Disturbances in the Mother-Child Interaction.

    ERIC Educational Resources Information Center

    Broden, Margareta Berg

    A theory of normal mother-infant relationship based on Margaret Mahler's theories is the basis of a treatment program for disturbed mother/infant relationships. This theory includes the concept of symbiosis which for the child is an undifferentiated condition, a fusion with the mother where the two have a common outward border, thereby protecting…

  13. In vitro cancer cell-ECM interactions inform in vivo cancer treatment.

    PubMed

    Holle, Andrew W; Young, Jennifer L; Spatz, Joachim P

    2016-02-01

    The general progression of cancer drug development involves in vitro testing followed by safety and efficacy evaluation in clinical trials. Due to the expense of bringing candidate drugs to trials, in vitro models of cancer cells and tumor biology are required to screen drugs. There are many examples of drugs exhibiting cytotoxic behavior in cancer cells in vitro but losing efficacy in vivo, and in many cases, this is the result of poorly understood chemoresistant effects conferred by the cancer microenvironment. To address this, improved methods for culturing cancer cells in biomimetic scaffolds have been developed; along the way, a great deal about the nature of cancer cell-extracellular matrix (ECM) interactions has been discovered. These discoveries will continue to be leveraged both in the development of novel drugs targeting these interactions and in the fabrication of biomimetic substrates for efficient cancer drug screening in vitro. PMID:26485156

  14. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95.

    PubMed

    Zhou, Li; Li, Fei; Xu, Hai-Bing; Luo, Chun-Xia; Wu, Hai-Yin; Zhu, Ming-Mei; Lu, Wei; Ji, Xing; Zhou, Qi-Gang; Zhu, Dong-Ya

    2010-12-01

    Stroke is a major public health problem leading to high rates of death and disability in adults. Excessive stimulation of N-methyl-D-aspartate receptors (NMDARs) and the resulting neuronal nitric oxide synthase (nNOS) activation are crucial for neuronal injury after stroke insult. However, directly inhibiting NMDARs or nNOS can cause severe side effects because they have key physiological functions in the CNS. Here we show that cerebral ischemia induces the interaction of nNOS with postsynaptic density protein-95 (PSD-95). Disrupting nNOS-PSD-95 interaction via overexpressing the N-terminal amino acid residues 1-133 of nNOS (nNOS-N(1-133)) prevented glutamate-induced excitotoxicity and cerebral ischemic damage. Given the mechanism of nNOS-PSD-95 interaction, we developed a series of compounds and discovered a small-molecular inhibitor of the nNOS-PSD-95 interaction, ZL006. This drug blocked the ischemia-induced nNOS-PSD-95 association selectively, had potent neuroprotective activity in vitro and ameliorated focal cerebral ischemic damage in mice and rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion. Moreover, it readily crossed the blood-brain barrier, did not inhibit NMDAR function, catalytic activity of nNOS or spatial memory, and had no effect on aggressive behaviors. Thus, this new drug may serve as a treatment for stroke, perhaps without major side effects. PMID:21102461

  15. Evolutionary dynamics of populations with conflicting interactions: Classification and analytical treatment considering asymmetry and power

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Johansson, Anders

    2010-01-01

    Evolutionary game theory has been successfully used to investigate the dynamics of systems, in which many entities have competitive interactions. From a physics point of view, it is interesting to study conditions under which a coordination or cooperation of interacting entities will occur, be it spins, particles, bacteria, animals, or humans. Here, we analyze the case, where the entities are heterogeneous, particularly the case of two populations with conflicting interactions and two possible states. For such systems, explicit mathematical formulas will be determined for the stationary solutions and the associated eigenvalues, which determine their stability. In this way, four different types of system dynamics can be classified and the various kinds of phase transitions between them will be discussed. While these results are interesting from a physics point of view, they are also relevant for social, economic, and biological systems, as they allow one to understand conditions for (1) the breakdown of cooperation, (2) the coexistence of different behaviors (“subcultures”), (3) the evolution of commonly shared behaviors (“norms”), and (4) the occurrence of polarization or conflict. We point out that norms have a similar function in social systems that forces have in physics.

  16. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  17. Calculation of vortex flows on complex configurations

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Rao, B. M.

    1982-01-01

    The calculation of aerodynamic characteristics of complex configurations having strongly coupled vortex flows is a non-linear problem requiring iterative solution techniques. This paper discusses the use of a low-order panel method as a means of obtaining practical solutions to such problems. The panel method is based on piecewise constant source and doublet quadrilateral panels and uses the internal Dirichlet boundary condition of zero perturbation potential. The problems of predicting vortex/surface interaction and vortex separation are discussed. Some example calculations are included but further test cases have yet to be carried out, in particular for comparisons with experimental data. The problem of convergence on the iterative calculation for the shape of the free vortex sheet is addressed and a preprocessor routine, based on an unsteady, two-dimensional version of the panel method, is put forward as a cost-effective way of generating an initial vortex structure for use as a starting solution for general configurations.

  18. Viscous Design of TCA Configuration

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  19. Emotional Intolerance and Core Features of Anorexia Nervosa: A Dynamic Interaction during Inpatient Treatment? Results from a Longitudinal Diary Study

    PubMed Central

    Stroe-Kunold, Esther; Friederich, Hans-Christoph; Stadnitski, Tatjana; Wesche, Daniela; Herzog, Wolfgang; Schwab, Michael; Wild, Beate

    2016-01-01

    Objective The role of emotion dysregulation with regard to the psychopathology of anorexia nervosa (AN) is increasingly discussed. It is both assumed that AN symptoms have an impact on difficulties in tolerating aversive emotions and that—conversely—emotion dysregulation influences AN. To date, such conclusions are drawn on the basis of cross-sectional data not allowing for inferences on the temporal dynamics. The current study investigates the longitudinal interaction between emotional intolerance and core AN symptoms over the course of inpatient treatment by comparing patients with high (BMI<15 kg/m2) vs. low symptom severity (HSS vs. LSS). Method The study adopted a longitudinal, process-oriented design with N = 16 analysed electronic diaries. Throughout the course of their inpatient treatment, the patients answered questions daily about emotional intolerance and their AN-specific cognitions and behaviours. The temporal dynamics between emotional intolerance and these variables were analysed using a multivariate time series approach. Results The time series of the processes under investigation adequately reflected the individual treatment courses. The majority of significant linear time trends was found for HSS patients. Most importantly, analysis revealed significant temporal interactions between emotional intolerance and AN symptoms in almost 70% of HSS patients. Thereby, up to 37% of variance in eating restraint and up to 23% in weight concern could be attributed to changes in emotional intolerance. Conclusions The findings support the notion that intolerable unpleasant emotions in severely affected AN patients influence their psychopathology. Additionally, time series analysis outlined the inter-individual heterogeneity of psychosomatic treatment courses of AN patients. PMID:27191959

  20. Functional behavior of bio-electrochemical treatment system with increasing azo dye concentrations: Synergistic interactions of biocatalyst and electrode assembly.

    PubMed

    Sreelatha, S; Velvizhi, G; Naresh Kumar, A; Venkata Mohan, S

    2016-08-01

    Treatment of dye bearing wastewater through biological machinery is particularly challenging due to its recalcitrant and inhibitory nature. In this study, functional behavior and treatment efficiency of bio-electrochemical treatment (BET) system was evaluated with increasing azo dye concentrations (100, 200, 300 and 500mg dye/l). Maximum dye removal was observed at 300mg dye/l (75%) followed by 200mg dye/l (65%), 100mg dye/l (62%) and 500mg dye/l (58%). Concurrent increment in dye load resulted in enhanced azo reductase and dehydrogenase activities respectively (300mg dye/l: 39.6U; 4.96μg/ml). Derivatives of cyclic voltammograms also supported the involvement of various membrane bound redox shuttlers, viz., cytochrome-c, cytochrome-bc1 and flavoproteins during the electron transfer. Bacterial respiration during BET operation utilized various electron acceptors such as electrodes and dye intermediates with simultaneous bioelectricity generation. This study illustrates the synergistic interaction of biocatalyst with electrode assembly for efficient treatment of azo dye wastewater. PMID:27067459