A hybrid configuration interaction treatment based on seniority number and excitation schemes
Alcoba, Diego R.; Capuzzi, Pablo; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri
2014-12-28
We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.
A hybrid configuration interaction treatment based on seniority number and excitation schemes
NASA Astrophysics Data System (ADS)
Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Capuzzi, Pablo; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri
2014-12-01
We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.
A hybrid configuration interaction treatment based on seniority number and excitation schemes.
Alcoba, Diego R; Torre, Alicia; Lain, Luis; Oña, Ofelia B; Capuzzi, Pablo; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri
2014-12-28
We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method. PMID:25554144
The Configuration Interaction Method
NASA Astrophysics Data System (ADS)
Sherrill, C. David; Schaefer, Henry F., III
Highly correlated configuration interaction (CI) wavefunctions going beyond the simple singles and doubles (CISD) model space can provide very reliable potential energy surfaces, describe electronic excited states, and yield benchmark energies and molecular properties for use in calibrating more approximate methods. Unfortunately, such wavefunctions are also notoriously difficult to evaluate due to their extreme computational demands. The dimension of a full CI procedure, which represents the exact solution of the electronic Schrödinger equation for a fixed one-particle basis set, grows factorially with the number of electrons and basis functions. For very large configuration spaces, the number of CI coupling coefficients becomes prohibitively large to store on disk; these coefficients must be evaluated as needed in a so-called direct CI procedure. Work done by several groups since 1980 has focused on using Slater determinants rather than spin (S2) eigenfunctions because coupling coefficients are easier to compute with the former. We review the fundamentals of the configuration interaction method and discuss various determinant-based CI algorithms. Additionally, we consider some applications of highly correlated CI methods.
NASA Astrophysics Data System (ADS)
Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.; Capuzzi, Pablo
2016-07-01
This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator S ˆ 2 , avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and < S ˆ 2 > expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.
Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oña, Ofelia B; Capuzzi, Pablo
2016-07-01
This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator Sˆ(2), avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and 〈Sˆ(2)〉 expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs. PMID:27394101
Unlimited full configuration interaction calculations
NASA Astrophysics Data System (ADS)
Knowles, Peter J.; Handy, Nicholas C.
1989-08-01
In very large full configuration interaction (full CI), nearly all of the CI coefficients are very small. Calculations, using a newly developed algorithm which exploits this fact, on NH3 with a DZP basis are reported, involving 2×108 Slater determinants. Such calculations are impossible with other existing full CI codes. The new algorithm opens up the opportunity of full CI calculations which are unlimited in size.
Relatedness with different interaction configurations.
Taylor, Peter D; Grafen, A
2010-02-01
In an inclusive fitness model of social behaviour, a key concept is that of the relatedness between two interactants. This is typically calculated with reference to a "focal" actor taken to be representative of all actors, but when there are different interaction configurations, relatedness must be constructed as an average over all such configurations. We provide an example of such a calculation in an island model with local reproduction but global mortality, leading to variable island size and hence variable numbers of individual interactions. We find that the analysis of this example significantly sharpens our understanding of relatedness. As an application, we obtain a version of Hamilton's rule for a tag-based model of altruism in a randomly mixed population. For large populations, the selective advantage of altruism is enhanced by low (but not too low) tag mutation rates and large numbers of tags. For moderate population sizes and moderate numbers of tags, we find a window of tag mutation rates with critical benefit/cost ratios of between 1 and 3. PMID:19833134
Rare Relativistic Configuration Interaction Calculations
NASA Astrophysics Data System (ADS)
Dinov, Konstantin Dimitrov
1995-01-01
Valence shell Relativistic Configuration Interaction (RCI) Calculations for several Rare Earth elements resulted the following electron affinities: (1) Ce^ - 6p attachment to the 4f 5d 6s^2 ^1G_sp{4 }{circ} ground state: (2J,EA) = (9,259 meV), (7,147 meV), [7_ {rm first exc.},55 rm meV], (5,105 meV), (3,43 meV). The electron affinity of the 5d attachment in 4f 5d^2 6s^2 ^5H _{7/2} is 178 meV. (2) Pr ^- 6p attachment to the 4f^3 6s^2 ^4I_sp {9/2}{circ} ground state gives 128 meV for the 4f^3 6s^2 6p J = 5 state (^5K 60%), and 110 meV for the J = 4 state (^5I 42%). No evidence for 5d attachment was found. (3) U^- 7p attachment to the 5f ^3 6d 7s^2 ^5L _sp{6}{circ} ground state gives: 175 meV for the 2J = 13 state (^6M 54%). No other 7p or 6d bound states were found. The hyperfine structure constants for the 5f^3 6d 7s^2 7p, 2J = 13 state are A = -72.4 MHz, B = 2644 MHz. No evidence is found to support f attachment in these species. We investigated two low lying 4f ^2 thresholds in Ce, to which one could attach s or p electron, but neither attachment gives enough energy to bind the negative ion. The missing core-valence effects may reduce the EAs by 0.06 eV, based on the difference between the theoretical predictions and experimental measurements for the electron affinity of Strontium. These results correspond to the observed negative ion yields: high for Ce^ -, moderate for Pr^-, and small for U^-.. The REDUCE method was extensively used for the U^- case. The current version of the RCI program allows up to 7 000 vectors (10M elements) in RAM. The enhancement of the computer programs is by a speed factor of 6, and 7 times bigger matrices. A parallel version of the RCI programs was developed. All of these systems are unbound at the MCDF level (single manifold). By far the biggest contributor to the binding is nsto (n-1)d correlation, while the biggest unbinding comes from ns^2 to np^2 correlation. Other important correlations are: ns^2to (n-1)d^2, (n-1)d nsto np^2 & np
Configuration based Collisional-Radiative Model including configuration interaction
NASA Astrophysics Data System (ADS)
Busquet, Michel
2007-11-01
Atomic levels mixing through Configuration Interaction (CI) yields important effects. It transfers oscillator strengthes from allowed lines to forbidden lines, and produces strong shift and broadening of line arrays, although the total emissivity is almost insensitive to CI, being proportional to the average wave number. However for hi Z material, like Xe or Sn (potential xuv-ray source for micro-lithography), a non-LTE calculation accounting for all relevant levels wiill be untractable with billions of states. The model we constructed, CAVCRM (caf'e-crème), is a non-LTE C.R.M. where states are configurations but it includes C.I. to give full richness of spectral quantities, using the latest version of the HULLAC-v9 suite of codes and our newly developped algorithm for large set of states with as many as 50,000 states [1]. [1] M.Klapisch et al, this conference
A determinant based full configuration interaction program
NASA Astrophysics Data System (ADS)
Knowles, Peter J.; Handy, Nicholas C.
1989-04-01
The program FCI solves the Full Configuration Interaction (Full CI) problem of quantum chemistry, in which the electronic Schrödinger equation is solved exactly within a given one particle basis set. The Slater determinant based algorithm leads to highly efficient implementation on a vector computer, and has enabled Full CI calculations of dimension more than 10 7 to be performed.
Minimum induced drag configurations with jet interaction
NASA Technical Reports Server (NTRS)
Pao, J. L.; Lan, C. E.
1978-01-01
A theoretical method is presented for determining the optimum camber shape and twist distribution for the minimum induced drag in the wing-alone case without prescribing the span loading shape. The same method was applied to find the corresponding minimum induced drag configuration with the upper-surface-blowing jet. Lan's quasi-vortex-lattice method and his wing-jet interaction theory was used. Comparison of the predicted results with another theoretical method shows good agreement for configurations without the flowing jet. More applicable experimental data with blowing jets are needed to establish the accuracy of the theory.
Very large full configuration interaction calculations
NASA Astrophysics Data System (ADS)
Knowles, Peter J.
1989-03-01
The extreme sparsity of the solution of the full configuration interaction (full CI) secular equations is exploited in a new algorithm. For very large problems, the high speed memory, disk storage, and CPU requirements are reduced considerably, compared to previous techniques. This allows the possibility of full CI calculations with more than 10 8 Slater determinants. The power of the method is demonstrated in preliminary full CI calculations for the NH molecule, including up to 27901690 determinants.
Configuration interaction wave functions: A seniority number approach
Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.
2014-06-21
This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.
Configuration interaction wave functions: A seniority number approach
NASA Astrophysics Data System (ADS)
Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.
2014-06-01
This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.
Microscopic Approaches to Nuclear Structure: Configuration Interaction
Ormand, W E
2007-09-21
The configuration interaction (CI) approach to solving the nuclear many-body problem, also known as the interacting shell model, has proven to be powerful tool in understanding the structure of nuclei. The principal criticism of past applications of the shell model is the reliance on empirical tuning to interaction matrix elements. If an accurate description of nuclei far from the valley of stability, where little or no data is available, a more fundamental approach is needed. This starts with recent ab initio approaches with effective interactions in the no-core shell model (NCSM). Using effective-field theory for guidance, fully ab initio descriptions of nuclei up to {sup 16}O with QCD based NN, NNN, and NNNN interactions will be possible within the next five years. An important task is then to determine how to use these NCSM results to develop effective interactions to describe heavier nuclei without the need to resort to an empirical retuning with every model space. Thus, it is likely that more traditional CI applications utilizing direct diagonalization and more fundamental interactions will be applicable to nuclei with perhaps up to one hundred constituents. But, these direct diagonalization CI applications will always be computationally limited due to the rapid increase in the number of configurations with particle number. Very recently, the shifted-contour method has been applied to the Auxiliary-field Monte Carlo approach to the Shell Model (AFMCSM), and preliminary applications exhibit a remarkable taming of the notorious sign problem. If the mitigation of the sign problem holds true, the AFMCSM will offer a method to compute quantum correlations to mean-field applications for just about all nuclei; giving exact results for CI model spaces that can approach 10{sup 20-25}. In these lectures, I will discuss modern applications of CI to the nuclear many-body problem that have the potential to guide nuclear structure theory into the next decade.
Configuration interaction calculations with infinite angular = expansions
Goldman, S.P.; Glickman, T.
1996-05-01
The Modified Configuration Interaction (MCI) method improves the angular convergence of Configuration Interaction (CI) calculations by several orders of magnitude by mixing a priori a large number of angular basis functions. With MCI one can therefore use basis functions with very large angular momentum quantum numbers, overcoming an important limitation of conventional CI. Although this is desirable given the excellent convergence obtained, the large number of angular integrations and the calculation of n-j symbols with large values of l to high accuracy, make the angular calculations lengthy. In this work a new angular representation for CI calculations is presented that is much more efficient and powerful. Instead of the large number of angular functions of MCI the authors use a basis set containing an infinite linear combination of angular functions. All the necessary integrations involving these infinite expansions are done in closed form and are actually easy and fast to compute. The linear coefficients in the angular expansion are optimized in terms of a few non-linear parameters. Several examples will be presented with applications to two-electron systems.
Configuration interaction with antisymmetrized geminal powers
NASA Astrophysics Data System (ADS)
Uemura, Wataru; Kasamatsu, Shusuke; Sugino, Osamu
2015-06-01
To avoid the combinatorial computational cost of configuration interaction (CI), we previously introduced the symmetric tensor decomposition CI (STD-CI) method, which takes advantage of the antisymmetric nature of the electronic wave function and expresses the CI coefficients compactly as a series of Kronecker product states (STD series) [W. Uemura and O. Sugino, Phys. Rev. Lett. 109, 253001 (2012), 10.1103/PhysRevLett.109.253001]. Here we extend the variational degrees of freedom by using different molecular orbitals for different terms in the STD series. This scheme is equivalent to the linear combination of the Hartree-Fock-Bogoliubov state or the antisymmetrized geminal powers (AGPs). The total energy converges very rapidly within 0.72 μ hartree taking only 10 terms for the water molecule, and the convergence is likewise fast for Hubbard tetramers. The computational cost scales as the fifth power of the number of electrons and the square of the number of terms in the STD series, indicating the promise of this AGP-based scheme for highly accurate and efficient computation of quantum systems.
Positronic molecule calculations using Monte Carlo configuration interaction
NASA Astrophysics Data System (ADS)
Coe, Jeremy P.; Paterson, Martin J.
2016-02-01
We modify the Monte Carlo configuration interaction procedure to model atoms and molecules combined with a positron. We test this method with standard quantum chemistry basis sets on a number of positronic systems and compare results with the literature and full configuration interaction when appropriate. We consider positronium hydride, positronium hydroxide, lithium positride and a positron interacting with lithium, magnesium or lithium hydride. We demonstrate that we can capture much of the full configuration interaction results, but often require less than 10% of the configurations of these multireference wavefunctions. The effect of the number of frozen orbitals is also discussed.
Modeling the IR Spectra of Acetaldehyde from a New Vibrational Configuration Interaction Method
Begue, Didier; Pouchan, Claude
2007-12-26
In this paper we present a new vibrational configuration interaction method known as a parallel vibrational multiple window configuration interaction P lowbar VMWCI which generates several VCI matrices and enables the variational treatment of medium size molecular systems. Application to acetaldehyde gives a new interpretation of the MIR experimental data.
Holmes, Adam A; Tubman, Norm M; Umrigar, C J
2016-08-01
We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the trade-off between speed and accuracy, one which controls the selection of determinants to add to a variational wave function and one which controls the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few minutes on a single core. These systems have full variational spaces of 3 × 10(14) and 2 × 10(22) determinants, respectively. PMID:27428771
Configurating a supercomputer for an interactive scientific workload
Anderson, W.; Brice, R.; Alexander, W.
1982-01-01
A detailed, validated simulation model of an existing Cray-1 running under an interactive operating system was used to investigate configurations of a new supercomputer recently announced by the same vendor. The goal was to determine the optimum configuration for a known interactive scientific workload. Questions considered included how much main memory would be needed and whether to acquire an optional fast swapping device.
Full configuration interaction benchmark calculations for TiH
Bauschlicher, C.W. Jr.
1988-06-02
Full configuration interaction (FCI) calculations have been performed for the /sup 3/F and /sup 5/F states of Ti atom and the /sup 4/Phi and /sup 2/..delta.. states of TiH. The FCI calculations are compared to approximate treatments of the correlation problem; for the /sup 2/..delta.. state, the CASSCF/MRCI treatment agrees with the FCI results for r/sub e/, omega/sub e/, the dipole moment, and the dipole derivative. For the /sup 4/Phi state, the CASSCF/MRCI approach agrees well with the FCI for r/sub e/, omega/sub e/, and D/sub e/. However, the agreement between CASSCF/MRCI and FCI treatments for the dipole moment is not as good, even when the CASSCF and MRCI reference spaces contain up to 800 CSFs. Natural orbital iterations improve the dipole moment but have a smaller effect on the other spectroscopic parameters. The CPF and MCPF methods agree well with the FCI for the /sup 4/Phi state, which is reasonably well described by the SCF; this is true even for the dipole moment, where a natural orbital iteration must be performed for the CASSCF/MRCI treatment. The CPF and MCPF treatments do not agree as well for the /sup 2/..delta.. state, which is not as well described by the SCF.
General purpose computer program for interacting supersonic configurations: Programmer's manual
NASA Technical Reports Server (NTRS)
Crill, W.; Dale, B.
1977-01-01
The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing.
Configuration interaction studies using biorthogonal approach to VB basis
Kadolkar, C.; Sarma, C.R.; Rettrup, S.
1995-01-15
In the present article, we have attempted a systematic procedure for use of biorthogonal techniques to the configuration interaction studies in molecules using nonorthogonal valence bond (VB) orbitals. The procedure developed is integral-driven and a program based on this has been developed. Test runs of the program have been carried out in case of full and truncated configuration spaces. 29 refs., 3 tabs.
Coupling interaction of electromagnetic wave in a groove doublet configuration.
Ding, Lan; Liu, Jinsong; Wang, Dong; Wang, Kejia
2010-09-27
Based on the waveguide mode (WGM) method, coupling interaction of electromagnetic wave in a groove doublet configuration is studied. The formulation obtained by WGM method for a single groove [Prog. Electromagn. Res. 18, 1-17 (1998)] is extended to two grooves. By exploring the total scattered field of the configuration, coupling interaction ratios are defined to describe the interaction between grooves quantitatively. Since each groove in this groove doublet configuration is regarded as the basic unit, the effects of coupling interaction on the scattered fields of each groove can be investigated respectively. Numerical results show that an oscillatory behavior of coupling interaction is damped with increasing groove spacing. The incident and scattering angle dependence of coupling interaction is symmetrical when the two grooves are the same. For the case of two subwavelength grooves, the coupling interaction is not sensitive to the incident angle and scattering angle. Although the case of two grooves is discussed for simplicity, the formulation developed in this article can be generalized to arbitrary number of grooves. Moreover, our study offers a simple alternative to investigate and design metallic gratings, compact directional antennas, couplers, and other devices especially in low frequency regime such as THz and microwave domain. PMID:20941004
Interaction of configuration in spectral opacity calculations for stellar physics
NASA Astrophysics Data System (ADS)
Gilles, D.; Turck-Chièze, S.; Busquet, M.; Thais, F.; Loisel, G.; Piau, L.; Ducret, J. E.; Blenski, T.; Poirier, M.; Blancard, C.; Cossé, P.; Faussurier, G.; Gilleron, F.; Pain, J. C.; Guzik, J. A.; Kilcrease, D. P.; Magee, N. H.; Harris, J.; Bastiani-Ceccotti, S.; Delahaye, F.; Zeippen, C. J.
2012-02-01
We discuss the role of Configuration Interaction (CI) and the influence of the number of configurations taken into account in the calculations of nickel and iron spectral opacities provided by the OPAC international collaboration, including statistical approaches (SCO, CASSANDRA, STA), detailed accounting (OPAS, LEDCOP, OP, HULLAC-v9) or hybrid method (SCO-RCG). Opacity calculations are presented for a temperature T of 27.3 eV and a density of 3.4 mg/cm3, conditions relevant for pulsating stellar envelopes.
Configuration interaction in LTE spectra of heavy elements
Bar-Shalom, A.; Oreg, J.; Goldstein, W.
1992-11-01
We present a method for including the effects of configuration interaction (CI) between relativistic subconfigurations of an electron configuration in the calculation of emission and absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions for the correction to the intensities, owing to Cl, of an unresolved transition array (UTA) and of a supertransition array (STA) are obtained when the correction is small compared to the spin-orbit splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects are significant. Examples of the effect are presented.
Hypersonic shock-interaction phenomena applicable to space shuttle configurations
NASA Technical Reports Server (NTRS)
Bertin, J. J.; Graumann, B. W.
1972-01-01
The convective heat transfer distribution for space shuttle configurations is discussed. The viscous/inviscid interactions associated with the complex three dimensional flow fields are examined. Two basic conditions are considered as follows: (1) models consisting of basic elemental combinations and (2) models of specific flight vehicles. The test facilities and test programs used to obtain data on the fuselage flow field and the wing flow field are described.
Analytic energy gradients for constrained DFT-configuration interaction
NASA Astrophysics Data System (ADS)
Kaduk, Benjamin; Tsuchimochi, Takashi; Van Voorhis, Troy
2014-05-01
The constrained density functional theory-configuration interaction (CDFT-CI) method has previously been used to calculate ground-state energies and barrier heights, and to describe electronic excited states, in particular conical intersections. However, the method has been limited to evaluating the electronic energy at just a single nuclear configuration, with the gradient of the energy being available only via finite difference. In this paper, we present analytic gradients of the CDFT-CI energy with respect to nuclear coordinates, which gives the potential for accurate geometry optimization and molecular dynamics on both the ground and excited electronic states, a realm which is currently quite challenging for electronic structure theory. We report the performance of CDFT-CI geometry optimization for representative reaction transition states as well as molecules in an excited state. The overall accuracy of CDFT-CI for computing barrier heights is essentially unchanged whether the energies are evaluated at geometries obtained from quadratic configuration-interaction singles and doubles (QCISD) or CDFT-CI, indicating that CDFT-CI produces very good reaction transition states. These results open up tantalizing possibilities for future work on excited states.
Full configuration interaction benchmark calculations for TiH
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
1988-01-01
Full configuration interaction (FCI) results for the 3F and 5F states of Ti and the 4Phi and 2Delta states of TiH are presented. While the coupled pair functional (CPF) or modified CPF approaches are found to work well for the 4Phi state of TiH, they do not perform as well for the 2Delta state. Although for mu, the CASSCF/MRCI methods do well for the 2Delta state, when the active space is expanded outside the normal valence definition, the dipole moment is only brought into agreement with the FCI results by natural orbital iterations.
Semi-stochastic full configuration interaction quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Holmes, Adam; Petruzielo, Frank; Khadilkar, Mihir; Changlani, Hitesh; Nightingale, M. P.; Umrigar, C. J.
2012-02-01
In the recently proposed full configuration interaction quantum Monte Carlo (FCIQMC) [1,2], the ground state is projected out stochastically, using a population of walkers each of which represents a basis state in the Hilbert space spanned by Slater determinants. The infamous fermion sign problem manifests itself in the fact that walkers of either sign can be spawned on a given determinant. We propose an improvement on this method in the form of a hybrid stochastic/deterministic technique, which we expect will improve the efficiency of the algorithm by ameliorating the sign problem. We test the method on atoms and molecules, e.g., carbon, carbon dimer, N2 molecule, and stretched N2. [4pt] [1] Fermion Monte Carlo without fixed nodes: a Game of Life, death and annihilation in Slater Determinant space. George Booth, Alex Thom, Ali Alavi. J Chem Phys 131, 050106, (2009).[0pt] [2] Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo. Deidre Cleland, George Booth, and Ali Alavi. J Chem Phys 132, 041103 (2010).
Stampfuss, P; Wenzel, W
2005-01-01
We report on the progress of our implementation of the configuration-selecting multireference configuration interaction method on massively parallel architectures with distributed memory, which now permits the treatment of Hilbert spaces of dimension O(10(12)). Of these about 50,000,000 can be selected in the variational subspace. We provide scaling data for the running time of the code for the IBM/SP3 and the CRAY-T3E. We present benchmark results for two selected applications: the energetics of the isomers of dinitrosoethylene and the benchmark results for the ring closure reaction of enediyene. PMID:15638575
Troparevsky, M Claudia; Franceschetti, Alberto G
2008-01-01
The configuration interaction method has been widely used to calculate electronic excitations in nanostructures, but it suffers from a slow rate of convergence with the number of configurations in the basis set and from the inability to select a priori the most important configurations. The optimized configuration interaction method presented here removes the limitations of the conventional approach by identifying at the outset the configurations that are most relevant for describing electronic excitations. We show that the best configurations are remarkably different from the configurations that one would expect on the basis of the single-particle energy ladder, and that a small, optimized set of configurations predicts excitation energies with accuracy comparable to that for much larger, non-optimized sets of configurations. This approach opens the way to a new generation of configuration interaction methods where the configurations are pre-selected using heuristic search methods.
Minimising biases in full configuration interaction quantum Monte Carlo.
Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W
2015-03-14
We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step. PMID:25770522
Explicitly correlated multireference configuration interaction: MRCI-F12
NASA Astrophysics Data System (ADS)
Shiozaki, Toru; Knizia, Gerald; Werner, Hans-Joachim
2011-01-01
An internally contracted multireference configuration interaction is developed which employs wave functions that explicitly depend on the electron-electron distance (MRCI-F12). This MRCI-F12 method has the same applicability as the MRCI method, while having much improved basis-set convergence with little extra computational cost. The F12b approximation is used to arrive at a computationally efficient implementation. The MRCI-F12 method is applied to the singlet-triplet separation of methylene, the dissociation energy of ozone, properties of diatomic molecules, and the reaction barrier and exothermicity of the F + H{}_2 reaction. These examples demonstrate that already with basis sets of moderate size the method provides near complete basis set MRCI accuracy, and hence quantitative agreement with the experimental data. As a side product, we have also implemented the explicitly correlated multireference averaged coupled pair functional method (MRACPF-F12).
Explicitly correlated multireference configuration interaction: MRCI-F12.
Shiozaki, Toru; Knizia, Gerald; Werner, Hans-Joachim
2011-01-21
An internally contracted multireference configuration interaction is developed which employs wave functions that explicitly depend on the electron-electron distance (MRCI-F12). This MRCI-F12 method has the same applicability as the MRCI method, while having much improved basis-set convergence with little extra computational cost. The F12b approximation is used to arrive at a computationally efficient implementation. The MRCI-F12 method is applied to the singlet-triplet separation of methylene, the dissociation energy of ozone, properties of diatomic molecules, and the reaction barrier and exothermicity of the F + H(2) reaction. These examples demonstrate that already with basis sets of moderate size the method provides near complete basis set MRCI accuracy, and hence quantitative agreement with the experimental data. As a side product, we have also implemented the explicitly correlated multireference averaged coupled pair functional method (MRACPF-F12). PMID:21261336
Accelerating Full Configuration Interaction Calculations for Nuclear Structure
Yang, Chao; Sternberg, Philip; Maris, Pieter; Ng, Esmond; Sosonkina, Masha; Le, Hung Viet; Vary, James; Yang, Chao
2008-04-14
One of the emerging computational approaches in nuclear physics is the full configuration interaction (FCI) method for solving the many-body nuclear Hamiltonian in a sufficiently large single-particle basis space to obtain exact answers - either directly or by extrapolation. The lowest eigenvalues and correspondingeigenvectors for very large, sparse and unstructured nuclear Hamiltonian matrices are obtained and used to evaluate additional experimental quantities. These matrices pose a significant challenge to the design and implementation of efficient and scalable algorithms for obtaining solutions on massively parallel computer systems. In this paper, we describe the computational strategies employed in a state-of-the-art FCI code MFDn (Many Fermion Dynamics - nuclear) as well as techniques we recently developed to enhance the computational efficiency of MFDn. We will demonstrate the current capability of MFDn and report the latest performance improvement we have achieved. We will also outline our future research directions.
A Multireference Configuration Interaction Study of the Photodynamics of Nitroethylene
2014-01-01
Extended multireference configuration interaction with singles and doubles (MR-CISD) calculations of nitroethylene (H2C=CHNO2) were carried out to investigate the photodynamical deactivation paths to the ground state. The ground (S0) and the first five valence excited electronic states (S1–S5) were investigated. In the first step, vertical excitations and potential energy curves for CH2 and NO2 torsions and CH2 out-of-plane bending starting from the ground state geometry were computed. Afterward, five conical intersections, one between each pair of adjacent states, were located. The vertical calculations mostly confirm the previous assignment of experimental spectrum and theoretical results using lower-level calculations. The conical intersections have as main features the torsion of the CH2 moiety, different distortions of the NO2 group and CC, CN, and NO bond stretchings. In these conical intersections, the NO2 group plays an important role, also seen in excited state investigations of other nitro molecules. Based on the conical intersections found, a photochemical nonradiative deactivation process after a π–π* excitation to the bright S5 state is proposed. In particular, the possibility of NO2 release in the ground state, an important property in nitro explosives, was found to be possible. PMID:25158277
Leadership Class Configuration Interaction Code - Status and Opportunities
NASA Astrophysics Data System (ADS)
Vary, James
2011-10-01
With support from SciDAC-UNEDF (www.unedf.org) nuclear theorists have developed and are continuously improving a Leadership Class Configuration Interaction Code (LCCI) for forefront nuclear structure calculations. The aim of this project is to make state-of-the-art nuclear structure tools available to the entire community of researchers including graduate students. The project includes codes such as NuShellX, MFDn and BIGSTICK that run a range of computers from laptops to leadership class supercomputers. Codes, scripts, test cases and documentation have been assembled, are under continuous development and are scheduled for release to the entire research community in November 2011. A covering script that accesses the appropriate code and supporting files is under development. In addition, a Data Base Management System (DBMS) that records key information from large production runs and archived results of those runs has been developed (http://nuclear.physics.iastate.edu/info/) and will be released. Following an outline of the project, the code structure, capabilities, the DBMS and current efforts, I will suggest a path forward that would benefit greatly from a significant partnership between researchers who use the codes, code developers and the National Nuclear Data efforts. This research is supported in part by DOE under grant DE-FG02-87ER40371 and grant DE-FC02-09ER41582 (SciDAC-UNEDF).
Convergence of configuration-interaction single-center calculations of positron-atom interactions
Mitroy, J.; Bromley, M. W. J.
2006-05-15
The configuration interaction (CI) method using orbitals centered on the nucleus has recently been applied to calculate the interactions of positrons interacting with atoms. Computational investigations of the convergence properties of binding energy, phase shift, and annihilation rate with respect to the maximum angular momentum of the orbital basis for the e{sup +}Cu and PsH bound states, and the e{sup +}-H scattering system were completed. The annihilation rates converge very slowly with angular momentum, and moreover the convergence with radial basis dimension appears to be slower for high angular momentum. A number of methods of completing the partial wave sum are compared; an approach based on a {delta}X{sub J}=a(J+(1/2)){sup -n}+b(J+(1/2)){sup -(n+1)} form [with n=4 for phase shift (or energy) and n=2 for the annihilation rate] seems to be preferred on considerations of utility and underlying physical justification.
NASA Astrophysics Data System (ADS)
Bogdanovich, P.; Karpuškienė, R.; Momkauskaitė, A.
2005-11-01
This program written in FORTRAN is aimed at generation and selection of the admixed configurations which are used in the theoretical calculations of atomic states by the configuration interaction (CI) method. The admixed configurations are generated and selected using the file of radial orbitals written down in the form adopted in the code [C. Froese Fischer, Comput. Phys. Comm. 43 (1987) 355] and other analogous codes. Selection of configurations is performed on the ground of evaluations in the second order of the perturbation theory [P. Bogdanovich, R. Karpu\\vskienė, Comput. Phys. Comm. 134 (2001) 321; R. Karpu\\vskienė, R. Karazija, P. Bogdanovich, Phys. Scripta 64 (2001) 333]. Output of selected configurations is arranged in a format suitable for the codes generating the configuration states [C. Froese Fischer, B. Liu, Comput. Phys. Comm. 64 (1991) 406; P. Bogdanovich, A. Momkauskaitė, Comput. Phys. Comm. 157 (2004) 217]. Program summaryTitle of program:SELECTCONF Catalogue identifier:ADWD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers:Any computer with a FORTRAN 77 compiler Operating systems under which the program has been tested:Linux Programming language used:FORTRAN 77 Memory required to execute with typical data:4 MB No. of lines in distributed program, including test data, etc.:7459 No. of bytes in distributed program, including test data, etc.:108 420 Distribution format:gzip file Nature of the physical problem:Due to the restricted possibilities of the computers and codes, which are employed, the practice of CI requires one to select and superpose those configurations the usage of which happens to be the most effective. This program is designed for the selection of such admixed configurations. Method of solution:All admixed configurations possible in the specified basis set of radial orbitals (RO) are constructed
Lara-Castells, M. P. de Aguirre, N. F. Delgado-Barrio, G. Villarreal, P.; Mitrushchenkov, A. O.
2015-01-22
An efficient full-configuration-interaction 'nuclear orbital' treatment was developed as a benchmark quantum-chemistry-like method to calculate, ground and excited, fermionic 'solvent' wave-functions and applied to {sup 3}He{sub N} clusters with atomic or molecular impurities [J. Chem. Phys. (Communication) 125, 221101 (2006)]. The main difficulty in handling doped {sup 3}He{sub N} clusters lies in the Fermi-Dirac nuclear statistics, the wide amplitudes of the He-dopant and He-He motions, and the hard-core He-He interaction at short distances. This paper overviews the theoretical approach and its recent applications to energetic, structural and spectroscopic aspects of different dopant-{sup 3}He{sub N} clusters. Preliminary results by using the latest version of the FCI-NO computational implementation, to bosonic Cl{sub 2}(X)-({sup 4}He){sub N} clusters, are also shown.
NASA Astrophysics Data System (ADS)
de Lara-Castells, M. P.; Aguirre, N. F.; Delgado-Barrio, G.; Villarreal, P.; Mitrushchenkov, A. O.
2015-01-01
An efficient full-configuration-interaction "nuclear orbital" treatment was developed as a benchmark quantum-chemistry-like method to calculate, ground and excited, fermionic "solvent" wave-functions and applied to 3HeN clusters with atomic or molecular impurities [J. Chem. Phys. (Communication) 125, 221101 (2006)]. The main difficulty in handling doped 3HeN clusters lies in the Fermi-Dirac nuclear statistics, the wide amplitudes of the He-dopant and He-He motions, and the hard-core He-He interaction at short distances. This paper overviews the theoretical approach and its recent applications to energetic, structural and spectroscopic aspects of different dopant-3HeN clusters. Preliminary results by using the latest version of the FCI-NO computational implementation, to bosonic Cl2(X)-(4He )N clusters, are also shown.
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-03-01
Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.
Shepherd, James J; Henderson, Thomas M; Scuseria, Gustavo E
2016-03-01
Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure. PMID:26957162
Theoretical predictions of jet interaction effects for USB and OWB configurations
NASA Technical Reports Server (NTRS)
Lan, C. E.; Campbell, J. F.
1976-01-01
A wing jet interaction theory is presented for predicting the aerodynamic characteristics of upper surface blowing and over wing blowing configurations. For the latter configurations, a new jet entrainment theory is developed. Comparison of predicted results with some available data showed good agreement. Some applications of the theory are also presented.
Lötstedt, Erik; Kato, Tsuyoshi; Yamanouchi, Kaoru
2016-04-21
An approximate implementation of the multiconfiguration time-dependent Hartree-Fock method is proposed, in which the matrix of configuration-interaction coefficients is decomposed into a product of matrices of smaller dimension. The applicability of this method in which all the configurations are kept in the expansion of the wave function, while the configuration-interaction coefficients are approximately calculated, is discussed by showing the results on three model systems: a one-dimensional model of a beryllium atom, a one-dimensional model of a carbon atom, and a one-dimensional model of a chain of four hydrogen atoms. The time-dependent electronic dynamics induced by a few-cycle, long-wavelength laser pulse is found to be well described at a lower computational cost compared to the standard multiconfiguration time-dependent Hartree-Fock treatment. Drawbacks of the method are also discussed. PMID:27389213
NASA Astrophysics Data System (ADS)
Lötstedt, Erik; Kato, Tsuyoshi; Yamanouchi, Kaoru
2016-04-01
An approximate implementation of the multiconfiguration time-dependent Hartree-Fock method is proposed, in which the matrix of configuration-interaction coefficients is decomposed into a product of matrices of smaller dimension. The applicability of this method in which all the configurations are kept in the expansion of the wave function, while the configuration-interaction coefficients are approximately calculated, is discussed by showing the results on three model systems: a one-dimensional model of a beryllium atom, a one-dimensional model of a carbon atom, and a one-dimensional model of a chain of four hydrogen atoms. The time-dependent electronic dynamics induced by a few-cycle, long-wavelength laser pulse is found to be well described at a lower computational cost compared to the standard multiconfiguration time-dependent Hartree-Fock treatment. Drawbacks of the method are also discussed.
Configuration interaction matrix elements for the quantum Hall effect
NASA Astrophysics Data System (ADS)
Wooten, Rachel; Macek, Joseph
2015-03-01
In the spherical model of the quantum Hall system, the two-body matrix elements and pseudopotentials can be found analytically in terms of a general scalar pair interaction potential by expressing the pair interaction as a weighted sum over Legendre polynomials. For non-infinite systems, only a finite set of terms in the potential expansion contribute to the interactions; the contributing terms define an effective spatial potential for the system. The connection between the effective spatial potential and the pseudopotential is one-to-one for finite systems, and any completely defined model pseudopotential can be analytically inverted to give a unique corresponding spatial potential. This technique of inverting the pseudopotential to derive effective spatial potentials may be of use for developing accurate model spatial potentials for quantum Monte Carlo simulations. We demonstrate the technique and the corresponding spatial potentials for a few example model pseudopotentials. Supported by Office of Basic Energy Sciences, U.S. DOE, Grant DE-FG02-02ER15283 to the University of Tennessee.
NASA Astrophysics Data System (ADS)
Cordero, S.; Castaños, O.; López-Peña, R.; Nahmad-Achar, E.
2016-07-01
A study of the λ and N atomic configurations under dipolar interaction with two modes of electromagnetic radiation is presented. The corresponding quantum phase diagrams are obtained by means of a variational procedure. Both configurations exhibit normal and collective (super-radiant) regimes. While the latter in the λ configuration divides itself into two subregions, corresponding to each of the modes, that in the N configuration may be divided into two or three subregions depending on whether the field modes divide the atomic system into two separate subsystems or not. Our variational procedure compares well with the exact quantum solution. The properties of the relevant field and matter observables are obtained.
Full configuration-interaction study of the ionic-neutral curve crossing in LiF
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1988-01-01
Full configuration-interaction (FCI) calculations are used to assess the relative ability of methods for truncating the n-particle expansion in describing the ionic-neutral curve crossing between the two lowest Sigma(+) states of LiF. While the FCI calculations yield a smooth dipole moment function, MRCI calculations based on CASSCF orbitals optimized for the lowest state at all r values yield a discontinuous dipole moment function. However, when the orbitals are optimized using a state-averaged CASSCF procedure, with equal weights for the ionic and neutral solutions, both the CASSCF and MRCI dipole moment functions are smooth and in reasonable agreement with the FCI. No single-reference-based method is found to work satisfactorily. Potential curves for the lowest two Sigma(+) states are determined in both the adiabatic and diabatic representations using a large atomic natural orbit Gaussian basis set and a state-averaged CASSCF/MRCI treatment of electron correlation.
HORIZONTAL CONFIGURATION OF THE LASAGNA (TM) TREATMENT TECHNOLOGY USER GUIDE
This report is a user's guide that discusses the technology and operations unique to the installation and operation of the horizontal configuration of the Lasagna? integrated soil remediation technology. This technology, called Lasagna? because of the layers of electrodes and tr...
HORIZONTAL CONFIGURATION OF THE LASAGNA TREATMENT TECHNOLOGY - USER GUIDE
This report is a user's guide that discusses the technology and operations unique to the installation and operation of the horizontal configuration of the LasagnaTM integrated soil remediation technology. This technology, called LasagnaTM because of the layers of electrodes and t...
NASA Astrophysics Data System (ADS)
Gilles, D.; Busquet, M.; Gilleron, F.; Klapisch, M.; Pain, J.-C.
2016-05-01
We have recently shown that iron and nickel open M-shell opacity spectra, up to Δn = 2 are very sensitive to Configuration Interaction (CI) treatments at temperature around 15 eV and for various densities. To do so we had compared extensive CI calculations obtained with two opacity codes HULLAC-v9 and SCO-RCG. In this work we extend these comparisons to a first evaluation of CI effects on Rosseland and Planck means.
Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1
NASA Technical Reports Server (NTRS)
Mraz, M. R.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Wallace, H. W.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.
Shirata, Kei; Kawauchi, Susumu
2015-01-15
Polybenzimidazole doped with phosphoric acid (PA) is a candidate for polymer electrolyte membranes in fuel cells. Understanding the interaction of benzimidazole in polybenzimidazole with PA is important for fuel-cell applications. Herein, the interaction of a PA-benzimidazole complex was investigated using density functional theory, with calculations performed at the ωB97X-D/6-311G(d,p) level of theory, with an aim to investigate the effects of bibenzimidazole configuration on the interaction energy. Benzimidazole and three different bibenzimidazole configurations (2,2'-bibenzo[d]imidazole (1), 2,5'-bibenzo[d]imidazole (2), and 5,5'-bibenzo[d]imidazole (3)) were used as models for bulk polybenzimidazole. Calculation of various types of hydrogen bond interaction showed that the interaction between the imino moiety of the monomer and the hydroxyl group of PA is the strongest, which agrees with previous studies. Our calculations indicated that π-H interactions between the hydrogen atoms of the PA molecule and the benzene rings should be considered, and these contribute to the interaction energy for some interaction complexes. The interaction energy between the monomer and PA is smaller than that of the PA dimer. However, the interaction energy between bibenzimidazole and PA is comparable to that of the PA dimer for bibenzimidazole configurations 1 and 2, highlighting the importance of considering the adjacent monomer unit. PMID:25514498
Effects of configuration interaction on dielectronic recombination ofFe(XXIV).
NASA Astrophysics Data System (ADS)
Roszman, L. J.; Weiss, A. W.
1983-07-01
The rate of dielectronic recombination for Fe23+ has been computed in the non-relativistic approximation, with and without configuration interaction. All possible doubly excited states with n = 3-6, and l = 0-4 were included in the calculation.
Kottmann, Jakob S; Höfener, Sebastian; Bischoff, Florian A
2015-12-21
In the present work, we report an efficient implementation of configuration interaction singles (CIS) excitation energies and oscillator strengths using the multi-resolution analysis (MRA) framework to address the basis-set convergence of excited state computations. In MRA (ground-state) orbitals, excited states are constructed adaptively guaranteeing an overall precision. Thus not only valence but also, in particular, low-lying Rydberg states can be computed with consistent quality at the basis set limit a priori, or without special treatments, which is demonstrated using a small test set of organic molecules, basis sets, and states. We find that the new implementation of MRA-CIS excitation energy calculations is competitive with conventional LCAO calculations when the basis-set limit of medium-sized molecules is sought, which requires large, diffuse basis sets. This becomes particularly important if accurate calculations of molecular electronic absorption spectra with respect to basis-set incompleteness are required, in which both valence as well as Rydberg excitations can contribute to the molecule's UV/VIS fingerprint. PMID:25913482
Harrison, R.J.; Stahlberg, E.A.
1994-10-01
We describe an implementation of the benchmark ab initio electronic structure full configuration interaction model on the Intel Touchstone Delta. Its performance is demonstrated with several calculations, the largest of which (95 million configurations, 418 million determinants) is the largest full-CI calculation yet completed. The feasibility of calculations with over one billion configurations is discussed. A sustained computation rate in excess of 4 GFLOP/s on 512 processors is achieved, with an average aggregate communication rate of 155 Mbytes/s. Data-compression techniques and a modified diagonalization method were required to minimize I/O. The object-oriented design has increased portability and provides the distinction between local and non-local data essential for use of a distributed-data model.
NASA Technical Reports Server (NTRS)
Hoad, D. R.
1979-01-01
The effect of tip shape modification on blade vortex interaction induced helicopter blade slap noise was investigated. Simulated flight and descent velocities which have been shown to produce blade slap were tested. Aerodynamic performance parameters of the rotor system were monitored to ensure properly matched flight conditions among the tip shapes. The tunnel was operated in the open throat configuration with treatment to improve the acoustic characteristics of the test chamber. Four promising tips were used along with a standard square tip as a baseline configuration. A detailed acoustic evaluation on the same rotor system of the relative applicability of the various tip configurations for blade slap noise reduction is provided.
Blum, Terry C.; Roman, Paul M.
2011-01-01
Boards of directors are the ultimate governing authorities for most organizations providing substance abuse treatment. A governing board may establish policies, monitor and improve operations, and represent a treatment organization to the public. This paper explores alternative configurations of governing boards in a national sample of 500 substance abuse treatment centers. The study proceeds from the premise that boards may be configured with varying levels of engagement in five aspects of internal management and external connections in treatment center operating environments. Based on interviews with treatment center administrative directors, four clusters emerge, describing boards that are: (1) active and balanced across internal and external domains; (2) active boundary spanners concentrating primarily on external relationships; (3) focused primarily on internal organizational management; and (4) relatively inactive. In post hoc analysis, we found that placement in these clusters is associated with treatment center attributes such as rate of growth and financial results, use of evidence based practices and provision of integrated care. PMID:21489737
NASA Astrophysics Data System (ADS)
Caprio, Mark A.; Maris, Pieter; Vary, James P.
2014-03-01
The emergence of rotational bands has recently been observed in no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results demonstrate the possibility of well-developed rotational structure in NCCI calculations, using realistic nucleon-nucleon interactions, and within finite, computationally-accessible configuration spaces. This talk will focus on results for rotation in both the even-mass and odd-mass Be isotopes (7 <= A <= 12). Supported by US DOE (DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, DE-FG02-87ER40371), US NSF (0904782), and Research Corporation for Science Advancement (Cottrell Scholar Award). Computational resources provided by NERSC (US DOE DE-AC02-05CH11231).
Bross, David H.; Parmar, Payal; Peterson, Kirk A.
2015-11-14
The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.
Relativistic K-LL Auger spectra in the intermediate-coupling scheme with configuration interaction
NASA Technical Reports Server (NTRS)
Chen, M. H.; Crasemann, B.; Mark, H.
1980-01-01
Theoretical K-LL Auger spectra from relativistic Dirac-Hartree-Slater calculations in intermediate coupling with configuration interaction (ICWCI) are considered. Calculated transition rates for 25 elements with Z between 18 and 96, inclusive, are listed and compare well with experimental data. Relativistic effects are found to be important above Z equal to about 35, and ICWCI is necessary to describe the spectra for Z less than about 60.
Feller, David Peterson, Kirk A.; Davidson, Ernest R.
2014-09-14
A systematic sequence of configuration interaction and coupled cluster calculations were used to describe selected low-lying singlet and triplet vertically excited states of ethylene with the goal of approaching the all electron, full configuration interaction/complete basis set limit. Included among these is the notoriously difficult, mixed valence/Rydberg {sup 1}B{sub 1u} V state. Techniques included complete active space and iterative natural orbital configuration interaction with large reference spaces which led to variational spaces of 1.8 × 10{sup 9} parameters. Care was taken to avoid unintentionally biasing the results due to the widely recognized sensitivity of the V state to the details of the calculation. The lowest vertical and adiabatic ionization potentials to the {sup 2}B{sub 3u} and {sup 2}B{sub 3} states were also determined. In addition, the heat of formation of twisted ethylene {sup 3}A{sub 1} was obtained from large basis set coupled cluster theory calculations including corrections for core/valence, scalar relativistic and higher order correlation recovery.
Reduced matrix elements of spin–spin interactions for the atomic f-electron configurations
Yeung, Y.Y.
2014-03-15
A re-examination of some major references on the intra-atomic magnetic interactions over the last six decades reveals that there exist some gaps or puzzles concerning the previous studies of the spin–spin interactions for the atomic f-shell electrons. Hence, tables are provided for the relevant reduced matrix elements of the four double-tensor operators z{sub r} (r=1,2,3, and 4) of rank 2 in both the orbital and spin spaces. The range of the tables covers all states of the configurations from f{sup 4} to f{sup 7}.
Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.
2015-01-14
Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCF in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.
Fleig, Timo
2005-11-15
This study reports static electric dipole polarizabilities of the group 13 atoms in their lowest J=(1/2),(3/2) states including resolution of the property in the corresponding M{sub J} components. The polarizabilities are obtained by a numerical finite-field technique applying weak external electric fields. Special relativity is accounted for in the four-component Dirac framework. Two large-scale configuration interaction programs which can be applied either including or neglecting spin-dependent terms in the Dirac Hamiltonian, respectively, are used for the treatment of dynamic electron correlation. Coupled cluster calculations are performed for obtaining highly accurate J=(1/2) ground-state polarizabilities and for calibrating the configuration interaction calculations. The heavier atoms show large differences in the properties for different J states, and the effect of spin-orbit coupling is elucidated by separating it off from scalar relativistic contributions. The impact of spin-orbit interaction is also demonstrated for polarizability anisotropy components.
Full configuration interaction approach to the few-electron problem in artificial atoms
NASA Astrophysics Data System (ADS)
Rontani, Massimo; Cavazzoni, Carlo; Bellucci, Devis; Goldoni, Guido
2006-03-01
We present a new high performance configuration interaction code optimally designed for the calculation of the lowest-energy eigenstates of a few electrons in semiconductor quantum dots (also called artificial atoms) in the strong interaction regime. The implementation relies on a single-particle representation, but it is independent of the choice of the single-particle basis and, therefore, of the details of the device and configuration of external fields. Assuming no truncation of the Fock space of Slater determinants generated from the chosen single-particle basis, the code may tackle regimes where Coulomb interaction very effectively mixes many determinants. Typical strongly correlated systems lead to very large diagonalization problems; in our implementation, the secular equation is reduced to its minimal rank by exploiting the symmetry of the effective-mass interacting Hamiltonian, including square total spin. The resulting Hamiltonian is diagonalized via parallel implementation of the Lanczos algorithm. The code gives access to both wave functions and energies of first excited states. Excellent code scalability in a parallel environment is demonstrated; accuracy is tested for the case of up to eight electrons confined in a two-dimensional harmonic trap as the density is progressively diluted up to the Wigner regime, where correlations become dominant. Comparison with previous quantum Monte Carlo simulations in the Wigner regime demonstrates power and flexibility of the method.
Particle-hole configuration interaction and many-body perturbation theory: Application to Hg+
NASA Astrophysics Data System (ADS)
Berengut, J. C.
2016-07-01
The combination of configuration interaction and many-body perturbation theory methods is extended to nonperturbatively include configurations with electron holes below the designated Fermi level, allowing us to treat systems where holes play an important role. For example, the method can treat valence-hole systems like Ir17 +, particle-hole excitations in noble gases, and difficult transitions such as the 6 s →5 d-16 s2 optical clock transition in Hg+. We take the latter system as our test case for the method and obtain very good accuracy (˜1 %) for the low-lying transition energies. The α dependence of these transitions is calculated and used to reinterpret the existing best laboratory limits on the time dependence of the fine-structure constant.
Chakraborty, Arindam; Truhlar, Donald G; Bowman, Joel M; Carter, Stuart
2004-08-01
The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J = 0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. PMID:15260761
Evaluation of the interaction losses in a transonic turbine HP rotor/LP vane configuration
Jennions, I.K.; Adamczyk, J.J.
1997-01-01
Transonic turbine rotors produce shock waves, wakes, tip leakage flows, and other secondary flows that the downstream stators have to ingest. While the physics of wake ingestion and shock interaction have been studied quite extensively, few ideas for reducing the aerodynamic interaction losses have been forthcoming. This paper aims to extend previously reported work performed by GE Aircraft Engines in this area. It reports on both average-passage (steady) and unsteady three-dimensional numerical simulations of a candidate design to shed light on the interaction loss mechanisms and evaluate the design. The results from these simulations are first shown against test data for a baseline configuration to engender confidence in the numerical approach. Simulations with the proposed newly designed rotor are then performed to show the trade-offs that are being made in such designs. The new rotor does improve the overall efficiency of the group and physical explanations are presented based on examining entropy production.
Chang, Cristian; Calzado, Carmen J; Ben Amor, Nadia; Sanchez Marin, Jose; Maynau, Daniel
2012-09-14
A new multireference configuration interaction method using localised orbitals is proposed, in which a molecular system is divided into regions of unequal importance. The advantage of dealing with local orbitals, i.e., the possibility to neglect long range interaction is enhanced. Indeed, while in the zone of the molecule where the important phenomena occur, the interaction cut off may be as small as necessary to get relevant results, in the most part of the system it can be taken rather large, so that results of good quality may be obtained at a lower cost. The method is tested on several systems. In one of them, the definition of the various regions is not based on topological considerations, but on the nature, σ or π, of the localised orbitals, which puts in evidence the generality of the approach. PMID:22979845
NASA Astrophysics Data System (ADS)
Chang, Cristian; Calzado, Carmen J.; Amor, Nadia Ben; Marin, Jose Sanchez; Maynau, Daniel
2012-09-01
A new multireference configuration interaction method using localised orbitals is proposed, in which a molecular system is divided into regions of unequal importance. The advantage of dealing with local orbitals, i.e., the possibility to neglect long range interaction is enhanced. Indeed, while in the zone of the molecule where the important phenomena occur, the interaction cut off may be as small as necessary to get relevant results, in the most part of the system it can be taken rather large, so that results of good quality may be obtained at a lower cost. The method is tested on several systems. In one of them, the definition of the various regions is not based on topological considerations, but on the nature, σ or π, of the localised orbitals, which puts in evidence the generality of the approach.
Bégué, Didier; Gohaud, Neil; Pouchan, Claude; Cassam-Chenaï, Patrick; Liévin, Jacques
2007-10-28
Two recently developed methods for solving the molecular vibrational Schrodinger equation, namely, the parallel vibrational multiple window configuration interaction and the vibrational mean field configuration interaction, are presented and compared on the same potential energy surface of ethylene oxide, c-C(2)H(4)O. It is demonstrated on this heptatomic system with strong resonances that both approaches converge towards the same fundamental frequencies. This confirms their ability to tackle the vibrational problem of large molecules for which full configuration interaction calculations are not tractable. PMID:17979327
Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard
2014-05-07
Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.
A wing-jet interaction theory for USB configurations. [Upper Surface Blowing
NASA Technical Reports Server (NTRS)
Lan, C. E.; Campbell, J. F.
1976-01-01
The aerodynamic interaction between the wing and an inviscid upper-surface blowing (USB) thick jet with Mach number nonuniformity is treated within the framework of a linear inviscid subsonic compressible flow theory. A two-vortex-sheet model for the jet surface is used to represent the induced flowfields inside and outside the jet. Comparison of the predicted results with experimental data shows good agreement in lift, induced drag, and pitching moment. It is shown that the thin jet flap theory is inadequate for USB configurations with thick jet.
Schriber, Jeffrey B; Evangelista, Francesco A
2016-04-28
We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N2 with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group. PMID:27131524
Self-interaction in the von Kármán cosmic string street configuration
NASA Astrophysics Data System (ADS)
Carvalho, J.; Furtado, C.; Moraes, F.
2008-11-01
We study the problem of electromagnetic self-interaction of line sources in the presence of an array of parallel cosmic strings akin to the von Kármán vortex street configuration. Keeping in mind possible applications in condensed matter physics we consider also a mixed array where both deficit angle and excess angle cosmic strings appear. We obtain explicit expressions for both the electric and magnetic self-energies for the cases studied and demonstrate that these results reproduce the known self-energies in the single-string limit.
Nazé, C.; Verdebout, S.; Godefroid, M.
2014-09-15
Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.
NASA Astrophysics Data System (ADS)
Schriber, Jeffrey B.; Evangelista, Francesco A.
2016-04-01
We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N2 with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.
Pitarch-Ruiz, José; Sánchez-Marín, José; Maynau, Daniel
2002-09-01
A new method is presented, which allows an important reduction of the size of some Configuration Interaction (CI) matrices. Starting from a Complete Active Space (CAS), the numerous configurations that have a small weight in the CAS wave function are eliminated. When excited configurations (e.g., singly and doubly excited) are added to the reference space, the resulting MR-SDCI space is reduced in the same proportion as compared with the full CAS-SDCI. A set of active orbitals is chosen, but some selection of the most relevant excitations is performed because not all the possible excitations act as SDCI generators. Thanks to a new addressing technique, the computational time is drastically reduced, because the new addressing of the selected active space is as efficient as the addressing of the CAS. The presentation of the method is followed by two test calculations on the N(2) and HCCH molecules. For the N(2) the FCI results are taken as a benchmark reference. The outer valence ionization potentials of HCCH are compared to the experimental values. Both examples allow to test the accuracy of the MR-SDCI compared to that of the corresponding CAS-SDCI, despite the noticeable reduction of the CI space. The algorithm is suitable for the dressing techniques that allow for the correction of the size-extensivity error. The corrected results are also shown and discussed. PMID:12116385
Electronic spectra of DyF studied by four-component relativistic configuration interaction methods
NASA Astrophysics Data System (ADS)
Yamamoto, Shigeyoshi; Tatewaki, Hiroshi
2015-03-01
The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f9)(6s2)(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f10)(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T0 = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f9)(6s)(6p), but these configurations are not consistent with the large Re's (˜3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f10)(6p3/2,1/2), (4f10)(6p3/2,3/2), and (4f9)(6s)(6p3/2,1/2) at around 3 eV. The former two states have larger Re (3.88 a.u.) than the third, so that it is reasonable to assign (4f10)(6p3/2,1/2) to [19.3]8.5 and (4f10)(6p3/2,3/2) to [20.3]8.5.
Electronic spectra of DyF studied by four-component relativistic configuration interaction methods.
Yamamoto, Shigeyoshi; Tatewaki, Hiroshi
2015-03-01
The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f(9))(6s(2))(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f(10))(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T0 = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f(9))(6s)(6p), but these configurations are not consistent with the large Re's (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f(10))(6p3/2,1/2), (4f(10))(6p3/2,3/2), and (4f(9))(6s)(6p3/2,1/2) at around 3 eV. The former two states have larger Re (3.88 a.u.) than the third, so that it is reasonable to assign (4f(10))(6p3/2,1/2) to [19.3]8.5 and (4f(10))(6p3/2,3/2) to [20.3]8.5. PMID:25747086
Electronic spectra of DyF studied by four-component relativistic configuration interaction methods
Yamamoto, Shigeyoshi; Tatewaki, Hiroshi
2015-03-07
The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f{sup 9})(6s{sup 2})(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f{sup 10})(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T{sub 0} = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f{sup 9})(6s)(6p), but these configurations are not consistent with the large R{sub e}’s (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f{sup 10})(6p{sub 3/2,1/2}), (4f{sup 10})(6p{sub 3/2,3/2}), and (4f{sup 9})(6s)(6p{sub 3/2,1/2}) at around 3 eV. The former two states have larger R{sub e} (3.88 a.u.) than the third, so that it is reasonable to assign (4f{sup 10})(6p{sub 3/2,1/2}) to [19.3]8.5 and (4f{sup 10})(6p{sub 3/2,3/2}) to [20.3]8.5.
Monine, Michael; Posner, Richard; Savage, Paul; Faeder, James; Hlavacek, William S
2008-01-01
Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.
Large-scale ab initio configuration interaction calculations for light nuclei
NASA Astrophysics Data System (ADS)
Maris, Pieter; Metin Aktulga, H.; Caprio, Mark A.; Çatalyürek, Ümit V.; Ng, Esmond G.; Oryspayev, Dossay; Potter, Hugh; Saule, Erik; Sosonkina, Masha; Vary, James P.; Yang, Chao; Zhou, Zheng
2012-12-01
In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.
Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction
Coe, J. P.; Paterson, M. J.
2014-09-28
We propose using sum-over-states calculations with the compact wavefunctions of Monte Carlo configuration interaction to approach accurate values for higher-order dipole properties up to second hyperpolarizabilities in a controlled way. We apply the approach to small systems that can generally be compared with full configuration interaction (FCI) results. We consider hydrogen fluoride with a 6-31g basis and then look at results, including frequency dependent properties, in an aug-cc-pVDZ basis. We extend one calculation beyond FCI by using an aug-cc-pVTZ basis. The properties of an H{sub 4} molecule with multireference character are calculated in an aug-cc-pVDZ basis. We then investigate this method on a strongly multireference system with a larger FCI space by modelling the properties of carbon monoxide with a stretched geometry. The behavior of the approach with increasing basis size is considered by calculating results for the neon atom using aug-cc-pVDZ to aug-cc-pVQZ. We finally test if the unusual change in polarizability between the first two states of molecular oxygen can be reproduced by this method in a 6-31g basis.
Symmetric tensor decomposition-configuration interaction study of BeH2
NASA Astrophysics Data System (ADS)
Kasamatsu, Shusuke; Uemura, Wataru; Sugino, Osamu
2014-03-01
The configuration interaction (CI) is a straightforward approach to describing interacting fermions. However, its application is hampered by the non-polynomially increasing computational time and memory requirements with the system size. To overcome this problem, we have been developing a variational method based on the canonical decomposition of the full-CI coefficients, which we call the symmetric tensor decomposition (STD)-CI. The applicability of STD-CI was tested for simple molecular systems, but here we test it using a stringent benchmark system, i.e., the insertion of Be into H2. The Be + H2 system is known for strong configurational degeneracy along the insertion pathway, and has been used for assessing a method's capability to treat correlated systems. We obtained errors compared to full CI results of ~10 mHartrees when using a rank 2 decomposition of the full CI coefficients. This is a huge improvement over Hartree-Fock results having errors of up to ~100 mHartrees in worst cases, although not as good as, e.g., CAS-CCSD with errors less than 1 mHartree.
NASA Astrophysics Data System (ADS)
Van Raemdonck, Mario; Alcoba, Diego R.; Poelmans, Ward; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Van Neck, Dimitri; Bultinck, Patrick
2015-09-01
A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation.
Thomas, Robert E.; Overy, Catherine; Opalka, Daniel; Alavi, Ali; Knowles, Peter J.; Booth, George H.
2015-08-07
Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation.
Van Raemdonck, Mario; Alcoba, Diego R; Poelmans, Ward; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Van Neck, Dimitri; Bultinck, Patrick
2015-09-14
A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation. PMID:26374017
Bross, David H.; Parmar, Payal; Peterson, Kirk A.
2015-11-12
The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As a result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP_{3} through IP_{6}.
Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction
NASA Astrophysics Data System (ADS)
Coe, J. P.; Paterson, M. J.
2014-09-01
We propose using sum-over-states calculations with the compact wavefunctions of Monte Carlo configuration interaction to approach accurate values for higher-order dipole properties up to second hyperpolarizabilities in a controlled way. We apply the approach to small systems that can generally be compared with full configuration interaction (FCI) results. We consider hydrogen fluoride with a 6-31g basis and then look at results, including frequency dependent properties, in an aug-cc-pVDZ basis. We extend one calculation beyond FCI by using an aug-cc-pVTZ basis. The properties of an H4 molecule with multireference character are calculated in an aug-cc-pVDZ basis. We then investigate this method on a strongly multireference system with a larger FCI space by modelling the properties of carbon monoxide with a stretched geometry. The behavior of the approach with increasing basis size is considered by calculating results for the neon atom using aug-cc-pVDZ to aug-cc-pVQZ. We finally test if the unusual change in polarizability between the first two states of molecular oxygen can be reproduced by this method in a 6-31g basis.
Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction.
Coe, J P; Paterson, M J
2014-09-28
We propose using sum-over-states calculations with the compact wavefunctions of Monte Carlo configuration interaction to approach accurate values for higher-order dipole properties up to second hyperpolarizabilities in a controlled way. We apply the approach to small systems that can generally be compared with full configuration interaction (FCI) results. We consider hydrogen fluoride with a 6-31g basis and then look at results, including frequency dependent properties, in an aug-cc-pVDZ basis. We extend one calculation beyond FCI by using an aug-cc-pVTZ basis. The properties of an H4 molecule with multireference character are calculated in an aug-cc-pVDZ basis. We then investigate this method on a strongly multireference system with a larger FCI space by modelling the properties of carbon monoxide with a stretched geometry. The behavior of the approach with increasing basis size is considered by calculating results for the neon atom using aug-cc-pVDZ to aug-cc-pVQZ. We finally test if the unusual change in polarizability between the first two states of molecular oxygen can be reproduced by this method in a 6-31g basis. PMID:25273423
The electronic mean-field configuration interaction method. I. Theory and integral formulas
NASA Astrophysics Data System (ADS)
Cassam-Chenaï, Patrick
2006-05-01
In this article, we introduce a new method for solving the electronic Schrödinger equation. This new method follows the same idea followed by the mean-field configuration interaction method already developed for molecular vibrations; i.e., groups of electronic degrees of freedom are contracted together in the mean field of the other degrees. If the same partition of electronic degrees of freedom is iterated, a self-consistent field method is obtained. Making coarser partitions (i.e., including more degrees in the same groups) and discarding the high energy states, the full configuration interaction limit can be approached. In contrast with the usual group function theory, no strong orthogonality condition is enforced. We have made use of a generalized version of the fundamental formula defining a Hopf algebra structure to derive Hamiltonian and overlap matrix element expressions which respect the group structure of the wave function as well as its fermionic symmetry. These expressions are amenable to a recursive computation.
Bross, David H.; Parmar, Payal; Peterson, Kirk A.
2015-11-12
The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As amore » result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP3 through IP6.« less
Cleland, Deidre; Booth, George H; Alavi, Ali
2010-01-28
We provide a very simple adaptation of our recently published quantum Monte Carlo algorithm in full configuration-interaction (Slater determinant) spaces which dramatically reduces the number of walkers required to achieve convergence. A survival criterion is imposed for newly spawned walkers. We define a set of initiator determinants such that progeny of walkers spawned from such determinants onto unoccupied determinants are able to survive, while the progeny of walkers not in this set can survive only if they are spawned onto determinants which are already occupied. The set of initiators is originally defined to be all determinants constructable from a subset of orbitals, in analogy with complete-active spaces. This set is dynamically updated so that if a noninitiator determinant reaches an occupation larger than a preset limit, it becomes an initiator. The new algorithm allows sign-coherent sampling of the FCI space to be achieved with relatively few walkers. Using the N(2) molecule as an illustration, we show that rather small initiator spaces and numbers of walkers can converge with submilliHartree accuracy to the known full configuration-interaction (FCI) energy (in the cc-pVDZ basis), in both the equilibrium geometry and the multiconfigurational stretched case. We use the same method to compute the energy with cc-pVTZ and cc-pVQZ basis sets, the latter having an FCI space of over 10(15) with very modest computational resources. PMID:20113011
NASA Astrophysics Data System (ADS)
Cleland, Deidre; Booth, George H.; Alavi, Ali
2010-01-01
We provide a very simple adaptation of our recently published quantum Monte Carlo algorithm in full configuration-interaction (Slater determinant) spaces which dramatically reduces the number of walkers required to achieve convergence. A survival criterion is imposed for newly spawned walkers. We define a set of initiator determinants such that progeny of walkers spawned from such determinants onto unoccupied determinants are able to survive, while the progeny of walkers not in this set can survive only if they are spawned onto determinants which are already occupied. The set of initiators is originally defined to be all determinants constructable from a subset of orbitals, in analogy with complete-active spaces. This set is dynamically updated so that if a noninitiator determinant reaches an occupation larger than a preset limit, it becomes an initiator. The new algorithm allows sign-coherent sampling of the FCI space to be achieved with relatively few walkers. Using the N2 molecule as an illustration, we show that rather small initiator spaces and numbers of walkers can converge with submilliHartree accuracy to the known full configuration-interaction (FCI) energy (in the cc-pVDZ basis), in both the equilibrium geometry and the multiconfigurational stretched case. We use the same method to compute the energy with cc-pVTZ and cc-pVQZ basis sets, the latter having an FCI space of over 1015 with very modest computational resources.
NASA Astrophysics Data System (ADS)
Maris, P.; Caprio, M. A.; Vary, J. P.
2015-01-01
The emergence of rotational bands is observed in no-core configuration interaction (NCCI) calculations for the Be isotopes (7 ≤A ≤12 ), as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results indicate well-developed rotational structure in NCCI calculations, using the JISP16 realistic nucleon-nucleon interaction within finite, computationally accessible configuration spaces.
Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann
2009-09-21
We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS. PMID:19778110
Hearing shapes of few electrons quantum drums: A configuration-interaction study
NASA Astrophysics Data System (ADS)
Ţolea, F.; Ţolea, M.
2015-02-01
The - highly remarkable - existence of non-congruent yet vibrationally isospectral shapes has been first proved theoretically and then also tested experimentally - by using electromagnetic waves in cavities, vibrating smectic films or electrons in nanostructures. In this context, we address the question whether isospectrality holds if two or more electrons interact electrostatically, using the accurate configuration-interaction method, in a discrete representation of the Bilby and Hawk shapes. Isospectral pairs offer an unique possibility to test how identical sets of single-particle energies may combine differently in the few-electrons eigenmodes, due to different wave functions spatial distributions. Our results point towards the break down of isospectrality in the presence of interactions. Thus one should be able to "hear" the shapes of few electrons quantum drums. Interestingly however, for the analyzed two and three electrons cases, there exists an interaction strength (which can be tuned by changing the size of the shapes), for which the ground states energies of Bilby and Hawk coincide, but not the excited states as well. Wigner localization is studied and shown to occur at about the same size for both Bilby and Hawk shapes. Next, an exercise is proposed to use the two-electrons charge density of the Bilby and Hawk ground states in the phase extraction scheme as proposed by Moon et al. (2008). Results show that out-of-phase regions appear if the linear size of the shapes exceeds the Bohr radius as occupation of higher Slater determinants becomes significant.
NASA Astrophysics Data System (ADS)
Ben Amor, Nadia; Bessac, Fabienne; Hoyau, Sophie; Maynau, Daniel
2011-07-01
A selected multireference configuration interaction (CI) method and the corresponding code are presented. It is based on a procedure of localization that permits to obtain well localized occupied and virtual orbitals. Due to the local character of the electron correlation, using local orbitals allows one to neglect long range interactions. In a first step, three topological matrices are constructed, which determine whether two orbitals must be considered as interacting or not. Two of them concern the truncation of the determinant basis, one for occupied/virtual, the second one for dispersive interactions. The third one concerns the truncation of the list of two electron integrals. This approach permits a fine analysis of each kind of approximation and induces a huge reduction of the CI size and of the computational time. The procedure is tested on linear polyene aldehyde chains, dissociation potential energy curve, and reaction energy of a pesticide-Ca2+ complex and finally on transition energies of a large iron system presenting a light-induced excited spin-state trapping effect.
NASA Astrophysics Data System (ADS)
Wang, Luo; Rui, Li; Zhiqiang, Gai; RuiBo, Ai; Hongmin, Zhang; Xiaomei, Zhang; Bing, Yan
2016-07-01
Lead oxide (PbO), which plays the key roles in a range of research fields, has received a great deal of attention. Owing to the large density of electronic states and heavy atom Pb including in PbO, the excited states of the molecule have not been well studied. In this work, high level multireference configuration interaction calculations on the low-lying states of PbO have been carried out by utilizing the relativistic effective core potential. The effects of the core-valence correlation correction, the Davidson modification, and the spin–orbital coupling on the electronic structure of the PbO molecule are estimated. The potential energy curves of 18 Λ-S states correlated to the lowest dissociation limit (Pb (3Pg) + O(3Pg)) are reported. The calculated spectroscopic parameters of the electronic states below 30000 cm‑1, for instance, X1Σ+, 13Σ+, and 13Σ‑, and their spin–orbit coupling interaction, are compared with the experimental results, and good agreements are derived. The dipole moments of the 18 Λ-S states are computed with the configuration interaction method, and the calculated dipole moments of X1Σ+ and 13Σ+ are consistent with the previous experimental results. The transition dipole moments from 11Π, 21Π, and 21Σ+ to X1Σ+ and other singlet excited states are estimated. The radiative lifetime of several low-lying vibrational levels of 11Π, 21Π, and 21Σ+ states are evaluated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404180 and 11574114), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2015010), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC).
NASA Astrophysics Data System (ADS)
Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.
2015-03-01
Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.
GREEN, J.W.
2000-05-01
This document provides a configuration control plan for the software associated with the operation and control of the Integrated Water Treatment System (IWTS). It establishes requirements for ensuring configuration item identification, configuration control, configuration status accounting, defect reporting and resolution of computer software. It is written to comply with HNF-SD-SNF-CM-001, Spent Nuclear Fuel Configuration Management Plan (Forehand 1998) and HNF-PRO-309 Computer Software Quality Assurance Requirements, and applicable sections of administrative procedure CM-6-037-00, SNF Project Process Automation Software and Equipment.
NASA Astrophysics Data System (ADS)
Sibaev, Marat; Crittenden, Deborah L.
2016-08-01
This work describes the benchmarking of a vibrational configuration interaction (VCI) algorithm that combines the favourable computational scaling of VPT2 with the algorithmic robustness of VCI, in which VCI basis states are selected according to the magnitude of their contribution to the VPT2 energy, for the ground state and fundamental excited states. Particularly novel aspects of this work include: expanding the potential to 6th order in normal mode coordinates, using a double-iterative procedure in which configuration selection and VCI wavefunction updates are performed iteratively (micro-iterations) over a range of screening threshold values (macro-iterations), and characterisation of computational resource requirements as a function of molecular size. Computational costs may be further reduced by a priori truncation of the VCI wavefunction according to maximum extent of mode coupling, along with discarding negligible force constants and VCI matrix elements, and formulating the wavefunction in a harmonic oscillator product basis to enable efficient evaluation of VCI matrix elements. Combining these strategies, we define a series of screening procedures that scale as O ( Nmode 6 ) - O ( Nmode 9 ) in run time and O ( Nmode 6 ) - O ( Nmode 7 ) in memory, depending on the desired level of accuracy. Our open-source code is freely available for download from http://www.sourceforge.net/projects/pyvci-vpt2.
NASA Astrophysics Data System (ADS)
Fukuoka, Y.; Shinohara, S.; Funaki, Y.; Nakatsukasa, T.; Yabana, K.
2013-07-01
We report an investigation of the structure of the 12C nucleus employing a newly developed configuration-mixing method. In the three-dimensional coordinate-space representation, we generate a number of Slater determinants with various correlated structures using the imaginary-time algorithm. We then diagonalize a many-body Hamiltonian with the Skyrme interaction in the space spanned by the Slater determinants with parity and angular momentum projections. Our calculation reasonably describes the ground and excited states of the 12C nucleus, both for shell-model-like and cluster-like states. The excitation energies and transition strengths of the ground-state rotational band are well reproduced. Negative-parity excited states, 11-, 21-, and 31-, are also reasonably described. The second and third 0+ states, 02+ and 03+, appear at around 8.8 and 15 MeV, respectively. The 02+ state shows a structure consistent with former results of the α-cluster models. However, the calculated radius of the 02+ state is smaller than in those calculations. The three-α linear-chain configuration dominates in the 03+ state.
Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment
NASA Astrophysics Data System (ADS)
Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel
2012-10-01
A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)
Family interaction and treatment adherence after stroke.
Evans, R L; Bishop, D S; Matlock, A L; Stranahan, S; Smith, G G; Halar, E M
1987-08-01
Caregivers of 60 stroke patients were assessed five months after patient discharge from a stroke care unit to determine the relationship between family function and poststroke treatment adherence. Areas of family interaction which were significantly related to ratings of treatment adherence included problem solving, communication, and affective involvement. Better functioning families were consistently high on signs of treatment adherence. Findings suggest that families with specific dysfunction may not be as capable of helping patients comply with rehabilitation efforts as families who function more effectively. Thorough family assessment to identify which areas of family interaction are most problematic in relation to adherence issues is recommended. PMID:3619615
On the performance of atomic natural orbital basis sets: A full configuration interaction study
Illas, F. Departament de Quimica Fisica, Grup de Quimica Quantica, Facultat de Quimica, Universitat de Barcelona, C Ricart, J.M. ); Rubio, J. ); Bagus, P.S. )
1990-10-01
The performance of atomic natural orbital (ANO) basis sets has been studied by comparing self-consistant field (SCF) and full configuration interaction (CI) results obtained for the first row atoms and hydrides. The ANO results have been compared with those obtained using a segmented basis set containing the same number of contracted basis functions. The total energies obtained with the ANO basis sets are always lower than the one obtained by using the segmented one. However, for the hydrides, differential electronic correlation energy obtained with the ANO basis set may be smaller than the one recovered with the segmented set. We relate this poorer differential correlation energy for the ANO basis set to the fact that only one contracted {ital d} function is used for the ANO and segmented basis sets.
Nakatsuji, Hiroshi
2011-12-15
The simplest iterative complement (SIC) calculations starting from Hartree-Fock and giving full configuration interaction (CI) at convergence were performed using regular and inverse Hamiltonians. Each iteration step is variational and involves only one variable. The convergence was slow when we used the regular Hamiltonian, but became very fast when we used the inverse Hamiltonian. This difference is due to the Coulomb singularity problem inherent in the regular Hamiltonian; the inverse Hamiltonian does not have such a problem. For this reason, the merit of the inverse Hamiltonian over the regular one becomes even more dramatic when we use a better-quality basis set. This was seen by comparing the calculations due to the minimal and double-{zeta} basis sets. Similar problematic situations exist in the Krylov sequence and in the Lanczos and Arnoldi methods.
NASA Technical Reports Server (NTRS)
Head-Gordon, Martin; Rico, Rudolph J.; Lee, Timothy J.; Oumi, Manabu
1994-01-01
A perturbative correction to the method of configuration interaction with single substitutions (CIS) is presented. This CIS(D) correction approximately introduces the effect of double substitutions which are absent in CIS excited states. CIS(D) is a second-order perturbation expansion of the coupled-cluster excited state method, restricted to single and double substitutions, in a series in which CIS is zeroth order, and the first-order correction vanishes. CIS (D) excitation energies are size consistent and the calculational complexity scales with the fifth power of molecular size, akin to second-order Moller-Plesset theory for the ground state. Calculations on singlet excited states of ethylene, formaldehyde, acetaldehyde, butadiene and benzene show that CIS (D) is a uniform improvement over CIS. CIS(D) appears to be a promising method for examining excited states of large molecules, where more accurate methods are not feasible.
Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application.
Blunt, N S; Smart, Simon D; Kersten, J A F; Spencer, J S; Booth, George H; Alavi, Ali
2015-05-14
We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable. PMID:25978883
NASA Astrophysics Data System (ADS)
Go, Ara; Millis, Andrew J.
2013-03-01
The configuration interaction technique has been widely used in quantum chemistry to solve quantum many body systems with lower computational costs than exact diagonalization and was introduced by Dominika Zgid, Emanuel Gull, and Garnet Kin-Lic Chan [Phys. Rev. B 86, 165128 (2012)] as a solver for the impurity models of dynamical mean field theory. We extend their work, demonstrating for the one and two dimensional Hubbard model how the method reproduces the known results and allows convergence with bath size to be studied in cluster dynamical mean field theory. As an example of the power of the method, cluster dynamical mean field studies of the three band copper-oxygen model are presented. This work was supported by the CMCSN program of the US Department of Energy.
Overy, Catherine; Blunt, N. S.; Shepherd, James J.; Booth, George H.; Cleland, Deidre; Alavi, Ali
2014-12-28
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.
Arulmozhiraja, Sundaram; Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi
2006-01-21
The vertical absorption spectrum and photodissociation mechanism of vinyl chloride (VC) were studied by using symmetry-adapted cluster configuration interaction theory. The important vertical {pi}{yields}{pi}* excitation was intensively examined with various basis sets up to aug-cc-pVTZ augmented with appropriate Rydberg functions. The excitation energy for {pi}{yields}{pi}* transition obtained in the present study, 6.96 eV, agrees well with the experimental value, 6.7-6.9 eV. Calculated excitation energies along with the oscillator strengths clarify that the main excitation in VC is the {pi}{yields}{pi}* excitation. Contrary to the earlier theoretical reports, the results obtained here support that the C-Cl bond dissociation takes place through the n{sub Cl}-{sigma}{sub C-Cl}* state.
NASA Astrophysics Data System (ADS)
Zazza, Costantino; Sanna, Nico; Tatoli, Simone; Aschi, Massimiliano; Palma, Amedeo
Quadratic configuration interaction procedure with single and double electronic excitations (QCISD) has been used, for the first time, to calculate the electronic structure of the Compound I (CpdI), which represents a key intermediate in the catalytic cycle of Horseradish Peroxidase (HRP) enzyme. The QCISD method is applied to lowest quasi-isoenergetic doublet and quartet spin multiplicity and results compared with density functional theory (DFT/B3LYP) data. This investigation shows that, at present, QCISD is more accurate than DFT-based approach in discriminating between the two lowest magnetic states of CpdI complex in HRP enzyme. Such a result opens the possibility of theoretically addressing the reaction mechanism leading to CpdI complex in HRP using a correlated wavefunction based approach.
Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application
Blunt, N. S. Kersten, J. A. F.; Smart, Simon D.; Spencer, J. S.; Booth, George H.; Alavi, Ali
2015-05-14
We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable.
NASA Astrophysics Data System (ADS)
Young, L.; Hasegawa, S.; Kurtz, C.; Datta, Debasis; Beck, Donald R.
1995-05-01
We report an experimental and theoretical study of the hyperfine structure (hfs) in various metastable states in 93Nb ii. Hyperfine structures of five levels in Nb ii have been measured using a combination of the laser-rf double resonance and laser-induced fluorescence methods in a collinear laser-ion-beam geometry. Theoretically, for J=2, a multireference calculation of energies and hfs based on a relativistic configuration-interaction methodology of the lowest ten levels in the (4d+5s)4 manifold is reported. The average energy error is 450 cm-1. Many of the hyperfine constants show large changes from the Dirac-Fock values and the magnetic dipole constant has a 4% accuracy for the one J=2 level measured. We have also identified all the core-valence and core-core effects that dominate the energy differences and hfs.
Large-dimension configuration-interaction calculations of positron binding to the group-II atoms
Bromley, M. W. J.; Mitroy, J.
2006-03-15
The configuration-interaction (CI) method is applied to the calculation of the structures of a number of positron binding systems, including e{sup +}Be, e{sup +}Mg, e{sup +}Ca, and e{sup +}Sr. These calculations were carried out in orbital spaces containing about 200 electron and 200 positron orbitals up to l=12. Despite the very large dimensions, the binding energy and annihilation rate converge slowly with l, and the final values do contain an appreciable correction obtained by extrapolating the calculation to the l{yields}{infinity} limit. The binding energies were 0.00317 hartree for e{sup +}Be, 0.0170 hartree for e{sup +}Mg, 0.0189 hartree for e{sup +}Ca, and 0.0131 hartree for e{sup +}Sr.
An excited-state approach within full configuration interaction quantum Monte Carlo
Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali
2015-10-07
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available.
Quasidegenerate second-order perturbation corrections to single excitation configuration interaction
NASA Astrophysics Data System (ADS)
Head-Gordon, Martin
1999-02-01
A family of quasidegenerate second-order perturbation theories that correct excitation energies from single-excitation configuration interaction (CIS) are introduced which generalize the earlier non-degenerate second-order method, CIS(D). The new methods are termed CIS(D), where n ranges from 0 to x, according to the number of terms retained in a doubles denominator expansion. Truncation at either n = 0 or n = 1 yields methods which involve the diagonalization of a dressed singles-only response matrix, where the dressing is state-independent. Hence CIS(D0) and CIS(D1) can be implemented efficiently using semidirect methods, which are discussed. Test calculations on formaldehyde, ethylene, chlorine nitrate, styrene, benzaldehyde, and chalcone are presented to assess the performance of these methods. CIS(D0) and CIS(D1) both show significant improvements relative to CIS(D) in cases of near-degeneracy.
NASA Astrophysics Data System (ADS)
Roostaei, B.; Ermler, W. C.
2012-03-01
A procedure for calculating electric dipole transition moments and permanent dipole moments from spin-orbit configuration interaction (SOCI) wave functions has been developed in the context of the COLUMBUS ab initio electronic structure programs. The SOCI procedure requires relativistic effective core potentials and their corresponding spin-orbit coupling operators to define the molecular Hamiltonian, electric dipole transition moment and permanent dipole moment matrices. The procedure can be used for any molecular system for which the COLUMBUS SOCI circuits are applicable. Example applications are reported for transition moments and dipole moments for a series of electronic states of LiBe and LiSr defined in diatomic relativistic ωω-coupling.
State-averaged Monte Carlo configuration interaction applied to electronically excited states
NASA Astrophysics Data System (ADS)
Coe, J. P.; Paterson, M. J.
2013-10-01
We introduce state-averaging into the method of Monte Carlo configuration interaction (SA-MCCI) to allow the stable and efficient calculation of excited states. We show that excited potential curves for H3, including a crossing with the ground state, can be accurately reproduced using a small fraction of the full configuration interaction (FCI) space. A recently introduced error measure for potential curves [J. P. Coe and M. J. Paterson, J. Chem. Phys. 137, 204108 (2012)] is also shown to be a fair approach when considering potential curves for multiple states. We demonstrate that potential curves for LiF using SA-MCCI agree well with the FCI results and the avoided crossing occurs correctly. The seam of conical intersections for CH2 found by Yarkony [J. Chem. Phys. 104, 2932 (1996)] is used as a test for SA-MCCI and we compare potential curves from SA-MCCI with FCI results for this system for the first three triplet states. We then demonstrate the improvement from using SA-MCCI on the dipole of the 2 1A1 state of carbon monoxide. We then look at vertical excitations for small organic molecules up to the size of butadiene where the SA-MCCI energies and oscillator strengths are compared with CASPT2 values [M. Schreiber, M. R. Silva-Junior, S. P. A. Sauer, and W. Thiel, J. Chem. Phys. 128, 134110 (2008)]. We finally see if the SA-MCCI results for these excitation energies can be improved by using MCCIPT2 with approximate natural orbitals when the PT2 space is not onerously large.
Jet-Pylon Interaction of High Bypass Ratio Separate Flow Nozzle Configurations
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Kinzie, Kevin W.
2004-01-01
NASA Langley Research Center, Hampton, Virginia, 23681-0001 USA An experimental investigation was performed of the acoustic effects of jet-pylon interaction for separate flow and chevron nozzles of both bypass ratio five and eight. The models corresponded to an approximate scale factor of nine. Cycle conditions from approach to takeoff were tested at wind tunnel free jet Mach numbers of 0.1, 0.2 and 0.28. An eight-chevron core nozzle, a sixteen chevron fan nozzle, and a pylon were primary configuration variables. In addition, two orientations of the chevrons relative to each other and to the pylon were tested. The effect of the pylon on the azimuthal directivity was investigated for the baseline nozzles and the chevron nozzles. For the bypass ratio five configuration, the addition of the pylon reduces the noise by approximately 1 EPNdB compared to the baseline case and there is little effect of azimuthal angle. The core chevron produced a 1.8 EPNdB reduction compared to the baseline nozzle. Adding a pylon to the chevron core nozzle produces an effect that depends on the orientation of the chevron relative to the pylon. The azimuthal directivity variation remains low at less than 0.5 EPNdB. For the bypass ratio eight configuration the effect of adding a pylon to the baseline nozzle is to slightly increase the noise at higher cycle points and for the case with a core chevron the pylon has little additional effect. The azimuthal angle effect continues to be very small for the bypass ratio eight configurations. A general impact of the pylon was observed for both fan and core chevrons at both bypass ratios. The pylon reduces the typical low frequency benefit of the chevrons, even eliminating it in some cases, while not impacting the high frequency. On an equal ideal thrust basis, the bypass ratio eight baseline nozzle was about 5 EPNdB lower than the bypass ratio five baseline nozzle at the highest cycle condition, however, with a pylon installed the difference
Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations
Thompson, L. E.
2002-02-27
GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.
Angthong, Chayanin
2016-01-01
AIM: To report ankle fracture configurations and bone quality following arthroscopic-assisted reduction and internal-fixation (ARIF) or open reduction and internal-fixation (ORIF). METHODS: The patients of ARIF (n = 16) or ORIF (n = 29) to treat unstable ankle fracture between 2006 and 2014 were reviewed retrospectively. Baseline data, including age, sex, type of injury, immediate postoperative fracture configuration (assessed on X-rays and graded by widest gap and largest step-off of any intra-articular site), bone quality [assessed with bone mineral density (BMD) testing] and arthritic changes on X-rays following surgical treatments were recorded for each group. RESULTS: Immediate-postoperative fracture configurations did not differ significantly between the ARIF and ORIF groups. There were anatomic alignments as 8 (50%) and 8 (27.6%) patients in ARIF and ORIF groups (P = 0.539) respectively. There were acceptable alignments as 12 (75%) and 17 (58.6%) patients in ARIF and ORIF groups (P = 0.341) respectively. The arthritic changes in follow-up period as at least 16 wk following the surgeries were shown as 6 (75%) and 10 (83.3%) patients in ARIF and ORIF groups (P = 0.300) respectively. Significantly more BMD tests were performed in patients aged > 60 years (P < 0.001), ARIF patients (P = 0.021), and female patients (P = 0.029). There was no significant difference in BMD test t scores between the two groups. CONCLUSION: Ankle fracture configurations following surgeries are similar between ARIF and ORIF groups, suggesting that ARIF is not superior to ORIF in treatment of unstable ankle fractures. PMID:27114933
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Devereaux, P. A.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.
NASA Astrophysics Data System (ADS)
Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo; Vavassori, Paolo; Sarella, Anandakumar; Bisero, Diego
2016-05-01
Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.
Sivalingam, Kantharuban; Krupicka, Martin; Auer, Alexander A; Neese, Frank
2016-08-01
Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO(+), OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ∼0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu[NH3]4 (2+) model complex. The benchmark is supplemented with the
NASA Astrophysics Data System (ADS)
Sivalingam, Kantharuban; Krupicka, Martin; Auer, Alexander A.; Neese, Frank
2016-08-01
Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO+, OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ˜0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu [NH 3 ] 4 2 + model complex. The benchmark is supplemented with the
Ab initio configuration interaction study of the B- and C-band photodissociation of methyl iodide
NASA Astrophysics Data System (ADS)
Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Buenker, Robert J.
2011-01-01
Multireference spin-orbit configuration interaction calculations have been carried out for the valence and low-lying Rydberg states of CH_3I. Potential energy surfaces along the C-I dissociation coordinate (minimal energy paths with respect to the umbrella angle) have been obtained as well as transition moments for excitation of the Rydberg states. It is shown that the B and C absorption bands of CH_3I are dominated by the perpendicular {}^3{R}_1, {^1R} (E) leftarrow tilde{X} A_1 transitions, while the {}^3R_2(E), ^3R_{0^+}(A_1) leftarrow tilde{X} A_1 transitions are very weak. It is demonstrated that the bound Rydberg states of the B and C bands are predissociated due to the interaction with the repulsive E and A_2 components of the {}^3A_1 state, with the {}^3A_1(E) state being the main decay channel. It is predicted that the only possibility to obtain the I(^2P_{3/2}) ground state atoms from the CH_3I photodissociation in the B band is by interaction of the {}^3R_1(E) state with the repulsive {}^1Q(E) valence state at excitation energies above 55 000 cm^{-1}. The calculated ab initio data are used to analyze the influence of the Rydberg state vibrational excitation on the decay process. It is shown that, in contrast to intuition, excitation of the ν _3 C-I stretching mode supresses the predissociation, whereas the ν _6 rocking vibration enhances the predissociation rate.
Kim, Kyoung-Yeol; Yang, Wulin; Logan, Bruce E
2015-09-01
Efficient treatment of domestic wastewater under continuous flow conditions using microbial fuel cells (MFCs) requires hydraulic retention times (HRTs) that are similar to or less than those of conventional methods such as activated sludge. Two MFCs in series were compared at theoretical HRTs of 8.8, 4.4 and 2.2 h using two different brush-electrode MFC configurations: a full brush evenly spaced between two cathodes (S2C); and trimmed brush anodes near a single cathode (N1C). The MFCs with two cathodes produced more power than the MFCs with a single cathode, with 1.72 mW for the S2C, compared to and 1.12 mW for the N1C at a set HRT = 4.4 h. The single cathode MFCs with less cathode area removed slightly more COD (54.2 ± 2.3%, N1C) than the two-cathode MFCs (48.3 ± 1.0%, S2C). However, the higher COD removal was due to the longer HRTs measured for the MFCs with the N1C configuration (10.7, 5.3 and 3.1 h) than with the S2C configuration (7.2, 3.7 and 2.2 h), despite the same theoretical HRT. The longer HRTs of the N1C MFCs also resulted in slightly higher coulombic efficiencies (≤37%) than those of the S2C MFCs (≤29%). While the S2C MFC configuration would be more advantageous based on electrical power production, the N1C MFC might be more useful on the basis of capital costs relative to COD removal efficiency due to the use of less cathode surface area per volume of reactor. PMID:25996751
Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Zheleznov, I. V.; Zotova, I. V.
2013-04-15
We perform 3D particle-in-cell simulations of terahertz gyrotrons with two different configurations of the interaction space. For a gyrotron with conventional cylindrical configuration of the interaction cavity, we demonstrate reasonable agreement between simulations and experimental results, including output frequency, structure of the higher-order operating mode (TE{sub 17,4}), output power, and ohmic losses. For a novel planar gyrotron scheme with transverse energy extraction, a possibility of further increasing the oversized factor with the single-mode operation regime retained is shown. Frequency detuning by mechanical variation of the gap between waveguide plates is also demonstrated.
Configuration interaction study on the ground and excited electronic states of the SrH molecule
NASA Astrophysics Data System (ADS)
Liu, Xiaoting; Liang, Guiying; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing
2016-02-01
High-level ab initio calculations on the ground and the excited states of the SrH molecule have been carried out utilizing the multi-reference configuration interaction method plus Davidson correction (MRCI+Q) method, with small-core relativistic effective core potentials together with the corresponding correlation consistent polarized valence basis sets. The potential energy curves (PECs) of the 16 Λ-S states have been obtained with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound states were calculated, most of which have been reported for the first time, with those pertaining to the X2Σ+, A2П, B2Σ+, and A‧2Δ states being in line with the available experimental and theoretical values. The calculated spin-orbit matrix element indicates a strong interaction between the X2Σ+ and A2П states in the Franck-Condon region. The spin-orbit coupling (SOC) splits the lowest strongly bound X2Σ+, A2П, A‧2Δ, B2Σ+, and D2Σ+ states into 9 Ω states. For the D2Σ+ state, the SOC shifts the potential-well minimum to higher energy and shortens the bond length. The transition properties of the bound Λ-S states were predicated, including the transition dipole moments (TDMs), the Franck-Condon factors, and the radiative lifetimes. The lifetimes were calculated to be 34.2 ns (v‧=0) and 55.0 ns (v‧=0) for A2П and B2Σ+, in good agreement with the experimental results of 33.8±1.9 ns and 48.4±2.0 ns.
Ab initio no core configuration interaction calculations in the natural orbital basis
NASA Astrophysics Data System (ADS)
Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter
2015-10-01
The natural orbital basis has been successfully used in the past in atomic and molecular structure calculations. The natural orbitals used in those calculations are calculated by diagonalizing the electron one-body density matrix. Here we develop natural orbitals for nuclear no-core configuration interaction (NCCI) calculations. A NCCI calculation using an initial single particle basis, such as the harmonic oscillator basis, must first be performed in order to obtain a one-body density matrix. The eigenvectors of the one-body density matrix are the natural orbitals, and the corresponding eigenvalues are the occupations of these natural orbitals in the nuclear wave function. According to these occupancies, the most important natural orbitals, in the sense of the most occupied, can then be selected and used in a NCCI calculation. We discuss ab initio nuclear NCCI calculations for light nuclei and assess their ability to provide faster convergence. Supported by the US DOE (under Grants DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, and DE-FG02-87ER40371), and the US NSF (under Grant 0904782). Computational resources provided by NERSC (supported by US DOE Contract DE-AC02-05CH11231), and NDCRC.
Relativistic [4] Configuration Interaction Hyperfine Structure Constants for ^133CsII
NASA Astrophysics Data System (ADS)
O'Malley, Steven M.; Beck, Donald R.
1996-05-01
RCI hfs constants have been obtained for all ^133CsII levels belonging to the 5p^5(6s+5d+6p) configurations using methodology presented elsewhere(e.g. D. Datta and D. R. Beck, Phys. Rev. A 52), 3622 (1995).. Except for 2 levels, all A's agree with experiment(C. J. Sansonetti and K. L. Andrew, J. Opt. Soc. Am. 3), 386 (1986). to 10% or better. There are large many body effects present for the odd J=1,2 levels as a result of the interaction of nearby 5p^5 6s and 5p^5 5d, and the large discrepancy (60.77%) in A for 5d3/2[3/2]2 and 5d3/2[1/2]1 disappears once the residual errors in energy differences (300 - 600 cm-1) are removed. Our values for the small quadruple hfs constants show large discrepancies with the few experimental values(E. Alvarez et al Phys. Rev. A 21), 710 (1980). available. We think the fault lies mainly with experiment, and the B's should be remeasured.
Suo, Bingbing; Yu, Yan-Mei; Han, Huixian
2015-03-07
We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with {sup 4}Σ{sup −} and {sup 2}Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm{sup −1} above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm{sup −1} of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm{sup −1}, which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths.
NASA Astrophysics Data System (ADS)
Böhm, Karl-Heinz; Auer, Alexander A.; Espig, Mike
2016-06-01
In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N5 scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ɛ = 10-4 and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N10 and future work has to be directed towards reduction-free algorithms.
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Booth, George H.; Alavi, Ali
2012-06-01
Using the homogeneous electron gas (HEG) as a model, we investigate the sources of error in the "initiator" adaptation to full configuration interaction quantum Monte Carlo (i-FCIQMC), with a view to accelerating convergence. In particular, we find that the fixed-shift phase, where the walker number is allowed to grow slowly, can be used to effectively assess stochastic and initiator error. Using this approach we provide simple explanations for the internal parameters of an i-FCIQMC simulation. We exploit the consistent basis sets and adjustable correlation strength of the HEG to analyze properties of the algorithm, and present finite basis benchmark energies for N = 14 over a range of densities 0.5 ⩽ rs ⩽ 5.0 a.u. A single-point extrapolation scheme is introduced to produce complete basis energies for 14, 38, and 54 electrons. It is empirically found that, in the weakly correlated regime, the computational cost scales linearly with the plane wave basis set size, which is justifiable on physical grounds. We expect the fixed-shift strategy to reduce the computational cost of many i-FCIQMC calculations of weakly correlated systems. In addition, we provide benchmarks for the electron gas, to be used by other quantum chemical methods in exploring periodic solid state systems.
State-of-the-art molecular applications of full configuration interaction quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Thomas, Robert; Overy, Catherine; Shepherd, James; Booth, George; Alavi, Ali
2013-03-01
Full configuration interaction quantum Monte Carlo (FCIQMC)1 and its initiator adaptation (i-FCIQMC)2 provide, in principle, exact (FCI) energies via a population dynamics algorithm of an ensemble of discrete, signed walkers in Slater-determinant space. We demonstrate that a novel choice of reference state has the potential to widen the scope of this already versatile method, and corroborate the finding that an extension of the algorithm to allow non-integer walkers can yield significantly reduced stochastic error without a commensurate increase in computational cost3. New applications of FCIQMC to transition-metal systems of general and biological interest are presented, many of which have, to date, posed serious challenges for traditional quantum chemical methods 45. 1 G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys., 131, 054106 (2009) 2 D. M. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys., 132, 041103 (2010) 3 F. R. Petruzielo, A. A. Holmes, H. J. Changlani, M. P. Nightingale and C. J. Umrigar, arXiv:1207.6138 4 N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 125, 074110 (2006) 5 C. J. Cramer, M. Wloch, P. Piecuch, C. Puzzarini and L. Gagliardi, J. Phys. Chem. A, 110, 1991 (2006)
NASA Astrophysics Data System (ADS)
Abyar, Fatemeh; Farrokhpour, Hossein
2014-11-01
The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.
NASA Astrophysics Data System (ADS)
Delisle, J.-B.; Correia, A. C. M.; Laskar, J.
2015-07-01
We study the stability of mean-motion resonances (MMR) between two planets during their migration in a protoplanetary disk. We use an analytical model of resonances and describe the effect of the disk by a migration timescale (Tm,i) and an eccentricity damping timescale (Te,i) for each planet (i = 1,2 for the inner and outer planets, respectively). We show that the resonant configuration is stable if Te,1/Te,2> (e1/e2)2. This general result can be used to put constraints on specific models of disk-planet interactions. For instance, using classical prescriptions for type-I migration, we show that when the angular momentum deficit (AMD) of the inner orbit is greater than the outer's orbit AMD, resonant systems must have a locally inverted disk density profile to stay locked in resonance during the migration. This inversion is very atypical of type-I migration and our criterion can thus provide an evidence against classical type-I migration. That is indeed the case for the Jupiter-mass resonant systems HD 60532b, c (3:1 MMR), GJ 876b, c (2:1 MMR), and HD 45364b, c (3:2 MMR). This result may be evidence of type-II migration (gap-opening planets), which is compatible with the high masses of these planets.
Kersten, J A F; Booth, George H; Alavi, Ali
2016-08-01
The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses and compares two contrasting "universal" explicitly correlated approaches that fit into the FCIQMC framework: the [2]R12 method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mEh to 3-4 mEh. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach. PMID:27497549
Böhm, Karl-Heinz; Auer, Alexander A; Espig, Mike
2016-06-28
In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N(5) scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ϵ = 10(-4) and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N(10) and future work has to be directed towards reduction-free algorithms. PMID:27369492
Highly correlated configuration interaction calculations on water with large orbital bases
Almora-Díaz, César X.
2014-05-14
A priori selected configuration interaction (SCI) with truncation energy error [C. F. Bunge, J. Chem. Phys. 125, 014107 (2006)] and CI by parts [C. F. Bunge and R. Carbó-Dorca, J. Chem. Phys. 125, 014108 (2006)] are used to approximate the total nonrelativistic electronic ground state energy of water at fixed experimental geometry with CI up to sextuple excitations. Correlation-consistent polarized core-valence basis sets (cc-pCVnZ) up to sextuple zeta and augmented correlation-consistent polarized core-valence basis sets (aug-cc-pCVnZ) up to quintuple zeta quality are employed. Truncation energy errors range between less than 1 μhartree, and 100 μhartree for the largest orbital set. Coupled cluster CCSD and CCSD(T) calculations are also obtained for comparison. Our best upper bound, −76.4343 hartree, obtained by SCI with up to sextuple excitations with a cc-pCV6Z basis recovers more than 98.8% of the correlation energy of the system, and it is only about 3 kcal/mol above the “experimental” value. Despite that the present energy upper bounds are far below all previous ones, comparatively large dispersion errors in the determination of the extrapolated energies to the complete basis set do not allow to determine a reliable estimation of the full CI energy with an accuracy better than 0.6 mhartree (0.4 kcal/mol)
A deterministic alternative to the full configuration interaction quantum Monte Carlo method
NASA Astrophysics Data System (ADS)
Tubman, Norm M.; Lee, Joonho; Takeshita, Tyler Y.; Head-Gordon, Martin; Whaley, K. Birgitta
2016-07-01
Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr2 molecule. We demonstrate for systems like Cr2 that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C2.
NASA Astrophysics Data System (ADS)
Kersten, J. A. F.; Booth, George H.; Alavi, Ali
2016-08-01
The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses and compares two contrasting "universal" explicitly correlated approaches that fit into the FCIQMC framework: the [2]R12 method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mEh to 3-4 mEh. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.
NASA Astrophysics Data System (ADS)
Casanova, David; Rhee, Young Min; Head-Gordon, Martin
2008-04-01
Scaled opposite spin (SOS) second order perturbative corrections to single excitation configuration interaction (CIS) are extended to correctly treat quasidegeneracies between excited states. Two viable methods, termed as SOS-CIS(D0) and SOS-CIS(D1), are defined, implemented, and tested. Each involves one empirical parameter (plus a second for the SOS-MP2 ground state), has computational cost that scales with the fourth power of molecule size, and has storage requirements that are cubic, with only quantities of the rank of single excitations produced and stored during iterations. Tests on a set of low-lying adiabatic valence excitation energies and vertical Rydberg excitations of organic and inorganic molecules show that the empirical parameter can be acceptably transferred from the corresponding nondegenerate perturbation theories without any further fitting. Further tests on higher excited states show that the new methods correctly perform for surface crossings for which nondegenerate approaches fail. Numerical results show that SOS-CIS(D0) appears to treat Rydberg excitations in a more balanced way than SOS-CIS(D1) and is, therefore, likely to be the preferred approach. It should be useful for exploring excited state geometries, transition structures, and conical intersections for states of medium to large organic molecules that are dominated by single excitations.
Farrokhpour, Hossein; Ghandehari, Maryam
2013-05-23
In this work, the valence vertical ionization energies (up to 5) of some important biologically active molecules including 2,4-dinitrophenol, 2,4-dinitroanisole, nicotinic acid, nicotinic acid methyl ester, nicotinamide, N,N-diethylnicotinamide, barbituric acid, uric acid, cytosine, β-carotene, and menadione were calculated in the gas phase and compared with the experimental data reported in the literature. The symmetry-adapted-cluster configuration interaction (SAC-CI) general-R method was used to calculate the ionization energies. The intensity of each ionization band was evaluated using the monopole approximation. Comparison of the calculated photoelectron spectrum of each molecule with its corresponding experimental spectra allowed for assigning the photoelectron bands by natural bonding orbital (NBO) calculations even though some of the associated bands were significantly overlapped for some molecules. Among the considered molecules, there was no agreement between the experimental and calculated photoelectron spectrum of β-carotene. The reason for this disagreement was theoretically investigated and attributed to the degradation and decomposition of β-carotene. The calculated first ionization energies of the considered molecules were correlated with their Hückel k-index to obtain Coulomb (α) and resonance (β) integrals of the Hückel molecular orbital theory for the biomolecules considered in this study. A linear correlation was found between the first ionization energy and the Hückel k-index. PMID:23659524
NASA Astrophysics Data System (ADS)
Smith, DuWayne L.
A Field Reversed Configuration (FRC) plasma source was designed and constructed to conduct high energy plasma-materials interaction studies. The purpose of these studies is the development of advanced materials for use in plasma based electric propulsion systems and nuclear fusion containment vessels. Outlined within this thesis is the basic concept of FRC plasmoid creation, an overview of the device design and integration of various diagnostics systems for plasma conditions and characterization, discussion on the variety of material defects resulting from the plasma exposure with methods and tools designed for characterization. Using a Michelson interferometer it was determined that the FRC plasma densities are on the order of ~1021 m-3. A novel dynamic pressure probe was created to measure ion velocities averaging 300 km/s. Compensating flux loop arrays were used to measure magnetic field strength and verify the existence of the FRC plasmoid and when used in combination with density measurements it was determined that the average ion temperatures are ~130 eV. X-ray Photoelectron Spectroscopy (XPS) was employed as a means of characterizing the size and shape of the plasma jet in the sample exposure positions. SEM results from preliminary studies reveal significant morphological changes on plasma facing material surfaces, and use of XRD to elucidate fuel gas-ion implantation strain rates correlated to plasma exposure energies.
Redetermined structure, inter-molecular inter-actions and absolute configuration of royleanone.
Fun, Hoong-Kun; Chantrapromma, Suchada; Salae, Abdul Wahab; Razak, Ibrahim Abdul; Karalai, Chatchanok
2011-05-01
The structure of the title diterpenoid, C(20)H(28)O(3), {systematic name: (4bS,8aS)-3-hy-droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa-hydro-phenanthrene-1,4-dione} is confirmed [Eugster et al. (1993 ▶). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclo-hexane ring adopts a chair conformation whereas the other cyclo-hexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intra-molecular O-H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol-ecules are linked into chains along [010] by O-H⋯O hydrogen bonds and weak C-H⋯O inter-actions. The packing also features C⋯O [3.131 (3) Å] short contacts. PMID:21754362
NASA Astrophysics Data System (ADS)
Booth, George H.; Cleland, Deidre; Alavi, Ali; Tew, David P.
2012-10-01
By performing a stochastic dynamic in a space of Slater determinants, the full configuration interaction quantum Monte Carlo (FCIQMC) method has been able to obtain energies which are essentially free from systematic error to the basis set correlation energy, within small and systematically improvable error bars. However, the weakly exponential scaling with basis size makes converging the energy with respect to basis set costly and in larger systems, impossible. To ameliorate these basis set issues, here we use perturbation theory to couple the FCIQMC wavefunction to an explicitly correlated strongly orthogonal basis of geminals, following the { [2]_{{R12}} } approach of Valeev et al. The required one- and two-particle density matrices are computed on-the-fly during the FCIQMC dynamic, using a sampling procedure which incurs relatively little additional computation expense. The F12 energy corrections are shown to converge rapidly as a function of sampling, both in imaginary time and number of walkers. Our pilot calculations on the binding curve for the carbon dimer, which exhibits strong correlation effects as well as substantial basis set dependence, demonstrate that the accuracy of the FCIQMC-F12 method surpasses that of all previous FCIQMC calculations, and that the F12 correction improves results equivalent to increasing the quality of the one-electron basis by two cardinal numbers.
The effect of quantization on the full configuration interaction quantum Monte Carlo sign problem
NASA Astrophysics Data System (ADS)
Kolodrubetz, M. H.; Spencer, J. S.; Clark, B. K.; Foulkes, W. M. C.
2013-01-01
The sign problem in full configuration interaction quantum Monte Carlo (FCIQMC) without annihilation can be understood as an instability of the psi-particle population to the ground state of the matrix obtained by making all off-diagonal elements of the Hamiltonian negative. Such a matrix, and hence the sign problem, is basis dependent. In this paper, we discuss the properties of a physically important basis choice: first versus second quantization. For a given choice of single-particle orbitals, we identify the conditions under which the fermion sign problem in the second quantized basis of antisymmetric Slater determinants is identical to the sign problem in the first quantized basis of unsymmetrized Hartree products. We also show that, when the two differ, the fermion sign problem is always less severe in the second quantized basis. This supports the idea that FCIQMC, even in the absence of annihilation, improves the sign problem relative to first quantized methods. Finally, we point out some theoretically interesting classes of Hamiltonians where first and second quantized sign problems differ, and others where they do not.
Cleland, D M; Booth, George H; Alavi, Ali
2011-01-14
For the atoms with Z ≤ 11, energies obtained using the "initiator" extension to full configuration interaction quantum Monte Carlo (i-FCIQMC) come to within statistical errors of the FCIQMC results. As these FCIQMC values have been shown to converge onto FCI results, the i-FCIQMC method allows similar accuracy to be achieved while significantly reducing the scaling with the size of the Slater determinant space. The i-FCIQMC electron affinities of the Z ≤ 11 atoms in the aug-cc-pVXZ basis sets are presented here. In every case, values are obtained to well within chemical accuracy [the mean absolute deviation (MAD) from the relativistically corrected experimental values is 0.41 mE(h)], and significantly improve on coupled cluster with singles, doubles and perturbative triples [CCSD(T)] results. Since the only remaining source of error is basis set incompleteness, we have investigated using CCSD(T)-F12 contributions to correct the i-FCIQMC results. By doing so, much faster convergence with respect to basis set size may be achieved for both the electron affinities and the FCIQMC ionization potentials presented in a previous paper. With this F12 correction, the MAD can be further reduced to 0.13 mE(h) for the electron affinities and 0.31 mE(h) for the ionization potentials. PMID:21241085
Symmetry Breaking and Broken Ergodicity in Full Configuration Interaction Quantum Monte Carlo.
Thomas, Robert E; Overy, Catherine; Booth, George H; Alavi, Ali
2014-05-13
The initiator full configuration interaction quantum Monte Carlo method (i-FCIQMC) is applied to the binding curve of N2 in Slater-determinant Hilbert spaces formed of both canonical restricted Hartree-Fock (RHF) and symmetry-broken unrestricted Hartree-Fock (UHF) orbitals. By explicit calculation, we demonstrate that the technique yields the same total energy for both types of orbital but that as the bond is stretched, FCI expansions expressed in unrestricted orbitals are substantially more compact than their restricted counterparts and more compact than those expressed in split-localized orbitals. These unrestricted Hilbert spaces, however, become nonergodic toward the dissociation limit, and the total wave function may be thought of as the sum of two weakly coupled, spin-impure, functions whose energies are nonetheless very close to the exact energy. In this limit, it is a challenge for i-FCIQMC to resolve a spin-pure wave function. The use of unrestricted natural orbitals is a promising remedy for this problem, as their expansions are more strongly weighted toward lower excitations of the reference, and they provide stronger coupling to higher excitations than do UHF orbitals. PMID:26580521
NASA Astrophysics Data System (ADS)
O'Malley, Steven Michael
The work presented here is a compilation of three separate Relativistic Configuration Interaction (RCI) projects: 133Cs II hyperfine structure (HFS): HFS Constants have been obtained for all 5p5(5d + 6s + 6p) 133Cs II levels. The 22 magnetic dipole constants, A, agree with experiment to 12% or better for all but three levels. Many of the odd J = 1,2 levels, which include these three, exhibit large many body effects. Our values for the quadrupole HFS constants are considerably smaller than the few highly uncertain experimental values, which we believe need remeasurement. For the first time, we have found certain excitations from the 4d subshell to be important; we ascribe this to the presence of an open 5p subshell. Sn- bound excited state electron affinities (EA): Theoretical results have been computed to complement recent measurements by Scheer et al [Bull. Am. Phys. Soc. 42, 1026 (1997); Bull. Am. Phys. Soc. 43, 1357 (1998)] which yielded electron affinities of excited states of the ground configuration of Sn- . Our RCI values for the position of the excited Sn - with respect to the negative ion ground state are EA( 2D3/2) = 5903 cm-1 (0.732 eV), EA( 2D5/2) = 6493 cm-1 (0.805 eV). Triple excitations make a significant contribution. Magnetic dipole HFS constants (A) and M1 transition probabilities are also reported. La- EAs: RCI calculations, including valence and some shallow core-valence correlation indicate that La- has 11 bound states. The seven odd states arising from 6p attachment have EAs(in meV) of 462 (1D2), 282 (3F 2), 247 (3F3), 235 (3D 1), 145 (3D2), 84 (3F 4) and 56 (3D3). The remaining four bound states are even 5d attachments with EAs of 434 (3F2), 375 (3F3), 312 (3F4) and 62 (1D2). The majority of these levels are reported here for the first time. Two of these EAs are in good agreement with the recent experimental values of Covington et al [J. Phys. B 31, L855 (1998)]. The largest 5d-6p f-value is ~.00565.
Pseudopotential treatment of two body interactions
NASA Astrophysics Data System (ADS)
Kanjilal, Krittika
Ultracold atomic gases have been of great theoretical and experimental interest in the last two decades. In these systems, the de Broglie wavelength of the particles is much greater than the two body van der Waals length. As a result, the details of the two body interaction potential are irrelevant for a large number of applications and the realistic two body interaction potential can be replaced by a simple finite range or zero range model potential that reproduces the scattering quantities of the full interaction potential. This thesis develops zero range pseudopotentials and applies them to trapped two-particle systems. Ultracold gases loaded into optical lattices can be used to realize two particle systems under approximately harmonic confinement. We use pseudopotentials to obtain the eigenspectrum of two particles under external harmonic confinement semi-analytically. Advancements in trapping technology have resulted in the realization of low-dimensional systems. We develop pseudopotentials to treat two body interactions in one and two dimensions. We also elaborate on the physics that is unique to one and two dimensional systems. Feshbach resonances allow for the tunability of the effective two body interaction strength in the presence of a magnetic field. To model Feshbach resonances in two and three dimensions we develop coupled two channel zero range potentials. Dipole-dipole interactions in Chromium and polar molecules have been the subject of a lot of recent research. Unlike the interactions between two alkali atoms, these interactions are long range and anisotropic. We explore the scattering properties of two aligned dipoles using a simple shape dependent model potential. To understand a system two aligned dipoles under confinement, we develop a pseudopotential treatment for cylindrically symmetric interaction potentials under cylindrically symmetric harmonic confinement. This pseudopotential can be used to model any cylindrically symmetric interaction
NASA Astrophysics Data System (ADS)
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-01
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN. PMID:27179472
An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations
NASA Astrophysics Data System (ADS)
Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.
2013-12-01
In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations
SU-E-T-258: Parallel Optimization of Beam Configurations for CyberKnife Treatments
Viulet, T; Blanck, O; Schlaefer, A
2014-06-01
Purpose: The CyberKnife delivers a large number of beams originating at different non-planar positions and with different orientation. We study how much the quality of treatment plans depends on the beams considered during plan optimization. Particularly, we evaluate a new approach to search for optimal treatment plans in parallel by running optimization steps concurrently. Methods: So far, no deterministic, complete and efficient method to select the optimal beam configuration for robotic SRS/SBRT is known. Considering a large candidate beam set increases the likelihood to achieve a good plan, but the optimization problem becomes large and impractical to solve. We have implemented an approach that parallelizes the search by solving multiple linear programming problems concurrently while iteratively resampling zero weighted beams. Each optimization problem contains the same set of constraints but different variables representing candidate beams. The search is synchronized by sharing the resulting basis variables among the parallel optimizations. We demonstrate the utility of the approach based on an actual spinal case with the objective to improve the coverage. Results: The objective function is falling and reaches a value of 5000 after 49, 31, 25 and 15 iterations for 1, 2, 4, and 8 parallel processes. This corresponds to approximately 97% coverage in 77%, 59%, and 36% of the mean number of iterations with one process for 2, 4, and 8 parallel processes, respectively. Overall, coverage increases from approximately 91.5% to approximately 98.5%. Conclusion: While on our current computer with uniform memory access the reduced number of iterations does not translate into a similar speedup, the approach illustrates how to effectively parallelize the search for the optimal beam configuration. The experimental results also indicate that for complex geometries the beam selection is critical for further plan optimization.
Rhee, Young Min; Head-Gordon, Martin
2007-02-01
Two modifications of the perturbative doubles correction to configuration interaction with single substitutions (CIS(D)) are suggested, which are excited state analogs of ground state scaled second order Moeller-Plesset (MP2) methods. The first approach employs two parameters to scale the two spin components of the direct term of CIS(D), starting from the two-parameter spin-component scaled (SCS) MP2 ground state, and is termed SCS-CIS(D). An efficient resolution-of-the-identity (RI) implementation of this approach is described. The second approach employs a single parameter to scale only the opposite-spin direct term of CIS(D), starting from the one-parameter scaled opposite spin (SOS) MP2 ground state, and is called SOS-CIS(D). By utilizing auxiliary basis expansions and a Laplace transform, a fourth order algorithm for SOS-CIS(D) is described and implemented. The parameters describing SCS-CIS(D) and SOS-CIS(D) are optimized based on a training set including valence excitations of various organic molecules and Rydberg transitions of water and ammonia, and they significantly improve upon CIS(D) itself. The accuracy of the two methods is found to be comparable. This arises from a strong correlation between the same-spin and opposite-spin portions of the excitation energy terms. The methods are successfully applied to the zincbacteriochlorin-bacteriochlorin charge transfer transition, for which time-dependent density functional theory, with presently available exchange-correlation functionals, is known to fail. The methods are also successfully applied to describe various electronic transitions outside of the training set. The efficiency of SOS-CIS(D) and the auxiliary basis implementation of CIS(D) and SCS-CIS(D) are confirmed with a series of timing tests.
NASA Astrophysics Data System (ADS)
Bochevarov, Arteum D.; Friesner, Richard A.
2008-01-01
We investigate one of the fundamental observables, electronic charge density, as produced by a number of popular functionals of the density functional theory (DFT): SVWN5, B3LYP, B3LYP, OLYP, O3LYP, BP86, B3P86, O3P86, and PBE using restricted and unrestricted orbitals. Measuring and comparing the quality of the densities could tell us more about the physical soundness of the functional models. The study is performed on the small molecules He, H2, LiH, H4 in an extensive range of correlation-consistent basis sets. We compare DFT densities to those of full configuration interaction (FCI) under the assumption that the FCI density in the largest employed basis set is sufficiently close to the exact one. For LiH and H4, we also compare the DFT densities to those of CCSD. The SVWN5 functional consistently shows the worst performance. The OPTX exchange functional regularly beats the Becke exchange. Among the best performers are all the hybrid functionals, the novel O3P86 being the most accurate in most cases. The popular functional B3LYP was consistently outmatched by O3LYP, and produced, in fact, some of the poorest densities among the hybrids. CCSD was found to produce much more accurate densities than any DFT functional in the case of LiH in equilibrium geometry, but was sometimes outperformed by DFT in the case of slightly stretched H4, where CCSD theory itself starts to break down. Surprisingly, as one stretches the H2 molecule, BP86 and PBE improve the description of density although such behavior is not observed in other systems. We conclude by reasoning how functionals such as B3LYP, despite being quite average for density, could still be very successful in predicting thermodynamic properties.
No-core configuration-interaction model for the isospin- and angular-momentum-projected states
NASA Astrophysics Data System (ADS)
Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.
2016-08-01
Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.
Das, Suprotim; Chaudhari, Sanjeev
2015-01-01
The efficiency of the up-flow anaerobic sludge blanket (UASB) reactor is quite low for the treatment of low strength wastewaters (LSWs) due to less biogas production leading to poor mixing. LSW may be treated efficiently by providing adequate mixing in the UASB reactor when gas production is low, and sufficient mixing can be achieved by modifying reactor geometry. Hence, modifying UASB reactor geometry for enhanced mixing and evaluating its performance for the treatment of LSWs would be a worthwhile effort. In the present study, UASB reactor configuration was modified by providing a vertical baffle along the height to promote mixing of reactor contents, and is termed as modified UASB (MUASB). The performance of an on-site pilot-scale MUASB reactor was evaluated for 375 days under ambient condition for the treatment of municipal sewage as LSW and compared with that of the conventional UASB and hybrid UASB (HUASB) reactors. The MUASB reactor showed better performance in terms of chemical oxygen demand (COD) removal efficiency as compared with UASB and HUASB reactors during this study. At 4 h hydraulic retention time, the total COD removal efficiency of UASB and HUASB reactors was 53.7% and 61%, respectively, which were much lower than the total COD removal efficiency of the MUASB reactor (72.7%). The better performance observed in the MUASB reactor is possibly due to improved mixing. Depth-wise analysis of reactor liquid showed that better mixing in the MUASB reactor enhances the contact of wastewater with biomass, which contributes to the improved treatment efficiency. It seems that MUASB holds promise for LSW treatment. PMID:25751650
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1993-01-01
The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.
NASA Astrophysics Data System (ADS)
Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio
2014-03-01
We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.
NASA Technical Reports Server (NTRS)
Hah, Chunill
2011-01-01
The current paper first reviews experimental and numerical investigations to understand flow physics and to develop optimum configurations of circumferential grooves in compressor rotors. Circumferential grooves are used mainly to increase stall margin in axial compressors with small decrease in aerodynamic efficiency. Although circumferential groove casing treatment has been used widely, flow mechanisms of the circumferential grooves at near stall conditions are not well understood yet. Detailed time-dependent flow measurement inside tip gap in a high speed compressor is still a big challenge even though significant advance has been made in non-intrusive flow measurement technique. Therefore numerical approaches have been used to study relevant flow physics. However, optimum design of circumferential grooves to a given compressor with the computational tools is not practical yet. In the present paper, various investigations to study flow physics of circumferential groove casing treatment in axial compressor are reviewed first. Possible missing flow physics are identified and future research efforts for the optimum design are discussed.
Portais, Mathilde; Hliwa, Mohamed; Joachim, Christian
2016-01-22
The exponential decay of the electronic transmission through a molecular wire with its length is calculated using a configuration interaction elastic scattering quantum chemistry (CI-ESQC) theory [1, 2]. In the HOMO-LUMO gap and in a one-electron approximation, this decay is exponential since the scattering matrix comes from a product of spatial propagators along the wire. In a valence SD-CI (single and double-configurations interaction) description, such a product does not exist. An effective one was numerically obtained from the CI-ESQC scattering matrix. Fluctuations over the effective CI-exponential decay come from the truncation of the full CI basis set and also from many-body exchange-correlation effects along the molecular wire. PMID:26636919
NASA Astrophysics Data System (ADS)
Sims, James S.; Hagstrom, Stanley A.
2014-06-01
In a previous work, Sims and Hagstrom ["Hylleraas-configuration-interaction study of the 1 1S ground state of neutral beryllium," Phys. Rev. A 83, 032518 (2011)] reported Hylleraas-configuration-interaction (Hy-CI) method variational calculations for the 1S ground state of neutral beryllium with an estimated accuracy of a tenth of a microhartree. In this work, the calculations have been extended to higher accuracy and, by simple scaling of the orbital exponents, to the entire Be 2 1S isoelectronic sequence. The best nonrelativistic energies for Be, B+, and C++ obtained are -14.6673 5649 269, -24.3488 8446 36, and -36.5348 5236 25 hartree, respectively. Except for Be, all computed nonrelativistic energies are superior to the known reference energies for these states.
NASA Astrophysics Data System (ADS)
Portais, Mathilde; Hliwa, Mohamed; Joachim, Christian
2016-01-01
The exponential decay of the electronic transmission through a molecular wire with its length is calculated using a configuration interaction elastic scattering quantum chemistry (CI-ESQC) theory [1, 2]. In the HOMO-LUMO gap and in a one-electron approximation, this decay is exponential since the scattering matrix comes from a product of spatial propagators along the wire. In a valence SD-CI (single and double-configurations interaction) description, such a product does not exist. An effective one was numerically obtained from the CI-ESQC scattering matrix. Fluctuations over the effective CI-exponential decay come from the truncation of the full CI basis set and also from many-body exchange-correlation effects along the molecular wire.
Sims, James S.; Hagstrom, Stanley A.
2014-06-14
In a previous work, Sims and Hagstrom [“Hylleraas-configuration-interaction study of the 1 {sup 1}S ground state of neutral beryllium,” Phys. Rev. A 83, 032518 (2011)] reported Hylleraas-configuration-interaction (Hy-CI) method variational calculations for the {sup 1}S ground state of neutral beryllium with an estimated accuracy of a tenth of a microhartree. In this work, the calculations have been extended to higher accuracy and, by simple scaling of the orbital exponents, to the entire Be 2 {sup 1}S isoelectronic sequence. The best nonrelativistic energies for Be, B{sup +}, and C{sup ++} obtained are −14.6673 5649 269, −24.3488 8446 36, and −36.5348 5236 25 hartree, respectively. Except for Be, all computed nonrelativistic energies are superior to the known reference energies for these states.
2010-01-01
Background In the face of costly fixation hardware with varying performance for treatment of distal humeral fractures, a novel technique (U-Frame) is proposed using conventional implants in a 180° plate arrangement. In this in-vitro study the biomechanical stability of this method was compared with the established technique which utilizes angular stable locking compression plates (LCP) in a 90° configuration. Methods An unstable distal 3-part fracture (AO 13-C2.3) was created in eight pairs of human cadaveric humeri. All bone pairs were operated with either the "Frame" technique, where two parallel plates are distally interconnected, or with the LCP technique. The specimens were cyclically loaded in simulated flexion and extension of the arm until failure of the construct occurred. Motion of all fragments was tracked by means of optical motion capturing. Construct stiffness and cycles to failure were identified for all specimens. Results Compared to the LCP constructs, the "Frame" technique revealed significant higher construct stiffness in extension of the arm (P = 0.01). The stiffness in flexion was not significantly different (P = 0.16). Number of cycles to failure was found significantly larger for the "Frame" technique (P = 0.01). Conclusions In an in-vitro context the proposed method offers enhanced biomechanical stability and at the same time significantly reduces implant costs. PMID:20684752
NASA Astrophysics Data System (ADS)
Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi
2013-07-01
We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.
Plasma-wall interaction in Hall thrusters with magnetic lens configuration
Brieda, Lubos; Keidar, Michael
2012-06-15
Some recently developed Hall thrusters utilize a magnetic field configuration in which the field lines penetrate the thruster walls at a high incidence angle. This so-called magnetic lens leads to an electric field pointing away from the walls, which is expected to reduce ion losses and improve thruster efficiency. This configuration also introduces an interesting behavior in the sheath formation. At sufficiently large angles, ions are repelled from the wall, and sheath collapse is expected. We use a plasma simulation code to investigate this phenomenon in detail. We consider the role of the magnetic field incidence angle, secondary electron emission, and a magnetic mirror. Numerical study confirms the theoretical predictions, and at large angles, ions are seen to turn away from the wall. We also consider the role of the magnetic field geometry on ion wall flux and channel erosion, and observe reduction in both quantities as the magnetic field incidence angle is increased.
Nanomechanics modeling of carbon nanotubes interacting with surfaces in various configurations
NASA Astrophysics Data System (ADS)
Wu, Yu-Chiao
Carbon nanotubes (CNTs) have been widely used as potential components in reported nanoelectromechanical (NEM) devices due to their excellent mechanical and electrical properties. This thesis models the experiments by the continuum mechanics in two distinct scenarios. In the first situation, measurements are made of CNT configurations after manipulations. Modeling is then used to determine the interfacial properties during the manipulation which led to the observed configuration. This technique is used to determine the shear stress between a SWNT bundle and other materials. During manipulation, a SWNT bundle slipped on two micro-cantilevers. According to the slack due to the slippage after testing and the device configuration, the shear stress between a SWNT bundle and other materials can be determined. In another model, the work of adhesion was determined on two accidentally fabricated devices. Through the configuration of two SWNT adhered bundles and the force-distance curves measured by an atomic force microscope (AFM), modeling was used to determine the work of adhesion between two bundles and the shear stress at the SWNT-substrate interface. In the second situation, modeling is used in a more traditional fashion to make theoretical predictions as to how a device will operate. Using this technique, the actuation mechanism of a single-trench SWNT-based switch was investigated. During the actuation, the deflection-induced tension causes the SWNT bundle to slip on both platforms and to be partially peeled from two side recessed electrodes. These effects produce a slack which reduces the threshold voltages subsequent to the first actuation. The result shows excellent agreement between the theory and the measurement. Furthermore, the operation of a double-trenched SWNT-based switch was investigated. A slack is produced in the 1st actuated trench region by the slip and peeling effects. This slack reduces the 2nd actuation voltage in the neighbor trench. Finally, the
NASA Technical Reports Server (NTRS)
Streett, C. L.
1981-01-01
A viscous-inviscid interaction method has been developed by using a three-dimensional integral boundary-layer method which produces results in good agreement with a finite-difference method in a fraction of the computer time. The integral method is stable and robust and incorporates a model for computation in a small region of streamwise separation. A locally two-dimensional wake model, accounting for thickness and curvature effects, is also included in the interaction procedure. Computation time spent in converging an interacted result is, many times, only slightly greater than that required to converge an inviscid calculation. Results are shown from the interaction method, run at experimental angle of attack, Reynolds number, and Mach number, on a wing-body test case for which viscous effects are large. Agreement with experiment is good; in particular, the present wake model improves prediction of the spanwise lift distribution and lower surface cove pressure.
Huang, Rixiang; Carney, Randy P; Ikuma, Kaoru; Stellacci, Francesco; Lau, Boris L T
2014-06-24
As nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated. Different interaction modes and BSA conformations were studied by dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching and isothermal titration calorimetry (ITC). Depending on the surface structure of AuNPs, BSA seems to adopt either a "side-on" or an "end-on" conformation on AuNPs. ITC demonstrated that the adsorption of BSA onto AuNPs with randomly distributed polar and nonpolar groups was primarily driven by electrostatic interaction, and all BSA were adsorbed in the same process. The adsorption of BSA onto AuNPs covered with alternating domains of polar and nonpolar groups was a combination of different interactions. Overall, the results of this study point to the potential for utilizing nanoscale manipulation of NP surfaces to control the resulting NP-protein interactions. PMID:24882660
NASA Astrophysics Data System (ADS)
Maniero, Angelo M.; Acioli, Paulo H.
A full configuration interaction (CI) with a norm-conserving pseudopotential procedure to determine potential energy surfaces is proposed. Analysis of the potentiality and the possible sources of inaccuracies of the methodology is given in terms of its application to the generation of the ground-state potential energy curves of the LiH and Li2 molecules. The vibrational energy levels were obtained using the discrete variable representation. The agreement between our results and those from Rydberg-Klein-Ress-derived potentials is very good. The extension of this procedure to larger systems is straightforward.
NASA Technical Reports Server (NTRS)
Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.
1979-01-01
The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.
Faganello, M; Califano, F; Pegoraro, F
2008-01-11
Two-dimensional simulations of the Kelvin-Helmholtz instability in an inhomogeneous compressible plasma with a density gradient show that, in a transverse magnetic field configuration, the vortex pairing process and the Rayleigh-Taylor secondary instability compete during the nonlinear evolution of the vortices. Two different regimes exist depending on the value of the density jump across the velocity shear layer. These regimes have different physical signatures that can be crucial for the interpretation of satellite data of the interaction of the solar wind with the magnetospheric plasma. PMID:18232777
NASA Astrophysics Data System (ADS)
Khait, Yuriy G.; Azenkeng, Alexander; Wang, Hefeng; Dudley, Timothy J.; Hoffmann, Mark R.
2005-03-01
A multireference configuration interaction (CI) method which includes single and double excitations based description of adiabatic Floquet states for the electronic structure of a molecule in an intense laser field is introduced. Using a variant of a recently introduced configuration state function (CSF) based Table-CI methodology, it is shown that the multiple states of several irreducible representations required for a good description of low-lying Floquet states can be obtained using modifications of computational molecular electronic structure techniques. In particular, formulas for all components of the transition dipole moment matrix elements within the CSF-based Table-CI method are derived and presented. Moreover, the flexibility of the recently introduced macroconfiguration description of model and external configuration spaces is shown to lead to multiple potential energy surfaces of sufficiently uniform quality to allow construction of useful Floquet states. The formalism and computer programs developed are demonstrated on Li2+ in a 0.9×1012W/cm2 field. In analogy with Na2+, the 1,2Σg+2, 1,2Σu+2, 1Πg2, and 1Πu2 states are of relevance, although the pattern of couplings is shown to be more complex. A hitherto unnoticed metastable state, which correlates asymptotically with 2Σu+2, is described.
NASA Astrophysics Data System (ADS)
Nawa, Kenji; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Weinert, Michael
Effective on-site Coulomb interactions (Ueff) and electron configurations in the localized d and f orbitals of metal complexes in transition-metal oxides and organometallic molecules, play a key role in the first-principles search for the true ground-state. However, wide ranges of values in the Ueff parameter of a material, even in the same ionic state, are often reported. Here, we revisit this issue from constraint density functional theory (DFT) by using the full-potential linearized augmented plane wave method. The Ueff parameters for prototypical transition-metal oxides, TMO (TM =Mn, Fe, Co, Ni), were calculated by the second derivative of the total energy functional with respect to the d occupation numbers inside the muffin-tin (MT) spheres as a function of the sphere radius. We find that the calculated Ueff values depend significantly on the MT radius, with a variation of more than 3 eV when the MT radius changes from 2.0 to 2.7 a.u., but importantly an identical valence band structure can be produced in all the cases, with an approximate scaling of Ueff. This indicates that a simple transferability of the Ueff value among different calculation methods is not allowed. We further extend the constraint DFT to treat various electron configurations of the localized d-orbitals in organometallic molecules, TMCp2 (TM =Cr, Mn, Fe, Co, Ni), and find that the calculated Ueff values can reproduce the experimentally determined ground-state electron configurations.
NASA Astrophysics Data System (ADS)
Ren, Jingyu; Wang, Tiecheng; Qu, Guangzhou; Liang, Dongli; Hu, Shibin
2015-12-01
A discharge plasma reactor with a point-to-plane structure was widely studied experimentally in wastewater treatment. In order to improve the utilization efficiency of active species and the energy efficiency of this kind of discharge plasma reactor during wastewater treatment, the electrode configuration of the point-to-plane corona discharge reactor was studied by evaluating the effects of discharge spacing and adjacent point distance on discharge power and discharge energy density, and then dye-containing wastewater decoloration experiments were conducted on the basis of the optimum electrode configuration. The experimental results of the discharge characteristics showed that high discharge power and discharge energy density were achieved when the ratio of discharge spacing to adjacent point distance (d/s) was 0.5. Reactive Brilliant Blue (RBB) wastewater treatment experiments presented that the highest RBB decoloration efficiency was observed at d/s of 0.5, which was consistent with the result obtained in the discharge characteristics experiments. In addition, the biodegradability of RBB wastewater was enhanced greatly after discharge plasma treatment under the optimum electrode configuration. RBB degradation processes were analyzed by GC-MS and IC, and the possible mechanism for RBB decoloration was also discussed. supported by China's Postdoctoral Science Foundation (No. 2014M562460), the Initiative Funding Programs for Doctoral Research of Northwest A&F University (No. 2013BSJJ121), and National Natural Science Foundation of China (No. 21107085)
An investigation of bleed configurations and their effect on shock wave/boundary layer interactions
NASA Technical Reports Server (NTRS)
Hamed, Awatef
1995-01-01
The design of high efficiency supersonic inlets is a complex task involving the optimization of a number of performance parameters such as pressure recovery, spillage, drag, and exit distortion profile, over the flight Mach number range. Computational techniques must be capable of accurately simulating the physics of shock/boundary layer interactions, secondary corner flows, flow separation, and bleed if they are to be useful in the design. In particular, bleed and flow separation, play an important role in inlet unstart, and the associated pressure oscillations. Numerical simulations were conducted to investigate some of the basic physical phenomena associated with bleed in oblique shock wave boundary layer interactions that affect the inlet performance.
NASA Astrophysics Data System (ADS)
Naik, Deepali; Sikarwar, Manu; Nayak, Malaya K.; Ghosh, Swapan K.
2014-11-01
Ab initio calculation of the spin rotational Hamiltonian parameters A and Ad has been performed using a fully-relativistic restricted active space (RAS) configuration interaction (CI) method for the YbF molecule. These calculations lead to the results for the hyperfine-structure constants as A = 6725 MHz, and Ad = 86 MHz, which agree favorably well with some previous correlated calculations and experimental findings. The convergence behavior of the parameters A and Ad with respect to the size of the active space and basis set has been tested satisfactorily for the reliability of the present results (within an uncertainty of ˜7%). Further, we believe that the theoretical estimates of some symmetry violating interaction constants like Wd can also be predicted with similar accuracy using the RASCI method.
NASA Astrophysics Data System (ADS)
Liao, Chuan-Chieh; Hsiao, Wen-Wei; Lin, Ting-Yu; Lin, Chao-An
2015-06-01
Numerical investigations are carried out for the drafting, kissing and tumbling (DKT) phenomenon of two freely falling spheres within a long container by using an immersed-boundary method. The method is first validated with flows induced by a sphere settling under gravity in a small container for which experimental data are available. The hydrodynamic interactions of two spheres are then studied with different sizes and initial configurations. When a regular sphere is placed below the larger one, the duration of kissing decreases in pace with the increase in diameter ratio. On the other hand, the time duration of the kissing stage increases in tandem with the increase in diameter ratio as the large sphere is placed below the regular one, and there is no DKT interactions beyond threshold diameter ratio. Also, the gap between homogeneous spheres remains constant at the terminal velocity, whereas the gaps between the inhomogeneous spheres increase due to the differential terminal velocity.
NASA Technical Reports Server (NTRS)
Barger, R. L.
1977-01-01
Slender body methods were applied to some specialized problems associated with missile configurations with elliptic cross sections. Expressions are derived for computing the velocity distribution on the nose section when the ellipse eccentricity is varying longitudinally on the missile. The cross flow velocity on a triform fin section is also studied.
Palmer, Michael H. E-mail: tr01@staffmail.ed.ac.uk E-mail: nykj@phys.au.dk E-mail: desimone@iom.cnr.it Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C.; Coreno, Marcello; Grazioli, Cesare; Biczysko, Malgorzata; Baiardi, Alberto
2015-04-07
New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X{sup 2}B{sub 1}
NASA Astrophysics Data System (ADS)
Bauch, S.; Larsson, H. R.; Hinz, C.; Bonitz, M.
2016-03-01
In this contribution, we review the time-dependent generalized-active-space configuration interaction (TD-GAS-CI) approach to the photoionization dynamics of atoms and molecules including electron correlation effects. It is based on the configuration interaction (CI) expansion of the many-body wave function and the restriction of the determinantal space to a reduced subspace. For its numerically efficient application to photoionization, a partially-rotated basis set is used which adopts features of a localized basis with a good reference description and a grid representation for escaping wave packets. After reviewing earlier applications of the theory, we address the strong-field ionization of a one-dimensional model of the four-electron LiH molecule using TD-GAS-CI and demonstrate the importance of electron-electron correlations in the ionization yield for different orientations of the molecule w.r.t the peak of the linearly polarized laser field. A pronounced orientation-dependent variation of the yield with the pulse duration and the level of considered electron-electron correlations is observed.
Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.
2014-01-28
Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.
Oyeyemi, Victor B; Krisiloff, David B; Keith, John A; Libisch, Florian; Pavone, Michele; Carter, Emily A
2014-01-28
Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs. PMID:25669533
NASA Astrophysics Data System (ADS)
Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.
2014-01-01
Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.
Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier
2016-05-28
A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%. PMID:27250295
An approach to simultaneous control of trajectory and interaction forces in dual-arm configurations
NASA Technical Reports Server (NTRS)
Yun, Xiaoping; Kumar, Vijay R.
1991-01-01
An approach to the control of constrained dynamic systems such as multiple arm systems, multifingered grippers, and walking vehicles is described. The basic philosophy is to utilize a minimal set of inputs to control the trajectory and the surplus input to control the constraint or interaction forces and moments in the closed chain. A dynamic control model for the closed chain is derived that is suitable for designing a controller in which the trajectory and the interaction forces and moments are explicitly controlled. Nonlinear feedback techniques derived from differential geometry are then applied to linearize and decouple the nonlinear model. These ideas are illustrated through a planar example in which two arms are used for cooperative manipulation. Results from a simulation are used to illustrate the efficacy of the method.
ESR study of 2-substituted 2-adamantyl radicals. Configuration and long-range hyperfine interaction
Kira, Mitsuo; Akiyama, Mieko; Ichinose, Michiko; Sakurai, Hideki )
1989-10-11
Structure and long-range hyperfine interaction in 2-adamantyl, 5,7-dimethyl-2-adamantyl, and the various 2-substituted radicals (substituent = CH{sub 3}, CH{sub 2}SiMe{sub 3}, OSiMe{sub 3}, SSiMe{sub 3}, CH{sub 2}GeMe{sub 3}, etc.) were studied by ESR. The origin of the long-range hyperfine interaction is discussed on the basis of the comparison between experimental and theoretical hfs values. The analyses of hfs values for persistent 2-bis(trimethylsilyl)methyl-2-adamantyl radical and the 5,7-dimethyl derivative were made by the assistance of the ENDOR spectrum.
Mielke, Steven L; Schwenke, David W; Peterson, Kirk A
2005-06-01
We present a detailed ab initio study of the effect that the Born-Oppenheimer diagonal correction (BODC) has on the saddle-point properties of the H3 system and its isotopomers. Benchmark values are presented that are estimated to be within 0.1 cm(-1) of the complete configuration-interaction limit. We consider the basis set and correlation treatment requirements for accurate BODC calculations, and both are observed to be more favorable than for the Born-Oppenheimer energies. The BODC raises the H + H2 barrier height by 0.1532 kcal/mol and slightly narrows the barrier--with the imaginary frequency increasing by approximately 2%. PMID:15974674
NASA Astrophysics Data System (ADS)
Mielke, Steven L.; Schwenke, David W.; Peterson, Kirk A.
2005-06-01
We present a detailed ab initio study of the effect that the Born-Oppenheimer diagonal correction (BODC) has on the saddle-point properties of the H3 system and its isotopomers. Benchmark values are presented that are estimated to be within 0.1cm-1 of the complete configuration-interaction limit. We consider the basis set and correlation treatment requirements for accurate BODC calculations, and both are observed to be more favorable than for the Born-Oppenheimer energies. The BODC raises the H+H2 barrier height by 0.1532kcal/mol and slightly narrows the barrier—with the imaginary frequency increasing by ˜2%.
Dynamics of N-configuration four-level atom interacting with one-mode cavity field
NASA Astrophysics Data System (ADS)
Abdel-Wahab, N. H.; Thabet, Lamia
2014-07-01
In this paper, a model is presented to investigate the interaction between a four-level atom and a single mode of the radiation field. The relative phase, the detuning and the Kerr-like medium are taken into consideration. The exact solution is given when the atom is initially prepared in superposition coherent state. The influences of the relative phase, and the Kerr-like medium on the collapses-revivals, the field entropy and the amplitude-squared squeezing phenomena for the considered system are examined. It is found that these parameters have important effects on the properties of these phenomena.
Franco, A F; Kachkachi, H
2013-08-01
We investigate the effect of coupling (intensity and nature), applied field, and anisotropy on the spin dynamics of a multi-layer system composed of a hard magnetic layer coupled to a soft magnetic layer through a nonmagnetic spacer. The soft layer is modeled as a stack of several atomic planes while the hard layer, of a different material, is either considered as a pinned macroscopic magnetic moment or again as a stack of atomic planes. We compute the magnetization profile and hysteresis loop of the whole multi-layer system by solving the Landau-Lifshitz equations for the net magnetic moment of each (atomic) plane. We study the competition between the intra-layer anisotropy and exchange interaction, applied magnetic field, and the interface exchange, dipolar or Dzyalozhinski-Moriya interaction. Compared with the exchange coupling, the latter two couplings present peculiar features in the magnetization profile and hysteresis loop that may help identify the nature of the interface coupling in multi-layer magnetic systems. PMID:23838366
NASA Technical Reports Server (NTRS)
Crill, W.; Dale, B.
1977-01-01
The input data required to execute the computer program ISCON are described. The program generates a numerical procedure for the determination of unsteady aerodynamic forces on arbitrarily interacting wings and tails in supersonic flow. A velocity potential gradient method is used. Constant Mach number is assumed throughout the flow field. Lifting surfaces are represented by trapezoidal elements which can be generated automatically by the program. The wake field is represented by rectangular strip elements. The formulation is reviewed as well as input overview and input format. Instruction on how to use ISCON, a sample problem, and the restart feature are discussed. Program size limitations, computer program flow, and error messages are also included along with a description of the SS31 program used to compute the coefficients of surface spline.
NASA Astrophysics Data System (ADS)
Savukov, I. M.
2016-02-01
The precision of the mixed configuration-interaction plus many-body-perturbation-theory (CI+MBPT) method is limited in multivalence atoms by the large size of valence CI space. Previously, to study this problem, the CI+MBPT method was applied to calculations of energies in a four-valence electron atom, Si i. It was found that by using a relatively small cavity of 30 a.u. and by choosing carefully the configuration space, quite accurate agreement between theory and experiment at the level of 100 cm-1 can be obtained, especially after subtraction of systematic shifts for groups of states of the same J and parity. However, other properties are also important to investigate. In this work, the CI+MBPT method is applied to studies of transition probabilities, oscillator strengths, and lifetimes. A close agreement with accurate experimental measurements and other elaborate theories is obtained. The long-term goal is to extend the CI+MBPT approach to applications in more complex atoms, such as lantanides and actinides.
NASA Astrophysics Data System (ADS)
Bauch, S.; Sørensen, L. K.; Madsen, L. B.
2014-12-01
We present a wave-function-based method to solve the time-dependent many-electron Schrödinger equation with special emphasis on strong-field ionization phenomena. The theory builds on the configuration-interaction (CI) approach supplemented by the generalized-active-space concept from quantum chemistry. The latter allows for a controllable reduction in the number of configurations in the CI expansion by imposing restrictions on the active orbital space. The method is similar to the recently formulated time-dependent restricted-active-space CI method [D. Hochstuhl and M. Bonitz, Phys. Rev. A 86, 053424 (2012), 10.1103/PhysRevA.86.053424]. We present details of our implementation and address convergence properties with respect to the active spaces and the associated account of electron correlation in both ground-state and excitation scenarios. We apply the time-dependent generalized-active-space CI theory to strong-field ionization of polar diatomic molecules and illustrate how the method allows us to uncover a strong correlation-induced shift of the preferred direction of emission of photoelectrons.
NASA Technical Reports Server (NTRS)
Trept, Ted
1984-01-01
Hover and forward flight tests were conducted to investigate the mutual aerodynamic interaction between the main motor and fuselage of a conventional helicopter configuration. A 0.15-scale Model 222 two-bladed teetering rotor was combined with a 0.15-scale model of the NASA Ames 40x80-foot wind tunnel 1500 horsepower test stand fairing. Configuration effects were studied by modifying the fairing to simulate a typical helicopter forebody. Separation distance between rotor and body were also investigated. Rotor and fuselage force and moment as well as pressure data are presented in graphical and tabular format. Data was taken over a range of thrust coefficients from 0.002 to 0.007. In forward flight speed ratio was varied from 0.1 to 0.3 with shaft angle varying from +4 to -12 deg. The data show that the rotors effect on the fuselage may be considerably more important to total aircraft performance than the effect of the fuselage on the rotor.
NASA Astrophysics Data System (ADS)
Tsuchimochi, Takashi
2015-10-01
Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.
Oyeyemi, Victor B.; Pavone, Michele; Carter, Emily A.
2011-11-03
Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: (1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; (2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and (3) DFT-B3LYP calculations of minimumenergy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of C*C and C*H bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules.
Escudero, Daniel E-mail: thiel@kofo.mpg.de; Thiel, Walter E-mail: thiel@kofo.mpg.de
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.
Tsuchimochi, Takashi
2015-10-14
Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.
NASA Astrophysics Data System (ADS)
Casanova, David
2014-04-01
Second-order corrections to the restricted active space configuration interaction (RASCI) with the hole and particle truncation of the excitation operator are developed. Theoretically, the computational cost of the implemented perturbative approach, abbreviated as RASCI(2), grows like its single reference counterpart in MP2. Two different forms of RASCI(2) have been explored, that is the generalized Davidson-Kapuy and the Epstein-Nesbet partitions of the Hamiltonian. The preliminary results indicate that the use of energy level shift of a few tenths of a Hartree might systematically improve the accuracy of the RASCI(2) energies. The method has been tested in the computation of the ground state energy profiles along the dissociation of the hydrogen fluoride and N2 molecules, the computation of correlation energy in the G2/97 molecular test set, and in the computation of excitation energies to low-lying states in small organic molecules.
Casanova, David
2014-04-14
Second-order corrections to the restricted active space configuration interaction (RASCI) with the hole and particle truncation of the excitation operator are developed. Theoretically, the computational cost of the implemented perturbative approach, abbreviated as RASCI(2), grows like its single reference counterpart in MP2. Two different forms of RASCI(2) have been explored, that is the generalized Davidson-Kapuy and the Epstein-Nesbet partitions of the Hamiltonian. The preliminary results indicate that the use of energy level shift of a few tenths of a Hartree might systematically improve the accuracy of the RASCI(2) energies. The method has been tested in the computation of the ground state energy profiles along the dissociation of the hydrogen fluoride and N{sub 2} molecules, the computation of correlation energy in the G2/97 molecular test set, and in the computation of excitation energies to low-lying states in small organic molecules.
Krisiloff, David B; Krauter, Caroline M; Ricci, Francis J; Carter, Emily A
2015-11-10
To treat large molecules with accurate ab initio quantum chemistry, reduced scaling correlated wave function methods are now commonly employed. Optimization of these wave functions in practice requires some approximation of the two-electron integrals. Both Cholesky decomposition (CD) and density fitting (DF) are widely used approaches to approximate these integrals. Here, we compare CD and DF for use in local multireference singles and doubles configuration interaction (LMRSDCI). DF-LMRSDCI provides less accurate total energies than CD-LMRSDCI, but both methods are accurate for energy differences. However, DF-LMRSDCI is significantly less computationally expensive than CD-LMRSDCI on the molecules tested, suggesting that DF-LMRSDCI is an efficient, often sufficiently accurate alternative to our previously reported CD-LMRSDCI method. PMID:26574318
NASA Astrophysics Data System (ADS)
Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E.
2013-09-01
We demonstrate that Boys-localized diabatic states do indeed exhibit small derivative couplings, as is required of quasidiabatic states. In doing so, we present a general formalism for calculating derivative couplings and analytic gradients for diabatic states. We then develop additional equations specific to the case of Boys-localized configuration-interaction singles (CIS)—in particular, the analytic gradient of the CIS dipole matrix—and we validate our implementation against finite-difference results. In a forthcoming paper, we will publish additional algorithmic and computational details and apply our method to the Closs energy-transfer systems as a further test of the validity of Boys-localized diabatic states.
NASA Astrophysics Data System (ADS)
Hansen, Mikkel Bo; Christiansen, Ove; Hättig, Christof
2009-10-01
Quadratic response functions are derived and implemented for a vibrational configuration interaction state. Combined electronic and vibrational quadratic response functions are derived using Born-Oppenheimer vibronic product wave functions. Computational tractable expressions are derived for determining the total quadratic response contribution as a sum of contributions involving both electronic and vibrational linear and quadratic response functions. In the general frequency-dependent case this includes a new and more troublesome type of electronic linear response function. Pilot calculations for the FH, H2O, CH2O, and pyrrole molecules demonstrate the importance of vibrational contributions for accurate comparison to experiment and that the vibrational contributions in some cases can be very large. The calculation of transition properties between vibrational states is combined with sum-over-states expressions for analysis purposes. On the basis of this some simple analysis methods are suggested. Also, a preliminary study of the effect of finite lifetimes on quadratic response functions is presented.
NASA Astrophysics Data System (ADS)
Peng, Yi-Geng; Wu, Yong; Zhu, Lin-Fan; Zhang, Song Bin; Wang, Jian-Guo; Liebermann, H.-P.; Buenker, R. J.
2016-02-01
K-vacancy Auger states of Nq+ (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly in the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future.
[Drug-drug interactions in antirheumatic treatment].
Krüger, K
2012-04-01
Clinically relevant drug-drug interactions contribute considerably to potentially dangerous drug side-effects and are frequently the reason for hospitalization. Nevertheless they are often overlooked in daily practice. For most antirheumatic drugs a vast number of interactions have been described but only a minority with clinical relevance. Several potentially important drug interactions exist for non-steroidal anti-inflammatory drugs (NSAIDs), methotrexate, azathioprine, mycophenolate-mofetil and especially for cyclosporin A. Most importantly co-medication with methotrexate and sulfmethoxazole trimethoprim as well as azathioprine and allopurinol carries the risk of severe, sometimes life-threatening consequences. Nevertheless, besides these well-known high-risk combinations in each case of polypharmacy with antirheumatic drugs it is necessary to bear in mind the possibility of drug interactions. As polypharmacy is a common therapeutic practice in older patients with rheumatic diseases, they are at special risk. PMID:22527215
Controls-structures-interaction dynamics during RCS control of the Orbiter/SRMS/SSF configuration
NASA Technical Reports Server (NTRS)
Schliesing, J. A.; Shieh, L. S.
1993-01-01
During the assembly flights of the Space Station Freedom (SSF), the Orbiter will either dock with the SSF and retract to the final berthed position, or will grapple the SSF using the Shuttle Remote Manipulator System (SRMS) and maneuver the SRMS coupled vehicles to their final berthed position. The SRMS method is expected to take approximately one to one and a half hours to complete and require periodic attitude corrections by either the Orbiter or the SSF reaction control system (RCS) or continuous control by a control moment gyro (CMG) system with RCS desaturation as required. Free drift of the attached vehicles is not currently thought to be acceptable because the desired system attitude will quickly deteriorate due to unbalanced gravity gradient and aerodynamic torques resulting in power generation problems, thermodynamic control problems, and communications problems. This paper deals with the simulation and control of the SRMS during trunnion/latch interaction dynamics and during RCS maneuvers. The SRMS servo drive joints have highly non-linear elastic characteristics which tend to degrade sensitive control strategies. In addition the system natural frequencies are extremely low and depend on the drive joint deflections and SRMS geometric position. The lowest mean period of oscillation for the Orbiter/SRMS/SSF(MB6) system in brakes hold mode positioned near the final berthed position is approximately 120 seconds. A detailed finite element model of the SRMS has been developed and used in a newly developed SRMS systems dynamics simulation to investigate the non-linear transient response dynamics of the Orbiter/SRMS/SSF systems. The present SRMS control strategy of brakes only recommended by the Charles Draper Labs is contrasted with a robust controller developed by the authors. The robust controller uses an optimal inear quadratic regulator (LQR) to optimally place the closed-loop poles of a multivariable continuous-time system within the common region of an
Controls-structures-interaction dynamics during RCS control of the Orbiter/SRMS/SSF configuration
NASA Astrophysics Data System (ADS)
Schliesing, J. A.; Shieh, L. S.
1993-02-01
During the assembly flights of the Space Station Freedom (SSF), the Orbiter will either dock with the SSF and retract to the final berthed position, or will grapple the SSF using the Shuttle Remote Manipulator System (SRMS) and maneuver the SRMS coupled vehicles to their final berthed position. The SRMS method is expected to take approximately one to one and a half hours to complete and require periodic attitude corrections by either the Orbiter or the SSF reaction control system (RCS) or continuous control by a control moment gyro (CMG) system with RCS desaturation as required. Free drift of the attached vehicles is not currently thought to be acceptable because the desired system attitude will quickly deteriorate due to unbalanced gravity gradient and aerodynamic torques resulting in power generation problems, thermodynamic control problems, and communications problems. This paper deals with the simulation and control of the SRMS during trunnion/latch interaction dynamics and during RCS maneuvers. The SRMS servo drive joints have highly non-linear elastic characteristics which tend to degrade sensitive control strategies. In addition the system natural frequencies are extremely low and depend on the drive joint deflections and SRMS geometric position. The lowest mean period of oscillation for the Orbiter/SRMS/SSF(MB6) system in brakes hold mode positioned near the final berthed position is approximately 120 seconds. A detailed finite element model of the SRMS has been developed and used in a newly developed SRMS systems dynamics simulation to investigate the non-linear transient response dynamics of the Orbiter/SRMS/SSF systems. The present SRMS control strategy of brakes only recommended by the Charles Draper Labs is contrasted with a robust controller developed by the authors. The robust controller uses an optimal inear quadratic regulator (LQR) to optimally place the closed-loop poles of a multivariable continuous-time system within the common region of an
NASA Technical Reports Server (NTRS)
Zilz, D. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.
Cancer treatment by photothermal, photochemical, and photobiological interactions
NASA Astrophysics Data System (ADS)
Chen, Wei R.; Korbelik, Mladen; Liu, Hong; Nordquist, Robert E.
2005-01-01
Laser tissue interactions hold great promise in cancer treatment. Photothermal interaction aims at the direct cell destruction through the increase of local tissue temperature, while photochemical interaction aims at the cell destruction using free radicals produced through the activation of photosensitizers in the target tissue. Photobiological interaction can target the immune host system to induce long-term control. Photothermal and photochemical interactions can be significantly enhanced by photobiological interaction through the use of immunoadjuvants. In our experiments, three different immunoadjuvants, complete Freund"s adjuvant (CF), incomplete Freund"s adjuvant (IF), and c-parvum (CP), were used in the treatment of metastatic mammary tumors in conjunction with photothermal interaction. In addition, a specific adjuvant, Glycated chitosan (GC), has been used in combination with photodynamic therapy (PDT) in the treatment of mouse tumors. In the treatment of rat tumors, CF, IF and CP raised the cure-rates from 0% to 18%, 7% and 9%, respectively. In comparison, GC resulted in a 29% long-term survival. In the treatment of EMT6 mammary sarcoma in mice, GC of 0.5% and 1.5% concentrations increased the cure rates of Photofrin-based PDT treatment from 38% to 63% and 75%, respectively. In the treatment of Line 1 lung adenocarcinoma in mice, a 1.67% GC solution enabled a non-curative mTHPC-based PDT to cure a 37% of the tumor bearing mice.
Tachikawa, Masanori
2015-12-31
To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.
Bannwarth, Christoph; Grimme, Stefan
2015-04-16
We show that the electronic circular dichroism (ECD) of delocalized π-systems represents a worst-case scenario for Tamm-Dancoff approximated (TDA) linear response methods. We mainly consider density functional theory (TDA-DFT) variants together with range-separated hybrids, but the conclusions also apply for other functionals as well as the configuration interaction singles (CIS) approaches. We study the effect of the TDA for the computation of ECD spectra in some prototypical extended π-systems. The C76 fullerene, a chiral carbon nanotube fragment, and [11]helicene serve as model systems for inherently chiral, π-chromophores. Solving the full linear response problem is inevitable in order to obtain accurate ECD spectra for these systems. For the C76 fullerene and the nanotube fragment, TDA and CIS approximated methods yield spectra in the origin-independent velocity gauge formalism of incorrect sign which would lead to the assignment of the opposite (wrong) absolute configuration. As a counterexample, we study the ECD of an α-helix polypeptide chain. Here, the lowest-energy transitions are dominated by localized excitations within the individual peptide units, and TDA methods perform satisfactorily. The results may have far-reaching implications for simple semiempirical methods which often employ TDA and CIS for huge molecules. Our recently presented simplified time-dependent DFT approach proves to be an excellent low-cost linear response method which together with range-separated density functionals like ωB97X-D3 produces ECD spectra in very good agreement with experiment. PMID:25798823
NASA Astrophysics Data System (ADS)
Verdebout, S.; Nazé, C.; Jönsson, P.; Rynkun, P.; Godefroid, M.; Gaigalas, G.
2014-09-01
Energy levels, hyperfine interaction constants, and Landé gJ-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core-valence, and core-core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.
Daghino, Walter; Messina, Marco; Filipponi, Marco; Alessandro, Massè
2016-01-01
Background: The tibial pilon fractures represent a complex therapeutic problem for the orthopedic surgeon, given the frequent complications and outcomes disabling. The recent medical literature indicates that the best strategy to reduce amount of complications in tibial pilon fractures is two-stages procedure. We describe our experience in the primary stabilization of these fractures. Methods: We treated 36 cases with temporary external fixation in a simple configuration, called "tripolar": this is an essential structure (only three screws and three rods), that is possible to perform even without the availability of X-rays and with simple anesthesia or sedation. Results: We found a sufficient mechanical stability for the nursing post-operative, in absence of intraoperative and postoperative problems. The time between trauma and temporary stabilization ranged between 3 and 144 hours; surgical average time was 8.4 minutes. Definitive treatment was carried out with a delay of a minimum of 4 and a maximum of 15 days from the temporary stabilization, always without problems, both in case of ORIF (open reduction, internal fixation) or circular external fixation Conclusion: Temporary stabilization with external fixator in ‘tripolar’ configuration seems to be the most effective strategy in two steps treatment of tibial pilon fractures. These preliminary encouraging results must be confirmed by further studies with more cases. PMID:27123151
Deng, Banglin; Jiang, Gang; Zhang, Chuanyu
2014-09-15
In this work, the multi-configuration Dirac–Fock and relativistic configuration-interaction methods have been used to calculate the transition wavelengths, electric dipole transition probabilities, line strengths, and absorption oscillator strengths for the 2s–3p, 2p–3s, and 2p–3d transitions in Li-like ions with nuclear charge Z=7–30. Our calculated values are in good agreement with previous experimental and theoretical results. We took the contributions from Breit interaction, finite nuclear mass corrections, and quantum electrodynamics corrections to the initial and final levels into account, and also found that the contributions from Breit interaction, self-energy, and vacuum polarization grow fast with increasing nuclear charge for a fixed configuration. The ratio of the velocity to length form of the transition rate (A{sub v}/A{sub l}) was used to estimate the accuracy of our calculations.
Step-feed biofiltration: a low cost alternative configuration for off-gas treatment.
Estrada, José M; Quijano, Guillermo; Lebrero, Raquel; Muñoz, Raúl
2013-09-01
Clogging due to biomass accumulation and the loss of structural stability of the packing media are common operational drawbacks of standard gas biofiltration inherent to the traditional biofilter design, which result in prohibitive pressure drop buildups and media channeling. In this work, an innovative step-feed biofilter configuration, with the air emission supplied in either two or three locations along the biofilter height, was tested and compared with a standard biofilter using toluene as a model pollutant and two packing materials: compost and perlite. When using compost, the step-feed biofilter supported similar elimination capacities (EC ≈ 80 g m(-3) h(-1)) and CO2 production rates (200 g m(-3) h(-1)) to those achieved in the standard biofilter. However, while the pressure drop in the step-feed system remained below 300 Pa m bed(-1) for 61 days, the standard biofilter reached this value in only 14 days and 4000 Pa m bed(-1) by day 30, consuming 75% more compression energy throughout the entire operational period. Operation with perlite supported lower ECs compared to compost in both the step-feed and standard biofilters (≈ 30 g m(-3) h(-1)), probably due to the high indigenous microbial diversity present in this organic packing material. The step-feed biofilter exhibited 65% lower compression energy requirements than the standard biofilter during operation with perlite, while supporting similar ECs. In brief, step-feed biofiltration constitutes a promising operational strategy capable of drastically reducing the operating costs of biofiltration due to a reduced energy consumption and an increased packing material lifespan. PMID:23764582
INTERACTIONS OF SILICA PARTICLES IN DRINKING WATER TREATMENT PROCESSES
EPA Identifier: U915331
Title: Interactions of Silica Particles in Drinking Water Treatment Processes
Fellow (Principal Investigator): Christina L. Clarkson
Institution: Virginia Polytechnic Institute and State University
EPA GRANT R...
A Trait-Treatment Interaction in a College Physics Course
ERIC Educational Resources Information Center
Ott, Mary Diederich; Macklin, David B.
1975-01-01
This study investigated interactions between student traits and treatments. Engineering and physics majors were enrolled in either a lecture-recitation-laboratory section, or an audio-tutorial section of an introductory physics course. No significant differences were found between the two groups, but an interaction was found between two traits…
Johnson, C W
2012-01-24
The project period was devoted to several developments in the technical capabilities of the BIGSTIC large-dimension configuration-interaction shell-model code, written in Fortran 90. The specific computational goals for the project period were: (1) store Lanczos vectors on core in RAM to minimize I/O; (2) rewrite reorthogonalization with Lanczos vectors stored in core, consult with personnel at LLNL, LBL, ORNL, Iowa State University to maximize performance; (3) restrict creation of N-body jumps to those needed by an individual node; and (4) distribute 3-body interaction over many cores. Significant progress was made towards these goals, especially (1) and (2), although in the process they discovered intermediate tasks that had to be accomplished first. The achievements were as follows - I put into place structures and algorithms to facility fragmenting very large-dimension Lanczos intermediate vectors. Only by fragmenting the vectors can we carry out (1) and (2). In addition, I reorganized the action of the Hamiltonian matrix and created a new division of operations for MPI. Based upon earlier work, I made plans of a revised algorithm for distribution of work with MPI, with a particular eye towards breaking up the Lanczos vectors. I introduce a new derived type (opbundles) which collects the parameters for the Hamiltonian, and rewrote the application routines to use it. It has been validated and verified. I made progress towards revised MPI parallelization. Using the opbundles, I was able to compute a distribution of work over compute nodes, which should be very efficient. This new distribution is easier to derive and more efficient, in principle, than the old distribution. Furthermore, it should make applications with fragmented Lanczos vectors easier. Implementation is still in progress.
NASA Astrophysics Data System (ADS)
Honigmann, Michael; Liebermann, Heinz-Peter; Buenker, Robert J.
2010-07-01
The complex multireference single- and double-excitation configuration interaction method has been employed to compute potential curves for the anion of the hydrogen chloride molecule. First, conventional CI calculations with real basis functions have been carried out to determine the potential curves of both HCl and its anion over a large range of internuclear distance. It is shown that adding basis functions with very small exponents leads to sharply avoided crossings for the HCl- potentials that greatly complicate the search for resonance states thought to be responsible for features observed in electron collision experiments. By limiting the number of such diffuse-type functions it is possible to describe resonance states at a highly correlated level and still account for their interaction with the continuum in which they are embedded. In the present study of the HCl- anion the complex basis function technique of Moiseyev-Corcoran and McCurdy-Resigno is employed to calculate the energy positions and line-widths of the resonance states. Two states of Σ2+ symmetry are calculated which have potentials that have significantly different shapes than that of the neutral ground state and thus contribute to the cross section for vibrational excitation of the neutral HCl molecule induced by low-energy electron collisions. The lower of these (1 Σ2+) correlates smoothly with the bound anionic ground state at large internuclear distances and is seen to be responsible for the sharp peaks observed in the low-energy region of the spectrum. The upper state (3 Σ2+) has a much larger bond length and is assigned to the broad bands observed with a maximum in the 2.5-3.0 eV range. The present calculations thus stand in contradiction to earlier claims that the above peaks are caused by so-called virtual states without a definite autoionization lifetime.
Savukov, I. M.; Filin, D. V.
2014-12-29
Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.
NASA Astrophysics Data System (ADS)
Hamedi, H. R.; Radmehr, Arash; Sahrai, M.
2014-11-01
We study the manipulation of Goos-Hänchen (GH) shifts for the reflected and transmitted probe light pulses injected into a cavity containing four-level configuration mercury atoms where the probe transition is in the ultraviolet (UV) region with a wavelength of 253.7 nm . Different behaviors of the GH shifts can be observed in the absence, or presence, of two driving fields as well as an incoherent pump field. When neither coherent driving fields nor incoherent pumping is turned on, we realize negative reflected GH shifts for anomalous dispersion. Including only one driving field leads to subluminal-based light propagation with positive lateral shifts at certain incident angles. Taking into account the impact of both driving fields, negative GH shifts reappear in the reflected part of the incident light. The origin of this defect is attributed to interacting double dark resonances due to a high-resolution absorption peaks with a very steep negative slope of dispersion in the susceptibility profile. We then show that one can surpass this defect by applying a weak incoherent pumping field to obtain positive GH shifts for both reflected and transmitted light beams. Finally, using the 6 1P1↔6 1S0 transition of Hg, we generalize our study to the case where the wavelength of the probe transition is 185 nm which is in the vacuum-ultraviolet domain. Although the number of oscillations is now increased, however, similar results are reported with respect to the case of UV transition.
NASA Technical Reports Server (NTRS)
Reznick, Steve
1988-01-01
Transonic Euler/Navier-Stokes computations are accomplished for wing-body flow fields using a computer program called Transonic Navier-Stokes (TNS). The wing-body grids are generated using a program called ZONER, which subdivides a coarse grid about a fighter-like aircraft configuration into smaller zones, which are tailored to local grid requirements. These zones can be either finely clustered for capture of viscous effects, or coarsely clustered for inviscid portions of the flow field. Different equation sets may be solved in the different zone types. This modular approach also affords the opportunity to modify a local region of the grid without recomputing the global grid. This capability speeds up the design optimization process when quick modifications to the geometry definition are desired. The solution algorithm embodied in TNS is implicit, and is capable of capturing pressure gradients associated with shocks. The algebraic turbulence model employed has proven adequate for viscous interactions with moderate separation. Results confirm that the TNS program can successfully be used to simulate transonic viscous flows about complicated 3-D geometries.
NASA Technical Reports Server (NTRS)
Taylor, Peter R.; Lee, Timothy J.; Rendell, Alistair P.
1990-01-01
The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results.
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Scuseria, Gustavo E.; Spencer, James S.
2014-10-01
We investigate the sign problem for full configuration interaction quantum Monte Carlo (FCIQMC), a stochastic algorithm for finding the ground-state solution of the Schrödinger equation with substantially reduced computational cost compared with exact diagonalization. We find k -space Hubbard models for which the solution is yielded with storage that grows sublinearly in the size of the many-body Hilbert space, in spite of using a wave function that is simply a linear combination of states. The FCIQMC algorithm is able to find this sublinear scaling regime without bias and with only a choice of the Hamiltonian basis. By means of a demonstration we solve for the energy of a 70-site half-filled system (with a space of 1038 determinants) in 250 core hours, substantially quicker than the ˜1036 core hours that would be required by exact diagonalization. This is the largest space that has been sampled in an unbiased fashion. The challenge for the recently developed FCIQMC method is made clear: Expand the sublinear scaling regime while retaining exact-on-average accuracy. We comment upon the relationship between this and the scaling law previously observed in the initiator adaptation (i-FCIQMC). We argue that our results change the landscape for the development of FCIQMC and related methods.
Savukov, I. M.; Filin, D. V.
2014-12-29
Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreementmore » with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.« less
Krause, Pascal; Schlegel, H. Bernhard
2014-11-07
The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.
NASA Astrophysics Data System (ADS)
Fatehi, Shervin; Alguire, Ethan; Shao, Yihan; Subotnik, Joseph E.
2011-12-01
We present a method for analytically calculating the derivative couplings between a pair of configuration-interaction-singles (CIS) excited states obtained in an atom-centered basis. Our theory is exact and has been derived using two completely independent approaches: one inspired by the Hellmann-Feynman theorem and the other following from direct differentiation. (The former is new, while the latter is in the spirit of existing approaches in the literature.) Our expression for the derivative couplings incorporates all Pulay effects associated with the use of an atom-centered basis, and the computational cost is minimal, roughly comparable to that of a single CIS energy gradient. We have validated our method against CIS finite-difference results and have applied it to the lowest lying excited states of naphthalene; we find that naphthalene derivative couplings include Pulay contributions sufficient to have a qualitative effect. Going beyond standard problems in analytic gradient theory, we have also constructed a correction, based on perturbative electron-translation factors, for including electronic momentum and eliminating spurious components of the derivative couplings that break translational symmetry. This correction is general and can be applied to any level of electronic structure theory.
Krause, Pascal; Schlegel, H Bernhard
2014-11-01
The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length. PMID:25381499
Zhang, Xing; Herbert, John M.
2014-08-14
We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H{sub 3} near its D{sub 3h} geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.
NASA Astrophysics Data System (ADS)
Booth, George H.; Cleland, Deidre; Thom, Alex J. W.; Alavi, Ali
2011-08-01
The full configuration interaction quantum Monte Carlo (FCIQMC) method, as well as its "initiator" extension (i-FCIQMC), is used to tackle the complex electronic structure of the carbon dimer across the entire dissociation reaction coordinate, as a prototypical example of a strongly correlated molecular system. Various basis sets of increasing size up to the large cc-pVQZ are used, spanning a fully accessible N-electron basis of over 1012 Slater determinants, and the accuracy of the method is demonstrated in each basis set. Convergence to the FCI limit is achieved in the largest basis with only O[10^7] walkers within random errorbars of a few tenths of a millihartree across the binding curve, and extensive comparisons to FCI, CCSD(T), MRCI, and CEEIS results are made where possible. A detailed exposition of the convergence properties of the FCIQMC methods is provided, considering convergence with elapsed imaginary time, number of walkers and size of the basis. Various symmetries which can be incorporated into the stochastic dynamic, beyond the standard abelian point group symmetry and spin polarisation are also described. These can have significant benefit to the computational effort of the calculations, as well as the ability to converge to various excited states. The results presented demonstrate a new benchmark accuracy in basis-set energies for systems of this size, significantly improving on previous state of the art estimates.
NASA Astrophysics Data System (ADS)
Buenker, Robert J.; Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Lingott, Rainer; Hirsch, Gerhard
1998-03-01
Computational strategies for the treatment of relativistic effects including spin-orbit coupling at a highly correlated level are compared for a number of heavy atoms: indium, iodine, thallium, and astatine. Initial tests with perturbation theory emphasize the importance of high-energy singly excited configurations which possess large spin-orbit matrix elements with the ground state. A contracted basis consisting of L-S CI eigenfunctions (LSC-SO-CI) is found to give an accurate representation of both spin-perturbed 2Po components as long as key np→pi* singly excited configurations are included. Comparison is made with a more extensive treatment in which all selected configurations of various L-S symmetries form the basis for the multireference-spin-orbit-configuration interaction (MR-SO-CI). Good agreement is obtained with experimental SO splittings for the In, I, and At atoms at a variety of levels of treatment, indicating that the L-S contracted SO-CI approach can be implemented quite effectively with relativistic effective core potentials (RECPs) for both very electronegative atoms and also for lighter electropositive elements up through the fifth row of the periodic table. The thallium atom SO splitting is more difficult to obtain accurately because of greater differences between its valence p1/2 and p3/2 spinors than in the other cases studied, but good results are also possible with the contracted SO-CI approach in this instance, provided proper care is given to the inclusion of key singly excited L-S states. The relationship between all-electron two-component SO-CI treatments and those employing RECPs is also analyzed, and it is concluded that triply excited configurations relative to the 2Po ground state are far less important than previously reported.
Roemelt, Michael; Maganas, Dimitrios; DeBeer, Serena; Neese, Frank
2013-05-28
A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S' = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with MS = S,..., -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory∕ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row transition metals. These
NASA Astrophysics Data System (ADS)
Roemelt, Michael; Maganas, Dimitrios; DeBeer, Serena; Neese, Frank
2013-05-01
A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S' = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with MS = S, …, -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory/ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row transition metals. These
The Regression Trunk Approach to Discover Treatment Covariate Interaction
ERIC Educational Resources Information Center
Dusseldorp, Elise; Meulman, Jacqueline J.
2004-01-01
The regression trunk approach (RTA) is an integration of regression trees and multiple linear regression analysis. In this paper RTA is used to discover treatment covariate interactions, in the regression of one continuous variable on a treatment variable with "multiple" covariates. The performance of RTA is compared to the classical method of…
Eli, Karin
2014-01-01
Dedicated inpatient care for eating disorders has profound impact on patients' embodied practices and lived realities. Analyses of inpatients' accounts have shown that participants endorse complex and conflicting attitudes toward their experiences in eating disorders wards, yet the apparent ambivalence that characterizes inpatient experiences has not been subject to critical examination. This paper examines the narrated experiences of 13 participants (12 women and one man; age 18-38 years at first interview) with past or present anorexia nervosa, bulimia nervosa, or eating disorder not otherwise specified, who had been hospitalized in an inpatient eating disorders ward for adults in central Israel. The interviews, which took place in 2005-2006, and again in 2011, were part of a larger longitudinal study exploring the subjective experiences of eating disorders and recovery among Israeli adults. Employing qualitative analysis, this study finds that the participants' accounts were concerned with dynamics of difference and belonging, as they played out in various aspects of inpatient care, including diagnosis, treatment, relationships with fellow patients and staff, and everyday life in hospital. Notably, participants simultaneously defined themselves as connected to, but also distinct from, the eating disordered others who formed their reference group at the ward. Through negotiating a protectively ambivalent positioning, participants recognized their eating disordered identities and connected with others on the ward, while also asserting their non-disordered individuality and distancing themselves from the potential dangers posed by 'excessive' belonging. The paper suggests that this ambivalent positioning can usefully be understood through the anthropological concept of liminality: being both a part of and apart from one's community. PMID:25210886
Eli, Karin
2014-01-01
Dedicated inpatient care for eating disorders has profound impact on patients' embodied practices and lived realities. Analyses of inpatients' accounts have shown that participants endorse complex and conflicting attitudes toward their experiences in eating disorders wards, yet the apparent ambivalence that characterizes inpatient experiences has not been subject to critical examination. This paper examines the narrated experiences of 13 participants (12 women and one man; age 18–38 years at first interview) with past or present anorexia nervosa, bulimia nervosa, or eating disorder not otherwise specified, who had been hospitalized in an inpatient eating disorders ward for adults in central Israel. The interviews, which took place in 2005–2006, and again in 2011, were part of a larger longitudinal study exploring the subjective experiences of eating disorders and recovery among Israeli adults. Employing qualitative analysis, this study finds that the participants' accounts were concerned with dynamics of difference and belonging, as they played out in various aspects of inpatient care, including diagnosis, treatment, relationships with fellow patients and staff, and everyday life in hospital. Notably, participants simultaneously defined themselves as connected to, but also distinct from, the eating disordered others who formed their reference group at the ward. Through negotiating a protectively ambivalent positioning, participants recognized their eating disordered identities and connected with others on the ward, while also asserting their non-disordered individuality and distancing themselves from the potential dangers posed by ‘excessive’ belonging. The paper suggests that this ambivalent positioning can usefully be understood through the anthropological concept of liminality: being both a part of and apart from one's community. PMID:25210886