Science.gov

Sample records for confined aquifer system

  1. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    SciTech Connect

    Thorne, P.

    1999-01-04

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995).

  2. Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system

    SciTech Connect

    Spane, F.A. Jr.; Webber, W.D.

    1995-09-01

    As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix.

  3. Hydrogeologic framework and geologic structure of the Floridan aquifer system and intermediate confining unit in the Lake Okeechobee area, Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2014-01-01

    The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.

  4. The effect of artesian-pressure decline on confined aquifer systems and its relation to land subsidence

    USGS Publications Warehouse

    Green, J.H.

    1964-01-01

    Ground water in the Southwestern United States is derived chiefly from unconsolidated to semiconsolidated alluvial deposits. Where these deposits contain confined water, they may be susceptible to compaction and related land- surface subsidence, if artesian pressures are reduced. Compaction of artesian-aquifer systems can be estimated from core tests if the artesian-pressure decline is known. Compaction occurs chiefly in the finer grained deposits ; porosity decrease is greater near the top of the confined aquifer than near the bottom. Because most of the compaction of these aquifer systems is permanent, the storage coefficient during the initial decline of artesian pressure greatly exceeds the storage coefficient during a subsequent pressure decline through the same depth range, after an intervening period of pressure recovery.

  5. Chlorine stable isotope evidence for salinization processes of confined groundwater in southwestern Nobi Plain aquifer system, central Japan

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masaru; Bottrell, Simon H.; Wu, Jiahong; Kumagai, Yoshihiro; Mori, Kazuki; Satake, Hiroshi

    2014-11-01

    A confined aquifer system, isolated from modern seawater, is developed in argillaceous marine and freshwater sediments of Pliocene-Holocene age in southwestern Nobi Plain (SWNP), central Japan. A tongue of brackish confined groundwater (Cl- >1000 mg/L), which extends from the shoreline of Ise Bay inland, mostly has negative δ37Cl values with -0.90‰ to 0.21‰. The Cl isotopic compositions are negatively correlated with paleo seawater Cl- concentrations discriminated by a Rayleigh distillation model with δ34S values, while they are not correlated with either total Cl- concentrations or δ34S values. Furthermore, Cl- concentrations from modern seawater are positively correlated with δ37Cl values. In addition to these observations, diffusion model calculations suggest that paleo seawater Cl- has diffused out from argillaceous marine sediments whereas modern seawater Cl- has not been affected by preferential diffusion of Cl isotopes because it has migrated by advection via both an unconfined aquifer and non-pumping wells. Moreover, the brackish groundwater is characterized by an excess of Na/Cl ratio and deficits of Mg/Cl and Ca/Cl ratios compared to those predicted from simple mixing of freshwater with seawater. This would be caused by cation exchange reactions in the confined aquifer system in which groundwater is freshening after salinization by both paleo seawater and/or modern seawater.

  6. Hydrogeologic characteristics and water quality of a confined sand unit in the surficial aquifer system, Hunter Army Airfield, Chatham County, Georgia

    USGS Publications Warehouse

    Gonthier, Gerard J.

    2012-01-01

    An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.

  7. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  8. Apparatus for Demonstrating Confined and Unconfined Aquifer Characteristics.

    ERIC Educational Resources Information Center

    Gillham, Robert W.; O'Hannesin, Stephanie F.

    1984-01-01

    Students in hydrogeology classes commonly have difficulty appreciating differences between the mechanisms of water release from confined and unconfined aquifers. Describes a simple and inexpensive laboratory model for demonstrating the hydraulic responses of confined and unconfined aquifers to pumping. Includes a worked example to demonstrate the…

  9. Wellhead protection in confined, semi-confined, fractured and karst aquifer settings

    SciTech Connect

    Not Available

    1993-09-01

    Protection areas around wells producing from confined, fractured, and karst aquifers are, because of their complex hydrogeology, more difficult to define than protection areas for wells in porous media settings. The factsheet provides background information explaining the need to define protection areas for wells that draw public drinking water from several complex hydrogeologic settings: confined, semi-confined, fractured, and karst aquifers. These settings include aquifers in which the ground water is not open to the atmosphere, or the aquifer does not consist of unconsolidated porous media. Several figures illustrate these settings in a general way.

  10. The Active Bacterial Community in a Pristine Confined Aquifer

    EPA Science Inventory

    This study of the active bacteria residing in a pristine confined aquifer provides unexpected insights into the ecology of iron-reducing and sulfate-reducing bacteria in the subsurface. At 18 wells in east-central Illinois, we trapped the microbes that attached to aquifer sedimen...

  11. Human enteric viruses in groundwater from a confined bedrock aquifer

    USGS Publications Warehouse

    Borchardt, M. A.; Bradbury, K.R.; Gotkowitz, M.B.; Cherry, J.A.; Parker, B.L.

    2007-01-01

    Confined aquifers are overlain by low-permeability aquitards that are commonly assumed to protect underlying aquifers from microbial contaminants. However, empirical data on microbial contamination beneath aquitards is limited. This study determined the occurrence of human pathogenic viruses in well water from a deep sandstone aquifer confined by a regionally extensive shale aquitard. Three public water-supply wells were each sampled 10 times over 15 months. Samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for several virus groups and by cell culture for infectious enteroviruses. Seven of 30 samples were positive by RT-PCR for enteroviruses; one of these was positive for infectious echovirus 18. The virus-positive samples were collected from two wells cased through the aquitard, indicating the viruses were present in the confined aquifer. Samples from the same wells showed atmospheric tritium, indicating water recharged within the past few decades. Hydrogeologic conditions support rapid porous media transport of viruses through the upper sandstone aquifer to the top of the aquitard 61 m below ground surface. Natural fractures in the shale aquitard are one possible virus transport pathway through the aquitard; however, windows, cross-connecting well bores, or imperfect grout seals along well casings also may be involved. Deep confined aquifers can be more vulnerable to contamination by human viruses than commonly believed. ?? 2007 American Chemical Society.

  12. Dolomitization of the Lower Ordovician Prairie du Chien Group in southern Wisconsin and southeastern Minnesota: A case for confined and unconfined aquifer systems

    SciTech Connect

    Smith, G.L. )

    1990-05-01

    The Lower Ordovician Prairie du Chien Group overlies the Cambrian-Ordovician Jordan Formation and underlies the Middle Ordovician St Peter Formation. The Prairie du Chien Group contains the Oneota Formation and the New Richmond and Willow River Members of the Shakopee Formation. The Prairie du Chien Group and associated formations form a repetitive sequence of alternating dolomites and sandstones: Jordan (sand), Oneota (dolomite), New Richmond (sand/dolomite), Willow River (dolomite), St. Peter (sand), and Platteville/Galena (dolomite/limestone). Prairie du Chien and Platteville/Galena carbonates thin over the Wisconsin arch and thicken eastward and westward. Petrography, cathodoluminescence, and electron microprobe analysis were used to identify and differentiate dolomite zones. The Oneota contains dolomite zones 1 to 3; the Shakopee contains zones 2 and 3; the Platteville/Galena only contains zone 3. Electron microprobe analysis of zone 3 reveals systematic decreases in dolomite stoichiometry and increases in iron and manganese trace-element composition along a transect from the Wisconsin arch to southeastern Minnesota. Zone 3 probably precipitated within a confined aquifer with recharge on the Wisconsin arch and flow toward southeastern Minnesota. In analogous modern systems, pore waters become progressively more reducing downflow, favoring trace-element enrichment. Zone 2 dolomites have low, uniform iron and manganese contents and uniform stoichiometries. Zone 2 compositions are consistent with precipitation in an unconfined and/or well-mixed aquifer associated with a continent-wide pre-St. Peter sea level drawdown and paleokarsting. Trace-element distributions within zone 1 dolomites are intermediate, suggesting precipitation within a semiconfined aquifer during pre-New Richmond exposure.

  13. Detecting the vulnerability of groundwater in semi-confined aquifers using barometric response functions

    NASA Astrophysics Data System (ADS)

    Odling, N. E.; Perulero Serrano, R.; Hussein, M. E. A.; Riva, M.; Guadagnini, A.

    2015-01-01

    The use of barometric response functions (BRFs) for detecting the presence of fully penetrating, highly conductive bodies within aquifer confining layers that present potential pathways for contaminants is explored. BRFs are determined from borehole water level (WL) and barometric pressure (Bp) records. Past studies have shown that confining layer properties can be estimated from BRFs, providing a potential link between BRFs and the concept of groundwater vulnerability. Existing analytical models that predict the BRF from system properties assume homogeneity within the aquifer and its confining layer, conditions which are seldom satisfied in nature. The impact of partially and fully penetrating, high diffusivity heterogeneities within a confining layer (representing potential high flow pathways for contaminants) on the BRF is investigated through a suite of three-dimensional, transient numerical simulations of the confining layer-aquifer system. The results are interpreted through comparison with a modified pre-existing analytical model for the BRF. Comparison of numerically and analytically calculated BRFs reveals that the key effect of a localised, fully penetrating, high diffusivity heterogeneity within a low diffusivity confining layer is to reduce the BRF gain with only minor changes to the phase. This impact on the BRF decreases with increasing distance from the heterogeneity. The importance of heterogeneity size is secondary to distance from the borehole and partially penetrating heterogeneities affect the BRF to only a minor extent. Data from a study of the Chalk Aquifer (E. Yorkshire, England) which is semi-confined by heterogeneous glacial sediments display variations in BRFs which are qualitatively similar to those shown by the numerical results. It is suggested that the variation in BRFs estimated from borehole records across a semi-confined aquifer could be used to assess the degree of spatial continuity of low diffusivity lithologies within the

  14. Interpretation of earth tide response of three deep, confined aquifers

    SciTech Connect

    Narasimhan, T.N.; Kanehiro, B.Y.; Witherspoon, P.A.

    1984-03-10

    The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. Moreover, since specific storage S/sub s/ quantifies a drained behavior of the porous medium, one cannot directly estimate S/sub s/from earth tide response. Except for the fact that barometric changes act both on the water surface in the well and on the aquifer as a whole while stress changes associated with earth tides act only in the aquifer, the two phenomena influence the confined aquifer in much the same way. In other words, barometric response contains only as much information on the elastic properties of the aquifer as the earth tide response does. Factors such as well bore storage, aquifer transmissivity, and storage coefficient contribute to time lag and damping of the aquifer response as observed in the well. Analysis shows that the observation of fluid pressure changes alone, without concurrent measurement of external stress changes, is sufficient to interpret uniquely earth tide response. In the present work, change in external stress is estimated from dilatation by assuming a reasonable value for bulk modulus. Earth tide response of geothermal aquifers from Marysville, Montana. East Mesa, California; and Raft River Valley, Idaho, were analyzed, and the ratio of S/sub 3/ to porosity was estimated. Comparison of these estimates with independent pumping tests show reasonable agreement.

  15. Water levels in, extent of freshwater in, and water withdrawal from eight major confined aquifers, New Jersey Coastal Plain, 1993

    USGS Publications Warehouse

    Lacombe, Pierre J.; Rosman, Robert

    1997-01-01

    Water levels in 722 wells in the Coastal Plain of New Jersey, Pennsylvania, and northeastern Delaware were measured during October and November 1993 and were used to define the potentiometric surface of the eight major confined aquifers of the area. Isochlors (lines of equal chloride concentration) for 250 and 10,000 milligrams per liter are included to show the extent of freshwater in each of the aquifers. Estimated water withdrawals from the eight major confined aquifers are reported for 1978-94. Water-withdrawal and water-level maps including isochlors were constructed for the Cohansey aquifer of Cape May County, the Atlantic City 800-foot sand, the Piney Point aquifer, the Wenonah-Mount Laurel aquifer, the Englishtown aquifer system, the Upper Potomac-Raritan-Magothy, the Middle and undifferentiated Potomac-Raritan-Magothy, and the Lower Potomac-Raritan-Magothy aquifers. From 1988 to 1993, water levels near the center of the large cones of depression in the Middlesex-Monmouth County area rose as much as 120 ft in the Wenonah-Mount Laurel aquifer and Englishtown aquifer system, 40 ft in the Upper Potomac-Raritan-Magothy aquifer, and 96 ft in the Middle and undifferentiated Potomac-Raritan-Magothy aquifers. Large cones of depression in the potentiometric surface of aquifers of the Potomac-Raritan-Magothy aquifer system in the Burlington-Camden-Gloucester area remained at about the same altitude; that is, the potentiometric surface neither rose nor fell in the aquifers by more than 5 feet. In the same area, water levels in the Englishtown aquifer system were static, whereas the water levels in the Wenonah-Mount Laurel aquifer declined 5 to 20 feet, forming an expanded cone of depression. Water levels in the Cohansey, Atlantic City 800-foot sand, and Piney Point aquifers declined by 1 to 10 feet during 1988?93.

  16. New solutions for the confined horizontal aquifer

    NASA Astrophysics Data System (ADS)

    Akylas, Evangelos; Gravanis, Elias

    2016-04-01

    The Boussinesq equation is a dynamical equation for the free surface of saturated subsurface flows over an impervious bed. Boussinesq equation is non-linear. The non-linearity comes from the reduction of the dimensionality of the problem: The flow is assumed to be vertically homogeneous, therefore the flow rate through a cross section of the flow is proportional to the free surface height times the hydraulic gradient, which is assumed to be equal to the slope of the free surface. In the present work we consider the case of the subsurface flow with horizontal bed. This is a case with an infinite Henderson and Wooding parameter, that is, it is the limiting case where the non-linear term is present in the Boussinesq equation while the linear spatial derivative term vanishes. Nonetheless, no analogue of the kinematic wave exists in this case as there is no exact solution for the build-up phase. Neither is there an exact recession-phase solution that holds in early times, as the Boussinesq separable solution is actually an asymptotic solution for large times. We construct approximate solutions for the horizontal aquifer which utilize directly the dynamical content of the non-linear Boussinesq equation. The approximate character of the solution lies in the fact that we start with a pre-supposed form for the solution, an educated guess, based on the nature of the initial condition as well as empirical observations from the numerical solution of the problem. The forms we shall use are power series of the location variable x along the bed with time-dependent coefficients. The series are not necessarily analytic. The boundary conditions are incorporated in the structure of the series from the beginning. The time-dependent coefficients are then determined by applying the Boussinesq equation and its spatial derivatives at the end-points of the aquifer. The forms are chosen also on the basis of their solubility; we would like to be able to construct explicitly the approximate

  17. A dual-well step drawdown method for the estimation of linear and non-linear flow parameters and wellbore skin factor in confined aquifer systems

    NASA Astrophysics Data System (ADS)

    Sethi, Rajandrea

    2011-03-01

    SummaryIn this study a method based on dual-well step drawdown test (i.e. a combination of an aquifer and a well performance test) for the determination of hydrodynamic parameters (namely storage coefficient and hydraulic conductivity), mechanical wellbore finite thickness skin factor, non-linear wellbore and non-linear aquifer parameters in an homogeneous confined aquifer is presented in order to put together aquifer and well tests. The interpretation procedure is based on the application of superposition principle to a large time logarithmic approximation of the solution. The advantages of this method, that can be considered an extension of Jacob step-test (1947) and Cooper-Jacob approximation (1946), are that: (I) it is possible to determine simultaneously aquifer and well properties in a single test; (II) the method is based on a large time approximation and it is therefore independent from wellbore storage; (III) if the well skin is absent, the aquifer parameters (storage coefficient and hydraulic conductivity) can be derived just from a single-well test; (IV) the interpretation procedure is easy to apply and robust and does not require any specific numeric code or software. The same procedure can be easily adapted to gas well testing. It is also shown that, even in the presence of linear and non-linear flow, skin effect and wellbore storage, the hydraulic conductivity (and not the storage coefficient) of the aquifer can be correctly estimated by the Cooper and Jacob (1946) method applied to a single-rate pumping test, using exclusively the large time drawdown data measured at the pumping well.

  18. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline

    USGS Publications Warehouse

    Yager, R.M.; Fountain, J.C.

    2001-01-01

    The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.

  19. Data on geochemical and hydraulic properties of a characteristic confined/unconfined aquifer system of the younger Pleistocene in northeast Germany

    NASA Astrophysics Data System (ADS)

    Merz, C.; Steidl, J.

    2015-06-01

    The paper presents a database of hydrochemical and hydraulic groundwater measurements of a younger Pleistocene multilayered, unconfined/confined aquifer system in NE Germany. The Institute of Landscape Hydrology of the Leibniz Centre for Agricultural Landscape Research (ZALF) operates seven groundwater monitoring wells in the Quillow catchment located in the Uckermark region (federal state of Brandenburg, Germany). From July 2000 to March 2014, water samples were collected periodically on different days of the year and at depths between 3 and 5 m (shallow wells) and 16 and 24 m (deeper wells) below the surface. The parameters pH value, redox potential, electric conductivity, water temperature, oxygen content, spectral absorption coefficient and concentration of hydrogen carbonate, ammonium, phosphate, chloride, bromide, nitrite, sulfate, sodium, potassium, magnesium, calcite, dissolved organic carbon, iron(II) and manganese were determined for each sample (doi:10.4228/ZALF.2000.266). The measurements, taken over a period of 14 years, include a high variation of hydraulic situations represented by a corresponding database of 19 000 recorded groundwater heads. The hydraulic head was measured between 2000 and 2014 (doi:10.4228/ZALF.2000.272).

  20. Long-term geochemical and hydraulic measurements in a characteristic confined/unconfined aquifer system of the younger Pleistocene in northeast Germany

    NASA Astrophysics Data System (ADS)

    Merz, C.; Steidl, J.

    2015-01-01

    The paper presents a data base of hydrochemical and hydraulic groundwater measurements of a younger Pleistocene multilayered, unconfined/confined aquifer system in NE Germany. The Institute of Landscape Hydrology of the Leibniz Centre for Agricultural Landscape Research (ZALF) e. V. operates seven groundwater monitoring wells in the Quillow catchment located in the Uckermark region (Federal State of Brandenburg, Germany). From July 2000 to March 2014, water samples were collected periodically on different days of the year and at depths between 3 and 5 m (shallow wells) and 20 and 25 m (deeper wells) below the surface. The parameters pH value, redox potential, electric conductivity, water temperature, oxygen content, spectral absorption coefficient and concentration of hydrogen carbonate, ammonium, phosphate, chloride, bromite, nitrite, sulfate, sodium, potassium, magnesium, calcite, dissolved organic carbon, iron(II) and manganese were determined for each sample (doi:10.4228/ZALF.2000.266). The measurements, taken over a period of 14 years, include a high variation of hydraulic situations represented by a corresponding database of detected groundwater heads. The hydraulic head was measured between 2000 and 2014 (doi:10.4228/ZALF.2000.272).

  1. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    USGS Publications Warehouse

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  2. Confined aquifer vulnerability induced by a pumping well in a leakage area

    NASA Astrophysics Data System (ADS)

    Meng, X.; Deng, B.; Shao, J.; Yin, M.; Liu, D.; Hu, Q.

    2015-05-01

    Due to the pollution of shallow groundwater and the rapid development of society and economy which consume more freshwater, the exploitation of confined groundwater is steadily increasing in north China. Therefore, the rapid decline of the confined groundwater head increases the risk of confined aquifer pollution by leaky recharge from shallow aquifers. In this paper, a quantitative method for assessing confined aquifer vulnerability to contamination due to pumping has been developed. This method is based on the shallow and confined groundwater flow model and the advection and dispersion in the aquitard, including sorption. The cumulative time for the pollutant concentration at the top boundary of confined aquifer exceeding the maximum allowable level is defined as the confined aquifer vulnerability index, which can be obtained by numerically solving the solute transport equation. A hypothetical example is chosen as a case study to illustrate the whole process. The results indicate that the proposed method is a practical and reasonable assessment method of confined aquifer vulnerability.

  3. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  4. The active bacterial community in a pristine confined aquifer

    NASA Astrophysics Data System (ADS)

    Flynn, Theodore M.; Sanford, Robert A.; Santo Domingo, Jorge W.; Ashbolt, Nicholas J.; Levine, Audrey D.; Bethke, Craig M.

    2012-09-01

    This study of the active bacteria residing in a pristine confined aquifer provides unexpected insights into the ecology of iron-reducing and sulfate-reducing bacteria in the subsurface. At 18 wells, we trapped the microbes that attached to aquifer sediment and used molecular techniques to examine the bacterial populations. We used multivariate statistics to compare the composition of bacterial communities among the wells with respect to the chemistry of the groundwater. We found groundwater at each well was considerably richer in ferrous iron than sulfide, indicating iron-reducing bacteria should, by established criteria, dominate the sulfate reducers. Our results show, however, that areas where groundwater contains more than a negligible amount of sulfate (>0.03 mM), populations related to sulfate reducers of the generaDesulfobacter and Desulfobulbus were of nearly equal abundance with putative iron reducers related to Geobacter, Geothrix, and Desulfuromonas. Whereas sulfate is a key discriminant of bacterial community structure, we observed no statistical relationship between the distribution of bacterial populations in this aquifer and the concentration of either ferrous iron or dissolved sulfide. These results call into question the validity of using the relative concentration of these two ions to predict the nature of bacterial activity in an aquifer. Sulfate reducers and iron reducers do not appear to be segregated into discrete zones in the aquifer, as would be predicted by the theory of competitive exclusion. Instead, we find the two groups coexist in the subsurface in what we suggest is a mutualistic relationship.

  5. Confined aquifer as wave-guide and its responses to geo-acoustic waves

    NASA Astrophysics Data System (ADS)

    Jian, Wen-Bin; Chen, Bao-Ren; Lu, Hua-Fu

    1997-05-01

    On the basis of the hydro-geological model of a confined aquifer, the propagation mechanism of geo-acoustic waves along the confined aquifer outlined as a plate wave-guide is proposed. The harmonic frequency equation for geo-acoustic propagation along confined aquifer as waveguide is derived from Biot theory. The basic frequency of the confined aquifer with a deep well for geo-acoustic observation, located at Juxian county, Shandong province, China, is 35.0 Hz. By Wigner distribution of geo-acoustic signals observed at Juxian geo-acoustic well, the frequencies of geo-acoustics are basically the integral multiple of the basic frequency. The results show that the responses of the confined aquifer to geo-acoustic waves are characterized by frequency selection and frequency dependence. Only the waves whose frequency f is the integral multiple of basic frequency can propagate as guide waves in the aquifer, that is, the aquifer responds to the waves.

  6. Position of the freshwater-saltwater interface in a coastal confined aquifer

    NASA Astrophysics Data System (ADS)

    Evans, T. B.; White, S. M.; Wilson, A. M.

    2014-12-01

    transport freshwater significant distances. Freshwater could exist in analogous confined aquifers at shallow depths under the seafloor in other coastal systems.

  7. Formation of Martian flood features by release of water from confined aquifers

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1979-01-01

    It is proposed that the rapid release of water under great pressure from deeply buried aquifers is responsible for the formation of the Martian channels suggestive of catastrophic flooding (outflow channels). Fine channels in the Martian surface suggest the presence of surface water early in the history of the planet, which would have entered the ground water system through the porous near-surface rocks. Subsequent global cooling would have trapped the ground water under a thick permafrost layer and formed a system of confined aquifers. High pore pressures within the aquifers are considered to have triggered the breakout of water from the aquifers at rates of from 10 to the 5th to 10 to the 7th cu m/sec, which would be prevented from reentering the ground water system by the layer of permafrost. Outflow from the aquifer is also considered to have caused the undermining of adjacent areas and the collapse of the surface to form areas of chaos, often associated with channels.

  8. Preliminary delineation and description of the regional aquifers of Tennessee : the Highland Rim aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Bradley, M.W.

    1986-01-01

    The Highland Rim aquifer system in Tennessee is primarily composed of Mississippian carbonates and occurs west of the Valley and Ridge Province. It crops out in the Highland Rim and the Sequatchie Valley. It has been removed by erosion from the Central Basin. Groundwater in the Highland Rim aquifer system occurs primarily in secondary openings including solution openings, joints, and faults. The Chattanooga Shale is the lower confining layer for the Highland Rim aquifer system. Under the Cumberland plateau, this aquifer system is separated from the overlying Pennsylvanian formations by the Pennington Shale. The Highland Rim aquifer system is an important source of drinking water. It supplies most of the rural, domestic, and many public supplies of drinking water in the Highland Rim. Where there is a dynamic flow system, dissolved solids concentrations are less than 500 mg/L. However, isolated cells may exist where the groundwater has dissolved solids concentrations of more than 1 ,000 mg/L. (USGS)

  9. Effect of an offshore sinkhole perforation in a coastal confined aquifer on submarine groundwater discharge

    USGS Publications Warehouse

    Fratesi, S.E.; Leonard, V.; Sanford, W.E.

    2007-01-01

    In order to explore submarine groundwater discharge in the vicinity of karst features that penetrate the confining layer of an offshore, partially confined aquifer, we constructed a three-dimensional groundwater model using the SUTRA (Saturated-Unsaturated TRAnsport) variable-density groundwater flow model. We ran a parameter sensitivity analysis, testing the effects of recharge rates, permeabilities of the aquifer and confining layer, and thickness of the confining layer. In all simulations, less than 20% of the freshwater recharge for the entire model exits through the sinkhole. Recirculated seawater usually accounts for 10-30% of the total outflow from the model. Often, the sinkhole lies seaward of the transition zone and acts as a recharge feature for recirculating seawater. The permeability ratio between aquifer and confining layer influences the configuration of the freshwater wedge the most; as confining layer permeability decreases, the wedge lengthens and the fraction of total discharge exiting through the sinkhole increases. Copyright ?? 2007 IAHS Press.

  10. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA

    USGS Publications Warehouse

    Plummer, L.N.; Sprinkle, C.L.

    2001-01-01

    Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in ??18O of approximately 2.0%o.

  11. Delineation and description of the regional aquifer systems of Tennessee; Cumberland Plateau aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Macy, J.A.; Mulderink, Dolores; Zemo, Dawn

    1986-01-01

    The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water, The Pennington Formation serves as the base of this aquifer system and is an effective confining unit, The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau, wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies, water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer. only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids, However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.

  12. Impact of climate change on groundwater in a confined Mediterranean aquifer

    NASA Astrophysics Data System (ADS)

    Caballero, Y.; Ladouche, B.

    2015-10-01

    This paper presents an inverse modeling method based on wavelet analysis, devoted to assessment of the impacts of climate change on the groundwater resources of a confined coastal multi-layer aquifer, located in the south of France (Pyrénées-Orientales). The hydraulic behavior of the aquifer is described based on the results of a model calibrated to simulate the groundwater dynamics observed on two representative piezometers. The relative contributions of the climate and pumping forcings to the piezometric variations are quantified. The results illustrate in quantitative terms the dominant influence of pumping on the temporal variations of the hydraulic head of the aquifer. Based on this specific behavior simulation, we show the moderate vulnerability of such confined aquifers to climate change. Some insights regarding pumping strategies for confined coastal aquifers that could contribute towards preserving their good status in future are also provided.

  13. Water-Level Responses to Barometric-Pressure Fluctuations in Wells in Semi-Confined Aquifers

    NASA Astrophysics Data System (ADS)

    Jin, W.; Butler, J. J.

    2009-12-01

    Hydrologists have long recognized that changes in barometric pressure can produce changes in water levels in wells. The relationship between barometric pressure and water level has traditionally been characterized using the barometric efficiency (BE), the ratio of the change in water level to the change in barometric pressure head. Although BE has proven to be an effective means of characterizing the short-term response of a well to a change in barometric pressure, the barometric response function (BRF) is a more effective means to characterize the longer-term response. The BRF, which can be determined through a regression deconvolution procedure developed by Rasmussen and co-workers (Rasmussen and Crawford, 1997; Toll and Rasmussen, 2007), characterizes the water level response over time to a step change in barometric pressure, essentially BE as a function of the time since the imposed load. We have extended earlier work of Rasmussen and Spane (Rasmussen and Crawford, 1997; Spane, 2002) to show that the BRF can be utilized to glean important insights into semi-confined aquifer systems. The form of the BRF indicates the degree of aquifer confinement, while a comparison of BRFs from different wells provides insight into aquitard continuity. Recently, we have developed a new approach for estimating aquitard K by fitting type curves to experimentally determined BRFs. We will demonstrate the power of the BRF using field data from a long-term monitoring site of the Kansas Geological Survey at which a four-day pumping test has previously been performed. The aquitard K estimates obtained from the BRFs are in good agreement at this site with the estimate determined from the pumping test. We will also show how the BRF for a well in a semi-confined aquifer can be used to gain insights into conditions in the overlying unconfined aquifer and vadose zone. Although the BE is considered an invariant parameter of a well, we will show that the BRF of a well in a semi-confined

  14. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    USGS Publications Warehouse

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  15. Hydrologeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer pumping on the Upper Floridan aquifer, Pooler, Chatham County, Georgia, 2011–2012

    USGS Publications Warehouse

    Gonthier, Gerard J.

    2012-01-01

    Two test wells were completed in Pooler, Georgia, in 2011 to investigate the potential of using the Lower Floridan aquifer as a source of water for municipal use. One well was completed in the Lower Floridan aquifer at a depth of 1,120 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 486 ft below land surface. At the Pooler test site, the U.S. Geological Survey performed flowmeter surveys, packer-isolated slug tests within the Lower Floridan confining unit, slug tests of the entire Floridan aquifer system, and aquifer tests of the Upper and Lower Floridan aquifers. Drill cuttings, geophysical logs, and borehole flowmeter surveys indicate that the Upper Floridan aquifer extends 333 –515 ft below land surface, the Lower Floridan confining unit extends 515–702 ft below land surface, and the Lower Floridan aquifer extends 702–1,040 ft below land surface. Flowmeter surveys indicate that the Upper Floridan aquifer contains two water-bearing zones at depth intervals of 339 –350 and 375–515 ft; the Lower Floridan confining unit contains one zone at a depth interval of 550–620 ft; and the Lower Floridan aquifer contains five zones at depth intervals of 702–745, 745–925, 925–984, 984–1,015, and 1,015–1,040 ft. Flowmeter testing of the test borehole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 92.4 percent of the total flow rate of 708 gallons per minute; the Lower Floridan confining unit contributed 3.0 percent; and the Lower Floridan aquifer contributed 4.6 percent. Horizontal hydraulic conductivity of the Lower Floridan confining unit derived from slug tests within three packer-isolated intervals ranged from 0.5 to 10 feet per day (ft/d). Aquifer-test analyses yielded values of transmissivity for the Upper Floridan aquifer, Lower Floridan confining unit, and the Lower Floridan aquifer of 46,000, 700, and 4,000 feet squared per day (ft2/d

  16. Hydrogeology of confined-drift aquifers near the Pomme de Terre and Chippewa rivers, western Minnesota

    USGS Publications Warehouse

    Delin, G.N.

    1986-01-01

    A ground-water-flow model indicated that increased pumping from two of the confined aquifers simulated, the Appleton and Benson-middle aquifers, would not adversely affect water levels. The addition of 30 hypothetical wells in the Benson-middle aquifer, pumping a total of approximately 792 million gallons per year, resulted in regional water-level declines of as much as 1.4 and 2.7 feet in the surficial and Benson-middle aquifers, respectively. The addition of 28 hypothetical wells in the Appleton aquifer, pumping a total of approximately 756 million gallons per year, lowered water levels as much as 5 feet in the surficial and Appleton aquifers. Simulations of reduced recharge and increased pumping, which could represent a 3-year drought, probably would lower water levels 2 to 6 feet regionally in the surficial and confined aquifers and as much as 11 feet near aquifer boundaries. Ground-water discharge to the Pomme de Terre and Chippewa Rivers in the southern part of the study area probably would be reduced by approximately 15.2 and 7.4 cubic feet per second, respectively, as a result of the simulated drought. Mean discharge of the Pomme de Terre and Chippewa Rivers is 104 and 267 cubic feet per second, respectively.

  17. Hydraulic head response of a confined aquifer influenced by river stage fluctuations and mechanical loading

    NASA Astrophysics Data System (ADS)

    Pacheco, F. A. L.; Fallico, C.

    2015-12-01

    The response to river stage fluctuation of a drilled well penetrating a confined aquifer was simulated using a stream-aquifer interaction algorithm. Because the confined aquifer is overlaid by a water table aquifer, the algorithm was coupled with formulae used to correct the heads for mechanical loading. The coupling of stream-aquifer interaction and mechanical loading models was tried for the first time in this study. The test site was a drilled well installed on the Montalto Uffugo aquifer located at the Calabria University groundwater test field (Calabria region, south of Italy). This aquifer comprises a 44 m-thick sand bank bounded on bottom and top by clay layers and covered by a 7 m-thick sandy conglomerate, being adjacent to the Mavigliano River. Overall, the head changes caused by a river stage raise represented a contribution of 49.3-57.8% to the total head, while mechanical loading accounted for the remaining 50.7-32.2%. The loading was triggered by a sequence of short-spaced rainfall events lasting for a total of 167 days, which caused recharge to the unconfined aquifer thickening the water column by some 3.1 m.

  18. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China.

    PubMed

    Wang, Ya; Jiao, Jiu Jimmy; Cherry, John A; Lee, Chun Ming

    2013-09-01

    Aquitards are capable of generating and preserving large amounts of chemicals. The release of the chemicals from the aquitards poses a potential contamination risk to groundwater that may be used as a drinking water source. This work aimed to identify the contribution of hydrogeochemical processes in the aquitards to groundwater hydrochemistry in the underlying confined basal aquifer by studying the coastal Quaternary aquifer-aquitard system of the Pearl River Delta, China. The system was submerged by paleo-seawater in the early Holocene and mainly receives infiltration of precipitation at present, as indicated by investigations on stable isotopes (δ(2)H, δ(18)O), water chemistry (SO4(2-) and Cl(-)) and salinity. Significant correlations between total dissolved solids in the basal aquifer and the thickness of the overlying aquitard further suggested the contribution of the aquitard to the groundwater hydrochemistry in the aquifer. Significant correlations between the chloride concentrations in aquitard porewater and that in groundwater in the aquifer, and between the thickness of the aquitard and the chloride concentrations in groundwater indicated the strong influence of the aquitard on the chloride in the aquifer. This is probably because the low-permeability aquitard is capable of preserving the paleo-seawater in the aquifer and releasing the salinity from the aquitard down to the aquifer via downward flow or diffusion. Isotopic and geochemical studies revealed that the aquitard is also responsible for generating and preserving large amounts of naturally occurring ammonium. Analysis between the concentrations of ammonium in groundwater in the basal aquifer and the total available ammonium in aquitard sediments suggested that the former is significantly controlled by the latter. PMID:23770547

  19. Preliminary delineation and description of the regional aquifers of Tennessee : Cumberland Plateau aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Macy, Jo Ann; Mulderink, Dolores; Zemo, Dawn

    1986-01-01

    The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water. The Pennington Formation serves as the base of this aquifer system and is an effective confining unit. The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau. Wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies. Water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer, only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids. However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.

  20. Inverse Modeling of Groundwater Flow for a Fractured Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, D.

    2013-12-01

    A two-dimensional inverse method is developed to simultaneously estimate steady-state hydraulic conductivities, state variables, and boundary conditions (BC) for a fractured confined aquifer. Computation experiments were performed with five fractured models where each model is driven by dominantly lateral flow (true BC) through both fractures (Kf) and matrix (Km). From each model, observation data including hydraulic heads and Darcy fluxes were sampled without imposing measurement errors. These data were provided to inversion to estimate Kf and the unknown model BC. For the first 4 models, the same sampling data density was used, while Kf/Km ratio is fixed at 10. The 1st model contains a single vertical fracture, and the error of the estimated Kf is almost 0. The 2nd model contains a single horizontal fracture, and the error of the estimated Kf is 4.6%. The 3rd model contains a vertical and a horizontal fracture, and the error is 5.3%. The 4th model is same as the third, except that the fracture volume is 25 times greater, and the error is 0.70%. In this model, the highest BC estimation error occurred at the domain corners, where the inversion extrapolation error is the greatest (reduction of this error will be investigated in the future with local grid refinement and increased data density). The 5th model contains a set of diagonal fractures, two of which run from the left bottom corner to the right top corner and the other one runs from the left top corner to the right bottom corner. For this model, under a given data density, increasing Kf/Km (10 to 1,000,000) was tested. Kf estimation is found not to be sensitive to this variability - the largest Kf error is only 5.27%. For the same model, at Kf/Km =10, local sensitivity analysis using 1 percent scaled sensitivity (1ss) suggests that observed heads at different locations are important for estimating different parameters. A global inverse sensitivity analysis was then performed by increasing the number of the

  1. Sources of Water Supplying Pumpage from Regional Aquifer Systems of the United States

    NASA Astrophysics Data System (ADS)

    Johnston, Richard H.

    1997-02-01

    During the 1970's and 1980's, groundwater withdrawals in the United States ranged from about 3,100-3,900 m3/s. About 40-50 percent of this pumpage was from 11 regional aquifer systems. Prior to development, four very transmissive carbonate-rock and basaltic-rock aquifer systems had vigorous regional flow regimes. In contrast, seven mostly clastic-rock aquifer systems had comparatively sluggish flow regimes due to a semiarid climate or hydrogeologic characteristics that restrict recharge. Development has greatly altered most of the regional flow regimes. In nine aquifer systems, most of the pumped groundwater is supplied by increased recharge due to: 1) increased percolation from outcrop areas or induced leakage from overlying aquifers, as heads decline in confined parts of the aquifer system; or 2) percolation of excess irrigation water (either imported surface water or pumped groundwater). Pumpage from two aquifer systems was supplied mostly by capture of aquifer discharge to springs and streams or as diffuse leakage. Although water levels have declined in parts of all 11 aquifer systems, large losses in storage have occurred only in the three most heavily pumped aquifer systems - the High Plains aquifer (regional water-table decline), the California Central Valley aquifer system (regional artesian-head decline and land subsidence), and the Gulf Coast aquifer systems (mostly water-table decline in an extensive alluvial aquifer).

  2. Groundwater availability of the Denver Basin aquifer system, Colorado

    USGS Publications Warehouse

    Paschke, Suzanne S., (Edited By)

    2011-01-01

    The Denver Basin aquifer system is a critical water resource for growing municipal, industrial, and domestic uses along the semiarid Front Range urban corridor of Colorado. The confined bedrock aquifer system is located along the eastern edge of the Rocky Mountain Front Range where the mountains meet the Great Plains physiographic province. Continued population growth and the resulting need for additional water supplies in the Denver Basin and throughout the western United States emphasize the need to continually monitor and reassess the availability of groundwater resources. In 2004, the U.S. Geological Survey initiated large-scale regional studies to provide updated groundwater-availability assessments of important principal aquifers across the United States, including the Denver Basin. This study of the Denver Basin aquifer system evaluates the hydrologic effects of continued pumping and documents an updated groundwater flow model useful for appraisal of hydrologic conditions.

  3. Facies distributions, recharge-discharge relations, and aquifer sensitivity in a glacial aquifer system, northeastern Indiana

    SciTech Connect

    Fleming, A.H. ); Yarling, M. )

    1994-04-01

    The Huntertown aquifer system underlies about 650 km[sup 2] in the interlobate region of northeastern Indiana and corresponds to a sequence of Saginaw Lobe deposits sandwiched between two Erie Lobe till sheets. The northern part of the system typically consists of a 3 to 10 m thick basal outwash apron composed chiefly of sand and capped by a discontinuous sheet of sandy till. Several small to medium-sized (5 to 30km[sup 2]) ice-contact fans are superposed on this sequence and result in thick (15 to 30 m), transmissive sections of sand and gravel. To the southeast, these sediments grade into finer-grained fan-delta and slackwater facies associated with ancestral Lake Erie. Facies distributions, and thus aquifer connectivity, are related to topographic characteristics of the underlying till sheet, which controlled Saginaw Lobe meltwater drainage. The aquifer system is variably confined by a younger sequence of clayey tills and lacustrine mud. The degree of confinement is related to terrain characteristics, with the thickest till (15 to 25 m) being associated with ridged and moraines in the southern and central parts of the system. These features are characteristic of a regional discharge area and suggest a relatively longer residence time. Sensitivity of aquifers in this part of the system may thus be correspondingly less. The distribution of geochemical facies is much less predictable, however, and may be affected by several independent variables.

  4. A Microcomputer Program for Evaluating Pumping Test Results for Confined Aquifers.

    ERIC Educational Resources Information Center

    Smith, Stephen M.

    1986-01-01

    Describes an interactive, self-prompting BASIC program that can be incorporated in introductory and intermediate hydrology courses. Exlains how the program can be used to evaluate pumping test data and also to calculate transmissivity and storativity values of confined aquifers. The program is written for the IBM PC. (ML)

  5. Bench-scale column experiments to study the containment of Cr(VI) in confined aquifers by bio-transformation.

    PubMed

    Shashidhar, T; Philip, Ligy; Murty Bhallamudi, S

    2006-04-17

    Bench-scale soil column experiments were conducted to study the effectiveness of Cr(VI) containment in confined aquifers using in situ bio-transformation. Batch adsorption studies were carried out to estimate the adsorption capacities of two different soils for Cr(VI) and Cr(III). Bio-kinetic parameters were evaluated for the enriched microbial system. The inhibition constant, evaluated using Monod's inhibition model, was found to be 11.46 mg/L of Cr(VI). Transport studies indicated that it would not be possible to contain Cr(VI) by adsorption alone. Transport and bio-transformation studies indicated that the pore velocity and the initial bio-mass concentration significantly affect the containment process. In situ bio-remediation is effective in the case of silty aquifers. Cr(VI) concentration of 25 mg/L was effectively contained within 60 cm of a confined silty aquifer. Cr(VI) containment could be achieved in sandy aquifers when the pore velocity was very low and the initial augmented bio-mass was high. A bio-barrier of approximately one meter width would be able to contain Cr(VI) if the initial Cr(VI) concentration is as much as 25 mg/L. PMID:16263213

  6. High-resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer

    NASA Astrophysics Data System (ADS)

    Wilkinson, P. B.; Meldrum, P. I.; Kuras, O.; Chambers, J. E.; Holyoake, S. J.; Ogilvy, R. D.

    2010-04-01

    A permanent geoelectrical subsurface imaging system has been installed at a contaminated land site to monitor changes in groundwater quality after the completion of a remediation programme. Since the resistivities of earth materials are sensitive to the presence of contaminants and their break-down products, 4-dimensional resistivity imaging can act as a surrogate monitoring technology for tracking and visualising changes in contaminant concentrations at much higher spatial and temporal resolution than manual intrusive investigations. The test site, a municipal car park built on a former gasworks, had been polluted by a range of polycyclic aromatic hydrocarbons and dissolved phase contaminants. It was designated statutory contaminated land under Part IIA of the UK Environmental Protection Act due to the risk of polluting an underlying minor aquifer. Resistivity monitoring zones were established on the boundaries of the site by installing vertical electrode arrays in purpose-drilled boreholes. After a year of monitoring data had been collected, a tracer test was performed to investigate groundwater flow velocity and to demonstrate rapid volumetric monitoring of natural attenuation processes. A saline tracer was injected into the confined aquifer, and its motion and evolution were visualised directly in high-resolution tomographic images in near real-time. Breakthrough curves were calculated from independent resistivity measurements, and the estimated seepage velocities from the monitoring images and the breakthrough curves were found to be in good agreement with each other and with estimates based on the piezometric gradient and assumed material parameters.

  7. Near-surface, marine seismic-reflection data defines potential hydrogeologic confinement bypass in a tertiary carbonate aquifer, southeastern Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Walker, Cameron; Westcott, Richard L.

    2012-01-01

    Approximately 210 km of near-surface, high-frequency, marine seismic-reflection data were acquired on the southeastern part of the Florida Platform between 2007 and 2011. Many high-resolution, seismic-reflection profiles, interpretable to a depth of about 730 m, were collected on the shallow-marine shelf of southeastern Florida in water as shallow as 1 m. Landward of the present-day shelf-margin slope, these data image middle Eocene to Pleistocene strata and Paleocene to Pleistocene strata on the Miami Terrace. This high-resolution data set provides an opportunity to evaluate geologic structures that cut across confining units of the Paleocene to Oligocene-age carbonate rocks that form the Floridan aquifer system.Seismic profiles image two structural systems, tectonic faults and karst collapse structures, which breach confining beds in the Floridan aquifer system. Both structural systems may serve as pathways for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability rocks in the Floridan aquifer system. The tectonic faults occur as normal and reverse faults, and collapse-related faults have normal throw. The most common fault occurrence delineated on the reflection profiles is associated with karst collapse structures. These high-frequency seismic data are providing high quality structural analogs to unprecedented depths on the southeastern Florida Platform. The analogs can be used for assessment of confinement of other carbonate aquifers and the sealing potential of deeper carbonate rocks associated with reservoirs around the world.

  8. Type curves for selected problems of flow to wells in confined aquifers

    USGS Publications Warehouse

    Reed, J.E.

    1980-01-01

    This report presents type curves and related material for 11 conditions of flow to wells m confined aquifers. These solutions, compiled from hydrologic literature, span an interval of time from Theis (1935) to Papadopulos, Bredehoeft, and Cooper (1973). Solutions are presented for constant discharge, constant drawdown, and variable discharge for pumping wells that fully penetrate leaky and nonleaky aquifers. Solutions for wells that partially penetrate leaky and nonleaky aquifers are included. Also, solutions are included for the effect of finite well radius and the sudden injection of a volume of water for nonleaky aquifers. Each problem includes the partial differential equation, boundary and initial conditions, and solutions. Programs in FORTRAN for calculating additional function values are included for most of the solutions.

  9. A three-dimensional ground-water-flow model modified to reduce computer-memory requirements and better simulate confining-bed and aquifer pinchouts

    USGS Publications Warehouse

    Leahy, P.P.

    1982-01-01

    The Trescott computer program for modeling groundwater flow in three dimensions has been modified to (1) treat aquifer and confining bed pinchouts more realistically and (2) reduce the computer memory requirements needed for the input data. Using the original program, simulation of aquifer systems with nonrectangular external boundaries may result in a large number of nodes that are not involved in the numerical solution of the problem, but require computer storage. (USGS)

  10. Characteristics of Southern California coastal aquifer systems

    USGS Publications Warehouse

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    , litany of names for the various formations, lithofacies, and aquifer systems identified within these basins. Despite these nomenclatural problems, available data show that most basins contain similar sequences of deposits and share similar geologic histories dominated by glacio-eustatic sea-level fluctuations, and overprinted by syndepositional and postdepositional tectonic deformation. Impermeable, indurated mid-Tertiary units typically form the base of each siliciclastic groundwater basin. These units are overlain by stacked sequences of Pliocene to Holocene interbedded marine, paralic, fluvial, and alluvial sediment (weakly indurated, folded, and fractured) that commonly contain the historically named "80-foot sand," "200-foot sand," and "400-foot gravel" in the upper part of the section. An unconformity, cut during the latest Pleistocene lowstand (??18O stage 2; ca. 18 ka), forms a major sequence boundary that separates these units from the overlying Holocene fluvial sands and gravels. Unconfined aquifers occur in amalgamated coarse facies near the bounding mountains (forebay area). These units are inferred to become lithologically more complex toward the center of the basins and coast line, where interbedded permeable and low-permeability alluvial, fluvial, paralic, and marine facies contain confined aquifers (pressure area). Coastal bounding faults limit intrabasin and/or interbasin flow in parts of many basins. ?? 2009 Geological Society of America.

  11. The Tuscaloosa Aquifer system in Mississippi

    USGS Publications Warehouse

    Boswell, E.H.

    1978-01-01

    A three-sheet map report describes the Tuscaloosa aquifer system in Mississippi. The Tuscaloosa aquifer system, of Cretaceous age , is in the interconnected irregular sand and gravel beds in the Coker and Gordo Formations. The aquifer contains freshwater in an area of about 9,000 sq mi in northeastern Mississippi. Water produced from the aquifer by about 90 water systems and numerous industries in 1975 averaged about 47 Mgal/d. Regional water level declines have averaged less than two feet per year and the aquifer has a large potential for future development. The aquifer is used in some areas where the dissolved-solids concentration is more than 500 mg/L and where wells exceed 2,000 ft in depth. The most common problems in water supplies are excessive chloride and iron. (Woodard-USGS)

  12. Radiocarbon dating of groundwater in a confined aquifer in southeast Arizona

    USGS Publications Warehouse

    Robertson, F.N.

    1992-01-01

    Groundwater ages, after correcting for chemistry, are greater than 10 ka BP. The groundwater ages do not increase in a downvalley direction, the assumed direction of groundwater movement in most intermontane basins in the region, but along general flow paths normal to the mountains toward the center of the basin. Recharge to the confined aquifer originates from infiltration of precipitation and runoff near the alluvium-mountain contact along the Galiuro Mountains and is discharged by evapotranspiration along the center of the basin. The hydrogeological concept of the 14C model is supported by the water chemistry and by the mass transfer defined by the chemical model. Weathering of primary silicate minerals in the confined aquifer does not occur downvalley, but only along the direction of flow. Hydraulic conductivities calculated for the aquifer from 14C velocities are about an order of magnitude slower than those determined through hydrological methods. The lower hydraulic-conductivity values are attributed to a thick confining layer overlying the discharge area along the San Pedro River. -from Author

  13. Mirror Confinement Systems: project summaries

    SciTech Connect

    Not Available

    1980-07-01

    This report contains descriptions of the projects supported by the Mirror Confinement Systems (MCS) Division of the Office of Fusion Energy. The individual project summaries were prepared by the principal investigators, in collaboration with MCS staff office, and include objectives and milestones for each project. In addition to project summaries, statements of Division objectives and budget summaries are also provided.

  14. Aquifer-test analysis of the upper aquifer of the Potomac-Raritan- Magothy aquifer system, Union Beach Borough, Monmouth County, New Jersey

    USGS Publications Warehouse

    Pucci, A.A., Jr.; Pope, D.A.; Ivahnenko, Tamara

    1989-01-01

    The hydraulic properties of the upper aquifer of the Potomac-Raritan-Magothy aquifer system and of the overlying and underlying confining units were determined from and aquifer test in the vicinity of Union Beach Borough, New Jersey, near Raritan Bay. The April 1986 test included the pumping of 2 test wells for 72 hours at a combined discharge rate of 1,375 gal/min, and the measurement of water levels in 10 observation wells. No lateral recharge boundary in Raritan Bay affected the observed water-level changes. Assuming leaky artesian conditions, the average transmissivity and storage coefficient of the upper aquifer are 7,754 sq ft/day and 0.00044 respectively. The leakance of the combined confining units ranges from 0.000030 to 0.000076/day/ft. On the basis of lithologic samples from a nearby well, the overlying and underlying confining units were assumed to have similar hydraulic properties. By using this assumption, the vertical hydraulic conductivity of the confining units ranges from 0.010 to 0.027 ft/day. (USGS)

  15. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ << 1, M <1; (2) Γ << 1, M =1; (3) Γ << 1, M >1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low

  16. On the aquitard-aquifer interface flow and the drawdown sensitivity with a partially penetrating pumping well in an anisotropic leaky confined aquifer

    NASA Astrophysics Data System (ADS)

    Feng, Qinggao; Zhan, Hongbin

    2015-02-01

    A mathematical model for describing groundwater flow to a partially penetrating pumping well of a finite diameter in an anisotropic leaky confined aquifer is developed. The model accounts for the jointed effects of aquitard storage, aquifer anisotropy, and wellbore storage by treating the aquitard leakage as a boundary condition at the aquitard-aquifer interface rather than a volumetric source/sink term in the governing equation, which has never developed before. A new semi-analytical solution for the model is obtained by the Laplace transform in conjunction with separation of variables. Specific attention was paid on the flow across the aquitard-aquifer interface, which is of concern if aquitard and aquifer have different pore water chemistry. Moreover, Laplace-domain and steady-state solutions are obtained to calculate the rate and volume of (total) leakage through the aquitard-aquifer interface due to pump in a partially penetrating well, which is also useful for engineers to manager water resources. The sensitivity analyses for the drawdown illustrate that the drawdown is most sensitive to the well partial penetration. It is apparently sensitive to the aquifer anisotropic ratio over the entire time of pumping. It is moderately sensitive to the aquitard/aquifer specific storage ratio at the intermediate times only. It is moderately sensitive to the aquitard/aquifer vertical hydraulic conductivity ratio and the aquitard/aquifer thickness ratio with the identical influence at late times.

  17. Behavior of TOC in a Deep Confined Aquifer During Groundwater Artificial Recharge Process

    NASA Astrophysics Data System (ADS)

    Zhang, W.; He, H.; Shi, X.

    2013-12-01

    , J6 monitoring well was about 2.54, 2.43, 2.22 mg/L, respectively. All of that showed the farther distance from the recharge well to monitoring wells, the smaller change in the value of DO. It suggested that biodegradation function was in a relative weakening trend away from the recharge position. Based on the complete control of geological, hydrogeological and hydrogeochemical conditions of the test site, GMS (groundwater modelling system) was used to simulate and forecast the TOC changing trend in the deep confined aquifer. The numerical results indicated the radius of influence (over 1.6mg/L) was 170m, 220m and 270m respectively after continuous recharge during 1 year, 2 year and 5 year.

  18. Semi-analytical solution of groundwater flow in a leaky aquifer system subject to bending effect

    NASA Astrophysics Data System (ADS)

    Yu, Chia-Chi; Yang, Shaw-Yang; Yeh, Hund-Der

    2013-04-01

    SummaryThe bending of aquitard like a plate due to aquifer pumping and compression is often encountered in many practical problems of subsurface flow. This reaction will have large influence on the release of the volume of water from the aquifer, which is essential for the planning and management of groundwater resources in aquifers. However, the groundwater flow induced by pumping in a leaky aquifer system is often assumed that the total stress of aquifer maintains constant all the time and the mechanical behavior of the aquitard formation is negligible. Therefore, this paper devotes to the investigation of the effect of aquitard bending on the drawdown distribution in a leaky aquifer system, which is obviously of interest in groundwater hydrology. Based on the work of Wang et al. (2004) this study develops a mathematical model for investigating the impacts of aquitard bending and leakage rate on the drawdown of the confined aquifer due to a constant-rate pumping in the leaky aquifer system. This model contains three equations; two flow equations delineate the transient drawdown distributions in the aquitard and the confined aquifer, while the other describes the vertical displacement in response to the aquitard bending. For the case of no aquitard bending, this new solution can reduce to the Hantush Laplace-domain solution (Hantush, 1960). On the other hand, this solution without the leakage effect can reduce to the time domain solution of Wang et al. (2004). The results show that the aquifer drawdown is influenced by the bending effect at early time and by the leakage effect at late time. The results of sensitivity analysis indicate that the aquifer compaction is sensitive only at early time, causing less amount of water released from the pumped aquifer than that predicted by the traditional groundwater theory. The dimensionless drawdown is rather sensitive to aquitard's hydraulic conductivity at late time. Additionally, both the hydraulic conductivity and

  19. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    NASA Astrophysics Data System (ADS)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.; Mikucki, J. A.; Arcone, S. A.; Auken, E.; Schamper, C.; Virginia, R. A.

    2015-01-01

    water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground penetrating radar survey profiled 20 m into lake ice and facilitated bathymetric mapping of the upper lake basin. An airborne transient electromagnetic survey revealed a low-resistivity zone 30-100 m beneath the lake surface. Based on previous knowledge of brine chemistry and local geology, we interpret this zone to be a confined aquifer situated in sediments with a porosity of 23-42%. Discovery of this aquifer suggests that subsurface liquid water may be more pervasive in regions of continuous permafrost than previously thought and may represent an extensive habitat for microbial populations.

  20. Hydrogeology of the North Coast Limestone aquifer system of Puerto Rico

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús

    1995-01-01

    The North Coast Limestone aquifer system of Puerto Rico is composed of three regional hydrogeologic units: an upper aquifer that contains an underlying saltwater zone near the coast, a middle confining unit, and a lower aquifer. The upper aquifer is unconfined, except in coastal areas where it is locally confined by fine-grained surficial deposits. The upper aquifer is mostly absent in the Rio Piedras area of northeastern Puerto Rico. The confining unit is composed of calcareous claystone, marl, chalky and silicified limestone, and locally clayey fine-grained sandstone. Test hole data indicate that the confining unit is locally leaky in the San Juan metropolitan area. An artesian zone of limited areal extent exists within the middle confining unit, in the central part of the study area. The lower aquifer mostly contains ground water under confined conditions except in the outcrop areas, where it is unconfined. The lower aquifer is thickest and most transmissive in the north-central part of the study area. Water in the lower aquifer is fresh throughout much of the area, but is brackish in some areas near San Juan and Guaynabo. West of the Rio Grande de Arecibo, the extent of the lower aquifer is uncertain. Data are insufficient to determine whether or not the existing multiple water-bearing units in this area are an extension of the more productive lower aquifer in the Manati to Arecibo area. Zones of moderate permeability exist within small lenses of volcanic conglomerate and sandstone of the San Sebastian Formation, but in general this formation is not a productive aquifer. Transmissivity values for the upper aquifer range from 200 to more than 280,000 feet squared per day. The transmissivity values for the upper aquifer generally are highest in the area between the Rio de la Plata and Rio Grande de Arecibo, where transmissivity values have been reported to exceed 100,000 feet squared per day in six locations. Transmissivity estimates for the lower aquifer are

  1. Regeneration of a confined aquifer after redevelopment and decommission of artesian wells, example from Grafendorf aquifer (Styria, Austria)

    NASA Astrophysics Data System (ADS)

    Mehmedovski, Nudzejma; Winkler, Gerfried

    2016-04-01

    Water is essential for life and it is therefore necessary to protect drinking water sustainably. Compared to shallow groundwater, deeper groundwater is especially important due to its characteristic tendency to remain extensively unaffected by environmental impacts. Thus, the uncontrolled waste of this valuable resource has to be avoided. A lot of artesian wells have been established in Grafendorf bei Hartberg (Styria, Austria). Almost all wells were not state-of-the art. As a result the different aquifer horizons began to intermix. Additionally some of the artesian wells had a permanent free overflow and the water was not even used. Consequently, since 1950, where the mean discharge of 37 wells was 0,334 l/s per well, the discharge has decreased to 0,090 l/s until 2013, which means a decline of about 75 %. As a reaction to these declines a decommissioning campaign was conducted where 69 artesian wells have been closed by injecting a cement-bentonite suspension (ratio 3:1). The Grafendorf aquifer is situated in the Styrian Basin and consists of 5 separated artesian horizons in Neogene sediments. These artesian horizons range from 42 m (1st horizon) to 176 m (5th horizon) and mostly consist of sand, partly of fine/medium/coarse gravel and partially with minor clay content. In order to analyse the reaction of the Grafendorf aquifer to these redevelopments, 5 monitoring wells could be used for the analysis. Some monitoring wells include different aquifer horizons and hydraulically short cut them. Thus, in this work the analysis focus on the general trend of the whole aquifer system neglecting the individual interactions between the different aquifers. In a first investigation step the hydraulic properties of the aquifer system has been determined using pumping tests which were analysed with different analytical solutions with the software AQTESOLV. Overall the pumping test solutions hardly differ in the transmissivity and hydraulic conductivity. On the contrary the

  2. Interfacial electrofluidics in confined systems

    PubMed Central

    Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G.F.)

    2016-01-01

    Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films. PMID:27221211

  3. Interfacial electrofluidics in confined systems

    NASA Astrophysics Data System (ADS)

    Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G. F.)

    2016-05-01

    Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films.

  4. Interfacial electrofluidics in confined systems.

    PubMed

    Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A; Zhou, Guofu G F

    2016-01-01

    Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it's potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films. PMID:27221211

  5. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    SciTech Connect

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  6. Poroelastic responses of confined aquifers to subsurface strain changes and their use for volcano monitoring

    NASA Astrophysics Data System (ADS)

    Strehlow, K.; Gottsmann, J. H.; Rust, A. C.

    2015-06-01

    Well water level changes associated with magmatic unrest can be interpreted as a result of pore pressure changes in the aquifer due to crustal deformation, and so could provide constraints on the subsurface processes causing this strain. We use Finite Element Analysis to demonstrate the response of aquifers to volumetric strain induced by pressurised magma reservoirs. Two different aquifers are invoked - an unconsolidated pyroclastic deposit and a vesicular lava flow - and embedded in an impermeable crust, overlying a magma chamber. The time-dependent, fully coupled models simulate crustal deformation accompanying chamber pressurisation and the resulting hydraulic head changes as well as porous flow in the aquifer. The simulated deformational strain leads to centimetres (pyroclastic aquifer) to meters (lava flow aquifer) of hydraulic head changes; both strain and hydraulic head change with time due to substantial porous flow in the hydrological system. Well level changes are particularly sensitive to chamber volume and shape, followed by chamber depth and the phase of the pore fluid. The Young's Modulus and permeability of the aquifer, as well as the strength of pressurisation also have significant influence on the hydraulic head signal. While source characteristics, the distance between chamber and aquifer and the elastic stratigraphy determine the strain field and its partitioning, flow and coupling parameters define how the aquifer responds to this strain and how signals change with time. We investigated a period of pre-eruptive head changes recorded at Usu volcano, Japan, where well data were interpreted using an analytical deformation model. We find that generic analytical models can fail to capture the complex pre-eruptive subsurface mechanics leading to well level changes, due to aquifer pressure changes being sensitive to chamber shape and lithological heterogeneities. In addition, the presence of a pore fluid and its flow have a significant influence on

  7. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    USGS Publications Warehouse

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  8. Distribution of volatile organic compounds in a New Jersey coastal plain aquifer system

    USGS Publications Warehouse

    Fusillo, T.V.; Hochreiter, J.J., Jr.; Lord, D.G.

    1985-01-01

    Samples for analysis of volatile organic compounds were collected from 315 wells in the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey and a small adjacent area in Pennsylvania during 1980-82. Volatile organic compounds were detected in all three aquifer units of the Potomac-Raritan-Magoth aquifer system in the study area. Most of the contamination appears to be confined to the outcrop area at present. Low levels of contamination, however, were found downdip of the outcrop area in the upper and middle aquifers. Trichloroethylene, tetrachloroethylene, and benzene were the most frequently detected compounds. Differences in the areal distributions of light chlorinated hydrocarbons, such as trichloroethylene, and aromatic hydrocarbons, such as benzene, were noted and are probably due to differences in the uses of the compounds and the distribution patterns of potential contamination sources. The distribution patterns of volatile organic compounds differed greatly among the three aquifer units. The upper aquifer, which crops out mostly in less-developed areas, had the lowest percentage of wells with volatile organic compounds detected (10 percent of wells sampled). The concentrations in most wells in the upper aquifer which had detectable levels were less than 10 ??g/l. In the middle aquifer, which crops out beneath much of the urban and industrial area adjacent to the Delaware River, detectable levels of volatile organic compounds were found in 22 percent of wells sampled, and several wells contained concentrations above 100 ??g/l. The lower aquifer, which is confined beneath much of the outcrop area of the aquifer system, had the highest percentage of wells (28 percent) with detectable levels. This is probably due to (1) vertical leakage of contamination from the middle aquifer, and (2) the high percentage of wells tapping the lower aquifer in the most heavily developed areas of the outcrop.

  9. Closed-form analytical solutions incorporating pumping and tidal effects in various coastal aquifer systems

    NASA Astrophysics Data System (ADS)

    Wang, Chaoyue; Li, Hailong; Wan, Li; Wang, Xusheng; Jiang, Xiaowei

    2014-07-01

    Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer's permeability (semi-permeable and impermeable), of the boundary condition at the aquifer's submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.

  10. Vacuum-enhanced pumping to improve DNAPL recovery in a confined aquifer

    SciTech Connect

    Reisinger, H.J.; Mountain, S.A.; Hubbard, P. Jr.; Carlson, K.; Montney, P.A.

    1995-12-31

    Dense, nonaqueous-phase liquids (DNAPLs) in the form of chlorinated solvents have been used in various phases of US industry for many years. As a result of their use prior to the advent of standardized handling and disposal regulations, they have found their way into the environment at many active and inactive industrial sites. Because of their unique physiochemical characteristics, DNAPLs present unique challenges in the site remediation process. At one such site in the northeast US, dichloromethane, or methylene chloride, entered a confined aquifer from underground storage tanks (USTs) and became subject to environmental remediation. The initial remediation approach was conventional groundwater extraction and treatment via physical separation and diffused aeration. The expansion of the dichloromethane plume resulted in the need for improved DNAPL recovery and dissolved-phase hydraulic control. Through conceptual analysis and pilot testing, vacuum-enhanced dual-phase recovery was determined to be a feasible remedial alternative. Vacuum-enhanced recovery, using a custom-designed pump, was implemented in this confined aquifer, increasing the volume of methylene chloride impacted groundwater recovered by a factor of nearly three, and hydraulic control of the plume was realized.

  11. Identifying aquifer type in fractured rock aquifers using harmonic analysis.

    PubMed

    Rahi, Khayyun A; Halihan, Todd

    2013-01-01

    Determining aquifer type, unconfined, semi-confined, or confined, by drilling or performing pumping tests has inherent problems (i.e., cost and complex field issues) while sometimes yielding inconclusive results. An improved method to cost-effectively determine aquifer type would be beneficial for hydraulic mapping of complex aquifer systems like fractured rock aquifers. Earth tides are known to influence water levels in wells penetrating confined aquifers or unconfined thick, low-porosity aquifers. Water-level fluctuations in wells tapping confined and unconfined aquifers are also influenced by changes in barometric pressure. Harmonic analyses of water-level fluctuations of a thick (~1000 m) carbonate aquifer located in south-central Oklahoma (Arbuckle-Simpson aquifer) were utilized in nine wells to identify aquifer type by evaluating the influence of earth tides and barometric-pressure variations using signal identification. On the basis of the results, portions of the aquifer responded hydraulically as each type of aquifer even though there was no significant variation in lithostratigraphy. The aquifer type was depth dependent with confined conditions becoming more prevalent with depth. The results demonstrate that harmonic analysis is an accurate and low-cost method to determine aquifer type. PMID:22463080

  12. Characterization of leaky faults: Study of water flow in aquifer-fault-aquifer systems

    NASA Astrophysics Data System (ADS)

    Shan, Chao; Javandel, Iraj; Witherspoon, Paul A.

    Leaky faults provide important flow paths for fluids to move underground. It is often necessary to characterize such faults in engineering projects such as deep well injection of waste liquids, underground natural gas storage, and radioactive waste isolation. To provide this characterization, analytical solutions are presented for groundwater flow through saturated aquifer-fault-aquifer systems assuming that both the aquifers and the fault are homogeneous and that the fault has an insignificant effect on aquifer hydraulic properties. Three different conditions are considered: (1) drawdown in the unpumped aquifer is negligibly small; (2) drawdown in the unpumped aquifer is significant, and the two aquifers have the same diffusivity; and (3) drawdown in the unpumped aquifer is significant, and the two aquifers have different diffusivities. Methods are presented to determine the fault transmissivity from pumping test data.

  13. A digital-computer model for estimating hydrologic changes in the aquifer system in Dane County, Wisconsin

    USGS Publications Warehouse

    McLeod, R.S.

    1975-01-01

    The extensive use of ground water for water supply within Dane County has resulted in the need for an appraisal of the area's ground-water resources. Water-resources planners and other water-oriented groups have expressed concern over ground-water level declines and reductions in streamflow that are occurring as a result of heavy pumping. Digital-computer modeling techniques were used to estimate hydrologic changes in the aquifer system that would be caused by continued development. The system was modeled as a two-aquifer system consisting of a confined sandstone aquifer overlain by a leaky unconfined aquifer and underlain by impermeable bedrock. The physical properties of the aquifer system needed for the model were approximated using aquifer-test data and well-log data and by matching observed hydrologic changes in the system with corresponding changes computed by the model. Computed hydrologic changes do not represent a serious depletion of the available ground-water supply for the foreseeable future. Maximum added regional declines in ground-water levels (drawdowns) from 1970 to 1990 were computed to be approximately 10 feet (3 metres) in the unconfined aquifer and approximately 40 feet (12 metres) in the confined aquifer. It is computed that for the same period the average annual streamflow from the upper Yahara River basin would be reduced by approximately 29 cubic feet per second (0.82 cubic metre per second). These changes are computed based on estimated development trends for the confined sandstone aquifer.

  14. Subsurface storage of liquids in the Floridan aquifer system in south Florida

    USGS Publications Warehouse

    Meyer, Frederick W.

    1989-01-01

    The Floridan aquifer system in south Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the Floridian aquifer system generally occurs at depths ranging from 500 to 1,000 ft, and the average thickness is about 3,000 ft. It is divided into three general hydrogeologic units that include Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. Groundwater movement in the Upper Floridan aquifer is generally from the area of highest head in central Florida, eastward to the Straits of Florida, westward to the Gulf of Mexico, and, to a much lesser extent, southward. Injection of nontoxic liquid wastes into deep, saline parts of the Floridan aquifer system as a pollution-control measure began in 1943 with injection of oilfield brine in southwest Florida. Since then, the practice has quickly expanded, and many high capacity municipal and industrial injection wells are now in operation in southeast Florida. The principal use of the Floridan aquifer system in south Florida is for subsurface storage of liquid waste. The Boulder Zone of the Lower Floridan aquifer is extensively used as a receptacle for injected treated municipal wastewater, oilfield brine and, to a lesser extent, industrial wastewater. Pilot studies indicate a potential for cyclic storage of freshwater in the Upper Floridan aquifer in south Florida. (USGS)

  15. Deuterium and oxygen-18 diffusion in a confined aquifer: a numerical model of stable isotope diffusion across aquitard-aquifer boundaries

    NASA Astrophysics Data System (ADS)

    Currens, B. J.; Sawyer, A. H.; Fryar, A. E.

    2014-12-01

    Deuterium and oxygen-18, combined with noble gases and radioisotopes (e.g., 3H, 14C, 36Cl), are routinely used to infer climate during recharge and groundwater age. However, along flow paths on the order of 10 - 103 km long, groundwater velocities may be low enough to allow diffusion of 2H and 18O between a confined aquifer and bounding aquitards, which could alter isotope concentrations and the inferred temperature of recharge. While the need to account for 14C diffusion between aquifer waters and confining layers has been suggested by a prior model (Sudicky and Frind, 1981), a literature review revealed no similar study of stable water isotopes. Based on the geologic and hydraulic properties of the confined Wilcox aquifer in the middle Mississippi Valley, we are constructing a numerical model to determine whether, and to what degree, diffusion can influence 2H and 18O concentrations in regional aquifers with residence times on the order of 104 - 105 y. This model combines solutions for a 1D forward-in-time, finite-difference groundwater flow equation and a combined explicit-implicit, advection-diffusion Crank-Nicholson algorithm to solve for flow velocity and isotope concentration.

  16. Hydrogeologic framework and geochemistry of the intermediate aquifer system in parts of Charlotte, De Soto, and Sarasota counties, Florida

    USGS Publications Warehouse

    Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.

    2001-01-01

    the thinnest and generally, the least productive zone in the intermediate aquifer system. The Upper Arcadia zone (PZ2) is the middle zone and productivity is generally higher than the overlying permeable zone. The Lower Arcadia zone (PZ3) is the lowermost permeable zone and is the most productive zone in the intermediate aquifer system. The intermediate aquifer system is underlain by the Upper Floridan aquifer, which consists of a thick, stratified sequence of limestone and dolomite. The Upper Floridan aquifer is the most productive aquifer in the study area; however, its use is generally restricted because of poor water quality. Interbedded clays and fine-grained clastics separate the aquifer systems and permeable zones. The hydraulic properties of the three aquifer systems are spatially variable. Estimated trans-missivity and horizontal hydraulic conductivity varies from 752 to 32,900 feet squared per day and from 33 to 1,490 feet per day, respectively, for the surficial aquifer system; from 47 to 5,420 feet squared per day and from 2 to 102 feet per day, respectively, for the Tamiami/Peace River zone (PZ1); from 258 to 24,633 feet squared per day and from 2 to 14 feet per day, respectively, for the Upper Arcadia zone (PZ2); from 766 to 44,900 feet squared per day and from 10 to 201 feet per day, respectively, for the Lower Arcadia zone (PZ3); and from 2,350 to 7,640 feet squared per day and from 10 to 41 feet per day, respectively, for the Upper Floridan aquifer. Confining units separating the aquifer systems have leakance coefficients estimated to range from 2.3 x 10-5 to 5.6 x 10-3 feet per day per foot. Strata composing the confining unit separating the Upper Floridan aquifer from the intermediate aquifer system are substantially more permeable than confining units separating the permeable zones in the intermediate aquifer system or separating the surficial aquifer and intermediate aquifer systems. In Charlotte, Sarasota, and western De Soto Counties, hydraulic

  17. Physical-Based Inversion of Confined and Unconfined Aquifers under Unknown Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Jiao, J.

    2013-12-01

    An inverse method is developed to simultaneously estimate multiple hydraulic conductivities, source/sink strengths, and boundary conditions (BC), for two-dimensional confined and unconfined aquifers under non-pumping or pumping conditions (Jiao & Zhang, 2013). The method is successfully tested on problems with regular and irregular geometries, different heterogeneity variances (maximum Kmax/Kmin is 10,000), and error magnitudes. Under non-pumping conditions, when error-free observed data are used to condition the inversion, the estimated conductivities and recharge rates are accurate within 8% of the true values. When data contain increasing errors, the estimated parameters become less accurate. For problems where the underlying parameter variation is unknown, equivalent conductivities and average recharge rates can be determined. Under pumping (and/or injection) conditions, a hybrid formulation is developed to address local source/sink effects as well as the impact of different types of BCs on drawdowns. Accurate results can be gained without local grid refinement at wells, inversion is thus successful with coarse grids leading to high computation efficiency. Flux measurements are not needed for the inversion to succeed; data requirement of the method is not much different from that of interpreting classic well tests. Finally, inversion accuracy is not sensitive to the degree of nonlinearity of the flow equations. Performance of the inverse method for confined and unconfined aquifer problems is similar in terms of the accuracy of the estimated parameters, the recovered head field (includling the BC), and the speed of the nonlinear solver. A select problem is presented in a set of figures (all relevant quantities have a consistent set of units). J Jiao and Y Zhang (2013) Physical-Based Inversion of Confined and Unconfined Aquifers under Unknown Boundary Conditions, Advances in Water Resources, in review. Unconfined problem with a pair of pumping and injection wells

  18. Predicting impacts of CO2 intrusion into a confined sandstone aquifer

    NASA Astrophysics Data System (ADS)

    Shao, H.; Qafoku, N. P.; Zheng, L.; Lawter, A.; Wang, G.

    2013-12-01

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding on how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from a confined sandstone aquifer, i.e., the High Plains aquifer in Kansas, were used to represent a generic sandstone aquifer. The sediments originated from different wells and depths within the central portion of the High Plains aquifer. A series of batch and column experiments were conducted to study time-dependent release of major, minor and trace elements when the sediments were exposed to the CO2 gas stream. Pre- and post-treatment solid phase characterization studies and wet chemical extractions have also been conducted or are underway. Major variables tested included reaction time (0-336 hours), CO2 flow rate (50 to 350 ml/min), brine concentration (0.1 and 1 M NaCl), and sediment type. Additional experiments are being conducted to determine the fate of contaminants, such as As, Pb and Cd, when they are present in the initial contacting solution. The XRD results showed that the < 2 mm size-fraction of the High Plains aquifer sediments was abundant in quartz and feldspars, and also contained 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some sediments contained up to 7 wt% calcite. Results from acid extractions demonstrated that the solid phase had appreciable amounts of potential contaminants (As, Cd, Cu, Pb and Zn). However, results from the batch and column experiments demonstrated that few trace elements were released into the aqueous phase and their concentrations were close to or

  19. Sources of groundwater pumpage in a layered aquifer system in the Upper Gulf Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Huang, Yun; Scanlon, Bridget R.; Nicot, Jean-Philippe; Reedy, Robert C.; Dutton, Alan R.; Kelley, Van A.; Deeds, Neil E.

    2012-06-01

    Understanding groundwater-pumpage sources is essential for assessing impacts on water resources and sustainability. The objective of this study was to quantify pumping impacts and sources in dipping, unconfined/confined aquifers in the Gulf Coast (USA) using the Texas Carrizo-Wilcox aquifer. Potentiometric-surface and streamflow data and groundwater modeling were used to evaluate sources and impacts of pumpage. Estimated groundwater storage is much greater in the confined aquifer (2,200 km3) than in the unconfined aquifer (170 km3); however, feasibility of abstraction depends on pumpage impacts on the flow system. Simulated pre-development recharge (0.96 km3/yr) discharged through evapotranspiration (ET, ˜37%), baseflow to streams (˜57%), and to the confined aquifer (˜6%). Transient simulations (1980-1999) show that pumpage changed three out of ten streams from gaining to losing in the semiarid south and reversed regional vertical flow gradients in ˜40% of the entire aquifer area. Simulations of predictive pumpage to 2050 indicate continued storage depletion (41% from storage, 32% from local discharge, and 25% from regional discharge capture). It takes ˜100 yrs to recover 40% of storage after pumpage ceases in the south. This study underscores the importance of considering capture mechanism and long-term system response in developing water-management strategies.

  20. Hydrogeology, ground-water movement, and subsurface storage in the Floridan aquifer system in southern Florida

    USGS Publications Warehouse

    Meyer, Frederick W.

    1989-01-01

    The Floridan aquifer system of southern Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the aquifer system in southern Florida generally is at depths ranging from 500 to 1,000 feet, and the average thickness is about 3,000 feet. It is divided into three general hydrogeologic units: (1) the Upper Floridan aquifer, (2) the middle confining unit, and (3) the Lower Floridan aquifer. The Upper Floridan aquifer contains brackish ground water, and the Lower Floridan aquifer contains salty ground water that compares chemically to modern seawater. Zones of high permeability are present in the Upper and Lower Floridan aquifers. A thick, cavernous dolostone in the Lower Floridan aquifer, called the Boulder Zone, is one of the most permeable carbonate units in the world (transmissivity of about 2.5 x 107 feet squared per day). Ground-water movement in the Upper Floridan aquifer is generally southward from the area of highest head in central Florida, eastward to the Straits of Florida, and westward to the Gulf of Mexico. Distributions of natural isotopes of carbon and uranium generally confirm hydraulic gradients in the Lower Floridan aquifer. Groundwater movement in the Lower Floridan aquifer is inland from the Straits of Florida. The concentration gradients of the carbon and uranium isotopes indicate that the source of cold saltwater in the Lower Floridan aquifer is seawater that has entered through the karat features on the submarine Miami Terrace near Fort Lauderdale. The relative ages of the saltwater suggest that the rate of inland movement is related in part to rising sea level during the Holocene transgression. Isotope, temperature, and salinity anomalies in waters from the Upper Floridan aquifer of southern Florida suggest upwelling of saltwater from the Lower Floridan aquifer. The results of the study support the hypothesis of circulating relatively modern seawater and cast doubt on the theory that the

  1. Groundwater Chemistry and Hydrogeology of the Upper Saddle Mountains Basalt-Confined Aquifer South and Southeast of the Hanford Site

    SciTech Connect

    Newcomer, Darrell R. ); Thornton, Edward C. ); Liikala, Terry L. )

    2002-11-20

    This report describes groundwater monitoring within the upper basalt-confined aquifer in areas bordering the Hanford Site to the south and southeast. The purpose of the sample was to demonstrate that constituents analyzed were within the range of background concentrations and to evaluate any potential connection between groundwater on and off the Hanford Site.

  2. The Oligocene aquifer system in Mississippi

    USGS Publications Warehouse

    Gandl, L.A.

    1979-01-01

    The Oligocene aquifer system in Mississippi consists of limestone and marl members of the Vicksburg Group, and the underlying Forest Hill Sand. The aquifer system crops out in a band 5 to 10 miles wide, that trends southeast across the State from the Warren-Yazoo County line to northeastern Wayne County. In the northwest part of the area, the formations dip to the southwest at 12 feet per mile. At the southeastern end of the outcrop, the dip is 42 feet per mile. The average dip for the entire area is 30 feet per mile. The aquifers are of primary importance for domestic and farm use. Total withdrawal in 1977 was about 1.4 million gallons per day. Since 1963 water levels have declined an average of between 0.05 and 2 feet per year. Water quality is generally good although in some places there are objectionably high concentrations of iron and color. (Woodard-USGS)

  3. Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia

    USGS Publications Warehouse

    Smith, Barry S.; Harlow,, George E., Jr.

    2002-01-01

    The hydrogeologic framework of the shallow aquifer system at Virginia Beach was revised to provide a better understanding of the distribution of fresh ground water, its potential use, and its susceptibility to contamination. The revised conceptual framework is based primarily on analyses of continuous cores and downhole geophysical logs collected at 7 sites to depths of approximately 200 ft.The shallow aquifer system at Virginia Beach is composed of the Columbia aquifer, the Yorktown confining unit, and the Yorktown-East-over aquifer. The shallow aquifer system is separated from deeper units by the continuous St. Marys confining unit.The Columbia aquifer is defined as the predominantly sandy surficial deposits above the Yorktown confining unit. The Yorktown confining unit is composed of a series of very fine sandy to silty clay units of various colors at or near the top of the Yorktown Formation. The Yorktown confining unit varies in thickness and in composition, but on a regional scale is a leaky confining unit. The Yorktown-Eastover aquifer is defined as the predominantly sandy deposits of the Yorktown Formation and the upper part of the Eastover Formation above the confining clays of the St. Marys Formation. The limited areal extent of highly permeable deposits containing freshwater in the Yorktown-Eastover aquifer precludes the installation of highly productive freshwater wells over most of the city. Some deposits of biofragmental sand or shell hashes in the Yorktown-Eastover aquifer can support high-capacity wells.A water sample was collected from each of 10 wells installed at 5 of the 7 core sites to determine the basic chemistry of the aquifer system. One shallow well and one deep well was installed at each site. Concentrations of chloride were higher in the water from the deeper well at each site. Concentrations of dissolved iron in all of the water samples were higher than the U.S. Environmental Protection Agency Secondary Drinking Water Regulations

  4. Hydrogeochemical investigation of seawater intrusion into confined aquifer in Liepaja city

    NASA Astrophysics Data System (ADS)

    Bikse, Janis; Retike, Inga; Delina, Aija; Babre, Alise; Kalvans, Andis

    2015-04-01

    Large scale pumping of groundwater has caused seawater intrusion into Upper Devonian Famenian multi aquifer (D3fm), particularly Muri - Zagare aquifer (D3mr-zg) in the Liepaja city area, and intrusion is developing towards water supply wells which are located inland to the south-east from Liepaja City. In this study attempt has been made to determine seawater intrusion rate and current hydrogeochemical conditions in Muri - Zagare confined aquifer using data on chemical composition of groundwater samples, taken from exploration and monitoring wells. Dataset of major ions and trace elements were used acquired from monitoring wells, project wells and water supply wells dated from 1960.-ies to year 2013. Various techniques are used for better understanding of seawater intrusion development, its current state and possible further development, including Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) and probability graphs. Probability graph revealed that it is possible to distinguish fresh, brackish and saline water by electrical conductivity (EC) threshold. Seawater influence can be detected up to 4 km inland from the Baltic Sea coast. Analysis of hydrogeochemical data reveal great influence of cation exchange processes on groundwater chemical composition. Besides seawater intrusion, signs of intrusion from subjacent aquifer (Devonian akmene-jonisku) were detected from analysis. Majority of samples showed manganese, sodium, potassium and calcium ion correlation with Cl- indicating that these components can be enriched during freshwater and seawater mixing. This study revealed that is possible to distinguish brackish water from freshwater by using Ca/Cl, Mg/Cl and K/Cl ionic ratios. PCA and HCA statistical analysis proved their usability in investigation of seawater intrusion process as they can distinguish different groups of water from chemical composition point of view. The research is supported by the European Union through the ESF

  5. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA

    NASA Astrophysics Data System (ADS)

    Plummer, Niel; Sprinkle, Craig

    2001-03-01

    Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in δ18O of approximately 2.0‰. Résumé. Les modèles de réactions géochimiques ont été évalués afin de tester la datation par le radiocarbone du carbone minéral dissous (CMD) des eaux souterraines dans les parties captives de la nappe supérieure de Floride, en Floride centrale et nord-orientale (États-Unis). Les réactions géochimiques prédominantes affectant l'activité en 14C du CMD comprennent (1) la dissolution de la dolomite et de l'anhydrite accompagnée de la précipitation de la calcite (d

  6. Geohydrologic systems in Kansas, geohydrology of the Great Plains aquifer system

    USGS Publications Warehouse

    McGovern, Harold E.; Wolf, R.J.

    1993-01-01

    Sedimentary rocks of Late Cambrian through Early Cretaceous age in Kansas are part of a regional flow system of hydraulically connected aquifers and confining units. Future demands for water require that these deeply buried rocks be studied to describe hydrologic properties and ground-water-flow conditions and to provide information that will serve as the basis for decisions concerning the protection and the management of the water resources contained therein, Toward this end, the U.S. Geological Survey, as a part of its Central Midwest Regional Aquifer-System Analysis (CMRASA), began a 5-year hydrologic investigation of this regional flow system in Arkansas, Colorado, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, South Dakota, and Texas (Jorgensen and Signor, 1981).This chapter is one of nine contained in Hydrologic Investigations Atlas HA-722, which present a description of the physical framework (Chapters B-F) and the geohydrology (Chapters G-I} of principal aquifers and confining systems in Upper Cambrian through Lower Cretaceous rocks in Kansas; the stratigraphic relations of these geohydrologic systems are discussed in detail in Chapter A (Wolf and others, 1990). This chapter (G) describes the geohydrology of the Great Plains aquifer system; the physical framework of the Great Plains aquifer system is presented in Chapter B (Spinazola and others, 1992).The maps in this chapter are based on existing data from selected geophysical and lithologic logs, drill-stem tests, water-level measurements, water-quality analyses, and published maps of stratigraphically equivalent units. An index to the geohydrologic data compiled for the CMRASA in Kansas is presented in Spinazola and others (1987). For the most part, data used to construct the maps were collected over many years and do not reflect aquifer conditions for any specific time period.

  7. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from

  8. Digital model of the unconsolidated aquifer system in the Modesto area, Stanislaus and San Joaquin Counties, California

    USGS Publications Warehouse

    Londquist, Clark J.

    1981-01-01

    A digital mathematical model of the unconsolidated alluvial aquifer system in the Modesto area, Calif., has been developed which can be used to determine the effects of increased pumping and water use of future water levels in the aquifer system. The model is divided into two units. The lower unit is confined in the western part of the study area by a confining clay bed; elsewhere in this unit the aquifer is unconfined. The upper unit represents an unconfined aquifer and lies above the clay bed or its extension. Where the clay bed is absent the upper and lower units are considered as a single aquifer. The model, as calibrated, can evaluate with reasonable accuracy the effects on water levels of changing stresses and stress patterns only within the area of primary interest for the upper unit. In other areas of the upper unit and for the lower unit, predicted changes should be looked upon as, at best, representing only general trends. (USGS)

  9. Hydrogeologic framework of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    USGS Publications Warehouse

    Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.

    2014-01-01

    Regionally, water in the lower Tertiary and Upper Cretaceous aquifer systems flows in a northerly or northeasterly direction from the Powder River structural basin to the Williston structural basin. Groundwater flow in the Williston structural basin generally is easterly or northeasterly. Flow in the uppermost hydrogeologic units generally is more local and controlled by topography where unglaciated in the Williston structural basin than is flow in the glaciated part and in underlying aquifers. Groundwater flow in the Powder River structural basin generally is northerly with local variations greatest in the uppermost aquifers. Groundwater is confined, and flow is regional in the underlying aquifers.

  10. Hydrogeology and simulation of ground-water flow in the Eutaw-McShan Aquifer and in the Tuscaloosa aquifer system in northeastern Mississippi

    USGS Publications Warehouse

    Strom, E.W.; Mallory, M.J.

    1995-01-01

    The Eutaw-McShan aquifer and Tuscaloosa aquifer system in northeastern Mississippi were investi- gated to better understand the hydrogeology and the ground-water flow in and between the aquifers. A numerical model was developed to simulate ground- water flow for prepumping and pumping conditions, and model simulatons projected the possible effects of increased ground-water withdrawals. The five aquifers studied, from youngest to oldest, are the Eutaw-McShan, Gordo, Coker, massive sand, and the Lower Cretaceous aquifers. The finite-difference computer code MODFLOW was used to represent the flow system. The model grid covers 33,440 square miles, primarily in northeastern Mississippi, but includes parts of northwestern Alabama, southwestern Tennessee, and eastern Arkansas. A comparison of the simulated predevelopment and 1992 potentiometric surfaces for the aquifers shows an overall water- level decline. Simulated water levels declined an average of 53 and 44 feet in the confined parts of the Eutaw-McShan and Gordo aquifers, respectively. However, the area near Tupelo had a significant rise in water levels due to decreased pumpage from the Eutaw-McShan and Gordo aquifers compared to the simulated potentiometric surface for 1978.

  11. Hydrogeophysical methods for analyzing aquifer storage and recovery systems

    SciTech Connect

    Minsley, B.J.; Ajo-Franklin, J.; Mukhopadhyay, A.; Morgan, F.D.

    2009-12-01

    Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity {approx}500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.

  12. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 production

    USGS Publications Warehouse

    Chapelle, F.H.; McMahon, P.B.

    1991-01-01

    A primary source of dissolved inorganic carbon (DIC) in the Black Creek aquifer of South Carolina is carbon dioxide produced by microbially mediated oxidation of sedimentary organic matter. Groundwater chemistry data indicate, however, that the available mass of inorganic electron acceptors (oxygen, Fe(III), and sulfate) and observed methane production is inadequate to account for observed CO2 production. Although sulfate concentrations are low (approximately 0.05-0.10 mM) in aquifer water throughout the flow system, sulfate concentrations are greater in confining-bed pore water (0.4-20 mM). The distribution of culturable sulfate-reducing bacteria in these sediments suggests that this concentration gradient is maintained by greater sulfate-reducing activity in sands than in clays. Calculations based on Fick's Law indicate that possible rates of sulfate diffusion to aquifer sediments are sufficient to explain observed rates of CO2 production (about 10-5 mmoll-1 year-1), thus eliminating the apparent electron-acceptor deficit. Furthermore, concentrations of dissolved hydrogen in aquifer water are in the range characteristic of sulfate reduction (2-6 nM), which provides independent evidence that sulfate reduction is the predominant terminal electron-accepting process in this system. The observed accumulation of pyrite- and calcite-cemented sandstones at sand-clay interfaces is direct physical evidence that these processes have been continuing over the history of these sediments. ?? 1991.

  13. A finite-element model for simulation of two-dimensional steady-state ground-water flow in confined aquifers

    USGS Publications Warehouse

    Kuniansky, E.L.

    1990-01-01

    A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.

  14. Rapid computation of directional wellbore drawdown in a confined aquifer via Poisson resummation

    NASA Astrophysics Data System (ADS)

    Blumenthal, Benjamin J.; Zhan, Hongbin

    2016-08-01

    We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully penetrating directional wellbore (vertical, horizontal, or slant) via Green's function method. The mathematical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux - one side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, derivation of convergence rates, and numerical optimization of integration techniques. Upon application of the Poisson Resummation method, we were able to derive two sets of solutions with inverse convergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly convergent series (solution-B). From this work we were able to link Green's function method (solution-B) back to image well theory (solution-A). We then derived an equation defining when the convergence rate between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have also shown that one may simplify each of the three infinite series for the three-dimensional solution to 11 terms and still maintain a maximum relative error of less than 10-14.

  15. Aquifer descriptions from the U.S. Geological Survey Regional Aquifer-System Analysis Program, 1978-1993

    USGS Publications Warehouse

    Davidson, Claire B.; Doherty, Helen

    1994-01-01

    The Regional Aquifer-System Analysis Program of the U.S. Geological Survey began in 1978. The overall purpose of this program is to define the geologic, hydrologic, and geochemical framework of the Nation's most important aquifers and aquifer systems. This report summarizes the aquifer or aquifer system name, geographic area, rock units, equivalent names, lithology, thickness, hydrologic characteristics, water quality, water use, and references for 157 aquifers in 23 areas of the United States. A .zip file containing the aquifer data and data search programs (in compressed ASCII format) is included in the report.

  16. Processes affecting geochemistry and contaminant movement in the middle Claiborne aquifer of the Mississippi embayment aquifer system

    USGS Publications Warehouse

    Katz, Brian G.; Kingsbury, James A.; Welch, Heather L.; Tollett, Roland W.

    2012-01-01

    Groundwater chemistry and tracer-based age data were used to assess contaminant movement and geochemical processes in the middle Claiborne aquifer (MCA) of the Mississippi embayment aquifer system. Water samples were collected from 30 drinking-water wells (mostly domestic and public supply) and analyzed for nutrients, major ions, pesticides, volatile organic compounds (VOCs), and transient age tracers (chlorofluorocarbons, tritium and helium-3, and sulfur hexafluoride). Redox conditions are highly variable throughout the MCA. However, mostly oxic groundwater with low dissolved solids is more vulnerable to nitrate contamination in the outcrop areas east of the Mississippi River in Mississippi and west Tennessee than in mostly anoxic groundwater in downgradient areas in western parts of the study area. Groundwater in the outcrop area was relatively young (apparent age of less than 40 years) with significantly (p 50 m depth) indicated contaminant movement from shallow parts of the aquifer into deeper oxic zones. Given the persistence of nitrate in young oxic groundwater that was recharged several decades ago, and the lack of a confining unit, the downward movement of young contaminated water may result in higher nitrate concentrations over time in deeper parts of the aquifer containing older oxic water.

  17. Effect of faults on fluid flow and chloride contamination in a carbonate aquifer system

    USGS Publications Warehouse

    Maslia, M.L.; Prowell, D.C.

    1990-01-01

    A unified, multidiscipline hypothesis is proposed to explain the anomalous pattern by which chloride has been found in water of the Upper Floridan aquifer in Brunswick, Glynn County, Georgia. Analyses of geophysical, hydraulic, water chemistry, and aquifer test data using the equivalent porous medium (EPM) approach are used to support the hypothesis and to improve further the understanding of the fracture-flow system in this area. Using the data presented herein we show that: (1) four major northeast-southwest trending faults, capable of affecting the flow system of the Upper Floridan aquifer, can be inferred from structural analysis of geophysical data and from regional fault patterns; (2) the proposed faults account for the anomalous northeastward elongation of the potentiometric surface of the Upper Floridan aquifer; (3) the faults breach the nearly impermeable units that confine the Upper Floridan aquifer from below, allowing substantial quantities of water to leak vertically upward; as a result, aquifer transmissivity need not be excessively large (as previously reported) to sustain the heavy, long-term pumpage at Brunswick without developing a steep cone of depression in the potentiometric surface; (4) increased fracturing at the intersection of the faults enhances the development of conduits that allow the upward migration of high-chloride water in response to pumping from the Upper Floridan aquifer; and (5) the anomalous movement of the chloride plume is almost entirely controlled by the faults. ?? 1990.

  18. Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation

    USGS Publications Warehouse

    Souza, W.R.; Voss, C.I.

    1987-01-01

    The groundwater system in southern Oahu, Hawaii consists of a thick, areally extensive freshwater lens overlying a zone of transition to a thick saltwater body. This system is analyzed in cross section with a variable-density groundwater flow and solute transport model on a regional scale. The simulation is difficult, because the coastal aquifer system has a saltwater transition zone that is broadly dispersed near the discharge area, but is very sharply defined inland. Steady-state simulation analysis of the transition zone in the layered basalt aquifer of southern Oahu indicates that a small transverse dispersivity is characteristic of horizontal regional flow. Further, in this system flow is generally parallel to isochlors and steady-state behavior is insensitive to the longitudinal dispersivity. Parameter analysis identifies that only six parameters control the complex hydraulics of the system: horizontal and vertical hydraulic conductivity of the basalt aquifer; hydraulic conductivity of the confining "caprock" layer; leakance below the caprock; specific yield; and aquifer matrix compressibility. The best-fitting models indicate the horizontal hydraulic conductivity is significantly greater than the vertical hydraulic conductivity. These models give values for specific yield and aquifer compressibility which imply a considerable degree of compressive storage in the water table aquifer. ?? 1987.

  19. Digital model of predevelopment flow in the Tertiary limestone (Floridan) aquifer system in West-Central Florida

    USGS Publications Warehouse

    Ryder, Paul D.

    1982-01-01

    A computer model was calibrated to approximate predevelopment flow conditions in a multilayered aquifer system in 10,600 square miles in west-central Floria. The lowermost aquifer, called the Floridan aquifer, is confined in most of the study area and consists of carbonate rocks ranging up to 1,300 feet thick. The Floridan aquifer is the chief source for large withdrawals and natural springflow in the study area. Daily springflows within the study area have averaged about 2.4 billion gallons. The secondary artesian and the surficial aquifers are much less permeable than the Floridan aquifer. Where they are present and have heads higher than those in the Floridan aquifer, they provide recharge to the Floridan. Initial estimates of recharge to the Floridan aquifer were from water-balance calculations for surface-water basins; initial estimates of transmissivity were from aquifer tests and flow-net analyses. The model was calibrated for the predevelopment era, wherein steady-state flow conditions were assumed. Calibrated transmissivities for the Floridan aquifer range from less than 15,000 to several million feet squared per day. Recharge to the system was about 3,700 cubic feet per second. About 90% was discharged as springflow, and 10% was upward leakage. (USGS)

  20. Hydrogeology and water quality of the shallow aquifer system at the Mainside, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia

    USGS Publications Warehouse

    Harlow, G.E., Jr.; Bell, C.F.

    1996-01-01

    Lithologic and geophysical logs of boreholes at 29 sites show that the hydrogeologic framework of the Mainside of the Naval Surface Warfare Center, Dahlgren Site at Dahlgren, Virginia, consists of un-consolidated sedimentary deposits of gravel, sand, silt, and clay. The upper 220 feet of these sediments are divided into five hydrogeologic units, including the (1) Columbia (water-table) aquifer, (2) upper confining unit, (3) upper confined aquifer, (4) Nanjemoy-Marlboro confining unit, and (5) Aquia aquifer. The Columbia aquifer in the study area is a local system that is not affected by regional pumping. Ground-water recharge occurs at topographic highs in the northern part of the Mainside, and ground-water discharge occurs at topographic lows associated with adjacent surface-water bodies. Regionally, the direction of ground-water flow in the upper confined and Aquia aquifers is toward the southwest and southeast, respectively. A downward hydraulic gradient exists between the aquifers in the shallow system, and stresses on the Aquia aquifer are indicated by heads that range between 2 and 12 feet below sea level. The ratio of median horizontal hydraulic conductivity of the Columbia aquifer to median vertical hydraulic con-ductivity of the upper confining unit, however, is approximately 2,600:1; therefore, under natural- flow conditions, most water in the Columbia aquifer probably discharges to adjacent surface- water bodies. The composition and distribution of major ions vary in the Columbia aquifer. In general, water samples from wells located along the inland perimeter roads of the study area have chloride or a combination of chloride and sulfate as the dominant anions, and water samples from wells located in the interior of the study area have bicarbonate or a combination of bicarbonate and sulfate as the dominant anions. Sodium and calcium were the dominant cations in most samples. Dissolved solids and four inorganic constituents are present in water from the

  1. Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiu; Wu, Yuanbin; Zhang, Xingsheng; Liu, Yan; Yang, Tianliang; Feng, Bo

    2012-09-01

    SummaryShanghai is one of the cities suffering from land subsidence in China. Land subsidence has caused serious financial losses. Thus, artificial recharge measures have been adopted to compensate the drawdown in shallow, confined aquifers and thereby control land subsidence. In this study, a multi-cycle recharge-recovery field experiment was performed to investigate the response of a shallow, confined aquifer to artificial recharge through a well. In the experiment, a series of recharge-recovery cycles with different recharge volumes and durations, with and without artificial pressure, were performed. The water levels monitored in the recharge and observation wells indicated the response of the aquifer to the multi-cycle recharge-recovery process. Meanwhile, a finite-difference method (FDM) numerical model was established, and its parameters were obtained via a reversed numerical analysis on the experimental data. The responses of the shallow, confined aquifer to the multi-cycle recharge-recovery process were simulated in detail using the model. The calculation results showed that the water level dropped significantly when the recharge ended. Moreover, the efficiency of a multi-cycle recharge was found to be higher than that of a concentrated one under the same recharge volume and time. The relationship between recharge frequency and efficiency, expressed as H = 0.29498 f0.40163 and R2 = 0.97264, respectively, was obtained through the FDM numerical simulation. In the recharge intervals, the optimal recharge efficiency was achieved when the water level rose to 40% of the peak.

  2. The Inverse Problem for Confined Aquifer Flow: Identification and Estimation With Extensions

    NASA Astrophysics Data System (ADS)

    Loaiciga, Hugo A.; MariñO, Miguel A.

    1987-01-01

    The contributions of this work are twofold. First, a methodology for estimating the elements of parameter matrices in the governing equation of flow in a confined aquifer is developed. The estimation techniques for the distributed-parameter inverse problem pertain to linear least squares and generalized least squares methods. The linear relationship among the known heads and unknown parameters of the flow equation provides the background for developing criteria for determining the identifiability status of unknown parameters. Under conditions of exact or overidentification it is possible to develop statistically consistent parameter estimators and their asymptotic distributions. The estimation techniques, namely, two-stage least squares and three stage least squares, are applied to a specific groundwater inverse problem and compared between themselves and with an ordinary least squares estimator. The three-stage estimator provides the closer approximation to the actual parameter values, but it also shows relatively large standard errors as compared to the ordinary and two-stage estimators. The estimation techniques provide the parameter matrices required to simulate the unsteady groundwater flow equation. Second, a nonlinear maximum likelihood estimation approach to the inverse problem is presented. The statistical properties of maximum likelihood estimators are derived, and a procedure to construct confidence intervals and do hypothesis testing is given. The relative merits of the linear and maximum likelihood estimators are analyzed. Other topics relevant to the identification and estimation methodologies, i.e., a continuous-time solution to the flow equation, coping with noise-corrupted head measurements, and extension of the developed theory to nonlinear cases are also discussed. A simulation study is used to evaluate the methods developed in this study.

  3. A generalized analytical solution for an inclined well in a vertically and horizontally anisotropic confined aquifer and comparisons with MODFLOW

    NASA Astrophysics Data System (ADS)

    Batu, Vedat

    2015-01-01

    In this paper, a new generalized three-dimensional complete analytical solution is presented for any well screen shape in a vertically and horizontally anisotropic confined aquifer in x-y-z Cartesian coordinates system for drawdown by taking into account the three principal hydraulic conductivities (Kx, Ky, and Kz) along the x-y-z coordinate directions. The special solution covers a partially-penetrating inclined parallelepiped as well as an inclined line source well. It has been showed that the rectangular parallelepiped screen case solution of Batu (2012) is a special case of this general solution. Like Batu (2012), the horizontal well case is a special case of this solution as well. The solution takes into account both the vertical anisotropy (azx = Kz/Kx) as well as the horizontal anisotropy (ayx = Ky/Kx) and has potential application areas to analyze pumping test drawdown data from partially-penetrating inclined wells by representing them as tiny parallelepiped as well as line sources. Apart from other verifications, the inclined well solution results have also been compared with the results of MODFLOW with very good agreement. The solution has also potential application areas for a partially-penetrating inclined parallelepiped fracture. With this new solution, both the horizontal anisotropy (ayx = Ky/Kx) as well as the vertical anisotropy (azx = Kz/Kx) can also be determined using observed drawdown data.

  4. Hydrogeo-chemical impacts of air sparging remediation on a semi-confined aquifer: evidences from field monitoring and modeling.

    PubMed

    Fan, W; Yang, Y S; Lu, Y; Du, X Q; Zhang, G X

    2013-01-01

    Air sparging (AS) was explored for remediation of a petroleum contaminated semi-confined groundwater system in NE China. Physical, hydro-chemical and hydraulic behaviors in subsurface environment during AS were investigated with support of modeling to understand the hydrogeo-chemical impacts of AS on the aquifer. The responses of groundwater, dissolved oxygen and temperature indicated that the radius of influence of AS was up to 8-9 m, and a 3D boundary of the zone of influence (ZOI) was accordingly obtained with volume of 362 m(3). Water mounding unlike normal observations was featured by continuous up-lift and blocked dissipation. AS induced water displacement was calculated showing no obvious spreading of contaminant plume under this AS condition. Slug tests were employed before and after AS to reveal that the physical perturbation led to sharp increase in permeability and porosity. Modeling indicated that the regional groundwater flow field was not affected by AS except the physical perturbation in ZOI. Hydro-chemically increase of pH and Eh, and reduction of TDS, electrical conductivity and bicarbonate were observed in ZOI during AS. PHREEQC modeling inferred that these chemical phenomena were induced by the inorganic carbon transfer during air mixing. PMID:23021385

  5. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.

    2016-05-01

    Interferometric Synthetic Aperture Radar (InSAR), a remote sensing technique for measuring centimeter-level surface deformation, is used to estimate hydraulic head in the confined aquifer of the San Luis Valley (SLV), Colorado. Reconstructing head measurements from InSAR in agricultural regions can be difficult, as InSAR phase data are often decorrelated due to vegetation growth. Analysis of 17 L-band ALOS PALSAR scenes, acquired between January 2007 and March 2011, demonstrates that comprehensive InSAR deformation measurements can be recovered over the vegetated groundwater basin with an improved processing strategy. Local skeletal storage coefficients and time delays between the head change and deformation are estimated through a joint InSAR-well data analysis. InSAR subsidence estimates are transformed to head changes with finer temporal and spatial resolution than is possible using existing well records alone. Both InSAR and well data suggest that little long-term water-storage loss occurred in the SLV over the study period and that inelastic compaction was negligible. The seasonal head variations derived from InSAR are consistent with the existing well data at most locations where confined aquifer pumping activity dominates. Our results demonstrate the advantages of InSAR measurements for basin-wide characterization of aquifer storage properties and groundwater levels over agricultural regions.

  6. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Valdez, Jose I.; Vigil, Georgiana M.

    2012-07-13

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

  7. Hydrogeology and water quality of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia

    USGS Publications Warehouse

    Bell, C.F.

    1996-01-01

    In October 1993, the U.S. Geological Survey began a study to characterize the hydrogeology of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia, which is located on the Potomac River in the Coastal Plain Physiographic Province. The study provides a description of the hydrogeologic units, directions of ground-water flow, and back-ground water quality in the study area to a depth of about 100 feet. Lithologic, geophysical, and hydrologic data were collected from 28 wells drilled for this study, from 3 existing wells, and from outcrops. The shallow aquifer system at the Explosive Experimental Area consists of two fining-upward sequences of Pleistocene fluvial-estuarine deposits that overlie Paleocene-Eocene marine deposits of the Nanjemoy-Marlboro confining unit. The surficial hydrogeologic unit is the Columbia aquifer. Horizontal linear flow of water in this aquifer generally responds to the surface topography, discharging to tidal creeks, marshes, and the Potomac River, and rates of flow in this aquifer range from 0.003 to 0.70 foot per day. The Columbia aquifer unconformably overlies the upper confining unit 12-an organic-rich clay that is 0 to 55 feet thick. The upper confining unit conformably overlies the upper confined aquifer, a 0- to 35-feet thick unit that consists of interbedded fine-grained to medium-grained sands and clay. The upper confined aquifer probably receives most of its recharge from the adjacent and underlying Nanjemoy-Marlboro confining unit. Water in the upper confined aquifer generally flows eastward, northward, and northeastward at about 0.03 foot per day toward the Potomac River and Machodoc Creek. The Nanjemoy-Marlboro confining unit consists of glauconitic, fossiliferous silty fine-grained sands of the Nanjemoy Formation. Where the upper confined system is absent, the Nanjemoy-Marlboro confining unit is directly overlain by the Columbia aquifer. In some parts of

  8. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    SciTech Connect

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.

  9. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE PAGESBeta

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1more » into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  10. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    NASA Astrophysics Data System (ADS)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher; Normand, Jonathan; Dermond, Jeffrey; Fang, Yilin; Sullivan, Charlotte

    2015-08-01

    One important issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine the resulting field-scale-induced displacements and consequences of overpressures on the mechanical integrity of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated for the first time on an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3 year-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells are accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area shows sub- centimetric deformation in the western part of the city and close to the injection locations associated with ASR cycle. Deformations are found to be temporally out phased with the injection and recovery events due to complex groundwater flow. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections.

  11. A Note on the Fractal Behavior of Hydraulic Conductivity and Effective Porosity for Experimental Values in a Confined Aquifer

    PubMed Central

    De Bartolo, Samuele; Fallico, Carmine; Veltri, Massimo

    2013-01-01

    Hydraulic conductivity and effective porosity values for the confined sandy loam aquifer of the Montalto Uffugo (Italy) test field were obtained by laboratory and field measurements; the first ones were carried out on undisturbed soil samples and the others by slug and aquifer tests. A direct simple-scaling analysis was performed for the whole range of measurement and a comparison among the different types of fractal models describing the scale behavior was made. Some indications about the largest pore size to utilize in the fractal models were given. The results obtained for a sandy loam soil show that it is possible to obtain global indications on the behavior of the hydraulic conductivity versus the porosity utilizing a simple scaling relation and a fractal model in coupled manner. PMID:24385876

  12. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  13. Geohydrologic systems in Kansas physical framework of the Great Plains aquifer system

    USGS Publications Warehouse

    Spinazola, Joseph M.; McGovern, Harold E.; Wolf, R.J.

    1992-01-01

    The purpose of this map report is to provide a description of one of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. The report is the result of an investigation made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifer and confining systems in Kansas. Chapter B describes the physical framework of the Great Plains aquifer system and presents maps and a geohydrologic cross section that show the thickness, the areal extent, and the altitude and configuration of the top of the Lower Cretaceous rocks that compose the Great Plains aquifer system. The maps are based on data from selected geophysical and lithologic logs and from published maps of stratigraphically equivalent units. Maps that show the thickness and the altitude and configuration of the top of the Great Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian surface through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic system are consistent with maps of underlying and overlying systems; modifications were made where necessary. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of geohydrologic systems in

  14. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling.

    PubMed

    Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko

    2016-05-01

    Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C. PMID:26938497

  15. Hydrogeologic framework and salinity distribution of the Floridan aquifer system of Broward County, Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Cunningham, Kevin J.

    2014-01-01

    transmissivity, so that the occurrence of perched saline water in the system may be the consequence of incompletely flushed connate water or intruded seawater. A seismic reflection profile along the Hillsboro Canal, at the northern edge of the study area, shows seven seismic-sag structures that are interpreted as downward deformation of overlying strata into collapsed deep cave systems. These structures may compromise the integrity of the confinement created by the underlying strata by allowing upconing of saline water from depth, which has implications for successful application of ASR and use of the Floridan aquifer system as an alternative water supply.

  16. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    USGS Publications Warehouse

    Gonthier, Gerard J.

    2013-01-01

    The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer

  17. Capture zone of a multi-well system in bounded peninsula-shaped aquifers.

    PubMed

    Zarei-Doudeji, Somayeh; Samani, Nozar

    2014-08-01

    In this paper we present the equation of capture zone for multi-well system in peninsula-shaped confined and unconfined aquifers. The aquifer is rectangular in plan view, bounded along three sides, and extends to infinity at the fourth side. The bounding boundaries are either no-flow (impervious) or in-flow (constant head) so that aquifers with six possible boundary configurations are formed. The well system is consisted of any number of extraction or injection wells or combination of both with any flow rates. The complex velocity potential equations for such a well-aquifer system are derived to delineate the capture envelop. Solutions are provided for the aquifers with and without a uniform regional flow of any directions. The presented equations are of general character and have no limitations in terms of well numbers, positions and types, extraction/injection rate, and regional flow rate and direction. These solutions are presented in form of capture type curves which are useful tools in hands of practitioners to design in-situ groundwater remediation systems, to contain contaminant plumes, to evaluate the surface-subsurface water interaction and to verify numerical models. PMID:24973506

  18. Hydrogeology of the middle Wilcox aquifer system in Mississippi

    SciTech Connect

    Taylor, R.E.; Arthur, J.K. )

    1992-01-01

    A study has been performed to provide water resource planners and managers with hydrogeologic data on the predominantly undeveloped middle Wilcox aquifer system in Mississippi, and to describe its potential as an alternative source of water. The principal source of recharge to the middle Wilcox aquifer system is from precipitation in the outcrop area, a crescent-shaped belt extending from north to east, and dipping west to southwest. Most of the water that percolates into the ground is lost by evapotranspiration or groundwater discharge to local streams. Locally, the rate and direction of groundwater movement is controlled by the hydraulic conductivity of the sand bed and by withdrawal from wells. The potentiometric surface of the aquifer was mapped to represent the approximate altitude of water levels in wells screened in the middle Wilcox aquifer system in 1983. Near some pumping centers in and near the recharge area, water-level declines in recent years have been in the range of about 0.5 to 1.0 ft/yr. The aquifer system is capable of yielding 100-500 gpm from large wells; however, the availability of freshwater at shallower depths has limited the development of this aquifer system farther downdip, and results of aquifer tests are sparse. Groundwater in the outcrop area of the aquifer system generally is of a mixed, calcium-sodium bicarbonate type. There is a general trend of increasing pH values and concentrations of dissolved sodium, bicarbonate, nitrate, and iron with increasing depth. Typically, water in the middle Wilcox aquifer system has concentrations much smaller than the recommended limits for drinking water for nitrate, sulfate, and fluoride. Water from this aquifer system is generally suitable for most uses.

  19. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    DOE PAGESBeta

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnershipmore » Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However

  20. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    SciTech Connect

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the

  1. Artificial Injection of Fresh Water into a Confined Saline Aquifer: A Case Study at the Nakdong River Delta Area, Korea

    NASA Astrophysics Data System (ADS)

    Chung, S. Y.; Senapathi, V.; Rajendran, R.; Khakimov, E.

    2015-12-01

    Injection test in a confined saline aquifer was performed to assess the potential of artificial recharge as a means of replacing saline water with fresh water, thereby securing fresh groundwater resources for the Nakdong Delta area of Busan City, Korea. The study area comprises a confined aquifer, in which a 10~21m thick clay layer overlies 31.5~36.5 m thick of sand and a 2.8~11m thick layer of gravel. EC logging of five monitoring wells yielded a value of 7~44 mS/cm, with the transition between saline and fresh water occurring at a depth of 15-38 m. Above 5 m depth, water temperature was 10~15.5°C, whereas between 5 and 50 m depth, the temperature was 15.5~17℃ and pH was 7.15~7.49. The quality of injected fresh water was 388 μS/cm with the temperature of 6.2℃, and pH was 7.70. Approximately 950 m3 of fresh water was injected into the OW-5 injection well at a rate of 370 m3/day for 62 hours, after which the fresh water zone was detected by a CTD Diver installed at a depth of 40 m. The persistence of the fresh water zone was determined via EC and temperature logging at 1 day, 21 days, 62days and 95 days after injection. The contact between fresh and saline water in the injection well was represented by a sharp boundary rather than a transitional boundary. It was concluded that the injected fresh water occupied a specific space and served to maintain the original water quality throughout the observation period. Moreover, we suggest that artificial recharge via long-term injection could help secure a new alternative water resource in this saline coastal aquifer.

  2. Potentiometric surface and water-level difference maps of selected confined aquifers in Southern Maryland and Maryland’s Eastern Shore, 1975-2013

    USGS Publications Warehouse

    Staley, Andrew W.; Andreasen, David C.; Curtin, Stephen E.

    2014-01-01

    The potentiometric surface maps show water levels ranging from 165 feet above sea level to 199 feet below sea level. Water levels have declined by as much as 113 feet in the Aquia aquifer since 1982, 81 feet in the Magothy aquifer since 1975, and 61 and 95 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990.

  3. Accounting for pore water pressure and confined aquifers in assessing the stability of slopes: a Limit Equilibrium analysis carried out through the Minimum Lithostatic Deviation method

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Tinti, Stefano

    2015-04-01

    The model we introduce is an implementation of the Minimum Lithostatic Deviation (MLD) method, developed by Tinti and Manucci (Tinti and Manucci 2006; 2008), that makes use of the limit equilibrium (LE) theory to estimate the stability of a slope. The main purpose here is to analyse the role of a confined aquifer on the value of the Safety Factor (F), the parameter that in the LE is used to determine if a slope is stable or unstable. The classical LE methods treat unconfined aquifers by including the water pore pressure in the Mohr-Coulomb failure formula: since the water decreases the friction shear strength, the soil above the sliding surface turns out to be more prone to instability. In case of a confined aquifer, however, due to a presence of impermeable layers, the water is not free to flow into the matrix of the overlying soil. We consider here the assumption of a permeable soil sliding over an impermeable layer, which is an occurrence that is found in several known landslide cases (e.g. Person, 2008; Strout and Tjeltja, 2008; Morgan et al., 2010 for offshore slides; and Palladino and Peck, 1972; Miller and Sias, 1998; Jiao et al. 2005; Paparo et al., 2013 for slopes in proximity of artificial or natural water basins) where clay beds form the potential sliding surface: the water, confined below, pushes along these layers and acts on the sliding body as an external bottom load. We modify the MLD method equations in order to take into account the load due to a confined aquifer and apply the new model to the Vajont case, where many have hypothesised the contribution of a confined aquifer to the failure. Our calculations show that the rain load i) infiltrating directly into the soil body and ii) penetrating into the confined aquifer below the clay layers, in addition with the lowering of the reservoir level, were key factors of destabilization of the Mt Toc flank and caused the disastrous landslide.

  4. Seawater intrusion in the gravelly confined aquifer of the coastal Pisan Plain (Tuscany): hydrogeological and geochemical investigation to assess causes and consequences

    NASA Astrophysics Data System (ADS)

    Doveri, M.; Giannecchini, R.; Butteri, M.

    2012-12-01

    The gravelly horizon of the Pisa plain multilayered system is a confined aquifer tapped by a large number of wells. It hosts a very important water resource for drinking, industrial and irrigable uses, but may be affected by seawater intrusion coming from the coastal area; most wells is distributed inland, anyway a significant exploitation along the coastal area is also present to supply farms and tourist services. Previous hydrogeological and geochemical investigations carried out in coastal area stated maximum percentage of seawater in gravelly aquifer of about 7-9% and suggested the presence of two different mechanisms (Doveri et alii, 2010): i) a direct seawater intrusion from the zone where the gravelly aquifer is in contact with the sea floor; ii) a mixing process between freshwater and seawater, the latter deriving from the Arno river-shallow sandy aquifer system. Basing on these results, since January 2012 a new two-year project was financed by the MSRM Regional Park. Major aims are a better definition of such phenomena and their distribution on the territory, and an assessing of the seawater intrusion trend in relation to groundwater exploitation. Eleven piezometers were realised during first semester of 2012, thus improving the measurement network, which is now made up by 40 wells/piezometers distributed on about 60 km^2. Comparing new and previous borehole data a general confinement of the gravelly aquifer is confirmed, excepting in the northern part where the aquifer is in contact with the superficial sandy one. Preliminary field measurement was performed in June 2012, during which water level (WL) and electrical conductivity (EC) data were collected. WLs below the sea-level were observed on most of the studied area, with a minimum value of about -5 m a.s.l. in the inner part of the northern zone, where major exploitation is present. Moreover, a relative minimum of WL (about -2 m a.s.l.) is present near the shoreline in the southern zone. In the latter

  5. Reverse water level fluctuations in semiconfined aquifer systems — ``rhade effect''

    NASA Astrophysics Data System (ADS)

    Langguth, H. R.; Treskatis, C.

    1989-07-01

    Pumping tests in semiconfined aquifer systems near Dorsten (F.R.G.) caused anomalous reverse water level fluctuations in observation wells tapping the overlying confining bed (aquitard) at different depths (multilevel piezometer). Whenever water is pumped from a well that is screened in the aquifer of the "Halterner Sande", the piezometric surface in the aquitard ("Bottroper Mergel") rises. After that increase, the water level falls according to the drawdown of head within the pumped aquifer (Noordbergum effect according to Verruijt, 1969). Conversely, the piezometric surface in the aquitard falls whenever the pump is shut off (Rhade effect). The anomalous water level reactions propagate with decreasing amplitude from the aquifer-aquitard boundary to the top of the semipermeable layer. Such water level fluctuations ("swelling effects") may be explained by the capability of a water-saturated, compacted material to change volume when subjected to sudden pressure changes. On a practical basis, the Noordbergum and Rhade effects must be taken into consideration for evaluating long-term changes in chemical and hydraulic properties in pumped, semiconfined aquifer systems.

  6. Multi-component transport and transformation in deep confined aquifer during groundwater artificial recharge.

    PubMed

    Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Liu, Dan; Zhou, Jingjing

    2015-04-01

    Taking an artificial groundwater recharge site in Shanghai, China as an example, this study employed a combination of laboratory experiment and numerical modeling to investigate the transport and transformation of major solutes, as well as the mechanism of associated water-rock interactions in groundwater during artificial groundwater recharge. The results revealed that: (1) Major ions in groundwater were mainly affected by mixing, ion exchanging (Ca(2+), Mg(2+), Na(+), K(+)), as well as dissolution of Calcite, Dolomite. Dissolution of carbonate minerals was not entirely dependent on the pattern of groundwater recharge, the reactivity of the source water itself as indicated by the sub-saturation with respect to the carbonate minerals is the primary factor. (2) Elemental dissolution of As, Cr and Fe occurred in aquifer was due to the transformation of subsurface environment from anaerobic to aerobic systems. Different to bank filtration recharge or pond recharge, the concentration of Fe near the recharge point was mainly controlled by oxidation dissolution of Siderite, which was followed by a release of As, Cr into groundwater. (3) Field modeling results revealed that the hydro chemical type of groundwater gradually changed from the initial Cl-HCO3-Na type to the Cl-HCO3-Na-Ca type during the recharge process, and its impact radius would reach roughly 800 m in one year. It indicated that the recharge pressure (approx. 0.45 Mpa) would enlarge the impact radius under deep well recharge conditions. According to different recharge modes, longer groundwater resident time will associate with minerals' fully reactions. Although the concentrations of major ions were changing during the artificial recharge process, it did not pose a negative impact on the environmental quality of groundwater. The result of trace elements indicated that controlling the environment factors (especially Eh, DO, flow rate) during the recharge was effective to reduce the potential threats to

  7. Conceptual and numerical models of the glacial aquifer system north of Aberdeen, South Dakota

    USGS Publications Warehouse

    Marini, Katrina A.; Hoogestraat, Galen K.; Aurand, Katherine R.; Putnam, Larry D.

    2012-01-01

    This U.S. Geological Survey report documents a conceptual and numerical model of the glacial aquifer system north of Aberdeen, South Dakota, that can be used to evaluate and manage the city of Aberdeen's water resources. The glacial aquifer system in the model area includes the Elm, Middle James, and Deep James aquifers, with intervening confining units composed of glacial till. The Elm aquifer ranged in thickness from less than 1 to about 95 feet (ft), with an average thickness of about 24 ft; the Middle James aquifer ranged in thickness from less than 1 to 91 ft, with an average thickness of 13 ft; and the Deep James aquifer ranged in thickness from less than 1 to 165 ft, with an average thickness of 23 ft. The confining units between the aquifers consisted of glacial till and ranged in thickness from 0 to 280 ft. The general direction of groundwater flow in the Elm aquifer in the model area was from northwest to southeast following the topography. Groundwater flow in the Middle James aquifer was to the southeast. Sparse data indicated a fairly flat potentiometric surface for the Deep James aquifer. Horizontal hydraulic conductivity for the Elm aquifer determined from aquifer tests ranged from 97 to 418 feet per day (ft/d), and a confined storage coefficient was determined to be 2.4x10-5. Estimates of the vertical hydraulic conductivity of the sediments separating the Elm River from the Elm aquifer, determined from the analysis of temperature gradients, ranged from 0.14 to 2.48 ft/d. Average annual precipitation in the model area was 19.6 inches per year (in/yr), and agriculture was the primary land use. Recharge to the Elm aquifer was by infiltration of precipitation through overlying outwash, lake sediments, and glacial till. The annual recharge for the model area, calculated by using a soil-water-balance method for water year (WY) 1975-2009, ranged from 0.028 inch in WY 1980 to 4.52 inches in WY 1986, with a mean of 1.56 inches. The annual potential

  8. Application of geophysical methods to the delineation of paleochannels and missing confining units above the Castle Hayne Aquifer at US Marine Corps Air Station, Cherry Point, North Carolina

    USGS Publications Warehouse

    Daniel, C. C., III; Miller, R.D.; Wrege, B.M.

    1995-01-01

    The U.S. Marine Corps Air Station, Cherry Point, North Carolina, is underlain by four freshwater-bearing aquifers--the surficial, Yorktown, and upper and lower Castle Hayne. The upper and lower Castle Hayne aquifers serve as the principal supply of freshwater for the Air Station. The potential for movement of contaminated water from the surficial aquifer downward to the water-supply aquifer is greatest in areas where clay confining units are missing. Missing confining units may indicate the presence of paleochannels filled with permeable material. Seismic-reflection techniques were successful in delinea- ting paleochannels of Quaternary and Tertiary age within unconsoli- dated sediments less than 180 feet deep at several locations. Continuous single-channel marine seismic-reflection profiling in the Neuse River was effective in delineating a large paleochannel complex consisting of at least two superimposed paleochannels within hydrogeologic units overlying the upper Castle Hayne aquifer. The complex was found immediately north of the Air Station and is thought to continue south beneath the Air Station. Shallow high-resolution land seismic-reflection techniques were used at the Air Station to delineate structures and correlate strati- graphy between the limestone of the upper Castle Hayne aquifer and the Yorktown confining unit. Three different land seismic-reflection techniques proved effective for the horizontal extrapolation of geo- logic features and identification of paleochannels at several locations. The northeastern margin of a large paleochannel was identified beneath the southern part of the Air Station. This feature strikes northwest to southeast and cuts through the Yorktown and upper Castle Hayne aquifer confining units.

  9. Thickness of the Tertiary limestone aquifer system, southeastern United States

    USGS Publications Warehouse

    Miller, James A.

    1982-01-01

    The Tertiary limestone aquifer system of the southeastern United States is a thick sequence of carbonate rocks that vary in age and that are hydraulically connected in varying degrees. A map is presented that shows the thickness of the aquifer system. Several types of geologic structures have had an effect on the thickness of the system. The magnitude of this effect varies with the type and size of the structure. (USGS)

  10. Analog-digital models of stream-aquifer systems

    USGS Publications Warehouse

    Moulder, E.A.; Jenkins, C.T.

    1969-01-01

    The best features of analog and digital computers were combined to make a management model of a stream-aquifer system. The analog model provides a means for synthesizing, verifying, and summarizing aquifer properties; the digital model permits rapid calculation of the effects of water management practices. Given specific management alternatives, a digital program can be written that will optimize operation plans of stream-aquifer systems. The techniques are demonstrated by application to a study of the Arkansas River valley in southeastern Colorado.

  11. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization: 2. Seepage of saltwater through semi-confining layers

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a generalized basic study that addresses practical needs for an understanding of the major mechanisms involved in the mineralization of groundwater in the Great Bend Prairie aquifer in south- central Kansas. This Quaternary alluvial aquifer and associated surface waters are subject to contamination by saltwater, which in some areas seeps from the deeper Permian bedrock formation into the overlying freshwater aquifer through semiconfining layers. A simplified conceptual model is adopted. It incorporates the freshwater aquifer whose bottom is comprised of a semiconfining layer through which a hydrologically minor but geochemically important saline water discharge seeps into the aquifer. A hierarchy of approximate approaches is considered to analyze the mineralization processes taking place in the aquifer. The recently developed top specified boundary layer (TSBL) approach is very convenient to use for the initial characterization of these processes, and is further adapted to characterization of head-driven seepage through semi-confining layers. TSBL calculations indicate that the seeping saline water may create two distinct new zones in the aquifer: (1) a completely saline zone (CSZ) adjacent to the semiconfining bottom of the aquifer, and (2) a transition zone (TZ) which develops between the CSZ and the freshwater zone. Some possible scenarios associated with the various mineralization patterns are analyzed and discussed.

  12. Aquifer-nomenclature guidelines

    USGS Publications Warehouse

    Laney, R.L.; Davidson, C.B.

    1986-01-01

    Guidelines and recommendations for naming aquifers are presented to assist authors of geohydrological reports in the United States Geological Survey, Water Resources Division. The hierarchy of terms that is used for water- yielding rocks from largest to smallest is aquifer system, aquifer, and zone. If aquifers are named, the names should be derived from lithologic terms, rock-stratigraphic units, or geographic names. The following items are not recommended as sources of aquifer names: time-stratigraphic names, relative position, alphanumeric designations, depositional environment, depth of occurrence, acronyms, and hydrologic conditions. Confining units should not be named unless doing so clearly promotes understanding of a particular aquifer system. Sources of names for confining units are similar to those for aquifer names, i.e. lithologic terms, rock-stratigraphic units or geographic names. Examples of comparison charts and tables that are used to define the geohydrologic framework are included. Aquifers are defined in 11 hypothetical examples that characterize geohydrologic settings throughout the country. (Author 's abstract)

  13. Spatio-temporal distribution of stream-aquifer water exchanges along a multi-layer aquifer system

    NASA Astrophysics Data System (ADS)

    Mouhri, A.; Flipo, N.; Faycal, R.; Anne, J.; Ludovic, B.; Patrick, G.

    2013-12-01

    The aim of this work is to understand the spatial and temporal variability of stream-aquifer water exchanges along a 6 km-stream network in a multi-layer aquifer system. With an area of 104 km2, the Orgeval experimental basin is located 70 km east from Paris. It drains a multi-layer aquifer system, which is composed of two main geological formations: the Oligocene (upper aquifer unit) and the Eocene (lower aquifer unit). These two aquifer units are separated by a clayey aquitard. Five MOLONARI stations (MOnitoring LOcal des échanges NAppe-RIvière) have been deployed along the stream-network to monitor stream-aquifer exchanges over years, based on continuous pressure and temperature measurements (15 min-time step). The five MOLONARI stations are distributed in two upstream, two intermediate, and one downstream site. The two upstream sites are connected to the upper aquifer unit, and the downstream one is connected to the lower aquifer unit. One year (april2012-july 2013) of hydrological data are hereafter analyzed. We first focus on the spatial distribution of the stream-aquifer exchanges along the multi-layer aquifer system during the low flow period. Results display an upstream-downstream functional gradient, with upstream gaining stream and downstream losing stream. This spatial distribution is due to the multi-layer nature of the aquifer system, whose lower aquifer unit is depleted. Then it appears that the downstream losing streams temporally switch into gaining ones during extreme hydrological events (December 2012 and January 2013), while the upstream streams remain gaining streams even during the flood peak when overflow drastically reduces the water exchanges. To illustrate the spatial distribution of the stream-aquifer exchanges' temporal variability three extreme hydrological events of various intensity are analyzed.

  14. Large sedimentary aquifer systems functioning. Constraints by classical isotopic and chemical tools, and REE in the Eocene sand aquifer, SW France

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, E.; Negrel, P. J.; Millot, R.; Guerrot, C.; Brenot, A.; Malcuit, E.

    2010-12-01

    Large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems, e.g. with seepage between aquifer layers that can lead to water quality degradation. These large aquifer systems thus require rational water management at the sedimentary basin scale in order to preserve both water quantity and quality. In addition to hydrogeological modelling mainly dealing with water quantity, chemical and isotopic methods were applied to evidence the spatial variability of water characteristics and to turn this into better understanding of hydrosystems functioning. The large Eocene Sand aquifer system of the Adour-Garonne sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 (one-fifth of the French territory, located in the South west part). The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The ‘Eocene Sands’, composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres..The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene, middle Eocene, and late Eocene. According to δ18O and δ2H values and estimated 14C ages, both present-day recharge (mainly located in the north of the area) and old recharge (16-35 ky) can be evidenced. High spatial variability was evidenced within a same aquifer layer, with temporal variability over one hydrological cycle limited to a few points located in the recharge areas. These results and especially the very old waters recharged under colder climate combined with the

  15. Groundwater flow system and Nitrogen cycle in volcanic aquifer of pyroclastic flow uplands, Japan

    NASA Astrophysics Data System (ADS)

    Mikami, K.; Shimada, J.; Tashiro, S.; Niimi, H.

    2007-12-01

    Study area is well-known agriculture area in Southern Kyushu, Japan and highly depends on groundwater resources for their everyday use. Local unconfined groundwater aquifer is widely polluted by Nitrate-Nitrogen originated from agriculture and cattle farming. It will become serious problem if this unconfined Nitrate pollution enlarges into the confined aquifer system which is used for local city water source. The detailed three dimensional groundwater flow system study has been done by using existing wells in the basin to understand the three dimensional distribution pattern of Nitrate-Nitrogen in the aquifer. However, the detailed groundwater age analysis by using Tritium for unconfined and confined groundwater has not been succeeded because of present low atmosphere tritium concentration. Thus we applied to challenge the CFCs dating method. Although the CFCs method has been widely used for dating the young groundwater instead of tritium in many countries, in Japan CFCs has been used only by Oceanographic study and has not been used in the field of Hydrology. The history and fate of Nitrate contamination have been shown in multidisciplinary local transect studies in areas with agricultural sources (Bohlke and Denver 1995). However, identification of Nitrogen sources can be difficult in larger regional studies because of co-occurrence of multiple anthropogenic Nitrogen sources and uncertainty in Nitrogen transformation pathways. Thus, the characterization of N geochemistry remains challenging, particularly in aquifer-scale assessments (Stephen 2006). In this study, the evidence of the shallow groundwater flowing towards deep aquifer was verified by the groundwater dating and the detailed Nitrogen reduction process was confirmed along the groundwater flow.

  16. Generalized thickness of the surficial deposits above the confining bed overlying the Floridan Aquifer, Southwest Florida Water Management District

    USGS Publications Warehouse

    Wolansky, R.M.; Spechler, R.M.; Buono, Anthony

    1979-01-01

    This map report presents the thickness of the surficial deposits overlying the upper confining bed of the Floridan aquifer in the Southwest Florida Water Management District. The surficial deposits range in thickness from less than 25 feet in the western part of the district to greater than 250 feet in the eastern part. The surficial deposits include sand, clayey sand, shell, and shelly marl that occur in the Holocene sand, Pleistocene marine terrace sand, and unconsolidated parts of the Fort Thompson Formation, Caloosahatchee Marl, Alachua Formation, and Bone Valley Formation. Lithologic logs and information from quarries were used in conjunction with an unpublished map prepared during an earlier investigation to compile this map at 1:250,000 scale. (Kosco-USGS)

  17. Confined systems within arbitrary enclosed surfaces

    NASA Astrophysics Data System (ADS)

    Burrows, B. L.; Cohen, M.

    2016-06-01

    A new model of electronic confinement in atoms and molecules is presented. This is based on the electronic flux J which is assumed to vanish on some notional bounding surface of arbitrary shape. J is necessarily calculated using an approximate wave-function, whose parameters are chosen to satisfy the required surface conditions. This model embraces the results of all previous calculations for which the wave-functions or their derivatives vanish on conveniently shaped surfaces, but now extends the theory to more general surfaces. Examples include one-centre hydrogen-like atoms, the valence state of Li and the two centre molecular systems {{{H}}}2+ and {{HeH}}++.

  18. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    PubMed

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. PMID:25406597

  19. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    USGS Publications Warehouse

    Sepulveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  20. A Numerical Model of Deuterium and Oxygen-18 Diffusion in the Confined Lower Wilcox Aquifer of the Lower Mississippi Valley (USA)

    NASA Astrophysics Data System (ADS)

    Currens, B. J.; Sawyer, A. H.; Fryar, A. E.; Parris, T. M.; Zhu, J.

    2015-12-01

    Deuterium and oxygen-18 are routinely used with noble gases and radioisotopes (e.g., 2H, 14C, 36Cl) to infer climate during groundwater recharge. However, diffusion of 2H and 18O between a confined aquifer and bounding aquitards could alter total isotope concentrations and the inferred temperature during recharge if groundwater flow is sufficiently slow. Hendry and Schwartz (WRR 24(10), 1988) explained anomalous 2H and 18O enrichment in the Milk River aquifer of Alberta by analytically modeling isotope diffusion between the lower bounding aquitard and the aquifer. Haile (PhD dissertation, U. Kentucky, 2011) inferred the same mechanism to explain 2H and 18O enrichment along a flowpath in the confined Lower Wilcox aquifer of the northern Gulf Coastal Plain in Missouri and Arkansas. Based on the geologic and hydraulic properties of the Lower Wilcox aquifer, a numerical model has been constructed to determine how diffusion may influence 2H and 18O concentrations in regional aquifers with residence times on the order of 104 to 105 years. The model combines solutions for a 1D forward-in-time, finite-difference groundwater flow equation with an explicit-implicit Crank-Nicholson algorithm for advection and diffusion to solve for flow velocity and isotope concentration. Initial results are consistent with the analytical solution of Hendry and Schwartz (1988), indicating diffusion as a means of isotopic enrichment along regional groundwater flowpaths.

  1. Geochemistry of water in aquifers and confining units of the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Busby, J.F.; Kimball, B.A.; Downey, J.S.; Peter, K.D.

    1995-01-01

    The geochemistry of water in five aquifers and two confining units in the Williston Basin of the Northern Great Plains is similar and is controlled by halite dissolution. In areas outside the Williston Basin ground-water is fresh and controlled by the solution chemistry of carbonate and sulfate minerals.

  2. Optimized system to improve pumping rate stability during aquifer tests.

    PubMed

    Young, Michael H; Rasmussen, Todd C; Lyons, F Comer; Pennell, Kurt D

    2002-01-01

    Aquifer hydraulic properties are commonly estimated using aquifer tests, which are based on an assumption of a uniform and constant pumping rate. Substantial uncertainties in the flow rate across the borehole-formation interface can be induced by dynamic head losses, caused by rapid changes in borehole water levels early in an aquifer test. A system is presented that substantially reduces these sources of uncertainty by explicitly accounting for dynamic head losses. The system which employs commonly available components (including a datalogger, pressure transducers, a variable-speed pump motor, a flow controller, and flowmeters), is inexpensive, highly mobile, and easily set up. It optimizes the flow rate at the borehole-formation interface, making it suitable for any type of aquifer test, including constant, step, or ramped withdrawal and injection, as well as sinusoidal. The system was demonstrated for both withdrawal and injection tests in three aquifers at the Savannah River Site. No modifications to the control system were required, although a small number of characteristics of the pumping and monitoring system were added to the operating program. The pumping system provided a statistically significant, constant flow rate with time. The range in pumping variability (95% confidence interval) was from +/- 2.58 x 10(-4) L/sec to +/- 9.07 x 10(-4) L/sec, across a wide range in field and aquifer conditions. PMID:12425350

  3. Hydrology of aquifer systems in the Memphis area, Tennessee

    USGS Publications Warehouse

    Criner, James H.; Sun, P-C. P.; Nyman, Dale J.

    1964-01-01

    The Memphis area as described in .this report comprises about 1,300 square miles of the Mississippi embayment part of the Gulf Coastal Plain. The area is underlain by as much as 3,000 feet of sediments ranging in age from Cretaceous through Quaternary. In 1960, 150 mgd (million gallons per day) of water was pumped from the principal aquifers. Municipal pumpage accounted for almost half of this amount, and industrial pumpage a little more than half. About 90 percent of the water used in the area is derived from the '500-foot' sand, and most of the remainder is from the ?400-foot' sand; both sands are of Eocene age. A small amount of water for domestic use is pumped from the terrace deposits of Pliocene and Pleistocene age. Both the '500-foot' and the '1,400-foot' sands are artesian aquifers except in the southeastern part of the area; there the water level in wells in the '500-foot' sand is now below the overlying confining clay. Water levels in both aquifers have declined almost continuously since pumping began, but the rate of decline has increased rapidly since 1940. Water-level decline in the '1,400-foot' sand has been less pronounced since 1956. The cones of depression in both aquifers have expanded and deepened as a result of the annual increases in pumping, and an increase in hydraulic gradients has induced a greater flow of water into the area. Approximately 135 mgd entered the Memphis area through the '500-foot' sand aquifer in 1960, and, of this amount, 60 mgd originated as inflow from the east and about 75 mgd was derived from leakage from the terrace deposits, from the north, south, and west and from other sources. Of the water entering the '1,400-foot' sand, about 5 mgd was inflow from the east, and about half that amount was from each of the north, south, and west directions. The average rate of movement of water outside the area of heavy withdrawals is about 70 feet per year in the '500-foot' sand and about 40 feet per year in the '1,400-foot' sand

  4. Stochastic modeling of a lava-flow aquifer system

    USGS Publications Warehouse

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  5. Hydrogeology and the distribution of salinity in the Floridan aquifer system, Palm Beach County, Florida

    USGS Publications Warehouse

    Reese, R.S.; Memberg, S.J.

    2000-01-01

    The virtually untapped Floridan aquifer system is considered to be a supplemental source of water for public use in the highly populated coastal area of Palm Beach County. A recent study was conducted to delineate the distribution of salinity in relation to the local hydrogeology and assess the potential processes that might control (or have affected) the distribution of salinity in the Floridan aquifer system. The Floridan aquifer system in the study area consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer and ranges in age from Paleocene to Oligocene. Included at its top is part of a lowermost Hawthorn Group unit referred to as the basal Hawthorn unit. The thickness of this basal unit is variable, ranging from about 30 to 355 feet; areas where this unit is thick were paleotopographic lows during deposition of the unit. The uppermost permeable zones in the Upper Floridan aquifer occur in close association with an unconformity at the base of the Hawthorn Group; however, the highest of these zones can be up in the basal unit. A dolomite unit of Eocene age generally marks the top of the Lower Floridan aquifer, but the top of this dolomite unit has a considerable altitude range: from about 1,200 to 2,300 feet below sea level. Additionally, where the dolomite unit is thick, its top is high and the middle confining unit of the Floridan aquifer system, as normally defined, probably is not present. An upper zone of brackish water and a lower zone of water with salinity similar to that of seawater (saline-water zone) are present in the Floridan aquifer system. The brackish-water and saline-water zones are separated by a transition zone (typically 100 to 200 feet thick) in which salinity rapidly increases with depth. The transition zone was defined by using a salinity of 10,000 mg/L (milligrams per liter) of dissolved-solids concentration (about 5,240 mg/L of chloride concentration) at its top and 35,000 mg/L of dissolved

  6. Neutron Assay System for Confinement Vessel Disposition

    SciTech Connect

    Frame, Katherine C; Bourne, Mark M; Crooks, William J; Evans, Louise; Mayo, Douglas R; Miko, David K; Salazar, William R; Stange, Sy; Valdez, Jose I; Vigil, Georgiana M

    2012-07-13

    Waste will be removed from confinement vessels remaining from 1970s-era experiments. Los Alamos has 9+ spherical confinement vessels remaining from experiments. Each vessel contains {approx} 500 lbs of radioactive debris such as actinide metals and oxides, metals, powdered silica, graphite, and wires and hardware. In order to dispose of the vessels, debris and contamination must be removed. Neutron assay system was designed to assay vessels before and after cleanout. System requirements are: (1) Modular and moveable; (2) Capable of detecting {approx}100g {sup 239}Pu equivalent in a 2-inch thick steel sphere with 6 foot diameter; and (3) Capable of safeguards-quality assays. Initial design parameters arethe use of 4-atm {sup 3}He tubes with length of 6 feet, and {sup 3}He tubes embedded in polyethelene for moderation. This paper describes the calibration of the Confinement Vessel Assay System (CVAS) and quantification of its uncertainties. Assay uncertainty depends on five factors: (1) Statistical uncertainty in the assay measurement; (2) Statistical uncertainty in the background measurement; (3) Statistical uncertainty in the isotopics determination - This should be much smaller than the other uncertainties; (4) Systematic uncertainty due to position bias; and (5) Systematic uncertainty due to fluctuations in cosmic ray spallation. This one can be virtually eliminated by performing the background measurement with an empty vessel - but that may not be possible. We used modeling and experiments to quantify the systematic uncertainties. The calibration assumes a uniform distribution of material, but reality will be different. MCNPX modeling was used to quantify the positional bias. The model was benchmarked to build confidence in its results. Material at top of vessel is 44% greater than amount assayed, according to singles. Material near 19-tube detector is 38% less than amount assayed, according to singles. Cosmic ray spallation contributes significantly to the

  7. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.

    2009-06-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.

  8. Application of isotopic tracers as a tool for understanding hydrodynamic behavior of the highly exploited Diass aquifer system (Senegal)

    NASA Astrophysics Data System (ADS)

    Madioune, Diakher Hélène; Faye, Serigne; Orban, Philippe; Brouyère, Serge; Dassargues, Alain; Mudry, Jacques; Stumpp, Christine; Maloszewski, Piotr

    2014-04-01

    The Diass horst aquifer system located 50 km east of Dakar (Senegal) is exploited in two main aquifers covered by a sandy superficial aquifer: the confined/unconfined Palaeocene karstic limestone and the confined Maastrichtian sandstone aquifer underneath. This system has experienced intensive groundwater abstraction during the last 50 years to supply increasing water demand, agricultural and industrial needs. The high abstraction rate from 1989 to 2009 (about 109,000 m3/d) has caused a continuous groundwater level decline (up to 30 m), a modification of the groundwater flow and salinization in parts of the aquifers. The objective of the study is to improve our understanding of the system functioning with regards to high pumping, identify the geochemical reactions that take place in the system, infer origin and timing of recharge by using mainly stable (δ18O, δ2H, 13C) and radioactive (3H and 14C) isotopes. Water types defined in the Piper diagram vary in order of abundance from Ca-HCO3 (65%), Ca/Na-Cl (20%), Na-HCO3 (3%) and Na-Cl (12%). Values of δ18O and δ2H for the superficial aquifer range between -5.8 and -4.2‰ and between -42 and -31‰, respectively. For the Palaeocene aquifer they range from -5.8 to -5.0‰ and from -38 to -31‰, respectively; values in the Maastrichtian aquifer are between -5.9 and -4.3‰ for δ18O and -38 to -26‰ for δ2H. Plotted against the conventional δ18O vs δ2H diagram, data from the upper aquifer exhibit a dispersed distribution with respect to isotopic fractionation while those of the Palaeocene and Maastrichtian aquifers are aligned parallel and slightly below/or on the Global Meteoric Water Line (GMWL) evidencing ancient waters which had evaporated during infiltration. The low tritium (generally <0.7 TU) and 14C (0.7-57.2 pmc) contents indicate predominance of older water being recharged during the Pleistocene and Holocene periods. However, few boreholes which exhibit high tritium (1.2-4.3 TU) and 14C (65.7-70.8 pmc

  9. Radial reactive solute transport in an aquifer-aquitard system

    NASA Astrophysics Data System (ADS)

    Wang, Quanrong; Zhan, Hongbin

    2013-11-01

    Radial reactive transport is investigated in an aquifer-aquitard system considering the important processes such as advection, radial and vertical dispersions for the aquifer, vertical advection and dispersion for the aquitards, and first-order biodegradation or radioactive decay. We solved the coupled governing equations of transport in the aquifer and the aquitards by honoring the continuity of concentration and mass flux across the aquifer-aquitard interfaces and recognizing the concentration variation along the aquifer thickness. This effort improved the averaged-approximation (AA) model, which dealt with radial dispersion in an aquifer-aquitard system by excluding the aquitard advection. To compare with our new solution, we expanded the AA model by including the aquitard advection. The expanded AA model considerably overestimated the mass in the upper aquitard when an upward advection existed there. The rates of mass change in the upper aquitard from the new solution and the AA model solution increased with time following sub-linear fashions. The times corresponding to the peak values of the residence time distributions for the AA model, the expanded AA model, and the new model were almost the same. The residence time distributions seemed to follow the Maxwell-Boltzmann distribution closely when plotting the time in logarithmic scale. In addition, we developed a finite-element COMSOL Multiphysics simulation of the problem, and found that the COMSOL solution agreed with the new solution well.

  10. Stream filtration induced by pumping in a confined, unconfined or leaky aquifer bounded by two parallel streams or by a stream and an impervious stratum

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Sheng; Lin, Wen-Sheng; Yeh, Hund-Der

    2014-05-01

    A mathematical model is developed for describing three-dimensional groundwater flow induced by a fully-penetrating vertical well in aquifers between two parallel streams. A general equation is adopted to represent the top boundary condition which is applicable to either a confined, unconfined or leaky aquifer. The Robin (third-type) boundary condition is employed to represent the low-permeability streambeds. The Laplace-domain head solution of the model is derived by the double-integral and Laplace transforms. The Laplace-domain solution for a stream depletion rate (SDR) describing filtration from the streams is developed based on Darcy’s law and the head solution and inverted to the time-domain result by the Crump method. In addition, the time-domain solution of SDR for the confined aquifer is developed analytically after taking the inverse Laplace transform and the time-domain solutions of SDR for the leaky and unconfined aquifers are developed using the Padé approximation. Both approximate solutions of SDR are expressed in terms of simple series and give fairly good match with the Laplace-domain SDR solution and measured data from a field experiment in New Zealand. The uncertainties in SDR predictions for the aquifers are assessed by performing the sensitivity analysis and Monte Carlo simulation. With the aid of the time-domain solutions, we have found that the effect of the vertical groundwater flow on the temporal SDR for a leaky aquifer is dominated by two lumped parameters: κ=Kvx02/(KhD2) and κ‧ = K‧D/(B‧Kv) where D is the aquifer thickness, x0 is a distance between the well and nearer stream, Kh and Kv are the aquifer horizontal and vertical hydraulic conductivities, respectively, and K‧ and B‧ are the aquitard hydraulic conductivity and thickness, respectively. When κ < 10, neglecting the vertical flow underestimates the SDR. When κ⩾10, the effect of vertical flow is negligible. When κ‧⩽10-4, the aquitard can be regarded as

  11. Technical Note: Approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.

    2015-06-01

    An aquifer consisting of a skin zone and a formation zone is considered as a two-zone aquifer. Existing solutions for the problem of constant-flux pumping in a two-zone confined aquifer involve laborious calculation. This study develops a new approximate solution for the problem based on a mathematical model describing steady-state radial and vertical flows in a two-zone aquifer. Hydraulic parameters in these two zones can be different but are assumed homogeneous in each zone. A partially penetrating well may be treated as the Neumann condition with a known flux along the screened part and zero flux along the unscreened part. The aquifer domain is finite with an outer circle boundary treated as the Dirichlet condition. The steady-state drawdown solution of the model is derived by the finite Fourier cosine transform. Then, an approximate transient solution is developed by replacing the radius of the aquifer domain in the steady-state solution with an analytical expression for a dimensionless time-dependent radius of influence. The approximate solution is capable of predicting good temporal drawdown distributions over the whole pumping period except at the early stage. A quantitative criterion for the validity of neglecting the vertical flow due to a partially penetrating well is also provided. Conventional models considering radial flow without the vertical component for the constant-flux pumping have good accuracy if satisfying the criterion.

  12. Monitoring technologies for the evaluation of a Soil-Aquifer-Treatment system in coastal aquifer environments.

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Tsertou, Athanasia; Foglia, Laura; Bumberger, Jan; Vienken, Thomas; Dietrich, Peter; Schüth, Christoph

    2014-05-01

    Artificial recharge of groundwater has an important role to play in water reuse. Treated sewage effluent can be infiltrated into the ground for recharge of aquifers. As the effluent water moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. Recharge systems for SAT can be designed as infiltration-recovery systems, where all effluent water is recovered as such from the aquifer, or after blending with native groundwater. SAT typically removes essentially all suspended solids, biochemical oxygen demand (BOD), and pathogens (viruses, bacteria, protozoa, and helminthic eggs). Concentrations of synthetic organic carbon, phosphorous, and heavy metals are greatly reduced. The pilot site of LTCP will involve the employment of infiltration basins, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. T he LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved through the development and installation of an integrated system of prototype sensors, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time Domain Reflectometry (TDR) sensors will be developed, in order to achieve

  13. Assessing the Vulnerability of Public-Supply Wells to Contamination: Floridan Aquifer System Near Tampa, Florida

    USGS Publications Warehouse

    Jagucki, Martha L.; Katz, Brian G.; Crandall, Christy A.; Eberts, Sandra M.

    2009-01-01

    radon that occurs when water from the surficial aquifer flows downward through the confining unit and then through the Upper Floridan aquifer matrix. Roughly 50 percent of the simulated flow to the public-supply well consists of water less than about 10 years old, thus making the well vulnerable to contamination from human activities. Sampling at various depths in the public-supply well during pumping and nonpumping conditions showed that water entering the well from the cavernous zone had much higher arsenic concentrations during pumping conditions (18.9 ug/L) than during nonpumping conditions (4.2 ug/L). This implies that movement of arsenic to the public-supply well from the cavernous zone is enhanced by pumping. One possible explanation is that pumping increases the movement of water with elevated dissolved oxygen content through the cavernous zone, which causes dissolution of arsenic associated with pyrite. All public-supply wells in the area may not have the same level of vulnerability as the well studied - many of the public-supply wells in the region have lower pumping rates and longer open intervals that may draw in a larger proportion of old water that predates anthropogenic influences. Determining the similarity of water produced by various public-supply wells in the region to that of the surficial aquifer system is one measure of well vulnerability that could be used to prioritize monitoring and land-use planning efforts to protect the most vulnerable wells.

  14. Confinement and Tritium Stripping Systems for APT Tritium Processing

    SciTech Connect

    Hsu, R.H.; Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  15. Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin

    NASA Astrophysics Data System (ADS)

    Feng, Qinggao; Wen, Zhang

    2016-03-01

    Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin was investigated. The Izbash equation is used to describe the non-Darcian flow in the horizontal direction, and the vertical flow is described as Darcian. The solution for the newly developed non-Darcian flow model can be obtained by applying the linearization procedure in conjunction with the Laplace transform and the finite Fourier cosine transform. The flow model combines the effects of the non-Darcian flow, partial penetration of the well, and the finite thickness of the well skin. The results show that the depression cone spread is larger for the Darcian flow than for the non-Darcian flow. The drawdowns within the skin zone for a fully penetrating well are smaller than those for the partially penetrating well. The skin type and skin thickness have great impact on the drawdown in the skin zone, while they have little influence on drawdown in the formation zone. The sensitivity analysis indicates that the drawdown in the formation zone is sensitive to the power index (n), the length of well screen (w), the apparent radial hydraulic conductivity of the formation zone (K r2), and the specific storage of the formation zone (S s2) at early times, and it is very sensitive to the parameters n, w and K r2 at late times, especially to n, while it is not sensitive to the skin thickness (r s).

  16. Experimental Design for Estimating Unknown Hydraulic Conductivity in a Confined Aquifer using a Genetic Algorithm and a Reduced Order Model

    NASA Astrophysics Data System (ADS)

    Ushijima, T.; Yeh, W.

    2013-12-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provides the maximum information about unknown hydraulic conductivity in a confined, anisotropic aquifer. The design employs a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. Because that the formulated problem is non-convex and contains integer variables (necessitating a combinatorial search), for a realistically-scaled model, the problem may be difficult, if not impossible, to solve through traditional mathematical programming techniques. Genetic Algorithms (GAs) are designed to search out the global optimum; however because a GA requires a large number of calls to a groundwater model, the formulated optimization problem may still be infeasible to solve. To overcome this, Proper Orthogonal Decomposition (POD) is applied to the groundwater model to reduce its dimension. The information matrix in the full model space can then be searched without solving the full model.

  17. Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin

    NASA Astrophysics Data System (ADS)

    Feng, Qinggao; Wen, Zhang

    2016-08-01

    Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin was investigated. The Izbash equation is used to describe the non-Darcian flow in the horizontal direction, and the vertical flow is described as Darcian. The solution for the newly developed non-Darcian flow model can be obtained by applying the linearization procedure in conjunction with the Laplace transform and the finite Fourier cosine transform. The flow model combines the effects of the non-Darcian flow, partial penetration of the well, and the finite thickness of the well skin. The results show that the depression cone spread is larger for the Darcian flow than for the non-Darcian flow. The drawdowns within the skin zone for a fully penetrating well are smaller than those for the partially penetrating well. The skin type and skin thickness have great impact on the drawdown in the skin zone, while they have little influence on drawdown in the formation zone. The sensitivity analysis indicates that the drawdown in the formation zone is sensitive to the power index ( n), the length of well screen ( w), the apparent radial hydraulic conductivity of the formation zone ( K r2), and the specific storage of the formation zone ( S s2) at early times, and it is very sensitive to the parameters n, w and K r2 at late times, especially to n, while it is not sensitive to the skin thickness ( r s).

  18. A hybrid optimization approach to the estimation of distributed parameters in two-dimensional confined aquifers

    USGS Publications Warehouse

    Heidari, M.; Ranjithan, S.R.

    1998-01-01

    In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is

  19. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    NASA Astrophysics Data System (ADS)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  20. Hydraulic behavior of two areas of the Floridan aquifer system characterized by complex hydrogeologic settings and large groundwater withdrawals

    SciTech Connect

    Maslia, M.L. )

    1993-03-01

    Two areas of the Florida aquifer system (FAS) that are characterized by complex hydrogeologic settings and exceedingly large ground-water withdrawals are the Dougherty Plain area of southwest GA and the Glynn County area of southeast GA. In southwest GA, large scale withdrawals of ground water for agricultural and livestock irrigation amounted to about 148 million gallons per day (mg/d) during 1990. Large scale pumping in Glynn County, primarily used for industrial purposes and centered in the City of Brunswick, amounted to about 88 mg/d during 1990. In southwest GA, the FAS consists primarily of the Ocala Limestone (OL) of late Eocene age. Confining the aquifer from above is a residual layer (50 ft thick) of sand and clay containing silicified boulders which is derived from the chemical weathering of the OL. This area is characterized by karst topography marked by numerous depressions and sinkholes, high transmissivity (generally greater than 50,000 feet squared per day), and significant hydraulic connections to overlying streams and lakes. These characteristics, along with the seasonal nature of pumping and mean annual recharge of about 10 inches per year have prevented permanent, long-term water-level declines. In the Glynn County area, the FAS can be more than 2,600 ft thick, consisting of a sequence of calcareous and dolomitic rocks that are of Late Cretaceous to early Miocene in age. The aquifer system is confined above by clastic rocks of Middle Miocene age, having an average thickness of 400 ft. This area is characterized by post-depositional tectonic modification of the subsurface as opposed to simple karst development, thick confinement of the aquifer system, and significant amounts of vertical leakage of water from below. These characteristics and heavy-long term pumping from the Upper Floridan aquifer (UFA) have caused a broad, shallow cone of depression to develop and the upward migration of saltwater to contaminate the freshwater zones of the UFA.

  1. Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia

    USGS Publications Warehouse

    Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard J.

    2011-01-01

    constituent concentrations increased with depth, and water from all permeable zones contained sulfate at concentrations that exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter. A 72-hour aquifer test pumped LFA well 33P028 at 740 gallons per minute (gal/min), producing about 39 ft of drawdown in the pumped well and about 0.4 foot in nearby UFA well 33P029. Simulation using the U.S. Geological Survey finite-difference code MODFLOW was used to determine long-term, steady-state flow in the Floridan aquifer system, assuming the LFA well was pumped continuously at a rate of 740 gal/min. Simulated steady-state drawdown in the LFA was identical to that observed in pumped LFA well 33P028 at the end of the 72-hour test, with values larger than 1 ft extending 4.4 square miles symmetrically around the pumped well. Simulated steady-state drawdown in the UFA resulting from pumping in LFA well 33P028 exceeded 1 ft within a 1.4-square-mile circular area, and maximum drawdown in the UFA was 1.1 ft. Leakage from the UFA through the Lower Floridan confining unit contributed about 98 percent of the water to the well; lateral flow from specified-head model boundaries contributed about 2 percent. About 80 percent of the water supplied to LFA well 33P028 originated from within 1 mile of the well, and 49 percent was derived from within 0.5 mile of the well. Vertical hydraulic gradients and vertical leakage are progressively higher near the LFA pumped well which results in a correspondingly higher contribution of water from the UFA to the pumped well at distances closer to the pumped well. Simulated pumping-induced interaquifer leakage from the UFA to the LFA totaled 725 gal/min (1.04 million gallons per day), whereas simulated pumping at 205 gal/min (0.3 million gallons per day) from UFA well 33P029 produced the equivalent maximum drawdown as pumping LFA well 33P028 at 740 gal/min during the aquifer test. This equivalent pumpin

  2. Isotope evidence of palaeorecharge and palaeoclimate in the deep confined aquifers of the Chad Basin, NE Nigeria.

    PubMed

    Maduabuchi, Chris; Faye, Serigne; Maloszewski, Piotr

    2006-11-01

    Groundwaters from the Quaternary and Continental Terminal Formations in the Nigeria sector of the Chad Sedimentary Basin (CSB) together with rain and surface waters have been chemically and isotopically analyzed in order to investigate sources and ages of waters, possible modern renewal and mixing of the deep groundwaters, and to infer palaeoclimate incidences. Most of the waters are slightly to moderately mineralized and are of Na-HCO(3) type induced mainly by Na-feldspar weathering and ion exchange reactions. The wide range of the delta(18)O and delta(2)H values and (3)H contents in the upper aquifer indicate replenishment with modern meteoric water. However, the deep system (middle and lower aquifers) with a narrow range of depleted stable isotope values and low (14)C activities indicates that these waters have a palaeometeoric origin. The period of infiltration was within the humid and cooler period (35 to 40 ka BP) prior to the Last Glacial Maximum. In addition, the isotope compositions of the deep system show no mixing with modern waters. These results are in agreement with other palaeorecord studies in the Sahel zone during this period. PMID:16989892

  3. Geohydrology of the regional aquifer system, western Snake River plain, southwestern Idaho

    USGS Publications Warehouse

    Newton, G.D.

    1989-01-01

    A three dimensional groundwater flow model was developed to simulate steady state and nonsteady-state hydrologic conditions of the regional aquifer system in the western Snake River Plain of Idaho. Water budget analysis showed that groundwater recharge was about 1,400,000 acre-ft in 1980; groundwater pumpage was estimated to be 300,000 acre-ft. Two mass water level measurements were made in March and August 1980 to define the water table in the regional system. The model was discretized into 25 rows, 72 columns, and 3 layers. Each cell represented 4 sq mi. The model was calibrated to 1980 hydrologic conditions. Calibrated transmissivity of layer 1 (500 ft thick) ranged from 1,500 to 21,500 sq ft/day. Calibrated specific yield of unconfined aquifers was 0.10 and calibrated storage coefficient of confined aquifers ranged from 0.0004 to 0.007. The calibrated model was verified by simulating monthly water-level fluctuations for 1980. Simulated water levels matched measured levels in the Boise River Valley, but the match in other areas was poor. (USGS)

  4. Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system From Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-01-01

    Executive SummaryThe U.S. Geological Survey began a multiyear regional assessment of groundwater availability in the Northern Atlantic Coastal Plain (NACP) aquifer system in 2010 as part of its ongoing regional assessments of groundwater availability of the principal aquifers of the Nation. The goals of this national assessment are to document effects of human activities on water levels and groundwater storage, explore climate variability effects on the regional water budget, and provide consistent and integrated information that is useful to those who use and manage the groundwater resource. As part of this nationwide assessment, the USGS evaluated available groundwater resources within the NACP aquifer system from Long Island, New York, to northeastern North Carolina.The northern Atlantic Coastal Plain physiographic province depends heavily on groundwater to meet agricultural, industrial, and municipal needs. The groundwater assessment of the NACP aquifer system included an evaluation of how water use has changed over time; this evaluation primarily used groundwater budgets and development of a numerical modeling tool to assess system responses to stresses from future human uses and climate trends.This assessment focused on multiple spatial and temporal scales to examine changes in groundwater pumping, storage, and water levels. The regional scale provides a broad view of the sources and demands on the system with time. The sub-regional scale provides an evaluation of the differing response of the aquifer system across geographic areas allowing for closer examination of the interaction between different aquifers and confining units and the changes in these interactions under pumping and recharge conditions in 2013 and hydrologic stresses as much as 45 years in the future. By focusing on multiple scales, water-resource managers may utilize this study to understand system response to changes as they affect the system as a whole.The NACP aquifer system extends from

  5. Aquifer-system compaction, Tucson Basin and Avra Valley, Arizona

    USGS Publications Warehouse

    Hanson, R.T.

    1989-01-01

    Groundwater declines of several ft/yr since the 1940 's have induced aquifer-system compaction and land subsidence of as much as 0.5 ft in the Tucson basin and 1.1 ft in Avra Valley, Arizona. Aquifer system compaction is affected by the layering, hydraulic diffusivity, preconsolidation-stress threshold, and stress history of the aquifer system. Layering at extensometer sites can be categorized into three general groups that typify the fine-grained and coarse-grained layering within the Fort Lowell Formation and upper Tinaja beds. Data from the first group show almost as much elastic as inelastic compaction, a layering frequency of six layers/100 ft, and weighted-average aquitard thicknesses of 20 to 50 ft. Data from the second group show inelastic compaction, a layering frequency of two to three layers/100 ft, an average aquitard thickness of less than 20 ft. Data from the third group show inelastic compaction, a layering frequency of fewer than two layers/100 ft, an average aquitard thickness of more than 30 ft. A one-dimensional compaction model was applied to data from six extensometers to simulate aquifer-system compaction of less than 0.1 ft. Values of elastic and some values of inelastic specific storage are comparable to values estimated in California. Parts of the aquifer system appear to be in transition from predominantly elastic to inelastic compaction. Water level declines since 1940 at six extensometer sites are within an estimated preconsolidation-stress threshold of 50 to 150 ft. (USGS)

  6. Fast vertical movement of groundwater at the borehole in volcanic confined aquifer detected from point-dilution test with multi-level observations

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Han, B.; Kim, K.; Koh, K.; Park, K.

    2007-12-01

    A point-dilution tracer test was performed at a Seokwang well field, one of the pulbic water supply system for southwestern part of Jeju island, South Korea. Seokwang well field is located at the elevation of about 180 m above mean sea level with gentle tilted surface topography to southwest direction. Based on the geological columnar section of supply well no. 3, Seokwang well field area is consisted of Basalt, tuff, clinker, and soil layer. various types of basalt such as trachy basalt, feldspar augite basalt, feldspar basalt and soil layers occurred overlapping each other and clinker zone act as permeable aquifer whereas tuff act as impermeable confining layer. 20 cubic meter's tracer solution as NaCl is injected through pipe at the depth of 170 m below top of the casing using pump and the EC breakthroughs at 18 different depths in the borehole BH3 are monitored using 5 CTD Divers and 13 series of EC sensors. The injected tracer solution transported vertically upward from the injection depth with slight downward movement of about 1 meter from the mouth of the injection pipe due to the force of inertia and gravity. The estimated vertical velocity of groundwater is 1.33 x 10-2 m/s (\\ 0.424 L/s )\\) , which was too fast to be detected by borehole logging using heat pulse type flowmeter.

  7. Summary of the hydrology of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    USGS Publications Warehouse

    Johnston, Richard H.; Bush, Peter W.

    1988-01-01

    The Floridan aquifer system is one of the major sources of ground-water supplies in the United States. This highly productive aquifer system underlies all of Florida, southern Georgia, and small parts of adjoining Alabama and South Carolina, for a total area of about 100,000 square miles. About 3 billion gallons of water per day is withdrawn from the aquifer for all uses, and, in many areas, the Floridan is the sole source of freshwater. The aquifer system is a sequence of hydraulically connected carbonate rocks (principally limestone and some dolomite) that generally range in age from Late Paleocene to Early Miocene. The rocks vary in thickness from a featheredge where they crop out to more than 3,500 ft where the aquifer is deeply buried. The aquifer system generally consists of an upper aquifer and a lower aquifer, separated by a less permeable confining unit of highly variable properties. In parts of north Florida and southwest Georgia, there is little permeability contrast within the aquifer system. Thus in these areas the Floridan is effectively one continuous aquifer. The upper and lower aquifers are defined on the basis of permeability, and their boundaries locally do not coincide with those for either time-stratigraphic or rock-stratigraphic units. Low-permeability clastic rocks overlie much of the Floridan aquifer system. The lithology, thickness, and integrity of these low-permeability rocks have a controlling effect on the development of permeability and ground-water flow in the Floridan locally. The Floridan aquifer system derives its permeability from openings that vary from fossil hashes and networks of many solution-widened joints to large cavernous openings in karst areas. Diffuse flow pre-dominates where the small openings occur, whereas conduit flow may occur where there are large cavernous openings. For the Upper Floridan aquifer, transmissivities are highest (greater than 1,000,000 ft squared per day) in the unconfined karst areas of central

  8. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Hunter Army Airfield, Chatham County, Georgia

    USGS Publications Warehouse

    Clarke, John S.; Williams, Lester J.; Cherry, Gregory C.

    2010-01-01

    Test drilling and field investigations, conducted at Hunter Army Airfield (HAAF), Chatham County, Georgia, during 2009, were used to determine the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and to evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). Field investigation activities included (1) constructing a 1,168-foot (ft) test boring and well completed in the LFA, (2) collecting drill cuttings and borehole geophysical logs, (3) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (4) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (5) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (6) conducting aquifer tests in the new LFA well and in an existing UFA well to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to quantify the effects of interaquifer leakage on the UFA and to determine the amount of pumping reduction required in the UFA to offset drawdown resulting from the leakage. Borehole-geophysical and flowmeter data indicate the LFA at HAAF consists of limestone and dolomitic limestone between depths of 703 and 1,080 ft, producing water from six major permeable zones: 723-731; 768-785; 818-837; 917-923; 1,027-1,052; and 1,060-1,080 ft. Data from a flowmeter survey, conducted at a pumping rate of 748 gallons per minute (gal/min), suggest that the two uppermost zones contributed 469 gal/min or 62.6 percent of the total flow during the test. The remaining four zones contributed from 1.7 to 18 percent of the total flow. Grab water samples indicate that with the exception of fluoride, constituent concentrations in the LFA increased with depth; water from the deepest interval (1,075 ft) contained chloride and sulfate concentrations of 480 and 240 milligrams per

  9. Sources and Mechanisms of Aquifer Recharge: a Hydrochemical and Isotopic Study in a Complex and Scantily Investigated Hydrogeologic System

    NASA Astrophysics Data System (ADS)

    Damtew, A. D.; Wohnlich, S.

    2013-12-01

    Over 90% of domestic water supply in the study area is tapped from shallow and deep aquifers. However, sources and mechanisms of recharge that sustain these aquifers in the area are scantily researched. To understand aquifer recharge processes in this complex geo-hydrologic environment which is confined within the southern sector of the Main Ethiopian Rift, interpretations on the hydrochemical, stable and unstable isotope constituents of waters, in conjunction with some of the basin attributes that influence on the processes of aquifer recharge are made. The study reveals meteoric sources as the main source of aquifer recharge, and complex mechanisms of recharge in the different zones of the study area. Low salinity warm waters drawn from deep aquifers around the northwestern part of the area plotted close to the Local Meteoric Water Line are replenished via local normal faults. The confined aquifers in the northern part with the characteristics of high salinity, warm, isotopically depleted waters sourced from areas less affected by rift faults, replenished by regional recharge from distant western highlands, however, recharge is considered as modern as the tritium levels in those waters signify post bomb origin. Deep aquifers around the north-eastern and the north-central parts of the study area bear isotopically depleted and cold waters. These areas are characterized by low to very low drainage density and fracture density, gentle slope, covered dominantly by unwelded tuffs, pumaceous deposits, and fractured ignimbrites. Aquifer recharge in this particular zone may occur after heavy rainfall events percolating along fractures of the ignimbritic layers and voids of the loose deposits. The depleted levels of deuterium and δ18O may explain the amount effect on isotopic fractionation. The rather high tritium counts and moderately low salinity may further imply recent recharge and relatively faster transport by both focused and diffused mechanisms at the respective

  10. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington

    USGS Publications Warehouse

    Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E.

    2009-01-01

    The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet. Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4x10-7 to 4 ft/d. Variations in the concentrations of geochemical solutes and the concentrations and ratios of the isotopes of hydrogen, oxygen, and carbon in groundwater provided information on the hydrogeologic framework and groundwater movement. Stable isotope ratios of water (deuterium and oxygen-18) indicated dispersed sources of groundwater recharge to

  11. Ground-water flow analysis of the Mississippi Embayment aquifer system, South-Central United States

    USGS Publications Warehouse

    Arthur, J.K.; Taylor, R.E.

    1998-01-01

    The Mississippi Embayment aquifer system is composed of six regional aquifers covering about 160,000 square miles in parts of Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. The flow analysis presented in this report as part of the Gulf Coast Regional Aquifer-System Analysis study pertains to five aquifers in sediments of the Wilcox and Claiborne groups of Tertiary age. In descending order, the aquifers are (1) the upper Claiborne, (2) the middle Claiborne, (3) the lower Claiborne-upper Wilcox, (4) the middle Wilcox, and (5) the lower Wilcox. The flow analysis of the sixth aquifer in the aquifer system, the Mississippi River valley alluvial aquifer in sediments of Holocene and Pleistocene age, is presented in chapter D of this Professional Paper.

  12. Technical Note: Approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.

    2015-03-01

    An aquifer consisting of a skin zone and a formation zone is considered as a two-zone aquifer. Existing solutions for the problem of constant-flux pumping (CFP) in a two-zone confined aquifer involve laborious calculation. This study develops a new approximate solution for the problem based on a mathematical model including two steady-state flow equations with different hydraulic parameters for the skin and formation zones. A partially penetrating well may be treated as the Neumann condition with a known flux along the screened part and zero flux along the unscreened part. The aquifer domain is finite with an outer circle boundary treated as the Dirichlet condition. The steady-state drawdown solution of the model is derived by the finite Fourier cosine transform. Then, an approximate transient solution is developed by replacing the radius of the boundary in the steady-state solution with an analytical expression for a dimensionless time-dependent radius of influence. The approximate solution is capable of predicting good temporal drawdown distributions over the whole pumping period except at the early stage. A quantitative criterion for the validity of neglecting the vertical flow component due to a partially penetrating well is also provided. Conventional models considering radial flow without the vertical component for the CFP have good accuracy if satisfying the criterion.

  13. Exact Solutions for Confined Model Systems Using Kummer Functions

    NASA Astrophysics Data System (ADS)

    Burrows, B. L.; Cohen, M.

    We treat model systems where an electron is confined in a region of space. The particular models considered have solutions which may be expressed in terms of the Kummer functions. Both standard and non-standard Kummer functions are used in these models and a comprehensive summary of the usual and exceptional Kummer functions is given. The definition of confinement is widened to treat radial confinement in any spherical shell, including the asymptotic region and cases where the electron is confined to a lower dimension. Initially we consider the theory in K dimensional space and then give particular examples in 1, 2, and 3 dimensions. A commonly treated model is the radially confined hydrogen atom in 3 dimensions with an infinite barrier on a confining sphere so that the wavefunction is identically zero on this sphere. We have extended this model to treat a more general model of spherical confinement where the derivative of the charge density is zero on the confining sphere. It is shown that the analogous models for the radial harmonic oscillator and radial constant potentials may be treated using a generic technique.

  14. 3D magnetotelluric characterization of the geothermal anomaly in the Llucmajor aquifer system (Majorca, Spain)

    NASA Astrophysics Data System (ADS)

    Arango, C.; Marcuello, A.; Ledo, J.; Queralt, P.

    2009-08-01

    In the Llucmajor aquifer system (Majorca Island, Spain) some geothermal evidences have appeared. This phenomenon is not isolated to Majorca and it is present in other areas, where it can be associated with structural conditions, especially to the extensional event suffered by the island after the Alpine Orogeny. However, the origin of this anomaly in Llucmajor is not well known, and there is no surface geological evidence of these structural conditions. With the aim of delineating the geoelectrical structure of the zone and identifying the geological structure that allows the presence of this anomaly, an audiomagnetotelluric (AMT) survey was carried out. The AMT data was processed using a Wavelet Transform-based scheme. Dimensionality analysis indicates that the geoelectrical structure is mainly 3D. The 3D model was obtained by trial and error forward modeling, taking accounting of the responses from the determinant of the impedance tensor. The model shows a vertical resistivity distribution with three horizons associated with different units: on the top, a shallow high resistive media related to an unconfined shallow aquifer; in the middle, a conductive layer related to the aquitard, and below it, another resistive media related to the confined deeper aquifer. The intermediate horizon shows a sudden thinning beneath the thermal anomalous zone that can be identified as a weakness zone (fault or fracture) connecting both aquifers. An exploratory well was drilled after the AMT survey and reached almost 700 m in depth. This allowed correlating the resistivity distribution of the 3D model with data logging and lithology obtained from the well, showing a proper agreement between them.

  15. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  16. A method to estimate groundwater depletion from confining layers

    USGS Publications Warehouse

    Konikow, L.F.; Neuzil, C.E.

    2007-01-01

    Although depletion of storage in low-permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

  17. Distribution and origin of salinity in the surficial and intermediate aquifer systems, southwestern Florida

    USGS Publications Warehouse

    Schmerge, David L.

    2001-01-01

    Chloride concentrations in the surficial and intermediate aquifer systems in southwestern Florida indicate a general trend of increasing salinity coastward and with depth. There are some notable exceptions to this trend. Brackish water is present in the sandstone and mid-Hawthorn aquifers in several inland areas in Lee County. In an area near the coast in Collier County, the lower Tamiami aquifer contains freshwater, with brackish water present farther inland. Saline water is present in the lower Tamiami aquifer along the coast in Collier County, but water is brackish in the underlying mid-Hawthorn and Upper Floridan aquifers. The analyses of major ions, hydrogen and oxygen isotopes, and strontium isotopes indicate the primary sources of salinity are underlying aquifers and the Gulf of Mexico. Based on these data, much of the salinity is from upward leakage of brackish water from underlying aquifers. Discharge as diffuse upward leakage and artesian wells are two possible pathways of saltwater intrusion from underlying aquifers. Artesian wells open to multiple aquifers have been pathways of saltwater intrusion in the sandstone and mid-Hawthorn aquifers in much of Lee County. The source of brackish water in the lower Tamiami and mid-Hawthorn aquifers in Collier County may be natural diffuse leakage from underlying aquifers. The source of the saline water in the lower Tamiami aquifer in Collier County is apparently the Gulf of Mexico; it is unclear however, whether this saline water is residual water from former Pleistocene sea invasions or recent saltwater intrusion.

  18. A two-dimensional analytical model describing groundwater level fluctuations in an anisotropic and bending leaky aquifer system near estuary

    NASA Astrophysics Data System (ADS)

    Yeh, Hund-Der; Chuang, Mo-Hsiung

    2014-05-01

    Tide-induced head fluctuation in a two-dimensional estuarine aquifer system is complicated and rather important in dealing with many groundwater management or remediation problems. The conceptual model of the aquifer system we considered is anisotropic, multi-layered with a bending estuarine bank, and subject to the tidal fluctuation effects from both the sea shore and estuarine river. The solution of the model describing the groundwater head distribution in such a coastal aquifer system is developed based on the method of separation of variables and a coordinate transformation applied to the river boundary at the bend with an angle of arbitrary degree to the line perpendicular to the sea shore. The solutions by Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour. Res. 1997; 33:1429-35) as well as Tang and Jiao (Tang Z. and J. J. Jiao, A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water, Hydrological Processes, 2001; 15: 573-585) can be shown to be special cases of the present solution if the degree of the bending angle is zero. On the basis of the analytical solution, the groundwater head distribution in response to estuarine boundary is examined and the influences of anisotropy, leakage, hydraulic parameters, and bending angle on the groundwater head fluctuation are investigated and discussed.

  19. Hydrochemical zonation of the western part of Göksu Delta aquifer system, Southern Turkey

    NASA Astrophysics Data System (ADS)

    Dokuz, U. E.; Çelik, M.; Arslan, Ş.; Engin, H.

    2012-04-01

    In general, coastal areas are preferred places for human settlement, especially at places where infrastructure routes benefit from rivers, streets, or harbours. As a result, these areas usually suffer from rising population and endure increasingly high demand on natural resources like water. Göksu Delta, located in southern Turkey, is one of the important wetland areas of Turkey at the Mediterranean coast. It is divided into two parts by Göksu River. The western part of the delta, which is the subject matter of this study, hosts fertile agricultural fields, touristic places and a Special Environmental Protection Area. These properties of the region lead to a water-dependent ecosystem where groundwater has widely been used for agricultural and domestic purposes. When the exploitation of groundwater peaked in the middle of 1990s, the groundwater levels dropped and seawater intruded. General Directorate of State Hydraulic Works tried to stop seawater intrusion by building irrigation channels connected to Göksu River and banned drilling of new wells for groundwater exploitation, although it is hard to control the drilling of wells without official permit. Geological studies show that the delta is composed of terrestrial sediments including clay to coarse sand deposited during Quaternary. The heterogeneous sediments of Göksu Delta cause hydrogeological features of the aquifer systems to be heterogeneous and anisotropic. Hydrogeological investigations, therefore, indicate mainly two different aquifers, shallow and deep, separated by an aquitard. The shallow aquifer is under unconfined to confined conditions from north to south while the deep aquifer is under confined conditions. This study focuses on hydrogeochemical zonation in terms of hydrochemical processes that affect the Göksu Delta aquifer systems. For this purpose, hydrogeochemical and isotopic studies are conducted to understand the salinisation and softening processes of groundwater. The physicochemical

  20. Normal modes of confined cold ionic systems

    SciTech Connect

    Schiffer, J.P.; Dubin, D.H.

    1995-08-01

    The normal modes of a cloud of confined ions forming a strongly-correlated plasma were investigated. The results of molecular-dynamics simulations were compared to predictions of a cold fluid mode. Mode frequencies are observed to shift slightly compared to the cold fluid predictions, and the modes are also observed to damp in time. Simulations also reveal a set of torsional oscillations which have no counterpart in cold fluid theory. The frequency shift, damping, and torsional effects are compared to a model that treats trapped plasmas as a visco-elastic spheroid. It may be possible to measure high-frequency bulk and shear moduli of a strongly-correlated plasma from mode excitation experiments on trapped non-neutral plasmas. An example of the results of the calculation is presented.

  1. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    USGS Publications Warehouse

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    section near River Mile 8. Salinity increases of up to 4.0 parts per thousand (ppt) were indicated by the model incorporating hydrogeologic conceptualizations with both a semiconfining bed over the limestone unit and a preferential flow layer within the limestone along the cross section near River Mile 8. Simulated increases in salinity greater than 0.2 ppt in this area were generally limited to portions of the limestone unit within about 75 feet of the channel on the north side of the river. The potential for saltwater to move from the river channel to the surficial aquifer system is limited, but may be present in areas where the head gradient from the aquifer to the river is small or negative and the salinity of the river is sufficient to induce density-driven advective flow into the aquifer. In some areas, simulated increases in salinity were exacerbated by the presence of laterally extensive semiconfining beds in combination with a high-conductivity preferential flow zone in the limestone unit of the surficial aquifer system and an upgradient source of saline water, such as beneath the salt marshes near Fanning Island. The volume of groundwater pumped in these areas is estimated to be low; therefore, saltwater intrusion will not substantially affect regional water supply, although users of the surficial aquifer system east of Dames Point along the northern shore of the river could be affected. Proposed dredging operations pose no risk to salinization of the Floridan aquifer system; in the study area, the intermediate confining unit ranges in thickness from more than 300 to about 500 feet and provides sufficient hydraulic separation between the surficial and Floridan aquifer systems.

  2. Hydrogeologic framework and simulation of ground-water flow and travel time in the shallow aquifer system in the area of Naval Support Activity Memphis, Millington, Tennessee

    USGS Publications Warehouse

    Robinson, James L.; Carmichael, John K.; Halford, Keith J.; Ladd, David E.

    1997-01-01

    Naval Support Activity (NSA) Memphis is a Department of the Navy facility located at the City of Millington, Tennessee, about 5 miles north of Memphis. Contaminants have been detected in surface-water, sediment, and ground-water samples collected at the facility. As part of the Installation Restoration Program, the Navy is considering remedial-action options to prevent or lessen the effect of ground-water contamination at the facility and to control the movement and discharge of contaminants. A numerical model of the ground-water-flow system in the area of NSA Memphis was constructed and calibrated so that quantifiable estimates could be made of ground-water-flow rates, direction, and time-of-travel. The sediments beneath NSA Memphis, to a depth of about 200 feet, form a shallow aquifer system. From youngest to oldest, the stratigraphic units that form the shallow aquifer system are alluvium, loess, fluvial deposits, and the Cockfield and Cook Mountain Formations. The shallow aquifer system is organized into five hydrogeologic units: (1) a confining unit composed of the relatively low permeability sediments of the upper alluvium and the loess; (2) the A1 aquifer comprising sand and gravel of the lower alluvium and the fluvial deposits, and sand lenses in the upper part of the preserved section of the Cockfield Formation; (3) a confining unit composed of clay and silt within the upper part of the Cockfield Formation; (4) the Cockfield aquifer comprising sand lenses within the lower part of the preserved section of the Cockfield Formation; and (5) a confining unit formed by low permeability sediments of the Cook Mountain Formation that composes the upper confining unit for the Memphis aquifer. Thicknesses of individual units vary considerably across the facility. Structural and depositional features that affect the occurrence of ground water in the shallow aquifer system include faulting, an erosional scarp, and 'windows' in the confining units. Underlying the

  3. Challenges in Estimating Groundwater Recharge in Semi-arid and Semi-confined Alluvial Systems

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Finch, W.; McIntyre, N.

    2015-12-01

    Uncertainty surrounding rates of groundwater recharge limits overall confidence in groundwater allocations and can lead to over-conservative assumptions in groundwater impact assessments. This problem is even more acute where more complex unsaturated flow paths are considered, such as within semi-confined alluvial systems. Researchers at The University of Queensland have developed an experimental study within the Condamine Alluvium, a significant aquifer in semi-arid eastern Australia, is used to determine groundwater recharge mechanisms for three distinct soil types (two vertosols and one chromosol) on both irrigated and non-irrigated areas. This variety of soil types, including shrink-swell clays, overly a higher permeability sand and gravel unsaturated zone and aquifer. The analysis uses 15-minute soil moisture data from Sentek EnviroSCAN Probe devices installed at 16 sites, with eight sensors in each site at depths from 100 to 4000mm. The vertosols exhibited signs of dynamic preferential flow paths due to the shrink swell properties of the soil. Precipitation rate and initial soil moisture content affect the infiltration response times for the three soils, with the chromosols requiring multiple precipitation events before experiencing any significant soil moisture storage changes in the lower depths (2000 - 4000mm). Storage changes below the root zone to a depth of 4m indicate large rates of potential recharge, up to 1300mm for the two years of data obtained. However, minimal rise has been observed in the water table (~12 m depth), potentially due to the highly transmissive sand and gravel aquifer. The analysis has shown that only very high temporal resolution monitoring of soil storage changes can effectively capture the dynamic preferential flow water flux. Lower temporal resolution monitoring, at the daily scale or greater, will bias the storage change estimates towards the matrix flow component and risk significant underestimation of the total unsaturated

  4. EDITORIAL: Energetic particles in magnetic confinement systems

    NASA Astrophysics Data System (ADS)

    Toi, K.

    2006-10-01

    Energetic alpha particle physics plays an obviously crucial role in burning fusion plasmas. Good confinement of them is required to sustain fusion burn and to avoid damage of the first wall. Because of this importance for nuclear fusion research, Y. Kolesnichenko and the late D. Sigmar initiated a series of IAEA technical (committee) meetings (TCM, since the 8th meeting TM) in order to exchange information on the behaviour of energetic particles in magnetic confinement devices. The role of the TMs has become increasingly important since burning plasma projects such as ITER are in preparation. After every TM, invited speakers are encouraged to publish an adapted and extended version of their contributions to the meeting as an article in a special issue of Nuclear Fusion. An exception was the 8th TM the articles of which were published in a special issue of Plasma Physics and Controlled Fusion (2004 46 S1-118). These special issues attract much interest in the subject. The 9th IAEA TM of this series was held in Takayama, Japan, 9-11 November 2005, and 53 papers including 16 invited talks were presented. A total of 11 papers based on these invited talks are included in this special issue of Nuclear Fusion and are preceded by a conference summary. Experimental results of energetic ion driven global instabilities such as Alfvén eigenmodes (AEs), energetic particle modes (EPMs) and fishbone instabilities were presented from several tokamaks (JET, JT-60U, DIII-D and ASDEX Upgrade), helical/stellarator devices (LHD and CHS) and spherical tori (NSTX and MAST). Experimental studies from JET and T-10 tokamaks on the interaction of ion cyclotron waves with energetic ions and runaway electrons were also presented. Theoretical works on AEs, EPMs and nonlinear phenomena induced by energetic particles were presented and compared with experimental data. Extensive numerical codes have been developed and applied to obtain predictions of energetic particle behaviour in future ITER

  5. Approximate potentiometric surface for the aquifer unit A2, Southeastern Coastal Plain aquifer system of the United States, prior to development

    USGS Publications Warehouse

    Stricker, V.A.

    1985-01-01

    A generalized potentiometric surface map prepared as part of the southeastern United States, Regional Sand Aquifer-System Analysis defines the altitude of water levels under conditions prior to development for aquifer unit A2, the upper group of aquifers in the sand aquifer system. Aquifer unit A2, consisting of lower Tertiary sands, is under artesian conditions except locally in the recharge areas. The regional flow direction is to the rivers in the area where the unit outcrops, west toward the Mississippi River in Mississippi, and southward to the Gulf of Mexico in Alabama and West Georgia. In eastern Georgia and South Carolina, the flow is southeast toward the Atlantic Ocean. (USGS)

  6. Approximate potentiometric surface for the aquifer unit A4, southeastern coastal plain aquifer system of the United States, prior to development

    USGS Publications Warehouse

    Stricker, V.A.; Aucott, Walter R.; Faye, Robert E.; Williams, John S.; Mallory, Michael J.

    1985-01-01

    A generalized potentiometric surface map prepared as part of a regional analysis of sand aquifer system defines the altitude of water levels under pre-development conditions for aquifer unit A4, the lowermost group of aquifers in the sand aquifer system. Aquifer unit A4, consisting of Upper and Lower Cretaceous sands, is under artesian conditions except locally in the recharge areas. The regional flow direction is to the rivers in the area where the unit outcrops and southward to the Gulf of Mexico in Mississippi, Alabama, and West Georgia. In coastal Georgia and South Carolina, the direction of flow is east northeast parallel to the coast and into North Carolina. (USGS)

  7. Confined polyelectrolytes: The complexity of a simple system.

    PubMed

    Nunes, Sandra C C; Skepö, Marie; Pais, Alberto A C C

    2015-08-01

    The interaction between polyelectrolytes and counterions in confined situations and the mutual relationship between chain conformation and ion condensation is an important issue in several areas. In the biological field, it assumes particular relevance in the understanding of the packaging of nucleic acids, which is crucial in the design of gene delivery systems. In this work, a simple coarse-grained model is used to assess the cooperativity between conformational change and ion condensation in spherically confined backbones, with capsides permeable to the counterions. It is seen that the variation on the degree of condensation depends on counterion valence. For monovalent counterions, the degree of condensation passes through a minimum before increasing as the confining space diminishes. In contrast, for trivalent ions, the overall tendency is to decrease the degree of condensation as the confinement space also decreases. Most of the particles reside close to the spherical wall, even for systems in which the density is higher closer to the cavity center. This effect is more pronounced, when monovalent counterions are present. Additionally, there are clear variations in the charge along the concentric layers that cannot be totally ascribed to polyelectrolyte behavior, as shown by decoupling the chain into monomers. If both chain and counterions are confined, the formation of a counterion rich region immediately before the wall is observed. Spool and doughnut-like structures are formed for stiff chains, within a nontrivial evolution with increasing confinement. PMID:26096545

  8. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    USGS Publications Warehouse

    Adamski, J.C.; Knowles, Leel, Jr.

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  9. Synthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable Zone in Central and Southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Richardson, Emily

    2008-01-01

    The carbonate Floridan aquifer system of central and southern Florida (south of a latitude of about 29 degrees north) is an invaluable resource with a complex framework that has previously been mapped and managed primarily in a subregional context according to geopolitical boundaries. As interest and use of the Floridan aquifer system in this area increase, a consistent regional hydrogeologic framework is needed for effective management across these boundaries. This study synthesizes previous studies on the Floridan aquifer system and introduces a new regional hydrogeologic conceptual framework, linking physical relations between central and southern Florida and between the west and east coastal areas. The differences in hydrogeologic nomenclature and interpretation across the study area from previous studies were identified and resolved. The Floridan aquifer system consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer. This study introduces and delineates a new major, regional productive zone or subaquifer, referred to as the Avon Park permeable zone. This zone is contained within the middle confining unit and synthesizes an extensive zone that has been referred to differently in different parts of the study area in previous studies. The name of this zone derives from the description of this zone as the ?Avon Park highly permeable zone? in west-central Florida in a previous study. Additionally, this zone has been identified previously in southeastern Florida as the ?middle Floridan aquifer.? An approximately correlative or approximate time-stratigraphic framework was developed and was used to provide guidance in the identification and determination of aquifers, subaquifers, and confining units within the Floridan aquifer system and to determine their structural relations. Two stratigraphic marker horizons within the Floridan aquifer system and a marker unit near the top of the aquifer system were delineated or mapped. The marker

  10. Groundwater Flow Model of Göksu Delta Coastal Aquifer System

    NASA Astrophysics Data System (ADS)

    Erdem Dokuz, Uǧur; Çelik, Mehmet; Arslan, Şebnem; Engin, Hilal

    2016-04-01

    the conceptual hydrogeological model of Göksu Delta coastal aquifer system, Göksu Delta is restricted by limestones from north and northwest and reaches up to 250 m in thickness in the southern part. Moreover, a combined aquifer system of confined and unconfined layers has been developed within the delta. The groundwater flow direction is towards south and southeast to the Mediterranean Sea. Data from this study were used to calibrate the flow model under steady-state and transient conditions by using MOFLOW. According to the calibrated model, alluvium aquifer is primarily recharged by limestone aquifer and partially by Göksu River. Discharge from the aquifer is generally towards the Mediterranean Sea and in part to Göksu River in the southern part of the delta. Transient calibration of the model for the year 2012 indicates that Göksu Delta groundwater system is extremely sensitive for groundwater exploitation for agricultural purposes.

  11. MISSISSIPPI EMBAYMENT AQUIFER SYSTEM IN MISSISSIPPI: GEOHYDROLOGIC DATA COMPILATION FOR FLOW MODEL SIMULATION.

    USGS Publications Warehouse

    Arthur, J.K.; Taylor, R.E.

    1986-01-01

    As part of the Gulf Coast Regional Aquifer System Analysis (GC RASA) study, data from 184 geophysical well logs were used to define the geohydrologic framework of the Mississippi embayment aquifer system in Mississippi for flow model simulation. Five major aquifers of Eocene and Paleocene age were defined within this aquifer system in Mississippi. A computer data storage system was established to assimilate the information obtained from the geophysical logs. Computer programs were developed to manipulate the data to construct geologic sections and structure maps. Data from the storage system will be input to a five-layer, three-dimensional, finite-difference digital computer model that is used to simulate the flow dynamics in the five major aquifers of the Mississippi embayment aquifer system.

  12. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    USGS Publications Warehouse

    Gonthier, Gerard J.; Clarke, John S.

    2016-01-01

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  13. Evaluation of mechanisms that might control transport of wastewater contaminants in bedrock multi-aquifer systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ongoing research has identified infectious human enteric viruses in the Madison, Wisconsin, public supply wells that draw water from a deep, confined sandstone aquifer. These viruses most likely originate from leaking sanitary sewers and are a potential human health risk. Due to a relatively short (...

  14. MHD-stable plasma confinement in an axisymmetric mirror system

    SciTech Connect

    Stupakov, G.V.

    1988-02-01

    If the magnetic field of a nonparaxial mirror system is chosen appropriately, it is possible to maintain a sharp plasma boundary in an open axisymmetric confinement system in a manner which is stable against flute modes (both global and small-scale). Stability prevails in the ideal MHD approximation without finite-ion-Larmor radius effects.

  15. Regional Aquifer-System Analysis Program of the US Geological Survey; bibliography, 1978-86

    USGS Publications Warehouse

    Weeks, J.B.; Sun, Ren Jen

    1987-01-01

    The Regional Aquifer-System Analysis Program of the U.S. Geological Survey was initiated in 1978. The purpose of this program is to define the regional geohydrology and establish a framework of background information on geology, hydrology, and geochemistry of the Nation 's important aquifer systems. This information is needed to develop an understanding of the Nation 's major groundwater flow systems and to support better groundwater resources management. As of 1986, investigations of 28 regional aquifer systems were planned, investigations of 9 regional aquifer systems were completed, and 11 regional aquifer systems were being studied. This report is a bibliography of reports completed under the Regional Aquifer-System Analysis Program from 1978 through 1986. The reports resulting from each regional aquifer-system study are listed after an introduction to the study. During 1978-86, 488 reports were completed under the Regional Aquifer-System Analysis Program, and 168 reports which were partially funded by the Regional Aquifer-System Analysis Program were completed under the National Research Program. (Author 's abstract)

  16. Documentation of revisions to the regional aquifer system analysis model of the New Jersey coastal plain

    USGS Publications Warehouse

    Voronin, Lois M.

    2004-01-01

    The model, which simulates flow in the New Jersey Coastal Plain sediments, developed for the U.S. Geological Survey Regional Aquifer System Analysis (RASA) program was revised. The RASA model was revised with (1) a rediscretization of the model parameters with a finer cell size, (2) a spatially variable recharge rate that is based on rates determined by recent studies and, (3) ground-water withdrawal data from 1981 to 1998. The RASA model framework, which subdivided the Coastal Plain sediments into 10 aquifers and 9 confining units, was preserved in the revised model. A transient model that simulates flow conditions from January 1, 1968 to December 31, 1998, was constructed using 21 stress periods. The model was calibrated by attempting to match the simulated results with (1) estimated base flow for five river basins, (2) measured water levels in long-term hydrographs for 28 selected observation wells, and (3) potentiometric surfaces in the model area for 1978, 1983, 1998, 1993, and 1998 conditions. The estimated and simulated base flow in the five river basins compare well. In general, the simulated water levels matched the interpreted potentiometric surfaces and the measured water levels of the hydrographs within 25 feet.

  17. Monitoring induced denitrification in an artificial aquifer recharge system.

    NASA Astrophysics Data System (ADS)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    literature ɛN values of -4o and -22o respectively (Aravena and Robertson, 1998; Pauwels et al., 2000). Ongoing denitrification batch experiments will allow us to determine the specific nitrogen and oxygen isotopic fractionation induced by the organic reactive layer, in order to estimate more precisely the extent of denitrification during artificial aquifer recharge. These results confirmed that the reactive layer induces denitrification in the recharge ponds area, proving the usefulness of an isotopic approach to characterize water quality improvement occurring during artificial aquifer recharge. References 1. Aravena, R., Robertson, W.D., 1998. Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plume. Ground Water, 36(6): 975-982. 2. Pauwels, H., J.C., Kloppmann, W., 2000. Denitrification and mixing in a schist aquifer: Influence on water chemistry and isotopes. Chemical Geology, 168(3-4): 307-324. Acknowledgment This study was supported by the projects CGL2011-29975-C04-01 from the Spanish Government, 2009SGR-00103 from the Catalan Government and ENPI/2011/280-008 from the European Commission. Please fill in your abstract text.

  18. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico

    PubMed Central

    Ghasemizadeh, Reza; Hellweger, Ferdinand; Butscher, Christoph; Padilla, Ingrid; Vesper, Dorothy; Field, Malcolm; Alshawabkeh, Akram

    2013-01-01

    Karst systems have a high degree of heterogeneity and anisotropy, which makes them behave very differently from other aquifers. Slow seepage through the rock matrix and fast flow through conduits and fractures result in a high variation in spring response to precipitation events. Contaminant storage occurs in the rock matrix and epikarst, but contaminant transport occurs mostly along preferential pathways that are typically inaccessible locations, which makes modeling of karst systems challenging. Computer models for understanding and predicting hydraulics and contaminant transport in aquifers make assumptions about the distribution and hydraulic properties of geologic features that may not always apply to karst aquifers. This paper reviews the basic concepts, mathematical descriptions, and modeling approaches for karst systems. The North Coast Limestone aquifer system of Puerto Rico (USA) is introduced as a case study to illustrate and discuss the application of groundwater models in karst aquifer systems to evaluate aquifer contamination. PMID:23645996

  19. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types. PMID:25055664

  20. "Groundwater ages" of the Lake Chad multi-layer aquifers system inferred from 14C and 36Cl data

    NASA Astrophysics Data System (ADS)

    Bouchez, Camille; Deschamps, Pierre; Goncalves, Julio; Hamelin, Bruno; Seidel, Jean-Luc; Doumnang, Jean-Claude

    2014-05-01

    high 36Cl/Cl ratio (>1000.10-15 at/at) very likely linked to the bomb pulse. These high 36Cl/Cl ratios are in the same order than the 36Cl/Cl signature of surface waters active modern recharge in this area. In the other part of the Quaternary Aquifer, waters are Na-HCO3-SO4-Cl type and are characterized by lower 36Cl/Cl ratios (around 200.10-15 at/at), suggesting longer residence time of the groundwaters. The 14C contents of the unconfined aquifer waters are all above 50 pmc, suggesting recent or Holocene recharge of this system. In contrast, the confined aquifer has a more homogeneous geochemical signature. The 14C contents are below all 0.5 pmc and mainly below detection level. 36Cl/Cl ratios are

  1. Confinement of active systems: trapping, swim pressure, and explosions

    NASA Astrophysics Data System (ADS)

    Takatori, Sho; de Dier, Raf; Vermant, Jan; Brady, John

    2015-11-01

    We analyze the run-and-tumble dynamics and motion of living bacteria and self-propelled Janus motors confined in an acoustic trap. Since standard optical tweezers are far too weak, we developed an acoustic trap strong enough to confine swimmers over distances large compared to the swimmers' size and run length. The external trap behaves as an ``osmotic barrier'' that confines the swimmers inside the trapping region, analogous to semipermeable membranes that confine passive Brownian particles inside a boundary. From the swimmers' restricted motion inside the trap, we calculate the unique swim pressure generated by active systems originating from the force required to confine them by boundaries. We apply a strong trap to collect the swimmers into a close-packed active crystal and then turn off the trap which causes the crystal to ``explode'' due to an imbalance of the active pressure. We corroborate all experimental results with Brownian dynamics simulations and analytical theory. ST is supported by a Gates Millennium Scholars fellowship and a NSF Fellowship No. DGE-1144469. RDD is supported by a doctoral fellowship of the fund for scientific research (FWO-Vlaanderen). This work is also supported by NSF Grant CBET 1437570.

  2. Singularity confinement and chaos in two-dimensional discrete systems

    NASA Astrophysics Data System (ADS)

    Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji

    2016-06-01

    We present a quasi-integrable two-dimensional lattice equation: i.e., a partial difference equation which satisfies a test for integrability, singularity confinement, although it has a chaotic aspect in the sense that the degrees of its iterates exhibit exponential growth. By systematic reduction to one-dimensional systems, it gives a hierarchy of ordinary difference equations with confined singularities, but with positive algebraic entropy including a generalized form of the Hietarinta–Viallet mapping. We believe that this is the first example of such quasi-integrable equations defined over a two-dimensional lattice.

  3. Novel phenomena in confined electronic systems

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman

    Modern experimental methods have made it possible for physicists to investigate matter in extreme conditions. Two of the most extreme conditions are low temperature and low dimensionality. Fabricated semiconductor or metal nano-ring arrays and narrow quantum wells in semiconductor heterostructures at low temperatures provide such an extreme environments for electrons. I will explain these systems in this dissertation. Quantum Wells. In a closely spaced double quantum well (DQW), electrons are thought to form an interlayer coherent state when a perpendicular magnetic field is applied such that the total Landau level filling factor one. The low energy topological excitations of the electron gas in these structures includes charged pseudo-spin vortices and anti-vortices. By calculating the energy per electron and the electron densities in the Hartree-Fock approximation, we show that there are new excited states with interwoven spin and pseudo-spin and that their presence in the system can explain new experimental results. The excitations of DQW's (called merons) also have important effects on transport in these systems. These objects carry charge, vorticity, and electric dipole moment. Disorder is likely to unbind them and allow them to diffuse through the system independently. Due to their different dipole moments, the various types of merons may then in principle be distinguished in transport activation energies by an interlayer bias potential. We explore the dynamics of merons using Chern-Simon theory for quantum Hall systems. We numerically estimate their energies in various circumstances and compare them to the recent experiments. Nano-rings. In this dissertation we also fully analyze the possible phases of a model of singly charged one and two dimensional arrays of rings each having a diameter " 100 nm. Using the Hartree approximation and Monte-Carlo simulations we demonstrate that the electrostatic polarization of these arrays undergoes a quantum phase

  4. Lithology and base of the surficial aquifer system, Palm Beach County, Florida

    USGS Publications Warehouse

    Miller, Wesley L.

    1987-01-01

    The surficial aquifer system is a major source of freshwater in Palm Beach County. In 1982, public supply withdrawals from the aquifer system totaled 33,543 million gallons, 77.5% of total public supply withdrawals. To evaluate the aquifer system and its geologic framework, a cooperative study with Palm Beach County was begun in 1982 by the U.S. Geological Survey. The surficial aquifer system in Palm Beach County is composed primarily of sand, sandstone, shell, silt, calcareous clay (marl), and limestone deposited during the Pleistocene and Pliocene epochs. In the western two-thirds of Palm Beach County, sediments in the aquifer system are poorly consolidated sand, shell, and sandy limestone. Owing to interspersed calcareous clays and silt and very poorly sorted materials, permeabilities in this zone of the aquifer system are relatively low. Two other zones of the aquifer system are found in the eastern one-third of the county where the sediments are appreciably more permeable than in the west due to better sorting and less silt and clay content. The location of more detailed lithologic logs for wells in these sections, along with data from nearby wells, allowed enhanced interpretation and depiction of the lithology which had previously been generalized. The most permeable zone of the aquifer system in this area is characterized by highly developed secondary porosity where infiltrating rainwater and solution by groundwater have removed calcitic-cementing materials from the sediments to produce interconnected cavities. Increased permeability in the aquifer system is generally coincident with the eastern boundary of the overlying organic soils and Lake Flirt Marl. Lithologic logs of wells in Palm Beach County indicate that sediments forming the aquifer system were deposited directly on the erosional surface of the Hawthorn Formation in some areas. In other locations in the county, lithologic logs indicate that the base of the aquifer system was formed by fluvial

  5. Magnetic confinement system using charged ammonia targets

    DOEpatents

    Porter, Gary D.; Bogdanoff, Anatoly

    1979-01-01

    A system for guiding charged laser targets to a predetermined focal spot of a laser along generally arbitrary, and especially horizontal, directions which comprises a series of electrostatic sensors which provide inputs to a computer for real time calculation of position, velocity, and direction of the target along an initial injection trajectory, and a set of electrostatic deflection means, energized according to a calculated output of said computer, to change the target trajectory to intercept the focal spot of the laser which is triggered so as to illuminate the target of the focal spot.

  6. Hydrogeology in the area of a freshwater lens in the Floridan aquifer system, northeast Seminole County, Florida

    USGS Publications Warehouse

    Phelps, G.G.; Rohrer, K.P.

    1987-01-01

    Northeast Seminole County, Florida, contains an isolated recharge area of the Floridan aquifer system that forms a freshwater lens completely surrounded by saline water. The freshwater lens covers an area of about 22 sq mi surrounding the town of Geneva, and generally is enclosed by the 25 ft land surface altitude contour. Thickness of the lens is about 350 ft in the center of the recharge area. The geohydrologic units in descending order consist of the post-Miocene sand and shell of the surficial aquifer; Miocene clay, sand, clay, and shell that form a leaky confining bed; and permeable Eocene limestones of the Floridan aquifer system. The freshwater lens is the result of local rainfall flushing ancient seawater from the Floridan aquifer system. Sufficient quantities of water for domestic and small public supply systems are available from the Floridan aquifer system in the Geneva area. The limiting factor for water supply in the area is the chemical quality of the water. Chloride concentrations range from < 20 mg/L in the center of the recharge area to about 5,100 mg/L near the St. Johns River southeast of Geneva. Constituents analyzed included sulfate (range 1 to 800 mg/L), hardness (range 89 to 2,076 mg/L), and iron (range 34 to 6,600 mg/L). Because the freshwater lens results entirely from local recharge, the long-term sustained freshwater yield of the aquifer in the Geneva area depends on the local recharge rate. In 1982, recharge was about 13 inches (13.8 million gal/day). Average recharge for 1941 through 1970 was estimated to be about 11 inches (11.3 million gal/day). Freshwater that recharges the aquifer in the Geneva area is either pumped out or flows north and northeast to discharge near or in the St. Johns River. Average annual outflow from the lens is about 10 in/yr. No measurable change in the size or location of the freshwater lens has occurred since studies in the early 1950's. (Lantz-PTT)

  7. Integrating Hydrogeological and Geophysical Methods for the Characterization of a Deltaic Aquifer System

    NASA Astrophysics Data System (ADS)

    Falgàs, Ester; Ledo, Juanjo; Benjumea, Beatriz; Queralt, Pilar; Marcuello, Alex; Teixidó, Teresa; Martí, Anna

    2011-11-01

    Groundwater management needs detailed aquifer characterization, especially in semiarid costal aquifer systems that are under hydrological pressure. Our study area is in the Tordera delta, northeastern coast of Spain, where a detrital fluvio-deltaic aquifer system has been developed above granitic basement. The main purpose of this study is to characterize the complex lithological structure and the seawater intrusion state by combining hydrological information, audiomagnetotelluric (AMT) and seismic reflection and refraction models. This allowed us to provide spatially continuous information about aquifer properties and processes. Thus, we have determined the thickness and continuity of the aquifer units, as well as the morphology and depth to the basement. The models revealed that the main seawater intrusion main path is found in the western deltaic area that coincides with an existing buried paleochannel. This new result explains the anomalously high chlorine concentrations observed in the deep semiconfined aquifer more than 1,500 m inland.

  8. Preliminary evaluation of the Highland Rim aquifer system in Tennessee for receiving injected wastes

    USGS Publications Warehouse

    Bradley, M.W.

    1986-01-01

    The EPA has authority under the Safe Drinking Water Act to protect underground sources of drinking water from contamination by deep well injection. An aquifer, however, may be exempted from protection and used for injected wastes where the aquifer meets criteria established in the Agency 's Underground Injection Control program. The Highland Rim aquifer system in Tennessee consists of Mississippian age carbonate rocks and occurs from the Valley and Ridge of East Tennessee to west of the Tennessee River. This aquifer contains potable water and is an important source of drinking water for municipal and domestic supplies on the Highland Rim. The Highland Rim aquifer system under parts of the Cumberland Plateau is not currently used as a source of drinking water and is not expected to be used in the future. These areas meet parts of the EPA 's Underground Injection Control criteria for exempting aquifers to receive injected waste. (Author 's abstract)

  9. An electrostatically and a magnetically confined electron gun lens system

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Man, Kin F.; Chutjian, Ara

    1988-01-01

    Focal properties, electron trajectory calculations, and geometries are given for two electron 'gun' lens systems that have a variety of applications in, for example, electron-neutral and electron-ion scattering experiments. One nine-lens system utilizes only electrostatic confinement and is capable of focusing electrons onto a fixed target with extremely small divergence angles, over a range of final energies 1-790 eV. The second gun lens system is a simpler three-lens system suitable for use in a uniform, solenoidal magnetic field. While the focusing properties of such a magnetically confined lens systenm are simpler to deal with, the system does illustrate features of electron extraction and Brillouin flow that have not been suitably emphasized in the literature.

  10. Estimation of transit times in a Karst Aquifer system using environmental tracers: Application on the Jeita Aquifer system-Lebanon.

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Hamdan, Ahmad

    2016-04-01

    Estimating transit times is essential for the assessment of aquifer vulnerability to contaminants. Groundwater in karst aquifer is assumed to be relatively young due to fast preferential pathways; slow flow components are present in water stored in the fissured matrix. Furthermore, transit times are site specific as they depend on recharge rates, temperatures, elevation, and flow media; saturated and unsaturated zones. These differences create significant variation in the groundwater age in karst systems as the water sampled will be a mix of different water that has been transported through different flow pathways (fissured matrix and conduits). Several methods can be applied to estimate water transit time of an aquifer such as artificial tracers, which provide an estimate for fast flow velocities. In this study, groundwater residence times in the Jeita spring aquifer (Lebanon) were estimated using several environmental tracers such as Chlorofluorocarbons (CFCs), Sulfur Hexafluoride (SF6), Helium-Tritium (3H, 3H- 3He). Additional stable isotope and major ion analysis was performed to characterize water types. Groundwater samples were collected from six different wells in the Jeita catchment area (Jurassic Kesrouane aquifer) as well as from the spring and cave itself. The results are reproducible for the Tritium-Helium method, unlike for the CFC/SF6 methods that yielded poor results due to sampling problems. Tritium concentrations in all groundwater samples show nearly the same concentration (~2.73 TU) except for one sample with relatively lower tritium concentration (~2.26 TU). Ages ranging from 0.07 ± 0.07 years to 23.59 ± 0.00 years were obtained. The youngest age is attributed to the spring/ cave while the oldest ages were obtained in wells tapping the fissured matrix. Neon in these samples showed considerable variations and high delta Ne in some samples indicating high excess air. Four (4) samples showed extreme excess air (Delta-Ne is greater than 70 %) and

  11. Mirror confinement systems: Final technical report

    SciTech Connect

    Not Available

    1988-08-01

    This report contains: (1) A discussion of azimuthal asymmetrics and fluctuations in RFC-XX-M. Both lead to enhanced radial transport in RFC-XX-M, and presumably most other tandem mirror machines as well; A report on four operating modes of RFC-XX-M which were developed and studied as part of the collaboration. These operating modes were the simple tandem mode, the negative (floating) potential mode, the hot electron mode, and the ECH (electron cyclotron heating) mode; A pulsed rf heated discharge cleaning system which was developed for RFC-XX-M. This method of cleaning proved much more effective than normal glow discharge cleaning, and variations of it are currently in use on the GAMMA-10 tandem mirror and the JIPP TII-U tokamak at the Institute for Plasma Physics at Nagoya; Short descriptions of the diagnostics development and improvement done in conjunction with the work on RFC-XX-M; and a compilation of the work performed at the University of Tsukuba on GAMMA-10. Most of the effort on GAMMA-10 involved diagnostics development and improvement. 16 refs., 42 figs., 1 tab.

  12. Analytical solution of two-dimensional solute transport in an aquifer-aquitard system.

    PubMed

    Zhan, Hongbin; Wen, Zhang; Huang, Guanhua; Sun, Dongmin

    2009-07-21

    This study deals with two-dimensional solute transport in an aquifer-aquitard system by maintaining rigorous mass conservation at the aquifer-aquitard interface. Advection, longitudinal dispersion, and transverse vertical dispersion are considered in the aquifer. Vertical advection and diffusion are considered in the aquitards. The first-type and the third-type boundary conditions are considered in the aquifer. This study differs from the commonly used averaged approximation (AA) method that treats the mass flux between the aquifer and aquitard as an averaged volumetric source/sink term in the governing equation of transport in the aquifer. Analytical solutions of concentrations in the aquitards and aquifer and mass transported between the aquifer and upper or lower aquitard are obtained in the Laplace domain, and are subsequently inverted numerically to yield results in the real time domain (the Zhan method). The breakthrough curves (BTCs) and distribution profiles in the aquifer obtained in this study are drastically different from those obtained using the AA method. Comparison of the numerical simulation using the model MT3DMS and the Zhan method indicates that the numerical result differs from that of the Zhan method for an asymmetric case when aquitard advections are at the same direction. The AA method overestimates the mass transported into the upper aquitard when an upward advection exists in the upper aquitard. The mass transported between the aquifer and the aquitard is sensitive to the aquitard Peclet number, but less sensitive to the aquitard diffusion coefficient. PMID:19477033

  13. Quantifying spatio-temporal stream-aquifer water exchanges along a multi-layer aquifer system using LOMOS and hydro-thermo modelling

    NASA Astrophysics Data System (ADS)

    Mouhri, Amer; flipo, Nicolas; Rejiba, Fayçal; Bodet, Ludovic; Jost, Anne; Goblet, Patrick

    2014-05-01

    The aim of this work is to understand the spatial and temporal variability of stream-aquifer water exchanges along a 6 km-stream network in a multi-layer aquifer system using both LOcal MOnitoring Stations (LOMOSs) coupled with the optimization of a hydro-thermo model per LOMOS. With an area of 45 km2, the Orgeval experimental basin is located 70 km east from Paris. It drains a multi-layer aquifer system, which is composed of two main geological formations: the Oligocene (upper aquifer unit) and the Eocene (lower aquifer unit). These two aquifer units are separated by a clayey aquitard. The connectivity status between streams and aquifer units has been evaluated using near surface geophysical investigations as well as drill cores. Five LOMOSs of the stream-aquifer exchanges have been deployed along the stream-network to monitor stream-aquifer exchanges over years, based on continuous pressure and temperature measurements (15 min-time step). Each LOMOS is composed of one or two shallow piezometers located 2 to 3 m away from the river edge; one surface water monitoring system; two hyporheic zone temperature profiles located close to each river bank. The five LOMOSs are distributed in two upstream, two intermediate, and one downstream site. The two upstream sites are connected to the upper aquifer unit, and the downstream one is connected to the lower aquifer unit. The 2012-April - 2013-december period of hydrological data are hereafter analyzed. We first focus on the spatial distribution of the stream-aquifer exchanges along the multi-layer aquifer system during the low flow period. Results display an upstream-downstream functional gradient, with upstream gaining stream and downstream losing stream. This spatial distribution is due to the multi-layer nature of the aquifer system, whose lower aquifer unit is depleted. Then it appears that the downstream losing streams temporally switch into gaining ones during extreme hydrological events, while the upstream streams

  14. Regional evaluation of the hydrogeologic framework, hydraulic properties, and chemical characteristics of the intermediate aquifer system underlying southern west-central Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.

    2006-01-01

    Three major aquifer systems-the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system-are recognized in the approximately 5,100-square-mile southern west-central Florida study area. The principal source of freshwater for all uses is ground water supplied from the three aquifer systems. Ground water from the intermediate aquifer system is considered only moderately abundant compared to the Upper Floridan aquifer, but it is an important source of water where the Upper Floridan aquifer contains water too mineralized for most uses. In the study area, the potential ground-water resources of the intermediate aquifer system were evaluated by regionally assessing the vertical and lateral distribution of hydrogeologic, hydraulic, and chemical characteristics. Although the intermediate aquifer system is considered a single entity, it is composed of multiple water-bearing zones separated by confining units. Deposition of a complex assemblage of carbonate and siliciclastic sediments during the late Oligocene to early Pliocene time resulted in discontinuities that are reflected in transitional and abrupt contacts between facies. Discontinuous facies produce water-bearing zones that may be locally well-connected or culminate abruptly. Changes in the depositional environment created the multilayered intermediate aquifer system that contains as many as three zones of enhanced water-bearing capacity. The water-bearing zones consist of indurated limestone and dolostone and in some places unindurated sand, gravel, and shell beds, and these zones are designated, in descending order, as Zone 1, Zone 2, and Zone 3. Zone 1 is thinnest (<80 feet thick) and is limited to <20 percent (southern part) of the study area. Zone 2, the only regionally extensive zone, is characterized by moderately low permeability. Zone 3 is found in about 50 percent of the study area, has the highest transmissivities, and generally is in good hydraulic connection with the

  15. Tabulated Transmissivity and Storage Properties of the Floridan Aquifer System in Florida and Parts of Georgia, South Carolina, and Alabama

    USGS Publications Warehouse

    Kuniansky, Eve L.; Bellino, Jason C.

    2016-01-01

    A goal of the U.S. Geological Survey Groundwater Resources Program is to assess the availability of fresh water within each of the principal aquifers in the United States with the greatest groundwater withdrawals. The Floridan aquifer system (FAS), which covers an area of approximately 100,000 square miles in Florida and parts of Georgia, Alabama, Mississippi, and South Carolina, is one such principal aquifer, having the fifth largest groundwater withdrawals in the Nation, totaling 3.64 billion gallons per day in 2000. Compilation of FAS hydraulic properties is critical to the development and calibration of groundwater flow models that can be used to develop water budgets spatially and temporally, as well as to evaluate resource changes over time. Wells with aquifer test data were identified as Upper Floridan aquifer (UFA), Lower Floridan aquifer (LFA), Floridan aquifer system (FAS, Upper Floridan with some middle and/or Lower Floridan), or middle Floridan confining unit (MCU), based on the identification from the original database or report description, or comparison of the open interval of the well with previously published maps.This report consolidates aquifer hydraulic property data obtained from multiple databases and reports of the U.S. Geological Survey, various State agencies, and the Water Management Districts of Florida, that are compiled into tables to provide a single information source for transmissivity and storage properties of the FAS as of October 2011. Transmissivity calculated from aquifer pumping tests and specific-capacity data are included. Values for transmissivity and storage coefficients are intended for use in regional or sub regional groundwater flow models; thus, any tests (aquifer pumping tests and specific capacity data) that were conducted with packers or for open intervals less than 30 feet in length are excluded from the summary statistics and tables of this report, but are included in the database.The transmissivity distribution

  16. Hydraulic conductivity, specific yield, and pumpage--High Plains aquifer system, Nebraska

    USGS Publications Warehouse

    Pettijohn, Robert A.; Chen, Hsiu-Hsiung

    1983-01-01

    Hydrologic data used to evalute the ground-water potential of the High Plains aquifer system in Nebraska are presented on maps showing the hydraulic conductivity and specific yield of the aquifer system and the volume and distribution of water pumped for irrigation from the aquifer system during 1980. The High Plains aquifer system underlies 177,000 square miles in parts of eight states, including 64,770 square miles in Nebraska. It consists of the Ogallala Formation and Tertiary and Quaternary deposits that are saturated and hydraulically connected to the Ogallala. The hydraulic conductivity of the aquifer system varies from greater than 200 feet per day in parts of the North Platte, Platte, Elkhorn, and Republican River valleys to less than 25 feet per day in the northwestern part of the state. Specific yield of the aquifer system ranges from 10 to 20 percent in most of the state and averages 16 percent. The estimated volume of water recoverable from the aquifer system in Nebraska is 2,237 million acre-feet. Inches of water withdrawn from the aquifer system during 1980 varied from less than 1.5 in the sandhills of north-central Nebraska to more than 12 in the Platte River and Blue River basins. This withdrawal represents about 6,703,000 acre-feet of ground water. (USGS)

  17. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  18. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida (Published Proceedings)

    EPA Science Inventory

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  19. Magnetically confined plasma solar collector. [satellite based system in space

    NASA Technical Reports Server (NTRS)

    Walters, C. T.; Wolken, G., Jr.; Purvis, G. D., III

    1978-01-01

    The possibility of using a plasma medium for collecting solar energy in space is examined on the basis of a concept involving an orbiting magnetic bottle in which a solar-energy-absorbing plasma is confined. A basic system uses monatomic cesium as working fluid. Cesium evaporates from a source and flows into the useful volume of a magnetic bottle where it is photoionized by solar radiation. Ions and electrons lost through the loss cones are processed by a recovery system, which might be a combination of electromagnetic devices and heat engines. This study concentrates on the plasma production processes and size requirements, estimates of the magnetic field required to confine the plasma, and an estimate of the system parameters for a 10 GW solar collector using cesium.

  20. Radiation and confinement in 0D fusion systems codes

    NASA Astrophysics Data System (ADS)

    Lux, H.; Kemp, R.; Fable, E.; Wenninger, R.

    2016-07-01

    In systems modelling for fusion power plants, it is essential to robustly predict the performance of a given machine design (including its respective operating scenario). One measure of machine performance is the energy confinement time {τ\\text{E}} that is typically predicted from experimentally derived confinement scaling laws (e.g. IPB98(y,2)). However, the conventionally used scaling laws have been derived for ITER which—unlike a fusion power plant—will not have significant radiation inside the separatrix. In the absence of a new high core radiation relevant confinement scaling, we propose an ad hoc correction to the loss power {{P}\\text{L}} used in the ITER confinement scaling and the calculation of the stored energy {{W}\\text{th}} by the radiation losses from the ‘core’ of the plasma {{P}\\text{rad,\\text{core}}} . Using detailed ASTRA / TGLF simulations, we find that an appropriate definition of {{P}\\text{rad,\\text{core}}} is given by 60% of all radiative losses inside a normalised minor radius {ρ\\text{core}}=0.75 . We consider this an improvement for current design predictions, but it is far from an ideal solution. We therefore encourage more detailed experimental and theoretical work on this issue.

  1. Confinement Vessel Assay System: Design and Implementation Report

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Gomez, Cipriano D.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-07-18

    Los Alamos National Laboratory has a number of spherical confinement vessels remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1- to 2-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. We have developed a neutron assay system for the purposes of Materials Control and Accountability (MC&A) measurements of the vessel prior to and after cleanout. We present our approach to confronting the challenges in designing, building, and testing such a system. The system was designed to meet a set of functional and operational requirements. A Monte Carlo model was developed to aid in optimizing the detector design as well as to predict the systematic uncertainty associated with confinement vessel measurements. Initial testing was performed to optimize and determine various measurement parameters, and then the system was characterized using {sup 252}Cf placed a various locations throughout the measurement system. Measurements were also performed with a {sup 252}Cf source placed inside of small steel and HDPE shells to study the effect of moderation. These measurements compare favorably with their MCNPX model equivalent, making us confident that we can rely on the Monte Carlo simulation to predict the systematic uncertainty due to variations in response to material that may be localized at different points within a vessel.

  2. Confinement Vessel Assay System: Calibration and Certification Report

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  3. Descriptions and characterizations of water-level data and groundwater flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer

    USGS Publications Warehouse

    Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.

    2013-01-01

    This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.

  4. Hydrologic budgets of regional aquifer systems of the United States for predevelopment and development conditions

    USGS Publications Warehouse

    Johnston, Richard H.

    1997-01-01

    Ground-water budgets are presented in this report for 14 regionally extensive aquifer systems; pumpage from 11 of these systems provided from 40 to 50 percent of the ground water withdrawn in the United States during the 1970's and 1980's. The budgets are based on simulation results from computer-based models developed as part of the Regional Aquifer-System Analysis Program of the U.S. Geological Survey. Most of the models cover large areas (30,000-300,000 square miles) and generally are constructed with coarse-mesh finite-difference grids designed to simulate regional ground-water flow. The groundwater budgets derived from these models generally do not include local flow that enters and exits regional aquifers after traveling only a few miles or flow in overlying surficial aquifers. Budgets are presented for predevelopment and recent pumping conditions for most of the aquifer systems.

  5. Nature of ordering in confined crystalline ionic systems

    SciTech Connect

    Schiffer, J.P.

    1995-08-01

    Simulations continued studying the properties of systems of ions confined in ion traps or storage rings and cooled to very low temperatures, forming a strongly correlated non-neutral plasma. In particular the computer simulation of a large system of 20000 ions in isotropic confinement was continued to investigate whether a transition to the body-centered cubic order that is characteristic of infinite systems might occur. The simulations so far have not provided a conclusive answer. The systems show a characteristic shell structure, 18 spherical shells, very similar to what was seen in smaller simulations. Simulations were also done with the same number of ions in anisotropic confinement. Here a surprising result is seen -- instead of forming a series of spheroidal shells, the anisotropy causes the outer shell to be spheroidal -- but the inner ones are formed at a fixed distance from the outermost shell -- giving shapes that are not spheroids and exhibit discontinuous edges. The relevance of these phenomena to ion traps needs to be investigated.

  6. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA`s, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  7. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA's, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  8. Open-ended magnetic confinement systems for fusion

    SciTech Connect

    Post, R.F.; Ryutov, D.D.

    1995-05-01

    Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ``closed`` and `open``. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research.

  9. Properties and chemical constituents in ground water from the lower Wilcox Aquifer, Mississippi Embayment Aquifer System, south-central United States

    USGS Publications Warehouse

    Pettijohn, Robert A.; Busby, John F.; Beckman, Jeffery D.

    1993-01-01

    The Gulf Coast Regional Aquifer-System Analysis is a study of regional aquifers composed of sediments of mostly Cenozoic age that underlie about 230,000 sq mi of the Gulf Coastal Plain. These regional aquifers are part of three aquifer systems: (1) the Mississippi Embayment Aquifer System, (2) the Texas Coastal Uplands Aquifer System, and (3) the Coastal Lowlands Aquifer System. The water chemistry of the Lower Wilcox Aquifer, which is part of the Mississippi Embayment Aquifer System is presented by a series of maps. These maps show the areal distribution of (1) the concentration of dissolved solids and temperature, (2) the primary water types and pH, (3) the concentration of major ions and silica, and (4) the milliequivalent ratios of selected ions. Dissolved constituents, pH, temperature, and ratios are based on the median values of all samples in each 100-sq-mi area. The concentration of dissolved solids in water from the Lower Wilcox Aquifer ranges from 18 mg/L near the outcrop in western Tennessee to 122,000 mg/L in a down-dip area in southern Mississippi. The primary water type is calcium bicarbonate in the outcrop area and sodium bicarbonate in all other areas of the aquifer within the limits of available data. The concentrations of major ions generally increase from the outcrop area to the down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio maps of selected ions in water from the Lower Wilcox Aquifer indicate some trends. The milliequivalent ratio of magnesium plus calcium to bicarbonate ranges from less than 0.1 to 40.4 and generally decreases from outcrop to down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio of bicarbonate to chloride ranges from 0.01 in southern Mississippi to 52.3 in northwestern Mississippi. This ratio increases from the outcrop toward the Mississippi River and from north to south in the

  10. Carbonate aquifers

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  11. Estimating Hydraulic Properties of the Floridan Aquifer System by Analysis of Earth-Tide, Ocean-Tide, and Barometric Effects, Collier and Hendry Counties, Florida

    USGS Publications Warehouse

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied. An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem. A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the

  12. The geochemical and isotopic composition of aquifer systems in the deltaic region of the Po River plain (northern Italy)

    NASA Astrophysics Data System (ADS)

    Rapti-Caputo, Dimitra; Martinelli, Giovanni

    2009-03-01

    The chemical and hydrodynamic characteristics of groundwater in deltaic regions are strongly influenced by the complex stratigraphy of these areas, caused by the continuously varying depositional environments associated with their recent hydrographic evolution. As a case study, the eastern sector of the Po River plain, northern Italy, has been investigated to understand the quality of the available groundwater resources. Based on the analysis of hydrochemical and isotopic data, the recharge characteristics, the groundwater residence time and the aquifer vulnerability are defined. The results show significant qualitative degradation of the unconfined aquifer due to the shallow depth to water, while in the underlying confined aquifer, a hydrochemical facies of Ca-HCO3 type prevails. The spatial variation and relationship between oxygen-18 and deuterium determine: firstly, hydraulic separation of the two hydrogeological units; secondly, direct infiltration of local precipitation to the unconfined aquifer; thirdly, the occurrence of waters originating in the Alps and locally from the Apennines, pervading the confined aquifer. The tritium results suggest local mixing between the superficial waters and the confined aquifer, occurring along the palaeo-river channels. This increases the pollution vulnerability of the confined hydrogeological unit within the plain, which is the only natural groundwater resource exploited for water supply.

  13. MODFLOW-2000 Ground-Water Model?User Guide to the Subsidence and Aquifer-System Compaction (SUB) Package

    USGS Publications Warehouse

    Hoffmann, Jorn; Leake, S.A.; Galloway, D.L.; Wilson, Alicia M.

    2003-01-01

    This report documents a computer program, the Subsidence and Aquifer-System Compaction (SUB) Package, to simulate aquifer-system compaction and land subsidence using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. The SUB Package simulates elastic (recoverable) compaction and expansion, and inelastic (permanent) compaction of compressible fine-grained beds (interbeds) within the aquifers. The deformation of the interbeds is caused by head or pore-pressure changes, and thus by changes in effective stress, within the interbeds. If the stress is less than the preconsolidation stress of the sediments, the deformation is elastic; if the stress is greater than the preconsolidation stress, the deformation is inelastic. The propagation of head changes within the interbeds is defined by a transient, one-dimensional (vertical) diffusion equation. This equation accounts for delayed release of water from storage or uptake of water into storage in the interbeds. Properties that control the timing of the storage changes are vertical hydraulic diffusivity and interbed thickness. The SUB Package supersedes the Interbed Storage Package (IBS1) for MODFLOW, which assumes that water is released from or taken into storage with changes in head in the aquifer within a single model time step and, therefore, can be reasonably used to simulate only thin interbeds. The SUB Package relaxes this assumption and can be used to simulate time-dependent drainage and compaction of thick interbeds and confining units. The time-dependent drainage can be turned off, in which case the SUB Package gives results identical to those from IBS1. Three sample problems illustrate the usefulness of the SUB Package. One sample problem verifies that the package works correctly. This sample problem simulates the drainage of a thick interbed in response to a step change in head in the adjacent aquifer and closely matches the analytical solution. A second sample problem

  14. Geospatial compilation of historical water-level altitudes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13 in the Gulf Coast aquifer system, Houston-Galveston Region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Ellis, Robert H.H.

    2013-01-01

    Maps were georeferenced and digitized where existing geographic information system (GIS) data were unavailable (1977–89, 1991, 1995–99). Existing GIS data available for 1990, 1992–94, and 2000–13 were included in the geodatabase. The feature classes were organized into three feature datasets by principal aquifer: Chicot, Evangeline, and Jasper aquifers.

  15. Approximate potentiometric surface for the aquifer unit A3, southeastern coastal plain aquifer system of the United States, prior to development

    USGS Publications Warehouse

    Stricker, V.A.

    1985-01-01

    A generalized potentiometric surface map prepared as part of the southeastern United States, Regional Sand Aquifer-System Analysis defines the altitude of water levels under conditions prior to development for aquifer unit A3, the middle group of aquifers in the sand aquifer system. Aquifer unit A3, consisting of Upper Cretaceous and Tertiary sands, is under artesian conditions except locally in the recharge areas. The regional flow direction is to the rivers in the area where the unit outcrops, west toward the Mississippi River in Mississippi, and southward to the Gulf of Mexico in Alabama and West Georgia. In eastern Georgia, the flow is southeast toward the Atlantic Ocean , and in South Carolina, the direction of flow is southeast toward the Pee Dee River. (USGS)

  16. Relative Recovery of Thermal Energy and Fresh Water in Aquifer Storage and Recovery Systems.

    PubMed

    Miotliński, K; Dillon, P J

    2015-01-01

    This paper explores the relationship between thermal energy and fresh water recoveries from an aquifer storage recovery (ASR) well in a brackish confined aquifer. It reveals the spatial and temporal distributions of temperature and conservative solutes between injected and recovered water. The evaluation is based on a review of processes affecting heat and solute transport in a homogeneous aquifer. In this simplified analysis, it is assumed that the aquifer is sufficiently anisotropic to inhibit density-affected flow, flow is axisymmetric, and the analysis is limited to a single ASR cycle. Results show that the radial extent of fresh water at the end of injection is greater than that of the temperature change due to the heating or cooling of the geological matrix as well as the interstitial water. While solutes progress only marginally into low permeability aquitards by diffusion, conduction of heat into aquitards above and below is more substantial. Consequently, the heat recovery is less than the solute recovery when the volume of the recovered water is lower than the injection volume. When the full volume of injected water is recovered the temperature mixing ratio divided by the solute mixing ratio for recovered water ranges from 0.95 to 0.6 for ratios of maximum plume radius to aquifer thickness of 0.6 to 4.6. This work is intended to assist conceptual design for dual use of ASR for conjunctive storage of water and thermal energy to maximize the potential benefits. PMID:25399802

  17. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    USGS Publications Warehouse

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  18. Domain nucleation and confinement in agent-controlled bistable systems

    NASA Astrophysics Data System (ADS)

    Battogtokh, Dorjsuren

    2015-03-01

    We report a mechanism of pattern formation in growing bistable systems coupled indirectly. A modified Fujita et al. model is studied as an example of a reaction-diffusion system of nondiffusive activator and inhibitor molecules immersed in the medium of a fast diffusive agent. Here we show that, as the system grows, a new domain nucleates spontaneously in the area where the local level of the agent becomes critical. Newly nucleated domains are stable and the pattern formation is different from Turing's mechanism in monostable systems. Domains are spatially confined by the agent even if the activator and inhibitor molecules diffuse. With the spatial extension of the system, a larger domain may undergo a wave number instability, and the concentrations of active molecules within the neighboring elements of a domain can become sharply different. The mechanism reported in this work could be generic for pattern formation systems involving multistability, growth, and indirect coupling.

  19. Geochemical and isotopic investigation of the aquifer system in the Djerid-Nefzaoua basin, southern Tunisia

    NASA Astrophysics Data System (ADS)

    Kamel, Samir; Dassi, Lassaad; Zouari, Kamel; Abidi, Brahim

    2005-11-01

    In the Djerid-Nefzaoua region, southern Tunisia, about 80% of agricultural and domestic water supply is provided by the complex terminal (CT) aquifer. However, 20% of this demand is provided by other hydraulically connected aquifers, namely the continental intercalaire (CI) and the Plio-Quaternary (PQ). Overexploitation of the CT aquifer for agricultural practices has contributed to the loss of the artesian condition and the decline of groundwater level which largely increased the downward leakage from the shallow PQ aquifer. Excess irrigation water concentrates at different rates in the irrigation channels and in the PQ aquifer itself. Then, it returns to the CT aquifer and mixes with water from the regional flow system, which contributes to the salinization of the CT groundwater. A geochemical and isotopic study had been undertaken over a 2-years period in order to investigate the origin of waters pumped from the CT aquifer with an emphasis on its hydraulic relationships with the underlying and the overlying CI and PQ aquifers. Geochemistry indicates that groundwater samples collected from different wells show an evolution of the water types from Na-Cl to Ca-SO4-Cl. Dissolution of halite, gypsum and anhydrite-bearing rocks is the main mechanism that leads to the salinization of the groundwater. Isotopic data indicate the old origin of all groundwater in the aquifer system. Mixing and evaporation effects characterizing the CT and the PQ aquifers were identified using δ2H and δ18O relationship and confirmed by the conjunction of δ2H with chloride concentration.

  20. Antimatter Assisted Inertial Confinement Fusion Propulsion Systems for Interstellar Missions

    NASA Astrophysics Data System (ADS)

    Halyard, R. J.

    Current developments such as the Ion Compressed Antimatter Nuclear (ICAN-II) propulsion system proposed by the Pennsylvania State University Center for Space Propulsion Engineering open the way to the possible use of available supplies of antiprotons to power antimatter assisted inertial confinement fusion (AAICF) propulsion systems for interstellar missions. Analysis indicates that light weight AAICF propulsion systems with specific impulses in excess of seven hundred thousand seconds may be feasible within the next 30 years. AAICF should prove to be the optimum propulsion system since it possesses high thrust, low weight and high exhaust velocity. The purpose of this paper is to evaluate the potential of AAICF propulsion for interstellar missions such as NASA Administrator Dan Goldin's Alpha Centauri Flyby and a Barnard's Star Orbital Mission, and to compare these projections with previous performance estimates for ICF Laser Beam propulsion systems.

  1. Hydrostratigraphic modeling of a complex, glacial-drift aquifer system for importation into MODFLOW

    USGS Publications Warehouse

    Herzog, B.L.; Larson, D.R.; Abert, C.C.; Wilson, S.D.; Roadcap, G.S.

    2003-01-01

    Deposition from at least three episodes of glaciation left a complex glacial-drift aquifer system in central Illinois. The deepest and largest of these aquifers, the Sankoty-Mahomet Aquifer, occupies the lower part of a buried bedrock valley and supplies water to communities throughout central Illinois. Thin, discontinuous aquifers are present within glacial drift overlying the Sankoty-Mahomet Aquifer. This study was commissioned by local governments to identify possible areas where a regional water supply could be obtained from the aquifer with minimal adverse impacts on existing users. Geologic information from more than 2200 existing water well logs was supplemented with new data from 28 test borings, water level measurements in 430 wells, and 35 km of surface geophysical profiles. A three-dimensional (3-D) hydrostratigraphic model was developed using a contouring software package, a geographic information system (GIS), and the 3-D geologic modeling package, EarthVision??. The hydrostratigraphy of the glacial-drift sequence was depicted as seven uneven and discontinuous layers, which could be viewed from an infinite number of horizontal and vertical slices and as solid models of any layer. Several iterations were required before the 3-D model presented a reasonable depiction of the aquifer system. Layers from the resultant hydrostratigraphic model were imported into MODFLOW, where they were modified into continuous layers. This approach of developing a 3-D hydrostratigraphic model can be applied to other areas where complex aquifer systems are to be modeled and is also useful in helping lay audiences visualize aquifer systems.

  2. Hydrostratigraphic modeling of a complex, glacial-drift aquifer system for importation into MODFLOW.

    PubMed

    Herzog, Beverly L; Larson, David R; Abert, Curtis C; Wilson, Steven D; Roadcap, George S

    2003-01-01

    Deposition from at least three episodes of glaciation left a complex glacial-drift aquifer system in central Illinois. The deepest and largest of these aquifers, the Sankoty-Mahomet Aquifer, occupies the lower part of a buried bedrock valley and supplies water to communities throughout central Illinois. Thin, discontinuous aquifers are present within glacial drift overlying the Sankoty-Mahomet Aquifer. This study was commissioned by local governments to identify possible areas where a regional water supply could be obtained from the aquifer with minimal adverse impacts on existing users. Geologic information from more than 2,200 existing water well logs was supplemented with new data from 28 test borings, water level measurements in 430 wells, and 35 km of surface geophysical profiles. A three-dimensional (3-D) hydrostratigraphic model was developed using a contouring software package, a geographic information system (GIS), and the 3-D geologic modeling package, EarthVision. The hydrostratigraphy of the glacial-drift sequence was depicted as seven uneven and discontinuous layers, which could be viewed from an infinite number of horizontal and vertical slices and as solid models of any layer. Several iterations were required before the 3-D model presented a reasonable depiction of the aquifer system. Layers from the resultant hydrostratigraphic model were imported into MODFLOW, where they were modified into continuous layers. This approach of developing a 3-D hydrostratigraphic model can be applied to other areas where complex aquifer systems are to be modeled and is also useful in helping lay audiences visualize aquifer systems. PMID:12533076

  3. Approximate potentiometric surfaces for the aquifers of the Texas coastal uplands system, 1980

    USGS Publications Warehouse

    Garza, Sergio; Jones, B.D.; Baker, E.T.

    1987-01-01

    The National Water Commission recommended that the U.S. Geological Survey conduct intensive studies of the important regional aquifer systems in the United States, particularly those with declining water levels and deteriorating water quality.  The result has been a series of Regional Aquifer-System Analysis (RASA) studies, one of which is the West Gulf Coast RASA study (Grubb, 1984).  The West Gulf Coast RASA study, which began in 1982, is investigating several major regional aquifers mainly in parts of Missouri, Kentucky, and Tennessee.

  4. Hydrogeology, Water Quality, and Distribution and Sources of Salinity in the Floridan Aquifer System, Martin and St. Lucie Counties, Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2004-01-01

    The Floridan aquifer system is considered to be a valuable source for agricultural and municipal water supply in Martin and St. Lucie Counties, despite its brackish water. Increased withdrawals, however, could increase salinity and threaten the quality of withdrawn water. The Floridan aquifer system consists of limestone, dolomitic limestone, and dolomite and is divided into three hydrogeologic units: the Upper Floridan aquifer, a middle confining unit, and the Lower Floridan aquifer. An informal geologic unit at the top of the Upper Floridan aquifer, referred to as the basal Hawthorn/Suwannee unit, is bound above by a marker unit in the Hawthorn Group and at its base by the Ocala Limestone; a map of this unit shows an area where substantial eastward thickening begins near the coast. This change in thickness is used to divide the study area into inland and coastal areas. In the Upper Floridan aquifer, an area of elevated chloride concentration greater than 1,000 milligrams per liter and water temperature greater than 28 degrees Celsius exists in the inland area and trends northwest through north-central Martin County and western St. Lucie County. A structural feature coincides with this area of greater salinity and water temperature; this feature is marked by a previously mapped northwest-trending basement fault and, based on detailed mapping in this study of the structure at the top of the basal Hawthorn/Suwannee unit, an apparent southeast-trending trough. Higher hydraulic head also has been mapped in this northwest-trending area. Another area of high chloride concentration in the Upper Floridan aquifer occurs in the southern part of the coastal area (in eastern Martin County and northeastern Palm Beach County); chloride concentration in this area is more than 2,000 milligrams per liter and is as great as 8,000 milligrams per liter. A dissolved-solids concentration of less than 10,000 milligrams per liter defines the brackish-water zone in the Floridan aquifer

  5. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    SciTech Connect

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. )

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  6. Program status 1. quarter -- FY 1989: Confinement systems programs

    SciTech Connect

    1989-01-20

    Brief summaries are given for DIII-D Research Operations covering the following areas: beta and stability; confinement; boundary physics; electron cyclotron heating; ion Bernstein wave heating; current drive; tokamak operations; neutral beam operations; ECH operations; ICH operations; computer data systems; program development; and hardware development. The progress summaries on the International Cooperation task are given for the Tora Supra, HIDEX -- Nagoya Tokamak Experiment, ASDEX, JET, JFT-2M, CHS, and JT-60. Finally a brief summary of progress on the CIT physics task is given.

  7. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  8. Non-unique monopole oscillations of harmonically confined Yukawa systems

    NASA Astrophysics Data System (ADS)

    Ducatman, Samuel; Henning, Christian; Kaehlert, Hanno; Bonitz, Michael

    2008-11-01

    Recently it was shown that the Breathing Mode (BM), the mode of uniform radial expansion and contraction, which is well known from harmonically confined Coulomb systems [1], does not exist in general for other systems [2]. As a consequence the monopole oscillation (MO), the radial collective excitation, is not unique, but there are several MO with different frequencies. Within this work we show simulation results of those monopole oscillations of 2-dimensional harmonically confined Yukawa systems, which are known from, e.g., dusty plasma crystals [3,4]. We present the corresponding spectrum of the particle motion, including analysis of the frequencies found, and compare with theoretical investigations.[1] D.H.E. Dubin and J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)[2] C. Henning at al., accepted for publication in Phys. Rev. Lett. (2008)[3] A. Melzer et al., Phys. Rev. Lett. 87, 115002 (2001)[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)

  9. Quench dynamics in confined 1 + 1-dimensional systems

    NASA Astrophysics Data System (ADS)

    Engelhardt, Dalit

    2016-03-01

    We present a framework for investigating the response of conformally invariant confined 1 + 1-dimensional systems to a quantum quench. While conformal invariance is generally destroyed in a global quantum quench, systems that can be described as or mapped to integrable deformations of a CFT may present special instances where a conformal field theory-based analysis could provide useful insight into the non-equilibrium dynamics. We investigate this possibility by considering a quench analogous to that of the quantum Newton’s Cradle experiment (Kinoshita et al 2006 Nature 440 900) and demonstrating qualitative agreement between observables derived in the CFT framework and those of the experimental system. We propose that this agreement may be a feature of the proximity of the experimental system to an integrable deformation of a c = 1 CFT.

  10. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  11. Geochemistry of the Cambrian-Ordovician aquifer system in the northern midwest, United States

    SciTech Connect

    Siegel, D.I.

    1989-01-01

    The geochemistry of the Cambrian-Ordovician aquifer system was modified during the Pleistocene by large-scale emplacement of glacial meltwater, as indicated by large-scale emplacement of glacial meltwater, as indicated by the investigation of stable isotopes of water, and a plume of dilute water that trends perpendicular to the direction of ground-water flow in Iowa and Missouri. Ground water in this part of the aquifer system could be hundreds of thousands of years old.

  12. Thickness of the upper permeable zone of the Tertiary limestone aquifer system, southeastern United States

    USGS Publications Warehouse

    Miller, James A.

    1982-01-01

    The Tertiary limestone aquifer system of the southeastern United States is a thick sequence of carbonate rocks that vary in age and that are hydraulically connected in varying degrees. A map is presented that shows the thickness of the upper permeable zone of the aquifer system. Several types of geologic structures have had an effect on the thickness of the upper permeable zone. The magnitude of this effect varies with the type and size of the structure. (USGS)

  13. Characterization of flow dynamics and vulnerability in a coastal aquifer system.

    PubMed

    Murgulet, Dorina; Tick, Geoffrey R

    2013-01-01

    Traditional aquifer vulnerability techniques primarily rely on spatial property data for a region and are limited by their ability to directly or indirectly assess flow and transport processes occurring from the surface to depth within an aquifer system. The main objective of this study was to investigate groundwater vulnerability in terms of aquifer interconnectivity and flow dynamics. A combination of stable isotopes, groundwater age-dating (radiocarbon), and geomorphic/geogenic spatial analyses was applied to a regional, highly developed coastal aquifer to explain the presence of nitrate at depth. The average δ(13) C value (-17.3 ± 2‰ VPDB, n = 27) is characteristic of groundwater originating from locally infiltrated precipitation through extensively cultivated soils. The average δ(18) O and δD values (-4.0 ± 0.1‰ VSMOW, n = 27; δD: -19.3 ± 1‰ VSMOW, n = 27, respectively) are similar to precipitation water derived from maritime sources feeding the region's surface water and groundwater. Stable and radioactive isotopes reveal significant mixing between shallow and deep aquifers due to high velocities, hydraulic connection, and input of local recharge water to depths. Groundwater overdevelopment enhances deeper and faster modern water downward flux, amplifying aquifer vulnerability. Therefore, aquifer vulnerability is a variable, dependent on the type and degree of stress conditions experienced by a groundwater system as well as the geospatial properties at the near surface. PMID:23373963

  14. Hydrogeology and ground-water flow of the drift and Platteville aquifer system, St Louis Park, Minnesota

    USGS Publications Warehouse

    Lindgren, R.J.

    1995-01-01

    Model simulations indicate that vertical ground-water flow from the drift aquifers and from the Platteville aquifer to underlying bedrock aquifers is greatest through bedrock valleys. The convergence of flow paths near bedrock valleys and the greater volume of water moving through the valleys would likely result in both increased concentrations and greater vertical movement of contaminants in areas underlain by bedrock valleys as compared to areas not underlain by bedrock valleys. Model results also indicate that field measurements of hydraulic head might not help locate discontinuities in confining units and additional test drilling to locate discontinuities might be necessary.

  15. Environmental assessment of the potential effects of aquifer thermal energy storage systems on microorganisms in groundwater

    SciTech Connect

    Hicks, R.J.; Stewart, D.L.

    1988-03-01

    The primary objective of this study was to evaluate the potential environmental effects (both adverse and beneficials) of aquifer thermal energy storage (ATES) technology pertaining to microbial communities indigenous to subsurface environments (i.e., aquifers) and the propagation, movement, and potential release of pathogenic microorganisms (specifically, Legionella) within ATES systems. Seasonal storage of thermal energy in aquifers shows great promise to reduce peak demand; reduce electric utility load problems; contribute to establishing favorable economics for district heating and cooling systems; and reduce pollution from extraction, refining, and combustion of fossil fuels. However, concerns that the widespread implementation of this technology may have adverse effects on biological systems indigeneous to aquifers, as well as help to propagate and release pathogenic organisms that enter thee environments need to be resolved. 101 refs., 2 tabs.

  16. Interaction of various flow systems in small alpine catchments: conceptual model of the upper Gurk Valley aquifer, Carinthia, Austria

    NASA Astrophysics Data System (ADS)

    Hilberg, Sylke; Riepler, Franz

    2016-03-01

    Small alpine valleys usually show a heterogeneous hydraulic situation. Recurring landslides create temporal barriers for the surface runoff. As a result of these postglacial processes, temporal lakes form, and thus lacustrine fine-grained sedimentation intercalates with alluvial coarse-grained layers. A sequence of alluvial sediments (confined and thus well protected aquifers) and lacustrine sediments (aquitards) is characteristic for such an environment. The hydrogeological situation of fractured hard-rock aquifers in the framing mountain ranges is characterized by superficially high hydraulic conductivities as the result of tectonic processes, deglaciation and postglacial weathering. Fracture permeability and high hydraulic gradients in small-scaled alpine catchments result in the interaction of various flow systems in various kinds of aquifers. Spatial restrictions and conflicts between the current land use and the requirements of drinking-water protection represent a special challenge for water resource management in usually densely populated small alpine valleys. The presented case study describes hydrogeological investigations within the small alpine valley of the upper Gurktal (Upper Carinthia, Austria) and the adjacent Höllenberg Massif (1,772 m above sea level). Hydrogeological mapping, drilling, and hydrochemical and stable isotope analyses of springs and groundwater were conducted to identify a sustainable drinking-water supply for approximately 1,500 inhabitants. The results contribute to a conceptual hydrogeological model with three interacting flow systems. The local and the intermediate flow systems are assigned to the catchment of the Höllenberg Massif, whereas the regional flow system refers to the bordering Gurktal Alps to the north and provides an appropriate drinking water reservoir.

  17. Interaction of various flow systems in small alpine catchments: conceptual model of the upper Gurk Valley aquifer, Carinthia, Austria

    NASA Astrophysics Data System (ADS)

    Hilberg, Sylke; Riepler, Franz

    2016-08-01

    Small alpine valleys usually show a heterogeneous hydraulic situation. Recurring landslides create temporal barriers for the surface runoff. As a result of these postglacial processes, temporal lakes form, and thus lacustrine fine-grained sedimentation intercalates with alluvial coarse-grained layers. A sequence of alluvial sediments (confined and thus well protected aquifers) and lacustrine sediments (aquitards) is characteristic for such an environment. The hydrogeological situation of fractured hard-rock aquifers in the framing mountain ranges is characterized by superficially high hydraulic conductivities as the result of tectonic processes, deglaciation and postglacial weathering. Fracture permeability and high hydraulic gradients in small-scaled alpine catchments result in the interaction of various flow systems in various kinds of aquifers. Spatial restrictions and conflicts between the current land use and the requirements of drinking-water protection represent a special challenge for water resource management in usually densely populated small alpine valleys. The presented case study describes hydrogeological investigations within the small alpine valley of the upper Gurktal (Upper Carinthia, Austria) and the adjacent Höllenberg Massif (1,772 m above sea level). Hydrogeological mapping, drilling, and hydrochemical and stable isotope analyses of springs and groundwater were conducted to identify a sustainable drinking-water supply for approximately 1,500 inhabitants. The results contribute to a conceptual hydrogeological model with three interacting flow systems. The local and the intermediate flow systems are assigned to the catchment of the Höllenberg Massif, whereas the regional flow system refers to the bordering Gurktal Alps to the north and provides an appropriate drinking water reservoir.

  18. A reactive transport model for the geochemical response, detection and potential mitigation of CO2 leakage into a confined aquifer

    NASA Astrophysics Data System (ADS)

    Maher, K.; Druhan, J. L.; Vialle, S.; Benson, S. M.; Agarwal, A.

    2013-12-01

    Long-term storage of anthropogenic CO2 in the subsurface generally assumes that caprock formations will serve as physical barriers to upward migration of CO2. Stability and coherence of the caprocks are thus important criteria for site selection, but caprock integritycannot be guaranteed with total certainty over the lifetime of the project. As a result, carbon capture and storage projects require reliable techniques to monitor geologic storage sites for newly formed leaks, and the ability to rapidly deploy mitigation measures should leakage occur. Here, we present two-dimensional reactive transport simulations to evaluate the hydrogeochemical characteristics of a newly formed CO2 leak into an overlying reservoir. Simulations use the ToughReact multi-component reactive transport code and hypothetical reservoir characteristics. We focus on the comparatively short time period of days to months following formation of the leak to consider (1) geochemical shifts in formation water indicative of the leak, (2) hydrodynamics of pumping wells in the vicinity of the leak, and (3) delivery of a sealant to the leak through an adjacent well bore. Our results suggest that characteristic shifts in pH and dissolved inorganic carbon might be detected in down-gradient mentoring wells prior to the breakthrough of CO2, and could offer a potential means of identifying small and newly formed leaks. Injecting water into the aquifer through pumping wells in the vicinity of the leak provides a hydrodynamic control that can prevent CO2 from reaching the top of the reservoir, but this action will likely have only minor influence on the rate of leakage through the caprock defect. Injection of a hypothetical sealant through an adjacent pumping well is considered using an aqueous solute with pH-dependent equilibrium constraints such that the species is soluble in the basic pH range but forms a precipitate at neutral to acidic pH conditions associated with CO2-rich water. Injection of this

  19. Hydrogeologic framework and hydrologic budget components of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Kahle, S.C.; Morgan, D.S.; Welch, W.B.; Ely, D.M.; Hinkle, S.R.; Vaccaro, J.J.; Orzol, L.L.

    2011-01-01

    The Columbia Plateau Regional Aquifer System (CPRAS) covers an area of about 44,000 square miles in a structural and topographic basin within the drainage of the Columbia River in Washington, Oregon, and Idaho. The primary aquifers are basalts of the Columbia River Basalt Group (CRBG) and overlying sediment. Eighty percent of the groundwater use in the study area is for irrigation, in support of a $6 billion per year agricultural economy. Water-resources issues in the Columbia Plateau include competing agricultural, domestic, and environmental demands. Groundwater levels were measured in 470 wells in 1984 and 2009; water levels declined in 83 percent of the wells, and declines greater than 25 feet were measured in 29 percent of the wells. Conceptually, the system is a series of productive basalt aquifers consisting of permeable interflow zones separated by less permeable flow interiors; in places, sedimentary aquifers overly the basalts. The aquifer system of the CPRAS includes seven hydrogeologic units-the overburden aquifer, three aquifer units in the permeable basalt rock, two confining units, and a basement confining unit. The overburden aquifer includes alluvial and colluvial valley-fill deposits; the three basalt units are the Saddle Mountains, Wanapum, and Grande Ronde Basalts and their intercalated sediments. The confining units are equivalent to the Saddle Mountains-Wanapum and Wanapum-Grande Ronde interbeds, referred to in this study as the Mabton and Vantage Interbeds, respectively. The basement confining unit, referred to as Older Bedrock, consists of pre-CRBG rocks that generally have much lower permeabilities than the basalts and are considered the base of the regional flow system. Based on specific-capacity data, median horizontal hydraulic conductivity (Kh) values for the overburden, basalt units, and bedrock are 161, 70, and 6 feet per day, respectively. Analysis of oxygen isotopes in water and carbon isotopes in dissolved inorganic carbon from

  20. Digital model evaluation of the predevelopment flow system of the Tertiary limestone aquifer, Southeast Georgia, Northeast Florida, and South South Carolina

    USGS Publications Warehouse

    Krause, Richard E.

    1982-01-01

    A computer model using finite-difference techniques was used successfully to simulate the predevelopment flow regime within the multilayered Tertiary limestone aquifer system in Southeastern Georgia, Northeastern Florida, and Southern South Carolina as part of the U.S. Geological Survey 's Tertiary Limestone Regional Aquifer System analysis. The aquifer, of early Eocene to Miocene age, ranges from thin interbedded clastics and marl in the updip area to massive limestone and dolomite 1,500 feet thick in the downdip area. The aquifer is confined above by Miocene clay beds, and terminates at depth in low-permeability rocks or the saltwater interface. Model-simulated transmissivity of the upper permeable zone ranged from about 1 x 10 super 3 foot squared per day in the updip area and within parts of the Gulf Trough (a series of alinement basins filled by fine clastic in material) to about 1 x 10 super 6 foot squared per day in South Georgia, and area having large secondarily developed solution channels. The model results indicate that only about 540 cubic feet per second of water flowed through the predeveloped system, from the updip highland area of high altitude and in the areas north of Valdosta and southwest of Jacksonville, to discharge along streams in the updip area and diffuse upward leakage in the downdip area near the coast and offshore. (USGS)

  1. Bibliography on ground water in glacial-aquifer systems in the Northeastern United States

    USGS Publications Warehouse

    Wiltshire, Denise A.; Lyford, Forest P.; Cohen, A.J.

    1986-01-01

    The U.S. Geological Survey established the Regional Aquifer-System Analysis (RASA) program to evaluate major interconnected aquifers or groups of aquifers that share similar characteristics within a region. One of the objectives of the Northeastern Glacial RASA is to provide information on the occurrence and quality of ground water in glacial deposits in ten States: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, Ohio, Pennsylvania, and New Jersey. To help meet the objectives of the RASA program, an automated bibliographic data base was developed. The data base contains references to ground-water resources of glacial-aquifer systems in the ten States listed above. This bibliography contains more than 700 ground-water related references that date from 1839 through 1984. The bibliography lists books, journal articles, conference proceedings, government and other technical reports, theses, and maps. Unpublished manuscripts, publications in press, newspaper articles, and book reviews are omitted from the bibliography.

  2. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    USGS Publications Warehouse

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  3. Confinement-induced resonances in ultracold atom-ion systems

    NASA Astrophysics Data System (ADS)

    Melezhik, V. S.; Negretti, A.

    2016-08-01

    We investigate confinement-induced resonances in a system composed of a tightly trapped ion and a moving atom in a waveguide. We determine the conditions for the appearance of such resonances in a broad region—from the "long-wavelength" limit to the opposite case when the typical length scale of the atom-ion polarization potential essentially exceeds the transverse waveguide width. We find considerable dependence of the resonance position on the atomic mass which, however, disappears in the "long-wavelength and zero-energy" limit, where the known result for the confined atom-atom scattering is reproduced. We also derive an analytic and a semianalytic formula for the resonance position in the long-wavelength and zero-energy limit and we investigate numerically the dependence of the resonance condition on the finite atomic colliding energy. Our results, which can be investigated experimentally in the near future, could be used to determine the atom-ion scattering length, to determine the temperature of the atomic ensemble in the presence of an ion impurity, and to control the atom-phonon coupling in a linear ion crystal in interaction with a quasi-one-dimensional atomic quantum gas.

  4. Analytical solutions of tidal groundwater flow in coastal two-aquifer system

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Jiao, Jiu Jimmy

    This paper presents a complete analytical solution to describe tidal groundwater level fluctuations in a coastal subsurface system. The system consists of two aquifers and a leaky layer between them. Previous solutions of Jacob [Flow of groundwater, in: H. Rouse (Ed.), Engineering Hydraulics, Wiley, New York, 1950, pp. 321-386], Jiao and Tang [Water Resour. Res. 35 (3) (1999) 747], Li and Jiao [Adv. Water Resour. 24 (5) (2001a) 565], Li et al. [Water Resour. Res. 37 (2001) 1095] and Jeng et al. [Adv. Water Resour. (in press)] are special cases of the new solution. The present solution differs from previous work in that both the effects of the leaky layer's elastic storage and the tidal wave interference between the two aquifers are considered. If the upper and lower aquifers have the same storativities and transimissivities, the system can be simplified into an equivalent double-layered, aquifer-aquitard system bounded by impermeable layers from up and down. It is found that the leaky layer's elastic storage behaves as a buffer to the tidal wave interference between the two aquifers. The buffer capacity increases with the leaky layer's thickness, specific storage, and decreases with the leaky layer's vertical permeability. Great buffer capacity can result in negligible tidal wave interference between the upper and lower aquifers so that the Li and Jiao (loc. cit.) solution applies.

  5. The Sparta Aquifer: A Sustainable Water Resource?

    USGS Publications Warehouse

    McKee, Paul W.; Hays, Phillip D.

    2002-01-01

    Introduction The Sparta aquifer is an aquifer of regional importance within the Mississippi embayment aquifer system. It consists of varying amounts of unconsolidated sand, inter-stratified with silt and clay lenses within the Sparta Sand of the Claiborne Group. It extends from south Texas, north into Louisiana, Arkansas, and Tennessee, and eastward into Mississippi and Alabama (fig. 1). On both the west and east sides of the Mississippi embayment, the Sparta aquifer is exposed at the surface (outcrops) and is locally unconfined; it becomes confined as it dips toward the axis of the embayment, (generally corresponding with the Mississippi River) and southward toward the Gulf of Mexico where it is deeply buried in the subsurface (Hosman, 1968). Generalized ground-water flow in the Sparta aquifer is from the outcrop areas to the axis (center) of the embayment (fig. 2). In Arkansas, the Sparta aquifer outcrops parallel to the Fall Line at the western extreme of the Mississippi embayment (the Fall Line is a line dividing the mountainous highlands of Arkansas from the lowland area); and the formation dips from its outcrop area to the southeast. The Sparta aquifer supplies water for municipalities, industries such as paper production, and to a lesser degree, irrigation of agricultural crops (fig. 3). This report highlights hydrologic conditions of the aquifer in Arkansas County as an example of how water use is affecting water levels.

  6. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    USGS Publications Warehouse

    Katz, B.G.; Bullen, M.P.; Bullen, T.D.; Hansard, Paul

    1999-01-01

    Concentrations of total lead (Pb) and dissolved Pb exceeded the U.S. Environmental Protection Agency action level of 15 micrograms per liter (mg/L) in approximately 19 percent and 1.3 percent, respectively, of ground-water samples collected during 1991-96 from a statewide network of monitoring wells designed to delineate background water quality of Florida's major aquifer systems. Differences in total Pb concentrations among aquifer systems reflect the combined influence of anthropogenic sources and chemical conditions in each system. A highly significant (p<0.001) difference in median total Pb concentrations was found for water samples from wells with water-level recording devices that contain Pb-counterweights (14 mg/L) compared to non-recorder wells (2 mg/L). Differences between total Pb concentrations for recorder and non-recorder wells are even more pronounced when compared for each aquifer system. The largest differences for recorder status are found for the surficial aquifer system, where median total Pb concentrations are 44 and 2.4 mg/L for recorder wells and non-recorder wells, respectively. Leaching of Pb from metal casing materials is another potential source of Pb in ground water samples. Median total Pb concentrations in water samples from the surficial, intermediate, and Floridan aquifer systems are higher from recorder wells cased with black iron than for recorder wells with steel and PVC casing material. Stable isotopes of Pb were used in this study to distinguish between anthropogenic and natural sources of Pb in ground water, as Pb retains the isotopic signature of the source from which it is derived. Based on similarities between slopes and intercepts of trend lines for various sample types (plots of 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb versus 208Pb/204Pb) the predominant source of total Pb in water samples from the surficial aquifer system is corrosion of Pb counterweights. It is likely that only ground-water samples, not the aquifer

  7. Framework for regional synthesis of water-quality data for the glacial aquifer system in the United States

    USGS Publications Warehouse

    Warner, Kelly L.; Arnold, Terri L.

    2005-01-01

    The glacial aquifer system is the largest principal aquifer in aerial extent and ground-water use for public supply in the United States. A principal aquifer is defined as a regionally extensive aquifer or aquifer system that has the potential to be used as a source of potable water (U.S. Geological Survey, 2003). Multiple aquifers often are grouped into large, extensive aquifer systems such as the glacial aquifer system. The glacial aquifer system is considered here to include all unconsolidated aquifers above bedrock north of the line of continental glaciation throughout the country (fig. 1). Total withdrawals from the glacial aquifer system were 3,560 million gallons per day in 2000, which constitutes almost 5 percent of total withdrawals from all aquifers in the United States (Maupin and Barber, 2005). Approximately 41 million people relied on the glacial aquifer for public supply and domestic use in 2000. The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program began assessing the glacial aquifer system in 1991. The assessment of water-quality data on a regional scale, such as the glacial aquifer system, is coincident with the regional framework established by the Regional Aquifer-System Analysis Program (RASA) (Sun and others, 1997). From 1978 to 1995, the RASA Program systematically evaluated 25 of the Nation's most important groundwater systems including studies in the glacial aquifer system in the northeast, Midwest, and northern Midwest United States. The NAWQA Program is building on the work of the RASA Program to study the water quality of 16 of the most important ground-water systems (Lapham and others, 2005). Over 1,700 water-quality samples have been collected by the NAWQA Program from 1991 to 2004 to assess the glacial aquifer system. This large data set is unique in that the samples have been collected using a consistent sampling protocol, and multiple nested samples. The nested samples address the recently recharged shallow

  8. Descriptive analysis of aquifer thermal energy storage systems

    SciTech Connect

    Reilly, R.W.

    1980-06-01

    The technical and economic feasibility of large-scale aquifer thermal energy storage (ATES) was examined. A key to ATESs attractiveness is its simplicity of design and construction. The storage device consists of two ordinary water wells drilled into an aquifer, connected at the surface by piping and a heat exchanger. During the storage cycle water is pumped out of the aquifer, through the heat exchanger to absorb thermal energy, and then back down into the aquifer through the second well. The thermal storage remains in the aquifer storage bubble until required for use, when it is recovered by reversing the storage operation. For many applications the installation can probably be designed and constructed using existing site-specific information and modern well-drilling techniques. The potential for cost-effective implementation of ATES was investigated in the Twin Cities District Heating-Cogeneration Study in Minnesota. In the study, ATES demonstrated a net energy saving of 32% over the nonstorage scenario, with an annual energy cost saving of $31 million. Discounting these savings over the life of the project, the authors found that the break-even capital cost for ATES construction was $76/kW thermal, far above the estimated ATES development cost of $23 to 50/kW thermal. It appears tht ATES can be highly cost effective as well as achieve substantial fuel savings. ATES would be environmentally beneficial and could be used in many parts of the USA. The existing body of information on ATES indicates that it is a cost-effective, fuel-conserving technique for providing thermal energy for residential, commercial, and industrial users. The negative aspects are minor and highly site-specific, and do not seem to pose a threat to widespread commercialization. With a suitable institutional framework, ATES promises to supply a substantial portion of the nation's future energy needs. (LCL)

  9. Role of Groundwater Aquifers in the Climate System

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A.; Yeh, P. J.

    2005-12-01

    The dynamic nature of groundwater storage has close linkage to land surface/vegetation/atmospheric processes, and thus weather and climate. However, the importance of groundwater as a hydrological and climatological variable has long been overlooked by the land surface modeling community. The availability of a multi-year comprehensive hydroclimatic dataset in Illinois has facilitated the characterization of the regional-scale hydroclimatology in Illinois by using the soil and atmospheric water balance approaches to quantify various water balance components including groundwater storage change. Based on the findings of the study, the roles that the regional-scale shallow unconfined aquifers play in the regional hydroclimatology can be summarized as follows: (1) Groundwater storage is a major water balance component whose storage change is as important as that of soil moisture at monthly or longer time scale. (2) The regional water table depth variation is highly correlated with streamflow in a strong nonlinear manner and explains 2/3 of the streamflow variance. (3) The unconfined aquifer amplifies the drought climatic anomalies and dissipates the flood anomalies, which results in the observed asymmetric response of the aquifers to the droughts and floods. (4) The unconfined aquifer supplies water to replenish the root-zone soil moisture, which helps maintain the observed high rate of summer evapotranspiration (~120 mm/month) in Illinois. The lessons learned from the Illinois study indicate that the storage change of the unconfined aquifer is comparable to that of soil moisture at the monthly and annual time scales, thus the representation of groundwater dynamics in land surface models (LSMs) is indispensable.

  10. Multiple-aquifer characterization from single borehole extensometer records.

    PubMed

    Pope, Jason P; Burbey, Thomas J

    2004-01-01

    Measurement and analysis of aquifer-system compaction have been used to characterize aquifer and confining unit properties when other techniques such as flow modeling have been ineffective at adequately quantifying storage properties or matching historical water levels in environments experiencing land subsidence. In the southeastern coastal plain of Virginia, high-sensitivity borehole pipe extensometers were used to measure 24.2 mm of total compaction at Franklin from 1979 through 1995 (1.5 mm/year) and 50.2 mm of total compaction at Suffolk from 1982 through 1995 (3.7 mm/year). Analysis of the extensometer data reveals that the small rates of aquifer-system compaction appear to be correlated with withdrawals of water from confined aquifers. One-dimensional vertical compaction modeling indicates measured compaction is the result of nonrecoverable hydrodynamic consolidation of the fine-grained confining units and interbeds, as well as recoverable compaction and expansion of coarse-grained aquifer units. The calibrated modeling results indicate that nonrecoverable specific storage values decrease with depth and range from 1.5 x 10(-5)/m for aquifer units to 1.5 x 10(-4)/m for confining units and interbeds. The aquifer and Potomac system recoverable specific storage values were all estimated to be 4.5 x 10(-6)/m, while the confining units and interbeds had values of 6.0 x 10(-6)/m. The calibrated vertical hydraulic conductivity values of the confining units and interbeds ranged from 6.6 x 10(-4) m/year to 2.0 x 10(-3) m/year. These parameter values will be useful in future management and modeling of ground water in the Virginia Coastal Plain. PMID:14763616

  11. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    SciTech Connect

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.; Macdonald, Q.C.; Schubert, S.E.

    1994-11-01

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changes in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.

  12. Pattern Transitions in Bacterial Oscillating System under Nanofluidic Confinement

    NASA Astrophysics Data System (ADS)

    Shen, Jie-Pan; Chou, Chia-Fu

    2011-03-01

    Successful binary fission in E. coli relies on remarkable oscillatory behavior of the MinCDE protein system to determine the exact division site. The most favorable models to explain this fascinating spatiotemporal regulation on dynamic MinDE pattern formation in cells are based on reaction-diffusion scenario. Although not fully understood, geometric factors caused by bacterial morphology play a crucial role in MinDE dynamics. In the present study, bacteria were cultured, confined and reshaped in various micro/nanofluidic devices, to mimic either curvature changes of cell peripherals. Fluorescence imaging was utilized to detail the mode transitions in multiple MinDE patterns. The understanding of the physics in multiple pattern formations is further complemented via in silico modeling. The study synergizes the join merits of in vivo, in vitro and in silico approaches, to grasp the insight of stochastic dynamics inherited from the noisy mesoscopic biophysics. We acknowledge support from the Foresight Project, Academia Sinica.

  13. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004

    USGS Publications Warehouse

    Welch, Heather L.; Kingsbury, James A.; Tollett, Roland W.; Seanor, Ronald C.

    2009-01-01

    The Mississippi embayment-Texas coastal uplands aquifer system is an important source of drinking water, providing about 724 million gallons per day to about 8.9 million people in Texas, Louisiana, Mississippi, Arkansas, Missouri, Tennessee, Kentucky, Illinois, and Alabama. The Mississippi River Valley alluvial aquifer ranks third in the Nation for total withdrawals of which more than 98 percent is used for irrigation. From 1994 through 2004, water-quality samples were collected from 169 domestic, monitoring, irrigation, and public-supply wells in the Mississippi embayment-Texas coastal uplands aquifer system and the Mississippi River Valley alluvial aquifer in various land-use settings and of varying well capacities as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Groundwater samples were analyzed for physical properties and about 200 water-quality constituents, including total dissolved solids, major inorganic ions, trace elements, radon, nutrients, dissolved organic carbon, pesticides, pesticide degradates, and volatile organic compounds. The occurrence of nutrients and pesticides differed among four groups of the 114 shallow wells (less than or equal to 200 feet deep) in the study area. Tritium concentrations in samples from the Holocene alluvium, Pleistocene valley trains, and shallow Tertiary wells indicated a smaller component of recent groundwater than samples from the Pleistocene terrace deposits. Although the amount of agricultural land overlying the Mississippi River Valley alluvial aquifer was considerably greater than areas overlying parts of the shallow Tertiary and Pleistocene terrace deposits wells, nitrate was rarely detected and the number of pesticides detected was lower than other shallow wells. Nearly all samples from the Holocene alluvium and Pleistocene valley trains were anoxic, and the reducing conditions in these aquifers likely result in denitrification of nitrate. In contrast, most samples from the

  14. Response to Comment by H. Lough, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, on the Paper " Stream Depletion Predictions using Pumping Test Data from A Heterogeneous Stream-Aquifer System (A Case Study from the Gr

    SciTech Connect

    Kollet, S J; Zlotnik, V A

    2004-12-20

    We thank H. Lough for her interest in our data set and the attempt to re-analyze our results (Kollet and Zlotnik, 2003) using the recent model by Hunt (2003). We welcome others to share our unique data set of the pumping test from the Prairie Creek site, Nebraska, USA. Nevertheless we believe that this particular attempt failed, because H. Lough selected a wrong model of semi-confined aquifer conditions for the interpretation of the pumping test data, which was collected in an unconfined aquifer. H. Lough based her selection on the three distinct drawdown segments observed during the test. It is well known that geologically distinct aquifers can yield a three-segment drawdown response under pumping conditions (e.g., Streltsova, 1988). Examples include unconfined aquifers (e.g., Neuman, 1972; Moench, 1997), aquifers with double porosity or fractures (e.g., Barenblatt et al., 1960; Boulton and Streltsova-Adams, 1978), and (semi-) confined aquifers in contact with aquitards (e.g. Cooley and Case, 1973; Moench, 1985). At the Prairie Creek site the aquifer is unconfined. The interpretation of the pumping test data collected at the site using type curves that are valid for an aquifer-aquitard system is a mistake. In fact, this approach illustrates a typical problem associated with inverse modeling: drastically different models can closely reproduce a system response and yield some parameter estimates, although the models do not represent the real system adequately. Here, the improper model yields some parameter estimates for an aquitard, although the aquitard does not exist at the Prairie Creek test site. We must also unequivocally state that the model by Hunt (2003) is clearly formulated and correct for stream-aquifer-aquitard systems within the stated limitations (pumping wells screened only in the lowest stratigraphic layer, etc.). However, the Hunt (1999) or BZT (Butler et al., 2001) models should be used for interpreting pumping tests near streams in non

  15. Observation of a Distinct Transition in Transport Response to Injection Stress in the Floridan Aquifer System, Southeastern Florida, U.S.A

    NASA Astrophysics Data System (ADS)

    King, J. N.; Cunningham, K. J.; Foster, A. L.

    2011-12-01

    The Miami-Dade Water and Sewer Department (MDWASD) injects effluent approximately one km below land surface into the Boulder Zone (BZ) at the North District Wastewater Treatment Plant (NDWWTP). The BZ is highly conductive and composed of fractured dolomite. MDWASD monitors upward effluent migration 450 m below land surface in the Avon Park Permeable Zone (APPZ). The BZ and APPZ---units within the Floridan aquifer system---are separated by a series of inter-bedded aquifers and leaky confining units with hydraulic conductivities that are orders of magnitude smaller than the BZ. MDWASD injected effluent at the NDWWTP during two distinct periods: (1) July 1997 to September 1999, and (2) August 2004 to January 2011. No effluent was injected between October 1999 and July 2004. A few months after the July 1997 injection, MDWASD observed effluent constituents in the APPZ (Figure 1). Some confinement bypass feature permits effluent constituents to be transported from the BZ to the APPZ. Bypass features may include poorly-cased wells, or natural conduits such as fractures, faults, or karst collapse systems. It is possible to describe confinement bypass features with conductance KA/L, where K is hydraulic conductivity, A is cross-sectional area, and L is length. MDWASD observed a distinct transition in the transport response to injection stress of total dissolved solids (TDS) concentration in the APPZ. The conductance required to describe early system response (1997-1999) is one order-of-magnitude larger than the conductance required to describe late system response (2004-2011). Hypotheses to explain transient conductance include clogging of bypass features by some geochemical or biological process that results from the mixing of effluent with groundwater; dissolution or precipitation; or changes in bypass-feature geometry forced by cyclical changes in aquifer-fluid pressure associated with injection. Hypotheses may be tested with geochemical analyses, tracer tests, hydraulic

  16. Dynamical Density Functional Theory and Hydrodynamic Interactions in Confined Systems

    NASA Astrophysics Data System (ADS)

    Goddard, Benjamin; Kalliadasis, Serafim; Nold, Andreas

    Colloidal systems consist of nano-micrometer sized particles suspended in a bath of many more, much smaller and much lighter particles. When the colloidal particles move through the bath, e.g. when driven by external forces such as gravity, flows are induced in the bath. These flows in turn impart forces on the colloid particles. These bath-mediated forces, known as Hydrodynamic Interactions (HI) strongly influence the dynamics of the colloid particles. This is particularly true in confined systems, in which the presence of walls substantially modifies the HI compared to unbounded geometries. For many-particle systems, the number of degrees of freedom prohibit a direct solution of the underlying stochastic equations and a reduced model is necessary. We model such systems through Dynamical Density Functional Theory (DDFT), the computational complexity of which is independent of the number of particles. We include both inter-particle and particle-wall HI, demonstrating both their combined and relative effects. Funded by EPSRC Grant No. EP/L025159/1.

  17. Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh

    2016-04-01

    Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.

  18. Relation between sedimentary framework and hydrogeology in the Guarani Aquifer System in São Paulo state, Brazil

    NASA Astrophysics Data System (ADS)

    Hirata, Ricardo; Gesicki, Ana; Sracek, Ondra; Bertolo, Reginaldo; Giannini, Paulo César; Aravena, Ramón

    2011-04-01

    This paper presents the results of a new investigation of the Guarani Aquifer System (SAG) in São Paulo state. New data were acquired about sedimentary framework, flow pattern, and hydrogeochemistry. The flow direction in the north of the state is towards the southwest and not towards the west as expected previously. This is linked to the absence of SAG outcrop in the northeast of São Paulo state. Both the underlying Pirambóia Formation and the overlying Botucatu Formation possess high porosity (18.9% and 19.5%, respectively), which was not modified significantly by diagenetic changes. Investigation of sediments confirmed a zone of chalcedony cement close to the SAG outcrop and a zone of calcite cement in the deep confined zone. The main events in the SAG post-sedimentary history were: (1) adhesion of ferrugineous coatings on grains, (2) infiltration of clays in eodiagenetic stage, (3) regeneration of coatings with formation of smectites, (4) authigenic overgrowth of quartz and K-feldspar in advanced eodiagenetic stage, (5) bitumen cementation of Pirambóia Formation in mesodiagenetic stage, (6) cementation by calcite in mesodiagenetic and telodiagenetic stages in Pirambóia Formation, (7) formation of secondary porosity by dissolution of unstable minerals after appearance of hydraulic gradient and penetration of the meteoric water caused by the uplift of the Serra do Mar coastal range in the Late Cretaceous, (8) authigenesis of kaolinite and amorphous silica in unconfined zone of the SAG and cation exchange coupled with the dissolution of calcite at the transition between unconfined and confined zone, and (9) authigenesis of analcime in the confined SAG zone. The last two processes are still under operation. The deep zone of the SAG comprises an alkaline pH, Na-HCO 3 groundwater type with old water and enriched δ 13C values (<-3.9), which evolved from a neutral pH, Ca-HCO 3 groundwater type with young water and depleted δ 13C values (>-18.8) close to the SAG

  19. Geology and configuration of the top of the Tertiary limestone aquifer system, southeastern United States

    USGS Publications Warehouse

    Miller, James A.

    1982-01-01

    The Tertiary limestone aquifer system of the southeastern United States is a thick sequence of carbonate rocks that vary in age and that are hydraulically connected in varying degrees. A map is presented that shows the altitude and configuration of the top of the aquifer system, as well as the extent of the youngest rock that is judged to be part of the system. Several types of geologic structures that affect the configuration of the top of the system may be readily recognized. (USGS)

  20. Geology and configuration of the base of the Tertiary limestone aquifer system, southeastern United States

    USGS Publications Warehouse

    Miller, James A.

    1982-01-01

    The Tertiary limestone aquifer system of the southeastern United States is a thick sequence of carbonate rocks that vary in age land that are hydraulically connected in varying degrees. A map is presented that shows at the altitude and configuration of base of the aquifer system. The age and lithology of the different low-permeability materials that mark the base of the system are delineated and briefly described. Several types of geologic structures that affect the configuration of the base of the system may be readily recognized. (USGS)

  1. Digital Elevations and Extents of Regional Hydrogeologic Units in the Northern Atlantic Coastal Plain Aquifer System From Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Pope, Jason P.; David C. Andreasen; Mcfarland, E. Randolph; Watt, Martha K.

    2016-01-01

    Digital geospatial datasets of the extents and top elevations of the regional hydrogeologic units of the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina were developed to provide an updated hydrogeologic framework to support analysis of groundwater resources. The 19 regional hydrogeologic units were delineated by elevation grids and extent polygons for 20 layers: the land and bathymetric surface at the top of the unconfined surficial aquifer, the upper surfaces of 9 confined aquifers and 9 confining units, and the bedrock surface that defines the base of all Northern Atlantic Coastal Plain sediments. The delineation of the regional hydrogeologic units relied on the interpretive work from source reports for New York, New Jersey, Delaware and Maryland, Virginia, and North Carolina rather than from re-analysis of fundamental hydrogeologic data. This model of regional hydrogeologic unit geometries represents interpolation, extrapolation, and generalization of the earlier interpretive work. Regional units were constructed from available digital data layers from the source studies in order to extend units consistently across political boundaries and approximate units in offshore areas.Though many of the Northern Atlantic Coastal Plain hydrogeologic units may extend eastward as far as the edge of the Atlantic Continental Shelf, the modeled boundaries of all regional hydrogeologic units in this study were clipped to an area approximately defined by the furthest offshore extent of fresh to brackish water in any part of the aquifer system, as indicated by chloride concentrations of 10,000 milligrams per liter. Elevations and extents of units that do not exist onshore in Long Island, New York, were not included north of New Jersey. Hydrogeologic units in North Carolina were included primarily to provide continuity across the Virginia-North Carolina State boundary, which was important for defining the southern edge of

  2. Groundwater processes, sandplain seeps and interactions with regional aquifer systems in South-Western Australia

    NASA Astrophysics Data System (ADS)

    George, Richard J.

    1992-06-01

    Groundwater systems were studied in the 4200 ha East Belka catchment in a dryland farming area 300 km east of Perth, W.A., to determine the cause of sandplain seeps. Detailed investigations were carried out on a 200 ha hillslope to determine the characteristics of a shallow aquifer system responsible for the salinization of previously productive agricultural soils. The impact of the shallow aquifer on the regional system was investigated. A shallow (less than 8 m), perched, perennial aquifer was encountered in the deep sandplain materials. Groundwater discharge of about 1000 kl year -1 from the perched aquifer maintained saline soils across a 5 ha sandplain seep. Perching is due to the decreased permeability, geometry and silicification of the top of the mottled and pallid zones, and the convergence of perched ground waters near the seep. Slug test measurements suggest that the sandplain soils have a relatively low hydraulic conductivity (0.15 m day -1). Water qualities in the perched aquifer ranged from brackish to saline (3000-8000 mg l -1 TDS), peaking in the salt-affected area (12 000 mg l -1 TDS). High nitrate and Cl/Br ratios occur in the shallow aquifer and in the regional ground water beneath the sandplain seep. Recharge to the deep aquifer takes place throughout the catchment, but is greatest beneath the sandplain seep, where a perennial groundwater mound occurs. Recharge to the regional aquifer was estimated to be 6 to 15 mm year -1, increasing to between 20 and 60 mm year -1 beneath the seep. By contrast, less than 0.3 mm year -1 is able to leave the catchment as regional groundwater flow. Water-levels in the deep bores are consequently rising by 0.05 to 0.25 m year -1. Recharge to the deep aquifer beneath the seep, and low groundwater gradients, create the potential for groundwater flow to take place beneath the topographic divide and towards the adjoining catchment. However, as the vertical flux to the aquifer is two orders of magnitude greater than

  3. Apparent chlorofluorocarbon age of ground water of the shallow aquifer system, Naval Weapons Station Yorktown, Yorktown, Virginia

    USGS Publications Warehouse

    Nelms, David L.; Harlow,, George E., Jr.; Brockman, Allen R.

    2001-01-01

    Apparent ages of ground water are useful in the analysis of various components of flow systems, and results of this analysis can be incorporated into investigations of potential pathways of contaminant transport. This report presents the results of a study in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Naval Weapons Station Yorktown, Base Civil Engineer, Environmental Directorate, to describe the apparent age of ground water of the shallow aquifer system at the Station. Chlorofluorocarbons (CFCs), tritium (3H), dissolved gases, stable isotopes, and water-quality field properties were measured in samples from 14 wells and 16 springs on the Station in March 1997. Nitrogen-argon recharge temperatures range from 5.9?C to 17.3?C with a median temperature of 10.9?C, which indicates that ground-water recharge predominantly occurs in the cold months of the year. Concentrations of excess air vary depending upon geohydrologic setting (recharge and discharge areas). Apparent ground-water ages using a CFC-based dating technique range from 1 to 48 years with a median age of 10 years. The oldest apparent CFC ages occur in the upper parts of the Yorktown-Eastover aquifer, whereas the youngest apparent ages occur in the Columbia aquifer and the upper parts of the discharge area setting, especially springs. The vertical distribution of apparent CFC ages indicates that groundwater movement between aquifers is somewhat retarded by the leaky confining units, but the elapsed time is relatively short (generally less than 35 years), as evidenced by the presence of CFCs at depth. The identification of binary mixtures by CFC-based dating indicates that convergence of flow lines occurs not only at the actual point of discharge, but also in the subsurface. The CFC-based recharge dates are consistent with expected 3H concentrations measured in the water samples from the Station. The concentration of 3H in ground water ranges from below the USGS laboratory minimum

  4. Carbon-14 age and chemical evolution of Ca(HCO3)2-type groundwater of age less than 8,000 years in a confined sandy and muddy Pleistocene aquifer, Japan

    NASA Astrophysics Data System (ADS)

    Machida, Isao; Suzuki, Yohey; Takeuchi, Mio

    2013-09-01

    The Pleistocene Kimitsu aquifer was selected for examination of the relationship between groundwater age and chemical evolution of Ca(HCO3)2-type groundwater. For the most part, the aquifer is confined and composed mainly of quartz and feldspar with a small amount of calcite. The groundwater ages calculated by 14C were adjusted by using a carbon mass-balance method and corrected for effects of 14C diffusion. Groundwater ages in the Kimitsu aquifer vary from modern (upgradient) to approximately 2,400 years at 4.4 km from the edge of the recharge area. The 14C age was verified by groundwater velocity calculated from the hydraulic gradient and hydraulic conductivity. The confined groundwater evolved to Ca(HCO3)2-type around 50 years after recharge and this has been maintained for more than 8,300 years due to low chemical reactivity, derived from equilibrium with calcite, kaolinite and Ca-montmorillonite. In addition, high pH prevents the dissolution of Fe and Mn. Consequently, the rate of increase in electrical conductivity ranges from 10 to 30 μS/cm per 1,000 years. On the other hand, leakage from the deep region, which is recognized from high Cl- levels, causes remarkable increases in CH4 and HCO3 - concentrations, resulting in an apparent sulfidic zone at 500-m depth in most downgradient regions.

  5. Analysis of the remediation of a contaminated aquifer by a multi-well system. Research report

    SciTech Connect

    Wang, J.C.; Booker, J.R.; Carter, J.P.

    1998-10-01

    This paper presents a study of the remediation of a contaminated aquifer of uniform thickness by multi-well systems, which include both discharge wells and recharge wells. These investigations show that an appropriately designed pump and treat system (PAT) can have a significant effect on the decontamination of a polluted aquifer and can preclude the further spreading of a contaminant plume. However, if the system is not designed appropriately, it may cause a further serious spreading of the contamination. This possibility is illustrated by the examples presented in the paper, which highlight the need for care in the design of remediation strategies.

  6. Digital computer simulation model of the Englishtown aquifer in the northern coastal plain of New Jersey

    USGS Publications Warehouse

    Nichols, W.D.

    1977-01-01

    Continued decline of water levels in the Englishtown aquifer, in New Jersey, has caused considerable concern regarding the ability of the aquifer to meet future yield demands. A detailed study of the capability of the aquifer to yield water entailed the use of a digital computer simulation model to evaluate aquifer and confining layer coefficients and to test alternative concepts of the hydrodynamics of the flow system. The modeled area includes about 750 square miles of the northern Coastal Plain of New Jersey and encompasses all the major centers of pumping from the Englishtown aquifer. The simulation model was calibrated by matching computed declines with historical water-level declines over the 12-year period, 1959-70. The volume of transient and steady leakage into the Englishtown aquifer from and through the adjacent confining layers equaled more than 90 percent of the total volume of water withdrawn from the aquifer between 1959 and 1970. The analytical estimate of transient leakage indicates that about 60 percent of the water withdrawn from the Englishtown between 1959 and 1970 was replaced by water released from storage in the adjacent confining beds. An additional 34 percent of the withdrawal over this time period was supported by steady leakage through the overlying confining bed from the Mount Laurel aquifer. Of the more than 30 billion gallons withdrawn from the aquifer over the 12-year period, about 2 billion gallons were obtained from storage in the aquifer. The values of aquifer and confining-layer coefficients used in the model are nearly the same as the average values obtained from field and laboratory data. (Woodard-USGS)

  7. Experiments on Plasma Injection into a Centrifugally Confined System

    NASA Astrophysics Data System (ADS)

    Messer, S.; Bomgardner, R.; Brockington, S.; Case, A.; Witherspoon, F. D.; Uzun-Kaymak, I.; Elton, R.; Young, W.; Teodorescu, C.; Morales, C. H.; Ellis, R. F.

    2009-11-01

    We describe the cross-field injection of plasma into a centrifugally-confined system. Two different types of plasma railgun have been installed on the Maryland Centrifugal Experiment (MCX) in an attempt to drive that plasma's rotation. The initial gun was a coaxial device designed to mitigate the blowby instability. The second one was a MiniRailgun with a rectangular bore oriented so that the MCX magnetic field augments the railgun's internal magnetic field. Tests at HyperV indicate this MiniRailgun reaches much higher densities than the original gun, although muzzle velocity is slightly reduced. We discuss the impact of these guns on MCX for various conditions. Initial results show that even for a 2 kG field, firing the MiniRailgun modifies oscillations of the MCX diamagnetic loops and can impact the core current and voltage. The gun also has a noticeable impact on MCX microwave emissions. These observations suggest plasma enters the MCX system. We also compare diagnostic data collected separately from MCX for these and other guns, focussing primarily on magnetic measurements.

  8. Plan of study for the Ohio-Indiana carbonate-bedrock and glacial- aquifer system

    USGS Publications Warehouse

    Bugliosi, E.F.

    1990-01-01

    The major aquifers of 35,000 sq mi area in western Ohio and eastern Indiana consist of Silurian and Devonian carbonate bedrock and Quaternary glacial deposits. These bedrock units and glacial deposits have been designated for study as part of the U.S. Geological Survey 's Regional Aquifer System Analysis program, a nationwide program to assess the regional hydrology, geology and water quality of the Nation 's most important aquifers. The purpose of the study is to define the hydrology, geochemistry, and geologic framework of the aquifer system within the Silurian and Devonian rocks and glacial deposits, with emphasis on describing the groundwater flow patterns and characterizing the water quality. The study, which began in 1988 , is expected to be completed in 1993. In 1980, the aquifers in the study area supplied more than 280 million gallons of water/day to industry, agriculture, and a population of more than 6.3 million people. With a projected future population growth to 7.1 million in 1990, and with intensified agricultural and industrial uses, water withdrawals from these bedrock and glacial aquifers are expected to be increased. The most significant groundwater problems in the study area result from the pronounced areal differences in availability and quality of the groundwater. These differences are related to the lateral discontinuity of many of the glacial deposits and to variations in secondary permeability of the bedrock aquifers associated with patterns of fracturing. Planned activities of the study include compilation of available geohydrologic and water quality data, such as groundwater levels, geohydrologic properties of aquifers, chemical analyses, land use and water use data, and ancillary data such as digital satellite images. Additional geohydrologic and water quality data may be collected from existing wells or wells that may be drilled for this study. A computerized, geographic information system will be used as a data base management tool and

  9. Detailed performance and environmental monitoring of aquifer heating and cooling systems

    NASA Astrophysics Data System (ADS)

    Acuna, José; Ahlkrona, Malva; Zandin, Hanna; Singh, Ashutosh

    2016-04-01

    The project intends to quantify the performance and environmental impact of large scale aquifer thermal energy storage, as well as point at recommendations for operating and estimating the environmental footprint of future systems. Field measurements, test of innovative equipment as well as advanced modelling work and analysis will be performed. The following aspects are introduced and covered in the presentation: -Thermal, chemical and microbiological influence of akvifer thermal energy storage systems: measurement and evaluation of real conditions and the influence of one system in operation. -Follow up of energy extraction from aquifer as compared to projected values, recommendations for improvements. -Evaluation of the most used thermal modeling tool for design and calculation of groundwater temperatures, calculations with MODFLOW/MT3DMS -Test and evaluation of optical fiber cables as a way to measure temperatures in aquifer thermal energy storages

  10. Field testing of a high-temperature aquifer thermal energy storage system

    SciTech Connect

    Sterling, R.L.; Hoyer, M.C.

    1989-03-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) System has been operated as a field test facility for the past six years. Four short-term and two long-term cycles have been completed to data providing a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. A third long-term cycle is currently being planned to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact on the aquifer from heated waste storage cycles. The most critical activities in the preparation for the next cycle have proved to be the applications for the various permits and variances necessary to conduct the third cycle and the matching of the characteristics of the ATES system during heat recovery with a suitable adjacent building thermal load.

  11. Potentiometric surface and water-level difference maps of selected confined aquifers of Southern Maryland and Maryland's Eastern Shore, 1975-2011

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2012-01-01

    Groundwater is the principal source of freshwater supply in most of Southern Maryland and Maryland's Eastern Shore. It is also the source of freshwater supply used in the operation of the Calvert Cliffs, Chalk Point, and Morgantown power plants. Increased groundwater withdrawals over the last several decades have caused groundwater levels to decline. This report presents potentiometric surface maps of the Aquia, Magothy, upper Patapsco, lower Patapsco, and Patuxent aquifers using water levels measured during September 2011. Water-level difference maps also are presented for the first four of these aquifers. The water-level differences in the Aquia aquifer are shown using groundwater-level data from 1982 and 2011, whereas the water-level differences in the Magothy aquifer are presented using data from 1975 and 2011. Water-level difference maps in both the upper Patapsco and lower Patapsco aquifers are presented using data from 1990 and 2011. These maps show cones of depression ranging from 25 to 198 feet (ft) below sea level centered on areas of major withdrawals. Water levels have declined by as much as 112 ft in the Aquia aquifer since 1982, 85 ft in the Magothy aquifer since 1975, and 47 and 71 ft in the upper Patapsco and lower Patapsco aquifers, respectively, since 1990.

  12. Groundwater artificial recharge solutions for integrated management of watersheds and aquifer systems under extreme drought scenarios

    NASA Astrophysics Data System (ADS)

    Lobo-Ferreira, Joao-Paulo; Oliveira, Luís.; Diamantino, Catarina

    2010-05-01

    The paper addresses groundwater artificial recharge solutions for integrated management of watersheds and aquifer systems under extreme drought scenarios. The conceptual idea of Aquifer Storage and Recovery (ASR) is considered as one of the scientific based solutions towards scientific based mitigation measures to climate variability and change in many parts of the world. In Portugal two European Union sponsored 6th Framework Programme for Research Projects have been addressing this topic, namely GABARDINE Project on "Groundwater artificial recharge based on alternative sources of water: Advanced integrated technologies and management" and the Coordinated Action ASEMWATERNet, a "Multi-Stakeholder Platform for ASEM S&T Cooperation on Sustainable Water Use". An application of Aquifer Storage and Recovery methodologies aiming drought mitigation and Integrated Water Resource Management of the Algarve (Portugal). The technique of artificial recharge of groundwater is used in many parts of the world with several aims, e.g. water storing in appropriate aquifers for the mitigation of future water needs during droughts or as protection against pollution or even for the recovery of groundwater quality. Artificial recharge of the aquifer systems of Campina de Faro and Silves-Querença is addressed in this paper, proposed to be an alternative to decrease the vulnerability of the Algarve to a future drought. Integrated management of water resources in the Algarve is not a clear issue since the last decade, when groundwater resources that supplied almost all water needs, have been drastically replaced by surface water stored in new reservoirs.

  13. Computation of average seasonal groundwater flows in phreatic aquifer-river system

    NASA Astrophysics Data System (ADS)

    Rastogi, A. K.

    1991-03-01

    A simplified approach to reduce a time-variant problem into a steady-state problem is considered by averaging the groundwater head over a seasonal period. This averaging is applicable to those areas (countries) where a year can be divided into three distinct monsoon, pre- and post-monsoon periods and where the annual watertable variation is not large compared with the saturated aquifer thickness. This scheme is applied to solve a two-dimensional problem using a standard finite difference technique of solution. The phreatic aquifer system considered is bounded by two reservoirs and an impervious base. It also contains a partially penetrating river near the centre of the aquifer. Periodic contribution to the phreatic aquifer from the higher head reservoir, groundwater recharge from river seepage, net-free surface flux and the total groundwater flow towards lower head reservoir are worked out. These terms aid in estimating the net volume of ground water that is available from the aquifer system in a particular seasonal period.

  14. Digital data sets that describe aquifer characteristics of the Elk City Aquifer in western Oklahoma

    USGS Publications Warehouse

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately 193,000 acres and supplies ground water for irrigation, domestic, and industrial purposes in Beckham, Custer, Roger Mills, and Washita Counties along the divide between the Washita and Red River basins. The Elk City aquifer consists of the Elk City Sandstone and overlying terrace deposits, made up of clay, silt, sand and gravel, and dune sands in the eastern part and sand and gravel of the Ogallala Formation (or High Plains aquifer) in the western part of the aquifer. The Elk City aquifer is unconfined and composed of very friable sandstone, lightly cemented with clay, calcite, gypsum, or iron oxide. Most of the grains are fine-sized quartz but the grain size ranges from clay to cobble in the aquifer. The Doxey Shale underlies the Elk City aquifer and acts as a confining unit, restricting the downward movement of ground water. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Elk City aquifer. The maps digitized were published at a scale of 1:63,360. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  15. Numerical simulation approaches to evaluate nitrate contamination of groundwater through leakage well in layered aquifer system

    NASA Astrophysics Data System (ADS)

    Koh, E.; Lee, E.; Lee, K.

    2013-12-01

    The layered aquifer system (i.e. perched and regional aquifers) is locally observed in Gosan area of Jeju Island, Korea due to scattered distributions of an impermeable clay layer. In the Gosan area, farming is actively performed and nitrate contamination has been frequently reported in groundwater of regional aquifer which is sole water resource in the island. Water quality of the regional groundwater is impacted by inflows of the nitrate-rich perched groundwater, which is located above the impermeable layer and directly affected by surface contaminants. A poorly grouted well penetrating the impermeable layer provides a passage of contaminated groundwater through the impermeable layer. Such a hydrogeological characteristic consequently induces nitrate contamination of the regional aquifer in this region. To quantify the inflows of the perched groundwater via leakage wells, a numerical model was developed to calculate leakage amounts of the perched groundwater into the regional groundwater. This perched groundwater leakages were applied as point and time-variable contamination sources during the solute transport simulation process for the regional aquifer. This work will provide useful information to suggest effective ways to control nitrate contamination of groundwater in the agricultural field.

  16. The groundwater age in the Middle-Upper Devonian aquifer system, Lithuania

    NASA Astrophysics Data System (ADS)

    Mokrik, R.; Mažeika, J.; Baublytė, A.; Martma, T.

    2009-06-01

    3H, δ13C and hydrochemical data were used to estimate the corrected groundwater age derived from conventional 14C age of dissolved inorganic carbon (DIC). The Middle-Upper Devonian aquifer system from the Baltic upland recharge area in eastern Lithuania towards the discharge area on the Baltic Sea coast in the west was considered. The concentration of total dissolved solids (TDS) in groundwater changes from 300 to 24,000 mg/L and increases downgradient towards the coast. The other major constituents have the same trend as the TDS. The hydrochemical facies of groundwater vary from an alkali-earth carbonates facies at the eastern upland area to an alkali-earth carbonate-sulfate and chloride facies at transit and discharge areas. Meteoric water percolating through the Quaternary and Devonian aquifers regulate the initial 14C activities of groundwater involving two main members of DIC: soil CO2 with modern 14C activity uptake and dissolution of 14C-free aquifer carbonates. Other sources of DIC are less common. 14C activity of DIC in the groundwater ranged from 60 to 108 pMC at the shallow depths. With an increase of the aquifers depth the dolomitization of aqueous solution and leakage of the “old” groundwater from lower aquifers take place, traced by lower activities (7-30 pMC).

  17. Flow in horizontally anisotropic multilayered aquifer systems with leaky wells and aquitards

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Zhou, Quanlin; Birkholzer, Jens T.; Kraemer, Stephen R.

    2014-01-01

    Flow problems in an anisotropic domain can be transformed into ones in an equivalent isotropic domain by coordinate transformations. Once analytical solutions are obtained for the equivalent isotropic domain, they can be back transformed to the original anisotropic domain. The existing solutions presented by Cihan et al. (2011) for isotropic multilayered aquifer systems with alternating aquitards and multiple injection/pumping wells and leaky wells were modified to account for horizontal anisotropy in aquifers. The modified solutions for pressure buildup distribution and leakage rates through leaky wells can be used when the anisotropy direction and ratio (Kx/Ky) are assumed to be identical for all aquifers alternating with aquitards. However, for multilayered aquifers alternating with aquicludes, both the principal direction of the anisotropic horizontal conductivity and the anisotropy ratio can be different in each aquifer. With coordinate transformation, a circular well with finite radius becomes an ellipse, and thus in the transformed domain the head contours in the immediate vicinity of the well have elliptical shapes. Through a radial flow approximation around the finite radius wells, the elliptical well boundaries in the transformed domain are approximated by an effective well radius expression. The analytical solutions with the effective radius approximations were compared with exact solutions as well as a numerical solution for elliptic flow. The effective well radius approximation is sufficiently accurate to predict the head buildup at the well bore of the injection/pumping wells for moderately anisotropic systems (Kx/Ky≤25). The effective radius approximation gives satisfactory results for predicting head buildup at observation points and leakage through leaky wells away from the injection/pumping wells even for highly anisotropic aquifer systems >(Kx/Ky≤1000>).

  18. Geophysical log database for the Floridan aquifer system and southeastern Coastal Plain aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Raines, Jessica E.; Lanning, Amanda E.

    2013-01-01

    The U.S. Geological Survey (USGS) Groundwater Resources Program began two regional studies in the southeastern United States in the fall of 2009 to investigate ground-water availability of fresh and brackish water resources: (1) groundwater availability of the Floridan aquifer system, (http://water.usgs.gov/ogw/gwrp/activities/regional.html), and (2) saline water aquifer mapping in the southeastern United States. A common goal for both studies was to gather available geophysical logs and related data from the State geological surveys and the USGS that would be used as a basis for developing a hydrogeologic framework for the study area. Similar efforts were undertaken by the USGS Floridan and Southeastern Coastal Plain Regional Aquifer-System Analysis (RASA) Program from the 1970s to mid-1990s (Miller, 1986; Renken, 1996). The logs compiled for these older efforts were difficult to access from the paper files; however, and partly because of this, older and newer logs were compiled into a single digital database for the current study. The purpose of this report is to summarize the different types of logs and related data contained in the database and to provide these logs in a digital format that can be accessed online through the database and files accompanying this report (http://pubs.usgs.gov/ds/760/).

  19. Chemical and isotopic prediction of aquifer temperatures in the geothermal system at Long Valley, California

    USGS Publications Warehouse

    Fournier, R.O.; Sorey, M.L.; Mariner, R.H.; Truesdell, A.H.

    1979-01-01

    Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220??C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ?? 10??C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to ??? 220??C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282??C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 ?? 107 cal/s. ?? 1979.

  20. Linking the morphology of fluvial fan systems to aquifer stratigraphy in the Sutlej-Yamuna plain of northwest India

    NASA Astrophysics Data System (ADS)

    Dijk, W. M.; Densmore, A. L.; Singh, A.; Gupta, S.; Sinha, R.; Mason, P. J.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.; Kumar, D.; Rai, S. P.

    2016-02-01

    The Indo-Gangetic foreland basin has some of the highest rates of groundwater extraction in the world, focused in the states of Punjab and Haryana in northwest India. Any assessment of the effects of extraction on groundwater variation requires understanding of the geometry and sedimentary architecture of the alluvial aquifers, which in turn are set by their geomorphic and depositional setting. To assess the overall architecture of the aquifer system, we used satellite imagery and digital elevation models to map the geomorphology of the Sutlej and Yamuna fan systems, while aquifer geometry was assessed using 243 wells that extend to ˜200 m depth. Aquifers formed by sandy channel bodies in the subsurface of the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow heavy-tailed thickness distributions. These distributions, along with evidence of persistence in aquifer fractions as determined from compensation analysis, indicate persistent reoccupation of channel positions and suggest that the major aquifers consist of stacked, multistoried channel bodies. The percentage of aquifer material in individual boreholes decreases down fan, although the exponent on the aquifer body thickness distribution remains similar, indicating that the total number of aquifer bodies decreases down fan but that individual bodies do not thin appreciably, particularly on the Yamuna fan. The interfan area and the fan marginal zone have thinner aquifers and a lower proportion of aquifer material, even in proximal locations. We conclude that geomorphic setting provides a first-order control on the thickness, geometry, and stacking pattern of aquifer bodies across this critical region.

  1. Water withdrawals and trends from the Floridan aquifer system in the southeastern United States, 1950-2000

    USGS Publications Warehouse

    Marella, Richard L.; Berndt, Marian P.

    2005-01-01

    The Floridan aquifer system in the southeastern United States is one of the most productive aquifers in the world (Miller, 1990). This aquifer system underlies an area of about 100,000 square miles in southern Alabama, eastern and southern Georgia, southeastern Mississippi, southern South Carolina, and all of Florida. The Floridan aquifer system is the primary source of water for nearly 10 million people and supports agriculture, industry, and tourism throughout most of the region. In most areas, water from this aquifer is potable and needs very little treatment before use. However, in southern Florida (south of Lake Okeechobee), northwestern Florida and southern Alabama and Mississippi (Pensacola and westward), and eastern South Carolina, water in the aquifer system generally is not potable. The purpose of this report is to: Provide a general description of the Floridan aquifer system; Discuss water withdrawals by category for 2000; Highlight trends in water withdrawals between 1950 and 2000; and Provide a brief summary on the effects that human impacts have on the Floridan aquifer system.

  2. Suppression of Quantum Scattering in Strongly Confined Systems

    SciTech Connect

    Kim, J. I.; Melezhik, V. S.; Schmelcher, P.

    2006-11-10

    We demonstrate that scattering of particles strongly interacting in three dimensions (3D) can be suppressed at low energies in a quasi-one-dimensional (1D) confinement. The underlying mechanism is the interference of the s- and p-wave scattering contributions with large s- and p-wave 3D scattering lengths being a necessary prerequisite. This low-dimensional quantum scattering effect might be useful in 'interacting' quasi-1D ultracold atomic gases, guided atom interferometry, and impurity scattering in strongly confined quantum wire-based electronic devices.

  3. Long-term geochemical evaluation of the coastal Chicot aquifer system, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Borrok, David M.; Broussard, Whitney P.

    2016-02-01

    Groundwater is increasingly being overdrafted in the Gulf and Atlantic Coastal regions of the United States. Geochemical data associated with groundwater in these aquifers can provide important information on changes in salinity, recharge, and reaction pathways that can be used to improve water management strategies. Here we evaluated long-term geochemical changes associated with the 23,000 km2 Chicot aquifer system in Louisiana, USA. The Chicot aquifer is currently being overdrafted by about 1,320,000 m3 per day. We compiled selected bulk geochemical data from samples collected from 20 wells in the Chicot aquifer from 1993 to 2015. Oxygen and hydrogen isotope measurements were additionally completed for the 2014 samples. We identified three zones of groundwater with distinctive geochemical character; (1) A groundwater recharge zone in the northern part of the study area with low pH, low salinity, and low temperature relative to other groundwater samples, (2) a groundwater recharge zone in the southeastern part of the study area with low temperature, high alkalinity, and higher Ca and Mg concentrations compared to the other groundwater samples, and (3) groundwater in the southwestern part of the aquifer system with high salinity, high temperature, and a ∼1:1 Na/Cl ratio. The geochemistry of these regions has been relatively stable over the last ∼20 years. However, in the drought year of 2011, the estimated extent of zones with elevated salinity increased substantially. Geochemical evidence suggests that there was increased infiltration of deeper, more salt-rich waters into the shallower Chicot aquifer.

  4. Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po plain, South-Western Lombardy, Italy

    NASA Astrophysics Data System (ADS)

    Pilla, Giorgio; Sacchi, Elisa; Zuppi, Gianmaria; Braga, Giovanni; Ciancetti, Gianfranco

    2006-06-01

    A multicriteria approach in studying hydrodynamics of a multilayer aquifer system has been used in the Lomellina region (Northern Italy). It involves the reconstruction of the hydrogeological framework coupled to the definition of the hydrochemical and isotopic features of the aquifers. A shallow phreatic aquifer, reaching depths of about 60 80 m from the surface, and deeper aquifers containing confined groundwater, were distinguished. Groundwater generally shows mineralisation decreasing with depth; dissolved ions depict calcium-bicarbonate hydrochemical facies and stable isotopes define the recharge mechanisms, the origin of groundwater, and the hydraulic confinement of deep aquifers. The phreatic aquifer is fed by local infiltration and by streams and irrigation channels. Tritium and Carbon-14 groundwater dating indicate long residence times (on the order of thousands of years) for confined aquifers. The confined aquifers show essentially passive hydrodynamic conditions and maintain a higher piezometric level than the phreatic aquifer. This inhibits the possibility of recent water penetrating far below the surface. The hydrogeological setting of the Lomellina region displays features which are common to other sectors of the Po plain. As a consequence, the results of this study, although conducted on a restricted area, are highly illustrative of groundwater hydrodynamics in large sedimentary aquifers.

  5. Hydrologic analysis of the High Plains aquifer system in Box Butte County, Nebraska

    USGS Publications Warehouse

    Pettijohn, R.A.; Chen, Hsiu-Hsiung

    1984-01-01

    During the past 40 years, pumpage of ground water for irrigation from the High Plains aquifer system underlying Box Butte County, Nebraska, has resulted in a steady decline of water levels. Consequently, a digital model of the aquifer system was constructed to evaluate various water-management alternatives. The hydraulic conductivity of the aquifer system ranges from 6 to 60 feet per day; the specific yield ranges from 12 to 21 percent; and natural recharge ranges from 0.06 to 4.33 inches annually. Predevelopment saturated thickness (1938) ranged from 190 to 510 feet. Water pumped in 1980 was estimated at 104,000 acre-feet from an estimated recoverable volume of 34.4 million acre-feet in the aquifer system. Results from model simulation predict that the area of water-level declines of 10 feet or more will increase from 336 square miles (1981) to 630 square miles by 1991 if pumpage is increased at the maximum annual rate experienced for the period 1972-81. Maximum water-level declines would increase from 50 feet (1981) to 79 feet (1991). However, pumpage rates held at the 1981 level (no further development) would limit the decline area of 10 feet or more to 530 square miles by 1991 and the maximum decline to 63 feet. (USGS)

  6. Artificial recharge to the Floridan aquifer system, Orlando Area, Central Florida

    USGS Publications Warehouse

    German, E.R.; Bradner, L.A.

    1989-01-01

    Approximately 400 drainage wells exist in Orange County, central Florida. The rate of recharge through drainage wells is limited by the rate of surface flow to the wells; the hydraulic properties of weirs, overflow pipes, and well casings; or the water level above the top of the casing. The rate commonly is not limited by the hydraulic properties of the very transmissive aquifer system.

  7. Bibliography of Regional Aquifer-System Analysis Program of the US Geological Survey, 1978-96

    USGS Publications Warehouse

    Sun, Ren Jen; Weeks, John B.; Grubb, Hayes F.

    1997-01-01

    The Regional Aquifer-System Analysis (RASA) Program of the U.S. Geological Survey was initiated in 1978 and was completed in 1995. The purpose of this program was to define the regional geohydrology and establish a framework of background information on geology, hydrology, and geochemistry of the Nation's important aquifer systems. This information is critically needed to develop an understanding of the Nation's major ground-water flow systems and to support better management of ground-water resources. Twenty-five of the Nation's major aquifer systems were studied under this program. Starting in 1988, the program devoted part of its resources to compilation of a National Ground Water Atlas that presets a comprehensive summary of the Nation's major ground-water resources. The atlas, which is designed in a graphical format supported by descriptive text, serves as a basic reference for the location, geography, geology, and hydrologic characteristics of the major aquifers in the Nation. This bibliography lists 1,105 reports that result from various studies of the program. The list of reports for each study follows a brief description of that study.

  8. Nitrogen use efficiency in grazed and confinement dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazing and confinement-based dairy operations in industrialised nations continue to intensify. In general, farm numbers are declining, while milk production per cow and reliance on imported feed and fertiliser are increasing. While greater nitrogen (N) input is a key contributor to increasing produ...

  9. An automated scraper system for swine confinement facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Odor and air emissions released by some commercial, large swine operations can be a nuisance. Research has shown that some swine confinement buildings can emit significant amounts of odors, hydrogen sulfide (H2S) and other gases, especially from deep pit buildings with long-term manure storage. A m...

  10. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    USGS Publications Warehouse

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per

  11. Hydrogeochemistry in regional aquifer systems supports agricultural water quality investigations in Iowa

    SciTech Connect

    Simpkins, W.W.; Ariffin, A.R.; Qui, Z. . Dept. of Geological and Atmospheric Sciences)

    1992-01-01

    In this study, the authors demonstrate conjunctive use of traditional water quality data with environmental isotopes and geochemistry to determine whether present or future application of chemicals at the land surface will affect water quality in deep aquifers. The study area is located in central Iowa in the Walnut Creek Basin, one of three USDA-CSRS Management System Evaluation Area (MSEA) sites in Iowa. Pre-Illinoian gravel, Pennsylvanian sandstone, and Mississippian limestone comprise the major aquifers in this area and they are overlain by at least 50 m of late Wisconsin and Pre-Illinoian glacial sediments. Well depths, water levels, and aquifer units were identified by well construction logs followed by a house-to-house survey of residents. A subset of 125 total wells was sampled for major ions, trace metals, H-3, delta O-18, delta H-2, delta C-13, and C-14-DIC. Results suggest that contamination of deep aquifers from agricultural practices in the basin is unlikely. First, data from this study and the Till Hydrology Site to the northwest suggest that vertical groundwater velocities through the Pre-Illinoian till are too low for recent vertical recharge to reach the aquifers. Second, H-3 and corrected C-14 dates suggest that groundwater recharged both vertically and at outcrop is at least 13,000 years old and may be > 40,000 years old. Third, the groundwater in these aquifers is anaerobic and contains high Fe concentrations, SO[sub 4] concentrations < 1 mmol/L, CH[sub 4] gas, and delta C-13 DIC values between 0.0 and [minus]21.9 [per thousand]. The processes involved suggest a geochemical environment unfavorable for persistence of NO[sub 3]. In contrast, water samples from some wells suggest that some contamination may occur through poorly-constructed wells or deteriorating well casing.

  12. Groundwater thermal-effective injection systems in shallow aquifers: possible alternatives to vertical water wells

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2014-05-01

    Urbanized areas have environmental features that may influence the development of low-enthalpy geothermal systems and the choice of the most suitable among the available (roughly earth-coupled closed-loop and groundwater open-loop type). In particular, if compared to less anthropized areas, some characteristic urban elements require particular attention: underground extensive use, contamination of groundwater, interference between the systems, authorization procedures and planning restrictions, the competition with cogeneration systems and the impact on emissions of pollutants. In this general context, the increasing implementation in several areas of the world of the open-loop groundwater heat pumps technology which discharge into the aquifer for cooling and heating buildings, could potentially cause, even in the short term, a significant environmental impact associated with thermal interference with groundwater, particularly in the shallow aquifers. The discharge of water at different temperatures compared to baseline (warmer in summer and colder in winter) poses a number of problems in relation to the potential functionality of many existing situations of use of the groundwater (drinking water wells, agricultural, industrial, etc.). In addition, there may be cases of interference between systems, especially in the more densely urbanized areas. Appropriate hydrogeological investigations should be performed for the characterization of the main hydrogeological parameters of the subsoil at the considered site in order to minimize the environmental impact of discharges into aquifers. The current Italian legislation related to withdrawals and discharges into aquifers designs a framework suitable for the protection of groundwater and induce deciding the best configuration of the plant with a case by case approach. An increased contact area between the dispersant system and the ground makes it possible to affect a greater volume of aquifer and, consequently, reduce the

  13. Conjunctive-management models for sustained yield of stream-aquifer systems

    USGS Publications Warehouse

    Barlow, P.M.; Ahlfeld, D.P.; Dickerman, D.C.

    2003-01-01

    Conjunctive-management models that couple numerical simulation with linear optimization were developed to evaluate trade-offs between groundwater withdrawals and streamflow depletions for alluvial-valley stream-aquifer systems representative of those of the northeastern United States. A conjunctive-management model developed for a hypothetical stream-aquifer system was used to assess the effect of interannual hydrologic variability on minimum monthly streamflow requirements. The conjunctive-management model was applied to the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system of central Rhode Island. Results show that it is possible to increase the amount of current withdrawal from the aquifer by as much as 50% by modifying current withdrawal schedules, modifying the number and configuration of wells in the supply-well network, or allowing increased streamflow depletion in the Annaquatucket and Pettaquamscutt rivers. Alternatively, it is possible to reduce current rates of streamflow depletion in the Hunt River by as much as 35% during the summer, but such reductions would result increases in groundwater withdrawals.

  14. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock.

    PubMed

    Garrido Schneider, Eduardo A; García-Gil, Alejandro; Vázquez-Suñè, Enric; Sánchez-Navarro, José Á

    2016-02-15

    In the last decade, there has been an extensive use of shallow geothermal exploitations in urban environments. Although the thermal interference between exploitations has been recently studied, there is a lack of knowledge regarding the geochemical impacts of those systems on the aquifers where they are installed. Groundwater flow line scale and well-doublet scale research work has been conducted at city scale to quantify the geochemical interaction of shallow geothermal exploitations with the environment. A comprehensive analysis was conducted on data obtained from a monitoring network specifically designed to control and develop aquifer policies related to thermal management of the aquifer. The geochemical impacts were evaluated from a thermodynamic point of view by means of saturation index (SI) calculations with respect to the different mineral species considered in the system. The results obtained indicate limited geochemical interaction with the urban environment in most of the situations. However, there are some cases where the interaction of the groundwater heat pump installations with the evaporitic bedrock resulted in the total disablement of the exploitation system operation wells. The application of the tool proposed proved to be pragmatic in the evaluation of geochemical impacts. Injection of water into the aquifer can trigger an important bedrock gypsum and halite dissolution process that is partly responsible for scaling in well casing pipes and collapse of the terrain in the vicinity of injection wells. PMID:26657381

  15. System Dynamics to Climate-Driven Water Budget Analysis in the Eastern Snake Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Contor, B.; Wylie, A.; Johnson, G.; Allen, R. G.

    2010-12-01

    Climate variability, weather extremes and climate change continue to threaten the sustainability of water resources in the western United States. Given current climate change projections, increasing temperature is likely to modify the timing, form, and intensity of precipitation events, which consequently affect regional and local hydrologic cycles. As a result, drought, water shortage, and subsequent water conflicts may become an increasing threat in monotone hydrologic systems in arid lands, such as the Eastern Snake Plain Aquifer (ESPA). The ESPA, in particular, is a critical asset in the state of Idaho. It is known as the economic lifeblood for more than half of Idaho’s population so that water resources availability and aquifer management due to climate change is of great interest, especially over the next few decades. In this study, we apply system dynamics as a methodology with which to address dynamically complex problems in ESPA’s water resources management. Aquifer recharge and discharge dynamics are coded in STELLA modeling system as input and output, respectively to identify long-term behavior of aquifer responses to climate-driven hydrological changes.

  16. An overview of how glacial depositional processes control characteristics of outwash aquifers

    SciTech Connect

    Fraser, G.S. )

    1994-04-01

    Sedimentological processes, acting on a variety of scales, are among the more important factors that determine the hydraulic properties of outwash aquifers. On a regional scale, the heterogeneity imposed on aquifer systems by such processes affects the shape of an aquifer and its relationships to enclosing units, the location and hydraulic properties of discharge and recharge areas, and the occurrence of low-permeable material. At the scale of individual aquifers, sedimentary heterogeneity is commonly a major control on the rate and complexity of groundwater movement. Glacial facies models can provide important insights into the characteristics of aquifers, aquifer systems and confining units. Outwash is produced and transported differently along active glacial margins and on active ice sheets, within stagnant ice sheets, and down glacial sluiceways, and these differences are reflected in regional-scale variations of the characteristics of aquifers and aquifer system. An understanding of such models are especially important to regional planners who must have knowledge of aquifer sensitivity when determining land-use policy. An understanding of how sedimentological processes act within glacial regimes can help determine local variations in aquifer characteristics on intermediate or small scales. Variations in grain size within outwash aquifers are the result of lateral and/or temporal changes in the intensity of the hydraulic regime imposed by proximity to melting ice and variations in meltwater flow. Examples will be provided that show how these processes operated during the evolution of glacial outwash sequences in various terrains in Indiana.

  17. Geohydrology and model analysis of stream-aquifer system along the Arkansas River in Kearny and Finney Counties, southwestern Kansas

    USGS Publications Warehouse

    Dunlap, L.E.; Lindgren, Richard J.; Sauer, C.G.

    1985-01-01

    A study was made, in cooperation with the Division of Water Resources, Kansas State Board of Agriculture, to determine geohydrologic conditions in an area comprising nearly 850,000 acres along the Arkansas River valley in Kearny and Finney Counties, southwestern Kansas. The Arkansas River meanders atop and interacts hydraulically with the area's multilayered, unconsolidated aquifer system. Declines in static water levels in wells in the heavily pumped lower aquifer ranged from 20 to 80 feet during 1974-80. The river is dry in much of the area. A digital computer model was calibrated to simulate the trends of historic water levels. Simulated 1974-80 conditions depicted an average annual recharge to the unconsolidated aquifer system of 66,900 acre-feet from precipitation and 36,200 acre-feet from river and canal seepage and boundary inflow. Simulated average annual discharge consisted of 634,800 acre-feet from pumpage and boundary outflow. Simulated average annual recharge to the unconsolidated aquifer system was 531,700 acre-feet less than average annual discharge, indicating the ground-water resource is currently (1982) being mined in the study area. Simulation also indicated that there would be sufficient saturated thickness in 2005 for irrigation if 1980 hydrologic conditions continued. Seepage losses from the Arkansas River and irrigation canals are a major source of recharge to the unconsolidated aquifer system. Therefore, the amount of flow in the Arkansas River would be important in determining the rate of future water-level declines in the study area. Streamflow seepage losses could be decreased by (1) decreasing the number of wells pumping in the study area in order to reduce downward leakage from the valley aquifer, or (2) increasing streamflow discharge in order to recharge the valley aquifer. The rate and direction of flow between the river and the valley aquifer depend on the hydraulic conductivity of the streambed and the hydraulic gradient between the

  18. The Next Generation in Subsidence and Aquifer-System Compaction Modeling within the MODFLOW Software Family: A New Package for MODFLOW-2005 and MODFLOW-OWHM

    NASA Astrophysics Data System (ADS)

    Boyce, S. E.; Leake, S. A.; Hanson, R. T.; Galloway, D. L.

    2015-12-01

    The Subsidence and Aquifer-System Compaction Packages, SUB and SUB-WT, for MODFLOW are two currently supported subsidence packages within the MODFLOW family of software. The SUB package allows the calculation of instantaneous and delayed releases of water from distributed interbeds (relatively more compressible fine-grained sediments) within a saturated aquifer system or discrete confining beds. The SUB-WT package does not include delayed releases, but does perform a more rigorous calculation of vertical stresses that can vary the effective stress that causes compaction. This calculation of instantaneous compaction can include the effect of water-table fluctuations for unconfined aquifers on effective stress, and can optionally adjust the elastic and inelastic storage properties based on the changes in effective stress. The next generation of subsidence modeling in MODFLOW is under development, and will merge and enhance the capabilities of the SUB and SUB-WT Packages for MODFLOW-2005 and MODFLOW-OWHM. This new version will also provide some additional features such as stress dependent vertical hydraulic conductivity of interbeds, time-varying geostatic loads, and additional attributes related to aquifer-system compaction and subsidence that will broaden the class of problems that can be simulated. The new version will include a redesigned source code, a new user friendly input file structure, more output options, and new subsidence solution options. This presentation will discuss progress in developing the new package and the new features being implemented and their potential applications. By Stanley Leake, Scott E. Boyce, Randall T. Hanson, and Devin Galloway

  19. Geohydrology, water quality, and simulation of groundwater flow in the stratified-drift aquifer system in Virgil Creek and Dryden Lake Valleys, Town of Dryden, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.

    2013-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the

  20. Evaluation of Main Compositions of Water Chemistry Data By Graphical Methods, Edremit (Balikesir) Alluvial Aquifer System

    NASA Astrophysics Data System (ADS)

    Ertekin, Can; Sedat Çetiner, Ziya

    2015-04-01

    This case study aims to characterize and compare hydrogeochemistry based on major ion composition belonging to the year of 1970's, 2007 and 2008 for Edremit alluvial aquifer system which lies on the northwestern coast of Anatolia. Graphical representations including Piper, Schoeller, Stiff and Durov diagrams are applied to ease a systematic interpretation of a wide range of well chemistry data sets. In Piper diagram, water types of the aquifer system are mainly dominated with calcium, carbonate-bicarbonate and sulphate ions. Water types of the site are separated as sulphate or carbonate-bicarbonate ion dominated zones for 1970's data. Comparing data of 1970's, 2007 and 2008 the newest data set is clustered into magnesium dominate zone. This is related to relatively deep groundwater chemistry affect probably resulting from long term groundwater withdrawal for irrigation in the aquifer system. The Schoeller diagram portrays differences of the data set of 1970's, 2007 and 2008 more clearly comparing the Piper diagram. In this diagram, higher portions of magnesium and sulphate composition of the well data belonging to the year of 2007 and 2008 are possibly related to deep routes of groundwater flow paths of the site and/or geothermal water mixing. In Durov diagram, the data set was projected to a rectangular shape and it was not immediately clear to differentiate ionic composition of the water. This is not coincidence because the fact that pH values do not change significantly over the years and its contribution is not substantial comparing to major ion chemistry. Finally, application of hydrogeochemical modeling as a further step was touched upon herein to further depict undergone processes and end-members in the whole aquifer system on Edremit Plain. Keywords: Edremit, groundwater, aquifer, hydrogeochemistry, facies

  1. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.

    PubMed

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate

  2. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    SciTech Connect

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity.

  3. Isotope geochemistry and modelling of the multi-aquifer system in the eastern part of Lithuania

    NASA Astrophysics Data System (ADS)

    Mokrik, Robert; Juodkazis, Vytautas; Štuopis, Anicetas; Mažeika, Jonas

    2014-06-01

    A steady-state groundwater flow model of three Quaternary intertill aquifers in the eastern part of Lithuania has been compiled. The distinction of separate modelled layers is based on hydraulic and isotope-hydrochemistry data criteria. 3H data were used to estimate the corrected groundwater age and were coupled with a groundwater-flow-dynamics model of the Quaternary aquifer system along a cross-section flow pathway from the Baltic Upland recharge area in eastern Lithuania towards the discharge area in the lowlands near the city of Kaunas in central Lithuania. The bicarbonate content in groundwater (214-462 mg/l) increases downgradient towards the lowland area. The other major constituents and total dissolved solids (TDS) have a trend analogous to the bicarbonate. The 14C activity of dissolved inorganic carbon (DIC) in the groundwater ranges from 41.4 to 85.7 pMC. With aquifer-system depth, active precipitation of aqueous solution takes place by dissolving minerals of calcite and dolomite and leakage of "old" groundwater from lower aquifers; the process is also traced by lower 14C and 3H activities and by more positive δ18O values in lowland areas.

  4. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE PAGESBeta

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  5. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    PubMed Central

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  6. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    NASA Astrophysics Data System (ADS)

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.

  7. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems.

    PubMed

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  8. Generalized potentiometric surface, estimated depth to water, and estimated saturated thickness of the High Plains aquifer system, March–June 2009, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.

    2011-01-01

    The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains

  9. Planning report for the southwest alluvial basins (east) regional aquifer-system analysis, parts of Colorado, New Mexico, and Texas

    USGS Publications Warehouse

    Wilkins, D.W.; Scott, W.B.; Kaehler, C.A.

    1980-01-01

    The study of the Southwest alluvial basins (east) will involve an analysis of the regional aquifer system in parts of Colorado, New Mexico, and Texas. This area has been divided into 22 basins. The study of the alluvial aquifer-system will be made in the following stages: (1) project planning, (2) literature searches, (3) compiling existing data, (4) data collection, (5) basin modeling, (6) regional aquifer modeling, and (7) reports. The regional aquifer study will be accomplished through studying each of the 22 basins. Data compilation and limited data collection will be part of each basin study. Digital computer models will be made for those basins where data are sufficient. A regional aquifer model will be developed from the basin models. In addition to this report, there will be basin hydrology reports and the final regional report. Included in the final report will be a description of the regional hydrology and geology. (USGS)

  10. Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is

  11. Integrating Predictive Modeling with Control System Design for Managed Aquifer Recharge and Recovery Applications

    NASA Astrophysics Data System (ADS)

    Drumheller, Z. W.; Regnery, J.; Lee, J. H.; Illangasekare, T. H.; Kitanidis, P. K.; Smits, K. M.

    2014-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization led to reduced natural recharge rates and overuse. Scientists and engineers have begun to re-investigate the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. MAR systems offer the possibility of naturally increasing groundwater storage while improving the quality of impaired water used for recharge. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. Our project seeks to ease the operational challenges of MAR facilities through the implementation of active sensor networks, adaptively calibrated flow and transport models, and simulation-based meta-heuristic control optimization methods. The developed system works by continually collecting hydraulic and water quality data from a sensor network embedded within the aquifer. The data is fed into an inversion algorithm, which calibrates the parameters and initial conditions of a predictive flow and transport model. The calibrated model is passed to a meta-heuristic control optimization algorithm (e.g. genetic algorithm) to execute the simulations and determine the best course of action, i.e., the optimal pumping policy for current aquifer conditions. The optimal pumping policy is manually or autonomously applied. During operation, sensor data are used to assess the accuracy of the optimal prediction and augment the pumping strategy as needed. At laboratory-scale, a small (18"H x 46"L) and an intermediate (6'H x 16'L) two-dimensional synthetic aquifer were constructed and outfitted with sensor networks. Data collection and model inversion components were developed and sensor data were validated by analytical measurements.

  12. Hydrostratigraphy, soil/sediment chemistry, and water quality, Potomac-Raritan-Magothy aquifer system, Puchack Well Field Superfund site and vicinity, Pennsauken Township, Camden County, New Jersey, 1997-2001

    USGS Publications Warehouse

    Barringer, Julia L.; Walker, Richard L.; Jacobsen, Eric; Jankowski, Pamela

    2010-01-01

    Drinking-water supplies from the Potomac-Raritan-Magothy aquifer system at the Puchack well field in Pennsauken Township, Camden County, New Jersey, have been contaminated by hexavalent chromium-the most toxic and mobile form-at concentrations exceeding the New Jersey maximum contaminant level of 100 micrograms per liter. Also, scattered but widespread instances of volatile organic compounds (primarily trichloroethylene) at concentrations that exceed their respective maximum contaminant levels in the area's ground water have been reported. Because inorganic and organic contaminants are present in the ground water underlying the Puchack well field, no water from there has been withdrawn for public supply since 1998, when the U.S. Environmental Protection Agency (USEPA) added the area that contains the Puchack well field to the National Priorities List. As part of the USEPA's investigation of the Puchack Well Field Superfund site, the U.S. Geological Survey (USGS) conducted a study during 1997-2001 to (1) refine previous interpretations of the hydrostratigraphic framework, hydraulic gradients, and local directions of ground-water flow; (2) describe the chemistry of soils and saturated aquifer sediments; and (3) document the quality of ground water in the Potomac-Raritan-Magothy aquifer system in the area. The four major water-bearing units of the Potomac-Raritan-Magothy aquifer system-the Upper aquifer (mostly unsaturated in the study area), the Middle aquifer, the Intermediate Sand (a local but important unit), and the Lower aquifer-are separated by confining units. The confining units contain areas of cut and fill, resulting in permeable zones that permit water to pass through them. Pumping from the Puchack well field during the past 3 decades resulted in downward hydraulic gradients that moved contaminants into the Lower aquifer, in which the production wells are finished, and caused ground water to flow northeast, locally. A comparison of current (1997

  13. Groundwater-flow model and effects of projected groundwater use in the Ozark Plateaus Aquifer System in the vicinity of Greene County, Missouri - 1907-2030

    USGS Publications Warehouse

    Richards, Joseph M.

    2010-01-01

    Recent and historical periods of rapid growth have increased the stress on the groundwater resources in the Ozark aquifer in the Greene County, Missouri area. Historical pumpage from the Ozark aquifer has caused a cone of depression beneath Springfield, Missouri. In an effort to ease its dependence on groundwater for supply, the city of Springfield built a pipeline in 1996 to bring water from Stockton Lake to the city. Rapid population growth in the area coupled with the expanding cone of depression raised concern about the sustainability of groundwater as a resource for future use. A groundwater-flow model was developed by the U.S. Geological Survey in cooperation with Greene County, Missouri, the U. S. Army Corps of Engineers, and the Missouri Department of Natural Resources to assess the effect that increased groundwater demand is having on the long-term availability of groundwater in and around Greene County, Missouri. Three hydrogeologic units were represented in the groundwater-flow model: the Springfield Plateau aquifer, the Ozark confining unit, and the Ozark aquifer. The Springfield Plateau aquifer is less than 350 feet thick in the model area and generally is a low yield aquifer suitable only for domestic use. The Ozark aquifer is composed of a more than 900-foot thick sequence of dolomite and sandstone in the model area and is the primary aquifer throughout most of southern Missouri. Wells open to the entire thickness of the Ozark aquifer typically yield 1,000 gallons per minute or more. Between the two aquifers is the Ozark confining unit composed of as much as 98 feet of shale and limestone. Karst features such as sinkholes, springs, caves, and losing streams are present in both aquifers, but the majority of these features occur in the Springfield Plateau aquifer. The solution-enlarged fracture and bedding plane conduits in the karst system, particularly in the Springfield Plateau aquifer, are capable of moving large quantities of groundwater through

  14. Hydrogeology, digital solute-transport simulation, and geochemistry of the Lower Cretaceous aquifer system near Baltimore, Maryland

    USGS Publications Warehouse

    Chapelle, Francis H.; with a section compiled by Kean, Tracey M.

    1985-01-01

    This study was made to develop information on the hydrogeology and ground-water geochemistry of the Patuxent and Patapsco aquifers (Lower Cretaceous) near Baltimore, Maryland. This information is needed to evaluate the availability and chemical quality of water from these aquifers. The Patuxent aquifer unconformably overlies Lower Paleozoic and Precambrian basement rocks and consists primarily of medium- to coarse-grained quartz sand. Discontinuous lenses of gravel and silty clay are commonly interbedded with the sand-sized material. The Patuxent aquifer in this area attains a thickness of 250 feet and transmissivities range from 2,000 to 8,000 feet squared per day. The Patuxent is the most productive source of ground water in the Baltimore area. In 1982, approximately 11 million gallons of water per day was produced from this unit. Several cones of depression, ranging from 30 to 50 feet below sea level, have developed in response to this pumping stress. The Arundel Formation conformably overlies the Patuxent aquifer. The Arundel is composed predominantly of clay and ranges from 0 to 150 feet thick. The Arundel exhibits very low vertical hydraulic conductivities that are on the order of 10-9 to 10-11 feet per second. This unit acts as the upper confining bed of the Patuxent aquifer in much of the project area. The Patapsco aquifer unconformably overlies the Arundel Formation and is a medium- to fine-grained quartz sand. The Patapsco functions as a water-table aquifer in much of the project area. Although the Patapsco has been heavily pumped in the past, pumpage from that aquifer in Baltimore was negligible in 1982. Brackish-water contamination of the Patuxent and Patapsco aquifers has been a major water-quality problem since the early 1900's. The Patuxent aquifer presently (1982) contains a circular plume of brackish-water contamination about 5 miles in diameter. This plume is centered on the Harbor district and has enlarged measurably since 1945. The Patapsco

  15. Modelling Contributions of the Local and Regional Groundwater Flow of Managed Aquifer Recharge Activities at Querença-Silves Aquifer System.

    NASA Astrophysics Data System (ADS)

    Costa, Luís; Monteiro, José Paulo; Oliveira, Manuel; Mota, Rogério; Lobo-Ferreira, João Paulo; Martins de Carvalho, José; Martins de Carvalho, Tiago; Agostinho, Rui; Hugman, Rui

    2015-04-01

    The Querença-Silves (QS) aquifer system is one of the most important natural groundwater reservoirs in the Algarve region of southern Portugal. With a surface area of 324 km2, this karst aquifer system is the main source of supply for irrigation as well as an important source of water for the urban supply. Due to the importance given to QS aquifer system by both governmental actors and end users, ongoing research during the last two decades at the University of Algarve has attempted to provide a better understanding of the hydrogeology and hydraulic behavior, which has resulted in the development of regional scale numerical models. The most recent hydrogeological data has been acquired during the ongoing MARSOL project (MARSOL-GA-2013-619120) which aims to demonstrate that Managed Aquifer Recharge (MAR) is a sound, safe and sustainable strategy that can be applied with great confidence in finding solutions to water scarcity in Southern Europe. Within the scope of the project large diameter well injection tests (with and without tracers) as well as geophysical surveys have been carried out in order to determine the infiltration capacity and aquifer properties. The results of which allowed the use of analytical methods to determine local scale values of hydraulic parameters (e.g. hydraulic conductivity and storage coefficient). These values will be compared with results from pre-existing numerical flow and transport models in order to obtain complementary solutions to the problem at local and regional scales. This analysis will contribute to the selection of the most appropriate methods to interpret, reproduce and model the impacts of MAR activities planned within the scope of the MARSOL project. Subsequent to the planned injection tests and, with the support of modelling efforts, the capacity of infiltration of rejected water from water treatment plants or surface storage dams in the large diameter well will be assessed.

  16. Results from a workshop on research needs for modeling aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Drost, M. K.

    1990-08-01

    A workshop an aquifer thermal energy storage (ATES) system modeling was conducted by Pacific Northwest Laboratory (PNL). The goal of the workshop was to develop a list of high priority research activities that would facilitate the commercial success of ATES. During the workshop, participants reviewed currently available modeling tools for ATES systems and produced a list of significant issues related to modeling ATES systems. Participants assigned a priority to each issue on the list by voting and developed a list of research needs for each of four high-priority research areas; the need for a feasibility study model, the need for engineering design models, the need for aquifer characterization, and the need for an economic model. The workshop participants concluded that ATES commercialization can be accelerated by aggressive development of ATES modeling tools and made specific recommendations for that development.

  17. PREFACE: International Conference on Optics of Excitons in Confined Systems

    NASA Astrophysics Data System (ADS)

    Viña, Luis; Tejedor, Carlos; Calleja, José M.

    2010-01-01

    The OECS11 (International Conference on Optics of Excitons in Confined Systems) was the eleventh of a very successful series of conferences that started in 1987 in Rome (Italy). Afterwards the conference was held at Naxos (Sicily, Italy, 1991), Montpellier (France, 1993), Cortona (Italy, 1995), Göttingen (Germany, 1997), Ascona (Switzerland, 1999), Montpellier (France, 2001), Lecce (Italy, 2003), Southampton (UK, 2005) and Patti (Sicily, Italy, 2007). It is addressed to scientists who lead fundamental and applied research on the optical properties of excitons in novel condensed-matter nanostructures. The 2009 meeting (7-11 September 2009) has brought together a large representation of the world leading actors in this domain, with the aim of stimulating the exchange of ideas, promoting international collaborations, and coordinating research on the newest exciton-related issues such as quantum information science and exciton quantum-collective phenomena. The meeting has included invited lectures, contributed oral presentations and posters, covering the following general topics: low-dimensional heterostructures: quantum wells, quantum wires and quantum dots polaritons quantum optics with excitons and polaritons many-body effects under coherent and incoherent excitation coherent optical spectroscopy quantum coherence and quantum-phase manipulation Bose-Einstein condensation and other collective phenomena excitons in novel materials The OECS 11 was held at the campus of the Universidad Autónoma de Madrid in Cantoblanco. The scientific program was composed of more than 200 contributions divided into 16 invited talks, 44 oral contributions and 3 poster sessions with a total of 150 presentations. The scientific level of the presentations was guaranteed by a selection process where each contribution was rated by three members of the Program Committee. The Conference has gathered 238 participants from 21 different countries, with the following distribution: Germany (43

  18. Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope

    SciTech Connect

    Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

    1997-03-05

    The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

  19. Characterization of the lowland coastal aquifer of Comacchio (Ferrara, Italy): Hydrology, hydrochemistry and evolution of the system

    NASA Astrophysics Data System (ADS)

    Giambastiani, B. M. S.; Colombani, N.; Mastrocicco, M.; Fidelibus, M. D.

    2013-09-01

    This study delineates the actual hydrogeochemistry and the geological evolution of an unconfined coastal aquifer located in a lowland setting in order to understand the drivers of the groundwater salinization. Physical aquifer parameterization highlights a vertical hydraulic gradient due to the presence of a heavy drainage system, which controls the hydrodynamics of this coastal area, forcing groundwater to flow from the bottom toward the top of the aquifer. As a consequence, relict seawater in stable density stratification, preserved within low permeability sediments in the deepest portion of the aquifer, has been drawn upward. The hydrogeochemical investigations allow identifying the role of seepage and water-sediment interactions in the aquifer salinization process and in the modification of groundwater chemistry. Mixing between freshwater and saltwater occurs; however, it is neither the only nor the dominant process driving groundwater hydrochemistry. In the aquifer several concurring and competing water-sediment interactions - as NaCl solution, ion-exchange, calcite and dolomite dissolution/precipitation, oxidation of organic matter, and sulfate bacterial reduction - are triggered by or overlap freshwater-saltwater mixing The hyper-salinity found in the deepest portion of the aquifer cannot be associated with present seawater intrusion, but suggests the presence of salt water of marine origin, which was trapped in the inter-basin during the Holocene transgression. The results of this study contribute to a better understanding of groundwater dynamics and salinization processes in this lowland coastal aquifer.

  20. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  1. Evaluation of simulated cross-formational travel times using water age measurements in layered aquifer systems

    NASA Astrophysics Data System (ADS)

    Papafotiou, Alexandros; Ewing, John; Deeds, Neil; Kreitler, Charlie

    2013-04-01

    The recent hydrologic droughts in the southwestern USA have brought forward the necessity for sustainable management of groundwater that was recharged several thousands of years ago, also known as fossil water, as this resource is not directly rechargeable even through heavy rain events. Groundwater age studies can enable water authorities to map the origins of groundwater, quantify water ages in aquifers and plan sustainable water resource policies on local and regional scales. In this study, numerical groundwater availability models (GAMs) are combined with water age measurements to perform a water age analysis of the Wilcox, Carrizo, Queen City, Sparta, Jackson and Yegua aquifers that span central Texas dipping toward the coast of the Gulf of Mexico. The 3D GAMs have initially been calibrated using well data. The water age analysis is carried out using 2D simulations to characterize down dip flow, cross-formational flow in the aquifers and the impact on associated water ages in representative transects extracted from the 3D models, including a discussion on bridging the gap between the 3D hydrogeological system and its simplified 2D representations. A systematic quantification of water age sensitivity to formation hydraulic conductivities and recharge at the aquifer outcrops is performed, whereby travel times in the simulated aquifers are compared to water age measurements obtained from C-14 and Tritium age dating techniques. The analysis therefore delivers the spectrum of water age isolines under consideration of model parameter uncertainty, evaluating the predictive ability of cross-formational water age studies when using 2D transect models.

  2. Denitrification and mixing in a stream-aquifer system: Effects on nitrate loading to surface water

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.

    1996-01-01

    Ground water in terrace deposits of the South Platte River alluvial aquifer near Greeley, Colorado, USA, had a median nitrate concentration of 1857 ??mol l-1. Median nitrate concentrations in ground water from adjacent floodplain deposits (468 ??mol l-1) and riverbed sediments (461 ??mol l-1), both of which are downgradient from the terrace deposits, were lower than the median concentration in the terrace deposits. The concentrations and ??15N values of nitrate and N2 in ground water indicated that denitrifying activity in the floodplain deposits and riverbed sediments accounted for 15- 30% of the difference in nitrate concentrations. Concentrations of Cl- and SiO2 indicated that mixing between river water and ground water in the floodplain deposits and riverbed sediments accounted for the remainder of the difference in nitrate concentrations. River flux measurements indicated that ground-water discharge in a 7.5 km segment of river had a nitrate load of 1718 kg N day-1 and accounted for about 18% of the total nitrate load in the river at the downstream end of that segment. This nitrate load was 70% less than the load predicted on the basis of the median nitrate concentration in the terrace deposits and assuming no denitrification or mixing in the aquifer. Water exchange between the river and aquifer caused ground water that originally discharged to the river to reenter denitrifying sediments in the riverbed and floodplain, thereby further decreasing the nitrate load in this stream-aquifer system. Results from this study indicated that denitrification and mixing within alluvial aquifer sediments may substantially decrease the nitrate load added to rivers by discharging ground water.

  3. A Regional Strategy for the Assessment and Management of Transboundary Aquifer Systems in the Americas

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.; Rivera, A.; Tujchneider, O.; Guillén, C.; Campos, M.; Da Franca, N.; May, Z.; Aureli, A.

    2015-12-01

    The UNESCO-IHP ISARM-Americas technical committee has developed a regional strategy for the assessment and management of transboundary aquifer systems in the Americas as part of their ongoing cooperative assistance to help neighboring countries sustain water resources and reduce potential conflict. The fourth book in the series of publications sponsored by UNESCO and OAS documents this strategy. The goal of this strategy is the collective understanding, developing, managing, and protecting of the transboundary aquifers in the Americas This strategy includes technical, social, and governance recommendations for an integrated resource management of groundwater based on flexible arrangements that not only manage but also demand social participation in solving problems, consider changes in land use and water use and promote the increase of water sustainability for all transboundary neighbors. The successful implementation of this strategy starts with sharing information of the status and use of land and water as well as intergovernmental partnerships to link science and policy with existing instruments for managing the water resources. International organizations such as UNESCO and OAS also can help facilitate the development of transboundary agreements and establish cooperation on transboundary aquifers between neighbors. The UNESCO-IHP ISARM-Americas technical committee has been successful in creating a network of partners from 24 countries and in translating existing aquifer knowledge into a meaningful strategy for the American hemisphere. The strategy aims to explain and develop the role of science and the informed-decision approach. Examples from North and South America show how the process has begun to develop for selected transboundary aquifers. These include the Milk River basin between the US and Canada, the Rio Grande and Colorado River basins between the US and Mexico, and the Guarani River basin in South America.

  4. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Athanasiou, Georgios; Schimdt, Felix; Apostolopoulos, Georgios; Uzunoglou, Nikolaos; Dietrich, Peter; Schuth, Christoph

    2015-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential

  5. Hydrogeology and ground-water flow in the Memphis and Fort Pillow aquifers in the Memphis area, Tennessee

    USGS Publications Warehouse

    Brahana, J.V.; Broshears, R.E.

    2001-01-01

    On the basis of known hydrogeology of the Memphis and Fort Pillow aquifers in the Memphis area, a three-layer, finite-difference numerical model was constructed and calibrated as the primary tool to refine understanding of flow in the aquifers. The model was calibrated and tested for accuracy in simulating measured heads for nine periods of transient flow from 1886-1985. Testing and sensitivity analyses indicated that the model accurately simulated observed heads areally as well as through time. The study indicates that the flow system is currently dominated by the distribution of pumping in relation to the distribution of areally variable confining units. Current withdrawal of about 200 million gallons per day has altered the prepumping flow paths, and effectively captured most of the water flowing through the aquifers. Ground-water flow is controlled by the altitude and location of sources of recharge and discharge, and by the hydraulic characteristics of the hydrogeologic units. Leakage between the Fort Pillow aquifer and Memphis aquifer, and between the Memphis aquifer and the water-table aquifers (alluvium and fluvial deposits) is a major component of the hydrologic budget. The study indicates that more than 50 percent of the water withdrawn from the Memphis aquifer in 1980 is derived from vertical leakage across confining units, and the leakage from the shallow aquifer (potential source of contamination) is not uniformly distributed. Simulated leakage was concentrated along the upper reaches of the Wolf and Loosahatchie Rivers, along the upper reaches of Nonconnah Creek, and the surficial aquifer of the Mississippi River alluvial plain. These simulations are supported by the geologic and geophysical evidence suggesting relatively thin or sandy confining units in these general locations. Because water from surficial aquifers is inferior in quality and more susceptible to contamination than water in the deeper aquifers, high rates of leakage to the Memphis

  6. A digital simulation of the glacial-aquifer system in the northern three-fourths of Brown County, South Dakota

    USGS Publications Warehouse

    Emmons, P.J.

    1990-01-01

    A digital model was developed to simulate groundwater flow in a complex glacial-aquifer system that includes the Elm, Middle James, and Deep James aquifers in South Dakota. The average thickness of the aquifers ranges from 16 to 32 ft and the average hydraulic conductivity ranges from 240 to 300 ft/day. The maximum steady-state recharge to the aquifer system was estimated to be 7.0 in./yr, and the maximum potential steady- state evapotranspiration was estimated to be 35.4 in/yr. Maximum monthly recharge for 1985 ranged from zero in the winter to 2.5 in in May. The potential monthly evapotranspiration for 1985 ranged from zero in the winter to 7.0 in in July. The average difference between the simulated and observed water levels from steady-state conditions (pre-1983) was 0. 78 ft and the average absolute difference was 4.59 ft for aquifer layer 1 (the Elm aquifer) from 22 observation wells and 3.49 ft and 5.10 ft, respectively, for aquifer layer 2 (the Middle James aquifer) from 13 observation wells. The average difference between the simulated and observed water levels from simulated monthly potentiometric heads for 1985 in aquifer layer 1 ranged from -2.54 ft in July to 0.59 ft in May and in aquifer layer 2 ranged from -1.22 ft in April to 4.98 ft in November. Sensitivity analysis of the steady-state model indicates that it is most sensitive to changes in recharge and least sensitive to changes in hydraulic conductivity. (USGS)

  7. Numerical modeling of groundwater flow in the coastal aquifer system of Taranto (southern Italy)

    NASA Astrophysics Data System (ADS)

    De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara

    2014-05-01

    The Mediterranean region is characterized by a strong development of coastal areas with a high concentration of water-demanding human activities, resulting in weakly controlled withdrawals of groundwater which accentuate the saltwater intrusion phenomenon. The worsening of groundwater quality is a huge problem especially for those regions, like Salento (southern Italy), where a karst aquifer system represents the most important water resource because of the deficiency of a well developed superficial water supply. In this frame, the first 2D numerical model describing the groundwater flow in the karst aquifer of Salento peninsula was developed by Giudici et al. [1] at the regional scale and then improved by De Filippis et al. [2]. In particular, the estimate of the saturated thickness of the deep aquifer highlighted that the Taranto area is particularly sensitive to the phenomenon of seawater intrusion, both for the specific hydrostratigraphic configuration and for the presence of highly water-demanding industrial activities. These remarks motivate a research project which is part of the research program RITMARE (The Italian Research for the Sea), within which a subprogram is specifically dedicated to the problem of the protection and preservation of groundwater quality in Italian coastal aquifers and in particular, among the others, in the Taranto area. In this context, the CINFAI operative unit aims at providing a contribution to the characterization of groundwater in the study area. The specific objectives are: a. the reconstruction of the groundwater dynamic (i.e., the preliminary identification of a conceptual model for the aquifer system and the subsequent modeling of groundwater flow in a multilayered system which is very complex from the hydrostratigraphical point of view); b. the characterization of groundwater outflows through submarine and subaerial springs and the water exchanges with the shallow coastal water bodies (e.g. Mar Piccolo) and the off

  8. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system.

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Alexandros; Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Schmidt, Felix; Athanasiou, Georgios; Uzunoglou, Nikolaos; Amditis, Angelos; Dietrich, Peter

    2016-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential

  9. Core drilling provides information about Santa Fe Group aquifer system beneath Albuquerque's West Mesa

    USGS Publications Warehouse

    Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.

    1998-01-01

    Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.

  10. The chemical behavior of transuranium elements and barrier functions in natural aquifer systems

    SciTech Connect

    Kim, Jae-Il

    1993-12-31

    The chemical behavior of transuranium elements in natural aquifer systems is governed by a variety of geochemical reactions, such as dissolution reaction (solubility), hydrolysis, complexation with inorganics or organics, redox reaction, colloid formation, geochemical interaction with surfaces of various minerals, coprecipitation, mineralization, etc. This paper reviews the present state of knowledge on some of these particular reactions. The emphasis here is on how the individual reactions can be appraised for long-term prediction of the geochemical behavior of transuranium elements in the natural environment. Of the various possible reactions, the primary thermodynamic processes are discussed with notable examples: dissolution of transuranium compounds in aquatic solution; complexation with important anions present in groundwater; and colloid generation. Various laser spectroscopic methods in use for chemical speciation are mentioned briefly for their spectroscopic capability, as well as for their applicability. The present paper attempts to better understand the migration behavior of transuranium elements in natural aquifer systems.

  11. Geohydrology of the Lloyd Aquifer, Long Island, New York

    USGS Publications Warehouse

    Garber, M.S.

    1986-01-01

    The Lloyd aquifer contains only about 9% of the water stored in Long Island 's groundwater system but is the only source of potable water for several communities near the north and south shores. The Lloyd aquifer is virtually untapped throughout most of central Long Island because current legal restrictions permit its use only in coastal areas. The upper surface of the Lloyd aquifer ranges in depth from 100 ft below land surface on the north shore to more than 1,500 ft on the south shore. Aquifer thickness increases southward from 50 ft to about 500 ft. Transmissivity ranges from 1,500 to 19,000 sq ft/day. All recharge (35 to 40 mil gal/day) and nearly all discharge is through the overlying confining unit. Nearly all of the pumpage (approximately 20 mil gal/day) is in Queens and along the north and south shores of Nassau County. Potable water can be obtained on most of Long Island in larger quantities and at shallower depths from other aquifers than from the Lloyd. Local contamination of these other aquifers, however, may require at least temporary withdrawals from the Lloyd in noncoastal areas. Significant withdrawals from the Lloyd aquifer may lower the potentiometric surface and thereby induce landward movement of sea water into the aquifer in coastal areas. (Author 's abstract)

  12. A semi-analytical model for predicting water quality from an aquifer storage and recovery system

    NASA Astrophysics Data System (ADS)

    Sedighi, Ali; Klammler, Harald; Brown, Chris; Hatfield, Kirk

    2006-10-01

    SummaryAquifer storage and recovery (ASR) involves the injection of freshwater in an aquifer through wells for the purpose of creating a subsurface water supply that is recovered at a later time, often using the same wells, to meet seasonal, long-term, emergency, or other demands. In this paper a numerically efficient semi-analytical model is developed for predicting the quality of water recovered by an ASR system given data on the qualities of ambient and injected waters, hydraulic properties of the aquifer, ambient hydraulic gradient, and system operations. It is assumed the ASR well is installed in a stratified aquifer such that the semi-analytical ASR model (SASRM) simulates the fate of water injected under steady-state conditions into each stratum. It is also assumed that a sharp and mobile interface separates injected water from ambient groundwater such that in situ mixing of water within and between strata does not occur. SASRM assigns particles to define the location the interface in all strata and then follows the migration of these particles under ambient and induced flow conditions. During water recovery, the transient location of the interface is simulated in each stratum and this information is used to quantify the fractions of ambient and injected water extracted at the well-head and the quality of water recovered. To mimic the effects of dispersion, a Latin Hypercube sampling strategy is used to assign hydraulic conductivities according to a predefined probability distribution to the layers of a conceptually stratified aquifer. The volumetric fraction of water received or delivered from any given lithologic unit is assumed proportional to the transmissivity of the stratum normalized to the total aquifer transmissivity interrogated by the ASR well. SARSM is numerically verified against MT3DMS and then calibrated and validated using field data from an ASR system located in Boynton Beach, FL. The field demonstration shows SASRM is capable of predicting

  13. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    SciTech Connect

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides.

  14. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    USGS Publications Warehouse

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  15. Identifying functional zones of denitrification in heterogeneous aquifer systems by numerical simulations - a case study

    NASA Astrophysics Data System (ADS)

    Jang, E.; Kalbacher, T.; He, W.; Shao, H.; Schueth, C.; Kolditz, O.

    2014-12-01

    Nitrate contamination in shallow groundwater is still one of the common problems in many countries. Because of its high solubility and anionic nature, nitrate can easily leach through soil and persist in groundwater for decades. High nitrate concentration has been suggested as a major cause of accelerated eutrophication, methemoglobinemia and gastric cancer. There are several factors influencing the fate of nitrate in groundwater system, which is e.g. distribution of N- sources to soil and groundwater, distribution and amount of reactive substances maintaining denitrification, rate of nitrate degradation and its kinetics, and geological characteristics of the aquifer. Nitrate transport and redox transformation processes are closely linked to complex and spatially distributed physical and chemical interaction, therefore it is difficult to predict and quantify in the field and laboratory experiment. Models can play a key role in elucidation of nitrate reduction pathway in groundwater system and in the design and evaluation of field tests to investigate in situ remediation technologies as well. The goal of the current study is to predict groundwater vulnerability to nitrate, to identify functional zones of denitrification in heterogeneous aquifer systems and to describe the uncertainty of the predictions due to scale effects. For this aim, we developed a kinetic model using multi-component mass transport code OpenGeoSys coupling with IPhreeqc module of the geochemical solver PHREEQC. The developed model included sequential aerobic and nitrate-based respiration, multi-Monod kinetics, multi-species biogeochemical reactions, and geological characteristics of the groundwater aquifer. Moreover water-rock interaction such as secondary mineral precipitation was also included in this model. In this presentation, we focused on the general modelling approach and present the simulation results of nitrate transport simulation in a hypothetical aquifer systems based on data from

  16. Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey

    SciTech Connect

    Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

    2002-02-27

    Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a

  17. Hydrogeology and simulated effects of ground-water development on an unconfined aquifer in the Closed Basin Division, San Luis Valley, Colorado

    USGS Publications Warehouse

    Leonard, G.J.; Watts, K.R.

    1988-01-01

    Wells completed in an unconfined aquifer in the Closed Basin Division of the San Luis Valley Project, Colorado, are expected to provide about 101,800 acre-ft of groundwater/year to the Rio Grande when this project is completed. Lowering of groundwater levels in the unconfined aquifer is expected to decrease the quantity of groundwater that is lost by evapotranspiration. The aquifer system, which consists of an unconfined aquifer that is 50 to 130 ft thick, overlies a thick, leaky confined aquifer. Groundwater moves from the edge of the valley toward a topographic low near the center of the Closed Basin Division, where it is lost by evapotranspiration. A two-dimensional groundwater flow model was used to evaluate the effects of projected withdrawal of about 141 cu ft/sec by 168 wells throughout a 20-year period. The simulated pumpage resulted in a projected drawdown greater than 0.1 ft in the water-levels of the unconfined aquifer over an area of about 370 sq mi. Maximum simulated drawdown was 25 ft. Simulations indicate that about 66 % of the water to be withdrawn from the unconfined aquifer would be derived from decreases of evapotranspiration, 26% from induced leakage from an underlying confined aquifer, and 8% from storage of the unconfined aquifer. Model simulations were based only on withdrawals from wells completed in the unconfined aquifer. Pumpage from the confined aquifer was not simulated. Upward leakage from the confined aquifer predicted by the model, results from the simulated declines of the potentiometric surface in the unconfined aquifer. (USGS)

  18. Mathematical model of the Tesuque aquifer system near Pojoaque, New Mexico

    USGS Publications Warehouse

    Hearne, Glenn A.

    1985-01-01

    A three-dimensional digital model of ground-water flow was constructed to represent the dipping anisotropic beds of the Tesuque aquifer system underlying the Pojoaque River basin and vicinity, New Mexico. Simulations of steady-state conditions and historical ground-water withdrawals were consistent with observed data. The model was used to simulate the response of the aquifer system to an irrigation-development plan in the Pojoaque River basin. Storage is the main source of water; 34.05 cubic feet per second (86 percent of the withdrawal rate) was simulated to be withdrawn from storage after 50 years of withdrawals for irrigation development. The maximum simulated water-level decline was 334 feet, and the net simulated streamflow capture from the Rio Grande and the Santa Cruz, Pojoaque, and Santa Fe Rivers was 5.63 cubic feet per second (14 percent of the withdrawal rate). The sensitivity of the model was tested by varying aquifer characteristics to the limits of the plausible range. Change in hydraulic head in the Pojoaque River basin is most sensitive to hydraulic conductivity. In all simulations, after 50 years of withdrawals, the maximum simulated decline in hydraulic head ranged between 210 and 474 feet, storage in the aquifer system was the source of 80 to 90 percent of the water withdrawn from wells, and streamflow capture from the Rio Grande and its tributaries plus irrigation diversions from the tributaries of the Pojoaque River simulated a decrease in the flow of the Rio Grande of between 17.13 and 21.11 cubic feet per second.

  19. The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, northern Estonia

    NASA Astrophysics Data System (ADS)

    Karro, Enn; Marandi, Andres; Vaikmäe, Rein

    Monitoring of the confined Cambrian-Vendian aquifer system utilised for industrial water supply at Kopli Peninsula in Tallinn over 24 years reveals remarkable changes in chemical composition of groundwater. A relatively fast 1.5 to 3.0-fold increase in TDS and in concentrations of major ions in ed groundwater is the consequence of heavy pumping. The main sources of dissolved load in Cambrian-Vendian groundwater are the leaching of host rock and the other geochemical processes that occur in the saturated zone. Underlying crystalline basement, which comprises saline groundwater in its upper weathered and fissured portion, and which is hydraulically connected with the overlying Cambrian-Vendian aquifer system, is the second important source of ions. The fractured basement and its clayey weathering crust host the Ca-Cl type groundwater, which is characterised by high TDS values (2-20 g/L). Intensive water ion accelerates the exchange of groundwaters and increases the area of influence of pumping. Chemical and isotopic studies of groundwater indicate an increasing contribution of old brackish water from the crystalline basement and rule out the potential implication of an intrusion of seawater into aquifer. L'origine de la salinité croissante dans le système aquifère du Cambrien-Vendien dans la péninsule de Kopli, nord de l'Estonie Le suivi à long terme du système aquifère captif du Cambrien-Vendien utilisé pour l'approvisionnement d'eaux industrielles dans la Péninsule de Kopli, nord de l'Estonie, révèle de remarquables changements dans la composition chimique des eaux souterraines. Une augmentation de facteur 1.5 à 3 de la TDS et des concentrations en ions majeurs dans l'eau souterraine est la conséquence de pompages intensifs. Les sources principales des charges dissoutes dans les eaux de l'aquifère du Cambrien-Vendien sont le lessivage des roches et d'autres phénomènes géochimiques ayant lieu dans la zone saturée. Le soubassement rocheux cristallin

  20. The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, northern Estonia

    NASA Astrophysics Data System (ADS)

    Karro, Enn; Marandi, Andres; Vaikmäe, Rein

    Monitoring of the confined Cambrian-Vendian aquifer system utilised for industrial water supply at Kopli Peninsula in Tallinn over 24 years reveals remarkable changes in chemical composition of groundwater. A relatively fast 1.5 to 3.0-fold increase in TDS and in concentrations of major ions in ed groundwater is the consequence of heavy pumping. The main sources of dissolved load in Cambrian-Vendian groundwater are the leaching of host rock and the other geochemical processes that occur in the saturated zone. Underlying crystalline basement, which comprises saline groundwater in its upper weathered and fissured portion, and which is hydraulically connected with the overlying Cambrian-Vendian aquifer system, is the second important source of ions. The fractured basement and its clayey weathering crust host the Ca-Cl type groundwater, which is characterised by high TDS values (2-20 g/L). Intensive water ion accelerates the exchange of groundwaters and increases the area of influence of pumping. Chemical and isotopic studies of groundwater indicate an increasing contribution of old brackish water from the crystalline basement and rule out the potential implication of an intrusion of seawater into aquifer. L'origine de la salinité croissante dans le système aquifère du Cambrien-Vendien dans la péninsule de Kopli, nord de l'Estonie Le suivi à long terme du système aquifère captif du Cambrien-Vendien utilisé pour l'approvisionnement d'eaux industrielles dans la Péninsule de Kopli, nord de l'Estonie, révèle de remarquables changements dans la composition chimique des eaux souterraines. Une augmentation de facteur 1.5 à 3 de la TDS et des concentrations en ions majeurs dans l'eau souterraine est la conséquence de pompages intensifs. Les sources principales des charges dissoutes dans les eaux de l'aquifère du Cambrien-Vendien sont le lessivage des roches et d'autres phénomènes géochimiques ayant lieu dans la zone saturée. Le soubassement rocheux cristallin

  1. 3D geological modeling of the Kasserine Aquifer System, Central Tunisia: New insights into aquifer-geometry and interconnections for a better assessment of groundwater resources

    NASA Astrophysics Data System (ADS)

    Hassen, Imen; Gibson, Helen; Hamzaoui-Azaza, Fadoua; Negro, François; Rachid, Khanfir; Bouhlila, Rachida

    2016-08-01

    The challenge of this study was to create a 3D geological and structural model of the Kasserine Aquifer System (KAS) in central Tunisia and its natural extension into north-east Algeria. This was achieved using an implicit 3D method, which honors prior geological data for both formation boundaries and faults. A current model is presented which provides defendable predictions for the spatial distribution of geology and water resources in aquifers throughout the model-domain. This work has allowed validation of regional scale geology and fault networks in the KAS, and has facilitated the first-ever estimations of groundwater resources in this region by a 3D method. The model enables a preliminary assessment of the hydraulic significance of the major faults by evaluating their influence and role on groundwater flow within and between four compartments of the multi-layered, KAS hydrogeological system. Thus a representative hydrogeological model of the study area is constructed. The possible dual nature of faults in the KAS is discussed in the context that some faults appear to be acting both as barriers to horizontal groundwater flow, and simultaneously as conduits for vertical flow. Also discussed is the possibility that two flow directions occur within the KAS, at a small syncline area of near Feriana. In summary, this work evaluates the influence of aquifer connectivity and the role of faults and geology in groundwater flow within the KAS aquifer system. The current KAS geological model can now be used to guide groundwater managers on the best placement for drilling to test and further refine the understanding of the groundwater system, including the faults connectivity. As more geological data become available, the current model can be easily edited and re-computed to provide an updated model ready for the next stage of investigation by numerical flow modeling.

  2. Processes controlling aquifer fluid compositions in the Olkaria geothermal system, Kenya

    NASA Astrophysics Data System (ADS)

    Karingithi, Cyrus W.; Arnórsson, Stefán; Grönvold, Karl

    2010-09-01

    The volcanic geothermal system of Olkaria in Kenya has been extensively drilled for development purposes. The well data show that the reservoir is liquid-dominated. Often downhole temperatures in thermally stabilized wells follow the boiling point curve with depth to at least 2 km. In one part of the field (Olkaria East), a vapor-dominated cap existed above the liquid reservoir when the first deep wells were sunk in the area. Many of the producing wells have excess discharge enthalpy, i.e. the enthalpy is higher than that of steam-saturated water at the temperature of producing aquifers. In some cases, inflow from feed zones in the vapor cap may contribute to the excess enthalpy. Geothermometer results indicate, however, that excess enthalpy is dominantly produced by phase segregation in the depressurization zone around producing wells, the liquid being partially retained in the aquifer by its capillary adsorption onto mineral grain surfaces while the steam flows into the wells. The flashed water discharged from wells is of the Na-Cl or Na-HCO 3 types containing 50-1200 ppm of Cl. The most abundant dissolved constituent (average on a molal basis) in the aquifer fluid is CO 2, followed by Na, Cl, Si, F, K and H 2S. Modelling of aquifer fluid compositions using the phase segregation model reveals that the concentrations of only one of the major reactive components (CO 2) may be externally controlled, i.e. by its flux to the hydrothermal fluid. All the other reactive components (Al, Ca, F, Fe, K, Mg, Na, Si, S) are controlled by close approach to local equilibrium with hydrothermal minerals. In the Olkaria West and Domes sectors, the CO 2 aquifer fluid concentration is controlled by its flux from the magma heat source, but in other parts of the Olkaria field, it closely approaches equilibrium with the epidote-prehnite-calcite-quartz hydrothermal mineral assemblage. The mineral assemblage pyrite-pyrrhotite-magnetite controls aquifer water H 2S and H 2 concentrations

  3. Digital models of ground-water flow in the Cape Cod aquifer system, Massachusetts

    USGS Publications Warehouse

    Guswa, John H.; LeBlanc, Denis R.

    1981-01-01

    The Cape Cod aquifer system was simulated with three-dimensional finite-difference ground-water-flow models. Five areas were modeled to provide tools which can be used to help predict the hydrologic impacts of regional water development and disposal schemes. Model boundaries were selected to represent the natural hydrologic boundaries of the aquifer. The boundary between fresh and saline ground water is treated as an interface of no dispersion, and the saline-water zone is treated as being non-flowing. Comparisons of calculated and observed head values, position of the freshwater and saline-water boundary, and ground-water-discharge rates at locations where data are available indicate that the simulated ground-water reservoirs generally agree with the field conditions and the models can be used for predictive studies. (USGS)

  4. Lead and cadmium associated with saltwater intrusion in a New Jersey aquifer system

    USGS Publications Warehouse

    Pucci, Amleto A., Jr.; Harriman, Douglas A.; Ervin, Elisabeth M.; Bratton, Lisa; Gordon, Alison

    1989-01-01

    The U.S. Geological Survey collected ground-water samples from the upper and middle aquifers of the Potomac-Raritan-Magothy aquifer system in a 400-square-mile area of New Jersey from 1984 through 1986. Concentrations of lead were greater than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 50 micrograms per liter in water from 16 to 239 wells. The concentrations of cadmium were greater than the MCL of 10 micrograms per liter in water from 10 to 241 wells. One-half of the wells that exceeded the lead MCL were in known areas of saltwater intrusion, as were all 10 wells that exceeded the cadmium MCL. The association of elevated concentrations of these metals with elevated concentrations of chloride indicates a mechanism related to saltwater intrusion.

  5. Digital models of ground-water flow in the Cape Cod aquifer system, Massachusetts

    USGS Publications Warehouse

    Guswa, John H.; LeBlanc, Denis R.

    1985-01-01

    The Cape Cod aquifer system was simulated with three-dimensional finite-difference ground-water-flow models. Five areas were modeled to provide tools that can be used to evaluate the hydrologic impacts of regional water development and waste disposal. The model boundaries were selected to represent the natural hydrologic boundaries of the aquifer. The boundary between fresh and saline ground water was treated as an interface along which there is no dispersion. The saline-water zone was treated as static (nonflowing). Comparisons of calculated and observed values of head, position of the boundary between fresh and saline water, and ground-water discharge (at locations where data were available) indicate that the simulated groundwater reservoirs generally agree with field conditions. Model analyses indicate that the total steady-state freshwater-flow rate through the five modeled areas is approximately 412 cubic feet per second.

  6. Geostatistical Simulation of Hydrofacies Heterogeneity of the West Thessaly Aquifer Systems in Greece

    SciTech Connect

    Modis, K. Sideri, D.

    2013-06-15

    Integrating geological properties, such as relative positions and proportions of different hydrofacies, is of highest importance in order to render realistic geological patterns. Sequential indicator simulation (SIS) and Plurigaussian simulation (PS) are alternative methods for conceptual and deterministic modeling for the characterization of hydrofacies distribution. In this work, we studied the spatial differentiation of hydrofacies in the alluvial aquifer system of West Thessaly basin in Greece. For this, we applied both SIS and PS techniques to an extensive set of borehole data from that basin. Histograms of model versus experimental hydrofacies proportions and indicative cross sections were plotted in order to validate the results. The PS technique was shown to be more effective in reproducing the spatial characteristics of the different hydrofacies and their distribution across the study area. In addition, the permeability differentiations reflected in the PS model are in accordance to known heterogeneities of the aquifer capacity.

  7. Lead and cadmium associated with saltwater intrusion in a New Jersey aquifer system

    SciTech Connect

    Pucci, A.A. Jr.; Gordon, A. ); Harriman, D.A. ); Ervin, E.M. ); Bratton, L. )

    1989-12-01

    The US Geological Survey collected ground-water samples from the upper and middle aquifers of the Potomac-Raritan-Magothy aquifer system in a 400-square-mile are of New Jersey from 1984 through 1986. Concentrations of lead were greater than the US Environmental Protection Agency maximum contaminant level (MCL) of 50 micrograms per liter in water from 16 to 239 wells. The concentrations of cadmium were greater than the MCL of 10 micrograms per liter in water from 10 to 241 wells. One-half of the wells that exceeded the lead MCL were in known areas of saltwater intrusion, as were all 10 wells that exceeded the cadmium MCL. The association of elevated concentrations of these metals with elevated concentrations of chloride indicates a mechanism related to saltwater intrusion.

  8. The distribution of bromide in water in the Floridan aquifer system, Duval County, northeastern Florida

    USGS Publications Warehouse

    German, E.R.; Taylor, G.F.

    1995-01-01

    Although Duval County, Florida, has ample ground-water resources for public supply, the potential exists for a problem with excessive disinfectant by-products. These disinfectant by-products result from the treatment of raw water containing low concentrations of bromide and naturally occurring organic compounds. Because of this potential problem, the relation of bromide concentrations to aquifer tapped, well location and depth, and chemical characteristics of water in the Floridan aquifer system underlying Duval County were studied to determine if these relations could be applied to delineate water with low-bromide concentrations for future supplies. In 1992, water samples from 106 wells that tap the Floridan aquifer system were analyzed for bromide and major dissolved constituents. A comparison of bromide concentrations from the 1992 sampling with data from earlier studies (1979-80) indicates that higher bromide concentrations were detected during the earlier studies. The difference between the old and new data is probably because of a change in analytical methodology in the analysis of samples. Bromide concentrations exceeded the detection limit (0.10 milligrams per liter) in water from 28 of the 106 wells (26 percent) sampled in 1992. The maximum concentration was 0.56 milligrams per liter. There were no relations between bromide and major dissolved constituents, well depth, or aquifer tapped that would be useful for determining bromide concentrations. Areal patterns of bromide occurrence are not clearly defined, but areas with relatively high bromide concentrations tend to be located in a triangular area near the community of Sunbeam, Florida, and along the St. Johns River throughout Duval County.

  9. Hydrogeology and simulated effects of ground-water withdrawals from the Floridan aquifer system in Lake County and in the Ocala National Forest and vicinity, north-central Florida

    USGS Publications Warehouse

    Knowles, Leel, Jr.; O'Reilly, Andrew M.; Adamski, James C.

    2002-01-01

    The hydrogeology of Lake County and the Ocala National Forest in north-central Florida was evaluated (1995-2000), and a ground-water flow model was developed and calibrated to simulate the effects of both present day and future ground-water withdrawals in these areas and the surrounding vicinity. A predictive model simulation was performed to determine the effects of projected 2020 ground-water withdrawals on the water levels and flows in the surficial and Floridan aquifer systems. The principal water-bearing units in Lake County and the Ocala National Forest are the surficial and Floridan aquifer systems. The two aquifer systems generally are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Florida aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which generally are separated by one or two less-permeable confining units. The Floridan aquifer system is the major source of ground water in the study area. In 1998, ground-water withdrawals totaled about 115 million gallons per day in Lake County and 5.7 million gallons per day in the Ocala National Forest. Of the total ground water pumped in Lake County in 1998, nearly 50 percent was used for agricultural purposes, more than 40 percent for municipal, domestic, and recreation supplies, and less than 10 percent for commercial and industrial purposes. Fluctuations of lake stages, surficial and Floridan aquifer system water levels, and Upper Floridan aquifer springflows in the study area are highly related to cycles and distribution of rainfall. Long-term hydrographs for 9 lakes, 8 surficial aquifer system and Upper Floridan aquifer wells, and 23 Upper Floridan aquifer springs show the most significant increases in water levels and springflows following consecutive years with above-average rainfall, and significant decreases following consecutive years

  10. Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: A case study of Nefzaoua basin, southern Tunisia.

    PubMed

    Tarki, M; Ben Hammadi, M; El Mejri, H; Dassi, L

    2016-04-01

    The hydrochemical and isotopic investigation of the Nefzaoua aquifer system demonstrates that groundwater mineralization in is controlled by natural and anthropogenic processes including water-rock interaction and irrigation return flow. It identifies all of the water bodies that flow within the aquifer system and their circulation patterns. The isotopically depleted paleowaters, identified within the deep and intermediate aquifers, undergo significant enrichment by evaporation during irrigation and recharged the shallow aquifer by return flow. Subsequently, they infiltrate to the intermediate aquifer which receives also rainfall modern recharge. PMID:26774392

  11. Hydrogeology and Potentiometric Surface of the Dublin and Midville Aquifer Systems in Richmond County, Georgia, January 2007

    USGS Publications Warehouse

    Williams, Lester J.

    2007-01-01

    INTRODUCTION The Dublin and Midville aquifer systems are part of the Cretaceous aquifer system that underlies most of Richmond County, Georgia (Gorday, 1985; Falls and others, 1997). The Cretaceous aquifer system is the second most productive aquifer in Georgia and is a major source of water in the region. About 220 million gallons per day (Mgal/d) of water was withdrawn from the Cretaceous aquifer system during 2000 in Georgia (Fanning, 2003). The Augusta-Richmond County Water System is the largest public water supplier in the county and withdrew 13 Mgal/d of ground water during 2000; withdrawals decreased from 2001 to 2005. The towns of Hephzibah and Blythe withdrew 0.4 and 0.03 Mgal/d, respectively. Industrial ground-water withdrawals are concentrated along the Savannah River and totaled 2.89 Mgal/d. To monitor seasonal and long-term water-level fluctuations and trends in the aquifers, the U.S. Geological Survey (USGS) - in cooperation with Augusta Utilities - maintains a countywide network of about 100 water-level monitoring wells in various aquifers, including a new continuous monitoring site (well 30AA33) and two existing USGS-Georgia Environmental Protection Division network sites (wells 29AA09 and 30AA04). Data compiled during this study were used to better define the hydrogeologic units and to construct an updated potentiometric-surface map for the area, which is used to better understand ground-water movement in the Cretaceous aquifer system. In addition, the potentiometric surface and related water-level data can be used for water-resource planning and to update ground-water flow models for the region (Clarke and West, 1997; Cherry, 2006).

  12. Direct-push multilevel sampling system for unconsolidated aquifers

    NASA Astrophysics Data System (ADS)

    Ducommun, Pascale; Boutsiadou, Xenia; Hunkeler, Daniel

    2013-12-01

    An economical multilevel groundwater monitoring system has been developed that can be rapidly installed with a direct-push machine, yet is suitable for sampling across large permeability contrasts. This sealed multiport sampling (SMPS) system consists of up to five lengths of PVC tubing (12 mm OD), each with a screen at a specific depth created by drilling 2.5-mm holes. Above and below each screen, round elastomer pieces, with peripheral holes (to clip in the sampling tubes) and a central hole (to hold a discontinuous piece of central tubing at the height of the screen), are emplaced. Cement-bentonite grout is injected via a tremie tube inserted through the discontinuous centre tube into each interval between the sampling screens. The elastomer pieces and central tube prevent grout from reaching the screened interval. A textile wrapped around the system holds the arrangement in place and at the same time serves to filter the groundwater at the level of the sampling screens. The SMPS system was tested at a tetrachloroethene (PCE) contaminated site. The seals effectively separated the sampling intervals even in heterogeneous formations. Furthermore, concentration profiles agreed well with a reference system. The system should be suitable for a wide range of hydrogeological conditions.

  13. Geochemical and stable isotopic evolution of the Guarani Aquifer System in the state of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Sracek, Ondra; Hirata, Ricardo

    2002-09-01

    The purpose of this report is to explain geochemical and stable isotopes trends in the Brazilian unit of the Guarani Aquifer System (Botucatu and Piramboia aquifers) in São Paulo State, Brazil. Trends of dissolved species concentrations and geochemical modeling indicated a significant role of cation exchange and dissolution of carbonates in downgradient evolution of groundwater chemistry. Loss of calcium by the exchange for sodium drives dissolution of carbonates and results in Na-HCO3 type of groundwater. The cation-exchange front moves downgradient at probably much slower rate compared to the velocity of groundwater flow and at present is located near to the cities of Sertãozinho and Águas de Santa Barbara (wells PZ-34 and PZ-148, respectively) in a shallow confined area, 50-70 km from the recharge zone. Part of the sodium probably enters the Guarani Aquifer System. together with chloride and sulfate from the underlying Piramboia Formation by diffusion related to the dissolution of evaporates like halite and gypsum. High concentrations of fluorine (up to 13.3 mg/L) can be explained by dissolution of mineral fluoride also driven by cation exchange. However, it is unclear if the dissolution takes place directly in the Guarani Aquifer System or in the overlying basaltic Serra Geral Formation. There is depletion in δ2H and δ18O values in groundwater downgradient. Values of δ13C(DIC) are enriched downgradient, indicating dissolution of calcite under closed system conditions. Values of δ13C(DIC) in deep geothermal wells are very high (>-6.0‰) and probably indicate isotopic exchange with carbonates with δ13C about -3.0‰. Future work should be based on evaluation of vertical fluxes and potential for penetration of contamination to the Guarani Aquifer System. Résumé. Cet article a pour objet d'expliquer l'évolution de la géochimie et des isotopes stables dans l'unité brésilienne du système aquifère du Guarani (aquifères de Botucatu et Piramboia), dans

  14. Radial guiding-center drifts and omnigenity in bumpy-torus confinement systems

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.; Catto, P. J.

    1982-07-01

    Collisional transport of a high temperature plasma across the confining field of a bumpy torus magnetic confinement system which depends sensitively upon the functional form of the radial quiding center drift, and thus upon details of the confinement geometry is discussed. A general and relatively explicit formula for the radial drift is derived, using the large aspect-ratio results of a previous equilibrium study. Allowance is made for: (1) arbitrary toroidal variation of the confining field; (2) field distortion due to plasma currents; (3) noncircular deformation of the toroidal field coils. The analysis pertains only to the plasma core, and not to the high beta annuli (electron rings) which are usually present in experiments. The question of bumpy torus omnigenity whether any bumpy torus field configuration is consistent with a vanishing, or nearly vanishing, radial drift, is also investigated. It is found that omnigenity does not occur in the vicinity of the magnetic axis.

  15. Hydrologic effects of withdrawal of ground water on the West Fargo aquifer system, eastern Cass County, North Dakota

    USGS Publications Warehouse

    Armstrong, C.A.

    1986-01-01

    The West Fargo area, an area of 230 sq mi in eastern Cass County , is underlain by glaciofluvial sand and gravel deposits that form the West Fargo aquifer system. The aquifer system contains about 131,300 million gallons of available groundwater in storage. Recharge to the aquifer system is estimated to be about 600 to 650 million gallons per year. Discharge in 1980 is estimated to have been 683 million gallons. Pumping from the West fargo aquifer system began in the latter part of the 19th century. No records of pumpage were kept in the early years, but pumpage has averaged 613 million gallons/year near West Fargo at least since 1968. Water levels, which were near or above land surface at West Fargo in 1869, have declined to as much as 121.7 ft below land surface in 1981. In areas of little or no pumpage, water levels have declined much less. The rate of water-level decline in an observation well in the West Fargo South aquifer was as low as 0.2 ft/year, but increased to a rate of 2.1 ft/yr from 1976 through 1981 due to an increase of the average annual pumping rate of about 59.9 million gallons at a well field about 5 miles north. Water in the aquifer system contains from 332 to 2,960 mgs/L of dissolved solids and 25 to 975 mgs/L of chloride ions. (USGS)

  16. Hydrology of the Tertiary-Cretaceous aquifer system in the vicinity of Fort Rucker Aviation Center, Alabama

    USGS Publications Warehouse

    Scott, J.C.; Law, L.R.; Cobb, Riley

    1984-01-01

    Fort Rucker Aviation Center, built in 1941-42, uses ground water for its water supply. The demand for water began to exceed the capacity of the well field in 1976. The Tertiary-Cretaceous aquifer system in the Fort Rucker area consists of an upper and lower aquifer. The upper aquifer consists of the basal part of the Tuscahoma Sand, the Nanafalia and Clayton Formations, and the upper part of the Providence Sand. The lower aquifer consists of the lower part of the Providence Sand and the Ripley Formation. Most large capacity (greater than 100 gal/min (gallons per minute)) wells in the Fort Rucker area are developed in one of these aquifers, and produce 500 gal/min or more. An aquifer test made at Fort Rucker during the study indicates that the transmissivity of the upper aquifer is about 7,000 ft sq/d (feet squared per day). This test and a potentiometric map of the area indicate that wells spaced too closely together is a major problem at pumping centers in the study area. (USGS)

  17. Economic and environmental issues associated with confinement and pasture-based dairy systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Milk is produced in a continuum of dairy systems from full confinement to full pasture grazing. Climate, available feeds, and milk price: feed cost ratio influence the preferred system. All dairy systems have an environmental impact and inputs to maximise profit may lead to pollution levels unacce...

  18. Post audit of a numerical prediction of wellfield drawdown in a semiconfined aquifer system

    USGS Publications Warehouse

    Stewart, M.; Langevin, C.

    1999-01-01

    A numerical ground water flow model was created in 1978 and revised in 1981 to predict the drawdown effects of a proposed municipal wellfield permitted to withdraw 30 million gallons per day (mgd; 1.1 x 105 m3/day) of water from the semiconfined Floridan Aquifer system. The predictions are based on the assumption that water levels in the semiconfined Floridan Aquifer reach a long-term, steady-state condition within a few days of initiation of pumping. Using this assumption, a 75 day simulation without water table recharge, pumping at the maximum permitted rates, was considered to represent a worst-case condition and the greatest drawdowns that could be experienced during wellfield operation. This method of predicting wellfield effects was accepted by the permitting agency. For this post audit, observed drawdowns were derived by taking the difference between pre-pumping and post-pumping potentiometric surface levels. Comparison of predicted and observed drawdowns suggests that actual drawdown over a 12 year period exceeds predicted drawdown by a factor of two or more. Analysis of the source of error in the 1981 predictions suggests that the values used for transmissivity, storativity, specific yield, and leakance are reasonable at the wellfield scale. Simulation using actual 1980-1992 pumping rates improves the agreement between predicted and observed drawdowns. The principal source of error is the assumption that water levels in a semiconfined aquifer achieve a steady-state condition after a few days or weeks of pumping. Simulations using a version of the 1981 model modified to include recharge and evapotranspiration suggest that it can take hundreds of days or several years for water levels in the linked Surficial and Floridan Aquifers to reach an apparent steady-state condition, and that slow declines in levels continue for years after the initiation of pumping. While the 1981 'impact' model can be used for reasonably predicting short-term, wellfield

  19. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  20. Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA

    NASA Astrophysics Data System (ADS)

    Sophocleous, Marios; Perkins, Samuel P.

    1993-12-01

    We address the problem of declining streamflows in interconnected stream-aquifer systems and explore possible management options to address the problem for two areas of central Kansas: the Arkansas River valley from Kinsley to Great Bend and the lower Rattlesnake Creek-Quivira National Wildlife Refuge area. The approach we followed implements, calibrates, and partially validates for the study areas a stream-aquifer numerical model combined with a parameter estimation package and sensitivity analysis. Hydrologic budgets for both predevelopment and developed conditions indicate significant differences in the hydrologic components of the study areas resulting from development. The predevelopment water budgets give an estimate of natural ground-water recharge, whereas the budgets for developed conditions give an estimate of induced recharge, indicating that major ground-water development changes the recharge-discharge regime of the model areas with time. Such stream-aquifer models serve to link proposed actions to hydrologic effects, as is clearly demonstrated by the effects of various management alternatives on the streamflows of the Arkansas River and Rattlesnake Creek. Thus we show that a possible means of restoring specified streamflows in the area is to implement protective stream corridors with restricted ground-water extraction.

  1. Near-conservative behavior of 129Iodine in the Orange County Aquifer System, California

    SciTech Connect

    Schwer, K A; Santschi, P H; Moran, J E; Elmore, D

    2005-01-21

    Iodine is a biophilic element, with one stable isotope, {sup 127}I, and one long-lived radioisotope, {sup 129}I, which originates in the surface environment almost entirely from anthropogenic activities such as nuclear fuel reprocessing. Very few studies have evaluated the geochemical behavior of iodine isotopes in the subsurface. The concentrations of {sup 129}I and {sup 127}I were measured in wells fed by a series of artificial recharge ponds in the Forebay Area of the Orange County groundwater basin (California, USA) to evaluate their potential use as hydrological tracers. To substantiate interpretation of {sup 129}I and {sup 127}I concentration data, the aquifer system was evaluated using literature values of aquifer water mass age based on {sup 3}H/{sup 3}He, Xenon and {delta}{sup 18}O tracer data, as well as time-series data of Santa Ana River flow rates over the past decade. The aquifer data demonstrate the nearly conservative behavior of {sup 129}I, with {sup 129}I/{sup 127}I ratios likely reflecting variations in source functions as well as climatic conditions, and with inferred particle-water partition coefficients (K{sub d}) of 0.1 cm{sup 3} g{sup -1} or less.

  2. Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA

    USGS Publications Warehouse

    Sophocleous, M.; Perkins, S.P.

    1993-01-01

    We address the problem of declining streamflows in interconnected stream-aquifer systems and explore possible management options to address the problem for two areas of central Kansas: the Arkansas River valley from Kinsley to Great Bend and the lower Rattlesnake Creek-Quivira National Wildlife Refuge area. The approach we followed implements, calibrates, and partially validates for the study areas a stream-aquifer numerical model combined with a parameter estimation package and sensitivity analysis. Hydrologic budgets for both predevelopment and developed conditions indicate significant differences in the hydrologic components of the study areas resulting from development. The predevelopment water budgets give an estimate of natural ground-water recharge, whereas the budgets for developed conditions give an estimate of induced recharge, indicating that major ground-water development changes the recharge-discharge regime of the model areas with time. Such stream-aquifer models serve to link proposed actions to hydrologic effects, as is clearly demonstrated by the effects of various management alternatives on the streamflows of the Arkansas River and Rattlesnake Creek. Thus we show that a possible means of restoring specified streamflows in the area is to implement protective stream corridors with restricted ground-water extraction. ?? 1993.

  3. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2013-09-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  4. Flow and Transport in the Hanford 300 Area Vadose Zone-Aquifer-River System

    SciTech Connect

    Waichler, Scott R.; Yabusaki, Steven B.

    2005-07-13

    Contaminant migration in the 300 Area unconfined aquifer is strongly coupled to fluctuations in the Columbia River stage. To better understand the interaction between the river, aquifer, and vadose zone, a 2-D saturated-unsaturated flow and transport model was developed for a vertical cross-section aligned west-east across the Hanford Site 300 Area, nearly perpendicular to the river. The model was used to investigate water flow and tracer transport in the vadose zone-aquifer-river flow system, in support of the ongoing study of the 300 Area uranium plume. The STOMP simulator was used to model 1-year from 3/1/92 to 2/28/93, a period when hourly data were available for both groundwater and river levels. Net water flow to the river (per 1-meter width of shoreline) was 182 m3/y in the base case, but the cumulative exchange or total flow back and forth across the riverbed was 30 times greater. The low river case had approximately double the net water and Groundwater tracer flux into the river as compared to the base case.

  5. Hydrogeology and simulation of ground-water flow in the aquifers underlying Belvidere, Illinois

    USGS Publications Warehouse

    Mills, Patrick C.; Nazimek, J.E.; Halford, K.J.; Yeskis, D.J.

    2002-01-01

    The U.S. Geological Survey investigated the ground-water-flow system and distribution of contaminants in the vicinity of Belvidere, Illinois, during 1992?2000. The study included the compilation, collection, and analyses of hydrogeologic and water-quality data and simulation of the ground-water-flow system. Hydrogeologic data include lithologic, stratigraphic, geophysical, hydraulic-property, water-level, ground-water withdrawal, and streamflow data. Water-quality data include analyses of water samples primarily for volatile organic compounds (VOC?s) and selectively for tritium and inorganic constituents. Data were collected from about 250 wells and 21 surfacewater sites. These data were used (1) to describe the hydrogeologic framework of the ground-waterflow system, preferential pathways and directions of ground-water movement and contaminant distribution, ground-water/surface-water relations, and the water budget and (2) to develop and calibrate the ground-water-flow model. The glacial drift (sand and gravel with some clay) and Galena-Platteville (fractured dolomite) aquifers and the sandstone aquifers of the Cambrian-Ordovician aquifer system compose the ground-water-flow system underlying Belvidere and vicinity. The Glenwood confining unit separates the Galena-Platteville aquifer from the underlying sandstone aquifers. The Galena- Platteville aquifer and confining unit may be absent in parts of the Troy Bedrock Valley, about 1.5 miles west of Belvidere. Throughout the study area, the Kishwaukee River and its tributaries seem to be gaining flow from shallow ground-water discharge. Potentiometric levels in the glacial drift and Galena-Platteville aquifers range from about 900 feet above sea level in the upland areas to 740 feet along the Kishwaukee River. Estimated horizontal hydraulic conductivity of the glacial drift aquifer ranges from about 0.13 to 280 feet per day. The Galena-Platteville aquifer is a dual-porosity unit with the greatest percentage of flow

  6. Comparing Point Count System and physically-based approaches to map aquifer vulnerability

    NASA Astrophysics Data System (ADS)

    Lagomarsino, D.; Martina, M. L. V.; Todini, E.

    2009-04-01

    Pollution vulnerability maps of aquifers are an important instrument for land and water management. These maps are generally based on simplified Point Count System Models (PCSM), such as DRASTIC or SINTACS, without the use of physically based groundwater models, which may provide more accurate results. The present research aims at finding a trade-off between the accuracy provided by a physically-based model, which inevitably involves higher computational complexity and data requirements, and the coarser, albeit simpler and easy to implement, approach provided by an indicator based model such as one of the most important PCSM, the DRASTIC model (Aller et al., 1987). The alluvial aquifer of the conoid of the Reno River, extending from pedemountain hills of the Apennines chain towards Po plain, is one of the main sources of drinking water for the city of Bologna. The parameters considered by DRASTIC (Depth of water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone and hydraulic Conductivity) represent the main hydrogeological and environmental parameters that influence the pollution transport from the surface towards the groundwater. The real flow of the Reno aquifer, was then simulated by means of a finite element model (FEFLOW) that takes into account the physical processes of water movement and the associated transport of contaminant in the environment. The results obtained by the model have been compared with the DRASTIC vulnerability map. A preliminary analysis of the vulnerability map, based on chemical analyses of water, reveals that the concentration of Nitrates is actually higher in those zones where higher vulnerability values were found.

  7. Assessment of nitrate-N contamination in the Chunnakam aquifer system, Jaffna Peninsula, Sri Lanka.

    PubMed

    Vithanage, Meththika; Mikunthan, Thushyanthi; Pathmarajah, Selverajah; Arasalingam, Sutharsiny; Manthrithilake, Herath

    2014-01-01

    Jaffna peninsula in Sri Lanka is an area of intensive agriculture using extensive organic and inorganic nitrogenous compounds and hence, this study was focused on assessing vulnerability of karstic aquifer system with specific focus on nitrate contamination, and compare loads of nitrate from agriculture. The total number of the wells sampled in the Chunnakam aquifer is 44. The coverage of wells with measurements of nitrate and nitrite concentrations in the database covering the study period from Januray, 2011 to August, 2011. The intrinsic vulnerability of the area is estimated by the DRASTIC model and the modified DRASTIC method was used to determine the nitrate-specific vulnerability of the aquifers. Average concentrations of nitrate-N and nitrite-N during the study period were 4.869 and 0.014 mg/L respectively. The average number of wells exceeding permissible level of NO3-N is approximately 6-12, which means that about 14-28% out of the 44 wells. Modified DRASTIC (DI) index value computed as explained above increased from DI = 177 to a range of 182 to 197. In spite of the increase, the Modified DI values show that the aquifer vulnerability specific to nitrate contamination remains in "high" category. Although nitrogen loading at the domestic sources and irrigation is of the same order of magnitude, the loading from fertilizer input is much larger which is about 15 times higher. This finding suggests that the fertilizer input in agricultural areas constitute a significant contribution to the nitrogen content in the groundwater and soils in agricultural areas of Jaffna. PMID:24944879

  8. Development of a Control Optimization System for Real Time Monitoring of Managed Aquifer Recharge and Recovery Systems Using Intelligent Sensors

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Drumheller, Z. W.; Lee, J. H.; Illangasekare, T. H.; Regnery, J.; Kitanidis, P. K.

    2015-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. Scientists and engineers have begun to revisit the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. This research seeks to develop and validate a general simulation-based control optimization algorithm that relies on real-time data collected though embedded sensors that can be used to ease the operational challenges of MAR facilities. Experiments to validate the control algorithm were conducted at the laboratory scale in a two-dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. The synthetic aquifer used well characterized technical sands and the electrical conductivity signal of an inorganic conservative tracer as a surrogate measure for water quality. The synthetic aquifer was outfitted with an array of sensors and an autonomous pumping system. Experimental results verified the feasibility of the approach and suggested that the system can improve the operation of MAR facilities. The dynamic parameter inversion reduced the average error between the simulated and observed pressures between 12.5 and 71.4%. The control optimization algorithm ran smoothly and generated optimal control decisions. Overall, results suggest that with some improvements to the inversion and interpolation algorithms, which can be further advanced through testing with laboratory experiments using sensors, the concept can successfully improve the operation of MAR facilities.

  9. Geohydrology and simulation of steady-state flow conditions in regional aquifer systems in Cretaceous and older rocks underlying Kansas, Nebraska, and parts of Arkansas, Colorado, Missouri, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Signor, D.C.; Helgesen, J.O.; Jorgensen, D.G.; Leonard, R.B.

    1997-01-01

    Three regional aquifers systems are the basis for describing the geohydrology of bedrock aquifers in the central United States. The Great Plains aquifer system, composed of Lower Cretaceous sandstone, generally contains brackish water (1,000 to 10,000 milligrams per liter dissolved solids); the Western Interior Plains aquifer system of lower Paleozoic rocks contains saline water and is laterally adjacent to the freshwater-bearing Ozark Plateaus aquifer system composed of rocks of the same age.

  10. Delineation of Holocene-Pleistocene aquifer system in parts of Middle Ganga Plain, Bihar, Eastern India through DC resistivity survey

    NASA Astrophysics Data System (ADS)

    Ganguli, Shuva Shankha; Singh, Shashikant

    2014-07-01

    The study area forms a part of the Middle Ganga Plain (MGP) and experiences intensive groundwater draft due to domestic, irrigation and industrial purposes. Geoelectrical surveys were carried out in a geomorphic unit of MGP called South Ganga Plain, along the north-south traverse covering a total 50 km stretch. Interpreted results of the total of 17 vertical electrical soundings, carried out, provided information on aquifer and aquitard geometry and sediment nature in different aquifer systems. Bedrock topography is also demarcated along the north-south transect. The estimated dip of massive bedrock is less than 0.5° and dips toward north. The survey results show that a two-tier aquifer system exists in Newer alluvium parts of the study area and it is replaced by a single aquifer system at Older alluvium that occurs under thick clay/sandy clay bed in the southern part. An exponential decay of the aquifer potential is observed from north to south. Paleo channel Sone River is traced and it forms a potential aquifer.

  11. Descriptions of anisotropy and heterogeneity and their effect on ground-water flow and areas of contribution to public supply wells in a karst carbonate aquifer system

    USGS Publications Warehouse

    Knochenmus, Lari A.; Robinson, James L.

    1996-01-01

    MODFLOW and MODPATH numerical models were used to generate areas of contribution to public supply wells for simulated hypothetical anisotropy and heterogeneous carbonate aquifer systems. The simulations incorporated, to varying degrees, the anisotropy and heterogeneity observed in a karst carbonate aquifer system. These include: isotropic and homogeneous single-layer system, doubly-porous single-layer system, and interconnected vertically and horizontally heterogeneous system. The study indicated that the distribution and nature of aquifer anisotropy and heterogeneity will affect the simulated size, shape, and orientation of areas of contribution in karst carbonate aquifer systems.

  12. Geohydrologic framework of the coastal plain aquifers of South Carolina

    USGS Publications Warehouse

    Aucott, Walter R.; Davis, Marvin E.; Speiran, Gary K.

    1987-01-01

    The U.S. Geological Survey is conducting a series of investigations of aquifers throughout the United States as a part of the RASA (Regional Aquifer System Analysis) program. These investigations provide a comprehensive regional understanding of groundwater resources throughout the Nation. The Coastal Plain aquifers in South Carolina are being studied as a part of this program. An important part of a description of the groundwater resources is the development of a geohydrologic framework. Such a framework delineates the aquifers through which groundwater flows and the confining units which retard the flow of groundwater between aquifers. The Coastal Plain of South Carolina is underlain by a wedge of sediments that thickens from its inner margin, the Fall Line, to the coast and consists of sand, silt, clay, and limestone of Late Cretaceous to Holocene age. These sediments are underlain by pre-Cretaceous rocks consisting of consolidated sedimentary rocks of Triassic age and a complex of metamorphic and igneous rocks similar to those found near the surface in the Piedmont province of the State. The geohydrologic framework that divides the sediments of the South Carolina Coastal Plain into the Coastal Plain aquifer system is delineated by eleven geohydrologic sections and four maps showing the configuration of the top or base of individual aquifers. Although flow within the Coastal Plain aquifer system is three dimensional, simplifying the system by dividing it into a framework of discrete hydrologic units can aid significantly in understanding the hydrology of the system. This framework is the basis for the aquifers used in potentiometric mapping, transmissivity mapping, geochemical analysis, and groundwater flow modeling for the South Carolina RASA program. (Lantz-PTT)

  13. Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies

    NASA Astrophysics Data System (ADS)

    Missimer, Thomas M.; Hoppe-Jones, Christiane; Jadoon, Khan Z.; Li, Dong; Al-Mashharawi, Samir K.

    2014-12-01

    Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity = 42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.

  14. Computer simulation of the steady-state flow system of the Tertiary limestone (Floridan) aquifer system in east-central Florida

    USGS Publications Warehouse

    Tibbals, C.H.

    1981-01-01

    The predevelopment steady-state ground-water flow system for 13 ,700 square miles of the Tertiary limestone aquifer system (known as the Florida aquifer in Florida) in east-central Florida is simulated by means of a digital computer model. The model results indicate that about 1,900 cubic feet per second recharges the aquifer as downward leakage from the surficial aquifer. The average recharge rate where recharge actually occurs (approximately 6,550 square miles) is about 4 inches per year. The maximum recharge rate is about 14 inches per year. An additional 21 cubic feet per second is recharged to the modeled area of the aquifer by means of lateral boundary inflow along the northeast boundary. The Floridan aquifer system, as simulated, discharges 1,300 cubic feet per second as springflow, 540 cubic feet per second as diffuse upward leakage to the surficial aquifer in an area of approximately 7,150 square miles and 81 cubic feet per second as lateral boundary outflow to the southwest and to the east. The average transmissivity of the upper unit of the aquifer, as simulated, is about 120,000 square feet per day while that for the lower unit is about 60,000 square feet per day. (USGS)

  15. Effects of Land Use and Travel Time on the Distribution of Nitrate in the Kirkwood-Cohansey Aquifer System in Southern New Jersey

    USGS Publications Warehouse

    Kauffman, Leon J.; Baehr, Arthur L.; Ayers, Mark A.; Stackelberg, Paul E.

    2001-01-01

    Residents of the southern New Jersey Coastal Plain are increasingly reliant on the unconfined Kirkwood-Cohansey aquifer system for public water supply as a result of increasing population and restrictions on withdrawals from the deeper, confined aquifers. Elevated nitrate concentrations above background levels have been found in wells in the surficial aquifer system in agricultural and urban parts of this area. A three-dimensional steady-state ground-water-flow model of a 400-square-mile study area near Glassboro, New Jersey, was used in conjunction with particle tracking to examine the effects of land use and travel time on the distribution of nitrate in ground and surface water in southern New Jersey. Contributing areas and ground-water ages, or travel times, of water at ground-water discharge points (streams and wells) in the study area were simulated. Concentrations of nitrate were computed by linking land use and age-dependent nitrate concentrations in recharge to the discharge points. Median concentrations of nitrate in water samples collected during 1996 from shallow monitoring wells in different land-use areas were used to represent the concentration of nitrate in aquifer recharge since 1990. On the basis of upward trends in the use of nitrogen fertilizer, the concentrations of nitrate in aquifer recharge in agricultural and urban areas were assumed to have increased linearly from the background value in 1940 (0.07 mg/L as N) to the 1990 (2.5-14 mg/L as N) concentrations. Model performance was evaluated by comparing the simulation results to measured nitrate concentrations and apparent ground-water ages. Apparent ground-water ages at 32 monitoring wells in the study area determined from tritium/helium-3 ratios and sulfur hexafluoride concentrations favorably matched simulated travel times to these wells. Simulated nitrate concentrations were comparable to concentrations measured in 27 water-supply wells in the study area. A time series (1987-98) of nitrate

  16. Heterogeneous aquifer system modelisation under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Drias, Tarek; Toubal, Ahmed Cherif

    2010-05-01

    The studied zone is a part of the Mellegne's (North-East of Algeria) under pound, this zone is characterised by its semi-arid climate. The water bearing system is formed by the plio-quaternairy alluviums resting on a marley substratuim of age Eocene. The geostatiscitcs approach of the hydrodynamics parameters (Hydrolic load, transmisivity) allowed the study of their spatial distrubution (casting) by the method of Krigeage by blocks and the identification of zones with water-bearing potentialities. In this respect, the zone of Ain Chabro which, is situated in the South of the plain shows the best values of the transmisivity...... The use of a bidimensinnel model in the differences ended in the permanent regime allowed us to establish the global balence sheet (overall assessment) of the tablecloth and to refine the transmisivity field. These would vary more exactley between 10-4 to 10-2 m²/s. The method associating the probability appraoch of Krigeage to that determining the model has facilited the wedging of the model and clarified the inflitration value. Keys words: hydrodynamics, geostatiscitcs, Modeling, Chabro, Tébessa.

  17. Altitude and configuration of the water table in the High Plains aquifer system of Kansas, pre-1950

    USGS Publications Warehouse

    Stullken, Lloyd E.; Pabst, Marilyn E.

    1985-01-01

    The High Plains aquifer in Kansas is a part of a regional system that extends from South Dakota to Texas. The aquifer in Kansas underlies an area of 31,000 square miles in the western and south-central part. The aquifer is a hydraulically connected assemblage of unconsolidated water-bearing deposits of Tertiary and Quaternary age. Maps at a scale of 1:500,000 show the altitude and configuration of the water table in Kansas prior to 1950. The water-table maps depict the water-level surface that was present prior to major development of the High Plains aquifer. Ground water moves from higher altitudes in the western part of the High Plains to lower altitudes in the eastern part at an average slope of 10 feet per mile. The upgradient flexure of water-table contours along some of the valleys indicates that ground water is discharged to the streams in those areas. (USGS)

  18. Phase behaviour and correlations of parallel hard squares: from highly confined to bulk systems

    NASA Astrophysics Data System (ADS)

    González-Pinto, Miguel; Martínez-Ratón, Yuri; Varga, Szabolcs; Gurin, Peter; Velasco, Enrique

    2016-06-01

    We study a fluid of two-dimensional parallel hard squares in bulk and under confinement in channels, with the aim of evaluating the performance of fundamental-measure theory (FMT). To this purpose, we first analyse the phase behaviour of the bulk system using FMT and Percus–Yevick (PY) theory, and compare the results with molecular dynamics and Monte Carlo simulations. In a second step, we study the confined system and check the results against those obtained from the transfer matrix method and from our own Monte Carlo simulations. Squares are confined to channels with parallel walls at angles of 0° or 45° relative to the diagonals of the parallel hard squares, respectively, which allows for an assessment of the effect of the external-potential symmetry on the fluid structural properties. In general FMT overestimates bulk correlations, predicting the existence of a columnar phase (absent in simulations) prior to crystallization. The equation of state predicted by FMT compares well with simulations, although the PY approach with the virial route is better in some range of packing fractions. The FMT is highly accurate for the structure and correlations of the confined fluid due to the dimensional crossover property fulfilled by the theory. Both density profiles and equations of state of the confined system are accurately predicted by the theory. The highly non-uniform pair correlations inside the channel are also very well described by FMT.

  19. Phase behaviour and correlations of parallel hard squares: from highly confined to bulk systems.

    PubMed

    González-Pinto, Miguel; Martínez-Ratón, Yuri; Varga, Szabolcs; Gurin, Peter; Velasco, Enrique

    2016-06-22

    We study a fluid of two-dimensional parallel hard squares in bulk and under confinement in channels, with the aim of evaluating the performance of fundamental-measure theory (FMT). To this purpose, we first analyse the phase behaviour of the bulk system using FMT and Percus-Yevick (PY) theory, and compare the results with molecular dynamics and Monte Carlo simulations. In a second step, we study the confined system and check the results against those obtained from the transfer matrix method and from our own Monte Carlo simulations. Squares are confined to channels with parallel walls at angles of 0° or 45° relative to the diagonals of the parallel hard squares, respectively, which allows for an assessment of the effect of the external-potential symmetry on the fluid structural properties. In general FMT overestimates bulk correlations, predicting the existence of a columnar phase (absent in simulations) prior to crystallization. The equation of state predicted by FMT compares well with simulations, although the PY approach with the virial route is better in some range of packing fractions. The FMT is highly accurate for the structure and correlations of the confined fluid due to the dimensional crossover property fulfilled by the theory. Both density profiles and equations of state of the confined system are accurately predicted by the theory. The highly non-uniform pair correlations inside the channel are also very well described by FMT. PMID:27115832

  20. Geochemical Characteristics of Aquifer system in Taichung Area, Central Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Jui-Fen; Chen, Cheng-Hong; Liu, Tsung-Kwei

    2016-04-01

    For understanding the relationship between water bodies and host rocks and getting more information for groundwater in Taichung area, Central Taiwan, we systematically analyzed the stable isotopes (hydrogen and oxygen), helium isotopes and radon concentrations of dissolved gases from 54 groundwater, 39 river and 4 rain samples collected from Taichung Basin in wet and dry seasons of the year 2015. In the δ18O vs. δD plot, all samples present a linear trend similar to local meteoric water, indicating a meteoric origin. However, river samples are relative lighter than rain samples, it appears that the rivers are mainly recharged from precipitation of high-elevation areas with a lighter isotopic composition. Because the seasonal isotopic variation of river samples is significant, we calculated relative contribution of precipitation by seasons using the mass balance equation. Results show that the precipitation in the rainy season is the major source of groundwater. The helium isotopic ratio in dissolved gases of most groundwater samples are close to 1 RA (RA = 3He/4He ratio of air), except the sample from Wu-Feng well that exhibits 0.3 RA. This sample also has an older C-14 age (˜27000 yrs.) than others (<200 yrs.), implying that the dissolved helium is likely affected by radiogenic 4He of surrounding rocks. The average concentration of radon for groundwater in the northern section of Taichung Basin is 20.3 Bq/L, which is higher than that of the southern section (14.5 Bq/L). Variations of radon concentrations in the two sections may be related to the different drainage systems (Paleo-Dajia River vs. Wu River), in which sediments from Paleo-Dajia River may contain higher uranium concentrations. On the other hand, water in rivers usually contains undetectable radon (<0.37 Bq/L) because it rapidly escapes to the atmosphere. However, river samples from the central part of basin have radon concentrations ranging between 1 and 3 Bq/L, reflecting that the sampling sites

  1. Lithostratigraphy, petrography, biostratigraphy, and strontium-isotope stratigraphy of the surficial aquifer system of western Collier County, Florida

    USGS Publications Warehouse

    Edwards, L.E.; Weedman, S.D.; Simmons, R.; Scott, T.M.; Brewster-Wingard, G. L.; Ishman, S.E.; Carlin, N.M.

    1998-01-01

    overlie the Pliocene limestones in two cores in the southern part of the study area. Artificial fill occurs at the top of most of the cores. The hydrologic confining units penetrated by these cores are different in different parts of the study area. To the west, a hard tightly cemented dolostone forms the first major confining unit below the water table. In the eastern part of the study area, confinement is more difficult to determine. A tightly cemented sandstone, much younger than the dolostones to the west and probably not laterally connected to them, forms a slight confining unit in one core. Thick zones of poorly sorted muddy unconsolidated sands form a slight confining unit in other cores; these probably are not correlative to either the sandstone or the dolostones to the west. The age and sedimentologic observations suggest a complex compartmentalization of the surficial aquifer system in southwestern Florida. The calibrations of dinocyst and molluscan occurrences with strontium-isotope stratigraphy allows us to expand and document the reported ranges of many taxa. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  2. Configuration of the base of the Edwards-Trinity aquifer system and hydrogeology of the underlying pre-Cretaceous rocks, west-central Texas

    USGS Publications Warehouse

    Barker, Rene A.; Ardis, Ann F.

    1992-01-01

    The Edwards-Trinity aquifer system is underlain by an extensive complex of rocks, ranging from Late Cambrian through Late Triassic in age, that are typically about 10 to perhaps 1,000 times less permeable than those composing the aquifer system. The Cretaceous rocks of the aquifer system are separated from the pre-Cretaceous rocks by an unconformity that spans about 60 million years of erosion during the Jurassic Period. The upper surface of the pre-Cretaceous rock complex forms the base of the Edwards-Trinity aquifer system. The configuration of the base reflects the original topography of the eroded pre-Cretaceous land surface plus the effects of subsequent deformation. The most permeable pre-Cretaceous rocks are in the eastern half of the study area where they compose the Hickory aquifer (in Upper Cambrian rocks), Ellenburger-San Saba aquifer (Upper Cambrian- Lower Ordovician), and Marble Falls aquifer (Lower Pennsylvanian). These aquifers are hydraulically connected to the northeastern fringe of the Edwards-Trinity aquifer system, as their up-turned margins crop out around the flanks of the breached Llano uplift. The Rustler aquifer in rocks of Late Permian age underlies parts of the Trans-Pecos region, where it yields small amounts of greatly mineralized water for industrial and agricultural purposes. The Dockum aquifer in rocks of Late Triassic age directly underlies the Edwards-Trinity aquifer system in western parts of the study area, and locally increases the saturated thickness of the ground-water-flow system by an average of about 200 feet. Despite these notable exceptions, the collective effect of the pre-Cretaceous rocks is that 01 a barrier to ground-water flow, which limits the exchange of water across the base of the Edwards-Trinity aquifer system.

  3. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    USGS Publications Warehouse

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  4. Determination of broken KAM surfaces for particle orbits in toroidal confinement systems

    DOE PAGESBeta

    White, R. B.

    2015-10-05

    Here, the destruction of Kolmogorov–Arnold–Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations.

  5. On the stochastic behaviors of locally confined particle systems

    SciTech Connect

    Li, Yao

    2015-07-15

    We investigate a class of Hamiltonian particle systems and their stochastic behaviors. Using both rigorous proof and numerical simulations, we show that the geometric configuration can qualitatively change key statistical characteristics of the particle system, which are expected to be retained by stochastic modifications. In particular, whether a particle system has an exponential mixing rate or a polynomial mixing rate depends on whether the geometric setting allows a slow particle being reached by adjacent fast particles.

  6. Use of computer programs STLK1 and STWT1 for analysis of stream-aquifer hydraulic interaction

    USGS Publications Warehouse

    DeSimone, Leslie A.; Barlow, Paul M.

    1999-01-01

    Quantifying the hydraulic interaction of aquifers and streams is important in the analysis of stream base fow, flood-wave effects, and contaminant transport between surface- and ground-water systems. This report describes the use of two computer programs, STLK1 and STWT1, to analyze the hydraulic interaction of streams with confined, leaky, and water-table aquifers during periods of stream-stage fuctuations and uniform, areal recharge. The computer programs are based on analytical solutions to the ground-water-flow equation in stream-aquifer settings and calculate ground-water levels, seepage rates across the stream-aquifer boundary, and bank storage that result from arbitrarily varying stream stage or recharge. Analysis of idealized, hypothetical stream-aquifer systems is used to show how aquifer type, aquifer boundaries, and aquifer and streambank hydraulic properties affect aquifer response to stresses. Published data from alluvial and stratifed-drift aquifers in Kentucky, Massachusetts, and Iowa are used to demonstrate application of the programs to field settings. Analytical models of these three stream-aquifer systems are developed on the basis of available hydrogeologic information. Stream-stage fluctuations and recharge are applied to the systems as hydraulic stresses. The models are calibrated by matching ground-water levels calculated with computer program STLK1 or STWT1 to measured ground-water levels. The analytical models are used to estimate hydraulic properties of the aquifer, aquitard, and streambank; to evaluate hydrologic conditions in the aquifer; and to estimate seepage rates and bank-storage volumes resulting from flood waves and recharge. Analysis of field examples demonstrates the accuracy and limitations of the analytical solutions and programs when applied to actual ground-water systems and the potential uses of the analytical methods as alternatives to numerical modeling for quantifying stream-aquifer interactions.

  7. Robotic system for retractable teleoperated arm within enclosed shell with capability of operating within a confined space

    DOEpatents

    Randolph, John David; Lloyd, Peter Downes; Love, Lonnie Joe; Kwon, Dong Soo; Blank, James Allen; Davis, Hurley Thomas

    2001-01-01

    An apparatus for performing a task in a confined space having an access port. The apparatus comprise: a confinement box securable to the access port of the confined space; a shell extending from the confinement box; a teleoperated arm movable between a retracted position, in which the teleoperated arm is disposed within the shell, and a deployed position, in which the teleoperated arm extends through the access port and into the confined space to perform the task; and a control system for commanding the teleoperated arm. The arm links and joint connectors of the teleoperated arm assembly are the conduits for the process

  8. Inertial confinement fusion reaction chamber and power conversion system study

    SciTech Connect

    Maya, I.; Schultz, K.R.; Battaglia, J.M.; Buksa, J.J.; Creedson, R.L.; Erlandson, O.D.; Levine, H.E.; Roelant, D.F.; Sanchez, H.W.; Schrader, S.A.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li/sub 2/O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li/sub 2/O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li/sub 2/O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive.

  9. Evaluation of areas of contribution and water quality at receptors related to TCE plumes in a valley fill aquifer system

    NASA Astrophysics Data System (ADS)

    Lefebvre, R.; Ouellon, T.; Blais, V.; Ballard, J.; Brunet, P.

    2009-05-01

    The Val-Belair sector is located within Quebec City, about 20 km from downtown. Potential source zones and TCE plumes in groundwater are found at the western limit of the sector. At the center of the sector, four municipal water supply wells pump groundwater from an aquifer in surficial sediments where dissolved TCE is found. Private residential wells are also found in the sector. The Nelson River and its tributaries drain the sector and flows from west to east. New characterization results and available data were used to develop a numerical model of groundwater flow and mass transport to 1) define geological and hydrogeological contexts, 2) delineate the distribution of TCE and identify its migration paths and 3) evaluate the effect of TCE on the water quality of receptors (Nelson River, municipal and residential wells). In the sector, 30 to 40 m of sediments filling a buried valley form two aquifers separated by an aquitard: an unconfined deltaic aquifer at surface, an underlying silty prodeltaic aquitard and a semi-confined aquifer of deltaic sands and diamictons. Groundwater exchanges between the aquifers are generally downward through the aquitard, but near the Nelson River there is upward flow. Monitoring has led to sparse TCE detections in the Nelson River, regular detections at a mean value of 0.62 μg/L at one municipal well, occasional detections at another well and no detection at the other two wells. No TCE was detected in private wells, which are located outside the migration paths of TCE plumes. The context and numerical modeling with particle tracking and mass transport show the relationships between the two source zones, three TCE plumes and three receptors. Municipal wells pump in the semi-confined aquifer at a level appearing sustainable, but use most of the recharge in the sub-watershed. Areas of contribution to the wells thus cover almost all the study area with a complex pattern. These wells compete with the effect of the Nelson River to drain

  10. Survival of bacterial indicators and the functional diversity of native microbial communities in the Floridan aquifer system, south Florida

    USGS Publications Warehouse

    Lisle, John T.

    2014-01-01

    The Upper Floridan aquifer in the southern region of Florida is a multi-use, regional scale aquifer that is used as a potable water source and as a repository for passively recharged untreated surface waters, and injected treated surface water and wastewater, industrial wastes, including those which contain greenhouse gases (for example, carbon dioxide). The presence of confined zones within the Floridan aquifer that range in salinity from fresh to brackish allow regulatory agencies to permit the injection of these different types of product waters into specific zones without detrimental effects to humans and terrestrial and aquatic ecosystems. The type of recharge that has received the most regulatory attention in south Florida is aquifer storage and recovery (ASR). The treated water, prior to injection and during recovery, must meet primary and secondary drinking water standards. The primary microbiology drinking water standard is total coliforms, which have been shown to be difficult to inactivate below the regulatory standard during the treatment process at some ASR facilities. The inefficient inactivation of this group of indicator bacteria permits their direct injection into the storage zones of the Floridan aquifer. Prior to this study, the inactivation rates for any member of the total coliform group during exposure to native geochemical conditions in groundwater from any zone of the Floridan aquifer had not been derived. Aboveground flow through mesocosms and diffusion chambers were used to quantify the inactivation rates of two bacterial indicators, Escherichia coli and Pseudomonas aeruginosa, during exposure to groundwater from six wells. These wells collect water from two ASR storage zones: the Upper Floridan aquifer (UFA) and Avon Park Permeable Zone (APPZ). Both bacterial strains followed a biphasic inactivation model. The E. coli populations had slower inactivation rates in the UFA (range: 0.217–0.628 per hour (h-1)) during the first phase of the

  11. Interests of hydrogeological observatories for characterizing heterogeneous groundwater systems: the example of the Ploemeur hard-rock aquifer (French Brittany)

    NASA Astrophysics Data System (ADS)

    Bour, O.; Le Borgne, T.; Aquilina, L.; Labasque, T.; Lavenant, N.; Boudin, F.; Leray, S.; De Dreuzy, J.; Longuevergne, L.; Hochreutener, R.; Davy, P.

    2012-12-01

    Heterogeneous aquifers are often poorly constrained by the available data. There is a strong need of characterizing at multiple space and time scales heterogeneous groundwater systems to improve model predictions. Here, we present results from the site of Ploemeur (French Brittany) that belongs to the network of hydrogeological sites H+, and where complementarity approaches have been developed for almost fifteen years. This outstandingly heterogeneous crystalline rock aquifer is used for water supply at a rate of about 10^6 m3 per year since 1991. The geology of the area is relatively complex and involves two main structures: a highly fractured contact zone between the Ploemeur's granite and the overlying micaschists, and a steeply dipping fault striking North 20°. The contact zone in itself consists of alternating deformed granitic sheets and enclaves of micaschists, pegmatite and aplite dykes, and locally mylonites and pegmatite-bearing breccias that are often associated with major borehole inflows. At the site scale - typically a square kilometer - and at relatively shallow depth (100 to 150 m), the connectivity of the main flow paths and the hydraulic properties are relatively well constrained and quantified thanks to cross-borehole flowmeter tests and traditional pumping tests. However, such data are relatively limited in explaining the functioning of this confined groundwater system at the regional scale. Groundwater chemistry and groundwater dating permit to go further to identify distinct reservoirs and in particular a relatively deep groundwater component whose age is older than 50 years. Groundwater temperature measurements demonstrate the role of the pumping that influences greatly the spatial distribution of groundwater temperature and quality. Moreover, it suggests that the main water supply comes from a depth of at least 300 meters. This implies relatively deep groundwater circulation that can be achieved only thanks to major permeable fault zone. At

  12. Contamination by Arsenate in Oxidizing Groundwater, Southern Gulf Coast Aquifer System, Texas

    NASA Astrophysics Data System (ADS)

    Gates, J. B.; Nicot, J.; Reedy, R. C.; Scanlon, B. R.

    2009-12-01

    Groundwater arsenic concentrations exceed the U.S. EPA maximum contaminant level for drinking water (10 μg/L) in about one-third of wells in the southern Gulf Coast Aquifer System (GCAS) in Texas, representing a potential public health hazard and an environmental compliance challenge to numerous small public water supply systems. The aim of this study is to better understand the hydrogeochemical mechanisms underpinning the widespread distribution of elevated groundwater arsenic concentrations in the region. Here we focus upon arsenic contamination in unconfined portions of the aquifer system. The investigation is based upon chemical analyses of a field transect of 27 groundwater samples collected from across three units of the GCAS; stratified water quality sampling from one additional well; and relevant water chemistry data from the Texas Water Development Board groundwater database (more than 500 samples). Chemical results from the field study showed that carbonate weathering and active recharge in the unconfined zone result in circum-neutral pH and oxidizing redox conditions, which are typically amenable to arsenic immobilization by adsorption of As(V) onto mineral oxides and clays. However, arsenic concentrations were found up to 129 μg/L (median 12 μg/L), and As(V) represented nearly 100% of total arsenic. Concentrations generally decreased with increasing distance from the Catahoula Formation (which contains abundant volcanic ash presumed to be the original arsenic source), through the overlying Jasper, Evangeline and Chicot Aquifers. Statistically significant pairwise correlations with arsenic were found for vanadium, silica and potassium, all of which were released during weathering of volcanic sediments and their degradation products. Silica that was co-released with arsenic may compete for sorption sites and reduce the capacity for arsenic adsorption. An important role for variable arsenic source availability was suggested by regional spatial

  13. ENVIRONMENTAL AUDITING: An Aquifer Vulnerability Assessment of the Paluxy Aquifer, Central Texas, USA, Using GIS and a Modified DRASTIC Approach.

    PubMed

    Fritch; McKnight; Yelderman; Arnold

    2000-03-01

    / The Paluxy aquifer in north-central Texas is composed primarily of Lower Cretaceous clastics. This aquifer provides water for both domestic and agricultural purposes in the region. The study area for this investigation incorporates the outcrop and recharge areas, as well as the confined and unconfined portions of the aquifer. The purpose of this investigation is to perform a groundwater vulnerability assessment on the Paluxy aquifer using the GRASS 4.1 geographic information system combined with a modified DRASTIC approach. DRASTIC is an acronym for the variables that control the groundwater pollution potential (Depth to water, net Recharge, Aquifer media, Soil media,Topography, Impact of the vadose zone, andConductivity of the aquifer). Using such an approach allows one to investigate the potential for groundwater contamination on a regional, rather than site-specific, scale. Based upon data from variables such as soil permeability, depth to water, aquifer hydraulic conductivity, and topography, subjective numerical weightings have been assigned according to the variable's relative importance in regional groundwater quality. The weights for each variable comprise a GIS map layer. These map layers are combined to formulate the final groundwater pollution potential map. Using this method of investigation, the pollution potential map for the study area classifies 47% of the area as having low pollution potential, 26% as having moderate pollution potential, 22% as having high pollution potential, and 5% as having very high pollution potential. PMID:10629314

  14. An aquifer vulnerability assessment of the Paluxy Aquifer, central Texas, USA, using GIS and a modified DRASTIC approach

    SciTech Connect

    Fritch, T.G.; McKnight, C.L.; Yelderman, J.C. Jr.; Arnold, J.G.

    2000-03-01

    The Paluxy aquifer in north-central Texas is composed primarily of Lower Cretaceous clastics. This aquifer provides water for both domestic and agricultural purposes in the region. The study area for this investigation incorporates the outcrop and recharge areas, as well as the confined and unconfined portions of the aquifer. The purpose of this investigation is to perform a groundwater vulnerability assessment on the Paluxy aquifer using the GRASS 4.1 geographic information system combined with a modified DRASTIC approach. DRASTIC is an acronym for the variables that control the groundwater pollution potential (Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, and Conductivity of the aquifer). Using such an approach allows one to investigate the potential for groundwater contamination on a regional, rather than site-specific, scale. Based upon data from variables such as soil permeability, depth to water, aquifer hydraulic conductivity, and topography, subjective numerical weightings have been assigned according to the variable's relative importance in regional groundwater quality. The weights for each variable comprise a GIS map layer. These map layers are combined to formulate the final groundwater pollution potential map. Using this method of investigation, the pollution potential map for the study area classified 47% of the area as having low pollution potential, 26% as having moderate pollution potential, 22% as having high pollution potential, and 5% as having very high pollution potential.

  15. Different spatial discretization methods of fault systems on heat transport processes in hard rock aquifers

    NASA Astrophysics Data System (ADS)

    Kruppa, Lisa; König, Christoph M.; Becker, Martin; Seidel, Torsten

    2016-04-01

    Most hard rock aquifers, which are important for geothermal use, contain fractures of different type and scale. These fault systems are of major significance for heat flow in the groundwater. The hydrogeological characterization of fault systems must therefore be part of any site investigation in hard rock aquifers and hydraulically important fault systems need to be appropriately represented in associated numerical models. This contribution discusses different spatial discretization methods of fault systems in three-dimensional groundwater models and their impact on the simulated groundwater flow field as well as density and viscosity dependent heat transport. The analysis includes a comparison of the convergence behavior and numerical stability of the different discretization methods. To ensure defendable results, the utilized numerical model SPRING was first verified against data from the Hydrocoin Level 1 Case 2 project. After verification, the software was used to evaluate the impact of different discretization strategies on steady-state and transient groundwater flow and transport model results. The results show a significant influence of the spatial discretization strategy on predicted flow rates and subsequent mass fluxes as well as energy balances.

  16. GRACE-Based Analysis of Total Water Storage Trends and Groundwater Fluctuations in the North-Western Sahara Aquifer System (NWSAS) and Tindouf Aquifer in Northwest Africa

    NASA Astrophysics Data System (ADS)

    Lezzaik, K. A.; Milewski, A.

    2013-12-01

    Optimal water management practices and strategies, in arid and semi-arid environments, are often hindered by a lack of quantitative and qualitative understanding of hydrological processes. Moreover, progressive overexploitation of groundwater resources to meet agricultural, industrial, and domestic requirements is drawing concern over the sustainability of such exhaustive abstraction levels, especially in environments where groundwater is a major source of water. NASA's GRACE (gravity recovery and climate change experiment) mission, since March 2002, has advanced the understanding of hydrological events, especially groundwater depletion, through integrated measurements and modeling of terrestrial water mass. In this study, GLDAS variables (rainfall rate, evapotranspiration rate, average soil moisture), and TRMM 3B42.V7A precipitation satellite data, were used in combination with 95 GRACE-generated gravitational anomalies maps, to quantify total water storage change (TWSC) and groundwater storage change (GWSC) from January 2003 to December 2010 (excluding June 2003), in the North-Western Sahara Aquifer System (NWSAS) and Tindouf Aquifer System in northwestern Africa. Separately processed and computed GRACE products by JPL (Jet Propulsion Laboratory, NASA), CSR (Center of Space Research, UT Austin), and GFZ (German Research Centre for Geoscience, Potsdam), were used to determine which GRACE dataset(s) best reflect total water storage and ground water changes in northwest Africa. First-order estimates of annual TWSC for NWSAS (JPL: +5.297 BCM; CSR: -5.33 BCM; GFZ: -9.96 BCM) and Tindouf Aquifer System (JPL: +1.217 BCM; CSR: +0.203 BCM; GFZ: +1.019 BCM), were computed using zonal averaging over a span of eight years. Preliminary findings of annual GWSC for NWSAS (JPL: +2.45 BCM; CSR: -2.278 BCM; GFZ: -6.913 BCM) and Tindouf Aquifer System (JPL: +1.108 BCM; CSR: +0.094 BCM; GFZ: +0.910 BCM), were calculating using a water budget approach, parameterized by GLDAS

  17. Description and evaluation of the effects of urban and agricultural development on the surficial aquifer system, Palm Beach County, Florida

    USGS Publications Warehouse

    Miller, W.L.

    1988-01-01

    The surficial aquifer system in Palm Beach County was studied during 1982-85 to determine the effects of increased urban and agricultural development on groundwater levels, flow directions, and quality. The surficial aquifer system and its geologic matrix are divisible into three zones on the bases of relative permeabilities and lithologic characteristics. The two greatest water users in the county, public supply utilities and agricultural irrigators, increased total water withdrawals by 123 and 50%, respectively, during 1970-80. By 1980, 76% of public supply withdrawals were from zones I and II of the surficial aquifer system, whereas groundwater pumpage for irrigation decreased to 9% of the total irrigation water used. Increases in groundwater withdrawals for public supply were greatest in the southeast and central coastal parts of the county and served as an indicator for potential changes of flow directions and water quality in the surficial aquifer system. Residual seawater, emplaced in the aquifer system during the Pleistocene Epoch, is still prevalent in the central and western parts of Palm Beach County where low permeabilities in the geologic matrix have retarded its dilution. Chemical analyses of canal-water and groundwater samples collected in April 1984 were used to evaluate the effects of groundwater/surface water exchange on the quality of water during canal conveyance across the area containing residual seawater. (USGS)

  18. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect

    Casey, G.D. )

    1992-01-01

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  19. Understanding the sources and fate of nitrate in a highly developed aquifer system

    NASA Astrophysics Data System (ADS)

    Murgulet, Dorina; Tick, Geoffrey R.

    2013-12-01

    Understanding the processes affecting the transport and fate of nitrate in coastal aquifers has become of great interest in recent years due to concerns of nutrient loading to coastal waters. Novel dual isotopic methods have shown promise for identifying sources and fate of nitrate in shallow groundwater. However, in relatively deep dynamic aquifer systems, the isotopic signatures may be overprinted by mixing of different end-member waters and biogeochemical processes. In this study, δ15N and δ18O of groundwater nitrate are coupled with other forensic geochemistry methods such as Cl/Br, SO4/Cl, and Cl/NO3 mass ratios and land use analysis in order to constrain the isotope correlations and better understand contaminant sources and biogeochemical processes. Most δ15NNO3 values were within ranges expected for nitrate formed by ammonia nitrification in soil. Furthermore, the persistent presence of nitrate in concentrations above background levels (median 2.3 mg/L) and the relatively low δ15NNO3 and δ18ONO3 (median: 4.5 ± 0.2‰ AIR and 5.2 ± 0.5‰ VSMOW, respectively) indicate no direct evidence of denitrification. However, denitrification was inferred for a few samples whereby more enriched δ15NNO3 and δ18ONO3 values coupled with an increase in SO4/Cl and Cl/NO3 ratios were observed. Finally, mixing trends were identified for a few of the samples as indicated by δ15NO3 and δ18ONO3 mixing ratios and were consistent with the study area's land-use/land-cover distribution. The combination of methods utilized in this study revealed that in some cases mass ratios were better diagnostics in elucidating the impact of denitrification, mixing processes, and source identification within dynamic aquifer systems than the dual-isotope technique.

  20. A surrogate model for simulation-optimization of aquifer systems subjected to seawater intrusion

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed S.; Javadi, Akbar A.; Ahangar-Asr, Alireza; Farmani, Raziyeh

    2015-04-01

    This study presents the application of Evolutionary Polynomial Regression (EPR) as a pattern recognition system to predicate the behavior of nonlinear and computationally complex aquifer systems subjected to seawater intrusion (SWI). The developed EPR models are integrated with a multi objective genetic algorithm to examine the efficiency of different arrangements of hydraulic barriers in controlling SWI. The objective of the optimization is to minimize the economic and environmental costs. The developed EPR model is trained and tested for different control scenarios, on sets of data including different pumping patterns as inputs and the corresponding set of numerically calculated outputs. The results are compared with those obtained by direct linking of the numerical simulation model with the optimization tool. The results of the two above-mentioned simulation-optimization (S/O) strategies are in excellent agreement. Three management scenarios are considered involving simultaneous use of abstraction and recharge to control SWI. Minimization of cost of the management process and the salinity levels in the aquifer are the two objective functions used for evaluating the efficiency of each management scenario. By considering the effects of the unsaturated zone, a subsurface pond is used to collect the water and artificially recharge the aquifer. The distinguished feature of EPR emerges in its application as the metamodel in the S/O process where it significantly reduces the overall computational complexity and time. The results also suggest that the application of other sources of water such as treated waste water (TWW) and/or storm water, coupled with continuous abstraction of brackish water and its desalination and use is the most cost effective method to control SWI. A sensitivity analysis is conducted to investigate the effects of different external sources of recharge water and different recovery ratios of desalination plant on the optimal results.

  1. New systems for treatment of manure from confined animal production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New swine waste management systems developed in North Carolina to replace the anaerobic lagoons need to meet the strict performance standards of an environmentally superior technology (EST). These technologies must be able to substantially remove nutrients, heavy metals, emissions of ammonia, odors,...

  2. Quality of water recovered from a municipal effluent injection well in the Floridan aquifer system, Pompano Beach, Florida

    USGS Publications Warehouse

    McKenzie, D.J.; Irwin, G.A.

    1984-01-01

    Approximately 69 million gallons of backflow from an injection well used for the disposal of secondary treated municipal effluent in the Floridan aquifer system near Pompano Beach, Florida, was periodically sampled for inorganic quality from March 1975 through March 1977. Analyses of the backflow effluent showed a concomitant increase in dissolved solids and a change in ionic composition as a function of cumulative volume of backflow. Both the increase in dissolved solids and the change in major ionic composition were directly related to an estimated 6 to 7 percent mixing of the moderately saline water in the Florida aquifer system with the injected system with the injected effluent. Although an estimated 3.5 billion gallons of effluent was injected into the aquifer system during the 16-year operation of the Collier Manor treatment plant, only 65 to 70 million gallons was backflowed before the chloride concentration approached 250 milligrams per liter. (USGS)

  3. SAFIRE: A systems analysis code for ICF (inertial confinement fusion) reactor economics

    SciTech Connect

    McCarville, T.J.; Meier, W.R.; Carson, C.F.; Glasgow, B.B.

    1987-01-12

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code incorporates analytical models for scaling the cost and performance of several inertial confinement fusion reactor concepts for electric power. The code allows us to vary design parameters (e.g., driver energy, chamber pulse rate, net electric power) and evaluate the resulting change in capital cost of power plant and the busbar cost of electricity. The SAFIRE code can be used to identify the most attractive operating space and to identify those design parameters with the greatest leverage for improving the economics of inertial confinement fusion electric power plants.

  4. Analysis of Confined Random Walkers with Applications to Processes Occurring in Molecular Aggregates and Immunological Systems.

    PubMed

    Chase, Matthew; Spendier, Kathrin; Kenkre, V M

    2016-03-31

    Explicit solutions are presented in the Laplace and time domains for a one-variable Fokker-Planck equation governing the probability density of a random walker moving in a confining potential. Illustrative applications are discussed in two unrelated physical contexts: quantum yields in a doped molecular crystal or photosynthetic system, and the motion of signal receptor clusters on the surface of a cell encountered in a problem in immunology. An interesting counterintuitive effect concerning the consequences of confinement is found in the former, and some insights into the driving force for microcluster centralization are gathered in the latter application. PMID:26885727

  5. Program status 3. quarter -- FY 1990: Confinement systems programs

    SciTech Connect

    1990-07-24

    Highlights of the DIII-D Research Operations task are: completed five weeks tokamak operations; initiated summer vent; achievement of 10.7% beta; carried out first dimensionless transport scaling experiment; completed IBW program; demonstrated divertor heat reduction with gas puffing; field task proposals presented to OFE; presentation of DIII-D program to FPAC; made presentation to Admiral Watkins; and SAN safety review. Summaries are given on research programs, operations, program development, hardware development, operations support and collaborative efforts. Brief summaries of progress on the International Cooperation task include: TORE SUPRA, ASDEX, JFT-2M, and JET. Funding for work on CIT physics was received this quarter. Several physics R and D planning tasks were initiated. Earlier in FY90, a poloidal field coil shaping system (PFC) was found for DIGNITOR. This quarter more detailed analysis has been done to optimize the design of the PFC system.

  6. Liver lipid content of twenty varieties of laying hens from three confinement systems.

    PubMed

    Garlich, J D; Olson, J D; Huff, W E; Hamilton, P B

    1975-05-01

    Average liver lipid values were determined for 20 varieties of 71-week old laying hens managed in 3 confinement systems of the 1972-73 North Carolina Random Sample Laying Test. There were highly significant differences in liver lipid atrributable to variety, to confinement system, and a significant variety X system interaction. Four varieties had consistently high and five had consistently low liver lipid values in all 3 confinement systems. Varietymeans ranged from 25.8 to 49.0% liver lipid on a dry weight basis. Hens confined 2/cage had slight but significantly higher liver lipid than hens 7/cage or in floor pens. Liver lipid was positively correlated with body weight in hens 2/cage and in floor pens. There were no significant correlations of liver lipid with egg production or mortality. A frequency distribution of individual liver lipid values revealed a continuous distribution from 15.4 to 65.4with a pronounced skew to the right of the mean of 38.2%. Neither a fatty liver syndrome nor liver hemorrhage syndrome was reported for any of the flocks during the laying year. The normal range of liver lipid values for hens 71 weeks of age appears to be between 25 and 49 g. of lipid per 100 g. of dry liver weight. PMID:1153379

  7. A Science Plan for a Comprehensive Regional Assessment of the Atlantic Coastal Plain Aquifer System in Maryland

    USGS Publications Warehouse

    Shedlock, Robert J.; Bolton, David W.; Cleaves, Emery T.; Gerhart, James M.; Nardi, Mark R.

    2007-01-01

    The Maryland Coastal Plain region is, at present, largely dependent upon ground water for its water supply. Decades of increasing pumpage have caused ground-water levels in parts of the Maryland Coastal Plain to decline by as much as 2 feet per year in some areas of southern Maryland. Continued declines at this rate could affect the long-term sustainability of ground-water resources in Maryland's heavily populated Coastal Plain communities and the agricultural industry of the Eastern Shore. In response to a recommendation in 2004 by the Advisory Committee on the Management and Protection of the State's Water Resources, the Maryland Geological Survey and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information and new data management and analysis tools for the State to use in allocating ground water in the Coastal Plain. The comprehensive assessment has five goals aimed at improving the current information and tools used to understand the resource potential of the aquifer system: (1) document the geologic and hydrologic characteristics of the aquifer system in the Maryland Coastal Plain and appropriate areas of adjacent states; (2) conduct detailed studies of the regional ground-water-flow system and water budget for the aquifer system; (3) improve documentation of patterns of water quality in all Coastal Plain aquifers, including the distribution of saltwater; (4) enhance ground-water-level, streamflow, and water-quality-monitoring networks in the Maryland Coastal Plain; and (5) develop science-based tools to facilitate sound management of the ground-water resources in the Maryland Coastal Plain. The assessment, as designed, will be conducted in three phases and if fully implemented, is expected to take 7 to 8 years to complete. Phase I, which was initiated in January 2006, is an effort to assemble all the information and investigation tools needed to do a more comprehensive assessment of

  8. Configuration of the base of the upper permeable zone of the Tertiary limestone aquifer system, southeastern United States

    USGS Publications Warehouse

    Miller, James A.

    1982-01-01

    The Tertiary limestone aquifer system of the southeastern United States is a thick sequence of carbonate rocks that vary in age and that are hydraulically connected in varying degrees. The aquifer system consists, in large part, of two major permeable zones separated by a less-permeable unit. A map is presented that shows the altitude and configuration of the base of the upper permeable zone of the system; and the age and lithology of the different low permeability materials that mark the base are delineated and briefly described. Several types of geological structures that affect the configuration of the base of the upper permeable zone may be readily recognized. (USGS)

  9. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.

    PubMed

    Meredith, Karina; Cendón, Dioni I; Pigois, Jon-Philippe; Hollins, Suzanne; Jacobsen, Geraldine

    2012-01-01

    The Gnangara Mound and the underlying Perth Basin aquifers are the largest source of groundwater for the southwest of Australia, supplying between 35 and 50% of Perth's potable water (2009-2010). However, declining health of wetlands on the Mound coupled with the reduction in groundwater levels from increased irrigation demands and drier climatic conditions means this resource is experiencing increased pressures. The northern Gnangara is an area where the Yarragadee aquifer occurs at shallow depths (~50 m) and is in direct contact with the superficial aquifer, suggesting the possibility of direct recharge into a generally confined aquifer. Environmental isotopes ((14)C and (3)H) and hydrochemical modelling were used to assess the presence of a recharge 'window' as well as understand the groundwater residence time within different aquifers. Forty-nine groundwater samples were collected from depths ranging from 11 to 311 m below ground surface. The isotopic variation observed in the superficial aquifer was found to be controlled by the different lithologies present, i.e. quartz-rich Bassendean Sand and carbonate-rich sediments of the Ascot Formation. Rainfall recharge into the Bassendean Sand inherits its dissolved inorganic carbon from the soil CO(2). Organic matter throughout the soil profile is degraded by oxidation leading to anoxic/acidic groundwater, which if in contact with the Ascot Formation leads to enhanced dissolution of carbonates. Hydrochemical mass balance modelling showed that carbonate dissolution could contribute 1-2 mmol kg(-1) of carbon to groundwaters recharged through the Ascot Formation. The corrected groundwater residence times of the Yarragadee aquifer in the northern part of the study area ranged from 23 to 35 ka, while waters in the southeastern corner ranged from sub-modern to 2 ka. Groundwater ages increase with distance radiating from the recharge 'window'. This study delineates a recharge 'window' into the commonly presumed confined

  10. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  11. The role of alpine rockfall aquifer systems in baseflow maintenance and flood attenuation

    NASA Astrophysics Data System (ADS)

    Lauber, Ute; Kotyla, Patrick; Morche, David; Goldscheider, Nico

    2015-04-01

    Rockfall masses are frequent in alpine valleys. Huge rockfalls (millions to billions m³) precipitated after the end of the last glaciation, but many large events (thousand to millions m³) have occurred in historical time, and increasingly during the past decades, as a result of glacier retreat and thawing of permafrost. Most hydrological research focuses on water as a cause or trigger of rockfalls, while much less research has been done on the hydrogeological properties and functions of rockfall masses in alpine valleys. We have studied a series of rockfall and alluvial aquifer systems in the Reintal valley, German Alps, where all surface water infiltrates underground and reemerges downgradient from the rockfall masses. The goal of the study was to characterize the role of this rockfall aquifer in baseflow maintenance and flood attenuation. Employed methods include geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements. Field observations have revealed that both the infiltration and exfiltration locations vary as a function of the hydrologic conditions. Underground flow path length range from 500 m during high flows to 2 km during low flows; measured groundwater flow velocities range between 13 and 30 m/h; lag times between upstream and downstream flood peaks are 5 to 101 hours. Flood peaks were dampened by a factor of 1.5 and the maximum discharge ratio (22) and peak recession coefficient (0.2/d) downstream are very low compared with other alpine catchments. These results indicate that rockfall aquifers can play an important role in the flow regime and flood attenuation in alpine regions.

  12. Cooperation of different exchange mechanisms in confined magnetic systems

    NASA Astrophysics Data System (ADS)

    Schwabe, Andrej; Hänsel, Mirek; Potthoff, Michael

    2014-09-01

    The diluted Kondo lattice model is investigated at strong antiferromagnetic local exchange couplings J, where almost-local Kondo clouds drastically restrict the motion of conduction electrons, giving rise to the possibility of quantum localization of conduction electrons for certain geometries of impurity spins. This localization may lead to the formation of local magnetic moments in the conduction-electron system, and the inverse indirect magnetic exchange (IIME) provided by virtual excitations of the Kondo singlets couples those local moments to the remaining electrons. Exemplarily, we study the one-dimensional two-impurity Kondo model with impurity spins near the chain ends, which supports the formation of conduction-electron magnetic moments at the edges of the chain for sufficiently strong J. Employing degenerate perturbation theory as well as analyzing spin gaps numerically by means of the density-matrix renormalization group, it is shown that the low-energy physics of the model can be well captured within an effective antiferromagnetic Ruderman-Kittel-Kasuya-Yosida-like two-spin model ("RKKY from IIME") or within an effective central-spin model, depending on edge-spin distance and system size.

  13. Conceptual Model of Hydrologic and Thermal Conditions of the Eastbank Aquifer System near Rocky Reach Dam, Douglas County, Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke; Cox, Stephen E.; Huffman, Raegan L.; Curran, Christopher A.

    2008-01-01

    The Lower and Combined Aquifers of the Eastbank Aquifer system, located in a river-terrace deposit along the Columbia River near Rocky Reach Dam, Washington, are primarily recharged by the Columbia River and provide water to the Eastbank Hatchery and the regional water system servicing the cities of Wenatchee, East Wenatchee, and parts of unincorporated Chelan and Douglas Counties. In 2006, mean annual pumpage from the aquifers by the hatchery and regional water system was about 43 and 16 cubic feet per second, respectively. Reportedly, temperatures of ground water pumped by the hatchery have been increasing, thereby making water potentially too warm for salmonid fish production. An evaluation of hourly ground-water and river temperatures from January 1991 through August 2007 indicates increasing interannual trends in temperatures in most of the Lower and Combined Aquifers from 1999 through 2006 that correspond to increasing trends in the annual mean and annual maximum river temperatures during the same period of 0.07 and 0.17?C per year, respectively. There were no trends in the annual minimum river temperatures from 1999 through 2006, and there were no trends in the annual minimum, mean, and maximum river temperatures from 1991 through 1998 and from 1991 through 2007. Increases in river temperatures from 1999 through 2006 are within the natural variability of the river temperatures. Most of the Lower and Combined Aquifers reached thermal equilibrium?defined by constant time lags between changes in river temperatures and subsequent changes in ground-water temperatures?during 1991?98. The only exceptions are the Combined Aquifer north of the well field of the regional water system, which had not reached thermal equilibrium by 2006, and the Lower Aquifer west of the well fields of the hatchery and the regional water system, which reached thermal equilibrium prior to 1991. Because most of the Lower and Combined Aquifers were in thermal equilibrium from 1999 through

  14. Aquifer-System Characterization by Integrating Data from the Subsurface and from Space, San Joaquin Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Sneed, M.; Brandt, J. T.

    2014-12-01

    Extensive groundwater pumping from the aquifer system in the San Joaquin Valley, California, between 1926 and 1970 caused widespread aquifer-system compaction and resultant land subsidence that locally exceeded 8 m. The importation of surface water in the early 1970s resulted in decreased pumping, recovery of water levels, and a reduced rate of subsidence in some areas. Recently, land-use changes and reductions in surface-water availability have caused pumping to increase, water levels to decline, and subsidence to recur. Reduced freeboard and flow capacity of several Federal, State, and local canals have resulted from this subsidence. Vertical land-surface changes during 2005-14 in the San Joaquin Valley were determined by using space-based [Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS)] and subsurface (extensometer) data; groundwater-level and lithologic data were used to understand and estimate properties that partly control the stress/strain response of the aquifer system. Results of the InSAR analysis indicate that two areas covering about 7,200 km2 subsided 20-540 mm during 2008-10; GPS data indicate that these rates continued through 2014. Groundwater levels (stress) and vertical land-surface changes (strain) were used to estimate preconsolidation head and aquifer system storage coefficients. Integrating lithology into the analysis indicates that in some parts of the valley, the compaction occurred primarily within quickly-equilibrating fine-grained deposits in deeper parts of the aquifer system. In other parts of the valley, anomalously fine-grained alluvial-fan deposits underlie one of the most rapidly subsiding areas, indicating the shallow sediments may also contribute to total subsidence. This information helps improve hydrologic and aquifer-system compaction models, which in turn can be used to consider land subsidence as a constraint in evaluating water-resource management options.

  15. The chemical behavior of the transuranic elements and the barrier function in natural aquifer systems

    SciTech Connect

    Jewett, J.R.

    1997-09-17

    In a geological repository for long-lived radioactive wastes, such as actinides and certain fission products, most of the stored radionuclides remain immobile in the particular geological formation. If any of these could possibly become mobile, only trace concentrations of a few radionuclides would result. Nevertheless, with an inventory in the repository of many tonnes of transuranic elements, the amounts that could disperse cannot be neglected. A critical assessment of the chemical behavior of these nuclides, especially their migration properties in the aquifer system around the repository site, is mandatory for analysis of the long-term safety. The chemistry requited for this includes many geochemical multicomponent reactions that are so far only partially understood and [which] therefore can be quantified only incompletely. A few of these reactions have been discussed in this paper based on present knowledge. If a comprehensive discussion of the subject is impossible because of this [lack of information], then an attempt to emphasize the importance of the predominant geochemical reactions of the transuranic elements in various aquifer systems should be made.

  16. Recharge Regimes of the Saq Aquifer System, Saudi Arabia: Inferences from Geochemical and Isotopic Compositions

    NASA Astrophysics Data System (ADS)

    Abouelmagd, A.; McCabe, M. F.; Castro, M. C.; Sultan, M.; Jana, R. B.; Al-Mashharawi, S.

    2014-12-01

    One of the most valuable groundwater reserves in Saudi Arabia is the Saq aquifer system (SAS), a thick (400-1200 meters) sandstone unit that extends across 300,000 km2 in Saudi Arabia and neighboring Jordan. Due to its high productivity and high water quality, current pumping and overexploitation of the aquifer has significantly lowered the groundwater level over the years. Understanding the recharge regimes of the SAS is critical for the development of sustainable exploitation of water resources in the region and for the establishment of appropriate management practices. In this study, we investigate the hydrologic setting of the SAS and seek to differentiate the degree of paleo versus modern contributions using a range of geochemical approaches. Multiple groundwater samples were collected from deep production wells tapping the SAS at depths between 375-1800 m and across a range of locations. Samples were analyzed for their chemical concentrations, stable isotopic compositions (δ18O and δ2H), and dissolved noble gas concentrations and isotopic ratios. Examining these data identifies unmixed pools of fossil groundwater at deeper depths as well as mixed shallower systems that indicate contributions from modern precipitation. Through isotopic and noble gas analyses, the relative age and timing of these recharge events was examined and show contributions from both glacial and inter-glacial periods, with some modest contributions from modern meteoric sources.

  17. Program status 3. quarter -- FY 1994: Confinement systems programs

    SciTech Connect

    1994-07-19

    Highlights of the DIII-D Research Operations are: began experimental research operations; successfully passed radiative divertor project review; presented papers at PSI, Diagnostics, and EPS meetings and prepared IAEA synopses; new computer speeds up data acquisition; completed installation of FWCD antennas with Faraday shields; and completed report of radiative divertor preliminary design with review committee. Summaries are given for progress in research programs; operations; mechanical engineering; electrical engineering; upgrade project; operations support; and collaborative efforts. Brief summaries are given for progress on the International Cooperation task which include JET, ASDEX, TEXTOR, TORE SUPRA, JAERI, TRINTI, T-10, and ARIES support. The work in support of the development plan for the TPX (Tokamak Physics Experiment) goals and milestones continued. Progress in improving on existing models and codes leading to improved understanding of experiments is given. Highlights from the User Service Center are: 18 gigabytes of disks were purchased for exclusive fusion use; a Hewlett-Packard 9000 Series 800 T500 computer was selected as the fusion complete server; the first VAX was removed from the USC cluster; security vulnerability on HP VUE software was corrected; and a cleanup script was developed for the NERSC Cray system. A list of personnel and their assignments is given for the ITER Design Engineering task.

  18. Managing A Lake/Aquifer System-Science, Policy, and the Public Interest

    NASA Astrophysics Data System (ADS)

    Shaver, R. B.

    2009-12-01

    Lake Isabel is a small (312 ha) natural lake located in central North Dakota in the glaciated Missouri Coteau. The average lake depth is about 1.8 m with a maximum depth of about 3.6 to 4.6 m. The lake overlies the Central Dakota aquifer complex which is comprised of three sand and gravel aquifer units that are either directly or indirectly (through leakage) hydraulically connected to the lake. The aquifer is a major water source for center pivot irrigation. During the 2001-2008 drought, lower lake levels reduced lake recreation, including leaving many boat docks unusable. Lake homeowners attribute lake level decline to irrigation pumping and believe that irrigation should be curtailed. There is no water right associated with Lake Isabel because there are no constructed works associated with the lake. Therefore, under North Dakota statute the lake cannot be protected as a prior (senior) appropriator. The lake does have standing under the public interest as defined by North Dakota statute. Evaluation of the public interest involves the integration of both science and policy. Is it in the best interest of the people of the state to prohibit ground water withdrawals for irrigation to protect the lake? This is a policy decision, not a scientific decision. The basis of the policy decision should include an economic analysis of the irrigated crops, fish, wildlife, recreation, and lake property. In addition, priority of use and lake level history should be considered. The issue can likely be resolved without scientific controversy arising from hydrologic system uncertainty. If the decision is to protect the lake at some level, the issue becomes “scientized” and the following questions need to be answered: 1) Does irrigation pumping effect changes in lake levels? 2) Is our level of scientific understanding sufficient to determine what volume of irrigation pumping will cause what amount of lake level change? 3) Given aquifer lag time response to changes in pumping and

  19. The Beijing Geothermal System, PR China: Natural state and exploitation modelling study of a low temperature basement aquifer system

    SciTech Connect

    Hochstein, M.P.; Zhongke, Yang

    1988-01-01

    Computer modeling of the Beijing low temperature, basement aquifer system has shown that secular natural convection of meteoric waters down to depths greater than 5 km can produce a temperature field which is similar to that observed in deep wells. Secular convection occurs within a crustal block with the approximate dimensions of 45 km {times} 60 km {times} 10 km; the Beijing system is probably one of the largest secular convecting systems described so far. It is driven entirely by the crustal heatflow which appears to be slightly lower (i.e. 54 mW/m{sup 2}) than the average continental heat flux. Several geophysical implications are described.

  20. Hydrogeophysical Data Fusion and Geostatistical Approach to Characterize Hydrogeological Structure of the Baton Rouge Aquifer System in Louisiana

    NASA Astrophysics Data System (ADS)

    Elshall, A. S.; Tsai, F. T.; Hanor, J. S.

    2012-12-01

    The complex siliciclastic aquifer system underneath the Baton Rouge area, Louisiana is fluvial in origin and is characterized by strongly binary heterogeneity of sandy units and mudstones as pervious and impervious hydrofacies. Two distinct east-west trending geologic faults, the Baton Rouge fault and the Denham Springs-Scotlandville fault, cut across East Baton Rouge Parish. Data from the USGS water wells suggest that the Baton Rouge fault is a low permeable fault that historically separates a sequence of freshwater aquifers north of the fault from brackish aquifers south of the fault. However, the Denham Springs-Scotlandville fault appears to be pervious. In this study we utilize wireline geophysical data and lithologic data to characterize the Baton Rouge aquifer system and delineate flow pathways thought the faults. To avoid non-uniqueness associated with the use of a single geophysical data type particularly with the presence of salinization, we interpret the sand and shale hydrofacies for each well log based on wireline short normal electrical resistivity, single-point resistance, spontaneous-potential and gamma ray. For geological model calibration we use lithologic data from drillers logs representing the actual lithology with depth. Using geophysical data for hydrogeological structure construction and using lithologic data for model calibration, we implement a generalized parameterization indicator scheme. First, we show that this methodology can effectively analyze a binary siliciclastic aquifer by depicting the spatial extent of major water bearing units, their interconnections and preferential flow paths within each unit. Second, mapping of the binary fault stratigraphy assists in the assessment of hydraulic continuity and saltwater intrusion in the siliciclastic aquifer system, which exhibits discontinuous heterogeneity due to fault throw. By juxtaposing sand units from both sides of the fault plane, horizontal flow pathways are identified if sands

  1. A Laboratory Scale Aquifer-Well System for Analyzing Near-well Processes

    NASA Astrophysics Data System (ADS)

    Kalwa, Fritz; Bonilla, José; Händel, Falk; Binder, Martin; Stefan, Catalin

    2016-04-01

    Managed Aquifer Recharge (MAR) is constantly gaining popularity and one very promising techniqu