Science.gov

Sample records for confined plasma target

  1. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  2. Confinement effects of shock waves on laser-induced plasma from a graphite target

    SciTech Connect

    Huang, Feiling; Liang, Peipei; Yang, Xu; Cai, Hua; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian

    2015-06-15

    The spatial confinement effects of shock waves on the laser-induced plasma (LIP) from a graphite target in air were studied by probe beam deflection (PBD) measurements and optical emission spectroscopy (OES). A clear relationship between the confinement of the LIP by the shock wave and the effects on the LIP emission was observed, and the underlying mechanisms are discussed. PBD monitoring revealed that the laser-ablation induced shock wave could be well analogized to the shock wave generated by a point explosion and would be reflected by a block. OES measurements indicated that the optical emission of the LIP exhibited significant variations with the block placement. A first enhancement and then a fast decay of CN molecular emission as well as a suppression of carbon atomic emission were observed in the presence of the block. The results revealed that the reflected shock wave spatially confined the expansion of the LIP and compressed the LIP after encountering it, pushing back the species of the LIP and changing the density of the LIP species including luminous carbon atoms and CN molecules. It is suggested that the change of the LIP emission is attributed to the density variation of the LIP species due to the compression of the LIP and the reactions occurring in the plasma.

  3. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  4. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  5. Alternative approaches to plasma confinement

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1978-01-01

    The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.

  6. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  7. Inertial-confinement-fusion targets

    SciTech Connect

    Hendricks, C.D.

    1981-11-16

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques have been devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  8. Alternative approaches to plasma confinement

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    The potential applications of fusion reactors, the desirable properties of reactors intended for various applications, and the limitations of the Tokamak concept are discussed. The principles and characteristics of 20 distinct alternative confinement concepts are described, each of which may be an alternative to the Tokamak. The devices are classed as Tokamak-like, stellarator-like, mirror machines, bumpy tori, electrostatically assisted, migma concept, and wall-confined plasma.

  9. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  10. CORRELATIONS IN CONFINED QUANTUM PLASMAS

    SciTech Connect

    DUFTY J W

    2012-01-11

    This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed

  11. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  12. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  13. Elmo bumpy square plasma confinement device

    DOEpatents

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  14. Velocity shear stabilization of centrifugally confined plasma.

    PubMed

    Huang, Y M; Hassam, A B

    2001-12-01

    A magnetized, centrifugally confined plasma is subjected to a 3D MHD stability test. Ordinarily, the system is expected to be grossly unstable to "flute" interchanges of field lines. Numerical simulation shows though that the system is stable on account of velocity shear. This allows consideration of a magnetically confined plasma for thermonuclear fusion that has a particularly simple coil configuration. PMID:11736455

  15. Auxiliary Heating of Inertial Confinement Fusion Targets

    NASA Astrophysics Data System (ADS)

    Norreys, Peter

    2014-10-01

    The role of collisionless ion heating arising from the propagation of petawatt-laser driven relativistic electron beams in dense plasma will be discussed. The energy cascade mechanism begins first with the rapid growth of electrostatic waves near the electron plasma frequency. These waves reach high amplitudes and break, which then results in the generation of a strongly driven turbulent Langmuir spectrum. Parametric decay of these waves, particularly via the modulational instability, then gives rise to a coupled turbulent ion acoustic spectrum. These waves, in turn, experience significant Landau damping, resulting in the rapid heating of the background ion population. In this talk, I will review the evidence for this cascade process in laboratory plasmas and describe the theoretical background that underpins this process. I will then present the most recent analytic modelling, particle-in-cell and Vlasov-Poisson simulation results of my team within Oxford Physics and the Central Laser Facility that explores the optimum parameter space for this process, focusing in particular on the requirements for auxiliary heating of the central hot spot in inertial confinement fusion target experiments now underway on the National Ignition Facility. I will also describe new methods for hole-boring through the coronal plasma surrounding the fuel using strongly relativistic laser beams that demonstrates the strong suppression of the hosing instability under these conditions.

  16. Bifurcated equilibria in centrifugally confined plasma

    SciTech Connect

    Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.

    2008-12-15

    A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.

  17. Experimental Achievements on Plasma Confinement and Turbulence

    SciTech Connect

    Fujisawa, A.

    2009-02-19

    This article presents a brief review of the experimental studies on turbulence and resultant transport in toroidal plasmas. The article focuses on two topics, physics of transport barrier and the role of mesoscale structure on plasma confinement, i.e. zonal flows. The two topics show the important roles of the mutual interactions between sheared flows, zonal flows and drift waves for plasma turbulence and transport. The findings can lead us to further generalized concept of the disparate scale interactions which could give a fundamental understanding of the plasma confinement from the first principle.

  18. Plasma sheath driven targets

    NASA Astrophysics Data System (ADS)

    Brownell, J. H.; Freeman, B. L.

    1980-02-01

    Plasma focus driven target implosions are simulated using hydrodynamic-burn codes. Support is given to the idea that the use of a target in a plasma focus should allow 'impedance matching' between the fuel and gun, permitting larger fusion yields from a focus-target geometry than the scaling laws for a conventional plasma focus would predict.

  19. Thomson scattering from inertial confinement fusion plasmas

    SciTech Connect

    Glenzer, S.H.; Back, C.A.; Suter, L.J.

    1997-07-08

    Thomson scattering has been developed at the Nova laser facility as a direct and accurate diagnostic to characterize inertial confinement fusion plasmas. Flat disks coated with thin multilayers of gold and beryllium were with one laser beam to produce a two ion species plasma with a controlled amount of both species. Thomson scattering spectra from these plasmas showed two ion acoustic waves belonging to gold and beryllium. The phase velocities of the ion acoustic waves are shown to be a sensitive function of the relative concentrations of the two ion species and are in good agreement with theoretical calculations. These open geometry experiments further show that an accurate measurement of the ion temperature can be derived from the relative damping of the two ion acoustic waves. Subsequent Thomson scattering measurements from methane-filled, ignition-relevant hohlraums apply the theory for two ion species plasmas to obtain the electron and ion temperatures with high accuracy. The experimental data provide a benchmark for two-dimensional hydrodynamic simulations using LASNEX, which is presently in use to predict the performance of future megajoule laser driven hohlraums of the National Ignition Facility (NIF). The data are consistent with modeling using significantly inhibited heat transport at the peak of the drive. Applied to NIF targets, this flux limitation has little effect on x- ray production. The spatial distribution of x-rays is slightly modified but optimal symmetry can be re-established by small changes in power balance or pointing. Furthermore, we find that stagnating plasma regions on the hohlraum axis are well described by the calculations. This result implies that stagnation in gas-filled hohlraums occurs too late to directly affect the capsule implosion in ignition experiments.

  20. Microwave Reflectometry for Magnetically Confined Plasmas

    SciTech Connect

    Mazzucato, E.

    1998-02-01

    This paper is about microwave reflectometry -- a radar technique for plasma density measurements using the reflection of electromagnetic waves by a plasma cutoff. Both the theoretical foundations of reflectometry and its practical application to the study of magnetically confined plasmas are reviewed in this paper. In particular, the role of short-scale density fluctuations is discussed at length, both as a unique diagnostic tool for turbulence studies in thermonuclear plasmas and for the deleterious effects that fluctuations may have on the measurement of the average plasma density with microwave reflectometry.

  1. PLASMA HEATING AND CONFINING DEVICE

    DOEpatents

    Baker, W.R.; Bratenahl, Al.; Kunkel, W.B.

    1962-02-13

    ABS> A device is designed for generating, heating, and containing a very pure electrical plasma. Plasma purity is maintained by preventing the hot plasma from contacting insulators, which are a principal source of impurities in prior constructions. An insulator is disposed at each end of a pair of long coaxial cylinders forming an annular chamber therebetween. High voltage is applied between the cylinders and an axial magnetic field is created therethrough. At a middle position on the inner cylinder, a fastopening valve releases a quantity of gas into the chamber, and before the gas can diffuse to the distant insulators, a discharge occurs between the cylinders and plasma is formed in the central region of the chamber away from the insulators. (AEC)

  2. Neoclassical transport in enhanced confinement toroidal plasmas

    SciTech Connect

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1996-11-01

    It has recently been reported that ion thermal transport levels in enhanced confinement tokamak plasmas have been observed to fall below the irreducible minimum level predicted by standard neoclassical theory. This apparent contradiction is resolved in the present analysis by relaxing the basic neoclassical assumption that the ions orbital excursions are much smaller than the local toroidal minor radius and the equilibrium scale lengths of the system.

  3. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  4. Micromachining of inertial confinement fusion targets

    SciTech Connect

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-12-31

    Many experiments conducted on today`s largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron.

  5. Plasma Confinement in the UCLA Electric Tokamak.

    NASA Astrophysics Data System (ADS)

    Taylor, Robert J.

    2001-10-01

    The main goal of the newly constructed large Electric Tokamak (R = 5 m, a = 1 m, BT < 0.25 T) is to access an omnigeneous, unity beta(S.C. Cowley, P.K. Kaw, R.S. Kelly, R.M. Kulsrud, Phys. fluids B 3 (1991) 2066.) plasma regime. The design goal was to achieve good confinement at low magnetic fields, consistent with the high beta goal. To keep the program cost down, we adopted the use of ICRF as the primary heating source. Consequently, antenna surfaces covering 1/2 of the surface of the tokamak has been prepared for heating and current drive. Very clean hydrogenic plasmas have been achieved with loop voltage below 0.7 volt and densities 3 times above the Murakami limit, n(0) > 8 x 10^12 cm-3 when there is no MHD activity. The electron temperature, derived from the plasma conductivity is > 250 eV with a central electron energy confinement time > 350 msec in ohmic conditions. The sawteeth period is 50 msec. Edge plasma rotation is induced by plasma biasing via electron injection in an analogous manner to that seen in CCT(R.J. Taylor, M.L. Brown, B.D. Fried, H. Grote, J.R. Liberati, G.J. Morales, P. Pribyl, D. Darrow, and M. Ono. Phys. Rev Lett. 63 2365 1989.) and the neoclassical bifurcation is close to that described by Shaing et al(K.C. Shaing and E.C. Crume, Phys. Rev. Lett. 63 2369 (1989).). In the ohmic phase the confinement tends to be MHD limited. The ICRF heating eliminates the MHD disturbances. Under second harmonic heating conditions, we observe an internal confinement peaking characterized by doubling of the core density and a corresponding increase in the central electron temperature. Charge exchange data, Doppler data in visible H-alpha light, and EC radiation all indicate that ICRF heating works much better than expected. The major effort is focused on increasing the power input and controlling the resulting equilibrium. This task appears to be easy since our current pulses are approaching the 3 second mark without RF heating or current drive. Our

  6. Stellarator approach to fusion plasma confinement

    SciTech Connect

    Harris, J.H.

    1985-01-01

    The stellarator is a toroidal fusion plasma confinement device with nested magnetic flux surfaces. The required twist of the field lines is produced by external helical coils rather than by plasma current, as in a tokamak. Stellarator devices are attractive fusion reactor candidates precisely because they offer the prospect of steady-state operation without plasma current. In the last few years the excellent results achieved with currentless stellarator plasmas of modest minor radius (10 to 20 cm) at Kyoto University (Japan) and the Max Planck Institute (West Germany) have made the stellarator second only to the tokamak in its progress toward fusion breakeven, with temperatures T/sub e/, T/sub i/ approx. 1 KeV, Lawson products n tau approx. 2 to 5 x 10/sup 12/ cm/sup -3/.s, and volume-averaged beta values approx. = 2%. The Advanced Toroidal Facility (ATF), now under construction at Oak Ridge Natioal Laboratory (ORNL) and scheduled to operate in 1986, represents a significant advance in stellarator research, with a plasma major radius of 2.1 m, an average minor radius of 0.3 m, and a magnetic field of 2 T for 5 s or 1 T at steady state. ATF replaces the Impurity Study Experiment (ISX-B) tokamak at ORNL and will use the ISX-B heating and diagnostic system.

  7. Target fabrication for inertial confinement fusion research

    NASA Astrophysics Data System (ADS)

    Mah, Richard; Duchane, David V.; Young, Ainslie T.; Rhorer, Richard L.

    1985-05-01

    The design of both laser fusion and particle beam fusion targets has become increasingly more complex with greater demands on both target tolerances and the physical and mechanical properties of target materials. The Materials Technology Group at Los Alamos has been given the responsibility for fabricating these targets. In order to meet the demands of the ICF program, the target fabrication effort maintains a wide variety of processes to provide metallic, non-metallic and composite materials for target components. These processes are also geared to provide superior surface finishes, wall uniformity and, in the case of metals, a fine grained equiaxed structure. The materials technologies that will be described include chemical vapor deposition (CVD), physical vapor deposition (PVD), electrochemical deposition, vapor phase pyrolysis (VPP), low pressure plasma coating (LPP) and the sorption/diffusion (SD) process. This paper will also discuss the materials and the material properties that can be obtained by these processes. The result of maintaining all these technologies and processes is to allow the greatest latitude for ICF target designers.

  8. Confinement of pure ion plasma in a cylindrical current sheet

    NASA Astrophysics Data System (ADS)

    Paul, Stephen F.; Chao, Edward H.; Davidson, Ronald C.; Phillips, Cynthia K.

    1999-12-01

    A novel method for containing a pure ion plasma at thermonuclear densities and temperatures has been modeled. The method combines the confinement principles of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density plasma of about 5×1011cm-3 with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local ion density can be obtained. Starting with a 107cm-3 trapped deuterium plasma at the Brillouin limit (B=0.6 Tesla), the field is ramped to 30 Tesla. Because the plasma is comprised of particles of only one sign of charge, transport losses are very low, i.e., the conductivity is high. As a result, the ramped field does not penetrate the plasma and a diamagnetic surface current is generated, with the ions being accelerated to relativistic velocities. To counteract the inward j×B forces from this induced current, additional ions are injected into the plasma along the axis to increase the density (and mutual electrostatic repulsion) of the target plasma. In the absence of the higher magnetic field in the center, the ions drift outward until a balance is established between the outward driving forces (centrifugal, electrostatic, pressure gradient) and the inward j×B force. An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a plasma can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density exceeding 4×1014cm-3.

  9. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  10. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  11. Theoretical studies on plasma heating and confinement

    SciTech Connect

    Sudan, R.N.

    1993-01-01

    Three principal topics are covered in this final report: Stabilization of low frequency modes of an axisymmetric compact torus plasma confinement system, such as, spheromaks and FRC'S, by a population of large orbit axis encircling energetic ions. Employing an extension of the energy principle' which utilizes a Vlasov description for the energetic 'ion component, it has been demonstrated that short wavelength MHD type modes are stabilized while the long wavelength tilt and precessional modes are marginally stable. The deformation of the equilibrium configuration by the energetic ions results in the stabilization of the tilt mode for spheromaks. Formation of Ion Rings and their coalescence with spheromaks. A two dimensional electromagnetic PIC codes has been developed for the study of ion ring formation and its propagation, deformation and slowing down in a cold plasma. It has been shown that a ring moving at a speed less than the Alfven velocity can merge with a stationary spheromak. Anomalous transport from drift waves in a Tokomak. The Direct Interaction Approximation in used to obtain incremental transport coefficients for particles and heat for drift waves in a Tokomak. It is shown that the transport matrix does not obey Onsager's principle.

  12. Comments on experimental results of energy confinement of tokamak plasmas

    SciTech Connect

    Chu, T.K.

    1989-04-01

    The results of energy-confinement experiments on steady-state tokamak plasmas are examined. For plasmas with auxiliary heating, an analysis based on the heat diffusion equation is used to define heat confinement time (the incremental energy confinement time). For ohmically sustained plasmas, experiments show that the onset of the saturation regime of energy confinement, marfeing, detachment, and disruption are marked by distinct values of the parameter /bar n//sub e///bar j/. The confinement results of the two types of experiments can be described by a single surface in 3-dimensional space spanned by the plasma energy, the heating power, and the plasma density: the incremental energy confinement time /tau//sub inc/ = ..delta..W/..delta..P is the correct concept for describing results of heat confinement in a heating experiment; the commonly used energy confinement time defined by /tau//sub E/ = W/P is not. A further examination shows that the change of edge parameters, as characterized by the change of the effective collision frequency ..nu../sub e/*, governs the change of confinement properties. The totality of the results of tokamak experiments on energy confinement appears to support a hypothesis that energy transport is determined by the preservation of the pressure gradient scale length. 70 refs., 6 figs., 1 tab.

  13. Order in very cold confined plasmas

    SciTech Connect

    Schiffer, J.P. |

    1995-12-31

    The study of the structure and dynamic properties of classical systems of charged particles confined by external forces, and cooled to very low internal energies, is the subject of this talk. An infinite system of identical charged particles has been known for some time to form a body-centered cubic lattice and is a simple classical prototype for condensed matter. Recent technical developments in storage rings, ion traps, and laser cooling of ions, have made it possible to produce such systems in the laboratory, though somewhat modified because of their finite size. I would like to discuss what one may expect in such systems and also show some examples of experiments. If we approximate the potential of an ion trap with an isotropic harmonic force F = {minus}Kr then the Hamiltonian for this collection of ions is the same as that for J. J. Thomson`s ``plum pudding`` model of the atom, where electrons were thought of as discrete negative charges imbedded in a larger, positive, uniformly charged sphere. The harmonic force macroscopically is canceled by the average space-charge forces of the plasma-, and this fixes the overall radius of the distribution. What remains, are the residual two-body Coulomb interactions that keep the particles within the volume as nearly equidistant as possible in order to minimize the potential energy. The configurations obtained for the minimum energy of small ionic systems [2] in isotropic confinement are shown in figure 1. Indeed this is an `Exotic Atom` and fits well into the subject of this symposium honoring the 60th birthday of Professor Toshi Yamazaki.

  14. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.

    2015-11-01

    In inertial confinement fusion, a spherical capsule of cryogenic DT is accelerated inward at a high velocity. Near stagnation, a dense hot spot is formed where the deuterium and tritium ions begin to fuse, creating a 3.5-MeV alpha particle per reaction. These alpha particles deposit energy back into the plasma, thereby increasing the pressure, temperature, and reaction rate. This feedback process is called ``alpha heating,'' and ignition is a direct consequence of this thermal instability. The onset of a burning-plasma regime occurs when the total alpha-particle energy produced exceeds the shell compression work. Using an analytic compressible-shell model for the implosion, it is found that the onset of the burning-plasma regime is a unique function of the neutron yield enhancement caused by alpha particles for any target, direct or indirect drive. This yield enhancement can then be inferred from experimentally measureable quantities, such as the Lawson parameter. From this analysis, the onset of a burning plasma occurs at yields exceeding 50 kJ for implosions at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  15. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  16. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Bose, A.; Woo, K. M.

    2016-05-01

    Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to understanding the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement due to alpha particle heating (before ignition occurs) depends on the generalized Lawson parameter that can be inferred from experimental observables. A universal curve valid for arbitrary laser-fusion targets shows the yield amplification due to alpha heating for a given value of the Lawson parameter. The same theory is used to determine the onset of the burning plasma regime when the alpha heating exceeds the compression work. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility.

  17. Magnetic confinement system using charged ammonia targets

    DOEpatents

    Porter, Gary D.; Bogdanoff, Anatoly

    1979-01-01

    A system for guiding charged laser targets to a predetermined focal spot of a laser along generally arbitrary, and especially horizontal, directions which comprises a series of electrostatic sensors which provide inputs to a computer for real time calculation of position, velocity, and direction of the target along an initial injection trajectory, and a set of electrostatic deflection means, energized according to a calculated output of said computer, to change the target trajectory to intercept the focal spot of the laser which is triggered so as to illuminate the target of the focal spot.

  18. Confinement of Non-neutral Plasmas in Stellarator Magnetic Surfaces

    NASA Astrophysics Data System (ADS)

    Brenner, Paul

    2011-12-01

    The Columbia Non-neutral Torus (CNT) is the first experiment designed to create and study small Debye length non-neutral plasmas confined by magnetic surfaces. This thesis describes experimental confinement studies of non-neutral plasmas on magnetic surfaces in CNT. Open orbits exist in CNT resulting in electron loss rates that are much faster than initially predicted. For this reason a conforming boundary was designed and installed to address what is believed to be the primary cause of open orbits: the existence of a sizable mismatch between the electrostatic potential surfaces and the magnetic surfaces. After installation a record confinement time of 337 ms was measured, more than an order of magnitude improvement over the previous 20 ms record. This improvement was a combination of the predicted improvement in orbit quality, a reduced Debye length that resulted in decreased transport due to the perturbing insulated rods, and improved operating parameters not indicative of any new physics. The perturbation caused by the insulated rods that hold emitters on axis in CNT is a source of electron transport and would provide a loss mechanism for positrons in future positron-electron plasma experiments. For these reasons an emitter capable of creating plasmas then being removed faster than the confinement time was built and installed. Measurements of plasma decay after emitter retraction indicate that ion accumulation reduces the length of time that plasmas are confined. Plasmas have been measured after retraction with decay times as long as 92 ms after the emitter has left the last closed flux surface. Experimental observations show that obstructing one side of an emitting filament with a nearby insulator substantially improves confinement. As a result, experiments have been performed to determine whether a two stream instability affects confinement in CNT. Results indicate that the improvement is not caused by reducing a two stream instability. Instead, the

  19. Laser targets compensate for limitations in inertial confinement fusion drivers

    NASA Astrophysics Data System (ADS)

    Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.

    2005-10-01

    Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.

  20. Confinement and heating of a deuterium-tritium plasma

    SciTech Connect

    Hawryluk, R. J.; Adler, H.; Alling, P.; Synakowski, E.

    1994-03-01

    The Tokamak Fusion Test Reactor (TFTR) has performed initial high-power experiments with the plasma fueled by deuterium and tritium to nominally equal densities. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ~20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α-particles.

  1. Laser-plasma interactions relevant to Inertial Confinement Fusion

    SciTech Connect

    Wharton, K.B.

    1998-11-02

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  2. Transport processes in magnetically confined plasmas

    SciTech Connect

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much_lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  3. Transport processes in magnetically confined plasmas

    SciTech Connect

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  4. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    DOEpatents

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  5. Divertor plasma conditions and neutral dynamics in horizontal and vertical divertor configurations in JET-ILW low confinement mode plasmas

    NASA Astrophysics Data System (ADS)

    Groth, M.; Brezinsek, S.; Belo, P.; Brix, M.; Calabro, G.; Chankin, A.; Clever, M.; Coenen, J. W.; Corrigan, G.; Drewelow, P.; Guillemaut, C.; Harting, D.; Huber, A.; Jachmich, S.; Järvinen, A.; Kruezi, U.; Lawson, K. D.; Lehnen, M.; Maggi, C. F.; Marchetto, C.; Marsen, S.; Maviglia, F.; Meigs, A. G.; Moulton, D.; Silva, C.; Stamp, M. F.; Wiesen, S.

    2015-08-01

    Measurements of the plasma conditions at the low field side target plate in JET ITER-like wall ohmic and low confinement mode plasmas show minor differences in divertor plasma configurations with horizontally and vertically inclined targets. Both the reduction of the electron temperature in the vicinity of the strike points and the rollover of the ion current to the plates follow the same functional dependence on the density at the low field side midplane. Configurations with vertically inclined target plates, however, produce twice as high sub-divertor pressures for the same upstream density. Simulations with the EDGE2D-EIRENE code package predict significantly lower plasma temperatures at the low field side target in vertical than in horizontal target configurations. Including cross-field drifts and imposing a pumping by-pass leak at the low-field side plate can still not recover the experimental observations.

  6. Laboratory-scale uranium RF plasma confinement experiments

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.

  7. Development of a Confined Plasma Armature Design (CPAD)

    NASA Astrophysics Data System (ADS)

    White, Moreno; Jacobson, Dan; Barker, Christine; Goldman, Edward

    1993-01-01

    Plasma driven railguns show excellent promise. Experimental data to date have shown an apparent velocity barrier at 5-7 km/sec. It is believed that this is caused by increasing viscous drag and arc restrike at higher velocities. One way to overcome the viscous drag/restrike of the plasma is to confine the plasma in a region directly behind the projectile. To investigate this concept, programs have been undertaken to design, fabricate, and test a Confined Plasma Armature Design (CPAD) which would physically contain the high pressure plasma in an area directly behind the EM projectile. This paper summarizes the efforts to date for analysis, design, fabrication, and full scale testing of a CPAD projectile.

  8. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2016-07-05

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  9. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2006-04-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  10. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2013-06-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  11. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2006-10-31

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  12. Magnetohydrodynamically generated velocities in confined plasma

    SciTech Connect

    Morales, Jorge A. Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.

    2015-04-15

    We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.

  13. Confinement studies of ohmically heated plasmas in TFTR

    SciTech Connect

    Efthimion, P.C.; Bretz, N.L.; Bell, M.G.; Bitter, M.; Blanchard, W.R.; Boody, F.; Boyd, D.; Bush, C.E.; Cecchi, J.L.; Coonrod, J.

    1985-03-01

    Systematic scans of density in large deuterium plasmas (a = 0.83 m) at several values of plasma current and toroidal magnetic field strength indicate that the total energy confinement time, tau/sub E/, is proportional to the line-average density anti n/sub e/ and the limiter q. Confinement times of approx. 0.3 s have been observed for anti n/sub e/ = 2.8 x 10/sup 19/ m/sup -3/. Plasma size scaling experiments with plasmas of minor radii a = 0.83, 0.69, 0.55, and 0.41 m at constant limiter q reveal a confinement dependence on minor radius. The major-radius dependence of tau/sub E/, based on a comparison between TFTR and PLT results, is consistent with R/sup 2/ scaling. From the power balance, the thermal diffusivity chi/sub e/ is found to be significantly less than the INTOR value. In the a = 0.41 m plasmas, saturation of confinement is due to neoclassical ion conduction (chi/sub i/ neoclassical >> chi/sub e/).

  14. Space charge neutralization in inertial electrostatic confinement plasmas

    SciTech Connect

    Evstatiev, E. G.; Nebel, R. A.; Chacon, L.; Park, J.; Lapenta, G.

    2007-04-15

    A major issue for electron injected inertial electrostatic confinement (IEC) devices is space charge neutralization. A new formalism is developed that will allow this neutralization to occur for both oscillating and steady-state IEC plasmas. Results indicate that there are limits on the amount of compression that can be achieved by oscillating plasmas while simultaneously maintaining space charge neutralization and parabolic background potential. For steady-state plasmas, there are no such limits and space charge neutralization can be achieved even when the plasma becomes quasineutral.

  15. Magnetically confined plasma solar collector. [satellite based system in space

    NASA Technical Reports Server (NTRS)

    Walters, C. T.; Wolken, G., Jr.; Purvis, G. D., III

    1978-01-01

    The possibility of using a plasma medium for collecting solar energy in space is examined on the basis of a concept involving an orbiting magnetic bottle in which a solar-energy-absorbing plasma is confined. A basic system uses monatomic cesium as working fluid. Cesium evaporates from a source and flows into the useful volume of a magnetic bottle where it is photoionized by solar radiation. Ions and electrons lost through the loss cones are processed by a recovery system, which might be a combination of electromagnetic devices and heat engines. This study concentrates on the plasma production processes and size requirements, estimates of the magnetic field required to confine the plasma, and an estimate of the system parameters for a 10 GW solar collector using cesium.

  16. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  17. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field. PMID:20192365

  18. MHD-stable plasma confinement in an axisymmetric mirror system

    SciTech Connect

    Stupakov, G.V.

    1988-02-01

    If the magnetic field of a nonparaxial mirror system is chosen appropriately, it is possible to maintain a sharp plasma boundary in an open axisymmetric confinement system in a manner which is stable against flute modes (both global and small-scale). Stability prevails in the ideal MHD approximation without finite-ion-Larmor radius effects.

  19. Plasma confinement apparatus using solenoidal and mirror coils

    DOEpatents

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  20. Development of a tokamak plasma optimized for stability and confinement

    SciTech Connect

    Politzer, P.A.

    1995-02-01

    Design of an economically attractive tokamak fusion reactor depends on producing steady-state plasma operation with simultaneous high energy density ({beta}) and high energy confinement ({tau}{sub E}); either of these, by itself, is insufficient. In operation of the DIII-D tokamak, both high confinement enhancement (H{equivalent_to} {tau}{sub E}/{tau}{sub ITER-89P} = 4) and high normalized {beta} ({beta}{sub N}{equivalent_to} {beta}/(I/aB) = 6%-m-T/MA) have been obtained. For the present, these conditions have been produced separately and in transient discharges. The DIII-D advanced tokamak development program is directed toward developing an understanding of the characteristics which lead to high stability and confinement, and to use that understanding to demonstrate stationary, high performance operation through active control of the plasma shape and profiles. The authors have identified some of the features of the operating modes in DIII-D that contribute to better performance. These are control of the plasma shape, control of both bulk plasma rotation and shear in the rotation and Er profiles, and particularly control of the toroidal current profiles. In order to guide their future experiments, they are developing optimized scenarios based on their anticipated plasma control capabilities, particularly using fast wave current drive (on-axis) and electron cyclotron current drive (off-axis). The most highly developed model is the second-stable core VH-mode, which has a reversed magnetic shear safety factor profile [q(O) = 3.9, q{sub min} = 2.6, and q{sub 95} = 6]. This model plasma uses profiles which the authors expect to be realizable. At {beta}{sub N} {>=} 6, it is stable to n=l kink modes and ideal ballooning modes, and is expected to reach H {>=} 3 with VH-mode-like confinement.

  1. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    DOEpatents

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  2. K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

    SciTech Connect

    Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

    2006-11-21

    The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

  3. Simulation of transition dynamics to high confinement in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Nielsen, A. H.; Xu, G. S.; Madsen, J.; Naulin, V.; Juul Rasmussen, J.; Wan, B. N.

    2015-12-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST. Particularly, the slow transition with an intermediate dithering phase is well reproduced at proper parameters. The model recovers the power threshold for the L-H transition as well as the decrease in power threshold switching from single to double null configuration observed experimentally. The results are highly relevant for developing predictive models of the transition, essential for understanding and optimizing future fusion power reactors.

  4. Negative specific heat of a magnetically self-confined plasma torus

    PubMed Central

    Kiessling, Michael K.-H.; Neukirch, Thomas

    2003-01-01

    It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553

  5. Particle Dynamics in Neutral-Gas Confined Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    2001-10-01

    Laser-produced plasma from a metallic target can be confined to higher plasma densities by immersing the target in an inert gas medium at increasingly high density. The plasma becomes Rayleigh-Taylor unstable, however, when the mass density of the neutral gas exceeds the plasma mass density substantially.[1] A new plasma diagnostic method is developed to help examine the early time development of the gas-plasma interfacial structure. A preliminary study based on plasma polarization spectroscopy is presented, in which the dynamics of atoms and ions are visualized in the presence of electromagnetic fields due to charge separation. The ambient gas pressure of argon is varied as active control in the low-pressure regime. Time-resolved multi-directional projections of an aluminum plasma are obtained in line and continuum emissions, polarization and spectral broadening including Doppler shifts. The electrostatic potential of the target is also followed. The results indicate a bifurcation of the phase-space distribution function and structural segmentation of the plasma into a thermalized core and a crown with highly aligned, energetic atoms and ions. Reconstruction of the plasma structure appears possible by generalization of the two new algorithms we have developed.[1,2] 1. Y.W. Kim and J.-C. Oh, Rev. Sci. Inst. 72, 948 (2001). 2. Y.W. Kim and C.D. Lloyd-Knight, Rev. Sci. Inst. 72, 944 (2001).

  6. Polyvinyl alcohol coating of polystyrene inertial confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Lee, M. C.; Crawley, R. L.; Downs, R. L.

    1985-01-01

    An inertial confinement fusion (ICF) target made of polystyrene is first levitated in an acoustic field. The surface of the target is then etched using an appropriate solution (e.g., cyclohexane) to enhance the wetting characteristics. A specially prepared polyvinyl alcohol solution is atomized using an acoustic atomizer and deposited on the surface of the target. The solution is air dried to form a thin coating (2 microns) on the target (outside diameter of about 350-850 microns). Thicker coatings are obtained by repeated applications of the coating solutions. Preliminary results indicate that uniform coatings may be achievable on the targets with a background surface smoothness in the order of 1000 A.

  7. Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement

    SciTech Connect

    Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.

    1996-12-31

    Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

  8. Confinement of pure electron plasmas in the CNT stellarator

    NASA Astrophysics Data System (ADS)

    Pedersen, T. Sunn; Berkery, J. W.; Boozer, A. H.; Marksteiner, Q. R.; Brenner, P. W.; Hahn, M.; de Gevigney, B. Durand; Martin, X. Sarasola

    2009-03-01

    The Columbia Non-neutral Torus is a stellarator devoted to non-neutral and electron-positron plasma research. Confinement and transport processes have been studied in some detail now, and an understanding of these processes has emerged. Transport is driven in two ways: The presence of internal rods, and the presence of neutrals. Both transport processes are clearly distinguished experimentally, and a model of the rod driven transport has been developed, yielding very good agreement with experimental data. The neutral driven transport is faster than originally expected and indicates the presence of unconfined orbits in CNT. Numerical modeling of the electron orbits in CNT confirms the existence of loss orbits and shows that a flux surface conforming electrostatic boundary will greatly improve confinement. Such a boundary has now been installed in CNT, with initial results showing an order of magnitude improvement in confinement.

  9. Quantum states of confined hydrogen plasma species: Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Micca Longo, G.; Longo, S.; Giordano, D.

    2015-12-01

    The diffusion Monte Carlo method with symmetry-based state selection is used to calculate the quantum energy states of \\text{H}2+ confined into potential barriers of atomic dimensions (a model for these ions in solids). Special solutions are employed, permitting one to obtain satisfactory results with rather simple native code. As a test case, {{}2}{{\\Pi}u} and {{}2}{{\\Pi}g} states of \\text{H}2+ ions under spherical confinement are considered. The results are interpreted using the correlation of \\text{H}2+ states to atomic orbitals of H atoms lying on the confining surface and perturbation calculations. The method is straightforwardly applied to cavities of any shape and different hydrogen plasma species (at least one-electron ones, including H) for future studies with real crystal symmetries.

  10. Coronal Loops: Observations and Modeling of Confined Plasma

    NASA Astrophysics Data System (ADS)

    Reale, Fabio

    2014-07-01

    Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops) are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  11. Magnetohydrodynamics equilibrium of a self-confined elliptical plasma ball

    SciTech Connect

    Wu, H. P. O. Box 8730, Beijing 100080 and Institute of Mechanics, Academia Sinica, Beijing, People's Republic of China ); Oakes, M.E. )

    1991-08-01

    A variational principle is applied to the problem of magnetohydrodynamics (MHD) equilibrium of a self-contained elliptical plasma ball, such as elliptical ball lightning. The principle is appropriate for an approximate solution of partial differential equations with arbitrary boundary shape. The method reduces the partial differential equation to a series of ordinary differential equations and is especially valuable for treating boundaries with nonlinear deformations. The calculations conclude that the pressure distribution and the poloidal current are more uniform in an oblate self-confined plasma ball than that of an elongated plasma ball. The ellipticity of the plasma ball is obviously restricted by its internal pressure, magnetic field, and ambient pressure. Qualitative evidence is presented for the absence of sighting of elongated ball lightning.

  12. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    SciTech Connect

    Jardin, S C

    2010-09-28

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  13. Plasma Stopping Power Measurements Relevant to Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Herrmann, Hans; Kim, Yongho; Hoffman, Nelson; Schmitt, Mark; Rubery, Michael; Garbett, Warren; Horsfield, Colin; Gales, Steve; Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Petrasso, Richard; Marshall, Frederic; Batha, Steve

    2015-11-01

    Ignition in inertial confinement fusion (ICF) experiments may be achieved if the alpha particle energy deposition results in a thermonuclear burn wave induced in the dense DT fuel layer surrounding the hotspot. As such, understanding the physics of particle energy loss in a plasma is of critical importance to designing ICF experiments. Experiments have validated various stopping power models under select ne and Te conditions, however there remain unexplored regimes where models predict differing rates of energy deposition. An upcoming experiment at the Omega laser facility will explore charged particle stopping in CH plastic capsule ablators across a range of plasma conditions (ne between 1024 cm-3 and 1025 cm-3 and Te on the order of hundreds of eV). Plasma conditions will be measured using x-ray and gamma ray diagnostics, while plasma stopping power will be measured using charged particle energy loss measurements. Details on the experiment and the theoretical models to be tested will be presented.

  14. Rotation and differential confinement effects in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Gueroult, Renaud; Fisch, Nathaniel J.

    2015-11-01

    For certain plasma configurations and plasma parameters, differential confinement effects can lead to ion separation. An example of such configurations is rotating plasmas. As a matter of fact, plasma rotation leads, through centrifugal forces, to mass differential effects. In the collisionless limit, a maximum rotation velocity exists, the Brillouin limit, above which no rigid body equilibrium is possible. In fast magnetic plasma compression experiments, the large electric fields induced locally might be sufficiently large to drive significant plasma rotation. Such conditions are for example anticipated for time resolved plasma wave properties control. In this case, the plasma is essentially collisionless, and charge separation effects result from magnetic field variations on a timescale comparable to or shorter than the ion gyro-period. Interestingly, experimental evidence of ion separation has been reported for similar conditions. Preliminary results aiming at identifying the possible role of rotation on ion separation are presented. Work supported under the DOE 67350-9960 (Prime # DOE DENA0001836), DOE DE-FG02-06ER54851 and DOE DE-AC02-09CH11466.

  15. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  16. Kinetic instabilities in a mirror-confined ECR discharge plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, Dmitry; Viktorov, Mikhail; Vodopyanov, Alexander; Golubev, Sergey

    2015-11-01

    Kinetic instabilities of nonequilibrium plasma heated by powerful radiation of gyrotron in electron cyclotron resonance conditions and confined in a mirror magnetic trap are reported. Instabilities are manifested as the generation of short pulses of electromagnetic radiation accompanied by precipitation of hot electrons from magnetic trap. Measuring electromagnetic field with high temporal resolution allowed to observe various dynamic spectra of electromagnetic radiation related to at least five types of kinetic instabilities. The opportunity to recreate different conditions for excitation and amplification of waves in plasma in a single ECR discharge pulse has been demonstrated. This report may be of interest in the context of a laboratory modeling of nonstationary wave-particle interaction processes in nonequilibrium space plasma since the observed phenomena have much in common with similar processes occurring in the magnetosphere of the Earth, planets, and in solar coronal loops. Work was supported by Russian Foundation for Basic Research # 15-32-20770.

  17. Proposed generation and compression of a target plasma for MTF

    SciTech Connect

    Kirkpatrick, R.C.; Thurston, R.S.; Chrien, R.E.

    1995-09-01

    Magnetized target fusion (MTF), in which a magnetothermally insulated plasma is hydrodynamically compressed to fusion conditions, represents an approach to controlled fusion which avoids difficulties of both traditional inertial confinement and magnetic confinement approaches. The authors are proposing to demonstrate the feasibility of magnetized target fusion by: (1) creating a suitable magnetized target plasma, (2) performing preliminary liner compression experiments using existing pulsed power facilities and demonstrated liner performance. Once the target plasma and the means for its generation have been optimized, the authors plan to conduct preliminary liner compression experiments aimed at demonstrating the near-adiabatic compression of the target plasma desired for MTF. Relevant liner compression experiments have been performed at Los Alamos in the Scyllac Fast Liner Program and, more recently, in the Pegasus facility and the Procyon explosive pulsed power program. In a series of liner experiments they plan to map out the dependence of temperature and neutron production as functions of the initial plasma conditions and the liner compression achieved. With the above research program, they intend to demonstrate most of the key principles involved in magnetized target fusion, and develop the experimental and theoretical tools needed to design and execute fully integrated MTF ignition experiments.

  18. High-performance inertial confinement fusion target implosions on OMEGA

    SciTech Connect

    Meyerhofer, D. D.; McCrory, R L; Betti, R; Boehly, T R; Casey, D T; Collins, T.J.B.; Craxton, R S; Delettrez, J A; Edgell, D H; Epstein, R; Fletcher, K A; Frenje, J A; Glebov, Y Yu; Goncharov, V N; Harding, D R; Hu, S X; Igumenshchev, I V; Knauer, J P; Li, C K; Marozas, J A; Marshall, F J; McKenty, P W; Nilson, P M; Padalino, S P; Petrasso, R D; Radha, P B; Regan, S P; Sangster, T C; Seguin, F H; Seka, W; Short, R W; Shvarts, D; Skupsky, S; Soures, J M; Stoeckl, C; Theobald, W; Yaakobi, B

    2011-04-18

    The Omega Laser Facility is used to study inertial confinement fusion (ICF) concepts. This paper describes progress in direct-drive central hot-spot (CHS) ICF, shock ignition (SI) and fast ignition (FI) since the 2008 IAEA FEC conference. CHS cryogenic deuterium-tritium (DT) target implosions on OMEGA have produced the highest DT areal densities yet measured in ICF implosions (~300 mg cm{sup -2}). Integrated FI experiments have shown a significant increase in neutron yield caused by an appropriately timed high-intensity, high-energy laser pulse.

  19. Progress regarding magnetic confinement experiments, plasma-materials interactions and plasma performance

    NASA Astrophysics Data System (ADS)

    Hidalgo, Carlos

    2015-10-01

    This paper provides an overview of the results presented at the 25th IAEA Energy Conference in the sessions on confinement, plasma-material interactions and plasma performance. An important highlight of the conference is the on-going progress in combining the empirical approach to achieve fusion relevant conditions with physics understanding to predict burning plasma behaviour, where fast particle dynamics would have an important impact.

  20. Confinement of Plasma along Shaped Open Magnetic Fields from the Centrifugal Force of Supersonic Plasma Rotation

    SciTech Connect

    Teodorescu, C.; Young, W. C.; Swan, G. W. S.; Ellis, R. F.; Hassam, A. B.; Romero-Talamas, C. A.

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic ExB rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  1. On a simulation of ion confinement in ECRIS plasmas

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Stiebing, K. E.

    2002-02-01

    A particle-in-cell code has been developed for modeling the charged particle three-dimensional dynamics in the magnetic field of an electron cyclotron resonance ion source (ECRIS). The code incorporates the leap-frog particle pusher and Takizuka-Abé's method for simulating the small-angle Coulomb collisions between the ions. Ionization dynamics and electron-ion heating are also included. The code has been used to estimate ion confinement times in the ECRIS plasma due to ion-ion collisions. Good agreement has been obtained with results from the gas-dynamic trapping model. The charge state distributions (CSD) of extracted argon ions were obtained under different boundary conditions, and good agreement is achieved with experimentally observed CSD. It was shown that the geometry of atom fluxes inside the source chamber plays an important role in determining the electron cyclotron resonance plasma parameters. Generally, ion temperatures were obtained to be around 0.5 eV, and ion confinement times are in a range 0.2-1 ms for the typical parameters of ECRIS plasma.

  2. Spectral Diagnostics of Plasma Confined within a Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Little, J. M.; Heidbrink, W. W.; Garate, E. P.; McWilliams, R.; Trask, E.; Harris, W. S.

    2006-10-01

    A field reversed configuration (FRC) consists of a toroidal plasma current confined by closed magnetic field lines within a cylindrical chamber. The FRC at the University of California Irvine is estimated to operate in a temperature range of 1eV-5eV at a density of approximately 5x10^13 cm-3. An impurity ion survey and temperature measurement are to be performed by analyzing the visible light emitted by the plasma. In order to determine the different species of ions confined within the field, a spectrometer with a resolution of one nanometer will be used. Light from the chamber will be collected using a collimating probe and transmitted to the spectrometer via fiber optic cable. Software will be used to analyze the data, which will then be compared to the NIST Atomic Spectra Database. Expected impurities include oxygen and carbon ions from the plasma injectors. Measurements of the ion temperature will be performed by an observation of the Doppler broadening of the H-alpha emission line. Assuming an ion temperature of 5eV, a resoultion of approximately one angstrom is needed to observe this effect. Due to limitations of the spectrometer, the light from the fiber optic cable will instead be sent through a high resolution spectrometer and imaged using a gated intensifier. By observing the H-alpha line shape the ion temperature can be determined.

  3. Antiproton powered propulsion with magnetically confined plasma engines

    SciTech Connect

    Lapointe, M.R.

    1989-08-01

    Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.

  4. Antiproton powered propulsion with magnetically confined plasma engines

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1989-01-01

    Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.

  5. Multiple-beam laser–plasma interactions in inertial confinement fusion

    SciTech Connect

    Myatt, J. F. Zhang, J.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V.; Froula, D. H.; Hinkel, D. E.; Michel, P.; Moody, J. D.

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  6. Ground state of a confined Yukawa plasma including correlation effects

    NASA Astrophysics Data System (ADS)

    Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.

    2007-09-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  7. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ. PMID:26197131

  8. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  9. Alpha heating and burning plasmas in inertial confinement fusion

    SciTech Connect

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  10. Measurements of uranium mass confined in high density plasmas

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1976-01-01

    An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.

  11. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.

    PubMed

    Gauthier, P; Chaland, F; Masse, L

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas. PMID:15600681

  12. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets

    SciTech Connect

    Gauthier, P.; Chaland, F.; Masse, L.

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas.

  13. Plasma confinement regimes and collective modes characterizing them

    SciTech Connect

    Coppi, B.; Zhou, T.

    2012-10-15

    A unified theory is presented for the modes that are excited at the edge of the plasma column and are important signatures of the advanced confinement regimes into which magnetically confined plasmas can be driven. In particular, the so-called EDA H-Regime, the Elmy H-Regime, and the I-Regime are considered. The modes that are identified theoretically have characteristics that are consistent with or have anticipated those of the modes observed experimentally for each of the investigated regimes. The phase velocities, the produced transport processes, the frequencies, the wavelengths, and the consistency with the direction of spontaneous rotation are the factors considered for comparison with the relevant experiments. The quasi-coherent mode [I. Cziegler, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, 2011] that is present in the EDA H-Regime has a phase velocity in the direction of the ion diamagnetic velocity in the plasma reference frame. Consequently, this is identified as a ballooning mode near finite Larmor radius marginal stability involving the effects of transverse ion viscosity and other dissipative effects. In this regime, impurities are driven outward by the combined effects of the local temperature gradients of the impurities and their thermal conductivity, while in the Elmy H-Regime impurities are driven toward the center of the plasma column. In the I-Regimes, the excited 'Heavy Particle' modes [B. Coppi and T. Zhou, Phys. Plasmas 19, 012302 (2012); Phys. Lett. A 375, 2916 (2011)] are not of the ballooning kind and are shown to expel the impurities toward the plasma edge in the presence of significant fluctuations. These modes can have a finite frequency of oscillation with a phase velocity in the direction of the electron diamagnetic velocity or they can be nearly purely growing, explaining why there are I-Regimes where fluctuations are not observed. Instead, the modes considered for the Elmy H-Regime are of the ballooning

  14. Experiments on Plasma Injection into a Centrifugally Confined System

    NASA Astrophysics Data System (ADS)

    Messer, S.; Bomgardner, R.; Brockington, S.; Case, A.; Witherspoon, F. D.; Uzun-Kaymak, I.; Elton, R.; Young, W.; Teodorescu, C.; Morales, C. H.; Ellis, R. F.

    2009-11-01

    We describe the cross-field injection of plasma into a centrifugally-confined system. Two different types of plasma railgun have been installed on the Maryland Centrifugal Experiment (MCX) in an attempt to drive that plasma's rotation. The initial gun was a coaxial device designed to mitigate the blowby instability. The second one was a MiniRailgun with a rectangular bore oriented so that the MCX magnetic field augments the railgun's internal magnetic field. Tests at HyperV indicate this MiniRailgun reaches much higher densities than the original gun, although muzzle velocity is slightly reduced. We discuss the impact of these guns on MCX for various conditions. Initial results show that even for a 2 kG field, firing the MiniRailgun modifies oscillations of the MCX diamagnetic loops and can impact the core current and voltage. The gun also has a noticeable impact on MCX microwave emissions. These observations suggest plasma enters the MCX system. We also compare diagnostic data collected separately from MCX for these and other guns, focussing primarily on magnetic measurements.

  15. Dynamic Fracture of Borosilicate Glass with Plasma Confinement geometry in Pure Water by Laser-induced Shock Wave

    NASA Astrophysics Data System (ADS)

    Saito, Fumikazu; Kishimura, Hiroaki; Suzuki, Takanori

    2013-06-01

    In order to characterize dynamic fracture of borosilicate glass, we performed laser-shock-experiments of both an aluminum-ablator mounted glass and a glass with plasma confinement geometry in pure water by Q-switched Nd3+:YAG laser. The incident beam with 440 mJ were focused onto the target approximately 300 μm in diameter. The dynamic fracture of the glass targets is observed with high-speed digital framing-camera photography. For the aluminum-ablator mounted glass, propagation of the shock wave in water was observed, and the shock-wave velocity is obtained to be 1.65 +/- 0.02 km/s using image processing. Shock-pressure applied the target is estimated to be 180 MPa by Hugoniot relation. For the glass with plasma confinement geometry, generation of the micro-fragments from the rear side of the target was observed. This result indicates that shock-induced fragmentation by laser irradiation is enhanced by the plasma confinement effect. The soft-recovered fragments are separated according the size with PET mesh having deferent mesh size. As a result, the glass with plasma confinement geometry generated smaller fragment than the aluminum-ablator mounted glass.

  16. Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas

    SciTech Connect

    Singh, S. C. Fallon, C.; Hayden, P.; Yeates, P.; Costello, J. T.; Mujawar, M.

    2014-09-15

    Ion signals from laser produced plasmas (LPPs) generated inside aluminum rectangular cavities at a fixed depth d = 2 mm and varying width, x = 1.0, 1.6, and 2.75 mm were obtained by spatially varying the position of a negatively biased Langmuir probe. Damped oscillatory features superimposed on Maxwellian distributed ion signals were observed. Depending on the distance of the probe from the target surface, three to twelve fold enhancements in peak ion density were observed via confinement of the LPP, generated within rectangular cavities of varying width which constrained the plasma plume to near one dimensional expansion in the vertical plane. The effects of lateral spatial confinement on the expansion velocity of the LPP plume front, the temperature, density and expansion velocity of ions, enhancement of ion flux, and ion energy distribution were recorded. The periodic behavior of ion signals was analyzed and found to be related to the electron plasma frequency and electron-ion collision frequency. The effects of confinement and enhancement of various ion parameters and expansion velocities of the LPP ion plume are explained on the basis of shock wave theory.

  17. Status of target physics for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    1990-03-01

    A four day review to assess the status of target physics of inertial confinement fusion was held at U.S. Department of Energy (DOE) Headquarters on November 14 to 17, 1988. This review completes the current series of reviews of the inertial fusion program elements to assess the status of the data base for a decision to proceed with the proposed Laboratory Microfusion Facility (LMF) that is being planned. In addition to target physics, the program elements that have been reviewed previously include the driver technology development for KrF and solid-state lasers, and the light-on beam pulsed power system. This series of reviews was undertaken for internal DOE assessment in anticipation of the ICF program review mandated by the Congress in 1988 to be completed in 1990 to assess the significance and implications of the progress that has been realized in the laboratory and the underground Halite/Centurion experiments. For this target physics review, both the direct and the indirect drive approaches were considered. The principal issues addressed in this review were: (1) the adequacy of the present target physics data base in making a decision to proceed with design and construction of LMF now as opposed to continuing planning activities at this time; (2) the desirability of specific additional target physics data in reducing the risk involved in a DOE decision to construct an LMF; (3) the continuing role of Halite/Centurion experiments; (4) the priority given to the direct drive approach; and (5) the optimal program-elements structure to resolve the critical issues of an LMF decision. Specific findings relating to these five issues are summarized.

  18. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments [Simulating the MagLIF plasma confinement with smaller-scale experiments

    SciTech Connect

    Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.

    2012-06-20

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. Furthermore, this observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  19. Anisotropic confinement effects in a two-dimensional plasma crystal.

    PubMed

    Laut, I; Zhdanov, S K; Räth, C; Thomas, H M; Morfill, G E

    2016-01-01

    The spectral asymmetry of the wave-energy distribution of dust particles during mode-coupling-induced melting, observed for the first time in plasma crystals by Couëdel et al. [Phys. Rev. E 89, 053108 (2014)PLEEE81539-375510.1103/PhysRevE.89.053108], is studied theoretically and by molecular-dynamics simulations. It is shown that an anisotropy of the well confining the microparticles selects the directions of preferred particle motion. The observed differences in intensity of waves of opposed directions are explained by a nonvanishing phonon flux. Anisotropic phonon scattering by defects and Umklapp scattering are proposed as possible reasons for the mean phonon flux. PMID:26871180

  20. Antiproton powered propulsion with magnetically confined plasma engines

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1989-01-01

    The reaction of the matter-antimatter annihilation, with its specific energy being over 250 times the specific energy released in nuclear fusion, is considered as an energy source for spacecraft propulsion. A concept of a magnetically confined pulsed plasma engine is described. In this concept, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas; the resulting charge annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. Numerical simulations were developed to calculate the annihilation rate of antiprotons in hydrogen and to follow the resulting ion, muon, and electron/positron number density evolutions.

  1. Antiproton powered propulsion with magnetically confined plasma engines

    SciTech Connect

    Lapointe, M.R.

    1989-01-01

    The reaction of the matter-antimatter annihilation, with its specific energy being over 250 times the specific energy released in nuclear fusion, is considered as an energy source for spacecraft propulsion. A concept of a magnetically confined pulsed plasma engine is described. In this concept, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas; the resulting charge annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. Numerical simulations were developed to calculate the annihilation rate of antiprotons in hydrogen and to follow the resulting ion, muon, and electron/positron number density evolutions. 22 refs.

  2. Interaction physics for the shock ignition scheme of inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    Depierreux, S.; Goyon, C.; Lewis, K.; Bandulet, H.; Michel, D. T.; Loisel, G.; Yahia, V.; Tassin, V.; Stenz, C.; Borisenko, N. G.; Nazarov, W.; Limpouch, J.; Masson Laborde, P. E.; Loiseau, P.; Casanova, M.; Nicolaï, Ph; Hüller, S.; Pesme, D.; Riconda, C.; Tikhonchuk, V. T.; Labaune, C.

    2011-12-01

    This paper presents an analysis of laser-plasma interaction risks of the shock ignition (SI) scheme and experimental results under conditions relevant to the corona of a compressed target. Experiments are performed on the LIL facility at the 10 kJ level, on the LULI 2000 facility with two beams at the kJ level and on the LULI 6-beam facility with 100 J in each beam. Different aspects of the interaction of the SI pulse are studied exploiting either the flexibility of the LULI 6-beam facility to produce a very high intensity pulse or the high energy of the LIL to produce long and hot plasmas. A continuity is found allowing us to draw some conclusions regarding the coupling quality and efficiency of the SI spike pulse. It is shown that the propagation of the SI beams in the underdense plasma present in the corona of inertial confinement fusion targets could strongly modify the initial spot size of the beam through filamentation. Detailed experimental studies of the growth and saturation of backscattering instabilities in these plasmas indicate that significant levels of stimulated scattering reflectivities (larger than 40%) may be reached at least for some time during the SI pulse.

  3. Cluster ion beam polishing for inertial confinement fusion target capsules

    SciTech Connect

    McEachern, R., LLNL

    1998-06-09

    Targets for Inertial Confinement Fusion (ICF) typically consist of a hollow, spherical capsule filled with a mixture of hydrogen isotopes. Typically, these capsules are irradiated by short, intense pulses of either laser light (``direct drive``) or laser-generated. x-rays (``indirect drive``), causing them to implode This compresses and heats the fuel, leading to thermonuclear fusion. This process is highly sensitive to hydrodynamic (e.g., Rayleigh-Taylor) instabilities, which can be initiated by imperfections in the target. Thus, target capsules must be spherical and smooth One of the lead capsule designs for the National Ignition Facility, a 1.8 MJ laser being built at Livermore, calls for a 2-mm- diam capsule with a 150-{micro}m-thick copper-doped beryllium wall. These capsules can be fabricated by sputter depositing the metal onto a spherical plastic mandrel. This results in surfaces with measured Rq`s of 50 to 150 nm, as measured with an atomic force microscope For optimal performance the roughness should be below 10 nm rms We have begun studying the use of ion cluster beam polishing as a means of improving the surface finish of as-deposited capsules In this approach, a batch of capsules would be agitated in a bounce pan inside a vacuum chamber during exposure to the cluster beam. This would ensure a uniform beam dose around the capsule. We have performed preliminary experiments on both Be flats and on a stationary Be capsule On the capsule, the measured Rq went from 64 nm before polishing to 15 nm after This result was obtained without any effort at process optimization. Similar smoothing was observed on the planar samples

  4. Energy Confinement of both Ohmic and LHW Plasma on EAST

    NASA Astrophysics Data System (ADS)

    Yang, Yao; Gao, Xiang; EAST Team

    2011-06-01

    Study on the characters of energy confinement in both Ohmic and lower hybrid wave (LHW) discharges on EAST is conducted and the linear Ohmic confinement (LOC), saturated ohmic confinement (SOC) and improved Ohmic confinement (IOC) regimes are investigated in this paper. It is observed that an improved confinement mode characterized by both a drop of Dα line intensity and an increase in line average density can be triggered by a gas puffing pulse.

  5. Confinement physics for thermal, neutral, high-charge-state plasmas in nested-well solenoidal traps.

    PubMed

    Dolliver, D D; Ordonez, C A

    1999-06-01

    A theoretical study is presented which indicates that it is possible to confine a neutral plasma using static electric and solenoidal magnetic fields. The plasma consists of equal temperature electrons and highly stripped ions. The solenoidal magnetic field provides radial confinement, while the electric field, which produces an axial nested-well potential profile, provides axial confinement. A self-consistent, multidimensional numerical solution for the electric potential is obtained, and a fully kinetic theoretical treatment on axial transport is used to determine an axial confinement time scale. The effect on confinement of the presence of a radial electric field is explored with the use of ion trajectory calculations. A thermal, neutral, high-charge-state plasma confined in a nested-well trap opens new possibilities for fundamental studies on plasma recombination and cross-field transport processes under highly controlled conditions. PMID:11969700

  6. Transport processes in magnetically confined plasmas in the nonlinear regime

    SciTech Connect

    Sonnino, Giorgio

    2006-06-15

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schlueter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schlueter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  7. Heavy ion plasma confinement in an RF quadrupole trap

    NASA Technical Reports Server (NTRS)

    Schermann, J.; Major, F. G.

    1971-01-01

    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.

  8. High efficiency ICF driver employing magnetically confined plasma rings

    SciTech Connect

    Meeker, D.J.; Hammer, J.H.; Hartman, C.W.

    1985-03-04

    We discuss the possibility of achieving energy, power and power density necessary for ICF by magnetically accelerating plasma confined by a compact torus (CT) field configuration. The CT, which consists of a dipole (poloidal) field and imbedded toroidal field formed by force-free, plasma current, is compressed and accelerated between coaxial electrodes by B/sub THETA/ fields as in a coaxial railgun. Compression and acceleration over several meters by a 9.4 MJ capacitor bank is predicted to give a 5.7 cm radius, 0.001 gm CT 5 MJ kinetic energy (10/sup 7/ m/sec). Transport and focussing several meters by a disposable lithium pipe across the containment vessel is predicted to bring 4.8 MJ into the pellet region in 0.5 cm/sup 2/ area in 0.3 ns. The high efficiency (approx.50%) and high energy delivery of the CT accelerator could lead to low cost, few hundred MW power plants that are economically viable.

  9. First results from a soft-x-ray laser experiment in a confined plasma column

    SciTech Connect

    Suckewer, S; Johnson, L C; Sato, K; Semet, A; Skinner, C H; Voorhees, D

    1982-04-01

    We present a description of the experimental set up and the first results from an experiment designed to achieve lasing action in the soft x-ray region of the spectrum. A 0.5 kJ CO/sub 2/ laser was focused into a target gas, typically CO/sub 2/, and the resulting plasma was confined in a 50 to 90 kG magnetic field. Spectroscopic diagnostics were used to monitor the n = 7 and n = 8 level populations of CVI as well as ultraviolet emission lines of CV and CIII, for different plasma conditions. We present data showing that as the confining magnetic field was increased, the plasma column diameter decreased, the CVI 3434 line intensity (7 ..-->.. 6 transition) increased and its decay time decreased consistent with earlier computer modeling. We also discuss the effect of the low intensity tail, normally present in CO/sub 2/ laser pulses, on the predicted population inversion. Analysis of the experimental data by computer simulation shows the range of expected total gain on the n = 3 to n = 2 transition at 182A in these experiments was G = 0.05 to 0.1 and the possibility for its significant increase.

  10. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    SciTech Connect

    Simakov, Andrei N. Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H.; Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D.

    2014-02-15

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  11. Improvement of confinement times of lithium ion and electron plasmas in BX-U

    SciTech Connect

    Himura, H.; Noichi, T.; Nakata, S.; Kawai, S.; Sanpei, A.

    2015-06-29

    Confinements of both electron (e{sup −}) and Lithium ion (Li{sup +}) plasmas in the BX-U machine are improved experimentally. For the e{sup −} plasma, the longest confinement time so far has been ∼ 10 s, which is much longer than the classical electron-electron collision time: τ{sub ee} ∼ 0.6 s. On the other hand, for the Li{sup +} plasma, the longest confinement time has been about 0.5 s, which is still much shorter than the classical ion-ion collision time.

  12. Evolving Magnetic Reconnection in Well Confined Plasmas with Low Collisionalities*

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2009-11-01

    There are two kinds of modes, producing large scale magnetic islands in well confined plasmas with low degrees of collisionality. These have phase velocities of opposite signs and are expected to emerge following the excitation of other modes as they cannot be found to be linearly unstable. One type is the ``drift-tearing'' [1] mode with a phase velocity in the direction of the electron diamagnetic velocity (vde) and the other is classified as an ``inductive'' mode [2] with a phase velocity in the direction of vdi. The ``drift-tearing'' can be excited after a mode that has the effect of decreasing the ratio of the longitudinal to the transverse electron thermal conductivity, like the ``micro-reconnecting'' mode discussed in Ref. [3]. The second type requires the previous excitation of a pressure gradient driven mode [4] that has a flow velocity in the vdi direction. Moreover, a mode-particle resonance with a high energy particle population [1] is involved in the growth of both the primary and the secondary (reconnecting) mode. Recent experimental observations [4] are consistent with these conclusions. Sawtooth oscillations that involve periodic reconnection events and modes that are related to those described earlier are discussed. *Sponsored in part by the U.S. DoE. [1] B. Coppi, Phys. Fluids 8, 2273 (1965) [2] B. Coppi, Bull. Am. Phys. Soc 45, 366 (2000) [3] B. Coppi, in ``Collective Phenomena etc.'' pg. 59, Eds. G. Bertin et. al., Publ. World Scientific (2007) [4] P. Buratti et al. Paper 02.007, 2009 E.P.S. Conference

  13. An electro- magneto-static field for confinement of charged particle beams and plasmas

    NASA Astrophysics Data System (ADS)

    Pacheco, Jose L.

    A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell- Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium conditions of a relaxed plasma. The equilibrium conditions of a relaxed two species plasma are also computed. In such a scenario, space charge based electrostatic confinement is predicted to occur where a second plasma species is confined by the space charge of the first plasma species. An experimental apparatus with cylindrical symmetry that has its interior surface lined with an ASB is presented. This system was developed by using a simulation of the electro- magneto-static fields present within the trap to guide mechanical design. The construction of the full experimental apparatus is discussed. Experimental results that show the characteristics of

  14. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments

    SciTech Connect

    Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.

    2012-06-15

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. This observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  15. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  16. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  17. Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic Dipole

    SciTech Connect

    Levitt, B.; Maslovsky, D.; Mauel, M.E.

    2005-05-06

    Centrifugally driven interchange instabilities are observed in a laboratory plasma confined by a dipole magnetic field. The instabilities appear when an equatorial mesh is biased to drive a radial current that causes rapid axisymmetric plasma rotation. The observed instabilities are quasicoherent in the laboratory frame of reference; they have global radial mode structures and low azimuthal mode numbers, and they are modified by the presence of energetic, magnetically confined electrons. Results from a self-consistent nonlinear simulation reproduce the measured mode structures.

  18. Confinement of plasma in a magnetic bottle induced by circularly polarized laser light

    SciTech Connect

    Eliezer, S.; Kolka, E.; Paiss, Y.

    1994-10-05

    A concept of plasma confinement using a combination of inertial and magnetic methods is suggested. A miniature magnetic bottle with the megagauss field can be induced by circularly polarized laser radiation inside a good conductor vessel containing a plasma. The laser pulses also heat the plasma to {similar_to}5 KeV during a few nanoseconds. The Lawson criteria for a DT plasma might be satisfied for densities of the order 5{center_dot}10{sup 21} cm{sup {minus}3} and confinement time about 20 nsec.(AIP) {copyright}{ital American} {ital Institute} {ital of} {ital Physics} 1994

  19. Investigation of the influence of divertor recycling on global plasma confinement in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Tamain, P.; Joffrin, E.; Bufferand, H.; Järvinen, A.; Brezinsek, S.; Ciraolo, G.; Delabie, E.; Frassinetti, L.; Giroud, C.; Groth, M.; Lipschultz, B.; Lomas, P.; Marsen, S.; Menmuir, S.; Oberkofler, M.; Stamp, M.; Wiesen, S.; JET EFDA contributors

    2015-08-01

    The impact of the divertor geometry on global plasma confinement in type I ELMy H-mode has been investigated in the JET tokamak equipped with ITER-Like Wall. Discharges have been performed in which the position of the strike-points was changed while keeping the bulk plasma equilibrium essentially unchanged. Large variations of the global plasma confinement have been observed, the H98 factor changing from typically 0.7 when the outer strike-point is on the vertical or horizontal targets to 0.9 when it is located in the pump duct entrance. Profiles are mainly impacted in the pedestal but core gradient lengths, especially for the density, are also modified. Although substantial differences are observed in the divertor conditions, none seem to correlate directly with the confinement. Modelling with the EDGE2D-EIRENE and SOLEDGE2D-EIRENE transport codes exhibits differences in the energy losses due to neutrals inside the separatrix, but orders of magnitude are too low to explain simply the impact on the confinement.

  20. The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion databasea)

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Wilks, S. C.; Bellei, C.; Li, C. K.; Petrasso, R. D.

    2011-05-01

    The generation of strong, self-generated electric fields (GV/m) in direct-drive, inertial-confinement-fusion (ICF) capsules has been reported [Rygg et al., Science 319, 1223 (2008); Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A candidate explanation for the origin of these fields based on charge separation across a plasma shock front was recently proposed [Amendt et al., Plasma Phys. Controlled Fusion 51 124048 (2009)]. The question arises whether such electric fields in imploding capsules can have observable consequences on target performance. Two well-known anomalies come to mind: (1) an observed ≈2× greater-than-expected deficit of neutrons in an equimolar D3He fuel mixture compared with hydrodynamically equivalent D [Rygg et al., Phys. Plasmas 13, 052702 (2006)] and DT [Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuels, and (2) a similar shortfall of neutrons when trace amounts of argon are mixed with D in indirect-drive implosions [Lindl et al., Phys. Plasmas 11, 339 (2004)]. A new mechanism based on barodiffusion (or pressure gradient-driven diffusion) in a plasma is proposed that incorporates the presence of shock-generated electric fields to explain the reported anomalies. For implosions performed at the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)], the (low Mach number) return shock has an appreciable scale length over which the lighter D ions can diffuse away from fuel center. The depletion of D fuel is estimated and found to lead to a corresponding reduction in neutrons, consistent with the anomalies observed in experiments for both argon-doped D fuels and D3He equimolar mixtures. The reverse diffusional flux of the heavier ions toward fuel center also increases the pressure from a concomitant increase in electron number density, resulting in lower stagnation pressures and larger imploded cores in agreement with gated, self-emission, x-ray imaging data.

  1. Two-plasmon decay mitigation in direct-drive inertial-confinement-fusion experiments using multilayer targets

    DOE PAGESBeta

    Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Goncharov, V. N.; Henchen, R. J.; Katz, J.; Michel, D. T.; Myatt, J. F.; Shaw, J.; Solodov, A. A.; et al

    2016-04-15

    Multilayer direct-drive inertial-confinement-fusion (ICF) targets are shown to significantly reduce two-plasmon-decay (TPD) driven hot-electron production while maintaining high hydrodynamic efficiency. Implosion experiments on the OMEGA Laser used targets with silicon layered between an inner beryllium and outer silicon-doped plastic ablator. A factor of five reduction in hot-electron generation (> 50 keV) was observed in the multilayer targets relative to pure CH targets. Three-dimensional simulations of the TPD driven hot-electron production using a laser-plasma interaction code (LPSE) that includes nonlinear and kinetic effects show excellent agreement with the measurements. As a result, the simulations suggest that the reduction in hot-electron productionmore » observed in the multilayer targets is primarily due to increased electron-ion collisional damping.« less

  2. Two-Plasmon Decay Mitigation in Direct-Drive Inertial-Confinement-Fusion Experiments Using Multilayer Targets.

    PubMed

    Follett, R K; Delettrez, J A; Edgell, D H; Goncharov, V N; Henchen, R J; Katz, J; Michel, D T; Myatt, J F; Shaw, J; Solodov, A A; Stoeckl, C; Yaakobi, B; Froula, D H

    2016-04-15

    Multilayer direct-drive inertial-confinement-fusion targets are shown to significantly reduce two-plasmon decay (TPD) driven hot-electron production while maintaining high hydrodynamic efficiency. Implosion experiments on the OMEGA laser used targets with silicon layered between an inner beryllium and outer silicon-doped plastic ablator. A factor-of-5 reduction in hot-electron generation (>50  keV) was observed in the multilayer targets relative to pure CH targets. Three-dimensional simulations of the TPD-driven hot-electron production using a laser-plasma interaction code (lpse) that includes nonlinear and kinetic effects show good agreement with the measurements. The simulations suggest that the reduction in hot-electron production observed in the multilayer targets is primarily caused by increased electron-ion collisional damping. PMID:27127973

  3. Two-Plasmon Decay Mitigation in Direct-Drive Inertial-Confinement-Fusion Experiments Using Multilayer Targets

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Goncharov, V. N.; Henchen, R. J.; Katz, J.; Michel, D. T.; Myatt, J. F.; Shaw, J.; Solodov, A. A.; Stoeckl, C.; Yaakobi, B.; Froula, D. H.

    2016-04-01

    Multilayer direct-drive inertial-confinement-fusion targets are shown to significantly reduce two-plasmon decay (TPD) driven hot-electron production while maintaining high hydrodynamic efficiency. Implosion experiments on the OMEGA laser used targets with silicon layered between an inner beryllium and outer silicon-doped plastic ablator. A factor-of-5 reduction in hot-electron generation (>50 keV ) was observed in the multilayer targets relative to pure CH targets. Three-dimensional simulations of the TPD-driven hot-electron production using a laser-plasma interaction code (lpse) that includes nonlinear and kinetic effects show good agreement with the measurements. The simulations suggest that the reduction in hot-electron production observed in the multilayer targets is primarily caused by increased electron-ion collisional damping.

  4. Debye Layers in Plasmas Generalized to Hadron Confinement of Nuclei and Quark-Gluon-Plasmas

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George H.

    2005-10-01

    . A new theory for the nuclear forces for confining the hadrons in a nucleus has been derived from a generalization of the Debye layer as known from the plasma ablation at laser irradiation where the temperature is substituted by the Fermi energy of the nucleons [1]. The first convincing proof is by using the empirical density of the nucleons defining their Fermi energy to arrive at a Debye length of about 3 fm as measured by Hofstadter for the decay of the nucleon density at the surface of heavy nuclei. This decay is interpreted as Wigner scattering and the Goos-Haenchen effect. With the same steps of substitutions, the surface energy of nuclei is always too small against the nucleon enthalpy to confine the hadrons until the density reaches such high values reproducing the empirical known radii of nuclei. By this way nuclei are possible only until uranium or curium by a Boltzmann equilibrium process explaining the endothermic generation of heavy nuclei in the Universe [2]. At and about six times higher nucleon density, the Fermi statistics changes into its relativistic branch excluding nucleation in neutron stars and explaining the quark-gluon plasma. [1] Edward Teller Lectures, H. Hora and G.H. Miley eds. (Imperial College Press London 2005) p. 103. [2] H. Hora, G.H. Miley, F. Osman, Astrophysics and Space Science, 298, 247 (2005)

  5. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    SciTech Connect

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  6. Studies of plasma confinement in linear and RACETRACK mirror configurations

    SciTech Connect

    Kuthi, A.; Wong, A.Y.

    1986-06-30

    This report discusses research on the following magnetic mirror configurations: Racetrack; ECRH generated plasmas; RF generated plasmas; potential structures; surface multipole fields, and lamex; hot electron physics; axial loss processes; and RF induced effects.

  7. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  8. Influence of scrape-off layer on plasma confinement

    SciTech Connect

    Dolan, Thomas J.

    2011-03-15

    The purpose of this paper is to discuss how plasma phenomena in the scrape-off layer (SOL) can affect the plasma density gradient at the separatrix and hence the plasma behavior inside the separatrix. The parallel flow loss rate and ionization rate in the SOL (related to the electron temperature and neutral gas density) affect the curvature of the electron density profile, which limits the density gradient at the separatrix. This density gradient acts like a boundary condition for plasma inside the separatrix, affecting the ion pressure gradient, radial electric field, and plasma behavior.

  9. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    SciTech Connect

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  10. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    DOE PAGESBeta

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  11. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    DOEpatents

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  12. APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA

    DOEpatents

    Post, R.F.

    1961-10-01

    An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)

  13. Spherical fusion plasma-confinement field of Surmac type

    SciTech Connect

    Wipf, S.L.

    1981-01-01

    The concept of a Surmac confinement field that can be completely closed is presented. The internal conductor is magnetically suspended inside large corrugations of a superconducting spherical shell structure that carries the return current. Presently available superconductor technology using superfluid helium cooling allows fields above 1.5T throughout the wall region. Such a Surmac has potential for the study of advanced fuel cycles.

  14. Complex Plasmas in Narrow Channels: Impact of Confinement on the Local Order

    SciTech Connect

    Klumov, B. A.

    2008-10-15

    Two-dimensional (2D) and three-dimensional (3D) quasi-equilibrium configurations of a complex (dusty) plasma in narrow channels are investigated using the molecular dynamics simulations for various confining potentials (confinements). The dynamics of the microparticles is described within the framework of a Langevin thermostat with allowance for the pair interaction between charged particles, which is described by a screened Coulomb potential (Yukawa potential). Two types of confinement: the parabolic electrostatic potential and hard elastic wall are considered. It is shown that the confinement strongly affects the crystallization and the local order of the microparticles in the system under consideration; in particular, the appearance of a new quasicrystalline phase induced by the hard wall confinement is revealed in 3D case.

  15. Impurity accumulation in plasma regimes with high energy confinement

    NASA Astrophysics Data System (ADS)

    Ran, L. B.; Roberts, D. E.; Yang, H. R.; Dodel, G.; Gentle, K.; Von Goeler, S.; Holzhauer, E.; Hübner, K.; Keilhacker, M.; Korotkov, A.; Luce, T. C.; Miura, Y.; Tsois, N.; Würz, H.; Fussmann, G.; Hofmann, J.; Janeschitz, G.; Krieger, K.; Müller, E. R.; Nolte, R.; Röhr, H.; Steuer, K. H.; Becker, G.; Bomba, B.; Bruhns, H.; Büchl, K.; Carlson, A.; Eberhagen, A.; Fahrbach, H.-U.; Gehre, O.; Gernhardt, J.; Giannone, L.; Von Gierke, G.; Glock, E.; Gruber, O.; Haas, G.; Herrmann, H.; Kaesdorf, S.; Karger, F.; Kaufmann, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lang, R.; Lee, P.; Lisitano, G.; Mast, F.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Murmann, H.; Neuhauser, J.; Niedermeyer, H.; Noterdaeme, J. M.; Poschenrieder, W.; Preis, R.; Rapp, H.; Rudyj, A.; Sandmann, W.; Schneider, F.; Schnider, U.; Siller, G.; Simmet, E.; Speth, E.; Söldner, F.; Stäbler, A.; Steinmetz, K.; Stroth, U.; Vollmer, O.; Zasche, D.

    1989-04-01

    Investigations of impurity accumulation phenomena in ASDEX are reviewed. There are four different operating regimes where pronounced accumulation is observed and these regimes are also characterized by improved energy confinement. In particular, medium-Z metallic ions are involved in accumulation processes whereas low-Z ions appear almost unaffected. The rapid accumulation observed in the case of metallic ions may be explained by neoclassical inward drifts if we assume that the anomalous diffusion is sufficiently suppressed, some indication of this being found from laser blow-off studies. The present results, however, can only be partly explained by neoclassical theory, according to which accumulation of low-Z impurities should also occur. The temporal behaviour of accumulation and the retarding effect of proton dilution for collision dominated transport are also discussed. Finally, we conclude that the full benefits of improved energy confinement can be achieved only if the impurity influxes are kept to a sufficiently low level. Expressed in terms of concentrations under low confinement conditions we have to postulate, for ASDEX, concentrations ≲ 10 -4 for metals and ≲ 2% for all light impurities.

  16. On the highly directional expansion of laser-produced plasmas. [metallic targets

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Feldman, U.; Burkhalter, P. G.; Finn, T.; Feibelman, W. A.

    1977-01-01

    The expansion of plasmas produced by focusing a CO2 laser pulse onto solid planar targets is discussed. The plasmas are studied using an extreme-ultraviolet spectroheliograph. With titanium and iron targets the plasma blow-off observed in transitions within highly ionized species (e.g., Fe XVI) occurs parallel to the target normal. The plasma is tightly confined to narrow cylindrical structures about 0.7 mm in diameter and is observed as far as 1 cm from the target surface. The electron density is about 2.8 by 10 to the 18th power per cu cm at a distance of 0.7 mm from the target surface and decreases to approximately 6.5 by 10 to the 17th power per cu cm at a distance of 2.9 mm from the surface.

  17. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-03-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  18. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  19. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  20. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-10-10

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  1. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2007-02-20

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  2. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-02-07

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  3. Generation and confinement of microwave gas-plasma in photonic dielectric microstructure.

    PubMed

    Debord, B; Jamier, R; Gérôme, F; Leroy, O; Boisse-Laporte, C; Leprince, P; Alves, L L; Benabid, F

    2013-10-21

    We report on a self-guided microwave surface-wave induced generation of ~60 μm diameter and 6 cm-long column of argon-plasma confined in the core of a hollow-core photonic crystal fiber. At gas pressure of 1 mbar, the micro-confined plasma exhibits a stable transverse profile with a maximum gas-temperature as high as 1300 ± 200 K, and a wall-temperature as low as 500 K, and an electron density level of 10¹⁴ cm⁻³. The fiber guided fluorescence emission presents strong Ar⁺ spectral lines in the visible and near UV. Theory shows that the observed combination of relatively low wall-temperature and high ionisation rate in this strongly confined configuration is due to an unprecedentedly wide electrostatic space-charge field and the subsequent ion acceleration dominance in the plasma-to-gas power transfer. PMID:24150390

  4. Study of intermittent small-scale turbulence in Wendelstein 7-AS plasmas during controlled confinement transitions

    NASA Astrophysics Data System (ADS)

    Basse, N. P.; Zoletnik, S.; Michelsen, P. K.; W7-As Team

    2005-01-01

    Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100μs, similar to the lifetime observed during edge localized modes.

  5. Study of intermittent small-scale turbulence in Wendelstein 7-AS plasmas during controlled confinement transitions

    SciTech Connect

    Basse, N.P.; Zoletnik, S.; Michelsen, P.K.

    2005-01-01

    Confinement transitions in the Wendelstein 7-AS stellarator [H. Renner et al., Plasma Phys. Controlled Fusion 31, 1579 (1989)] can be induced by varying either the internal plasma current or the external magnetic field. In this paper we report on experiments where closely matched confinement states (good and bad) were constructed using the latter method. Analysis using the former scheme has been reported upon previously [S. Zoletnik et al., Plasma Phys. Controlled Fusion 44, 1581 (2002)]. The electron temperature, along with the major spectral characteristics of magnetic and small-scale electron density fluctuations, changes dramatically at the transition from good to bad confinement. The fluctuation power is intermittent, and core bursts traveling in the electron diamagnetic drift (DD) direction are correlated between the bottom and top of the plasma, especially during degraded confinement. A corresponding top-bottom correlation for the edge ion DD direction turbulence feature was not found. Strong correlations are observed both between the two density fluctuation signals and between magnetic and density fluctuations in bad compared to good confinement. The correlation time of the bursts is of order 100 {mu}s, similar to the lifetime observed during edge localized modes.

  6. Toroidal magnetic confinement of non-neutral plasmas

    SciTech Connect

    Yoshida, Zensho; Ogawa, Yuichi; Morikawa, Junji; Himura, Haruhiko; Kondo, Shigeo; Nakashima, Chihiro; Kakuno, Shuichi; Iqbal, Muhamad; Volponi, Francesco; Shibayama, Norihisa; Tahara, Shigeru

    1999-12-10

    A new method of toroidal non-neutral plasma trap has been developed with applying the chaos-induced radial transport of particles near a magnetic null point. A pure electron plasma is produced by injecting an electron beam. The poloidal gyroradius of an electron at the energy of 1 keV is of order 10 mm, which determines the length scale of the chaotic region. Amongst various applications of toroidal non-neutral plasmas, a possibility of producing very high-{beta} plasma, which is suitable for advanced fusion, has been examined. The self-electric field of a non-neutral plasma can generate a strong shear flow. When the flow velocity is comparable to the Alfven speed (which is smaller than the ion sound speed, if {beta}>1), a high-{beta} equilibrium can be produced in which the plasma pressure is primarily balanced by the dynamic pressure of the flow. This configuration is described by a generalized Bernoulli law.

  7. Toroidal Magnetic Confinement of Non-Neutral Plasmas

    SciTech Connect

    Zensho Yoshida; Yuichi Ogawa; Junji Morikawa; Haruhiko Himura; Shigeo Kondo; Chihiro Nakashima; Shuichi Kakuno; Muhamad Iqbal; Francesco Volponi; Norihisa Shibayama; Shigeru Tahara

    1999-12-31

    A new method of toroidal non-neutral plasma trap has been developed with applying the chaos-induced radial transport of particles near a magnetic null point. A pure electron plasma is produced by injecting an electron beam. The poloidal gyro-radius of an electron at the energy of 1 keV is of order 10 mm, which determines the length scale of the chaotic region. Amongst various applications of toroidal non-neutral plasmas, a possibility of producing very high-{beta} plasma, which is suitable for advanced fusion, has been examined. The self-electric field of a non-neutral plasma can generate a strong shear flow. When the flow velocity is comparable to the Alfven speed (which is smaller than the ion sound speed, if {beta} > 1), a high-{beta} equilibrium can be produced in which the plasma pressure is primarily balanced by the dynamic pressure of the flow. This configuration is described by a generalized Bernoulli law.

  8. Overview of Spontaneous Frequency Chirping in Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Berk, Herbert

    2012-10-01

    Spontaneous rapid frequency chirping is now a commonly observed phenomenon in plasmas with an energetic particle component. These particles typically induce so called weak instabilities, where they excite background waves that the plasma can support such as shear Alfven waves. The explanation for this phenomenon attributes the frequency chirping to the formation of phase space structures in the form of holes and clumps. Normally a saturated mode, in the presence of background dissipation, would be expected decay after saturation as the background plasma absorbs the energy of the excited wave. However the phase space structures take an alternate route, and move to a regions of phase space that are lower energy states of the energetic particle distribution. Through the wave-resonant particle interaction, this movement is locked to the frequency observed by the wave. This phenomenon implies that alternate mechanisms for plasma relaxation need to be considered for plasma states new marginal stability. It is also possible that these chirping mechanisms can be used to advantage to externally control states of plasma.

  9. Computational Support for Alternative Confinement Concepts Basic Plasma Science

    SciTech Connect

    Dalton D. Schnack

    2002-12-09

    This is the final report for contract DE-FG03-99ER54528, ''Computational Support for Alternative Confinement Concepts''. Progress was made in the following areas of investigation: (1) Extensive studies of the confinement properties of conventional Reversed-field Pinch (RFP) configurations (i.e., without current profile control) were performed in collaboration with the Royal Institute of Technology (KTH) in Stockholm, Sweden. These studies were carried out using the full 3-dimensional, finite-{beta}, resistive MHD model in the DEBS code, including ohmic heating and anisotropic heat conduction, and thus for the first time included the self-consistent effects of the dynamo magnetic fluctuations on the confinement properties of the RFP. By using multi-variant regression analysis of these results, scaling laws for various properties characterizing the conventional RFP were obtained. In particular, it was found that the, for constant ratio of I/N (where I is the current and N = na{sup 2} is the line density), and over a range of Lundquist numbers S that approaches 10{sup 6}, the fluctuations scale as {delta}B/B {approx} S{sup -0.14}, the temperature scales as T {approx} I{sup 0.56}, the poloidal beta scales as {beta}{sub {theta}} {approx} I{sup -0.4}, and the energy confinement time scales as {tau}{sub E} {approx} I{sup 0.34}. The degradation of poloidal beta with current is a result of the weak scaling of the fluctuation level with the Lundquist number, and leads to the unfavorable scaling laws for temperature and energy confinement time. These results compare reasonably well with experimental data, and emphasize the need for external control of the dynamo fluctuations in the RFP. (2) Studies of feedback stabilization of resistive wall modes in the RFP were performed with the DEBS code in collaboration with the CNR/RFX group in Padua, Italy. The ideal growth rates are ''passively'' reduced by the presence of a resistive wall within the radius for perfectly conducting

  10. Formation of high-{beta} plasma and stable confinement of toroidal electron plasma in Ring Trap 1

    SciTech Connect

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Furukawa, M.; Yano, Y.; Kawai, Y.; Kobayashi, M.; Vogel, G.; Mikami, H.

    2011-05-15

    Formation of high-{beta} electron cyclotron resonance heating plasma and stable confinement of pure electron plasma have been realized in the Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet. The effects of coil levitation resulted in drastic improvements of the confinement properties, and the maximum local {beta} value has exceeded 70%. Hot electrons are major component of electron populations, and its particle confinement time is 0.5 s. Plasma has a peaked density profile in strong field region [H. Saitoh et al., 23rd IAEA Fusion Energy Conference EXC/9-4Rb (2010)]. In pure electron plasma experiment, inward particle diffusion is realized, and electrons are stably trapped for more than 300 s. When the plasma is in turbulent state during beam injection, plasma flow has a shear, which activates the diocotron (Kelvin-Helmholtz) instability. The canonical angular momentum of the particle is not conserved in this phase, realizing the radial diffusion of charged particles across closed magnetic surfaces. [Z. Yoshida et al., Phys Rev. Lett. 104, 235004 (2010); H. Saitoh et al., Phys. Plasmas 17, 112111 (2010).].

  11. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.

    PubMed

    Hu, S X; Collins, L A; Boehly, T R; Kress, J D; Goncharov, V N; Skupsky, S

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  12. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Kress, J. D.; Goncharov, V. N.; Skupsky, S.

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ˜20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  13. Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.

    PubMed

    Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao

    2013-08-01

    Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes. PMID:23702102

  14. Fabrication of cryogenic inertial-confinement-fusion targets using target free-fall technique. Report No. 2-82

    SciTech Connect

    Kim, K.; Murphy, M.J.

    1982-04-01

    Techniques for fabricating cryogenic inertial confinement fusion targets (i.e., spherical shells containing a uniform layer of DT ice) are investigated using target free-fall concept. Detection and characterization of the moving targets are effected by optoelectronic means, of which the principal is an RF ac-interferometer. This interferometer system demonstrates, for the first time, the speed capabilities of the phase-modulation ac-interferometry. New techiques developed for handling, holding, launching, and transporting targets are also described. Results obtained at both room and cryogenic temperatures are presented.

  15. Energy Confinement of High-Density Pellet-Fueled Plasmas in the Alcator C Tokamak

    NASA Astrophysics Data System (ADS)

    Greenwald, M.; Gwinn, D.; Milora, S.; Parker, J.; Parker, R.; Wolfe, S.; Besen, M.; Camacho, F.; Fairfax, S.; Fiore, C.; Foord, M.; Gandy, R.; Gomez, C.; Granetz, R.; Labombard, B.; Lipschultz, B.; Lloyd, B.; Marmar, E.; McCool, S.; Pappas, D.; Petrasso, R.; Pribyl, P.; Rice, J.; Schuresko, D.; Takase, Y.; Terry, J.; Watterson, R.

    1984-07-01

    A series of pellet-fueling experiments has been carried out on the Alcator C tokamak. High-speed hydrogen pellets penetrate to within a few centimeters of the magnetic axis, raise the plasma density, and produce peaked density profiles. Energy confinement is observed to increase over similar discharges fueled only by gas puffing. In this manner record values of electron density, plasma pressure, and Lawson number (n τ) have been achieved.

  16. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    SciTech Connect

    Tsventoukh, M. M.

    2010-10-15

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as {beta} {approx} 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field

  17. Characterization of the Horizontal Confinement Produced by a Glass Box in a Complex Plasma

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jace; Douglass, Angela

    2013-10-01

    The majority of plasmas in the visible universe are complex plasmas, consisting of not only electrons, ions, and neutral particles, but also small, usually micron-sized particles called ``dust.'' Recent complex plasma experiments have placed a glass box on the lower electrode of a GEC RF reference cell in order to alter the electric confinement experienced by micrometer-sized particles in the plasma. While this has led to interesting observations, such as vertical chains and Coulomb balls, the nature of the confinement is not well understood. In this experiment, a single melamine formaldehyde dust particle was levitated in the plasma sheath and contained by a glass box. The dust particle was then struck by a laser pulse to perturb the particle from its equilibrium position. The trajectory of the particle was analyzed to determine the nature of the electric potential produced by the walls of the glass box. Trials were run with varying pressures, particle sizes, box sizes, and plasma powers to determine the effect of each parameter on the confinement.

  18. Diagnostics of laser plasma plume dynamics within an electrically biased confining cavity

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2011-09-15

    The dynamics of laser generated plasma plumes expanding within confining surfaces display a two-phase nature. Early phase enhancement due to hydrodynamic containment results in higher temperatures, densities, and average charges states in comparison to freely expanding plasma plumes. Later phase dynamics result in rapid decay of the plasma plume due to lossy plasma--surface interactions. This paper examines laser plasma generation and expansion within rectangular aluminium cavities biased to high voltages (V{sub bias} = {+-}9 kV). ''Hydro-electro-dynamic'' confinement of the laser plasma plumes and the expansion dynamics were studied via space and time resolved visible emission spectroscopy. The charged confining cavities displayed enhanced emission, higher electron densities (N{sub e}) and longer emission durations compared to those of an unbiased cavity. This behavior is attributed to the influence of the electric fields in the cavity on the charged particle dynamics within the cavity volume. The degree of enhancement depended strongly on the applied polarity.

  19. Impeding hohlraum plasma stagnation in inertial-confinement fusion.

    PubMed

    Li, C K; Séguin, F H; Frenje, J A; Rosenberg, M J; Rinderknecht, H G; Zylstra, A B; Petrasso, R D; Amendt, P A; Landen, O L; Mackinnon, A J; Town, R P J; Wilks, S C; Betti, R; Meyerhofer, D D; Soures, J M; Hund, J; Kilkenny, J D; Nikroo, A

    2012-01-13

    This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in the hohlraum interior. The potential roles of spontaneously generated electric and magnetic fields in the hohlraum dynamics and capsule implosion are discussed. It is shown that interpenetration of the two materials could result from the classical Rayleigh-Taylor instability occurring as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blowoff. This experiment showed new observations of the effects of the fill gas on x-ray driven implosions, and an improved understanding of these results could impact the ongoing ignition experiments at the National Ignition Facility. PMID:22324691

  20. Production and study of high-beta plasma confined by a superconducting dipole magnet

    SciTech Connect

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-05-15

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure ({beta}>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.

  1. Magnetic confinement in a ring-cusp ion thruster discharge plasma

    SciTech Connect

    Sengupta, Anita

    2009-05-01

    An experimental investigation, in conjunction with a volume averaged analytical model, has been developed to improve the confinement and production of the discharge plasma for plasma thrusters and ion sources. The research conducted explores the discharge performance of a ring-cusp ion source based on the magnetic field configuration, geometry, and power level. Analytical formulations for electron and ion confinement are developed to predict the ionization efficiency for a given discharge chamber design. Explicit determination of discharge loss and volume averaged plasma parameters are obtained via a series of experimental measurements on a ring-cusp NASA Solar Technology Application Readiness (NSTAR) ion thruster to assess the validity of the analytical model. Measurements of the discharge loss with multiple magnetic field configurations compare well with plasma parameter predictions for propellant utilizations between 80% and 95%. The results indicate that increasing the magnetic strength of the first closed magnetic contour line reduces Maxwellian electron diffusion and electrostatically confines the ion population and subsequent loss to the anode wall. The results also indicate that increasing the strength and minimizing the area of the magnetic cusps improves primary electron confinement, increasing the probability of an ionization collision prior to loss at the cusp.

  2. Thermal magnetic fluctuations and anomalous electron diffusion in a mirror-confined plasma

    SciTech Connect

    Murtaza, G.; Rahman, H.U.

    1983-09-01

    The electron test particle cross-field diffusion due to thermally excited magnetostatic modes with ergodic field lines is investigated. Estimate shows that in mirror-confined plasmas, the electron transport (and hence the electron thermal conduction) caused by the magnetostatic mode exceeds the convective as well as the classical transport.

  3. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    DOE PAGESBeta

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  4. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designsa)

    DOE PAGESBeta

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximatelymore » taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  5. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    SciTech Connect

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militizer, B.

    2015-04-20

    In this study, a comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (KQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of –2.5; the lower the adiabat of DT capsules, the more variations in hydro

  6. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designsa)

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium-tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF "path" to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ˜2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT

  7. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    SciTech Connect

    Hu, S. X. Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-15

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κ{sub QMD}), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ∼2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP

  8. Density distribution of a rotating plasma in Tornado magnetic confinement systems

    SciTech Connect

    Kuznetsov, V.M.; Pakhomov, A.B.; Rusakov, A.I.

    1984-12-01

    The density distribution of a rotating plasma in a Tornado magnetic confinement system is calculated under the assumption that the plasma rotates at constant angular velocity throughout the region bounded by the separatrix. The component of the centrifugal inertial force parallel to the magnetic force lines is shown to pinch the plasma toward the equatorial plane of the system. The density distribution depends on the ratio v/T of the plasma drift velocity and temperature. The experimentally measured density distribution can be used to determine v/T and thus to analyze the rotating plasma. If v is known for the rotating plasma then T can be calculated from v, and vice versa.

  9. Study of plasma confinement in ELMO Bumpy Torus with a heavy-ion beam probe

    SciTech Connect

    Bieniosek, F. M.

    1981-01-01

    Plasma confinement in ELMO Bumpy Torus (EBT) is generally strongly dependent on an ambipolar electric field. Spatially resolved measurements of the resulting electric space potential phi/sub sp/ have been made in a single plasma cross section by the heavy-ion beam probe. This diagnostic injects a 4-60-keV beam of (usually) Cs/sup +/ ions into the plasma. Measurement of the energy of Cs/sup 2 +/ secondary ions leaving the plasma gives a continuous monitor of the local space potential. In addition, the total detected Cs/sup 2 +/ ion current is proportional to the product of the local electron density and the ionization rate, which, in turn, is a function of the electron temperature. This signal, nf(T/sub e/), is sensitive to all three electron distributions found in EBT - those of the cold surface plasma, the warm core plasma, and the hot electron ring.

  10. Dynamic materials evaluation by confined plasma ablation and laser-generated shocks

    NASA Astrophysics Data System (ADS)

    Paisley, Dennis L.; Swift, D. C.; Forsman, A. C.; Kyrala, George A.; Johnson, Randall P.; Kopp, Roger A.; Hauer, Allan A.; Wark, Justin S.; Loveridge, A.; Allen, A. M.; Kalantar, Daniel H.

    2000-08-01

    Laser-generated shocks can and have been used to study their effects on single crystal materials during shock compression. While a crystal undergoes shock compression and release, the transient x- ray diffraction (TXD) of the Bragg and Laue signals is indicative of the change in the crystal lattice spacing. The lattice spacing directly relates to the strain in the crystal. From the dynamic lattice data, strain, strain rate, and/or phase change in a material may be determined. Confined ablation plasmas can efficiently launch a flyer plate for direct impact on a target material imparting a well-characterized shock input and generate kilobar to megabar pressure pulses over a wide range of pulse duration (= 20 ns). The laser-launched flyer plates are analogous to those launched by gas guns, but the smaller size provides an experimental method not easily accessible by larger gas gun experiments. With lasers, diagnostic equipment can be easily synchronized to study dynamic material parameters, i.e., single crystal shock dynamics, interfacial bond strengths of thin coatings, grain-interfaces, texture, and high strain rates (106 - 109 sec-1).

  11. Multi-fluid studies of plasma shocks relevant to inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Srinivasan, B.; Kagan, G.; Adams, C. S.

    2016-05-01

    Results from inertial confinement fusion (ICF) experiments performed at the Omega laser facility suggest the potential role of kinetic effects in plasmas during implosion. Recent theoretical and numerical work has indicated the importance of diffusion effects in the presence of multiple ion species as well as the importance of ion viscosity. This provides the motivation to adequately develop multi-fluid plasma models capable of capturing kinetic physics including concentration diffusion and ion species separation driven by the ion concentration gradient, the ion pressure gradient, the electron and ion temperature gradients, and the electric field. Benchmarks between the newly developed code and analytical results are presented for multi-fluid plasma shocks.

  12. Tridimensional Burning Structures Associated with Anisotropic Thermal Conductivities in Magnetically Confined and Pulsar Plasmas

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.; Sonnino, G.

    2015-11-01

    A surprising result of the most recent theory of the thermonuclear instability, which can take place in D-T plasmas close to ignition, is that it can develop with tridimensional structures emerging from an axisymmetric toroidal confinement configurations. These structures are helical filaments (``snakes'') that are localized radially around a given rational magnetic surface. Until now well known analyses of fusion burning processes in magnetically confined plasmas, that include the thermonuclear instability, have been carried out by 1+1/2 D transport codes and, consequently, the onset of tri-dimensional structures has not been investigated. The importance of the electron thermal conductivities anisotropy is pointed out also for the inhomogeneous thermonuclear burning of plasmas on the surface of pulsars and for the formation of the observed bright spots on some of them. Sponsored in part by the U.S. DoE.

  13. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    SciTech Connect

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs.

  14. Nonlinear competition of turbulent structures and improved confinement in magnetized cylindrical plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Kasuya, N.; Itoh, K.; Yagi, M.; Itoh, S.-I.

    2014-11-01

    Nonlinear competition of turbulent structures and their roles in transport are investigated by using three-dimensional simulation code of resistive drift wave turbulence in magnetized cylindrical plasmas. Selective formation of zonal flows and streamers has been obtained by controlling the strength of damping of the zonal flow. In addition, there is an energy path from the drift waves to a flute type structure, which is linearly stable, and it becomes effective just below the stability boundary of the zonal flow. The flute structure directly induces transport effectively, and affects the drift waves and the zonal flow. A large amplitude zonal flow is formed selectively even with existence of the flute structure. The property of the particle confinement is investigated by changing the particle source intensity, which controls the strength of driving of the drift waves. The characteristic of the particle confinement changes according to turbulent states, and an improved confinement regime is obtained in the zonal flow dominant state. Study on cylindrical plasmas reveals the fundamental mechanism of improved confinement in the magnetized plasma with influence of turbulent structural formation.

  15. Population inversion and gain measurements for soft x-ray-laser development in a magnetically confined plasma column

    SciTech Connect

    Suckewer, S.; Skinner, C.H.; Voorhees, D.; Milchberg, H.; Keane, C.; Semet, A.

    1983-06-01

    We present population inversion and gain measurements from an experimental investigation of possibilities to obtain high gain and lasing action in the soft x-ray region. Our approach to soft x-ray-laser development is based on rapid plasma cooling after the laser pulse by radiation losses, leading to fast recombination and collisional cascade into upper excited levels of CVI, for example, while the lower excited levels depopulate rapidly by radiative transitions, thus creating population inversions and gain. A approx. = 0.5 kJ CO/sub 2/ laser was focused onto a target of solid carbon or teflon; or CO/sub 2/, O/sub 2/, Ne gas, and the resulting plasma confined in a 50 to 90 kG magnetic field. Spectroscopic diagnostics with absolute intensity calibration were used to measure level populations.

  16. Surface-confined activation of ultra low-k dielectrics in CO2 plasma

    NASA Astrophysics Data System (ADS)

    Sun, Yiting; Krishtab, Mikhail; Mankelevich, Yuri; Zhang, Liping; De Feyter, Steven; Baklanov, Mikhail; Armini, Silvia

    2016-06-01

    An approach allowing surface-confined activation of porous organosilicate based low-k dielectrics is proposed and studied. By examining the plasma damage mechanism of low-k, we came up with an initial idea that the main requirements for the surface-confined modification would be the high reactivity and high recombination rate of the plasma species. Based on this concept, CO2 plasma was selected and benchmarked with several other plasmas. It is demonstrated that a short exposure of organosilicate low-k films to CO2 plasma enables high surface hydrophilicity with limited bulk modification. CO2+ ions predominantly formed in this plasma have high oxidation potential and efficiently remove surface -CH3 groups from low-k. At the same time, the CO2+ ions get easily discharged (deactivated) during their collisions with pore walls and therefore have very limited probability of penetration into the low-k bulk. Low concentration of oxygen radicals is another factor avoiding the bulk damage. The chemical reactions describing the interactions between CO2 plasma and low-k dielectrics are proposed.

  17. Laboratory studies of kinetic instabilities under double plasma resonance condition in a mirror-confined non-equilibrium plasma

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander; Zaitsev, Valery

    2016-04-01

    Plasma instabilities in magnetic traps on the Sun are the sources of powerful broadband radio emission (the so-called type IV bursts) which is interpreted as the excitation of plasma waves by fast electrons in the upper hybrid resonance frequency followed by transformation in electromagnetic waves. In the case of double plasma resonance condition when the frequency of the upper hybrid resonance coincides with one of the electron gyrofrequency harmonics the instability increment of plasma waves is greatly increased. This leads to the appearance of bright narrow-band radio emission near the harmonics of the electron gyrofrequency - the so-called zebra patterns. With the use of non-equilibrium mirror-confined plasma produced by the electron cyclotron resonance (ECR) discharge we provide the possibility to study plasma instabilities under double plasma resonance condition in the laboratory. In the experiment such conditions are fulfilled just after ECR heating switch-off, i.e. in the very beginning of a dense plasma decay phase. The observed instability is accompanied by a pulse-periodic generation of a powerful electromagnetic radiation at a frequency close to the upper hybrid resonance frequency and a second harmonic of the electron gyrofrequency, and synchronous precipitations of fast electrons from the trap ends. It is shown that the observed instability is due to the excitation of plasma waves at a double plasma resonance in decaying plasma of the ECR discharge. Possible manifestations of double plasma resonance effect are not rare in astrophysical plasmas. The phenomenon of zebra pattern is observed not only on the Sun, but in the decametric radiation of the Jupiter, kilometric radiation of the Earth and even in the radio emissions of pulsars. Thus, verification of the effect of double plasma resonance in a laboratory plasma experiments is a very relevant task.

  18. Evidence for density-gradient-driven trapped-electron modes in improved confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James; Chapman, Brett; Sarff, John; Terry, Paul; Williams, Zach; Ding, Weixing; Brower, David; Parke, Eli

    2015-11-01

    Density fluctuations in the large-density-gradient region of improved-confinement MST RFP plasmas exhibit features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when magnetic transport is reduced. In standard RFP plasmas, core transport is governed by magnetic stochasticity stemming from current-driven tearing modes. Using inductive control, these tearing modes are reduced, improving confinement. The improved confinement is associated with substantial increases in the density and temperature gradients, and we present evidence for the onset of drift wave instability. Density fluctuations are measured with a multi-chord, laser-based interferometer. These fluctuations have wavenumbers kϕ *ρs <0.14, frequencies characteristic of drift waves (>50 kHz), and are clearly distinct from residual global tearing modes. Their amplitudes increase with the local density gradient, and require a critical density gradient. Gyrokinetic analysis provides supporting evidence of microinstability in these plasmas, in which the density-gradient-driven TEM is most unstable. The experimental threshold gradient is close to the predicted critical gradient for linear stability. Work supported by DOE.

  19. Improved confinement region without large magnetohydrodynamic activity in TPE-RX reversed-field pinch plasma

    SciTech Connect

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime; Koguchi, Haruhisa

    2014-11-15

    We found that spontaneous improved confinement was brought about depending on the operating region in the Toroidal Pinch Experiment-Reversed eXperiment (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. Gradual decay of the toroidal magnetic field at plasma surface B{sub tw} reversal makes it possible to realize a prolonged discharge, and the poloidal beta value and energy confinement time increase in the latter half of the discharge, where reversal and pinch parameters become shallow and low, respectively. In the latter half of the discharge, the plasma current and volume-averaged toroidal magnetic field 〈B{sub t}〉 increase again, the electron density slowly decays, the electron temperature and soft X-ray radiation intensity increase, and the magnetic fluctuations are markedly reduced. In this period of improved confinement, the value of (〈B{sub t}〉-B{sub tw})/B{sub pw}, where B{sub pw} is the poloidal magnetic field at the plasma surface, stays almost constant, which indicates that the dynamo action occurs without large magnetohydrodynamic activities.

  20. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    PubMed

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-01

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development. PMID:25699449

  1. Improved confinement region without large magnetohydrodynamic activity in TPE-RX reversed-field pinch plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime; Koguchi, Haruhisa

    2014-11-01

    We found that spontaneous improved confinement was brought about depending on the operating region in the Toroidal Pinch Experiment-Reversed eXperiment (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. Gradual decay of the toroidal magnetic field at plasma surface Btw reversal makes it possible to realize a prolonged discharge, and the poloidal beta value and energy confinement time increase in the latter half of the discharge, where reversal and pinch parameters become shallow and low, respectively. In the latter half of the discharge, the plasma current and volume-averaged toroidal magnetic field increase again, the electron density slowly decays, the electron temperature and soft X-ray radiation intensity increase, and the magnetic fluctuations are markedly reduced. In this period of improved confinement, the value of (-Btw)/Bpw, where Bpw is the poloidal magnetic field at the plasma surface, stays almost constant, which indicates that the dynamo action occurs without large magnetohydrodynamic activities.

  2. Theoretical and Computational Aspects of the Magnetic Confinement of Particles and Plasmas

    NASA Astrophysics Data System (ADS)

    Mehanian, Courosh

    1987-09-01

    This thesis covers various aspects of the magnetic confinement of particles and plasmas. It is composed of two separate problems which deal with two extreme limits of temperature. In the first problem, the setting is a device that is a candidate for a fusion reactor and thus represents a collection of ionized atoms at a very high temperature. The second problem concerns the magnetic confinement of a neutral hydrogen gas at a temperature low enough that a Bose-Einstein condensation occurs. The tilt stabilization of a spheromak by an energetic particle ring is analyzed. A comprehensive survey is made of numerically generated, hybrid equilibria which describe spheromak plasmas with an energetic ion ring component. Unlike the analytic treatments, neither the ion ring toroidal current nor the inverse aspect ration are required to be small. The tilt stability of the plasma is determined by calculating the torque due to the magnetic interaction with the ion-ring, assumed fixed. The tilt stability of the ring is determined by calculating the betatron frequencies of the ring particles. Bicycle-tire rings, since they flatten the separatix axially, provide the most stabilization of the plasma per unit ion ring current. On the other hand, axially elongated, toilet-paper-tube rings are themselves the most stable. These opposing trends indicate that the configuration with optimal stability is achieved near an ion ring aspect ratio of unity and for roughly equal plasma and fast particle currents. The confinement of an atomic hydrogen gas in the trap formed by a time-varying magnetic field is investigated. The trap uses the interaction of the magnetic field with the magnetic moments of the atoms, which are kept aligned by a strong uniform field. The effect of collisions is included via a Monte Carlo algorithm and it is found that the atoms can be confined when the frequency and the current of the coils producing the time-varying field are appropriately chosen.

  3. Searching target sites on DNA by proteins: Role of DNA dynamics under confinement

    PubMed Central

    Mondal, Anupam; Bhattacherjee, Arnab

    2015-01-01

    DNA-binding proteins (DBPs) rapidly search and specifically bind to their target sites on genomic DNA in order to trigger many cellular regulatory processes. It has been suggested that the facilitation of search dynamics is achieved by combining 3D diffusion with one-dimensional sliding and hopping dynamics of interacting proteins. Although, recent studies have advanced the knowledge of molecular determinants that affect one-dimensional search efficiency, the role of DNA molecule is poorly understood. In this study, by using coarse-grained simulations, we propose that dynamics of DNA molecule and its degree of confinement due to cellular crowding concertedly regulate its groove geometry and modulate the inter-communication with DBPs. Under weak confinement, DNA dynamics promotes many short, rotation-decoupled sliding events interspersed by hopping dynamics. While this results in faster 1D diffusion, associated probability of missing targets by jumping over them increases. In contrast, strong confinement favours rotation-coupled sliding to locate targets but lacks structural flexibility to achieve desired specificity. By testing under physiological crowding, our study provides a plausible mechanism on how DNA molecule may help in maintaining an optimal balance between fast hopping and rotation-coupled sliding dynamics, to locate target sites rapidly and form specific complexes precisely. PMID:26400158

  4. Target search kinetics of self-propelled particles in a confining domain

    NASA Astrophysics Data System (ADS)

    Wang, Jiajun; Chen, Yuhao; Yu, Wancheng; Luo, Kaifu

    2016-05-01

    We present a numerical investigation of the search kinetics of self-propelled particles (SPPs) to a target located at the center or at the boundary of a confining domain. When searching a target located at the center of a circular confining domain, the search efficiency of SPPs is improved compared to that of Brownian particles if the rotational diffusion is not too slow. In this case, the mean search time τ could be minimized with proper combinations of the characteristic rotation time τθ and the self-propulsion velocity v0. It is further shown to be a consequence of the interplay between the enhanced diffusion and the thigmotactism (boundary-following behavior) of SPPs due to the self-propulsion. However, for a target located at the boundary of the circular confining domain, we find that the search process is continuing to be accelerated with increasing τθ or v0. Our results highlight the role of the target position in the search kinetics, and open up new opportunities to optimize the search process of SPPs by taking accurate controls over their motions.

  5. Target search kinetics of self-propelled particles in a confining domain.

    PubMed

    Wang, Jiajun; Chen, Yuhao; Yu, Wancheng; Luo, Kaifu

    2016-05-28

    We present a numerical investigation of the search kinetics of self-propelled particles (SPPs) to a target located at the center or at the boundary of a confining domain. When searching a target located at the center of a circular confining domain, the search efficiency of SPPs is improved compared to that of Brownian particles if the rotational diffusion is not too slow. In this case, the mean search time τ could be minimized with proper combinations of the characteristic rotation time τθ and the self-propulsion velocity v0. It is further shown to be a consequence of the interplay between the enhanced diffusion and the thigmotactism (boundary-following behavior) of SPPs due to the self-propulsion. However, for a target located at the boundary of the circular confining domain, we find that the search process is continuing to be accelerated with increasing τθ or v0. Our results highlight the role of the target position in the search kinetics, and open up new opportunities to optimize the search process of SPPs by taking accurate controls over their motions. PMID:27250320

  6. The Development of RF Heating of Magnetically Confined Deuterium-Tritium Plasmas

    SciTech Connect

    B.P. LeBlanc; C.K. Phillips; J.C. Hosea; R. Majeski; S. Bernabei

    1999-06-01

    The experimental and theoretical development of ion cyclotron radiofrequency heating (ICRF) in toroidal magnetically-confined plasmas recently culminated with the demonstration of ICRF heating of D-T plasmas, first in the Tokamak Fusion Test Reactor (TFTR) and then in the Joint European Torus (JET). Various heating schemes based on the cyclotron resonances between the plasma ions and the applied ICRF waves have been used, including second harmonic tritium, minority deuterium, minority helium-3, mode conversion at the D-T ion-ion hybrid layer, and ion Bernstein wave heating. Second harmonic tritium heating was first shown to be effective in a reactor-grade plasma in TFTR. D-minority heating on JET has led to the achievement of Q = 0.22, the ratio of fusion power produced to RF power input, sustained over a few energy confinement times. In this paper, some of the key building blocks in the development of rf heating of plasmas are reviewed and prospects for the development of advanced methods of plasma control based on the application of rf waves are discussed.

  7. The development of RF heating of magnetically confined deuterium-tritium plasmas

    SciTech Connect

    Hosea, J. C.; Bemabei, S.; LeBlanc, B. P.; Majeski, R.; Phillips, C. K.; Schilling, G.; Wilson the TFTR Team, J. R.

    1999-09-20

    The experimental and theoretical development of ion cyclotron radiofrequency heating (ICRF) in toroidal magnetically-confined plasmas recently culminated with the demonstration of ICRF heating of D-T plasmas, first in the Tokamak Fusion Test Reactor (TFTR) and then in the Joint European Torus (JET). Various heating schemes based on the cyclotron resonances between the plasma ions and the applied ICRF waves have been used, including second harmonic tritium, minority deuterium, minority helium-3, mode conversion at the D-T ion-ion hybrid layer, and ion Bernstein wave heating. Second harmonic tritium heating was first shown to be effective in a reactor-grade plasma in TFTR. D-minority heating on JET has led to the achievement of Q=0.22, the ratio of fusion power produced to RF power input, sustained over a few energy confinement times. In this paper, some of the key building blocks in the development of rf heating of plasmas are reviewed and prospects for the development of advanced methods of plasma control based on the application of rf waves are discussed. (c) 1999 American Institute of Physics.

  8. Confinement effects of magnetic field on two-dimensional hydrogen atom in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2015-05-01

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence and in the absence of an external magnetic field within two-dimensional formalism using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in the potential. The plasma screening effects in the weak and strong magnetic field regimes as well as the confinement effects of magnetic field on the two-dimensional hydrogen atom in Debye and quantum plasmas are investigated by solving the corresponding equations. It is found that applying a uniform magnetic field on the hydrogen atom embedded in a plasma leads to change in the profile of the total interaction potential. Thus, confinement effects of magnetic field on hydrogen atom embedded in Debye and quantum plasmas modeled by a MGECSC potential lead to shift bound state energies. This effect would be important to isolate the plasma from the external environment in the experimental applications of plasma physics.

  9. Curling probe measurement of large-volume pulsed plasma confined by surface magnetic field

    NASA Astrophysics Data System (ADS)

    Pandey, Anil; Sakakibara, Wataru; Matsuoka, Hiroyuki; Nakamura, Keiji; Sugai, Hideo; Chubu University Team; DOWA Thermotech Collaboration

    2015-09-01

    Curling probe (CP) has recently been developed which enables the local electron density measurement even in plasma for non-conducting film CVD. The electron density is obtained from a shift of resonance frequency of spiral antenna in discharge ON and OFF monitored by a network analyzer (NWA). In case of a pulsed glow discharge, synchronization of discharge pulse with frequency sweep of NWA must be established. In this paper, we report time and space-resolved CP measurement of electron density in a large volume plasma (80 cm diameter, 110 cm length) confined by surface magnetic field (multipole cusp field ~0.03 T). For plasma-aided modification of metal surface, the plasma is produced by 1 kV glow discharge at pulse frequency of 0.3 - 25 kHz with various duty ratio in gas (Ar, N2, C2H2) at pressure ~ 1 Pa. A radially movable CP revealed a remarkable effect of surface magnetic confinement: detach of plasma from the vessel wall and a fairly uniform plasma in the central region. In afterglow phase, the electron density was observed to decrease much faster in C2H2 discharge than in Ar discharge.

  10. Confinement effects of magnetic field on two-dimensional hydrogen atom in plasmas

    SciTech Connect

    Bahar, M. K.; Soylu, A.

    2015-05-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence and in the absence of an external magnetic field within two-dimensional formalism using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in the potential. The plasma screening effects in the weak and strong magnetic field regimes as well as the confinement effects of magnetic field on the two-dimensional hydrogen atom in Debye and quantum plasmas are investigated by solving the corresponding equations. It is found that applying a uniform magnetic field on the hydrogen atom embedded in a plasma leads to change in the profile of the total interaction potential. Thus, confinement effects of magnetic field on hydrogen atom embedded in Debye and quantum plasmas modeled by a MGECSC potential lead to shift bound state energies. This effect would be important to isolate the plasma from the external environment in the experimental applications of plasma physics.

  11. Confinement studies of reversed field pinch plasma on TPE-1RM20

    SciTech Connect

    Yagi, Yasuyuki; Hirano, Yoichi; Maejima, Yoshiki; Shimada, Toshio; Hirota, Isao

    1995-04-01

    Confinement properties of a reversed field pinch (RFP), TPE-1RM20, are intensively presented. Plasma current, I{sub p}, dependencies of confinement properties are particularly shown in comparison with the forerunner machine, TPE-1RM15. The results without any active density controls are presented in this paper. It is shown that both machines have almost the same, relatively high, I/N values (<= 12 x 10{sup -14} Am) and the poloidal beta, {Beta}{sub p} (= 0.1) and they do not change very much with I{sub p}, where N is the column density. The energy confinement time, {tau}{sub E}, linearly increases with I{sub p} and the behavior of the resistive part of the loop voltage has an important role to the I{sub p} dependence of {tau}{sub E}. 8 refs., 3 figs.

  12. Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    SciTech Connect

    Zhu, H.; Chapman, S. C.; Dendy, R. O.

    2013-04-15

    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as 'robustness' for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.

  13. Plasma sweeper to control the coupling of RF power to a magnetically confined plasma

    DOEpatents

    Motley, Robert W.; Glanz, James

    1985-01-01

    A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  14. Plasma sweeper to control the coupling of RF power to a magnetically confined plasma

    SciTech Connect

    Motley, R.W.; Glanz, J.

    1985-04-16

    A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  15. Distinct turbulence sources and confinement features in the spherical tokamak plasma regime

    SciTech Connect

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.

    2015-10-30

    New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong ExB shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offering one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. This predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.

  16. Banana fluxes in the plateau regime for a nonaxisymmetrically confined plasma

    SciTech Connect

    Balescu, R.; Fantechi, S. )

    1990-09-01

    The banana (or banana-plateau) fluxes, related to the generalized stresses {l angle}{bold B}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle}, {l angle}{bold B}{sub {ital T}}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle} have been determined in the plateau regime, for a plasma confined by a toroidal magnetic field of arbitrary geometry. The complete set of transport coefficients for both the parallel'' (ambipolar) and toroidal'' (nonambipolar) banana fluxes was obtained in the 13-moment (13M) approximation, going beyond the previously known expressions in the nonaxisymmetric case. The main emphasis is laid on the structure of the transport matrix and of its coefficients. It is shown that the Onsager symmetry of this matrix partly breaks down (for the mixed electron--ion coefficients) in a nonaxisymmetrically confined plasma.

  17. Is Onsager symmetry relevant in the transport equations for magnetically confined plasmas

    SciTech Connect

    Balescu, R. )

    1991-03-01

    A global, algebraic view of the transport processes in a magnetically confined plasma is developed. Both the neoclassical (banana) and the anomalous transport matrices are represented in a factorized form, thus separating the roles of the dynamics and of the geometric constraints. The self-adjointness of the collision operator (the sole condition for classical Onsager symmetry) is shown to be a necessary, but not sufficient condition for this symmetry in confined plasmas. The latter results for the banana transport matrix from a delicate relationship between dynamic and geometric components. This structure is not present in the anomalous transport matrix, and the Onsager symmetry is broken in this case. It is stressed that the symmetry breaking does not violate any general principles.

  18. Effects of large-angle Coulomb collisions on inertial confinement fusion plasmas.

    PubMed

    Turrell, A E; Sherlock, M; Rose, S J

    2014-06-20

    Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30)  m(-3) and temperatures around 1 keV. PMID:24996093

  19. High-density plasma production with potential confinement in the GAMMA 10 tandem mirror

    NASA Astrophysics Data System (ADS)

    Ichimura, M.; Cho, T.; Hirata, M.; Hojo, H.; Ishii, K.; Itakura, A.; Katanuma, I.; Kohagura, J.; Nakashima, Y.; Saito, T.; Tamano, T.; Tanaka, S.; Tatematsu, Y.; Yatsu, K.; Yoshikawa, M.

    2001-05-01

    The improvement of potential confinement was attained in the GAMMA 10 tandem mirror [Phys. Rev. Lett. 55, 939 (1985); Proceedings of the 13th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Washington, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 2, p. 539] by axisymmetrization of heating systems for the plasma production, heating, and potential formation. A significant increase of the density and diamagnetism by the potential confinement was observed. In the previous experiment, it was difficult to increase the central cell density higher than 2.7×1018m-3. One of the possible mechanisms is the density clamping due to the eigenmode formation of the ion-cyclotron-range of frequency (ICRF) waves in the axial direction. With high harmonic ICRF waves (RF3), the experiments to overcome this problem have been performed. In preliminary experiments with RF3 and NBI the maximum density of 4×1018m-3 was attained.

  20. Knudsen and inverse Knudsen layer effect on tail ion distribution and fusion reactivity in inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas-pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. It is found that while the fast ion distribution can be significantly depleted in the hot spot, leading to a reduction of the fusion reactivity in this region, a surplus of fast ions is present in the neighboring cold region. The presence of this fast ion surplus in the neighboring cold region is shown to lead to a partial recovery of the fusion yield lost in the hot spot.

  1. Observation of a high-confinement regime in a tokamak plasma with ion cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Steinmetz, K.; Noterdaeme, J.-M.; Wagner, F.; Wesner, F.; Bäumler, J.; Becker, G.; Bosch, H. S.; Brambilla, M.; Braun, F.; Brocken, H.; Eberhagen, A.; Fritsch, R.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Hofmeister, F.; Izvozchikov, A.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; van Mark, E.; Mast, F.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Puri, S.; Rapp, H.; Röhr, H.; Ryter, F.; Schmitter, K.-H.; Schneider, F.; Setzensack, C.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Steuer, K.-H.; Vollmer, O.; Wedler, H.; Zasche, D.

    1987-01-01

    The H mode in ion cyclotron-resonance-heated plasmas has been investigated with and without additional neutral beam injection. Ion cyclotron-resonance heating can cause the transition into a high-confinement regime (H mode) in combination with beam heating. The H mode, however, has also been realized-for the first time-with ion cyclotron-resonance heating alone in the D (H)-hydrogen minority scheme at an absorbed rf power of 1.1 MW.

  2. A low energy positron accumulator for the plasma confinement in a compact magnetic mirror trap

    SciTech Connect

    Higaki, Hiroyuki Kaga, Chikato; Nagayasu, Katsushi; Okamoto, Hiromi; Nagata, Yugo; Kanai, Yasuyuki; Yamazaki, Yasunori

    2015-06-29

    A low energy positron accumulator was constructed at RIKEN for the purpose of confining an electron-positron plasma. The use of 5 mCi {sup 22}Na RI source with a standard solid Ne moderator and N{sub 2} buffer gas cooling resulted in a low energy positron yield of ∼ 3 × 10{sup 5} e+/s. So far, 2 × 10{sup 6} positrons have been accumulated in 120s.

  3. Experimental Observation of a Periodically Oscillating Plasma Sphere in a Gridded Inertial Electrostatic Confinement Device

    SciTech Connect

    Park, J.; Nebel, R.A.; Stange, S.; Murali, S. Krupakar

    2005-07-01

    The periodically oscillating plasma sphere (POPS) [D. C. Barnes and R. A. Nebel, Phys. Plasmas 5, 2498 (1998).] oscillation has been observed in a gridded inertial electrostatic confinement device. In these experiments, ions in the virtual cathode exhibit resonant behavior when driven at the POPS frequency. Excellent agreement between the observed POPS resonance frequency and theoretical predictions has been observed for a wide range of potential well depths and for three different ion species. The results provide the first experimental validation of the POPS concept proposed by Barnes and Nebel [R. A. Nebel and D. C. Barnes, Fusion Technol. 34, 28 (1998).].

  4. Trapping, Anomalous Transport, and Quasi-coherent Structures in Magnetically Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Vlad, Madalina; Spineanu, Florin

    Strong electrostatic turbulence in magnetically confined plasmas is characterized by trapping or eddying of particle trajectories produced by the E × B stochastic drift. Trapping is shown to produce strong effects on test particles and on test modes by causing nonstandard trajectory statistics: non-Gaussian distribution, memory effects, and coherence. Trapped trajectories form quasi-coherent structure. Trajectory trapping has strong nonlinear effects on the test modes on turbulent plasmas. We determine the growth rate of drift modes as function of the statistical characteristics of the background turbulence. We show that trapping provides the physical mechanism for the inverse cascade observed in drift turbulence and for the zonal flow generation.

  5. Amplification of whistler waves propagating through inhomogeneous, anisotropic, mirror-confined hot-electron plasmas

    SciTech Connect

    Guest, G.E.; Miller, R.L.

    1988-12-01

    A fully relativistic local dispersion relation for whistler waves has been solved at closely spaced points along the magnetic field lines of a 2:1 magnetic mirror in which a highly anisotropic, spatially inhomogeneous, hot-electron plasma is confined. The limiting plasma parameters for convective (spatial)= growth have been determined numerically and used to identify plasma conditions leading to maximum amplification of input microwave signals introduced in the form of whistler waves. The maximum gain has been evaluated numerically for a range of values of the hot-electron plasma within which all major stability criteria are satisfied. Very high gains (approx.40 dB) are indicated over the entire range of beta investigated.

  6. A long-pulse high-confinement plasma regime in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, J.; Guo, H. Y.; Wan, B. N.; Gong, X. Z.; Liang, Y. F.; Xu, G. S.; Gan, K. F.; Hu, J. S.; Wang, H. Q.; Wang, L.; Zeng, L.; Zhao, Y. P.; Denner, P.; Jackson, G. L.; Loarte, A.; Maingi, R.; Menard, J. E.; Rack, M.; Zou, X. L.

    2013-12-01

    High-performance and long-pulse operation is a crucial goal of current magnetic fusion research. Here, we demonstrate a high-confinement plasma regime known as an H-mode with a record pulse length of over 30s in the Experimental Advanced Superconducting Tokamak sustained by lower hybrid wave current drive (LHCD) with advanced lithium wall conditioning. We find that LHCD provides a flexible boundary control for a ubiquitous edge instability in H-mode plasmas known as an edge-localized mode, which leads to a marked reduction in the heat load on the vessel wall compared with standard edge-localized modes. LHCD also induces edge plasma ergodization that broadens the heat deposition footprint. The heat transport caused by this ergodization can be actively controlled by regulating the edge plasma conditions. This potentially offers a new means for heat-flux control, which is a key issue for next-step fusion development.

  7. An empirical scaling law for improved confinement in reversed-field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Yagi, Y.; Koguchi, H.; Hirano, Y.; Sakakita, H.; Frassinetti, L.

    2005-02-01

    A database of the confinement properties of the toroidal pinch experiment (TPE) series reversed-field pinch (RFP) devices was established, and an empirical scaling law for the energy confinement time, τE, was deduced for a consistently selected set of the database (Yagi Y. et al 2003 Nucl. Fusion 43 1787). The scaling for τE [TPE-scaling; \\smash{\\tau _E \\sim a^{1.7} I_p^{0.8} (I_p/N)^{0.3} \\Theta ^{3}} ], in particular, is a power law similar to that predicted on the basis of the tearing modes, as a function of the plasma minor radius (a), plasma current (Ip), and Ip/N, where N is the column density. On the other hand, the TPE-scaling has a strong dependence on the pinch parameter, Θ, namely τE ~ Θ3. Recently, we have investigated the database of the improved confinement in the pulsed poloidal current drive (PPCD). We show that the TPE-scaling agrees well with the improved τE in the PPCD database, because of its strong Θ dependence. Namely, Θ3 is a factor of merit for RFP plasmas. We discuss why this agreement is obtained in spite of the general difference between the underlying transport mechanisms of the standard and PPCD discharges. We also show that this improvement, represented by Θ3, is related to the increase in magnetic shear with Θ.

  8. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    SciTech Connect

    Gouge, M.J.; Combs, S.K.; Foust, C.R.; Milora, S.L.

    1990-01-01

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1--2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3--5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2--3 km/s.

  9. Impact of First-Principles Property Calculations of Warm-Dense Deuterium/Tritium on Inertial Confinement Fusion Target Designs

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2014-10-01

    Accurate knowledge of the properties of warm dense deuterium/tritium (DT) is essential to reliably design inertial confinement fusion (ICF) implosions. In the warm-dense-matter regime, routinely accessed by low-adiabat ICF implosions, strong-coupling and degeneracy effects play an important role in determining plasma properties. Using first-principles methods of both path-integral Monte Carlo and quantum molecular-dynamics (QMD), we have performed systematic investigation of the equation of state, thermal conductivity, and opacity for DT over a wide range of densities and temperatures. These first-principles properties have been incorporated into our hydrocodes. When compared to hydro simulations using standard plasma models, significant differences in 1-D target performance have been identified for simulations of DT implosions. For low-adiabat (α <= 2) DT plasma conditions, the QMD-predicted opacities are 10 to 100 × higher than predicted by the cold-opacity-patched astrophysical opacity table. The thermal conductivity could be 3 to 10 × larger than the Lee-More model prediction. These enhancements can modify the shell adiabat and shock dynamics in lower- α ICF implosions, which could lead to ~ 40 variations in peak density and neutron yield. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Measurement of RF electric field in high- β plasma using a Pockels detector in magnetosphere plasma confinement device RT-1

    NASA Astrophysics Data System (ADS)

    Mushiake, Toshiki; Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, Atsushi

    2015-11-01

    The magnetosphere plasma confinement device RT-1 generates a dipole magnetic field that can confine high- β plasma by using a levitated superconducting coil. So far it is reported that high temperature electrons (up to 50keV) exist and that the local electron βe value exceeds more than 100%. However, the ion β value βi remains low in the present high- β state. To realize a high-βi state, we have started Ion Cyclotron Heating (ICH) experiments. For efficient ICH in a dipole topology, it is important to measure RF electric fields and characterize the propagation of RF waves in plasmas. On this viewpoint, we started direct measurement of local RF electric fields in RT-1 with a Pockels sensor system. A non-linear optical crystal in the Pockels sensor produces birefringence in an ambient electric field. The refractive index change of the birefringence is proportional to the applied electric field strength, which can be used to measure local electric fields. RF electric field distribution radiated from an ICH antenna was measured inside RT-1 in air, and was compared with numerical results calculated by TASK code. Results on the measurement of electric field distribution in high- β plasma and evaluation of the absorbed RF power into ions will be reported. Supported by JSPS KAKENHI Grant Numbers 23224014.

  11. A technique for thick polymer coating of inertial-confinement-fusion targets

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I.-A.; Wang, T. G.; Kim, H.-G.

    1983-01-01

    A technique to coat a stalk-mounted inertial-confinement fusion (ICF) target with a thick polymer layer has been successfully demonstrated. The polymer solution is first atomized, allowed to coalesce into a droplet, and positioned in a stable acoustic levitating field. The stalk-mounted ICF target is then moved into the acoustic field by manipulating a 3-D positioner to penetrate the surface membrane of the droplet, thus immersing the target in the levitated coating solution. The target inside the droplet is maintained at the center of the levitated liquid using the 3-D positional information provided by two orthogonally placed TV cameras until the drying process is completed. The basic components of the experimental apparatus, including an acoustic levitator, liquid sample deployment device, image acquisition instrumentation, and 3-D positioner, are briefly described.

  12. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via

  13. Turbulence in Toroidally Confined Plasma: Ion - - Gradient-Driven Turbulence; Dynamics of Magnetic Relaxation in Current-Carrying Plasma

    NASA Astrophysics Data System (ADS)

    Lee, Gyung Su.

    This thesis is devoted to two studies of low-frequency turbulence in toroidally confined plasma. Low-frequency turbulence is believed to play an important role in anomalous transport in toroidal confinement devices. The first study pertains the the development of an analytic theory of ion-temperature-gradient-driven turbulence in tokamaks. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity is derived and is found to be consistent with experimentally-deduced ion thermal diffusivities. The associated electron thermal diffusivity, particle and heat-pinch velocities are also calculated. The effects of impurity gradients on saturated ion-temperature-gradient-driven turbulence are discussed and a related explanation of density profile steepening during Z-mode operation is proposed. The second study is devoted to the role of multiple helicity nonlinear interactions of tearing modes and dynamics of magnetic relaxation in a high-temperature current-carrying plasma. To extend the resistive MHD theory of magnetic fluctuations and dynamo activity observed in the reversed field pinch, the fluid equations for high-temperature regime are derived and basic nonlinear interaction mechanism and the effects of diamagnetic corrections to the MHD turbulence theory are studied for the case of fully developed, densely packed turbulence. Modifications to the MHD dynamo theory and anomalous thermal transport and confinement scaling predictions are examined.

  14. Plasma confinement by magnetic field with convex-concave field lines

    NASA Astrophysics Data System (ADS)

    Tsventoukh, Mikhail M.; Krashevskaya, Galina V.; Prishvitsyn, Alexander S.

    2015-06-01

    It has been found that plasma confinement by the magnetic field of alternating-sign curvature with convex-concave field lines results in a strong stabilizing action against convective (flute-interchange) perturbations. For simple combinations of axisymmetric mirrors and cusps the calculations according to the kinetic stability criterion give strongly, centrally peaked stable plasma pressure profiles instead of shallow ones. For the experimental research of this effect, a compact magnetic confinement device has been modified by adding of the external current coil to fulfil the field-line curvature requirements. The critical convectively-stable plasma pressure profiles calculation in this experimental geometry and the probe measurements of the spatial plasma distribution in the new magnetic configuration of alternating-sign curvature have been performed. The experimental results give some support for a conclusion that there is an increase in the ion saturation current at the region near the minimum of the specific volume min ∫dl/B. This region corresponds to the average minimum in the second adiabatic invariant, and the kinetic description predicts the stable pressure profile peaking here due to reduction of charge separation by particle drift in alternating-sign curvature.

  15. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    SciTech Connect

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  16. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profiles of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.

  17. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    NASA Astrophysics Data System (ADS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  18. Development of backlighting sources for a Compton Radiography diagnostic of Inertial Confinement Fusion targets

    SciTech Connect

    Tommasini, R

    2010-04-23

    An important diagnostic tool for inertial confinement fusion is time-resolved imaging of the dense cold fuel surrounding the hot spot. Here we report on the source and diagnostic development of hard x-ray radiography and on the first radiographs of direct drive implosions obtained at photon energies up to about 100keV, where the Compton effect is the dominant contributor to the shell opacity. The radiographs of direct drive, plastic shell implosions obtained at the OMEGA laser facility have a spatial resolution of {approx}10um and a temporal resolution of {approx}10ps. This novel Compton Radiography is an invaluable diagnostic tool for Inertial Confinement Fusion targets, and will be integrated at the National Ignition Facility (NIF).

  19. A new approach to the formulation and validation of scaling expressions for plasma confinement in tokamaks

    NASA Astrophysics Data System (ADS)

    Murari, A.; Peluso, E.; Gelfusa, M.; Lupelli, I.; Gaudio, P.

    2015-07-01

    The extrapolation of the energy confinement time to the next generation of devices has been investigated both theoretically and experimentally for several decades in the tokamak community. Various scaling expressions have been proposed using dimensional and dimensionless quantities. They are all based on the assumption that the scalings are in power law form. In this paper, an innovative methodology is proposed to extract the scaling expressions for the energy confinement time in tokamaks directly from experimental databases, without any previous assumption about the mathematical form of the scalings. The approach to obtain the scaling expressions is based on genetic programming and symbolic regression. These techniques have been applied to the ITPA database of H-mode discharges and the results have been validated with a series of established statistical tools. The soundest results, using dimensional variables, are not in the form of power laws but contain a multiplicative saturation term. Also the scalings, expressed in terms of the traditional dimensionless quantities, are not in power law form and contain additive saturation terms. The extrapolation to ITER of both dimensional and dimensionless quantities indicate that the saturation effects are quite significant and could imply a non-negligible reduction in the confinement time to be expected in the next generation of devices. The results obtained with the proposed techniques therefore motivate a systematic revisiting of the scaling expressions for plasma confinement in tokamaks.

  20. Confinement of pure electron plasmas in the Columbia Non-neutral Torus

    NASA Astrophysics Data System (ADS)

    Berkery, John W.; Pedersen, Thomas Sunn; Kremer, Jason P.; Marksteiner, Quinn R.; Lefrancois, Remi G.; Hahn, Michael S.; Brenner, Paul W.

    2007-06-01

    The Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgreen, and X. Sarasola, Fusion Sci. Technol. 50, 372 (2006)] is a stellarator used to study non-neutral plasmas confined on magnetic surfaces. A detailed experimental study of confinement of pure electron plasmas in CNT is described here. Electrons are introduced into the magnetic surfaces by placing a biased thermionic emitter on the magnetic axis. As reported previously, the insulated rods holding this and other emitter filaments contribute to the radial transport by charging up negatively and creating E ×B convective transport cells. A model for the rod-driven transport is presented and compared to the measured transport rates under a number of different conditions, finding good agreement. Neutrals also drive transport, and by varying the neutral pressure in the experiment, the effects of rod-driven and neutral-driven transport are separated. The neutral-driven electron loss rate scales linearly with neutral pressure. The neutral driven transport, presumably caused by electron-neutral collisions, is much greater than theoretical estimates for neoclassical diffusion in a classical stellarator with strong radial electric fields. In fact the confinement time is on the order of the electron-neutral collision time. Ion accumulation, electron attachment, and other effects are considered, but do not explain the observed transport rates.

  1. Observation of energetic electron confinement in a largely stochastic reversed-field pinch plasma

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Chapman, B. E.; O'Connell, R.; Almagri, A. F.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Kaufman, M. C.; Bonomo, F.; Franz, P.; Gobbin, M.; Piovesan, P.

    2010-01-01

    Runaway electrons with energies >100 keV are observed with the appearance of an m =1 magnetic island in the core of otherwise stochastic Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field-pinch plasmas. The island is associated with the innermost resonant tearing mode, which is usually the largest in the m =1 spectrum. The island appears over a range of mode spectra, from those with a weakly dominant mode to those, referred to as quasi single helicity, with a strongly dominant mode. In a stochastic field, the rate of electron loss increases with electron parallel velocity. Hence, high-energy electrons imply a region of reduced stochasticity. The global energy confinement time is about the same as in plasmas without high-energy electrons or an island in the core. Hence, the region of reduced stochasticity must be localized. Within a numerical reconstruction of the magnetic field topology, high-energy electrons are substantially better confined inside the island, relative to the external region. Therefore, it is deduced that the island provides a region of reduced stochasticity and that the high-energy electrons are generated and well confined within this region.

  2. Static and dynamic properties of confined, cold ion plasmas: MD (molecular dynamics) simulations

    SciTech Connect

    Schiffer, J.P.

    1989-01-01

    Some four years ago it was suggested that in the new generation of heavy ion accelerator storage rings for multiply charged ions, being planned in Europe, one may well attain internal temperatures that would correspond to very cold plasmas. Since that time, the techniques of electron or laser cooling of such beams has evolved and it may well be possible to reach temperatures corresponding to a plasma coupling parameter {Gamma} >> 100. I was fortunate to have had an opportunity to collaborate during 1986-87 with my former colleague Aneesur Rahman, of Molecular Dynamics fame, and we adapted the MD method to the calculation of the properties of cold confined plasmas. After Rahman's premature death two years ago I have continued the exploration of these systems and would like to summarize the results here. 9 refs., 10 figs.

  3. Autowaves in a dc complex plasma confined behind a de Laval nozzle

    NASA Astrophysics Data System (ADS)

    Fink, M. A.; Zhdanov, S. K.; Schwabe, M.; Thoma, M. H.; Höfner, H.; Thomas, H. M.; Morfill, G. E.

    2013-05-01

    Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle-shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly ionized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 μm. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.

  4. Low beta equilibrium and stability for anisotropic pressure closed field line plasma confinement systems

    SciTech Connect

    Pastukhov, V.P.; Ilgisonis, V.I.; Subbotin, A.A.

    1994-05-01

    General formalism is developed to analyze the equilibrium and stability of low beta anisotropic pressure plasmas confined in closed field line magnetic systems. The formalism allows one to consider rather general magnetic systems with nonuniform axis curvature and longitudinal profiles of toroidal and multipole poloidal field. It also allows having a strong pressure anisotropy corresponding to enhanced plasma pressure in mirror cells of the system. As an example of such a system the authors consider the recently proposed linked mirror neutron source (LMNS). Application of the above formalism to the LMNS analysis confirms most of the preliminary results, however, they obtain a considerable reduction of mirror cell axis curvature and an appreciable ellipticity of plasma cross-section in the mirror cell midplane. They have also optimized the longitudinal pressure and magnetic field distribution.

  5. SCR-1: Design and Construction of a Small Modular Stellarator for Magnetic Confinement of Plasma

    NASA Astrophysics Data System (ADS)

    Barillas, L.; Vargas, V. I.; Alpizar, A.; Asenjo, J.; Carranza, J. M.; Cerdas, F.; Gutiérrez, R.; Monge, J. I.; Mora, J.; Morera, J.; Peraza, H.; Queral, V.; Rojas, C.; Rozen, D.; Saenz, F.; Sánchez, G.; Sandoval, M.; Trimiño, H.; Umaña, J.; Villegas, L. F.

    2014-05-01

    This paper describes briefly the design and construction of a small modular stellarator for magnetic confinement of plasma, called Stellarator of Costa Rica 1, or SCR-1; developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica, PlasmaTEC. The SCR-1 is based on the small Spanish stellarator UST_1, created by the engineer Vicente Queral. The SCR-1 will employ stainless steel torus-shaped vacuum vessel with a major radius of 460.33 mm and a cross section radius of 110.25mm. A typical SCR-1 plasma will have an average radius 42.2 mm and a volume of 8 liters (0.01 m3), and an aspect ratio of 5.7. The magnetic resonant field will be 0.0878 T, and a period of 2 (m=2) with a rotational transform of 0.3. The magnetic field will be provided by 12 modular coils, with 8 turns each, with an electrical current of 8704 A per coil (1088 A per turn of each coil). This current will be fed by a bank of cell batteries. The plasma will be heated by ECRH with magnetrons of a total power of 5kW, in the first harmonic at 2.45GHz. The expected electron temperature and density are 15 eV and 1017 m-3 respectively with an estimated confinement time of 7.30 x 10-4 ms. The initial diagnostics on the SCR-1 will consist of a Langmuir probe, a heterodyne microwave interferometer, and a field mapping system. The first plasma of the SCR-1 is expected at the end of 2011.

  6. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    PubMed

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. PMID:26153705

  7. Excitation of the centrifugally driven interchange instability in a plasma confined by a magnetic dipole

    SciTech Connect

    Levitt, B.; Maslovsky, D.; Mauel, M.E.; Waksman, J.

    2005-05-15

    The centrifugally driven electrostatic interchange instability is excited for the first time in a laboratory magnetoplasma. The plasma is confined by a dipole magnetic field, and the instability is excited when an equatorial mesh is biased to induce a radial current that creates rapid axisymmetric plasma rotation. The observed instabilities appear quasicoherent in the lab frame of reference; they have global radial mode structures and low azimuthal mode numbers, and they are modified by the presence of energetic, magnetically confined electrons. The mode structure is measured using a multiprobe correlation technique as well as a novel 96-point polar imaging diagnostic which measures particle flux along field lines that map to the pole. Interchange instabilities caused by hot electron pressure are simultaneously observed at the hot electron drift frequency. Adjusting the hot electron fraction {alpha} modifies the stability as well as the structures of the centrifugally driven modes. In the presence of larger fractions of energetic electrons, m=1 is observed to be the dominant mode. For faster rotating plasmas containing fewer energetic electrons, m=2 dominates. Results from a self-consistent nonlinear simulation reproduce the measured mode structures in both regimes. The low azimuthal mode numbers seen in the experiment and simulation can also be interpreted with a local, linear dispersion relation of the electrostatic interchange instability. Drift resonant hot electrons give the instability a real frequency, inducing stabilizing ion polarization currents that preferentially suppress high-m modes.

  8. RF Heating and Current Drive in Magnetically Confined Plasma: a Historical Perspective

    SciTech Connect

    Porkolab, Miklos

    2007-09-28

    The history of high power RF waves injected into magnetically confined plasma for the purposes of heating to fusion relevant temperatures spans nearly five decades. The road to success demanded the development of the theory of wave propagation in high temperature plasma in complex magnetic field geometries, development of antenna structures and transmission lines capable of handling high RF powers, and the development of high power RF (microwave) sources. In the early days, progress was hindered by the lack of good confinement of energetic particles formed by high power RF wave-plasma interactions. For example, in the ion cyclotron resonance frequency regime (ICRF) ions with energies in the multi-100keV, or even MeV range may be formed due to the presence of efficient 'minority species' absorption. Electrons with similar energies can be formed upon the injection of RF waves in the electron cyclotron resonance (ECRH) or lower hybrid range of frequencies (LHRF) because of quasi-linear Landau (cyclotron) interactions between waves and particles. In this paper a summary of four decades of historical evolution of wave heating and current drive results will be given.

  9. Metallic targets ablation by laser plasma production in a vacuum

    NASA Astrophysics Data System (ADS)

    Beilis, I. I.

    2016-03-01

    A model of metallic target ablation and metallic plasma production by laser irradiation is reported. The model considers laser energy absorption by the plasma, electron emission from hot targets and ion flux to the target from the plasma as well as an electric sheath produced at the target-plasma interface. The proposed approach takes into account that the plasma, partially shields the laser radiation from the target, and also converts absorbed laser energy to kinetic and potential energies of the charged plasma particles, which they transport not only through the ambient vacuum but also through the electrostatic sheath to the solid surface. Therefore additional plasma heating by the accelerated emitted electrons and target heating caused by bombardment of it by the accelerated ions are considered. A system of equations, including equations for solid heat conduction, plasma generation, and plasma expansion, is solved self-consistently. The results of calculations explain the measured dependencies of ablation yield (μ g/pulse) for Al, Ni, and Ti targets on laser fluence in range of (5-21)J/cm2 published previously by Torrisi et al.

  10. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    SciTech Connect

    Samulyak, Roman V.; Parks, Paul

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  11. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    NASA Astrophysics Data System (ADS)

    Evans, T. E.

    2015-12-01

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δ b\\bot\\text{ext}≈ {{10}-4}\\to {{10}-3}~\\text{T} ). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes (ELMs). At the same time, theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design (Loarte et al 2014 Nucl. Fusion 54 033007). This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.

  12. Effects of front-surface target structures on properties of relativistic laser-plasma electrons.

    PubMed

    Jiang, S; Krygier, A G; Schumacher, D W; Akli, K U; Freeman, R R

    2014-01-01

    We report the results of a study of the role of prescribed geometrical structures on the front of a target in determining the energy and spatial distribution of relativistic laser-plasma electrons. Our three-dimensional particle-in-cell simulation studies apply to short-pulse, high-intensity laser pulses, and indicate that a judicious choice of target front-surface geometry provides the realistic possibility of greatly enhancing the yield of high-energy electrons while simultaneously confining the emission to narrow (<5°) angular cones. PMID:24580345

  13. Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas

    SciTech Connect

    Heidbrink, W. W.

    2008-05-15

    Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P{sub {zeta}} is most important. Once a mode is driven unstable, a wide variety

  14. Flute instability in a plasma confined by perfectly reflecting end walls

    SciTech Connect

    Farina, D.; Pozzoli, R.; Ryutov, D. )

    1993-11-01

    The magnetohydrodynamic stability of a low-pressure plasma confined along the magnetic field by the end walls that are perfectly reflecting the impinging particles is considered. It is shown that, if the magnetic field lines do not intersect the walls along the normal, a fast instability can develop. An explicit expression for the growth rate has been derived, and an analogy with the usual flute instability has been traced. The instability can play some role in the scrape-off layers of tokamaks with poloidal limiter.

  15. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOEpatents

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  16. Rotation Reversal Bifurcation and Energy Confinement Saturation in Tokamak Ohmic L-Mode Plasmas

    SciTech Connect

    Rice, J. E.; Cziegler, I.; Podpaly, Y. A.; Reinke, M. L.; Ennever, P. C.; Greenwald, M. J.; Hughes, J. W.; Ma, Y.; Marmar, E. S.; Porkolab, M.; Tsujii, N.; Wolfe, S. M.; Diamond, P. H.; Duval, B. P.

    2011-12-23

    Direction reversals of intrinsic toroidal rotation have been observed in diverted Alcator C-Mod Ohmic L-mode plasmas following electron density ramps. For low density discharges, the core rotation is directed cocurrent, and reverses to countercurrent following an increase in the density above a certain threshold. Such reversals occur together with a decrease in density fluctuations with 2 cm{sup -1}{<=}k{sub {theta}}{<=}11 cm{sup -1} and frequencies above 70 kHz. There is a strong correlation between the reversal density and the density at which the Ohmic L-mode energy confinement changes from the linear to the saturated regime.

  17. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas.

    PubMed

    Srinivasan, Bhuvana; Dimonte, Guy; Tang, Xian-Zhu

    2012-04-20

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion implosions are expected to generate magnetic fields. A Hall-MHD model is used to study the field generation by 2D single-mode and multimode RTI in a stratified two-fluid plasma. Self-generated magnetic fields are predicted and these fields grow as the RTI progresses via the ∇n(e)×∇T(e) term in the generalized Ohm's law. Scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, Atwood number, and perturbation wavelength. PMID:22680725

  18. Indirect-drive inertial confinement fusion using highly supersonic, radiatively cooled, plasma slugs.

    PubMed

    Chittenden, J P; Dunne, M; Zepf, M; Lebedev, S V; Ciardi, A; Bland, S N

    2002-06-10

    We present a new approach to indirect-drive inertial confinement fusion which makes use of highly supersonic, radiatively cooled, slugs of plasma to energize a hohlraum. 2D resistive magnetohydrodynamic simulations of slug formation in shaped liner Z-pinch implosions are presented along with 2D-radiation-hydrodynamic simulations of the slug impacting a converter foil and 3D-view-factor simulations of a double-ended hohlraum. Results for the Z facility at Sandia National Laboratory indicate that two synchronous slugs of 250 kJ kinetic energy could be produced, resulting in a capsule surface temperature of approximately 225 eV. PMID:12059369

  19. Time resolved interferometric study of the plasma plume induced shock wave in confined geometry: Two-dimensional mapping of the ambient and plasma density

    NASA Astrophysics Data System (ADS)

    Choudhury, Kaushik; Singh, R. K.; Narayan, Surya; Srivastava, Atul; Kumar, Ajai

    2016-04-01

    An experimental investigation of the laser produced plasma induced shock wave in the presence of confining walls placed along the axial as well as the lateral direction has been performed. A time resolved Mach Zehnder interferometer is set up to track the primary as well as the reflected shock waves and its effect on the evolving plasma plume has been studied. An attempt has been made to discriminate the electronic and medium density contributions towards the changes in the refractive index of the medium. Two dimensional spatial distributions for both ambient medium density and plasma density (electron density) have been obtained by employing customised inversion technique and algorithm on the recorded interferograms. The observed density pattern of the surrounding medium in the presence of confining walls is correlated with the reflected shock wave propagation in the medium. Further, the shock wave plasma interaction and the subsequent changes in the shape and density of the plasma plume in confined geometry are briefly described.

  20. Recent advances in long-pulse high-confinement plasma operations in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Guo, H. Y.; Li, J.; Wan, B. N. Gong, X. Z.; Xu, G. S.; Zhang, X. D.; Ding, S. Y.; Gan, K. F.; Hu, J. S.; Hu, L. Q.; Liu, S. C.; Qian, J. P.; Sun, Y. W.; Wang, H. Q.; Wang, L.; Xia, T. Y.; Xiao, B. J.; Zeng, L.; Zhao, Y. P.; and others

    2014-05-15

    A long-pulse high confinement plasma regime known as H-mode is achieved in the Experimental Advanced Superconducting Tokamak (EAST) with a record duration over 30 s, sustained by Lower Hybrid wave Current Drive (LHCD) with advanced lithium wall conditioning and divertor pumping. This long-pulse H-mode plasma regime is characterized by the co-existence of a small Magneto-Hydrodynamic (MHD) instability, i.e., Edge Localized Modes (ELMs) and a continuous quasi-coherent MHD mode at the edge. We find that LHCD provides an intrinsic boundary control for ELMs, leading to a dramatic reduction in the transient power load on the vessel wall, compared to the standard Type I ELMs. LHCD also induces edge plasma ergodization, broadening heat deposition footprints, and the heat transport caused by ergodization can be actively controlled by regulating edge plasma conditions, thus providing a new means for stationary heat flux control. In addition, advanced tokamak scenarios have been newly developed for high-performance long-pulse plasma operations in the next EAST experimental campaign.

  1. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    SciTech Connect

    Vold, E. L.; Molvig, K.; Joglekar, A. S.; Ortega, M. I.; Moll, R.; Fenn, D.

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  2. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    NASA Astrophysics Data System (ADS)

    Vold, E. L.; Joglekar, A. S.; Ortega, M. I.; Moll, R.; Fenn, D.; Molvig, K.

    2015-11-01

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  3. Stable anisotropic plasma confinement in magnetic configurations with convex-concave field lines

    NASA Astrophysics Data System (ADS)

    Tsventoukh, M. M.

    2014-02-01

    It is shown that a combination of the convex and the concave part of a field line provides a strong stabilizing action against convective (flute-interchange) plasma instability (Tsventoukh 2011 Nucl. Fusion 51 112002). This results in internal peaking of the stable plasma pressure profile that is calculated from the collisionless kinetic stability criterion for any magnetic confinement system with combination of mirrors and cusps. Connection of the convex and concave field line parts results in a reduction of the space charge that drives the unstable E × B motion, as there is an opposite direction of the particle drift in a non-uniform field at convex and concave field lines. The pressure peaking arises at the minimum of the second adiabatic invariant J that takes place at the ‘middle’ of a tandem mirror-cusp transverse cross-section. The position of the minimum in J varies with the particle pitch angle that results in a shift of the peaking position depending on plasma anisotropy. This allows one to improve a stable peaked pressure profile at a convex-concave field by changing the plasma anisotropy over the trap cross-section. Examples of such anisotropic distribution functions are found that give an additional substantial enhancement in the maximal central pressure. Furthermore, the shape of new calculated stable profiles has a wide central plasma layer instead of a narrow peak.

  4. Emissive Probe Measurements in a Dual-Frequency-Confined Capacitively-Coupled-Plasma System

    NASA Astrophysics Data System (ADS)

    Linnane, Shane; Ellingboe, Albert R.

    2002-10-01

    Dual frequency confined capacitively coupled plasmas (DFC-CCP) are increasingly used in semiconductor manufacturing for dielectric etching, allowing greater (and independent) control of ion energies and ion flux on the etched substrate. The powered electrode is driven with the summation of 27MHz and 2MHz sinusoidal voltages, while the other electrode is grounded. The electrode areas are similar in size, giving an electrode aspect ratio less than 2. Because of this low aspect ratio, there are large oscillations in the plasma potential. The expectation is for sinusoidal oscillations at the higher driving frequency, due to capacitive sheaths, while a rectified oscillation is expected at the lower driving frequency.(E. Kawamura, V. Vahedi, M. A. Lieberman and C. K. Birdsall, Plasma Sources Sci. Technology. 8 (1999) R45-R64 Work Supported by EURATOM.) Measurements of rf oscillation in the plasma potential taken with a floating emissive probe will be presented. The emissive probe and circuitry allows direct realtime measurement of plasma potential oscillation at both driving frequencies and the harmonics of each, thus allowing measurement of the actual potential on the driven electrode and ion energy incident on grounded electrode.

  5. Recent advances in long-pulse high-confinement plasma operations in Experimental Advanced Superconducting Tokamaka)

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Li, J.; Wan, B. N.; Gong, X. Z.; Liang, Y. F.; Xu, G. S.; Zhang, X. D.; Ding, S. Y.; Gan, K. F.; Hu, J. S.; Hu, L. Q.; Liu, S. C.; Qian, J. P.; Sun, Y. W.; Wang, H. Q.; Wang, L.; Xia, T. Y.; Xiao, B. J.; Zeng, L.; Zhao, Y. P.; Denner, P.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; Hyatt, A. W.; Jackson, G. L.; Loarte, A.; Maingi, R.; Menard, J. E.; Rack, M.; Solomon, W. M.; Xu, X. Q.; Van Zeeland, M.; Zou, X. L.

    2014-05-01

    A long-pulse high confinement plasma regime known as H-mode is achieved in the Experimental Advanced Superconducting Tokamak (EAST) with a record duration over 30 s, sustained by Lower Hybrid wave Current Drive (LHCD) with advanced lithium wall conditioning and divertor pumping. This long-pulse H-mode plasma regime is characterized by the co-existence of a small Magneto-Hydrodynamic (MHD) instability, i.e., Edge Localized Modes (ELMs) and a continuous quasi-coherent MHD mode at the edge. We find that LHCD provides an intrinsic boundary control for ELMs, leading to a dramatic reduction in the transient power load on the vessel wall, compared to the standard Type I ELMs. LHCD also induces edge plasma ergodization, broadening heat deposition footprints, and the heat transport caused by ergodization can be actively controlled by regulating edge plasma conditions, thus providing a new means for stationary heat flux control. In addition, advanced tokamak scenarios have been newly developed for high-performance long-pulse plasma operations in the next EAST experimental campaign.

  6. A model for particle confinement in a toroidal plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    A toroidal plasma is confined and heated by the simultaneous application of strong d.c. magnetic fields and electric fields. Strong radial electric fields (about 1 kilovolt per centimeter) are imposed by biasing the plasma with up to 12 negative electrode rings which surround its minor circumference. The plasma containment is consistent with a balance of two processes: a radial infusion of ions in those sectors not containing electrode rings, resulting from the radially inward electric fields; and ion losses to the electrode rings, each of which acts as a sink and draws ions out the plasma in the manner of a Langmuir probe in the ion saturation regime. The highest density on axis which has been observed so far in this steady-state plasma is 6.2 x 10 to the 12th power particles per cubic centimeter, for which the particle containment time is 2.5 milliseconds. The deuterium ion kinetic temperature for these conditions was in the range of 360 to 520 eV.

  7. Confinement of laser plasma by solenoidal field for laser ion source

    SciTech Connect

    Okamura, M.; Kanesue,T.; Kondo, K.; Dabrowski, R.

    2010-05-23

    A laser ion source can provide high current, highly charged ions with a simple structure. However, it was not easy to control the ion pulse width. To provide a longer ion beam pulse, the plasma drift length, which is the distance between laser target and extraction point, has to be extended and as a result the plasma is diluted severely. Previously, we applied a solenoid field to prevent reduction of ion density at the extraction point. Although a current enhancement by a solenoid field was observed, plasma behavior after a solenoid magnet was unclear because plasma behavior can be different from usual ion beam dynamics. We measured a transverse ion distribution along the beam axis to understand plasma motion in the presence of a solenoid field.

  8. Effect of a stochastic electric field on plasma confinement in FTU

    NASA Astrophysics Data System (ADS)

    Martorelli, Roberto; Montani, Giovanni; Carlevaro, Nakia

    2016-01-01

    We discuss a stochastic model for the behavior of electrons in a magnetically confined plasma having axial symmetry. The aim of the work is to provide an explanation for the density limit observed in the Frascati Tokamak Upgrade (FTU) machine. The dynamical framework deals with an electron embedded in a stationary and uniform magnetic field and affected by an orthogonal random electric field. The behavior of the average plasma profile is determined by the appropriate Fokker-Planck equation associated to the considered model and the disruptive effects of the stochastic electric field are shown. The comparison between the addressed model and the experimental data allows to fix the relevant spatial scale of such a stochastic field. It is found to be of the order of the Tokamak micro-physics scale, i.e. few millimeters. Moreover, it is clarified how the diffusion process outlines a dependence on the magnetic field as ˜ B-3/2.

  9. SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas

    SciTech Connect

    Stutman, Dan

    2014-09-10

    The present report summarizes the results obtained during a one-year extension of DoE grant “SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas”, at Johns Hopkins University, aimed at completing the development of a new type of magnetic fusion plasma diagnostic, the XUV Transmission Grating Imaging Radiometer (TGIR). The TGIR enables simultaneous spatially and spectrally resolved measurements of the XUV/VUV radiated power from impurities in fusion plasmas, with high speed. The instrument was successfully developed and qualified in the laboratory and in experiments on a tokamak. Its future applications will be diagnostic of the impurity content and transport in the divertor and edge of advanced magnetic fusion experiments, such as NSTX Upgrade.

  10. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.