Freezing in confined geometries
NASA Technical Reports Server (NTRS)
Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.
1992-01-01
Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.
PREFACE: Water in confined geometries
NASA Astrophysics Data System (ADS)
Rovere, Mauro
2004-11-01
particularly important to understand whether the glass transition temperature could be experimentally accessible for confined water. In this respect the modifications induced by the confinement on the dynamics of water on supercooling are of extreme interest and a number of experimental and computer simulation studies have been devoted in recent years to this topic. This special section contains papers from different groups which have contributed with various experimental and computer simulation techniques to the progress made in the study of water in confined geometry. I thank all of the authors for their stimulating contributions. I am very pleased in particular that Sow-Hsin Chen agreed to contribute since he has done pioneering experimental work on the dynamical properties of confined water upon supercooling, and he is still very active in the field. The work presented by the group of J Swenson concerns also the glass transition of confined water. The Messina group (Crupi et al) is very active in the study of dynamical properties of confined water and they present their results on water in zeolites. From the experimental side there is also a contribution from J Dore's group, one of the first to perform neutron scattering studies on confined water. The work of J Klein looks at the mobility of water molecules confined in subnanometre films. Important contributions on the computer simulation side come from the Geiger group (Brovchenko et al). They performed very accurate simulations of water in nanopores, exploring a large portion of the phase space. Puibasset et al were able to build a very realistic model to simulate water inside Vycor. Zangi et al review the extensive work performed on confined water. Jedlovszky is an expert on the model potential for water and studied how the hydrogen bond network of water can be modified by the presence of an interface. The special issue is intended to stimulate interest and future work on this important subject.
Dislocation dynamics in confined geometry
NASA Astrophysics Data System (ADS)
Gómez-García, D.; Devincre, B.; Kubin, L.
1999-05-01
A simulation of dislocation dynamics has been used to calculate the critical stress for a threading dislocation moving in a confined geometry. The optimum conditions for conducting simulations in systems of various sizes, down to the nanometer range, are defined. The results are critically compared with the available theoretical and numerical estimates for the problem of dislocation motion in capped layers.
Amoeboid motion in confined geometry
NASA Astrophysics Data System (ADS)
Wu, Hao; Thiébaud, M.; Hu, W.-F.; Farutin, A.; Rafaï, S.; Lai, M.-C.; Peyla, P.; Misbah, C.
2015-11-01
Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses.
Planar geometry inertial electrostatic confinement fusion device
NASA Astrophysics Data System (ADS)
Knapp, Daniel R.
2015-03-01
In the classic gridded inertial electrostatic confinement (IEC) fusion reactor, ion bombardment of the grid leads to heating, thermionic electron emission, significant power loss, and ultimately melting of the grid. Gridless IEC devices have sought to overcome these limitations. Klein reported a gridless device in which ions are circulated as a linear beam in an electrostatic analogue of an optical resonator. To overcome limits of stored ions due to space charge effects at the turning regions, the device employed multiple overlapping traps. The work reported here seeks to further increase the turning region space in a gridless trap by employing a planar geometry. Ion trapping in the planar device was examined by simulating trajectories of 2H+ ions with SIMION 8.1 software. Simulations were carried out using multiple potentials as in Klein's device and for a single potential trap as a planar analogue of the anharmonic ion trap. Scattering by background gas was simulated using a hard sphere collision model, and the results suggested the device will require operation at low pressure with a separate ion source.
Limiting Spectra from Confining Potentials.
ERIC Educational Resources Information Center
Nieto, Michael Martin; Simmons, L. M., Jr.
1979-01-01
The author explains that, for confining potentials and large quantum numbers, the bound-state energies rise more rapidly as a function of n the more rapidly the potential rises with distance. However, the spectrum can rise no faster than n squared in the nonrelativistic case, or n in the relativistic case. (Author/GA)
Dirac equations with confining potentials
NASA Astrophysics Data System (ADS)
Noble, J. H.; Jentschura, U. D.
2015-01-01
This paper is devoted to a study of relativistic eigenstates of Dirac particles which are simultaneously bound by a static Coulomb potential and added linear confining potentials. Under certain conditions, despite the addition of radially symmetric, linear confining potentials, specific bound-state energies surprisingly preserve their exact Dirac-Coulomb values. The generality of the "preservation mechanism" is investigated. To this end, a Foldy-Wouthuysen transformation is used to calculate the corrections to the spin-orbit coupling induced by the linear confining potentials. We find that the matrix elements of the effective operators obtained from the scalar, and time-like confining potentials mutually cancel for specific ratios of the prefactors of the effective operators, which must be tailored to the preservation mechanism. The result of the Foldy-Wouthuysen transformation is used to verify that the preservation is restricted (for a given Hamiltonian) to only one reference state, rather than traceable to a more general relationship among the obtained effective low-energy operators. The results derived from the nonrelativistic effective operators are compared to the fully relativistic radial Dirac equations. Furthermore, we show that the preservation mechanism does not affect antiparticle (negative-energy) states.
2D Colloidal Wigner crystals in confined geometries
NASA Astrophysics Data System (ADS)
Higler, Ruben; Sprakel, Joris
2015-03-01
Crystallization of bulk systems has been widely studied using colloids as a model system. However, study into colloidal crystallization in confined geometries has been sparse and little is known about the effects of strong confinement on the dynamics of colloidal crystal. In our research we prepare 2D crystals from charged colloids in an apolar solvent to study crystal dynamics, formation, and structure in circular confinements. These confining geometries are made using softlithography techniques from SU-8. In order to broaden the parameter space we can reach in experiments we employ brownian dynamics simulations to supplement our experimental results. Using single-particle tracking we have subpixel resolution positional information of every particle in the system. We study the vibrational modes of our confined crystals and find well defined modes unique to confined systems, such as a radially symmetric compression (or breathing) mode, a collective rotation mode, and distinct resonance modes. Furthermore, due to the circular nature of our constrictions, defectless crystals are impossible, we find, for sufficiently high area fractions, that the defects order at well defined points at the edge. The effect of this ``defect-localization'' has a clear influence on the vibrational modes.
Schwinger effect and entanglement entropy in confining geometries
NASA Astrophysics Data System (ADS)
Ghodrati, Mahdis
2015-09-01
By using AdS /CFT , we study the critical electric field, the Schwinger pair creation rate and the potential phase diagram for the quark and antiquark in four confining supergravity backgrounds which are the Witten QCD (WQCD), the Maldacena-Nunez (MN), the Klebanov-Tseytlin (KT) and the Klebanov-Strassler (KS) models. We compare the rate of phase transition in these models and compare it also with the conformal case. We then present the phase diagrams of the entanglement entropy of a strip in these geometries and find the predicted butterfly shape in the diagrams. We found that the phase transitions have a higher rate in WQCD and KT relative to MN and KS. Finally we show the effect of turning on an additional magnetic field on the rate of pair creation by using the imaginary part of the Euler-Heisenberg effective Lagrangian. The result is increasing the parallel magnetic field would increase the pair creation rate and increasing the perpendicular magnetic field would decrease the rate.
Multiple patterns of diblock copolymer confined in irregular geometries with soft surface
NASA Astrophysics Data System (ADS)
Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun
2015-12-01
The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.
Adsorbed molecules in external fields: Effect of confining potential.
Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod
2016-12-01
We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. PMID:27387127
A molecular dynamics study of freezing in a confined geometry
NASA Technical Reports Server (NTRS)
Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel
1992-01-01
The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.
Binding of two helium atoms in confined geometries
Kilic, S. |; Krotscheck, E.; Zillich, R.
1999-08-01
The authors carry out a comprehensive study of the binding of two helium atoms in unrestricted and, in particular, in restricted geometries in both two and three dimensions. Besides the well known binding of the {sup 4}He dimer in unrestricted geometry in two and three dimensions, the authors also find weakly bound states of the {sup 3}He-{sup 4}He molecule and the {sup 3}He dimer in 2 dimensions. Furthermore, any combination of two {sup 4}He or {sup 3}He atoms can form a molecule if their motion is sufficiently confined. The calculations are carried out by numerically solving the Schroedinger equation as well as by constructing a suitable variational wave function.
Drying of a colloidal suspension in confined geometry
NASA Astrophysics Data System (ADS)
Leng, Jacques
2010-08-01
We describe experiments on drying of a hard-sphere colloidal suspension in confined geometry where a drop of the suspension is squeezed in between two circular transparent plates and allowed to dry. In this situation, the geometry controls the vapor removal rate and leads to a facilitated observation directly inside the drop. We monitor the drying kinetics of colloids of two sizes and several volume fractions; in most cases, the drying kinetics leads to the formation of a crust at the level of the meniscus which can be either crystalline or glassy, the transition between the two cases being triggered by the local deposition velocity, itself slaved to the evaporation rate. It yields a final dry state which is either polycrystalline or amorphous. The crust is also responsible for a shape instability of the quasi-two-dimensional drop shrinking upon evaporation but with a crust opposing mechanical and flow resistance, and possibly a partial adhesion on the substrate.
Investigation of properties of lithium niobate crystals in confined geometries
NASA Astrophysics Data System (ADS)
Veenhuizen, Keith; Stone, Greg; Knabe, Bastian; McAnany, Sean; Buse, Karsten; Jain, Himanshu; Dierolf, Volkmar
The properties of ferroelectric materials in confined geometries, specifically lithium niobate nanocrystals and crystal lines in glass, were studied. Batches of LiNbO3 nanocrystals have been synthesized from various initial ratios of lithium to niobium using the sol-gel method. The batches were analyzed via Raman spectroscopy and SEM imaging to gain information about their size, morphology, stoichiometry, and defect content. The nanocrystals are very sensitive to the initial stoichiometric ratio in the synthesis step. Raman spectra reveal the resultant nanocrystal stoichiometry depends on the initial stoichiometry of the batch, the spectra also reveal an extra phase is present besides LiNbO3 in some batches, and high quality spherical nanocrystals can be synthesized at certain initial stoichiometric ratios. In addition, lines of LiNbO3 were crystallized in lithium-niobo-silica glass systems with varying amounts of silica to understand and control the nucleation and crystallization of the crystals in glass.
Clustering of branching Brownian motions in confined geometries
NASA Astrophysics Data System (ADS)
Zoia, A.; Dumonteil, E.; Mazzolo, A.; de Mulatier, C.; Rosso, A.
2014-10-01
We study the evolution of a collection of individuals subject to Brownian diffusion, reproduction, and disappearance. In particular, we focus on the case where the individuals are initially prepared at equilibrium within a confined geometry. Such systems are widespread in physics and biology and apply for instance to the study of neutron populations in nuclear reactors and the dynamics of bacterial colonies, only to name a few. The fluctuations affecting the number of individuals in space and time may lead to a strong patchiness, with particles clustered together. We show that the analysis of this peculiar behavior can be rather easily carried out by resorting to a backward formalism based on the Green's function, which allows the key physical observables, namely, the particle concentration and the pair correlation function, to be explicitly derived.
Confining potential in momentum space
NASA Technical Reports Server (NTRS)
Norbury, John W.; Kahana, David E.; Maung, Khin Maung
1992-01-01
A method is presented for the solution in momentum space of the bound state problem with a linear potential in r space. The potential is unbounded at large r leading to a singularity at small q. The singularity is integrable, when regulated by exponentially screening the r-space potential, and is removed by a subtraction technique. The limit of zero screening is taken analytically, and the numerical solution of the subtracted integral equation gives eigenvalues and wave functions in good agreement with position space calculations.
Liquid crystal orientational order in confined geometries: A NMR perspective
NASA Astrophysics Data System (ADS)
Zeng, Huairen
Liquid crystals are a very rich physical system where it is possible to study many phenomena both theoretically as well as experimentally. In almost all applications, liquid crystals exist in contact with some kind of substrate. Liquid crystals properties are greatly affected by a nearby surface: confinement alignment, phase transition temperatures, the critical behavior of the thermodynamic quantities and several other of their properties change. Researching confined liquid crystals to study surface effects will be beneficial for basic physics understanding and provide results perhaps extrapolated to the applied world. An important concept in a microscopic description of a liquid crystal phase is the order parameter, each of the phases is characterized by one or more such parameters. It is therefore of interest to quantify and measure the degree of order of a particular phase 2H-NMR, as a microscopic measurement at the molecular level, has a number of unique features that make it a useful technique to study liquid crystals. NMR can distinguish between spatial and time averages whereas other methods such as birefringence can not. And, most importantly, deuterium NMR is sensitive to the orientational order present in the system. In fact, through NMR lineshape analysis, we can derive the configuration of the nematic director field, and thus determine liquid crystal alignment in random interconnected host. In this work I will use thermotropic liquid crystals and confine them in Millipore membranes, silica Aerogel porous glass and silica Aerosil spheres. Millipore membranes are made from pure, biologically inert mixtures of cellulose acetate and cellulose nitrate. It is a randomly interconnected host geometry with a high porosity, and available in a variety of void sizes, for my research I will use sizes from 8.0 mum to 0.025 mum. Silica Aerogel is a connected pore network, available in many different densities. Our work will cover densities ranging from 0.068 to 0
Electronic quantum confinement in cylindrical potential well
NASA Astrophysics Data System (ADS)
Baltenkov, Arkadiy S.; Msezane, Alfred Z.
2016-04-01
The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limiting cases of the ratio of the cylinder length H and its radius R0 have been considered; when the cylinder length H significantly exceeds its radius R0 and when the cylinder radius is much greater than its length. The cylindrical quantum confinement effects on the momentum distribution of electrons in these potential wells have been analyzed. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested where the quantum confinement can be manifested. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Colloidal electrodynamics, electrohydrodynamics and thermodynamics in confined geometries
NASA Astrophysics Data System (ADS)
Han, Yilong
We use digital video microscopy and liquid structure theory to measure pair potentials of charged stabilized colloidal spheres in an equilibrium monolayer. Anomalous attraction is founded between like-charged spheres in different degree of confinement, different composition of spheres or substrates, at high ionic strength, or for larger spheres. Error analysis is developed to rule out artifacts. We show that one wall is enough to induce the attraction and gold substrate can enhance such effect. The recently derived configuration temperature is generalized to a hierarchy of hyperconfigurational temperatures. We show their relation to the hypervirial theorem. These temperature definitions are successfully tested experimentally for the first time via colloidal systems. The results confirmed our anomalous attractions measured in the previous chapter. As a set of constrains, hyperconfigurational temperatures are used to determine free parameters in an unknown potential. Other applications and thermodynamic considerations are discussed. The complicate electrohydrodynamic interplay of microions' fluxes and macroions in an electric field can induce many instabilities. A zoo of self-organized colloidal patterns are discovered in electrolysis of a horizontal layer of aqueous colloid. At low voltage, spheres cooperatively form various quasi-stationary microscopic clusters. At higher bias, spheres passively trace the electroconvection which is more nonlinear than its thermal analogy, the Raleigh-Benard convection. Explaining these patterns provides new challenge in pattern formation, electrokinetic of colloid and electrochemistry.
NASA Astrophysics Data System (ADS)
Yu, Bin; Deng, Jian-Hua; Wang, Zheng; Li, Bao-Hui; Shi, An-Chang
2015-04-01
The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections (regular triangles, squares, and ellipses) is investigated using a simulated annealing technique. In the bulk, the studied symmetric diblock copolymers form a lamellar structure with period LL. The geometry and surface property of the confining channels have a large effect on the self-assembled structures and the orientation of the lamellar structures. Stacked perpendicular lamellae with period LL are observed for neutral surfaces regardless of the channel shape and size, but each lamella is in the shape of the corresponding channel's cross section. In the case of triangle-shaped cross sections, stacked parallel lamellae are the majority morphologies for weakly selective surfaces, while morphologies including a triangular-prism-shaped B-cylinder and multiple tridentate lamellae are obtained for strongly selective surfaces. In the cases of square-shaped and ellipse-shaped cross sections, concentric lamellae are the signature morphology for strongly selective surfaces, whereas for weakly selective surfaces, stacked parallel lamellae, and several types of folding lamellae are obtained in the case of square-shaped cross sections, and stacked parallel lamellae are the majority morphologies in the case of ellipse-shaped cross sections when the length of the minor axis is commensurate with the bulk lamellar period. The mean-square end-to-end distance, the average contact number between different species and the surface concentration of the A-monomers are computed to elucidate the mechanisms of the formation of the different morphologies. It is found that the resulting morphology is a consequence of competition among the chain stretching, interfacial energy, and surface energy. Our results suggest that the self-assembled morphology and the orientation of lamellae can be manipulated by the shape, the size, and the surface property of the confining channels. Project
Random Matrices in Non-confining Potentials
NASA Astrophysics Data System (ADS)
Allez, Romain; Dumaz, Laure
2015-08-01
We consider invariant matrix processes diffusing in non-confining cubic potentials of the form . We construct the trajectories of such processes for all time by restarting them whenever an explosion occurs, from a new (well chosen) initial condition, insuring continuity of the eigenvectors and of the non exploding eigenvalues. We characterize the dynamics of the spectrum in the limit of large dimension and analyze the stationary state of this evolution explicitly. We exhibit a sharp phase transition for the limiting spectral density at a critical value . If , then the potential presents a well near deep enough to confine all the particles inside, and the spectral density is supported on a compact interval. If however, the steady state is in fact dynamical with a macroscopic stationary flux of particles flowing across the system. We prove that this flux displays a second order phase transition at the critical value such that when where is an explicit constant. In the subcritical regime, the eigenvalues allocate according to a stationary density profile with full support in , flanked with heavy tails such that as . Our method applies to other non-confining potentials and we further investigate a family of quartic potentials, which were already studied in (Brezin et al. in Commun Math Phys 59:35-51, 1978) to count planar diagrams.
Yukawa particles in a confining potential
Girotto, Matheus Levin, Yan; Santos, Alexandre P. dos; Colla, Thiago
2014-07-07
We study the density distribution of repulsive Yukawa particles confined by an external potential. In the weak coupling limit, we show that the mean-field theory is able to accurately account for the particle distribution. In the strong coupling limit, the correlations between the particles become important and the mean-field theory fails. For strongly correlated systems, we construct a density functional theory which provides an excellent description of the particle distribution, without any adjustable parameters.
Electron Confinement in Cylindrical Potential Well
NASA Astrophysics Data System (ADS)
Baltenkov, A. S.; Msezane, A. Z.
2016-05-01
We show that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the remaining three-dimensional space within the framework of the same mathematical model of the potential well. Some low-lying electronic states with different symmetries are considered and the corresponding wave functions are calculated. The behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well is analyzed. Additionally, the momentum distributions of electrons in these states are calculated. The limiting cases of the ratio of the cylinder length H to its radius R0 are considered; when H significantly exceeds R0 and when R0 is much greater than H. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested as well where the quantum confinement can be manifested. Work supported by the Uzbek Foundation (ASB) and by the U.S. DOE, Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, Office of Energy Research (AZM).
Self-Diffusiophoresis of Janus Catalytic Micromotors in Confined Geometries.
Yang, Fengchang; Qian, Shizhi; Zhao, Yiping; Qiao, Rui
2016-06-01
The self-diffusiophoresis of Janus catalytic micromotors (JCMs) in confined environment is studied using direct numerical simulations. The simulations revealed that, on average, the translocation of a JCM through a short pore is moderately slowed down by the confinement. This slowdown is far weaker compared to the transport of particles through similar pores driven by forces induced by external means or passive diffusiophoresis. Pairing of two JCMs facilitates the translocation of the one JCM entering the pore first but slows down the second JCM. Depending on its initial orientation, a JCM near the entrance of a pore can exhibit different rotational motion, which determines whether it can enter the pore. Once a JCM enters a narrow pore, it can execute a self-alignment process after which it becomes fully aligned with the pore axis and moves to the center line of the pore. Analysis of these results showed that, in addition to hydrodynamic effect, the translation and rotation of JCM is also affected by the "chemical effects", i.e., the modification of the chemical species concentration around a JCM by confining walls and neighboring JCMs. These chemical effects are unique to the self-diffusiophoresis of JCMs and should be considered in design and operations of JCMs in confined environment. PMID:27186661
Polymer escape from a confining potential
Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio
2014-02-07
The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.
Polymer escape from a confining potential
NASA Astrophysics Data System (ADS)
Mökkönen, Harri; Ikonen, Timo; Jónsson, Hannes; Ala-Nissila, Tapio
2014-02-01
The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.
Spin probe dynamics of n-hexadecane in confined geometry
NASA Astrophysics Data System (ADS)
Lukešová, Miroslava; Švajdlenková, Helena; Sippel, Pit; Macová, Eva; Berek, Dušan; Loidl, Alois; Bartoš, Josef
2015-02-01
A combined study of the rotational dynamics of the stable free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the phase behavior of n-hexadecane (n-HXD) in the bulk and the confined states in a series of silica gels (SG) by means of ESR and DSC is presented. A slow to fast motion transition of the spin probe TEMPO in the bulk n-HXD occurs at T50 G,bulk ≪ Tm,bulk, i.e., well below the melting temperature due to its trapping and localized mobility in the interlamellar gap of the crystallites [J. Bartoš, H. Švajdlenková, M. Zaleski, M. Edelmann, M. Lukešová, Physica B 430, 99 (2013)]. On the other hand, the dynamics of the TEMPO in the confined systems is strongly slowing down with T50 G (Dpore) >Tm(Dpore) and slightly increases with the pore size Dpore = 60, 100 and 300 Å of the SG's. At the same time, both the corresponding melting temperature, Tm (Dpore), and melting enthalpy, ΔHm (Dpore), decrease with Dpore together with the mutual anti-correlation between T50 G and Tm as a function of the inverse of pore diameter, 1/Dpore. Moreover, the dynamic heterogeneity of the TEMPO in the confined state below T50 G (Dpore) is closely related to the phase transformation. The strong slowing down of the spin probe motion likely results from its preferential localization at the interface layer of the matrix pore due to specific interaction of TEMPO molecules with the polar silanol groups of the SG matrix. This is supported by special study on a series of the variously filled n-HXD/SG systems, other similar experimental findings as well as by theoretical spectral argument.
Dynamics of laser-blow-off induced Li plume in confined geometry
Kumar, Bhupesh; Singh, R K; Kumar, Ajai
2013-08-15
Dynamics of Li plasma plume created by laser-blow-off technique in air ambient is reported. Plasma plume dynamics and its optical emission are investigated in planar and confined geometries using time resolved shadowgraph imaging and optical emission spectroscopy. Significant differences in the plasma characteristics in confined geometry are quantitatively investigated by comparing the plasma parameters (temperature and density) in free expansion and confined geometry configurations. Dynamics and physical parameters of the primary as well as the reflected shock waves (in confined geometry) and their interactions with expanding plasma are briefly addressed. A large enhancement in the emission intensities of Li I 610.3 nm (2p {sup 2}P{sub 1/2,3/2}← 3d {sup 2}P{sub 3/2,5/2}) and 670.8 nm (2s {sup 2}S{sub 1/2}← 2p {sup 2}P{sub 1/2,3/2}) is correlated with the shock wave dynamics in the two geometries. Strong self reversal in the neutral emission infers an increase in the population density of neutrals within the confined plasma plume.
Deformable cells in confined geometries: From hemolysis to hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Abkarian, Manouk; Faivre, Magalie; Stone, Howard A.
2004-11-01
Recent developments in microfluidics allow a wide range of possibilities for studying cellular-scale hydrodynamics. Here we use microfluidic technology to address several open questions in the blood flow literature where cell deformation and hydrodynamic interactions are significant. In particular, we investigate the pressure-driven flow of a dilute suspension in a channel and characterize the transition from steady axisymmetric cell shapes (for which numerical calculations exist) to asymmetric, highly extended shapes, which are precursors to hemolysis (i.e. destruction of the cell). In addition, we examine the influence of geometry on hydrodynamic interactions of deformable cells by contrasting one-dimensional motion of a train of particles in a channel with two-dimensional motions in a Hele-Shaw cell. This study can help to understand flow of cells in microcirculation from the unidirectional flow in capillaries to the two-dimensional flow in the lung alveoli and provides the basic steps to understand certain aspects of microcirculatory deseases like sickle cell anemia for example.
Podgornik, R.; Parsegian, V.A. )
1992-02-01
By definition, membrane or macromolecular assembly is an event of molecular confinement against the configurational entropy of a disordered state. Bilayer membranes under progressive confinement experience a continual damping of undulatory fluctuations, first interpreted as a steric force (Helfrich. Z. Naturforsch. 1978). This paper uses a new, diffusion-equation formalism based on the Feynman-type variational principle to describe how direct interbilayer forces - of hydration, electrostatic double layers, and van der Waals attraction - confine membrane fluctuations. We recover theoretical results to examine measured forces in multilamellar arrays showing that [open quotes]soft[close quotes] collisions, through long-range forces, create a mutual enhancement of both the direct forces and the undulatory steric interactions. Thus, there is yet another way to resolve the old, but false, dilemma to choose between steric and direct forces driving membrane assembly. One may develop a systematic connection between bilayer charge, hydration, and flexibility and the action of configurational entropic forces. The results make clear that one should measure forces between membranes or macromolecules in a way that allows them to express their native mechanical freedom. 15 refs., 3 figs.
Self-organization of helically forced MHD flow in confined cylindrical geometries
NASA Astrophysics Data System (ADS)
Roberts, Malcolm; Leroy, Matthieu; Morales, Jorge; Bos, Wouter; Schneider, Kai
2014-12-01
The dynamics of a magnetically forced conducting fluid in confined geometries is studied. A pseudospectral method with volume penalisation is used to solve the resistive magnetohydrodynamic equations. A helical magnetic field is imposed via boundary conditions, which generates a response in the velocity field for large enough magnitudes. Different helical structures are observed in the flow depending on the magnitude and direction of the forcing and the cross-sectional geometry of the fluid domain. A computational technique for finding a solenoidal vector field which can be used in complex geometries is also proposed.
Comparison of shear flow of hexadecane in a confined geometry and in bulk
Stevens, M.J.; Mondello, M.; Grest, G.S.; Cui, S.T.; Cochran, H.D.; Cummings, P.T.
1997-05-01
We examine the shear flow of hexadecane confined between plates with separation of 1{endash}10 nm using molecular dynamics simulations. We also performed non-equilibrium molecular dynamics (NEMD) simulations of bulk hexadecane to compare with the simulations in the confined geometry. The stiffness of hexadecane and its high melting temperature result in a tendency to crystallize at room temperature or large load. We find that when confined between hydrocarbon walls, shearing hexadecane exhibits a velocity profile with substantial slip at the wall and essentially constant velocity over most of the interior space between the walls. As the strength of the wall-fluid interaction increases the amount of slip decreases, but slip always occurs at the boundary for the range of parameters studied. The results are compared with recent surface force apparatus experiments on hexadecane and with similar simulations of model bead-spring fluids. {copyright} {ital 1997 American Institute of Physics.}
A simple model of a vesicle drop in a confined geometry
NASA Astrophysics Data System (ADS)
Owczarek, A. L.; Prellberg, T.
2010-08-01
We present the exact solution of a two-dimensional directed walk model of a drop, or half-vesicle, confined between two walls, and attached to one wall. This model is also a generalization of a polymer model of steric stabilization recently investigated. We explore the competition between a sticky potential on the two walls and the effect of a pressure-like term in the system. We show that a negative pressure ensures the drop/polymer is unaffected by confinement when the walls are a macroscopic distance apart.
Kelvin-Helmhotz instability and Bénard-Von Karman vortex street in a confined geometry
NASA Astrophysics Data System (ADS)
Lebon, Luc; Boniface, Paul; Receveur, Mathieu; Limat, Laurent
2014-11-01
We have experimentally investigated the appearance of Kelvin-Helmhotz vortices in a confined geometry: in a closed rectangular tank a tape is pulled at high speed on the water surface. This induces a flow in the same direction as the tape, and by conservation a backward flow in the opposite direction. With an appropriate choose of the experiment parameters (water height, tape speed) the backward flow takes place on the sides of the tank: this creates a strong shear that can induces a Kelvin-Helmhotz instability on each side of the tank. As long as the tape width stays small enough compared to the tank width, we can observe the appearance of well organized vortex rows on each sides of the tank. In this case, the vortex rows are coupled like a Bénard-Von Karman vortex street, but without the classical forcing of a wake behind an obstacle. All our experiments are in agreement with a theoretical prediction by Rosenhead which extended the Bénard-Von Karman vortex street stability calculation to a confined geometry. Our work seems to be one of the first experimental verification of this 80 years old model.
Khirevich, Siarhei; Höltzel, Alexandra; Tallarek, Ulrich
2011-06-28
We study the time and length scales of hydrodynamic dispersion in confined monodisperse sphere packings as a function of the conduit geometry. By a modified Jodrey-Tory algorithm, we generated packings at a bed porosity (interstitial void fraction) of ε=0.40 in conduits with circular, rectangular, or semicircular cross section of area 100πd(p)(2) (where d(p) is the sphere diameter) and dimensions of about 20d(p) (cylinder diameter) by 6553.6d(p) (length), 25d(p) by 12.5d(p) (rectangle sides) by 8192d(p) or 14.1d(p) (radius of semicircle) by 8192d(p), respectively. The fluid-flow velocity field in the generated packings was calculated by the lattice Boltzmann method for Péclet numbers of up to 500, and convective-diffusive mass transport of 4×10(6) inert tracers was modelled with a random-walk particle-tracking technique. We present lateral porosity and velocity distributions for all packings and monitor the time evolution of longitudinal dispersion up to the asymptotic (long-time) limit. The characteristic length scales for asymptotic behaviour are explained from the symmetry of each conduit's velocity field. Finally, we quantify the influence of the confinement and of a specific conduit geometry on the velocity dependence of the asymptotic dispersion coefficients. PMID:21576163
NASA Astrophysics Data System (ADS)
Datta, Preeta; Efimenko, Kirill; Genzer, Jan
2014-03-01
Bulk free radical polymerization reactions lead to highly polydisperse polymers (polydispersity index, PDI >> 1.5). In the past, researchers have shown that polymerization in porous microreactors can lower polydispersity (PDI ~1.5-1.7) by promoting gelation. We employ free-radical thermal frontal polymerization reaction of acrylamide (AAm) in DMSO in highly confined reactors (height <1mm) to produce high molecular weight (~300 kDa) PAAm of relatively low PDI (~1.2). In frontal polymerization systems, a localized reaction zone propagates in space along the direction of heat transfer, sustained by the interplay of heat diffusion and Arrhenius reaction kinetics. The directional heat transfer assists in maintaining the uniformity of the front temperature. While convection improves thermal transport, it causes inhomogeneity in the propagating front in horizontal reactors. In highly confined systems, convection is heavily suppressed, as manifested by the ``flattening'' of the reaction front and the absence of ``fingering''. Gelation lowers termination rate and increases the life time of the active reaction centers. Elimination of convection in confined geometries coupled with directional heat transfer and gelation results in polymers with high molecular weights and low PDIs.
Sánchez-Arellano, Enrique; Olivares, Wilmer; Lozada-Cassou, Marcelo; Jiménez-Angeles, Felipe
2009-02-15
The electrokinetic properties (such as capillary conductance, electroviscosity, and the streaming potential) are obtained for a restricted primitive model electrolyte confined in a slitlike nanopore made up of two infinite parallel plates and in a cylindrical cavity of infinite extension. The hypernetted chain/mean spherical approximation (HNC/MSA) is used to obtain the equilibrium ionic concentration profiles inside the pores, which in turn are used to calculate the electrokinetic properties via linear hydrodynamic equations. Our results are compared with those obtained via the classical Poisson-Boltzmann (PB) theory. Important quantitative and qualitative effects, attributed to geometry and to the proper consideration of short-range correlations by HNC/MSA, are discussed. PMID:19062031
Random lasing in dye doped nematic liquid crystals: the role of confinement geometry
NASA Astrophysics Data System (ADS)
Strangi, G.; Ferjani, S.; Barna, V.; De Luca, A.; Versace, C.; Scaramuzza, N.; Bartolino, R.
2007-05-01
The first experimental evidence of random laser action in a partially ordered, dye doped nematic liquid crystal with long-range dielectric tensor fluctuations is reported. Above a given pump power the fluorescence curve collapses and discrete sharp peaks emerge above the residual spontaneous emission spectrum. The spectral linewidth of these emission peaks is narrow banded, typically around 0.5nm. The unexpected surviving of interference effects in recurrent multiple scattering of the emitted photons provide the required optical feedback for lasing in nematic liquid crystalline materials. Light waves coherent backscattering in orientationally ordered nematics manifests a weak localization, strongly supporting the diffusive laser action phenomenon in the presence of a gain medium. Unlike distributed feedback mirror-less laser, this system can be considered as a cavity-less microlaser where the disorder unexpectedly plays the most important role, behaving as randomly distributed feedback laser. The far field spatial distribution of the emission intensity shows a huge number of bright tiny spots spatially overlapped and the intensity of each pulse strongly fluctuates in time and space. Here, we report the main characteristics of this novel systems for various confinement geometries and under different conditions. A brief presentation of boundary-less systems such as free standing and freely suspended dye doped nematic films and droplets is also introduced, revealing unique emission features because of the complete absence of confining borders.
Advancing Edge Speeds of Epithelial Monolayers Depend on Their Initial Confining Geometry.
Kollimada, Somanna A; Kulkarni, Ankur H; Ravan, Aniket; Gundiah, Namrata
2016-01-01
Collective cell migrations are essential in several physiological processes and are driven by both chemical and mechanical cues. The roles of substrate stiffness and confinement on collective migrations have been investigated in recent years, however few studies have addressed how geometric shapes influence collective cell migrations. Here, we address the hypothesis that the relative position of a cell within the confinement influences its motility. Monolayers of two types of epithelial cells--MCF7, a breast epithelial cancer cell line, and MDCK, a control epithelial cell line--were confined within circular, square, and cross-shaped stencils and their migration velocities were quantified upon release of the constraint using particle image velocimetry. The choice of stencil geometry allowed us to investigate individual cell motility within convex, straight and concave boundaries. Cells located in sharp, convex boundaries migrated at slower rates than those in concave or straight edges in both cell types. The overall cluster migration occurred in three phases: an initial linear increase with time, followed by a plateau region and a subsequent decrease in cluster speeds. An acto-myosin contractile ring, present in the MDCK but absent in MCF7 monolayer, was a prominent feature in the emergence of leader cells from the MDCK clusters which occurred every ~125 μm from the vertex of the cross. Further, coordinated cell movements displayed vorticity patterns in MDCK which were absent in MCF7 clusters. We also used cytoskeletal inhibitors to show the importance of acto-myosin bounding cables in collective migrations through translation of local movements to create long range coordinated movements and the creation of leader cells within ensembles. To our knowledge, this is the first demonstration of how bounding shapes influence long-term migratory behaviours of epithelial cell monolayers. These results are important for tissue engineering and may also enhance our
Advancing Edge Speeds of Epithelial Monolayers Depend on Their Initial Confining Geometry
Kollimada, Somanna A.; Kulkarni, Ankur H.; Ravan, Aniket; Gundiah, Namrata
2016-01-01
Collective cell migrations are essential in several physiological processes and are driven by both chemical and mechanical cues. The roles of substrate stiffness and confinement on collective migrations have been investigated in recent years, however few studies have addressed how geometric shapes influence collective cell migrations. Here, we address the hypothesis that the relative position of a cell within the confinement influences its motility. Monolayers of two types of epithelial cells—MCF7, a breast epithelial cancer cell line, and MDCK, a control epithelial cell line—were confined within circular, square, and cross-shaped stencils and their migration velocities were quantified upon release of the constraint using particle image velocimetry. The choice of stencil geometry allowed us to investigate individual cell motility within convex, straight and concave boundaries. Cells located in sharp, convex boundaries migrated at slower rates than those in concave or straight edges in both cell types. The overall cluster migration occurred in three phases: an initial linear increase with time, followed by a plateau region and a subsequent decrease in cluster speeds. An acto-myosin contractile ring, present in the MDCK but absent in MCF7 monolayer, was a prominent feature in the emergence of leader cells from the MDCK clusters which occurred every ~125 μm from the vertex of the cross. Further, coordinated cell movements displayed vorticity patterns in MDCK which were absent in MCF7 clusters. We also used cytoskeletal inhibitors to show the importance of acto-myosin bounding cables in collective migrations through translation of local movements to create long range coordinated movements and the creation of leader cells within ensembles. To our knowledge, this is the first demonstration of how bounding shapes influence long-term migratory behaviours of epithelial cell monolayers. These results are important for tissue engineering and may also enhance our
Rovibrational states of Wigner molecules in spherically symmetric confining potentials.
Cioslowski, Jerzy
2016-08-01
The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the "anomalous" weak-confinement behavior of the (1)S+ state of the four-electron species that is absent in its (1)D+ companion of the strong-confinement regime. PMID:27497548
Rovibrational states of Wigner molecules in spherically symmetric confining potentials
NASA Astrophysics Data System (ADS)
Cioslowski, Jerzy
2016-08-01
The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the "anomalous" weak-confinement behavior of the 1S+ state of the four-electron species that is absent in its 1D+ companion of the strong-confinement regime.
Baxamusa, S. Field, J.; Dylla-Spears, R.; Kozioziemski, B.; Suratwala, T.; Sater, J.
2014-03-28
Growth of high-quality single-crystal hydrogen in confined geometries relies on the in situ formation of seed crystals. Generation of deuterium-tritium seed crystals in a confined geometry is governed by three effects: self-heating due to tritium decay, external thermal environment, and latent heat of phase change at the boundary between hydrogen liquid and vapor. A detailed computation of the temperature profile for liquid hydrogen inside a hollow shell, as is found in inertial confinement fusion research, shows that seeds are likely to form at the equatorial plane of the shell. Radioactive decay of tritium to helium slowly alters the composition of the hydrogen vapor, resulting in a modified temperature profile that encourages seed formation at the top of the shell. We show that the computed temperature profile is consistent with a variety of experimental observations.
Confining Potential from Interacting Magnetic and Torsion Fields
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Helaÿel-Neto, José A.
Adopting the gauge-invariant but path-dependent variables formalism, we study the coupling of torsion fields with photons in the presence of an external background electromagnetic. We explicitly show that, in the case of a constant electric field strength expectation value, the static potential remains Coulombic, while in the case of a constant magnetic field strength expectation value a confining potential is obtained. This result displays a marked qualitative departure from the usual coupling of axionlike particles with photons in the presence of an external magnetic field.
NASA Astrophysics Data System (ADS)
Saito, Fumikazu; Kishimura, Hiroaki; Suzuki, Takanori
2013-06-01
In order to characterize dynamic fracture of borosilicate glass, we performed laser-shock-experiments of both an aluminum-ablator mounted glass and a glass with plasma confinement geometry in pure water by Q-switched Nd3+:YAG laser. The incident beam with 440 mJ were focused onto the target approximately 300 μm in diameter. The dynamic fracture of the glass targets is observed with high-speed digital framing-camera photography. For the aluminum-ablator mounted glass, propagation of the shock wave in water was observed, and the shock-wave velocity is obtained to be 1.65 +/- 0.02 km/s using image processing. Shock-pressure applied the target is estimated to be 180 MPa by Hugoniot relation. For the glass with plasma confinement geometry, generation of the micro-fragments from the rear side of the target was observed. This result indicates that shock-induced fragmentation by laser irradiation is enhanced by the plasma confinement effect. The soft-recovered fragments are separated according the size with PET mesh having deferent mesh size. As a result, the glass with plasma confinement geometry generated smaller fragment than the aluminum-ablator mounted glass.
ERIC Educational Resources Information Center
Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro
2012-01-01
Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…
Heavy quarks, gluons and the confinement potential in Coulomb gauge
NASA Astrophysics Data System (ADS)
Popovici, Carina; Watson, Peter; Reinhardt, Hugo
2011-05-01
We consider the heavy quark limit of Coulomb gauge QCD, with the truncation of the Yang-Mills sector to include only (dressed) two-point functions. We find that the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is nonperturbatively exact and moreover, we provide a direct connection between the temporal gluon propagator and the quark confinement potential. Further, we show that only bound states of color singlet quark-antiquark (meson) and quark-quark (SU(2) baryon) pairs are physically allowed.
Heavy quarks, gluons and the confinement potential in Coulomb gauge
Popovici, Carina; Watson, Peter; Reinhardt, Hugo
2011-05-23
We consider the heavy quark limit of Coulomb gauge QCD, with the truncation of the Yang-Mills sector to include only (dressed) two-point functions. We find that the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is nonperturbatively exact and moreover, we provide a direct connection between the temporal gluon propagator and the quark confinement potential. Further, we show that only bound states of color singlet quark-antiquark (meson) and quark-quark (SU(2) baryon) pairs are physically allowed.
Influence of pore size on the Knight shift in liquid tin and mercury in a confined geometry
NASA Astrophysics Data System (ADS)
Tien, Cheng; Charnaya, E. V.; Lee, M. K.; Kumzerov, Yu A.
2007-03-01
119Sn and 199Hg NMR studies were carried out for metallic tin and mercury embedded in synthetic opals and porous glasses. The Knight shift for confined liquid tin and mercury was found to decrease monotonically with decreasing pore size, evidence for the reduction of electron susceptibility. Size-induced alterations in the Knight shift were more pronounced for confined mercury than for tin. The influence of pore filling on the NMR line shape and Knight shift was observed for tin within opal. The reasons for the decreasing Knight shift for liquid metals in a confined geometry are discussed. Correlations between the alteration in the Knight shift and atomic number are shown, the changes in fractional values of the Knight shift remaining almost identical.
States of the Dirac Equation in Confining Potentials
Giachetti, Riccardo; Sorace, Emanuele
2008-11-07
We study the Dirac equation in confining potentials with pure vector coupling, proving the existence of metastable states with longer and longer lifetimes as the nonrelativistic limit is approached and eventually merging with continuity into the Schroedinger bound states. The existence of these states could concern high energy models and possible resonant scattering effects in systems like graphene. We present numerical results for the linear and the harmonic cases and we show that the density of the states of the continuous spectrum is well described by a sum of Breit-Wigner lines. The width of the line with lowest positive energy well reproduces the Schwinger pair production rate for a linear potential: this gives an explanation of the Klein paradox for bound states and a new concrete way to get information on pair production in unbounded, nonuniform electric fields, where very little is known.
Spectral singularity in confined PT symmetric optical potential
Sinha, Anjana; Roychoudhury, R.
2013-11-15
We present an analytical study for the scattering amplitudes (Reflection ‖R‖ and Transmission ‖T‖), of the periodic PT symmetric optical potential V(x)=W{sub 0}cos{sup 2}x+iV{sub 0}sin2x confined within the region 0 ⩽x⩽L, embedded in a homogeneous medium having uniform potential W{sub 0}. The confining length L is considered to be some integral multiple of the period π. We give some new and interesting results. Scattering is observed to be normal (‖T‖{sup 2}⩽ 1, ‖R‖{sup 2}⩽ 1) for V{sub 0}⩽ 0.5, when the above potential can be mapped to a Hermitian potential by a similarity transformation. Beyond this point (V{sub 0} > 0.5) scattering is found to be anomalous (‖T‖{sup 2}, ‖R‖{sup 2} not necessarily ⩽1). Additionally, in this parameter regime of V{sub 0}, one observes infinite number of spectral singularities E{sub SS} at different values of V{sub 0}. Furthermore, for L= 2nπ, the transition point V{sub 0}= 0.5 shows unidirectional invisibility with zero reflection when the beam is incident from the absorptive side (Im[V(x)] < 0) but with finite reflection when the beam is incident from the emissive side (Im[V(x)] > 0), transmission being identically unity in both cases. Finally, the scattering coefficients ‖R‖{sup 2} and ‖T‖{sup 2} always obey the generalized unitarity relation : ‖T|{sup 2}−1|=√(|R{sub R}|{sup 2}|R{sub L}|{sup 2}), where subscripts R and L stand for right and left incidence, respectively.
Protection from Potential Exposure for the Chernobyl New Safe Confinement
Shipler, Dillard B.; Rudko, Vladimir; Batiy, Valeriy; Timmins, Douglas C.; Brothers, Alan J.; Schmidt, John P.; Swearingen, Gary L.; Schmieman, Eric A.
2004-03-24
The Bechtel/EDF/Battelle Consortium has recently completed developing the conceptual design for the Chernobyl New Safe Confinement (NSC). Battelle has the scope of work related to environment and safety of the design. As part of the safety analysis, an analysis was performed to determine the degree of protection to be provided during the construction and 100-year operation period for expected upsets and lower-probability events that would occur from errors, procedures, other human factors, and equipment failures, i.e., ''potential exposures'' other than normal operations. The analysis was based on results of the Preliminary Hazards Analysis. The potential exposure analysis was performed in accordance with existing Ukranian regulations and working processes and procedures in place at the Shelter Object. KSK (a Ukranian Consortium), a subcontractor to the Bechtel/EDF/Battelle Consortium, performed much of the dose analysis. The analysis concluded that potential exposures, outside of those expected during normal operations, would be acceptable and that design criteria and features, and preventative and mitigative measures currently in place at the Shelter would be sufficient to meet operating exposure limits.
NASA Technical Reports Server (NTRS)
Richardson, R. W.
1974-01-01
Spectroscopic measurements were carried out on the NASA Lewis Bumpy Torus experiment in which a steady state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. Electron temperatures in pure helium are measured from the ratio of spectral line intensities. Measured electron temperatures range from 10 to 100 eV. Relative electron densities are also measured over the range of operating conditions. Radial profiles of temperature and relative density are measured in the two basic modes of operation of the device called the low and high pressure modes. The electron temperatures are used to estimate particle confinement times based on a steady state particle balance.
Unusual large-pitch banding in poly(L-lactic acid): Effects of composition and geometry confinement
Woo, Eamor M.; Lugito, Graecia; Hsieh, Ya-Ting; Nurkhamidah, Siti
2014-02-24
Lamellar patterns and orientations in blends of two crystalline polymers: poly(ethylene oxide) (PEO) and low-molecular-weight poly(L-lactic acid) (PLLA) were investigated using polarizing light optical microscopy (POM), and atomic and scanning electron microscopy (AFM, SEM). Specific etching off of PEO was used to reveal the complex earlier-grown PLLA lamellae patterns with various PEO content in blends. Banding of extremely long pitch (50 μm) in crystallized PLLA spherulites was induced by two kinetic factors: geometry confinement by top cover and introduction of diluent such as PEO. The mechanisms and correlation among the lamellar assembly, ring bands, and cracks are exemplified. Lamellar patterns and ring-band types in blends were found to vary with respect to not only blend compositions, but also confinement of top-cover.
An x-ray setup to investigate the atomic order of confined liquids in slit geometry
Lippmann, M.; Ehnes, A.; Seeck, O. H.
2014-01-15
A setup has been designed to investigate thin films of confined liquids with the use of X-ray scattering methods. The confinement is realized between the flat culets of a pair of diamonds by positioning and orienting the lower diamond with nanometer and micro radian accuracy. We routinely achieve gaps between 5 and 50 nm at culet diameters of 200 μm. With this setup and a micro focused X-ray beam we have investigated the in-plane and the out-off-plane atomic order of benzene with atomic resolution.
Light-Front Holographic QCD and the Confinement Potential
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter
2014-06-01
Light-Front Hamiltonian theory, derived from the quantization of the QCD Lagrangian at fixed light-front time τ = t + z / c, provides a rigorous frame-independent framework for solving nonperturbative QCD. The eigenvalues of the light-front QCD Hamiltonian predict the hadronic mass spectrum, and the corresponding eigensolutions provide the light-front wavefunctions which describe hadron structure. The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrödinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. In fact, the potential U has a unique form if one requires that the action for zero quark mass remains conformally invariant. We also show that the holographic mapping of gravity in AdS space to QCD with a specific soft-wall dilaton yields the same light-front Schrödinger equation. Light-front holography also leads to a precise relation between the bound-state amplitudes in the fifth dimension z of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The predictions of the LF equations of motion include a zero-mass pion in the chiral mq → 0 limit, and linear Regge trajectories M2 (n, L) ∝ n + L with the same slope in the radial quantum number n and orbital angular momentum L. The light-front AdS/QCD holographic approach thus gives a frame-independent representation of color-confining dynamics, Regge spectroscopy, and the excitation spectra of relativistic light-quark meson and baryon bound states in QCD in terms of a single mass parameter. We also briefly discuss the implications of the underlying conformal template of QCD for renormalization scale-setting and
Inverting Asymmetric Confinement Potentials in Core/Thick-Shell Nanocrystals.
Paulite, Melissa; Acharya, Krishna P; Nguyen, Hue Minh; Hollingsworth, Jennifer A; Htoon, Han
2015-02-19
We investigate CdSe/ZnSe core/thick-shell nanocrystals (a.k.a. giant-nanocrystal quantum dots [g-NQDs]) that have an asymmetric electron/hole confinement potential opposite to nonblinking CdSe/CdS g-NQDs. We deconstruct the photon streams into five different photoluminescence (PL) intensity levels and analyze second-order photon correlation (g((2))) traces of each PL intensity level. This analysis allows us to decouple the contribution of exciton charging from the g((2)) experiment and determine the quantum yield of neutral biexciton states to be in the range of ∼20-50%, a value comparable to that of CdSe/CdS g-NQDs. We also show that the Auger recombination rate of positive trion states is suppressed compared to that of negative trions. This suppression, however, is shown not to be strong enough to yield complete suppression of PL fluctuations due to the heavy effective mass of holes. Strong intensity fluctuations also result from the fact that hole charging occurs more readily in CdSe/ZnSe g-NQDs than electron charging in CdSe/CdS g-NQDs. PMID:26262490
Correlation studies in weakly confining quantum dot potentials
NASA Astrophysics Data System (ADS)
Kimani, Peter; Jones, Preston; Winkler, Peter
We investigate the electron correlation in few-electron closed-shell atomic systems and similarly in few-electron quantum dots under weak confinement. As usual we start with restricted Hartree-Fock (HF) calculations and add electron correlation in steps in a series of approximations based on the single particle Green's function approach: (i) second-order Green function (GF); (ii) 2ph-Tamm-Dancoff approximation (TDA); and (iii) an extended version thereof which introduces ground-state correlation into the TDA. Our studies exhibit similarities and differences between weakly confined quantum dots and standard atomic systems. The calculations support the application of HF, GF, and TDA techniques in the modeling of three-dimensional quantum dot systems. The observed differences emphasize the significance of confinement and electronic features unique to quantum dots, such as the increased binding of electrons with higher angular momentum and thus - compared to atomic systems - modified shell-filling sequences.
Rigas, Fotis; Sklavounos, Spyros
2005-05-20
Accidental blast wave generation and propagation in the surroundings poses severe threats for people and property. The prediction of overpressure maxima and its change with time at specified distances can lead to useful conclusions in quantitative risk analysis applications. In this paper, the use of a computational fluid dynamics (CFD) code CFX-5.6 on dense explosive detonation events is described. The work deals with the three-dimensional simulation of overpressure wave propagation generated by the detonation of a dense explosive within a small-scale branched tunnel. It also aids at validating the code against published experimental data as well as to study the way that the resulting shock wave propagates in a confined space configuration. Predicted overpressure histories were plotted and compared versus experimental measurements showing a reasonably good agreement. Overpressure maxima and corresponding times were found close to the measured ones confirming that CFDs may constitute a useful tool in explosion hazard assessment procedures. Moreover, it was found that blast wave propagates preserving supersonic speed along the tunnel accompanied by high overpressure levels, and indicating that space confinement favors the formation and maintenance of a shock rather than a weak pressure wave. PMID:15885402
Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry
Wang, Siyuan; Jain, Chhavi; Wondraczek, Katrin; Kobelke, Jens; Wondraczek, Lothar; Troles, Johann; Caillaud, Celine; Schmidt, Markus A.
2015-05-18
The flow of high-viscosity liquids inside micrometer-size holes can be substantially different from the flow in the bulk, non-confined state of the same liquid. Such non-Newtonian behavior can be employed to generate structural anisotropy in the frozen-in liquid, i.e., in the glassy state. Here, we report on the observation of non-Newtonian flow of an ultralow melting chalcogenide glass inside a silica microcapillary, leading to a strong deviation of the shear viscosity from its value in the bulk material. In particular, we experimentally show that the viscosity is radius-dependent, which is a clear indication that the microscopic rearrangement of the glass network needs to be considered if the lateral confinement falls below a certain limit. The experiments have been conducted using pressure-assisted melt filling, which provides access to the rheological properties of high-viscosity melt flow under previously inaccessible experimental conditions. The resulting flow-induced structural anisotropy can pave the way towards integration of anisotropic glasses inside hybrid photonic waveguides.
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-09-07
In Paper I [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 139(23), 234104 (2013)], we showed that how a third-order Weeks–Chandler–Anderson (WCA) Thermodynamic Perturbation Theory and molecular simulation can be integrated to characterize the repulsive and dispersive contributions to the Helmholtz free energy for realistic molecular conformations. To this end, we focused on n-alkanes to develop a theory for fused and soft chains. In Paper II [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 141(2), 024708 (2014)], we adapted the classical Density Functional Theory and studied the microstructure of the realistic molecular fluids in confined geometries and vapor-liquid interfaces. We demonstrated that a detailed consistency between molecular simulation and theory can be achieved for both bulk and inhomogeneous phases. In this paper, we extend the methodology to molecules with partial charges such as carbon dioxide, water, 1-alkanols, nitriles, and ethers. We show that the electrostatic interactions can be captured via an effective association potential in the framework of Statistical Associating Fluid Theory (SAFT). Implementation of the resulting association contribution in assessing the properties of these molecules at confined geometries and interfaces presents satisfactory agreement with molecular simulation and experimental data. For example, the predicted surface tension deviates less than 4% comparing to full potential simulations. Also, the theory, referred to as SAFT-γ WCA, is able to reproduce the specific orientation of hydrophilic head and hydrophobic tail of 1-alkanols at the vapor-liquid interface of water.
NASA Astrophysics Data System (ADS)
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-09-01
In Paper I [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 139(23), 234104 (2013)], we showed that how a third-order Weeks-Chandler-Anderson (WCA) Thermodynamic Perturbation Theory and molecular simulation can be integrated to characterize the repulsive and dispersive contributions to the Helmholtz free energy for realistic molecular conformations. To this end, we focused on n-alkanes to develop a theory for fused and soft chains. In Paper II [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 141(2), 024708 (2014)], we adapted the classical Density Functional Theory and studied the microstructure of the realistic molecular fluids in confined geometries and vapor-liquid interfaces. We demonstrated that a detailed consistency between molecular simulation and theory can be achieved for both bulk and inhomogeneous phases. In this paper, we extend the methodology to molecules with partial charges such as carbon dioxide, water, 1-alkanols, nitriles, and ethers. We show that the electrostatic interactions can be captured via an effective association potential in the framework of Statistical Associating Fluid Theory (SAFT). Implementation of the resulting association contribution in assessing the properties of these molecules at confined geometries and interfaces presents satisfactory agreement with molecular simulation and experimental data. For example, the predicted surface tension deviates less than 4% comparing to full potential simulations. Also, the theory, referred to as SAFT-γ WCA, is able to reproduce the specific orientation of hydrophilic head and hydrophobic tail of 1-alkanols at the vapor-liquid interface of water.
Hydrodynamic interactions in colloidal systems confined to linear geometries with a singular corner
NASA Astrophysics Data System (ADS)
Lin, Binhua; Zarcone, Ryan; Rice, Stuart A.
Here we investigate the question of whether or not the requirement that particles diffuse around a corner affects their hydrodynamic coupling. We report the results of studies of the collective diffusion coefficients of particles in quasi-one-dimensional linear channels of widths 3 and 5um, each with a singular central corner of angle: 60-, 90-, 120-, and 180-degrees. We find that for large angles, the channels are so close in their geometry to 180-degrees that the corner has very little to no effect on the hydrodynamic coupling of particles on opposite sides of the apex. For small angles, the corner's effect is to increase the particle separation at which the maximum hydrodynamic coupling occurs. U Chicago MRSEC (NSF-DMR-1420709), Dreyfus Foundation (Agency Award #: SI-14-014).
Not Available
1993-12-31
The authors have been constructing a special purpose small angle neutron scattering spectrometer (SAND) in collaboration with IPNS of Argonne National Laboratory and Texaco Research Laboratories in Beacon, New York. The spectrometer, having a moderate neutron flux, will be uniquely suited for detailed studies of complex fluids in their various phases. This spectrometer will be fully available to general users of the small angle scattering community after a year of testing and upon installation of the auxiliary equipment. The general research objective of the MIT group is to continue studies of the microstructural relationship to phase-behavior in three-component microemulsion systems. Specifically, they shall study the (1) variation of bulk structures when a microemulsion undergoes a non-wetting to wetting transition, (2) correlating interfacial reflectivity measurements of these wetting transitions to the SANS results, (3) use the contrast variation technique they recently developed for measuring the mean and Gaussian curvatures of the surfactant sheet to study the structural inversion of water-in-oil to oil-in-water microemulsions and the transition of disordered bicontinuous microemulsion to ordered lamellar phases, (4) investigation of the effects of spatial confinement on the phase behavior and structure of bicontinuous microemulsions, and finally (5) they shall continue the study of the recently discovered non-exponential relaxation of droplet density fluctuations near the critical and percolation points in water-in-oil droplet microemulsions.
NASA Astrophysics Data System (ADS)
Anthistle, T.; Fletcher, D. I.; Tyas, A.
2016-03-01
Explosions in confined spaces lead to complicated patterns of shock wave reflection and interactions which are best investigated by use of experimental tests or numerical simulations. This paper describes the design and outcome of a series of experiments using a test cell to measure the pressures experienced when structures were placed inside to alter the propagation of shock waves, utilising quarter symmetry to reduce the size of the required test cell and charge. An 80 g charge of PE4 (a conventional RDX-based plastic explosive) was placed at half height in one corner of the test cell, which represents the centre of a rectangular enclosure when symmetry is taken into consideration. Steel cylinders and rectangular baffles were placed within the test cell at various locations. Good reproducibility was found between repeated tests in three different arrangements, in terms of both the recorded pressure data and the calculated cumulative impulse. The presence of baffles within the test cell made a small difference to the pressures and cumulative impulse experienced compared to tests with no baffles present; however, the number and spacing of baffles was seen to make minimal difference to the experienced pressures and no noticeable difference to the cumulative impulse history. The paper presents useful experimental data that may be used for three-dimensional code validation.
NASA Astrophysics Data System (ADS)
Gupta, A.; Sbragaglia, M.; Scagliarini, A.
2015-06-01
We propose numerical simulations of viscoelastic fluids based on a hybrid algorithm combining Lattice-Boltzmann models (LBM) and Finite Differences (FD) schemes, the former used to model the macroscopic hydrodynamic equations, and the latter used to model the polymer dynamics. The kinetics of the polymers is introduced using constitutive equations for viscoelastic fluids with finitely extensible non-linear elastic dumbbells with Peterlin's closure (FENE-P). The numerical model is first benchmarked by characterizing the rheological behavior of dilute homogeneous solutions in various configurations, including steady shear, elongational flows, transient shear and oscillatory flows. As an upgrade of complexity, we study the model in presence of non-ideal multicomponent interfaces, where immiscibility is introduced in the LBM description using the "Shan-Chen" interaction model. The problem of a confined viscoelastic (Newtonian) droplet in a Newtonian (viscoelastic) matrix under simple shear is investigated and numerical results are compared with the predictions of various theoretical models. The proposed numerical simulations explore problems where the capabilities of LBM were never quantified before.
On the generation of nonlinear travelling waves in confined geometries using electric fields.
Cimpeanu, R; Papageorgiou, D T
2014-07-28
We investigate electrostatically induced interfacial instabilities and subsequent generation of nonlinear coherent structures in immiscible, viscous, dielectric multi-layer stratified flows confined in small-scale channels. Vertical electric fields are imposed across the channel to produce interfacial instabilities that would normally be absent in such flows. In situations when the imposed vertical fields are constant, interfacial instabilities emerge due to the presence of electrostatic forces, and we follow the nonlinear dynamics via direct numerical simulations. We also propose and illustrate a novel pumping mechanism in microfluidic devices that does not use moving parts. This is achieved by first inducing interfacial instabilities using constant background electric fields to obtain fully nonlinear deformations. The second step involves the manipulation of the imposed voltage on the lower electrode (channel wall) to produce a spatio-temporally varying voltage there, in the form of a travelling wave with pre-determined properties. Such travelling wave dielectrophoresis methods are shown to generate intricate fluid-surface-structure interactions that can be of practical value since they produce net mass flux along the channel and thus are candidates for microfluidic pumps without moving parts. We show via extensive direct numerical simulations that this pumping phenomenon is a result of an externally induced nonlinear travelling wave that forms at the fluid-fluid interface and study the characteristics of the generated velocity field inside the channel. PMID:24936019
On the generation of nonlinear travelling waves in confined geometries using electric fields
Cimpeanu, R; Papageorgiou, D. T
2014-01-01
We investigate electrostatically induced interfacial instabilities and subsequent generation of nonlinear coherent structures in immiscible, viscous, dielectric multi-layer stratified flows confined in small-scale channels. Vertical electric fields are imposed across the channel to produce interfacial instabilities that would normally be absent in such flows. In situations when the imposed vertical fields are constant, interfacial instabilities emerge due to the presence of electrostatic forces, and we follow the nonlinear dynamics via direct numerical simulations. We also propose and illustrate a novel pumping mechanism in microfluidic devices that does not use moving parts. This is achieved by first inducing interfacial instabilities using constant background electric fields to obtain fully nonlinear deformations. The second step involves the manipulation of the imposed voltage on the lower electrode (channel wall) to produce a spatio-temporally varying voltage there, in the form of a travelling wave with pre-determined properties. Such travelling wave dielectrophoresis methods are shown to generate intricate fluid–surface–structure interactions that can be of practical value since they produce net mass flux along the channel and thus are candidates for microfluidic pumps without moving parts. We show via extensive direct numerical simulations that this pumping phenomenon is a result of an externally induced nonlinear travelling wave that forms at the fluid–fluid interface and study the characteristics of the generated velocity field inside the channel. PMID:24936019
Banc, Amélie; Desbat, Bernard; Renard, Denis; Popineau, Yves; Mangavel, Cécile; Navailles, Laurence
2009-08-01
Mechanisms leading to the assembly of wheat storage proteins into proteins bodies within the endoplasmic reticulum (ER) of endosperm cells are unresolved today. In this work, physical chemistry parameters which could be involved in these processes were explored. To model the confined environment of proteins within the ER, the dynamic behavior of gamma-gliadins inserted inside lyotropic lamellar phases was studied using FRAP experiments. The evolution of the diffusion coefficient as a function of the lamellar periodicity enabled to propose the hypothesis of an interaction between gamma-gliadins and membranes. This interaction was further studied with the help of phospholipid Langmuir monolayers. gamma- and omega-gliadins were injected under DMPC and DMPG monolayers and the two-dimensional (2D) systems were studied by Brewster angle microscopy (BAM), polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and surface tension measurements. Results showed that both gliadins adsorbed under phospholipid monolayers, considered as biological membrane models, and formed micrometer-sized domains at equilibrium. However, their thicknesses, probed by reflectance measurements, were different: omega-gliadins aggregates displayed a constant thickness, consistent with a monolayer, while the thickness of gamma-gliadins aggregates increased with the quantity of protein injected. These different behaviors could find some explanations in the difference of aminoacid sequence distribution: an alternate repeated - unrepeated domain within gamma-gliadin sequence, while one unique repeated domain was present within omega-gliadin sequence. All these findings enabled to propose a model of gliadins self-assembly via a membrane interface and to highlight the predominant role of wheat prolamin repeated domain in the membrane interaction. In the biological context, these results would mean that the repeated domain could be considered as an anchor for the interaction with
Confined quantum time of arrival for the vanishing potential
Galapon, Eric A.; Caballar, Roland F.; Bahague, Ricardo
2005-12-15
We give full account of our recent report in E. A. Galapon, R. Caballar, and R. Bahague, Phys. Rev. Lett. 93, 180406 (2004), where it is shown that formulating the free quantum time of arrival problem in a segment of the real line suggests rephrasing the quantum time of arrival problem to finding a complete set of states that evolve to unitarily arrive at a given point at a definite time. For a spatially confined particle, here it is shown explicitly that the problem admits a solution in the form of an eigenvalue problem of a class of compact and self-adjoint time of arrival operators derived by a quantization of the classical time of arrival. The eigenfunctions of these operators are numerically demonstrated to unitarily arrive at the origin at their respective eigenvalues.
Structure and rheology of star polymers in confined geometries: a mesoscopic simulation study.
Zheng, Feiwo; Goujon, Florent; Mendonça, Ana C F; Malfreyt, Patrice; Tildesley, Dominic J
2015-11-28
Mesoscopic simulations of star polymer melts adsorbed onto solid surfaces are performed using the dissipative particle dynamics (DPD) method. A set of parameters is developed to study the low functionality star polymers under shear. The use of a new bond-angle potential between the arms of the star creates more rigid chains and discriminates between different functionalities at equilibrium, but still allows the polymers to deform appropriately under shear. The rheology of the polymer melts is studied by calculating the kinetic friction and viscosity and there is good agreement with experimental properties of these systems. The study is completed with predictive simulations of star polymer solutions in an athermal solvent. PMID:26435466
Edge-mediated skyrmion chain and its collective dynamics in a confined geometry
NASA Astrophysics Data System (ADS)
Du, Haifeng; Che, Renchao; Kong, Lingyao; Zhao, Xuebing; Jin, Chiming; Wang, Chao; Yang, Jiyong; Ning, Wei; Li, Runwei; Jin, Changqing; Chen, Xianhui; Zang, Jiadong; Zhang, Yuheng; Tian, Mingliang
2015-10-01
The emergence of a topologically nontrivial vortex-like magnetic structure, the magnetic skyrmion, has launched new concepts for memory devices. Extensive studies have theoretically demonstrated the ability to encode information bits by using a chain of skyrmions in one-dimensional nanostripes. Here, we report experimental observation of the skyrmion chain in FeGe nanostripes by using high-resolution Lorentz transmission electron microscopy. Under an applied magnetic field, we observe that the helical ground states with distorted edge spins evolve into individual skyrmions, which assemble in the form of a chain at low field and move collectively into the interior of the nanostripes at elevated fields. Such a skyrmion chain survives even when the width of the nanostripe is much larger than the size of single skyrmion. This discovery demonstrates a way of skyrmion formation through the edge effect, and might, in the long term, shed light on potential applications.
Edge-mediated skyrmion chain and its collective dynamics in a confined geometry
Du, Haifeng; Che, Renchao; Kong, Lingyao; Zhao, Xuebing; Jin, Chiming; Wang, Chao; Yang, Jiyong; Ning, Wei; Li, Runwei; Jin, Changqing; Chen, Xianhui; Zang, Jiadong; Zhang, Yuheng; Tian, Mingliang
2015-01-01
The emergence of a topologically nontrivial vortex-like magnetic structure, the magnetic skyrmion, has launched new concepts for memory devices. Extensive studies have theoretically demonstrated the ability to encode information bits by using a chain of skyrmions in one-dimensional nanostripes. Here, we report experimental observation of the skyrmion chain in FeGe nanostripes by using high-resolution Lorentz transmission electron microscopy. Under an applied magnetic field, we observe that the helical ground states with distorted edge spins evolve into individual skyrmions, which assemble in the form of a chain at low field and move collectively into the interior of the nanostripes at elevated fields. Such a skyrmion chain survives even when the width of the nanostripe is much larger than the size of single skyrmion. This discovery demonstrates a way of skyrmion formation through the edge effect, and might, in the long term, shed light on potential applications. PMID:26446692
Effect of confining wall potential on charged collimated dust beam in low-pressure plasma
Kausik, S. S.; Kakati, B.; Saikia, B. K.
2013-05-15
The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.
Nonlinear Poisson-Nernst-Planck equations for ion flux through confined geometries
NASA Astrophysics Data System (ADS)
Burger, M.; Schlake, B.; Wolfram, M.-T.
2012-04-01
The mathematical modelling and simulation of ion transport through biological and synthetic channels (nanopores) is a challenging problem, with direct application in biophysics, physiology and chemistry. At least two major effects have to be taken into account when creating such models: the electrostatic interaction of ions and the effects due to size exclusion in narrow regions. While mathematical models and methods for electrostatic interactions are well-developed and can be transferred from other flow problems with charged particles, e.g. semiconductor devices, less is known about the appropriate macroscopic modelling of size exclusion effects. Recently several papers proposed simple or sophisticated approaches for including size exclusion effects into entropies, in equilibrium as well as off equilibrium. The aim of this paper is to investigate a second potentially important modification due to size exclusion, which often seems to be ignored and is not implemented in currently used models, namely the modification of mobilities due to size exclusion effects. We discuss a simple model derived from a self-consisted random walk and investigate the stationary solutions as well as the computation of conductance. The need of incorporating nonlinear mobilities in high density situations is demonstrated in an investigation of conductance as a function of bath concentrations, which does not lead to obvious saturation effects in the case of linear mobility.
Rotating Bose-Einstein condensates confined in an anharmonic potential
NASA Astrophysics Data System (ADS)
Bargi, S.; Kavoulakis, G. M.; Reimann, S. M.
2006-03-01
We consider bosonic atoms that rotate in an anharmonic trapping potential. Using numerical diagonalization of the Hamiltonian, we get evidence for various phases of the gas for different values of the coupling between the atoms and of the rotational frequency of the trap. These include vortex excitation of single and multiple quantization, the phase of center-of-mass excitation, and the unstable phase.
Universal potential-barrier penetration by initially confined wave packets
Granot, Er'el; Marchewka, Avi
2007-07-15
The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.
Interacting Bose gas confined in a Kronig-Penney potential
NASA Astrophysics Data System (ADS)
Rodríguez, O. A.; Solís, M. A.
We analyze the effect of the 1D periodic Kronig-Penney potential, composed of barriers of width b and separated a distance a, over an interacting Bose gas. At T = 0 , the Gross-Pitaevskii equation is solved analytically in terms of the Jacobi elliptic functions for repulsive or attractive interaction between bosons. By applying the boundary conditions for periodic solutions as well as the normalization of the wave function, we arrive to a set of nonlinear equations from which we obtain the density profile and the chemical potential of the condensate as a function of the particle momentum. The profiles for attractive and repulsive interactions are compared with that of the non-interacting case. For attractive interaction we are able to observe a pronounced spatial localization in the middle of every two barriers. We reproduce the well known results when the Kronig-Penney potential becomes a Dirac Comb. We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.
Ligand-Mediated Control of the Confinement Potential in Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Amin, Victor
This thesis describes the mechanisms by which organic surfactants, particularly thiophenols and phenyldithiocarbamates, reduce the confinement potential experienced by the exciton of semiconductor quantum dots (QDs). The reduction of the confinement potential is enabled by the creation of interfacial electronic states near the band edge of the QD upon ligand adsorption. In the case of thiophenols, we find that this ligand adsorbs in two distinct binding modes, (i) a tightly bound mode capable of exciton delocalization, and (ii) a more weakly bound mode that has no discernable effect on exciton confinement. Both the adsorption constant and reduction in confinement potential are tunable by para substitution and are generally anticorrelated. For tightly bound thiophenols and other moderately delocalizing ligands, the degree of delocalization induced in the QD is approximately linearly proportional to the fractional surface area occupied by the ligand for all sizes of QDs. In the case of phenyldithiocarbamates, the reduction in the confinement potential is much greater, and ligand adjacency must be accounted for to model exciton delocalization. We find that at high surface coverages, exciton delocalization by phenyldithiocarbamates and other highly delocalizing ligands is dominated by ligand packing effects. Finally, we construct a database of electronic structure calculations on organic molecules and propose an algorithm that combines experimental and computational screening to find novel delocalizing ligands.
Quantum-Carnot engine for particle confined to cubic potential
Sutantyo, Trengginas Eka P. Belfaqih, Idrus H. Prayitno, T. B.
2015-09-30
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
On the calculation of the absolute grand potential of confined smectic-A phases
NASA Astrophysics Data System (ADS)
Huang, Chien-Cheng; Baus, Marc; Ryckaert, Jean-Paul
2015-09-01
We determine the absolute grand potential Λ along a confined smectic-A branch of a calamitic liquid crystal system enclosed in a slit pore of transverse area A and width L, using the rod-rod Gay-Berne potential and a rod-wall potential favouring perpendicular orientation at the walls. For a confined phase with an integer number of smectic layers sandwiched between the opposite walls, we obtain the excess properties (excess grand potential Λexc, solvation force fs and adsorption Γ) with respect to the bulk phase at the same μ (chemical potential) and T (temperature) state point. While usual thermodynamic integration methods are used along the confined smectic branch to estimate the grand potential difference as μ is varied at fixed L, T, the absolute grand potential at one reference state point is obtained via the evaluation of the absolute Helmholtz free energy in the (N, L, A, T) canonical ensemble. It proceeds via a sequence of free energy difference estimations involving successively the cost of localising rods on layers and the switching on of a one-dimensional harmonic field to keep layers integrity coupled to the elimination of inter-layers and wall interactions. The absolute free energy of the resulting set of fully independent layers of interacting rods is finally estimated via the existing procedures. This work opens the way to the computer simulation study of phase transitions implying confined layered phases.
NASA Astrophysics Data System (ADS)
Choudhury, Kaushik; Singh, R. K.; Narayan, Surya; Srivastava, Atul; Kumar, Ajai
2016-04-01
An experimental investigation of the laser produced plasma induced shock wave in the presence of confining walls placed along the axial as well as the lateral direction has been performed. A time resolved Mach Zehnder interferometer is set up to track the primary as well as the reflected shock waves and its effect on the evolving plasma plume has been studied. An attempt has been made to discriminate the electronic and medium density contributions towards the changes in the refractive index of the medium. Two dimensional spatial distributions for both ambient medium density and plasma density (electron density) have been obtained by employing customised inversion technique and algorithm on the recorded interferograms. The observed density pattern of the surrounding medium in the presence of confining walls is correlated with the reflected shock wave propagation in the medium. Further, the shock wave plasma interaction and the subsequent changes in the shape and density of the plasma plume in confined geometry are briefly described.
NASA Astrophysics Data System (ADS)
Zhao, Xujun; Hernandez-Ortiz, Juan; Karpeyev, Dmitry; de Pablo, Juan; Smith, Barry
In this work, we present an efficient parallel particle-in-mesh method for Brownian Dynamics simulations of many-particle systems confined in micro- and nano-fluidic devices. A general geometry Ewald-like method (GGEM) combined with finite element method is used to account for the hydrodynamic interaction. A fast parallel Krylov-type iterative solver with hybrid preconditioning techniques is developed for solving the large sparse systems of equations arising from finite element discretization of the Stokes equations. In addition, the current computer code is developed based on PETSc, a scalable library of numerical algorithms developed at Argonne, SLEPc - Scalable Library for Eigenvalue Problem Computations, and libMesh, a finite element library for numerical solution of PDEs built on top of PETSc, which allows for direct simulation of large scale systems with arbitrary confined geometries. This scheme is applied to Brownian dynamics simulations of flowing confined polymer solutions and colloidal dispersions in micro-fluid channels. The effects of hydrodynamics interactions and geometric confinement on the migration phenomena are illustrated.
Electronic structure and electron correlation in weakly confining spherical quantum dot potentials
NASA Astrophysics Data System (ADS)
Kimani, Peter Borgia Ndungu
The electronic structure and electron correlations in weakly confining spherical quantum dots potentials are investigated. Following a common practice, the investigation starts with the restricted Hartree-Fock (HF) approximation. Then electron correlation is added in steps in a series of approximations based on the single particle Green's function approach: (i) Second-order Green function (GF) (ii) 2ph-Tamm-Dancoff approximation (TDA) and (iii) an extended version thereof (XTDA) which introduces ground-state correlation into the TDA. The study includes as well Hartree-Fock V (N-1) potential approximation in which framework the Hartree-Fock virtual orbitals are calculated in the field of the N-1 electrons as opposed to the regular but unphysical N-electron field Hartree-Fock calculation of virtual orbitals. For contrast and comparison, the same approximation techniques are applied to few-electron closed-shell atoms and few-electron negative ions for which pertinent data is readily available. The results for the weakly confining spherical quantum dot potentials and the standard atomic systems exhibit fundamental similarities as well as significant differences. For the most part the results of these calculations are in favor of application of HF, GF, and TDA techniques in the modeling of three-dimensional weakly confining quantum dot potentials. The observed differences emphasize the significance of confinement and electronic features unique to quantum dots such as the increased binding of electrons with higher angular momentum and the modified shell filling sequences.
Optical probing of MgZnO/ZnO heterointerface confinement potential energy levels
Solovyev, V. V.; Van'kov, A. B.; Kukushkin, I. V.; Falson, J.; Kozuka, Y.; Zhang, D.; Smet, J. H.; Maryenko, D.; Tsukazaki, A.; Kawasaki, M.
2015-02-23
Low-temperature photoluminescence and reflectance measurements were employed to study the optical transitions present in two-dimensional electron systems confined at Mg{sub x}Zn{sub 1–x}O/ZnO heterojunctions. Transitions involving A- and B-holes and electrons from the two lowest subbands formed within the confinement potential are detected. In the studied density range of 2.0–6.5 × 10{sup 11 }cm{sup −2}, the inter-subband splitting is measured and the first excited electron subband is shown to be empty of electrons.
Perfect Abelian dominance of confinement in quark-antiquark potential in SU(3) lattice QCD
NASA Astrophysics Data System (ADS)
Suganuma, Hideo; Sakumichi, Naoyuki
2016-01-01
In the context of the dual superconductor picture for the confinement mechanism, we study maximally Abelian (MA) projection of quark confinement in SU(3) quenched lattice QCD with 324 at β=6.4 (i.e., a ≃ 0.058 fm). We investigate the static quark-antiquark potential V(r), its Abelian part VAbel(r) and its off-diagonal part Voff(r), respectively, from the on-axis lattice data. As a remarkable fact, we find almost perfect Abelian dominance for quark confinement, i.e., σAbel ≃ σ for the string tension, on the fine and large-volume lattice. We find also a nontrivial summation relation of V (r) ≃ VAbel(r)+Voff(r).
Dielectric confinement influenced screened Coulomb potential for a semiconductor quantum wire
NASA Astrophysics Data System (ADS)
Aharonyan, K. H.; Margaryan, N. B.
2016-01-01
A formalism of the Thomas-Fermi method has been applied for studying the screening effect due to quasi-one-dimensional electron gas in a semiconductor cylindrical quantum wire embedded in the barrier environment. With taking into account of strongly low dielectric properties of the barrier material, an applicability of the quantum wire effective interaction potential of the confined charge carriers has been revealed. Both screened quasi- one-dimensional interaction potential and effective screening length analytical expressions are derived in the first time. It is shown that in the long wavelength moderate limit dielectric confinement effect enhances strength of the screening potential depending on the both radius of the wire and effective screening length, whereas in the long wavelength strong limit the screening potential solely is determined by barrier environment dielectric properties.
High-density plasma production with potential confinement in the GAMMA 10 tandem mirror
NASA Astrophysics Data System (ADS)
Ichimura, M.; Cho, T.; Hirata, M.; Hojo, H.; Ishii, K.; Itakura, A.; Katanuma, I.; Kohagura, J.; Nakashima, Y.; Saito, T.; Tamano, T.; Tanaka, S.; Tatematsu, Y.; Yatsu, K.; Yoshikawa, M.
2001-05-01
The improvement of potential confinement was attained in the GAMMA 10 tandem mirror [Phys. Rev. Lett. 55, 939 (1985); Proceedings of the 13th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Washington, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 2, p. 539] by axisymmetrization of heating systems for the plasma production, heating, and potential formation. A significant increase of the density and diamagnetism by the potential confinement was observed. In the previous experiment, it was difficult to increase the central cell density higher than 2.7×1018m-3. One of the possible mechanisms is the density clamping due to the eigenmode formation of the ion-cyclotron-range of frequency (ICRF) waves in the axial direction. With high harmonic ICRF waves (RF3), the experiments to overcome this problem have been performed. In preliminary experiments with RF3 and NBI the maximum density of 4×1018m-3 was attained.
Quantum-Carnot engine for particle confined to 2D symmetric potential well
Belfaqih, Idrus Husin Sutantyo, Trengginas Eka Putra Prayitno, T. B.; Sulaksono, Anto
2015-09-30
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.
NASA Astrophysics Data System (ADS)
Campos, L. Q. Costa; Apolinario, S. W. S.
2015-01-01
We implement Brownian dynamics to investigate the static properties of colloidal particles confined anisotropically and interacting via a potential which can be tailored in a repulsive-attractive-respulsive fashion as the interparticle distance increases. A diverse number of structural phases are self-assembled, which were classified according to two aspects, that is, their macroscopic and microscopic patterns. Concerning the microscopic phases we found the quasicrystalline, triangular, square, and mixed orderings, where this latter is a combination of square and triangular cells in a 3 ×2 proportion, i.e., the so-called (33,42) Archimedian lattice. On the macroscopic level the system could self-organize in a compact or perforated single cluster surrounded or not by fringes. All the structural phases are summarized in detailed phases diagrams, which clearly show that the different phases are extended as the confinement potential becomes more anisotropic.
The photino sector and a confining potential in a supersymmetric Lorentz-symmetry-violating model
NASA Astrophysics Data System (ADS)
Belich, H.; Bernald, L. D.; Gaete, Patricio; Helayël-Neto, J. A.
2013-11-01
We study the spectrum of the minimal supersymmetric extension of the Carroll-Field-Jackiw model for Electrodynamics with a topological Chern-Simons-like Lorentz-symmetry violating term. We identify a number of independent background fermion condensates, work out the gaugino dispersion relation and propose a photonic effective action to consider aspects of confinement induced by the SUSY background fermion condensates, which also appear to signal Lorentz-symmetry violation in the photino sector of the action. Our calculations of the static potential are carried out within the framework of the gauge-invariant but path-dependent variables formalism which are alternative to the Wilson loop approach. Our results show that the interaction energy contains a linear term leading to the confinement of static probe charges.
NASA Astrophysics Data System (ADS)
Ghosal, Amit; Ash, Biswarup; Chakrabarti, Jaydeb
2015-03-01
We investigate the dynamics of Coulomb-interacting confined particles over a range of temperatures capturing the crossover from a Wigner molecule to a liquid-like phase. Dynamical signatures, derived from the Van-Hove correlations, develop pivotal understanding of the phases as well as the intervening crossover, which are inaccessible from the study of static correlations alone. The motion of the particles shows frustrations, produces heterogeneities depending on the observation time-scales and temperatures and results into a non-Gaussian behavior. The extent and nature of the departure of the behavior of spatio-temporal correlations from the conventional wisdom depends crucially on the symmetry of the confinements. In particular, we find that the decay of correlations follow a stretched-exponential form in traps that lack any symmetry. Our data offers a broad support to a theoretical model that integrates the non-Gaussian behavior arising from the convolution of Gaussian fluctuations weighted by appropriate diffusivities, consistent with local dynamics. The richness of information from the dynamic correlation will be shown to improve the understanding of melting in confined systems in a powerful manner.
NASA Technical Reports Server (NTRS)
Wiese, Michael R.
1987-01-01
Documented is an aeronautical geometry conversion package which translates wave-drag geometry into the Langley Wireframe Geometry Standard (LaWGS) format and then into a format which is used by the Supersonic Implicit Marching Potential (SIMP) program. The programs described were developed by Computer Sciences Corporation for the Advanced Vehicles Division/Advanced Concepts Branch at NASA Langley Research Center. Included also are the input and output from a benchmark test case.
Pathak, Amit; Kumar, Sanjay
2013-08-01
It is now well established that tumor cell invasion through tissue is strongly regulated by the microstructural and mechanical properties of the extracellular matrix (ECM). However, it remains unclear how these physical microenvironmental inputs are jointly processed with oncogenic lesions to drive invasion. In this study, we address this open question by combining a microfabricated polyacrylamide channel (μPAC) platform that enables independent control of ECM stiffness and confinement with an isogenically-matched breast tumor progression series in which the oncogenes ErbB2 and 14-3-3ζ are overexpressed independently or in tandem. We find that increasing channel confinement and overexpressing ErbB2 both promote cell migration to a similar degree when other parameters are kept constant. In contrast, 14-3-3ζ overexpression slows migration speed, and does so in a fashion that dwarfs effects of ECM confinement and stiffness. We also find that ECM stiffness dramatically enhances cell motility when combined with ErbB2 overexpression, demonstrating that biophysical cues and cell-intrinsic parameters promote cell invasion in an integrative manner. Morphometric analysis of cells inside the μPAC platform reveals that the rapid cell migration induced by narrow channels and ErbB2 overexpression are both accompanied by increased cell polarization. Disruption of this polarization occurs by pharmacological inhibition of Rac GTPase phenocopies 14-3-3ζ overexpression by reducing cell polarization and slowing migration. By systematically measuring migration speed as a function of matrix stiffness and confinement, we also quantify for the first time the sensitivity of migration speed to microchannel properties and transforming potential. These results demonstrate that oncogenic lesions and ECM biophysical properties can synergistically interact to drive invasive migration, and that both inputs may act through common molecular mechanisms to enhance migration speed. PMID:23832051
Impurity with two electrons in the spherical quantum dot with Unite confinement potential
NASA Astrophysics Data System (ADS)
Baghdasaryan, D. A.; Ghaltaghchyan, H. Ts; Kazaryan, E. M.; Sarkisyan, H. A.
2016-01-01
Two-electron states in a spherical QD with the hydrogenic impurity located in the center and with a finite height confinement potential barrier are investigated. The effective mass mismatch have been taken into account. The dependence of ground state energy and Coulomb electron-electron interaction energy correction on the QD size is studied. The problem of the state exchange time control in QD is discussed, taking into account the spins of the electrons in the Russell-Saunders approximation. The effect of quantum emission has been shown.
Quantum dynamics of a hydrogen molecule confined in a cylindrical potential
NASA Astrophysics Data System (ADS)
Yildirim, Taner; Harris, A. B.
2003-06-01
We study the coupled rotation-vibration levels of a hydrogen molecule in a confining potential with cylindrical symmetry. We include the coupling between rotations and translations and show how this interaction is essential to obtain the correct degeneracies of the energy level scheme. We applied our formalism to study the dynamics of H2 molecules inside a “smooth” carbon nanotube as a function of tube radius. The results are obtained both by numerical solution of the (2J+1)-component radial Schrödinger equation and by developing an effective Hamiltonian to describe the splitting of a manifold of states of fixed angular momentum J and number of phonons N. For nanotube radius smaller than ≈3.5 Å, the confining potential has a parabolic shape and the results can be understood in terms of a simple toy model. For larger radius, the potential has the “Mexican hat” shape and therefore the H2 molecule is off centered, yielding radial and tangential translational dynamics in addition to rotational dynamics of H2 molecule which we also describe by a simple model. Finally, we make several predictions for the the neutron scattering observation of various transitions between these levels.
On PT-Symmetric Periodic Potential, Quark Confinement, and Other Impossible Pursuits
NASA Astrophysics Data System (ADS)
Christianto, V.; Smarandache, Florentin
2009-04-01
As we know, it has been quite common nowadays for particle physicists to think of six impossible things before breakfast, just like what their cosmology fellows used to do. In the present paper, we discuss a number of those impossible things, including PT-symmetric periodic potential, its link with condensed matter nuclear science, and possible neat link with Quark confinement theory. In recent years, the PT-symmetry and its related periodic potential have gained considerable interests among physicists. We begin with a review of some results from a preceding paper discussing derivation of PT-symmetric periodic potential from biquaternion Klein-Gordon equation and proceed further with the remaining issues. Further observation is of course recommended in order to refute or verify this proposition.
Importance of the energy-dependent geometry in the 16O+ 16O optical model potential
NASA Astrophysics Data System (ADS)
Pantis, G.; Ioannidis, K.; Poirier, P.
1985-08-01
Optical model potentials with various forms of energy-dependent geometry have been considered for the description of 16O+ 16O elastic scattering. It is shown that the variation with energy of the imaginary radius leads to a reasonable fit of the cross-section data, throughout the energy range.
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel
2012-11-21
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials. PMID:23181297
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel
2012-11-01
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
Monte Carlo study of one-dimensional confined fluids with Gay-Berne intermolecular potential
NASA Astrophysics Data System (ADS)
Moradi, M.; Hashemi, S.
2011-11-01
The thermodynamic quantities of a one dimensional system of particles with Gay-Berne model potential confined between walls have been obtained by means of Monte Carlo computer simulations. For a number of temperatures, the systems were considered and their density profiles, order parameter, pressure, configurational temperature and average potential energy per particle are reported. The results show that by decreasing the temperature, the soft particles become more ordered and they align to the walls and also they don't show any tendency to be near the walls at very low temperatures. We have also changed the structure of the walls by embedding soft ellipses in them, this change increases the total density near the wall whereas, increasing or decreasing the order parameter depend on the angle of embedded ellipses.
Bent waveguides for matter-waves: supersymmetric potentials and reflectionless geometries
Campo, Adolfo del; Boshier, Malcolm G.; Saxena, Avadh
2014-01-01
Non-zero curvature in a waveguide leads to the appearance of an attractive quantum potential which crucially affects the dynamics in matter-wave circuits. Using methods of supersymmetric quantum mechanics, pairs of bent waveguides are found whose geometry-induced potentials share the same scattering properties. As a result, reflectionless waveguides, dual to the straight waveguide, are identified. Strictly isospectral waveguides are also found by modulating the depth of the trapping potential. Numerical simulations are used to demonstrate the efficiency of these approaches in tailoring and controlling curvature-induced quantum-mechanical effects. PMID:24919423
Black hole accretion disks in brane gravity via a confining potential
NASA Astrophysics Data System (ADS)
Heydari-Fard, Malihe
2010-12-01
Accretion disks are among the most luminous and ubiquitous sources in astrophysics and they have drawn a good deal of attention from the observational and theoretical communities. In this paper, we study the process of matter forming thin accretion disks around black hole solutions in the context of the brane-world scenario where our universe is a three-brane embedded in an m-dimensional bulk and localization of matter on the brane is achieved by means of a confining potential. The physical properties of thin accretion disks including the time averaged energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and the results are compared with the DMPR, CFM and BMD brane black holes and the standard general relativistic Schwarzschild solution.
Tong, Lianming; Miljković, Vladimir D; Johansson, Peter; Käll, Mikael
2011-11-01
The understanding of interaction forces between nanoparticles in colloidal suspension is central to a wide range of novel applications and processes in science and industry. However, few methods are available for actual characterization of such forces at the single particle level. Here we demonstrate the first measurements of colloidal interactions between two individual diffusing nanoparticles using a colorimetric assay based on plasmon hybridization, that is, strong near-field coupling between localized surface plasmon resonances. The measurements are possible because individual gold nanoparticle pairs can be loosely confined in an optical potential well created by a laser tweezers. We quantify the degree of plasmon hybridization for a large number of individual particle pairs as a function of increasing salt concentration. The data reveal a considerable heterogeneity at the single particle level but the estimated average surface separations are in excellent agreements with predictions based on the classical theory of Derjaguin, Landau, Verwey, and Overbeek. PMID:21142200
NASA Astrophysics Data System (ADS)
Rodriguez, Ricardo; Lewis, Winston G.
2014-07-01
review visits the likelihood for potential energy build-up due to RF propagation in confined spaces that are of waveguide design but with larger dimensions. Such confined spaces include silos, tanks, pipes, manholes, air-condition ducts, tunnels, wells, engine rooms and operator rooms on board vessels. In these confined spaces waves reflect off of the walls and combine constructively or destructively with incident waves producing reinforcement or cancellation respectively. Where there is reinforcement, the intensity of the wave for a particular distance in accordance with the standard, may exceed the exposure limit for this distance from the source thereby exposing the worker to larger intensities than the accepted limit and presenting a potential health and safety threat.
Energy spectra of a particle confined in a finite ellipsoidal shaped potential well
NASA Astrophysics Data System (ADS)
Kereselidze, Tamaz; Tchelidze, Tamar; Nadareishvili, Teimuraz; Kezerashvili, Roman Ya.
2016-07-01
A charged particle confined in a strongly prolate ellipsoidal shaped finite potential well is studied. In the case when a distance R between foci is large and accordingly R-1 is small, the asymptotic solutions of quasiradial and quasiangular equations in prolate spheroidal coordinates are found. We demonstrate that quasiangular wave functions inside and outside of the potential well coincide on the entire surface of strongly prolate ellipsoid if separation parameters are chosen appropriately. This allows us to obtain the transcendental equation for the energy levels by equating the quasiradial wave function and its derivative on the surface of ellipsoid. The obtained equation is solved numerically and algebraically. The calculated energies are in good qualitative and quantitative agreement with the results obtained earlier for the infinitely high ellipsoidal potential well via a numerical solution of the quasiradial and quasiangular equations. An importance of the actual shape of ellipsoidal potential well for calculation of the energy spectrum for the trapped particle is shown. A dependence of the energy spectrum on the effective mass when it is a different constant inside and outside of the ellipsoid is addressed.
Geometry-induced potential on a two-dimensional section of a wormhole: Catenoid
Dandoloff, Rossen; Saxena, Avadh; Jensen, Bjoern
2010-01-15
We show that a two-dimensional wormhole geometry is equivalent to a catenoid, a minimal surface. We then obtain the curvature-induced geometric potential and show that the ground state with zero energy corresponds to a reflectionless potential. By introducing an appropriate coordinate system we also obtain bound states for different angular momentum channels. Our findings can be realized in suitably bent bilayer graphene sheets with a neck, in a honeycomb lattice with an array of dislocations, or in nanoscale waveguides in the shape of a catenoid.
Application of a full potential method for analysis of complex aircraft geometries
NASA Technical Reports Server (NTRS)
Jones, Kenneth M.; Talcott, Noel A., Jr.
1986-01-01
A supersonic potential flow solver was developed to analyze the flow over complex realistic aircraft geometries. Enhancements to the method were made to accommodate regions of subsonic flow, the effect of trailing wakes on other aircraft components, and the modeling/gridding of complete configurations. Validation of the method was demonstrated by comparisons with experimental aerodynamic force and surface pressure measurements. The predicted results are in very good agreement with the experimental data. The bibliography contains additional information on the use of the potential flow code to predict the aerodynamics of high-speed wing/body configurations, waverider concepts, TAV, and the Space Shuttle orbiter package.
The potential impact of flooding on confined animal feeding operations in eastern North Carolina.
Wing, Steve; Freedman, Stephanie; Band, Lawrence
2002-01-01
Thousands of confined animal feeding operations (CAFOs) have been constructed in eastern North Carolina. The fecal waste pit and spray field waste management systems used by these operations are susceptible to flooding in this low-lying region. To investigate the potential that flood events can lead to environmental dispersion of animal wastes containing numerous biologic and chemical hazards, we compared the geographic coordinates of 2,287 CAFOs permitted by the North Carolina Division of Water Quality (DWQ) with estimates of flooding derived from digital satellite images of eastern North Carolina taken approximately 1 week after Hurricane Floyd dropped as much as 15-20 inches of rain in September 1999. Three cattle, one poultry, and 237 swine operations had geographic coordinates within the satellite-based flooded area. DWQ confirmed 46 operations with breached or flooded fecal waste pits in the same area. Only 20 of these 46 CAFOs were within the satellite-based estimate of the inundated area. CAFOs within the satellite-based flood area were located in 132 census block groups with a population of 171,498 persons in the 2000 census. African Americans were more likely than whites to live in areas with flooded CAFOs according to satellite estimates, but not according to DWQ reports. These areas have high poverty rates and dependence on wells for drinking water. Our analysis suggests that flood events have a significant potential to degrade environmental health because of dispersion of wastes from industrial animal operations in areas with vulnerable populations. PMID:11940456
NASA Astrophysics Data System (ADS)
Borgoo, Alex; Tozer, David; Geerlings, Paul; de Proft, Frank
2009-03-01
When a molecule is placed as a guest inside a zeolite pore, its electronic structure will be altered, among others by the effect of the so-called ``confinement". It has been established that the compression of the molecular orbitals influences a system's reactivity. In this work we use a simple potential barrier method to quantify the importance of confinement effects on chemical reactivity. In the first part, excitation energies and molecular orbital energy gaps are evaluated for molecules placed in cavities of different sizes. Our results for ethylene and formaldehyde reveal an increase in excitation energy and the gap between the occupied and the unoccupied levels. In the case of the larger molecules naphthalene and anthracene, the HOMO-LUMO gap shows very little sensitivity to the confinement. To investigate the role of confinement effects on local aspects of chemical reactivity and on regioselectivity, we evaluated its effect on the Fukui function and the molecular electrostatic potential, reactivity indices that are central in the description of orbital and charge controlled reactions. The results indicate that confinement can influence the regioselectivity and that the reactivity of anions is expected to change, due to the artificial binding of the exess electron.
Azaizeh, Hassan; Kurzbaum, Eyal; Said, Ons; Jaradat, Husain; Menashe, Ofir
2015-10-01
Olive mill wastewater (OMWW) is claimed to be one of the most polluting effluents produced by agro-food industries, providing high contaminants load that encase cytotoxic agents such as phenolic and polyphenolic compounds. Therefore, a significant and continuous stress episode is induced once the mixed liquor of the wastewater treatment plants (WWTP's) is being exposed to OMWW. The use of bio-augmentation treatment procedures can be useful to eliminate or reduce such stress episodes. In this study, we have estimated the use of autochthonous biomass implementation within small bioreactor platform (SBP) particles as a bio-augmentation method to challenge against WWTPs stress episodes. Our results showed that SBP particles significantly reduced the presence of various phenolics: tannic, gallic and caffeic acid in a synthetic medium and in crude OMWW matrix. Moreover, the SBP particles succeeded to biodegrade a very high concentration of phenol blend (3000 mg L(-1)). Our findings indicated that the presence of the SBP microfiltration membrane has reduced the phenol biodegradation rate by 50 % compared to the same suspended culture. Despite the observed reduction in biodegradation rate, encapsulation in a confined environment can offer significant values such as overcoming the grazing forcers and dilution, thus achieving a long-term sufficient biomass. The potential for reducing stress episodes caused by cytotoxic agents through bio-augmentation treatment procedure using the SBP technology is discussed. PMID:26250809
Bose-Hubbard models in confining potentials: Inhomogeneous mean-field theory
NASA Astrophysics Data System (ADS)
Pai, Ramesh V.; Kurdestany, Jamshid Moradi; Sheshadri, K.; Pandit, Rahul
2012-06-01
We present an extensive study of Mott insulator (MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with harmonic traps. For this we apply the inhomogeneous mean-field theory developed by Sheshadri [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.75.4075 75, 4075 (1995)]. Our results for the BH model with one type of spinless bosons agree quantitatively with quantum Monte Carlo simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also extend our inhomogeneous mean-field theory to study BH models with harmonic traps and (a) two species of bosons or (b) spin-1 bosons. With two species of bosons, we obtain rich phase diagrams with a variety of SF and MI phases and associated shells when we include a quadratic confining potential. For the spin-1 BH model, we show, in a representative case, that the system can display alternating shells of polar SF and MI phases, and we make interesting predictions for experiments in such systems.
Messinger-Rapport, B J; Rudy, Y
1990-04-01
The inverse problem in electrocardiography implies the reconstruction of electrical events within the heart from information measured noninvasively on the body surface. Deduction of these electrical events is possible from measured epicardial potentials, and, thus, a noninvasive method of recovering epicardial potentials from body surface data is useful in experimental and clinical studies. In the present study, an inverse method that uses Tikhonov regularization was shown to reconstruct, with good accuracy, important events in cardiac excitation. The inverse procedure was employed on data obtained from a human-torso tank in which a beating canine heart was placed in the correct anatomical position. Comparison with the actual, measured epicardial potentials indicates that positions and shapes of potential features (maxima, minima, zero potential line, saddles, etc.) are recovered with good accuracy throughout the QRS. An error in position of up to 1 cm is typical, while amplitudes are slightly diminished. In addition, application was extended from the above setting, in which the geometry was precisely known and potentials at a large number of leads were measured accurately, to a situation that is more representative of clinical and experimental settings. Effects of inaccuracy in location of the position of the heart were examined. A stylized torso that approximates the actual geometry was designed, and its performance in the inverse computations was evaluated. A systematic method of reduction of the number of leads on the body surface was proposed, and the resulting lead configurations were evaluated in terms of the accuracy of inverse solutions. The results indicate that the inverse problem can be stabilized with respect to different types of uncertainties in measured data and offer promise in the use of the inverse procedure in clinical and experimental situations. PMID:2317885
NASA Astrophysics Data System (ADS)
Zhu, Hua-Gui; Huang, Guo-Qiang; Luo, Cui-Lan
2016-02-01
We investigate the reciprocal of the mean quantum Fisher information per particle (RMQFIP) and phase sensitivity of atomic Josephson junctions with a bosonic species confined by a double-well potential. Here we are focus on the Rabi oscillation energy's influence on RMQFIP and phase sensitivity. The better quantum entanglement and phase sensitivity may be achieved by decreasing the Rabi oscillation energy.
Bicudo, P.
2010-08-01
We study the string tension as a function of temperature, fitting the SU(3) lattice QCD finite temperature free energy potentials computed by the Bielefeld group. We compare the string tension points with order parameter curves of ferromagnets, superconductors, or string models, all related to confinement. We also compare the SU(3) string tension with the one of SU(2) lattice QCD. With the curve providing the best fit to the finite temperature string tensions, the spontaneous magnetization curve, we then show how to include finite temperature, in the state of the art confining and chiral invariant quark models.
NASA Astrophysics Data System (ADS)
van Hooydonk, G.
2016-03-01
We review harmonic oscillator theory for closed, stable quantum systems. The H2 potential energy curve (PEC) of Mexican hat-type, calculated with a confined Kratzer oscillator, is better than the Rydberg-Klein-Rees (RKR) H2 PEC. Compared with QM, the theory of chemical bonding is simplified, since a confined Kratzer oscillator can also lead to the long sought for universal function, once called the Holy Grail of Molecular Spectroscopy. This is validated by reducing PECs for different bonds H2, HF, I2, N2 and O2 to a single one. The equal probability for H2, originating either from HA + HB or HB + HA, is quantified with a Gauss probability density function. At the Bohr scale, a confined harmonic oscillator behaves properly at the extremes of bound two-nucleon quantum systems.
A three-dimensional potential-flow program with a geometry package for input data generation
NASA Technical Reports Server (NTRS)
Halsey, N. D.
1978-01-01
Information needed to run a computer program for the calculation of the potential flow about arbitrary three dimensional lifting configurations is presented. The program contains a geometry package which greatly reduces the task of preparing the input data. Starting from a very sparse set of coordinate data, the program automatically augments and redistributes the coordinates, calculates curves of intersection between components, and redistributes coordinates in the regions adjacent to the intersection curves in a suitable manner for use in the potential flow calculations. A brief summary of the program capabilities and options is given, as well as detailed instructions for the data input, a suggested structure for the program overlay, and the output for two test cases.
Magirl, Christopher S.; Olsen, Theresa D.
2009-01-01
Using discharge and channel geometry measurements from U.S. Geological Survey streamflow-gaging stations and data from a geographic information system, regression relations were derived to predict river depth, top width, and bottom width as a function of mean annual discharge for rivers in the State of Washington. A new technique also was proposed to determine bottom width in channels, a parameter that has received relatively little attention in the geomorphology literature. These regression equations, when combined with estimates of mean annual discharge available in the National Hydrography Dataset, enabled the prediction of hydraulic geometry for any stream or river in the State of Washington. Predictions of hydraulic geometry can then be compared to thresholds established by the Washington State Department of Natural Resources to determine navigability potential of rivers. Rivers with a mean annual discharge of 1,660 cubic feet per second or greater are 'probably navigable' and rivers with a mean annual discharge of 360 cubic feet per second or less are 'probably not navigable'. Variance in the dataset, however, leads to a relatively wide range of prediction intervals. For example, although the predicted hydraulic depth at a mean annual discharge of 1,660 cubic feet per second is 3.5 feet, 90-percent prediction intervals indicate that the actual hydraulic depth may range from 1.8 to 7.0 feet. This methodology does not determine navigability - a legal concept determined by federal common law - instead, this methodology is a tool for predicting channel depth, top width, and bottom width for rivers and streams in Washington.
Patterned time-orbiting potentials for the confinement and assembly of magnetic dipoles
Chen, A.; Sooryakumar, R.
2013-01-01
We present an all-magnetic scheme for the assembly and study of magnetic dipoles within designed confinement profiles that are activated on micro-patterned permalloy films through a precessing magnetic field. Independent control over the confinement and dipolar interactions is achieved by tuning the strength and orientation of the revolving field. The technique is demonstrated with superparamagnetic microspheres field-driven to assemble into closely packed lattice sheets, quasi-1D and other planar structures expandable into dipolar arrays that mirror the patterned surface motifs. PMID:24185093
Lee, Jenny; Brown, B.A.; Delaunay, F.; Lynch, W.G.; Saelim, M. J.; Tsang, M.B.; Tostevin, J.A.
2006-04-15
We carry out a systematic analysis of angular distribution measurements for selected ground-state to ground-state (d,p) and (p,d) neutron transfer reactions, including the calcium isotopes. We propose a consistent three-body model reaction methodology in which we constrain the transferred-neutron bound state and nucleon-target optical potential geometries using modern Hartree-Fock calculations. Our deduced neutron spectroscopic factors are found to be suppressed by {approx}30% relative to independent-particle shell-model values, from {sup 40}Ca through {sup 49}Ca. The other nuclei studied, ranging from B to Ti, show similar average suppressions with respect to large-basis shell-model expectations. Our results are consistent with deduced spectroscopic strengths for neutrons and protons from intermediate-energy nucleon knockout reactions and for protons from (e,e{sup '}p) reactions on well-bound nuclei.
Hovering rotor airload prediction using a full potential flow analysis with realistic wake geometry
NASA Technical Reports Server (NTRS)
Egolf, T. A.; Sparks, S. P.
1985-01-01
A three-dimensional, full potential flow analysis with realistic hover wake geometry is presented for the prediction of hovering rotor airloads. The method of analysis is based on the concept of matching inner and outer domain solutions in three dimensions. The inner domain nonlinear solution is obtained using a finite difference analysis and the outer domain solution is based on prescribed wake methodology. This formulation which includes three-dimensional wake influence, was initially validated using a fixed-wing analysis, and has been extended to hovering rotor flight. Detailed chordwise and spanwise loading results are compared with subsonic and transonic test results from two rotor configurations to illustrate the predictive capabilities of the analysis. The extension of the method to steady-level forward flight is also discussed.
Kushwaha, Manvir S.
2014-12-15
Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2014-12-01
Semiconducting quantum dots - more fancifully dubbed artificial atoms - are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement - or the lack of any degree of freedom for the electrons (and/or holes) - in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines' random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen
NASA Astrophysics Data System (ADS)
Johnson, C. B.; Furlong, K. P.; Kirby, E.
2004-12-01
The cause of high elevations in the Marin County - Mt. Tamalpais region is enigmatic. Because the region is adjacent to a segment of the San Andreas fault with essentially no transpression, fault-normal shortening is unlikely to be the cause of the uplift. Rather it has been proposed that the uplift may be associated with blind thrust(s) in the area (Furlong and Kirby 2004, this meeting). If such structures do indeed exist, then their extent and orientation would be a key component in assessing earthquake potential for the area. This study examines the specific geometries of possible blind thrusts that could produce the Mt. Tamalpais uplift, and the seismogenic implications. The study area, bounded by the Point Reyes - Tomales Bay segment of the San Andreas (on the west) and the Hayward/Rodgers Creek fault system (on the east), increases in elevation significantly from north to south. Mt. Tamalpais sits at the southernmost extent of the uplifted area with the highest elevations at 780 meters above sea level. We have utilized 2-D and 3-D elastic deformation models to evaluate the orientation and spatial extent of possible blind thrusts that could generate the uplift. The combination of potential fault area and rate of deformation (shortening across the structure) allows us to place limits on the possible size of earthquakes that could occur on such blind faults. Preliminary analyses indicate that structures in the Marin County - Mt. Tamalpais could host up to a M = 6 event with a recurrence time of 1000 years.
Making Conjectures in Dynamic Geometry: The Potential of a Particular Way of Dragging
ERIC Educational Resources Information Center
Mariotti, Maria Alessandra; Baccaglini-Frank, Anna
2011-01-01
When analyzing what has changed in the geometry scenario with the advent of dynamic geometry systems (DGS), one can notice a transition from the traditional graphic environment made of paper-and-pencil, and the classical construction tools like the ruler and compass, to a virtual graphic space, made of a computer screen, graphical tools that are…
Linear transport of domain walls confined to propagating 1-D potential wells
NASA Astrophysics Data System (ADS)
Negotia, M.; Hodges, M. P. P.; Bryan, M. T.; Fry, P. W.; Im, M.-Y.; Fischer, P.; Allwood, D. A.; Hayward, T. J.
2013-10-01
We present a method of controllably propagating domain walls (DWs) in magnetic nanowires over extended linear distances by confining them to geometrically defined energy minima. Using simple models, magnetic transmission soft x-ray microscopy and magneto-optic Kerr effect measurements, we show that the technique allows DWs to be moved at arbitrary, user-defined velocities and be positioned with micrometer precision. Our approach is expected to be of utility in applications where the precise transport and positioning of DWs take precedent over the absolute speed of propagation, for example, where the fields produced by DWs are used to trap and transport magnetized particles.
Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth
2013-01-01
Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498
NASA Astrophysics Data System (ADS)
Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice
Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.
McHargue, T.R.; Webb, J.E.
1986-02-01
The Indus Fan, the second largest submarine fan in the world, covers 1,250,000 km/sup 2/ (500,000 mi/sup 2/) and contains sediment more than 7 km (23,000 ft) thick. Multichannel (24-fold) CDP seismic data provide the bases for evaluating the Indus Fan and consist of four seismic facies. Of these, only the high-amplitude, discontinuous (H-D) facies is thought to contain reservoir-quality sandstones. The H-D facies is confined to the axes of leveed channels. Canyon-channel systems that fed the fan in the past can be divided into three zones. The degradational zone is composed of an erosional canyon complex filled by prodelta mud. The transitional zone, located near the canyon mouth, consists of superimposed channels that initially were erosional but eventually aggraded and developed levees. The headward termination of the H-D facies occurs in this zone. The aggradational zone consists of superimposed leveed channels confined solely by their own levees. The proximal termination of the H-D facies near canyon mouths implies the presence of reservoir-quality sandstone surrounded by source/seal mudstone in the transitional zone. This stratigraphic trapping geometry and structural leads may represent a vast, untapped petroleum province.
Lourenco, Stella F; Cabrera, Janine
2015-12-01
Accumulating evidence demonstrates that humans and other animals use geometric information, such as the shape of a surrounding space, to recover from disorientation. Less clear is to what extent human children integrate geometry with featural cues, such as the color of walls within an enclosed space, for this purpose. One view holds that reorientation relies on a cognitive module that processes geometric information independently of features. Here we provide evidence against this position by demonstrating that prior exposure to features within a kite-shaped space facilitated the use of geometry in 3- and 4-year-old children, as has been shown with nonhuman animals. Children were tasked with localizing a hidden object within a kite space following disorientation. Their performance was compared across two blocks of trials. We found that children first exposed to features (two black walls and two white walls) within the kite space (first block) were subsequently better at relying on the space's geometry to localize the target object (second block) than children not previously exposed to features. Follow-up experiments ruled out nonspecific effects of practice and attention. Not only did featural cues interact with the processing of geometry, but also features specifically enhanced children's representations of the space's geometry, which they used for reorientation. We suggest that this potentiation of geometry was possible because the placement of wall colors highlighted the major axis of the kite space, which may be critical for aiding the encoding of global shape or for maintaining the representation of a complex geometry in memory. PMID:26254274
Cunningham, Kevin J.; Walker, Cameron; Westcott, Richard L.
2012-01-01
Approximately 210 km of near-surface, high-frequency, marine seismic-reflection data were acquired on the southeastern part of the Florida Platform between 2007 and 2011. Many high-resolution, seismic-reflection profiles, interpretable to a depth of about 730 m, were collected on the shallow-marine shelf of southeastern Florida in water as shallow as 1 m. Landward of the present-day shelf-margin slope, these data image middle Eocene to Pleistocene strata and Paleocene to Pleistocene strata on the Miami Terrace. This high-resolution data set provides an opportunity to evaluate geologic structures that cut across confining units of the Paleocene to Oligocene-age carbonate rocks that form the Floridan aquifer system.Seismic profiles image two structural systems, tectonic faults and karst collapse structures, which breach confining beds in the Floridan aquifer system. Both structural systems may serve as pathways for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability rocks in the Floridan aquifer system. The tectonic faults occur as normal and reverse faults, and collapse-related faults have normal throw. The most common fault occurrence delineated on the reflection profiles is associated with karst collapse structures. These high-frequency seismic data are providing high quality structural analogs to unprecedented depths on the southeastern Florida Platform. The analogs can be used for assessment of confinement of other carbonate aquifers and the sealing potential of deeper carbonate rocks associated with reservoirs around the world.
A geometry package for generation of input data for a three-dimensional potential-flow program
NASA Technical Reports Server (NTRS)
Halsey, N. D.; Hess, J. L.
1978-01-01
The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.
NASA Astrophysics Data System (ADS)
Amendt, Peter; Wilks, S. C.; Bellei, C.; Li, C. K.; Petrasso, R. D.
2011-05-01
The generation of strong, self-generated electric fields (GV/m) in direct-drive, inertial-confinement-fusion (ICF) capsules has been reported [Rygg et al., Science 319, 1223 (2008); Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A candidate explanation for the origin of these fields based on charge separation across a plasma shock front was recently proposed [Amendt et al., Plasma Phys. Controlled Fusion 51 124048 (2009)]. The question arises whether such electric fields in imploding capsules can have observable consequences on target performance. Two well-known anomalies come to mind: (1) an observed ≈2× greater-than-expected deficit of neutrons in an equimolar D3He fuel mixture compared with hydrodynamically equivalent D [Rygg et al., Phys. Plasmas 13, 052702 (2006)] and DT [Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuels, and (2) a similar shortfall of neutrons when trace amounts of argon are mixed with D in indirect-drive implosions [Lindl et al., Phys. Plasmas 11, 339 (2004)]. A new mechanism based on barodiffusion (or pressure gradient-driven diffusion) in a plasma is proposed that incorporates the presence of shock-generated electric fields to explain the reported anomalies. For implosions performed at the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)], the (low Mach number) return shock has an appreciable scale length over which the lighter D ions can diffuse away from fuel center. The depletion of D fuel is estimated and found to lead to a corresponding reduction in neutrons, consistent with the anomalies observed in experiments for both argon-doped D fuels and D3He equimolar mixtures. The reverse diffusional flux of the heavier ions toward fuel center also increases the pressure from a concomitant increase in electron number density, resulting in lower stagnation pressures and larger imploded cores in agreement with gated, self-emission, x-ray imaging data.
NASA Astrophysics Data System (ADS)
Ross, J. Ole; Ceranna, Lars
2016-04-01
The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.
Langenheim, V.E.; Griscom, Andrew; Jachens, R.C.; Hildenbrand, T.G.
2000-01-01
Gravity and magnetic data provide new insights on the structural underpinnings of the San Fernando Basin region, which may be important to ground motion models. Gravity data indicate that a deep basin (>5 km) underlies the northern part of the San Fernando Valley; this deep basin is required to explain the lowest gravity values over the Mission Hills thrust fault. Gravity modeling, constrained by well data and density information, shows that the basin may reach a thickness of 8 km, coinciding with the upper termination of the 1994 Northridge earthquake mainshock rupture. The basin is deeper than previous estimates by 2 to 4 km; this estimate is the result of high densities for the gravels of the Pliocene-Pleisocene Saugus Formation. The geometry of the southern margin of the deep basin is not well-constrained by the gravity data, but may dip to the south. Recently acquired seismic data along the LARSE (Los Angeles Regional Seismic Experiment) II profile may provide constraints to determine the location and attitude of the basin edge. Gravity and aeromagnetic models across the eastern margin of the San Fernando Valley indicate that the Verdugo fault may dip to the southwest along its southern extent and therefore have a normal fault geometry whereas it clearly has a thrust fault geometry along its northern strand.
Cioslowski, Jerzy; Albin, Joanna
2013-09-14
Energies E(N) of assemblies of equicharged particles subject to spherically symmetric power-law confining potentials vary in a convoluted fashion with the particle totalities N. Accurate rigorous upper bounds to these energies, which are amenable to detailed mathematical analysis, are found to comprise terms with smooth, oscillatory, and fluctuating dependences on N. The smooth energy component is obtained as a power series in N(-2/3) with the first two terms corresponding to the bulk and Madelung energies. The oscillatory component possesses the large-N asymptotics given by a product of N(1/(λ + 1)), where λ is the power-law exponent, and a function periodic in N(1/3). The amplitude of the fluctuating component, which originates mostly from the irregular dependence of the Thomson energy E(Th)(n) on n, also scales like N(1/(λ + 1)). PMID:24050343
NASA Astrophysics Data System (ADS)
Cho, Teruji
2007-11-01
The tandem mirror system has achieved improved energy confinement times (> 60-90 ms) with radial transport dominating the Pastukhov axial energy confinement time (> 100 ms). This high confinement regime establishes a proof of principle that the combination of electrostatic and magnetic mirror confinement can successfully insulate electrons from thermal ions. ECH controlled hot-layer formation facilitates plasma-rotation profile formation with a radially localized high-vorticity layer. In the vicinity of the layer, a radial transport barrier is formed [1], showing similar properties to ITB in toroidal plasmas. Coaxially nested intense E(r)xB sheared flow [2] in the GAMMA 10 core plasma realizes an upgraded stable regime having (i) > 0.75 keV bulk central electron temperature with (ii) an achievement of larger stored energy for axially potential-confined ions exceeding that (i.e., diamagnetism) for central magnetically confined ions ( 7 keV). The radially sheared flow having peak-on-axis high vorticity guards and improves whole core plasma confinement, and is controlled by (iii) improved 3 kV ion-confining potential due to simultaneous central and plug ECH. X-ray imaging of the suppression of turbulent structures [1-3] will be shown [1,2]. [1] T. Cho et al., Phys. Rev. Lett. 97, 055001 (2006). [2] T. Cho et al., Phys. Rev. Lett. 94, 085002 (2005). [3] J. Pratt and W. Horton, Phys. Plasmas 13, 042513 (2006). Collaborators; W. Horton^1, J. Pratt^1, M. Hirata, J. Kohagura, T. Numakura, H. Hojo, M. Ichimura, A. Itakura, T. Kariya, I. Katanuma, R. Minami, Y. Nakashima, M. Yoshikawa, Y. Miyata, Y. Yamaguchi, T. Imai, V. P. Pastukhov^2, S. Miyoshi, GAMMA 10 Group (^1IFS, Univ. Texas at Austin, ^2Kurchatov Institute, Russia)
NASA Astrophysics Data System (ADS)
Ribeiro, M. S.; Nobre, F. D.; Curado, E. M. F.
2012-12-01
By comparing numerical and analytical results, it is shown that a system of interacting particles under overdamped motion is very well described by a nonlinear Fokker-Planck equation, which can be associated with nonextensive statistical mechanics. The particle-particle interactions considered are repulsive, motivated by three different physical situations: (i) modified Bessel function, commonly used in vortex-vortex interactions, relevant for the flux-front penetration in disordered type-II superconductors; (ii) Yukawa-like forces, useful for charged particles in plasma, or colloidal suspensions; (iii) derived from a Gaussian potential, common in complex fluids, like polymer chains dispersed in a solvent. Moreover, the system is subjected to a general confining potential, φ( x) = ( α| x| z )/ z ( α > 0 , z > 1), so that a stationary state is reached after a sufficiently long time. Recent numerical and analytical investigations, considering interactions of type (i) and a harmonic confining potential ( z = 2), have shown strong evidence that a q-Gaussian distribution, P( x,t), with q = 0, describes appropriately the particle positions during their time evolution, as well as in their stationary state. Herein we reinforce further the connection with nonextensive statistical mechanics, by presenting numerical evidence showing that: (a) in the case z = 2, different particle-particle interactions only modify the diffusion parameter D of the nonlinear Fokker-Planck equation; (b) for z ≠ 2, all cases investigated fit well the analytical stationary solution P st( x), given in terms of a q-exponential (with the same index q = 0) of the general external potential φ( x). In this later case, we propose an approximate time-dependent P( x,t) (not known analytically for z ≠ 2), which is in very good agreement with the simulations for a large range of times, including the approach to the stationary state. The present work suggests that a wide variety of physical phenomena
Cioslowski, Jerzy; Albin, Joanna
2013-09-21
Asymptotic equivalence of the shell-model and local-density (LDA) descriptions of Coulombic systems confined by radially symmetric potentials in two and three dimensions is demonstrated. Tight upper bounds to the numerical constants that enter the LDA expressions for the Madelung energy are derived and found to differ by less than 0.5% from the previously known approximate values. Thanks to the variational nature of the shell-model approximate energies, asymptotic expressions for other properties, such as mean radial positions of the particles and number densities, are also obtained. A conjecture that generalizes the present results to confining potentials with arbitrary symmetries is formulated. PMID:24070281
Decay rates of charmonia within a quark-antiquark confining potential
NASA Astrophysics Data System (ADS)
Smruti, Patel; Vinodkumar, P. C.; Shashank, Bhatnagar
2016-05-01
In this work, we investigate the spectroscopy and decay rates of charmonia within the framework of the non-relativistic Schrödinger equation by employing an approximate inter quark-antiquark potential. The spin hyperfine, spin-orbit and tensor components of the one gluon exchange interaction are employed to compute the spectroscopy of the excited S states and a few low-lying P and D waves. The resultant wave functions at zero inter-quark separation as well as some finite separations are employed to predict the di-gamma, di-leptonic and di-gluon decay rates of charmonia states using the conventional Van Royen-Weisskopf formula. The di-gamma and di-leptonic decay widths are also computed by incorporating the relativistic corrections of order v 4 within the NRQCD formalism. We have observed that the NRQCD predictions with their matrix elements computed at finite radial separation yield results which are found to be in better agreement with experimental values for both di-gamma and di-leptonic decays. The same scenario is seen in the case when di-gamma and di-leptonic decay widths are computed with the Van Royen-Weisskopf formula. It is also observed that the di-gluon decay width with the inclusion of binding energy effects are in better agreement with the experimental data available for 1S-2S and 1P. The di-gluon decay width of 3S and 2P waves waves are also predicted. Thus, the present study of decay rates clearly indicates the importance of binding energy effects. Supported by Major Research Project NO. F. 40-457/2011(SR), UGC, India
Mitra, S.
1986-09-01
Duplexes and imbricate thrust systems form some of the most complex hydrocarbon traps in overthrust belts. The geometry of a duplex is controlled by the ramp angle (theta) and height (h/sub r/), the final spacing between adjacent thrusts (a'), and the relative displacements on them (d/sub 1/-d/sub 2/). For constant theta and h/sub r/, three different classes are recognized: (1) independent ramp anticlines and hinterland sloping duplexes, (2) true duplexes, and (3) overlapping ramp anticlines. Several types of duplexes and imbricate thrust systems form important hydrocarbon traps. Examples include the system of independent anticlines of the Turner Valley and Highwood oil and gas fields, the hinterland sloping duplex consisting of the Chestnut Ridge-Sandy Ridge system of the Ben Hur oil field, the partly overlapping anticlines of the Waterton and Savanna Creek gas fields, and the completely overlapping anticlines of the Rose Hill oil field. 27 figures.
Soldatkina, E. I.; Bagryansky, P. A.; Solomakhin, A. L.
2008-04-15
One of the most important problems to be studied in the gas-dynamic trap (GDT) facility is the investigation of MHD stability and cross-field transport in a plasma with a relatively high value of {beta} = {pi}p/B{sup 2}. Recent experiments demonstrated that the radial electric field produced in the plasma by using radial limiters and coaxial end plasma collectors improves plasma stability in axisymmetric magnetic mirror systems without applying special MHD stabilizers. The experimental data presented in this work show that stable plasma confinement can be achieved by producing a radial potential drop across a narrow region near the plasma boundary. Creating radial electric fields of strength 15-40 V/cm causes a shear plasma flow, thereby substantially increasing the plasma confinement time. When all the radial electrodes were grounded, the confinement was unstable and the plasma confinement time was much shorter than the characteristic time of plasma outflow through the magnetic mirrors. Measurements of cross-field plasma fluxes with the use of a specially designed combined probe show that, in confinement modes with differential plasma rotation, transverse particle losses are negligibly small as compared to longitudinal ones and thus can be ignored. It is also shown that, when the GDT plasma is in electric contact with the radial limiters and end collectors, the growth rate of interchange instability decreases considerably; such a contact, however, does not ensure complete MHD stability when the electrodes are at the same potential.
NASA Astrophysics Data System (ADS)
Bartolo, Denis; Bricard, Antoine; Caussin, Jean-Baptiste; Savoie, Charles; Das, Debasish; Chepizhko, Oleskar; Peruani, Fernando; Saintillan, David
2014-11-01
It is well established that geometrical confinement have a significant impact on the structure and the flow properties of complex fluids. Prominent examples include the formation of topological defects in liquid crystals, and the flow instabilities of viscoelastic fluids in curved geometries. In striking contrast very little is known about the macroscopic behavior of confined active fluids. In this talk we show how to motorize plastic colloidal beads and turn them into self-propelled particles. Using microfluidic geometries we demonstrate how confinement impacts their collective motion. Combining quantitative experiments, analytical theory and numerical simulations we show how a population of motile bodies interacting via alignement and repulsive interactions self-organizes into a single heterogeneous macroscopic vortex that lives on the verge of a phase separation.
In 1995, EPA completed a risk assessment for potential air emissions from the operation of a proposed confined disposal facility (CDF) to be constructed and operated by the U.S. Army Corps of Engineers for dredged sediments from the Indiana Harbor and Shipping Canal in East Chica...
NASA Astrophysics Data System (ADS)
Bakke, K.
2015-07-01
The behaviour of the Landau-Aharonov-Casher system is discussed by showing a case where the external electric field cannot yield the Landau-Aharonov-Casher quantization under the influence of rotating effects in the cosmic string spacetime, but it can yield bound states solutions to the Schrödinger-Pauli equation analogous to having the Landau-Aharonov-Casher system confined to a hard-wall confining potential under the influence of rotating effects and the topology of the cosmic string spacetime (by assuming ω ρ≪1 and neglecting the effects of a gravitational self-force on the particle).
NASA Ames potential flow analysis (POTFAN) geometry program (POTGEM), version 1
NASA Technical Reports Server (NTRS)
Medan, R. T.; Bullock, R. B.
1976-01-01
A computer program known as POTGEM is reported which has been developed as an independent segment of a three-dimensional linearized, potential flow analysis system and which is used to generate a panel point description of arbitrary, three-dimensional bodies from convenient engineering descriptions consisting of equations and/or tables. Due to the independent, modular nature of the program, it may be used to generate corner points for other computer programs.
Castro, Luis B.; Castro, Antonio S. de
2014-12-15
We point out a misleading treatment in the recent literature regarding confining solutions for a scalar potential in the context of the Duffin–Kemmer–Petiau theory. We further present the proper bound-state solutions in terms of the generalized Laguerre polynomials and show that the eigenvalues and eigenfunctions depend on the solutions of algebraic equations involving the potential parameter and the quantum number.
Mirabelli, Maria C; Wing, Steve; Marshall, Stephen W; Wilcosky, Timothy C
2006-04-01
Previous studies suggest that airborne effluent from swine confined animal feeding operations (CAFOs) may affect the health and quality of life of adults and the prevalence of asthma symptoms among children. To investigate the extent to which public school students may be exposed to airborne effluent from swine CAFOs and to evaluate the association between schools' demographic characteristics and swine CAFO exposures, we assessed the proximity of 226 schools to the nearest swine CAFO and conducted a survey of school employees to identify schools with noticeable livestock odor. We used publicly available information describing the enrollment of each school to assess the association between race and socioeconomic status (SES) and swine CAFO exposure. Odor from livestock was noticeable outside (n = 47, 21%) and inside (n = 19, 8%) school buildings. Schools with < 63% enrollment of white students and > or = 47% of students receiving subsidized lunches at school were located closer to swine CAFOs (mean = 4.9 miles) than were the remaining schools (mean = 10.8 miles) and were more likely to be located within 3 miles of an operation than were schools with high-white/high-SES enrollment (prevalence ratio = 2.63; 95% confidence interval, 1.59-4.33). The prevalence of reported livestock odor varied with SES (low SES, 25%; high SES, 17%). These analyses indicate that the potential for in-school exposure to pollution arising from swine CAFOs in North Carolina and the environmental health risks associated with such exposures vary according to the racial and economic characteristics of enrolled students. PMID:16581551
Global geometry optimization of silicon clusters described by three empirical potentials
NASA Astrophysics Data System (ADS)
Yoo, S.; Zeng, X. C.
2003-07-01
The "basic-hopping" global optimization technique developed by Wales and Doye is employed to study the global minima of silicon clusters Sin(3⩽n⩽30) with three empirical potentials: the Stillinger-Weber (SW), the modified Stillinger-Weber (MSW), and the Gong potentials. For the small-sized SW and Gong clusters (3⩽n⩽15), it is found that the global minima obtained based on the basin-hopping method are identical to those reported by using the genetic algorithm [Iwamatsu, J. Chem. Phys. 112, 10976 (2000)], as well as with those by using molecular dynamics and the steepest-descent quench (SDQ) method [Feuston, Kalia, and Vashishta, Phys. Rev. B 37, 6297 (1988)]. However, for the mid-sized SW clusters (16⩽n⩽20), the global minima obtained differ from those based on the SDQ method, e.g., the appearance of the endohedral atom with fivefold coordination starting at n=17, as opposed to n=19. For larger SW clusters (20⩽n⩽30), it is found that the "bulklike" endohedral atom with tetrahedral coordination starts at n=20. In particular, the overall structural features of SW Si21, Si23, Si25, and Si28 are nearly identical to the MSW counterparts. With the SW Si21 as the starting structure, a geometric optimization at the B3LYP/6-31G(d) level of density-functional theory yields an isomer similar to the ground-state- isomer of Si21 reported by Pederson et al. [Phys. Rev. B 54, 2863 (1996)].
NASA Astrophysics Data System (ADS)
Mandal, Arkajit; Sarkar, Sucharita; Ghosh, Arghya Pratim; Ghosh, Manas
2015-12-01
We make an extensive investigation of total optical absorption coefficient (TOAC) of impurity doped quantum dots (QDs) in presence and absence of Gaussian white noise. The TOAC profiles have been monitored against incident photon energy with special emphasis on the roles played by the electric field, magnetic field, and the dot confinement potential. Presence of impurity also influences the TOAC profile. In general, presence of noise causes enhancement of TOAC over that of noise-free condition. However, the interplay between the noise and the quantities like electric field, magnetic field, confinement potential and impurity potential bring about rich subtleties in the TOAC profiles. The said subtleties are often manifested by the alterations in TOAC peak intensity, extent of TOAC peak bleaching, and value of saturation intensity. The findings reveal some technologically relevant aspects of TOAC for the doped QD systems, specially in presence of noise.
Guo, Rui; Miele, Margherita; Gardner, Elizabeth M; Fournier, Frederic; Kornau, Kathryn M; Gould, Ian R; Klug, David R
2011-01-01
The ability to detect molecular complexes and determine their geometries is crucial to our understanding of all biological phenomena, including protein structures and functions. We recently demonstrated that a novel 2DIR technique, EVV 2DIR spectroscopy, can be used for this purpose. In this paper, we evaluate the potential utility of the method for the analysis of protein composition, structure and function. In order to do this we apply computational tools to a group of selected biological systems, for which our calculated spectra all showed features that can in principle be detected with existing sensitivities. We also investigate the possibility of using our technique to detect and analyse hydrogen-bonded systems through a tyrosine-water model. PMID:22457947
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2003-03-01
For the quasi-relativistic normalized elimination of small component using an effective potential (NESC-EP) method, analytical energy gradients were developed, programmed, and implemented in a standard quantum chemical program package. NESC-EP with analytical gradients was applied to determine geometry, vibrational frequencies, and dissociation enthalpies of ferrocene, tungsten hexafluoride, and tungsten hexacarbonyle. Contrary to non-relativistic calculations and calculations carried out with RECPs for the same compounds, NESC-EP provided reliable molecular properties in good agreement with experiment. The computational power of NESC-EP results from the fact that reliable relativistic corrections are obtained at a cost level only slightly larger than that of a non-relativistic calculation.
NASA Astrophysics Data System (ADS)
Mack, Tobias; Cierpka, Christian; Kähler, Christian J.
2012-11-01
Astigmatism-PTV is a method that allows to measure with a single camera the fully three-dimensional, three-component velocity field. The technique is ideally suited for microfluidic velocity measurements without errors due to in-plane and out-of-plane averaging (Cierpka et al. Meas Scie Tech 21, 2010). Recently it was shown, that the interface between two fluids or the surrounding fluid and droplets or bubbles can be estimated as well with the technique (Rossi et al., Meas Scie Tech 22, 2010). In this contribution the advantages of both techniques are combined to measure the shape of a droplet inside a micro channel along with the internal 3D flow field of the droplet induced by the surrounding fluid. For the current investigation, particles were only distributed within oil-droplets. Therefore the shape of the droplet could be later reconstructed by the volumetric particle positions and the velocity can be estimated tracking the same particles in consecutive frames of the same dataset. The procedure allows the simultaneous determination of the shape and the droplet velocity as well as the inner flow field and offers a great potential for current research.
Deforming baryons into confining strings
NASA Astrophysics Data System (ADS)
Hartnoll, Sean A.; Portugues, Rubén
2004-09-01
We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nuñez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in N=1 gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G2 holonomy M theory background. The relation between these deformed baryons and confining strings is not as straightforward.
NASA Astrophysics Data System (ADS)
Gustin, C.; Faniel, S.; Hackens, B.; Bayot, V.; de Poortere, E.; Shayegan, M.
2002-03-01
We report on the low temperature magnetoresistance of various quantum billiards, each with a different shape of the 2DEG (two-dimensional electron gas) confinement potential. The structures are patterned by electron beam lithography on three different high mobility GaAs/AlGaAs samples, namely a single heterojunction and two quantum wells with widths of 150 and 450Årespectively. By means of electrostatic gates, both the electron density and the shape of the billiard can be controlled, as well as the finite thickness of the 2DEG in the case of the wide quantum well. We discuss the results of low temperature magnetotransport measurements with the open dots subject to an phin-situ tilted magnetic field. More specifically we investigate the influence of the symmetry-asymmetry of the 2DEG confinement potential on the statistics of the universal conductance fluctuations (UCF).
Baldwin, David E.; Logan, B. Grant
1981-01-01
The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequency of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technological state of the art required, and the capital cost are all greatly lowered.
Baldwin, D.E.; Logan, B.G.
The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.
Thallmair, Sebastian; Roos, Matthias K; de Vivie-Riedle, Regina
2016-06-21
Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstrated for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence. PMID:27334151
NASA Astrophysics Data System (ADS)
Thallmair, Sebastian; Roos, Matthias K.; de Vivie-Riedle, Regina
2016-06-01
Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstrated for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence.
Davidson, R. L.; Earle, G. D.; Heelis, R. A.; Klenzing, J. H.
2010-08-15
Planar retarding potential analyzers (RPAs) have been utilized numerous times on high profile missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellite Program to measure plasma composition, temperature, density, and the velocity component perpendicular to the plane of the instrument aperture. These instruments use biased grids to approximate ideal biased planes. These grids introduce perturbations in the electric potential distribution inside the instrument and when unaccounted for cause errors in the measured plasma parameters. Traditionally, the grids utilized in RPAs have been made of fine wires woven into a mesh. Previous studies on the errors caused by grids in RPAs have approximated woven grids with a truly flat grid. Using a commercial ion optics software package, errors in inferred parameters caused by both woven and flat grids are examined. A flat grid geometry shows the smallest temperature and density errors, while the double thick flat grid displays minimal errors for velocities over the temperature and velocity range used. Wire thickness along the dominant flow direction is found to be a critical design parameter in regard to errors in all three inferred plasma parameters. The results shown for each case provide valuable design guidelines for future RPA development.
NASA Astrophysics Data System (ADS)
Zhang, Xianren; Wang, Wenchuan
2006-12-01
In this work the effects of the wall-fluid interaction on the critical point shift are studied by using a discrete and attractive wall-fluid interaction and density functional theory. In contrast to the previous assumption, it is found that the dependence of critical temperature shift on the wall-fluid interaction does not simply show a monotonic manner, but increases with the strength of the interaction for weak surfaces, then decreases for strong surfaces. The similar trend holds for the systems with different fluid-fluid interactions and different confined spaces. Unlike the capillary critical temperature, the critical density of square-well fluids in a confined space increases monotonically as the wall-fluid interaction becomes more attractive.
Strongly confined fluids: Diverging time scales and slowing down of equilibration
NASA Astrophysics Data System (ADS)
Schilling, Rolf
2016-06-01
The Newtonian dynamics of strongly confined fluids exhibits a rich behavior. Its confined and unconfined degrees of freedom decouple for confinement length L →0 . In that case and for a slit geometry the intermediate scattering functions Sμ ν(q ,t ) simplify, resulting for (μ ,ν )≠(0 ,0 ) in a Knudsen-gas-like behavior of the confined degrees of freedom, and otherwise in S∥(q ,t ) , describing the structural relaxation of the unconfined ones. Taking the coupling into account we prove that the energy fluctuations relax exponentially. For smooth potentials the relaxation times diverge as L-3 and L-4, respectively, for the confined and unconfined degrees of freedom. The strength of the L-3 divergence can be calculated analytically. It depends on the pair potential and the two-dimensional pair distribution function. Experimental setups are suggested to test these predictions.
Edge states in confined active fluids
NASA Astrophysics Data System (ADS)
Souslov, Anton; Vitelli, Vincenzo
Recently, topologically protected edge modes have been proposed and realized in both mechanical and acoustic metamaterials. In one class of such metamaterials, Time-Reversal Symmetry is broken, and, to achieve this TRS breaking in mechanical and acoustic systems, an external energy input must be used. For example, motors provide a driving force that uses energy and, thus, explicitly break TRS. As a result, motors have been used as an essential component in the design of topological metamaterials. By contrast, we explore the design of topological metamaterials that use a class of far-from-equilibrium liquids, called polar active liquids, that spontaneously break TRS. We thus envision the confinement of a polar active liquid to a prescribed geometry in order to realize topological order with broken time-reversal symmetry. We address the design of the requisite geometries, for example a regular honeycomb lattice composed of annular channels, in which the active liquid may be confined. We also consider the physical character of the active liquid that, when introduced into the prescribed geometry, will spontaneously form the flow pattern of a metamaterial with topologically protected edge states. Finally, we comment on potential experimental realizations of such metamaterials.
NASA Astrophysics Data System (ADS)
Cunningham, K. J.; Walker, C.; Westcott, R. L.
2011-12-01
Continuous improvements in shallow-focused, high-resolution, marine seismic-reflection technology has provided the opportunity to evaluate geologic structures that breach confining units of the Floridan aquifer system within the southeastern Florida Platform. The Floridan aquifer system is comprised mostly of Tertiary platform carbonates. In southeastern Florida, hydrogeologic confinement is important to sustainable use of the Floridan aquifer system, where the saline lower part is used for injection of wastewater and the brackish upper part is an alternative source of drinking water. Between 2007 and 2011, approximately 275 km of 24- and 48-channel seismic-reflection profiles were acquired in canals of peninsular southeastern Florida, Biscayne Bay, present-day Florida shelf margin, and the deeply submerged Miami Terrace. Vertical to steeply dipping offsets in seismic reflections indicate faults, which range from Eocene to possible early Pliocene age. Most faults are associated with karst collapse structures; however, a few tectonic faults of early Miocene to early Pliocene age are present. The faults may serve as a pathway for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability in the Floridan aquifer system. The faults may collectively produce a regional confinement bypass system. In early 2011, twenty seismic-reflection profiles were acquired near the Key Biscayne submarine sinkhole located on the seafloor of the Miami Terrace. Here the water depth is about 365 m. A steeply dipping (eastward) zone of mostly deteriorated quality of seismic-reflection data underlies the sinkhole. Correlation of coherent seismic reflections within and adjacent to the disturbed zone indicates a series of faults occur within the zone. It is hypothesized that upward movement of groundwater within the zone contributed to development of a hypogenic karst system and the resultant overlying sinkhole
Fractional statistics and confinement
NASA Astrophysics Data System (ADS)
Gaete, P.; Wotzasek, C.
2005-02-01
It is shown that a pointlike composite having charge and magnetic moment displays a confining potential for the static interaction while simultaneously obeying fractional statistics in a pure gauge theory in three dimensions, without a Chern-Simons term. This result is distinct from the Maxwell-Chern-Simons theory that shows a screening nature for the potential.
NASA Astrophysics Data System (ADS)
Pal, Hridis Kumar; Shukla, Alok
2008-08-01
A set of weakly interacting spin- 1/2 > Fermions, confined by a harmonic oscillator potential, and interacting with each other via a contact potential, is a model system which closely represents the physics of a dilute gas of two-component fermionic atoms confined in a magneto-optic trap. In the present work, our aim is to present a Fortran 90 computer program which, using a basis set expansion technique, solves the Hartree-Fock (HF) equations for spin- 1/2 > Fermions confined by a three-dimensional harmonic oscillator potential, and interacting with each other via pair-wise delta-function potentials. Additionally, the program can also account for those anharmonic potentials which can be expressed as a polynomial in the position operators x, y, and z. Both the restricted-HF (RHF), and the unrestricted-HF (UHF) equations can be solved for a given number of Fermions, with either repulsive or attractive interactions among them. The option of UHF solutions for such systems also allows us to study possible magnetic properties of the physics of two-component confined atomic Fermi gases, with imbalanced populations. Using our code we also demonstrate that such a system exhibits shell structure, and follows Hund's rule. Program summaryProgram title: trap.x Catalogue identifier: AEBB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 17 750 No. of bytes in distributed program, including test data, etc.: 205 138 Distribution format: tar.gz Programming language: mostly Fortran 90 Computer: PCs—SUN, HP Alpha, IBM Operating system: Linux, Solaris, Tru64, AIX Classification: 7.7 Nature of problem: The simplest description of a spin 1/2 >; trapped system at the mean field level is given by the Hartree-Fock method. This
Guzowski, R.V.; Newman, G.
1993-12-01
The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.
Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman
2014-03-01
We study the coupled effect of electrokinetic phenomena and fluid rheology in altering the induced streaming potential in narrow fluidic confinements, which is manifested by establishing a time periodic pressure-driven flow in presence of electrical double layer phenomenon. However, in sharp contrast with reported literature, we take into account nonelectrostatic ion-ion interactions toward estimating the same in addition to electrostatic interactions and steric effects. We employ power law based rheological model for estimating the induced streaming potential. We bring out an intricate interaction between nonelectrostatic interactions and fluid rheology on the concerned electrokinetic phenomena, bearing immense consequences toward designing of integrated lab-on-a-chip-based microdevices and nanodevices. PMID:24132646
Kinetics of Diffusing Polymer Encounter in Confined Cellular Microdomains
NASA Astrophysics Data System (ADS)
Amitai, A.; Kupka, I.; Holcman, D.
2013-12-01
We study the mean first time that two monomers, located on the same polymer, encounter in a confined microdomain. Approximating the confined geometry by a harmonic potential well, we obtain an asymptotic expression for the mean first encounter time (MFETC) as a function of the radius ɛ around one monomer. By studying the end-to-end distance of the polymer in a ball using the Edwards' formalism, we derive an other estimation of the MFETC. We validate the asymptotic formulas using Brownian simulations and derive their range of validity in terms of the polymer length. We apply the present models to compute the mean time for a gene located far away from a promoter site to be activated during looping in confined genomic territories.
Liang, Yawei; Xu, Limin; Zhou, Yinglin; Zhang, Xinxiang; Huang, Jianbin; Yan, Yun
2013-10-14
Currently there is intense interest in decreasing the operating potential for hydrogen evolution in water electrolysis to considerably decrease the energy cost. In this work we report a significant decrease of the operating potential for hydrogen evolution from neutral water mediated by an iron based soft coordination polymer (Fe(III)-SCSP). The creation of a local acidic environment with a thickness in the range of ~40 nm on the surface of a glassy carbon electrode allows enrichment of H(+) on the GCE, so that the operating potentials were effectively decreased. This strategy thus generates a new paradigm for lowering the operating potential of hydrogen generation from neutral water without the use of additional acids and organic cosolvents. PMID:23949627
NASA Astrophysics Data System (ADS)
Koenig, Anne; Planat-Chrétien, Anne; Coutard, Jean-Guillaume; Hervé, Lionel; Brambilla, Marco; Josserand, Véronique; Coll, Jean-Luc; Dinten, Jean-Marc
2011-03-01
An instrument dedicated to the co-registration of optical and X-ray measurements is presented: specific acquisition protocol and reconstruction software have been developed for carrying out fluorescence diffuse optical tomography in a cylindrical geometry consistent with XCT. Actual animal geometry provided by the X-ray tomography is used to give animal boundaries to the diffuse optical tomography reconstruction algorithm. To evaluate performances of this new optical imaging system, experiments have been conducted on phantoms, mice with fluorescent capillaries, and finally on mice bearing tumors. The fluorescence reconstructions are shown to be geometrically consistent with X-ray ones. We determined that the sensibility limit of the system to detect fluorescence signal over intrinsic ones is 2 pmol for lungs area and 5 pmol for the abdomen area.
Energies and densities of electrons confined in elliptical and ellipsoidal quantum dots.
Halder, Avik; Kresin, Vitaly V
2016-10-01
We consider a droplet of electrons confined within an external harmonic potential well of elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the effective Bohr radius, the dominant contribution to average system parameters in the Thomas-Fermi approximation comes from the potential energy terms, which allows us to derive expressions describing the electron droplet's shape and dimensions, its density, total and capacitive energy, and chemical potential. The analytical results are in very good agreement with experimental data and numerical calculations, and make it possible to follow the dependence of the properties of the system on its parameters (the total number of electrons, the axial ratios and curvatures of the confinement potential, and the dielectric constant of the material). An interesting feature is that the eccentricity of the electron droplet is not the same as that of its confining potential well. PMID:27502044
NASA Astrophysics Data System (ADS)
Ducharme, R.; da Paz, I. G.
2016-08-01
In two recent papers exact Hermite-Gaussian solutions to relativistic wave equations were obtained for both electromagnetic and particle beams. The solutions for particle beams correspond to those of the Schrödinger equation in the nonrelativistic limit. Here, it will be shown that each beam particle has additional 4-momentum resulting from transverse localization compared to a free particle traveling in the same direction as the beam with the same speed. This will be referred to as the quantum 4-potential term since it will be shown to play an analogous role in relativistic Hamiltonian quantum mechanics as the Bohm potential in the nonrelativistic quantum Hamilton-Jacobi equation. Low-order localization effects include orbital angular momentum, Gouy phase, and beam spreading. Toward a more systematic approach for calculating localization effects at all orders, it will be shown that both the electromagnetic and quantum 4-potentials couple into the canonical 4-momentum of a particle in a similar way. This offers the prospect that traditional methods used to calculate the affect of an electromagnetic field on a particle can now be adapted to take localization effects into account. The prospects for measuring higher order quantum 4-potential related effects experimentally are also discussed alongside some questions to challenge the quantum information and quantum field theorists.
Code of Federal Regulations, 2012 CFR
2007-09-06
... bacterial pathogens like salmonella. Wetlands created from swine waste-water effluent had 5-50 fold greater... Contamination from Animal Waste 228 Farmers for Clean Air & Water, Inc 229 EXAMINATION OF THE POTENTIAL HUMAN... while trying to save him. The waste can increase phosphorus levels in water, causing algal blooms...
NASA Astrophysics Data System (ADS)
Belich, H.; Bakke, K.
2016-03-01
The behavior of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string space-time is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor (KF)μναβ. Then, by introducing a scalar potential as a modification of the mass term of the Klein-Gordon equation, it is shown that the Klein-Gordon equation in the cosmic string space-time is modified by the effects of the Lorentz symmetry violation backgrounds and bound state solution to the Klein-Gordon equation can be obtained.
Manipulation of gel emulsions by variable microchannel geometry.
Surenjav, Enkhtuul; Priest, Craig; Herminghaus, Stephan; Seemann, Ralf
2009-01-21
In this article we investigate the morphology and manipulation of monodisperse emulsions at high dispersed phase volume fractions (gel emulsions) in a microfluidic environment. Confined monodisperse gel emulsions self-organize into well-ordered droplet arrangements, which may be stable or metastable, depending on the geometry of the confining microchannel. Three arrangements are considered, in which the droplets are aligned in a single file, a two row, or a three row arrangement. We explore the potential for induced transitions between these distinct droplet arrangements as a tool for droplet-based microfluidic processing. Transitions are readily achieved by means of localized (geometrical) features in channel geometry, however the onset of the transition is strongly dependent on the subtleties of the microfluidic system, e.g. volume fraction, droplet size, and feature dimensions. The transitions can be achieved via fixed channel features or, when the continuous phase is a ferrofluid, by a virtual channel constriction created using a magnetic field. PMID:19107292
Experimental study of flame propagation in semiconfined geometries with obstacles
Urtiew, P. A.; Brandeis, J.; Hogan, W. J.
1982-02-08
Accidents in which large quantities of liquefied natural gas (LNG) or other combustible materials are spilled can potentially lead to disastrous consequences, especially if the dispersing combustible cloud finds a suitable ignition source. So far, very little is known about the detailed behavior of a large burning cloud. Full-scale experiments are economically prohibitive, and therefore one must rely on laboratory and field experiments of smaller size, scaling up the results to make predictions about larger spill accidents. In this paper we describe our laboratory-scale experiments with a combustible propane/air mixture in various partially confined geometries. We summarize the experimental results and compare them with calculated results based on numerical simulations of the experiments. Our observations suggest that the geometry of the partial confinement is of primary importance; turbulence-producing obstacles can cause acceleration in the flame front and, more important, can cause a faster burnout of the combustible vapor.
Summhammer, Johann; Salari, Vahid; Bernroider, Gustav
2012-06-01
Voltage-gated channel proteins cooperate in the transmission of membrane potentials between nerve cells. With the recent progress in atomic-scaled biological chemistry, it has now become established that these channel proteins provide highly correlated atomic environments that may maintain electronic coherences even at warm temperatures. Here we demonstrate solutions of the Schrödinger equation that represent the interaction of a single potassium ion within the surrounding carbonyl dipoles in the Berneche-Roux model of the bacterial KcsA model channel. We show that, depending on the surrounding carbonyl-derived potentials, alkali ions can become highly delocalized in the filter region of proteins at warm temperatures. We provide estimations on the temporal evolution of the kinetic energy of ions depending on their interaction with other ions, their location within the oxygen cage of the proteins filter region, and depending on different oscillation frequencies of the surrounding carbonyl groups. Our results provide the first evidence that quantum mechanical properties are needed to explain a fundamental biological property such as ion selectivity in transmembrane ion currents and the effect on gating kinetics and shaping of classical conductances in electrically excitable cells. PMID:22744820
NASA Astrophysics Data System (ADS)
Jido, Daisuke; Sakashita, Minori
2016-08-01
The possibility of having a diquark configuration in heavy baryons, such as Λ and Λ, is examined by a nonrelativistic potential model with a heavy quark and a light scalar diquark. Assuming that the Λ and Λ baryons are composed of the heavy quark and the point-like scalar-isoscalar ud diquark, we solve the two-body Schrödinger equation with the Coulomb plus linear potential and obtain the energy spectra for the heavy baryons. Contrary to our expectation, it is found that the potential determined by the quarkonium spectra fails to reproduce the excitation spectra of the Λ and Λ in the quark-diquark picture, while the Λ and Λ spectra are reproduced with half the strength of the confinement string tension than for the quarkonium. The finite size effect of the diquark is also examined and it is found that the introduction of a finite size diquark would resolve the failure of the spectrum reproduction. The Ξ excitation energy is also calculated and is found to be smaller than Λ in the quark-diquark model. This is not consistent with experimental observations.
Anisotropic de Gennes Narrowing in Confined Fluids
NASA Astrophysics Data System (ADS)
Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy
2016-04-01
The collective diffusion of dense fluids in spatial confinement is studied by combining high-energy (21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk. The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in confinement are anisotropic. These experimental observations are essential in order to develop a microscopic theoretical description of collective diffusion of dense fluids in confined geometries.
Rosenfeld, M; Tanami, R; Abboud, S
1996-07-01
The integral conservation equation for biological volume conductors with general geometry and arbitrary distribution of electrical conductivity is solved using a finite volume method. An effective conductivity was defined for the boundaries between regions with abrupt change of the conductivity to allow the simultaneous solution of the entire domain although the derivatives are not continuous. The geometrical singularities arising from the spherical topology of the coordinate system are removed using the conservation law. The resulting finite volume solution method is efficient both in central processing unit (CPU) time and memory requirements, allowing the solution of the volume conductor equation using a large number of mesh points (of the order of 10(5)) even on small workstations (like SGI Indigo). It results in very accurate solutions, as several comparisons with analytical solutions of head models reveal. The proposed finite volume method is an attractive alternative to the finite element and boundary element methods that are more common in bioelectric applications. PMID:9216139
Geng, Dongsheng; Ding, Ning; Hor, T S Andy; Chien, Sheau Wei; Liu, Zhaolin; Zong, Yun
2015-10-01
With new chemistry and advantageous configuration, the lithium-oxygen (Li-O2) battery promises a much higher specific energy than traditional lithium-ion batteries. The limited understanding on the complicated battery reactions therein, however, has become a major bottleneck of its development for applications requiring a high energy efficiency and long cycle-life. Herein, in a confined potential window with negligible electrolyte degradation, we studied the rechargeability of Li-O2 cathodes with pre-filled well-defined discharge products of Li2O2, Li2CO3, LiOH, or their combinations. Our results suggest Li2CO3 as the most difficult species to be electrochemically decomposed among the three lithium compounds, whereas the presence of LiOH notably increases the initial charge potential. The clearly visible difference in the charge behavior and cycling stability of these artificially "discharged" electrodes provides a guideline for the development of future high-performance Li-O2 batteries. PMID:26011604
NASA Astrophysics Data System (ADS)
Maher, K.; Druhan, J. L.; Vialle, S.; Benson, S. M.; Agarwal, A.
2013-12-01
Long-term storage of anthropogenic CO2 in the subsurface generally assumes that caprock formations will serve as physical barriers to upward migration of CO2. Stability and coherence of the caprocks are thus important criteria for site selection, but caprock integritycannot be guaranteed with total certainty over the lifetime of the project. As a result, carbon capture and storage projects require reliable techniques to monitor geologic storage sites for newly formed leaks, and the ability to rapidly deploy mitigation measures should leakage occur. Here, we present two-dimensional reactive transport simulations to evaluate the hydrogeochemical characteristics of a newly formed CO2 leak into an overlying reservoir. Simulations use the ToughReact multi-component reactive transport code and hypothetical reservoir characteristics. We focus on the comparatively short time period of days to months following formation of the leak to consider (1) geochemical shifts in formation water indicative of the leak, (2) hydrodynamics of pumping wells in the vicinity of the leak, and (3) delivery of a sealant to the leak through an adjacent well bore. Our results suggest that characteristic shifts in pH and dissolved inorganic carbon might be detected in down-gradient mentoring wells prior to the breakthrough of CO2, and could offer a potential means of identifying small and newly formed leaks. Injecting water into the aquifer through pumping wells in the vicinity of the leak provides a hydrodynamic control that can prevent CO2 from reaching the top of the reservoir, but this action will likely have only minor influence on the rate of leakage through the caprock defect. Injection of a hypothetical sealant through an adjacent pumping well is considered using an aqueous solute with pH-dependent equilibrium constraints such that the species is soluble in the basic pH range but forms a precipitate at neutral to acidic pH conditions associated with CO2-rich water. Injection of this
NASA Astrophysics Data System (ADS)
Amitai, A.; Holcman, D.
2013-06-01
Is it possible to extract the size and structure of chromosomal territories (confined domain) from the encounter frequencies of chromosomal loci? To answer this question, we estimate the mean time for two monomers located on the same polymer to encounter, which we call the mean first encounter time in a confined microdomain (MFETC). We approximate the confined domain geometry by a harmonic potential well and obtain an asymptotic expression that agrees with Brownian simulations for the MFETC as a function of the polymer length, the radius of the confined domain, and the activation distance radius ɛ at which the two searching monomers meet. We illustrate the present approach using chromosome capture data for the encounter rate distribution of two loci depending on their distances along the DNA. We estimate the domain size that restricts the motion of one of these loci for chromosome II in yeast.
Elmo bumpy square plasma confinement device
Owen, L.W.
1985-01-01
The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.
Confined helium on Lagrange meshes.
Baye, D; Dohet-Eraly, J
2015-12-21
The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results. PMID:25732054
NASA Astrophysics Data System (ADS)
Oglesby, David D.; Mai, P. Martin
2012-03-01
Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.
Confinement from spontaneous breaking of scale symmetry
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Guendelman, Eduardo
2006-09-01
We show that one can obtain naturally the confinement of static charges from the spontaneous symmetry breaking of scale invariance in a gauge theory. At the classical level a confining force is obtained and at the quantum level, using a gauge invariant but path-dependent variables formalism, the Cornell confining potential is explicitly obtained. Our procedure answers completely to the requirements by 't Hooft for "perturbative confinement".
NASA Astrophysics Data System (ADS)
Zemánek, Pavel; Šiler, Martin; Brzobohatý, Oto; Jákl, Petr; Filip, Radim
2016-06-01
The noise-to-signal transitions belong to an exciting group of processes in physics. In Filip and Zemánek (2016, J. Opt. 18 065401) we theoretically analyse the stochastic noise-to-signal transition of overdamped Brownian motion of a particle in the cubic potential. In this part, we propose a feasible experimental setup for a proof-of-principle experiment that uses methods of optical trapping in shaped laser beams which provide cubic and quadratic potentials. Theoretical estimates and results from the numerical simulations indicate that the noise-to-signal transition can be observed under realistic experimental conditions.
Oie, Tetsuro
1980-07-28
A purpose of the present studies is twofold: (1) development of an empirical potential function (EDF) and (2) application of it to the studies of photoreaction center chlorophyll a dimer. The reliable estimate of geometric structures and energies of large molecules by quantum mechanical methods is not possible at the present time. An alternative method is, therefore, needed for the studies of large molecular systems, and Chapter I is dedicated to the development of this tool, i.e., an empirical potential function, which could suffice this purpose. Because of a large number of variable chemical compositions and functional groups characteristically present in a large molecule, it is important to include a large number of structurally diverse molecules in the development of the EPF. In Chapter II, the EPF is applied to study the geometrical structure of a chlorophyll a (Ch1 a) dimer, which is believed to exist at the photoreaction center of green plants and is known to play an essential role in photosynthetic energy conversion. Although various models have been proposed for this dimer structure, there is still a great need for information concerning the detailed geometric structure of this dimer. Therefore, in this chapter the structural stabilities of various dimer models are examined by the EPF, and detailed and quantitative information on the structure and stability of these models is provided.
Oie, Tetsuro
1980-01-01
A purpose of the present studies is twofold: (1) development of an empirical potential function (EPF) and (2) application of it to the studies of photoreaction center chlorophyll a dimer. The reliable estimate of geometric structures and energies of large molecules by quantum mechanical methods is not possible at the present time. An alternative method is, therefore, needed for the studies of large molecular systems, and Chapter I is dedicated to the development of this tool, i.e., an empirical potential function, which could suffice this purpose. Because of a large number of variable chemical compositions and functional groups characteristically present in a large molecule, it is important to include a large number of structurally diverse molecules in the development of the EPF. In Chapter II, the EPF is applied to study the geometrical structure of a chlorophyll a (Chl a) dimer, which is believed to exist at the photoreaction center of green plants and is known to play an essential role in photosynthetic energy conversion. Although various models have been proposed for this dimer structure, there is still a great need for information concerning the detailed geometric structure of this dimer. Therefore, in this chapter the structural stabilities of various dimer models are examined by the EPF, and detailed and quantitative information on the structure and stability of these models is provided.
Alternative approaches to plasma confinement
NASA Technical Reports Server (NTRS)
Roth, J. R.
1977-01-01
The potential applications of fusion reactors, the desirable properties of reactors intended for various applications, and the limitations of the Tokamak concept are discussed. The principles and characteristics of 20 distinct alternative confinement concepts are described, each of which may be an alternative to the Tokamak. The devices are classed as Tokamak-like, stellarator-like, mirror machines, bumpy tori, electrostatically assisted, migma concept, and wall-confined plasma.
Li, Jun; Kathmann, Shawn M.; Schenter, Gregory K.; Gutowski, Maciej S.
2007-02-07
Boron-nitrogen-hydrogen (BNHx) materials are polar analogs of hydrocarbons with potential applications as media for hydrogen storage. As H(NH₂BH₂)nH oligomers result from dehydrogenation of NH₃BH₃ and NH₄BH₄ materials, understanding the geometries, stabilities, and electronic structure of these oligomers is essential for developing chemical methods of hydrogen release and regeneration of the BNHx-based hydrogen storage materials. In this work we have performed computational modeling on the H(NH₂BH₂)nH (n = 1 – 6) oligomers using density functional theory (DFT). We have investigated linear chain structures and the stabilizing effects of coiling, biradicalization, and branching through Car-Parrinello molecular dynamics simulations and geometry optimizations. We find that the zig-zag linear oligomers are unstable with respect to the coiled, square-wave chain, and branched structures, with the coiled structures being the most stable. Dihydrogen bonding in oligomers, where protic Hδ⁺(N) hydrogens interact with hydridic Hδ⁻(B) hydrogens, plays a crucial role in stabilizing different isomers and conformers. The results are consistent with structures of products that are seen in experimental NMR studies of dehydrogenated ammonia borane.
A Review of Quantum Confinement
Connerade, Jean-Patrick
2009-12-03
A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker - henceforth cited as SW - in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell. The
Omogo, Benard; Gao, Feng; Bajwa, Pooja; Kaneko, Mizuho; Heyes, Colin D
2016-04-26
Currently, the most common way to reduce blinking in quantum dots (QDs) is accomplished by using very thick and/or perfectly crystalline CdS shells on CdSe cores. Ideally, a nontoxic material such as ZnS is preferred to be the outer material in order to reduce environmental and cytotoxic effects. Blinking suppression with multishell configurations of CdS and ZnS has been reported only for "giant" QDs of 15 nm or more. One of the main reasons for the limited progress is that the role that interfacial trap states play in blinking in these systems is not very well understood. Here, we show a "Goldilocks" effect to reduce blinking in small (∼7 nm) QDs by carefully controlling the thicknesses of the shells in multishell QDs. Furthermore, by correlating the fluorescence lifetime components with the fraction of time that a QD spends in the on-state, both with and without applying a threshold, we found evidence for two types of blinking that separately affect the average fluorescence lifetime of a single QD. A thorough characterization of the time-resolved fluorescence at the ensemble and single-particle level allowed us to propose a detailed physical model involving both short-lived interfacial trap states and long-lived surface trap states that are coupled. This model highlights a strategy of reducing QD blinking in small QDs by balancing the magnitude of the induced lattice strain, which results in the formation of interfacial trap states between the inner shell and the outer shell, and the confinement potential that determines how accessible the interfacial trap states are. The combination of reducing blinking while maintaining a small overall QD size and using a Cd-free outer shell of ZnS will be useful in a wide array of applications, particularly for advanced bioimaging. PMID:27058120
NASA Astrophysics Data System (ADS)
Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.
1981-09-01
Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.
ERIC Educational Resources Information Center
Desseyn, H. O.; And Others
1985-01-01
Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…
NASA Astrophysics Data System (ADS)
Magalhães, José; Barbosa, José; Ribeiro, Vanessa; Oliveira, Jefferson; Filho, Osvaldo; Buarque, Bruno
2016-04-01
The study region encompasses a set of three basins located at Northeast Brazilian continental margin: Pernambuco (south sector), Paraíba and Natal platform (north sector). These basins were formed during the last stage of separation between South America and African plates during Cretaceous. The continental breakup in these regions occurred probably during the Middle-Upper Albian (~102 m.y). The adjacent basement rocks belong to Borborema Province (BP), which was formed due a complex superposition between Pre-Cambrian orogenic cycles. The structural framework of BP is dominated by large shear zones that divided this province in three main tectonic domains: South, Central and North. The Pernambuco Basin is located in the South Domain and the Paraíba and Natal platform basins are related to the Central Domain. The tectonic and magmatic evolution of the Pernambuco Basin was influenced by oblique rifting (~ 35° to rift axis) and a thermal anomaly probably caused by the Santa Helena hotspot. The north sector represents a continental shelf characterized by basement high with a narrow platform and an abrupt shelf break on transition to the abyssal plain. The continental platform break of this sector was parallel to the rift axis. In this way, we present a regional structural interpretation of these sectors of Brazilian rifted margin based on interpretation and 2D forward modeling of potential field and 2D seismic data. The magnetic maps (Reduction to magnetic pole and Analytic signal) revealed the influence of an alternating pattern of large narrow magnetic and non-magnetic lineaments, oriented NE-SW, E-W and NW-SE. In the Pernambuco Basin these lineaments (NE-SW and E-W) are related to shear zones in the hyperextended basement which is interpreted as a continuation of the granitic-gneissic and metasedimentary rocks of the South Domain of BP. The Paraíba and Natal platform basins show a slight change in the orientation of structures trending E-W (shear zones in
CCSD(T) calculations of stabilities and properties of confined systems
Holka, F.; Urban, M.; Melicherčík, M.; Neogrády, P.; Paldus, J.
2015-01-22
We analyze energies, electron affinities and polarizabilities of small anions exposed to an external confinement. The second electron in free O{sup 2−} and S{sup 2−} anions is unbound. We investigate the stabilizing effect of the spherical harmonic-oscillator confining potential ω. on these anions employing the Hartree-Fock stability analysis as introduced by Čížek and Paldus. With increasing strength of the external harmonic-oscillator confinement potential ω the broken symmetry (BS) solutions are systematically eliminated. For ω larger than 0.1 all BS solutions for O{sup 2−} disappear. For ω larger than 0.13 the CCSD(T) energy of O{sup 2−} becomes more negative than the energy of the singly charged O{sup −} anion. We relate the harmonic-oscillator confining potential to a crystalline environment in which the O{sup 2−} and S{sup 2−} anions are stable. We also present a model allowing calculations of the in-crystal polarizabilities of anions. The model is based on CCSD(T) calculations of static polarizabilities of selected anions exposed to the spherical harmonic-oscillator confining potential ω This artificial confinement potential ω is then related to the ionic radii of the cation in representative crystal lattices. We investigate the polarizability of O{sup 2−} and S{sup 2−} anions in MgO, MgS, CaO, CaS, SrO, SrS, BaO and BaS crystals. We compare our results with alternative models for in-crystal polarizabilities. External confinement also stabilizes the uracil anion U{sup −}, as is shown by calculations with a stepwise micro-hydration of U{sup −}. Upon hydration is the CCSD(T) adiabatic electron affinity (AEA) of uracil enhanced by about 250 up to 570 meV in comparison with AEA of the isolated molecule, depending on the geometry of the hydrated uracil anion complex. We tried to find an analogy of the stabilization effect of the external confinement on the otherwise unstable anions. In uracil and its anion is the external
NASA Astrophysics Data System (ADS)
Cembranos, J. A. R.; Dobado, A.; Maroto, A. L.
Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space-time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.
Numerical analysis of seismoelectromagnetic field conversion at confined geological units
NASA Astrophysics Data System (ADS)
Kroeger, B.; Kemna, A.
2010-12-01
It is well known that at material boundaries in fluid-saturated porous media, an incoming seismic wave can give rise to electric and magnetic fields due to electrokinetic coupling effects. Given its sensitivity to rock parameters governing fluid flow, this so-called seismoelectromagnetic (or seismoelectric, if only the electric field is considered) interface response is of strong interest with a view to hydro geophysical and petroleum exploration applications. However, the understanding of the correspondence of the converting interface geometry on the one hand and electric and magnetic field characteristics on the other hand is still poor. By means of two-dimensional finite-element modeling in the time domain, we here investigate the character of the seismoelectromagnetic interface response for the special case of spatially confined geological units, which may be representative for clay lenses embedded in an aquifer or petroleum deposits in a host rock. In the numerical analysis we consider the interface response generated by both compressional and shear wave. The modeling results, which are analyzed in terms of snapshots, time slices, and electro and magneto grams, reveal a significant influence of the confined geological units on the generation and character of the seismoelectro-magnetic interface response. The different conversion patterns can be attributed to the induced streaming currents at the interfaces caused by the oscillation of the seismic body waves. Pattern analysis of the interface responses is done with a view to an improved qualitative understanding of their spatio-temporal occurrence and evolution relative to the geometry of the converting interfaces. Our time-lapse simulations illustrate that the seismoelectromagnetic interface response captures characteristics of the geometry of the converting geological unit, indicating the potential of the seismoelectromagnetic method in particular for exploration of confined targets.
Hydrogen-bonded complexes upon spatial confinement: structural and energetic aspects.
Lipkowski, Paweł; Kozłowska, Justyna; Roztoczyńska, Agnieszka; Bartkowiak, Wojciech
2014-01-28
In the present study we consider structural and energetic aspects of spatial confinement of the H-bonded systems. The model dimeric systems: HF···HF, HCN···HCN and HCN···HCCH have been chosen for a case study. Two-dimensional harmonic oscillator potential, mimicking a cylindrical confinement, was applied in order to render the impact of orbital compression on the analyzed molecular complexes. The calculations have been performed employing the MP2 method as well as the Kohn-Sham formulation of density functional theory. In the latter case, two exchange-correlation potentials have been used, namely B3LYP and M06-2X. The geometries of studied complexes have been optimized (without any constraints) in the presence of the applied model confining potential. A thorough analysis of topological parameters characterizing hydrogen bonds upon orbital compression has been performed within the Quantum Theory of Atoms in Molecules (QTAIM). Furthermore, an energetic analysis performed for the confined H-bonded complexes has shown a different trend in the interaction energy changes. Additionally, a variational-perturbational decomposition scheme was applied to study the interaction energy components in the presence of spatial confinement. PMID:24296646
Current-induced skyrmion dynamics in constricted geometries.
Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto
2013-10-01
Magnetic skyrmions--vortex-like swirling spin structures with a quantized topological number that are observed in chiral magnets--are appealing for potential applications in spintronics because it is possible to control their motion with ultralow current density. To realize skyrmion-based spintronic devices, it is essential to understand skyrmion motions in confined geometries. Here we show by micromagnetic simulations that the current-induced motion of skyrmions in the presence of geometrical boundaries is very different from that in an infinite plane. In a channel of finite width, transverse confinement results in steady-state characteristics of the skyrmion velocity as a function of current that are similar to those of domain walls in ferromagnets, whereas the transient behaviour depends on the initial distance of the skyrmion from the boundary. Furthermore, we show that a single skyrmion can be created by an electric current in a simple constricted geometry comprising a plate-shaped specimen of suitable size and geometry. These findings could guide the design of skyrmion-based devices in which skyrmions are used as information carriers. PMID:24013132
Anisotropic de Gennes Narrowing in Confined Fluids.
Nygård, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy
2016-04-22
The collective diffusion of dense fluids in spatial confinement is studied by combining high-energy (21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk. The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in confinement are anisotropic. These experimental observations are essential in order to develop a microscopic theoretical description of collective diffusion of dense fluids in confined geometries. PMID:27152823
Longitudinal response of confined semiflexible polymers
NASA Astrophysics Data System (ADS)
Thüroff, Florian; Obermayer, Benedikt; Frey, Erwin
2011-02-01
The longitudinal response of single semiflexible polymers to sudden changes in externally applied forces is known to be controlled by the propagation and relaxation of backbone tension. Under many experimental circumstances, realized, for example, in nanofluidic devices or in polymeric networks or solutions, these polymers are effectively confined in a channel- or tubelike geometry. By means of heuristic scaling laws and rigorous analytical theory, we analyze the tension dynamics of confined semiflexible polymers for various generic experimental setups. It turns out that in contrast to the well-known linear response, the influence of confinement on the nonlinear dynamics can largely be described as that of an effective prestress. We also study the free relaxation of an initially confined chain, finding a surprising superlinear ~t9/8 growth law for the change in end-to-end distance at short times.
Colloidal cholesteric liquid crystal in spherical confinement.
Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S; Lavrentovich, Oleg D; Kumacheva, Eugenia
2016-01-01
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545
Colloidal cholesteric liquid crystal in spherical confinement
Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia
2016-01-01
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545
WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L
2003-08-01
OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.
Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites.
Fenwick, Oliver; Coutiño-Gonzalez, Eduardo; Grandjean, Didier; Baekelant, Wouter; Richard, Fanny; Bonacchi, Sara; De Vos, Dirk; Lievens, Peter; Roeffaers, Maarten; Hofkens, Johan; Samorì, Paolo
2016-09-01
The integration of metal atoms and clusters in well-defined dielectric cavities is a powerful strategy to impart new properties to them that depend on the size and geometry of the confined space as well as on metal-host electrostatic interactions. Here, we unravel the dependence of the electronic properties of metal clusters on space confinement by studying the ionization potential of silver clusters embedded in four different zeolite environments over a range of silver concentrations. Extensive characterization reveals a strong influence of silver loading and host environment on the cluster ionization potential, which is also correlated to the cluster's optical and structural properties. Through fine-tuning of the zeolite host environment, we demonstrate photoluminescence quantum yields approaching unity. This work extends our understanding of structure-property relationships of small metal clusters and applies this understanding to develop highly photoluminescent materials with potential applications in optoelectronics and bioimaging. PMID:27270964
Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method
NASA Astrophysics Data System (ADS)
dos Santos, Alexandre P.; Girotto, Matheus; Levin, Yan
2016-04-01
We present a new approach to efficiently simulate electrolytes confined between infinite charged walls using a 3d Ewald summation method. The optimal performance is achieved by separating the electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte. The electric field produced by the 3d periodic images of the walls is constant inside the simulation cell, with the field produced by the transverse images of the charged plates canceling out. The non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least an order of magnitude more rapid than the usual simulation methods for the slab geometry and can be further sped up by adopting a particle-particle particle-mesh approach.
Bifurcated equilibria in centrifugally confined plasma
Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.
2008-12-15
A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.
Convection, evaporation, and condensation of binary fluids in confined geometries
NASA Astrophysics Data System (ADS)
Grigoriev, Roman; Qin, Tongran; Li, Yaofa; Chan, Benjamin; Yoda, Minami
2011-11-01
Phase change has a major effect on convection in liquid layers with a free surface. Significant latent heat generated at the free surface as a result of phase change can dramatically alter the interfacial temperature, inducing thermocapillary stresses. For binary fluids, differential evaporation leads to a variation in the concentration, and hence, induces solutocapillary stresses. This talk describes numerical and experimental studies of convection in alcohol-water mixtures due to a horizontal temperature gradient in the presence of phase change. Evaporation and condensation is known to be a notoriously difficult problem to model due to a poorly defined vapor transport problem which is strongly influenced by the presence/absence and flows of non-condensable gases (e.g., air). This issue is addressed by using a sealed cuvette heated at one end and cooled at the other. Both numerics and experiments show that, by adding or removing air from the cuvette, the direction of flow in a liquid layer covering the bottom of the cell can be reversed by emphasizing either thermocapillary or solutocapillary stresses. Supported by ONR.
Dynamics of rod eutectic growth patterns in confined geometry
NASA Astrophysics Data System (ADS)
Şerefoǧlu, Melis; Bottin-Rousseau, S.; Akamatsu, S.; Faivre, G.
2012-01-01
The dynamics of rod-like eutectics are examined using a directional solidification setup, which allows real-time observation of the whole solidification front in specimens of transparent eutectic alloys -here, succinonitrile-(D)camphor. In steady-state, rod eutectic growth patterns consist of triangular arrays, more or less disturbed by topological defects. In the absence of strong convection and of crystallographic anisotropy, the long-time evolution of the pattern is dominated by "imperfections" of the system, such as misalignment of the temperature gradient, and finite-size. In this study, we present experimental results on the finite-size effects on rod eutectics and show that a rod to lamella transition takes place as a result of finite-size effect only, at a given alloy concentration.
Diffusion of micrometer-sized soft particles in confinement
NASA Astrophysics Data System (ADS)
Jordan, Benjamin; Aptowicz, Kevin
We investigate the diffusion of micrometer sized poly(N-isopropylacrylamide) (PNIPAM) gel particles in confinement. The influence of confinement on the transport of small particles is becoming increasingly important for microfluidics and bio-fluidics. Analytical solutions to this problem are limited to very unique geometries or gross approximations. Computational methods have provided more insight into the problem as well as experimental investigations. However, most research has focused on the hard-sphere problem. In this work, we will explore the diffusion of soft particles in confinement. The dynamics of the particles confined between two parallel walls is captured with video-microscopy. In addition, we use a recently developed technique to measurement confinement of particles in-situ with a precision of 1%. This poster will present some preliminary results of how confinement affects the diffusion of these soft particles. We acknowledge support from Grant DMR-1206231.
Progress in toroidal confinement and fusion research
Furth, H.P.
1987-10-01
During the past 30 years, the characteristic T/sub i/n tau/sub E/-value of toroidal-confinement experiments has advanced by more than seven orders of magnitude. Part of this advance has been due to an increase of gross machine parameters. Most of this advance has been due to an increase of gross machine parameters. Most of the advance is associated with improvements in the ''quality of plasma confinement.'' The combined evidence of spherator and tokamak research clarifies the role of magnetic-field geometry in determining confinement and points to the importance of shielding out plasma edge effects. A true physical understanding of anomalous transport remains to be achieved. 39 refs., 11 figs., 1 tab.
Protein Folding in Confined and Crowded Environments
Zhou, Huan-Xiang
2007-01-01
Confinement and crowding are two major factors that can potentially impact protein folding in cellular environments. Theories based on considerations of excluded volumes predict disparate effects on protein folding stability for confinement and crowding: confinement can stabilize proteins by over 10kBT but crowding has a very modest effect on stability. On the other hand, confinement and crowding are both predicted to favor conformations of the unfolded state which are compact, and consequently may increase the folding rate. These predictions are largely borne out by experimental studies of protein folding under confined and crowded conditions in the test tube. Protein folding in cellular environments is further complicated by interactions with surrounding surfaces and other factors. Concerted theoretical modeling and test-tube and in vivo experiments promise to elucidate the complexity of protein folding in cellular environments. PMID:17719556
Engaging All Students with "Impossible Geometry"
ERIC Educational Resources Information Center
Wiest, Lynda R.; Ayebo, Abraham; Dornoo, Michael D.
2010-01-01
Geometry is an area in which Australian students performed particularly poorly on the 2007 Trends in International Mathematics and Science Study (TIMSS). One innovative area of recreational geometry that has rich potential to engage and challenge a wide variety of students is "impossible geometry." An impossible geometric object is a…
Confinement from constant field condensates
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Guendelman, Eduardo; Spallucci, Euro
2007-01-01
For (2 + 1)- and (3 + 1)-dimensional reformulated SU (2) Yang-Mills theory, we compute the interaction potential within the framework of the gauge-invariant but path-dependent variables formalism. This reformulation is due to the presence of a constant gauge field condensate. Our results show that the interaction energy contains a linear term leading to the confinement of static probe charges. This result is equivalent to that of the massive Schwinger model.
Confinement of block copolymers
1995-12-31
The following were studied: confinement of block copolymers, free surface confinement, effects of substrate interactions, random copolymers at homopolymer interfaces, phase separation in thin film polymer mixtures, buffing of polymer surfaces, and near edge x-ray absorption fine structure spectroscopy.
Confinement Aquaculture. Final Report.
ERIC Educational Resources Information Center
Delaplaine School District, AR.
The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…
Grooms, Daniel L; Kroll, Lee Anne K
2015-07-01
Indoor confined feedlots offer advantages that make them desirable in northern climates where high rainfall and snowfall occur. These facilities increase the risk of certain health risks, including lameness and tail injuries. Closed confinement can also facilitate the rapid spread of infectious disease. Veterinarians can help to manage these health risks by implementing management practices to reduce their occurrence. PMID:26139194
Elastic membranes in confinement.
Bostwick, J B; Miksis, M J; Davis, S H
2016-07-01
An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. PMID:27440257
Casimir effects for classical and quantum liquids in slab geometry: A brief review
Biswas, Shyamal
2015-05-15
We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.
Effects of confinement on nanoparticle flows
NASA Astrophysics Data System (ADS)
Conrad, Jacinta
The transport properties of nanoparticles that are dispersed in complex fluids and flowed through narrow confining geometries affect a wide range of materials shaping and forming processes, including three-dimensional printing and nanocomposite processing. Here, I will describe two sets of experiments in which we use optical microscopy to probe the structure and transport properties of suspensions of particles that are confined geometrically. First, we investigate the structure and flow properties of dense suspensions of submicron particles, in which the particles interact via an entropic depletion attraction, that are confined in thin films and microchannels. Second, we characterize the transport properties of nanoparticles, dispersed at low concentration in water or in aqueous solutions of high-molecular weight polymers, that are confined in regular arrays of nanoposts or in disordered porous media. I will discuss our results and their practical implications for materials processing as well as for other applications that require confined transport of nanomaterials through complex media. Welch Foundation (E-1869) and NSF (CBET-1438204).
Elastic membranes in confinement
NASA Astrophysics Data System (ADS)
Bostwick, Joshua; Miksis, Michael; Davis, Stephen
2014-11-01
An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and DNA, have finer internal structure in which a membrane (or elastic member) is geometrically ``confined'' by another object. We study the shape stability of elastic membranes in a ``confining'' box and introduce repulsive van der Waals forces to prevent the membrane from intersecting the wall. We aim to define the parameter space associated with mitochondria-like deformations. We compare the confined to `unconfined' solutions and show how the structure and stability of the membrane shapes changes with the system parameters.
Arp, O.; Block, D.; Klindworth, M.; Piel, A.
2005-12-15
A model for the confinement of the recently discovered Coulomb balls is proposed. These spherical three-dimensional plasma crystals are trapped inside a rf discharge under gravity conditions and show an unusual structural order in complex plasmas. Measurements of the thermophoretic force acting on the trapped dust particles and simulations of the plasma properties of the discharge are presented. The proposed model of confinement considers thermophoretic, ion-drag, and electric field forces, and shows excellent agreement with the observations. The findings suggest that self-confinement does not significantly contribute to the structural properties of Coulomb balls.
Confinement effects of polymers in porous glasses
NASA Astrophysics Data System (ADS)
Crupi, V.; Majolino, D.; Migliardo, P.; Venuti, V.
1998-07-01
Recently, confinement effects on dynamical properties of liquids inside restricted volumes have been extensively studied, either from a theoretical or technological point of view, thanks to the large possibility of industrial applications (building of optical switches, membrane separation, catalysis). We performed depolarized light scattering measurements on propylene glycol (PG) and its oligomers poly(propylene glycols) (PPG) having different molecular weights ( Mw, 425, 725 and 4000 Da), in the bulk state and confined in a silica glass having 25 Å pores. Mainly, two relevant effects are responsible for the dynamical response of liquids that diffuse and reorient in a confined geometry: (a) the 'physical traps', related to both dead-end groups and the tortuosity of the percolated channels for diffusion; and (b) the 'chemical traps', related to the degree of the absorption of molecules on the active surface sites. Hence, by comparing the behaviour of bulk polymers with confined polymers we were able to analyse the confinement influence on the molecular mobility of hydrogen-bonded liquids with different steric hindrance. The experimental results showed a frustration of molecular mobility in the confined samples owing to chemical and physical traps whose main role was highlighted thanks to the opportunity to substitute the active silanol groups (SiOH) in the inner surfaces with the non-active groups in the surfaces (treatment with methanol). In particular, we found that, in the case of low molecular weight samples, the relevant retardation process is connected to the chemical traps while for long chain polymers the physical traps play the main role. Further, the fitting procedure provided a distribution of relaxation times in the bulk systems and in short chain systems when confined in modified glass showing, in particular in the first case, that the distribution of relaxation times increases with polymers weights, occurrence related to a variety of molecular
Programmed environment management of confined microsocieties
NASA Technical Reports Server (NTRS)
Emurian, Henry H.
1988-01-01
A programmed environment is described that assists the implementation and management of schedules governing access to all resources and information potentially available to members of a confined microsociety. Living and work schedules are presented that were designed to build individual and group performance repertoires in support of study objectives and sustained adaptation by participants. A variety of measurement requirements can be programmed and standardized to assure continuous assessment of the status and health of a confined microsociety.
ERIC Educational Resources Information Center
Cukier, Mimi; Asdourian, Tony; Thakker, Anand
2012-01-01
Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…
ERIC Educational Resources Information Center
Kuntz, Gilles
The first section of this paper on World Wide Web applications related to dynamic geometry addresses dynamic geometry and teaching, including the relationship between dynamic geometry and direct manipulation, key features of dynamic geometry environments, the importance of direct engagement of the learner using construction software for…
Polymer Crystallization under Confinement
NASA Astrophysics Data System (ADS)
Floudas, George
Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.
NASA Astrophysics Data System (ADS)
Wilking, Connie; Weitz, David
2010-03-01
Bacterial cells can display differentiation between several developmental pathways, from planktonic to matrix-producing, depending upon the colony conditions. We study the confinement of bacteria in hydrogels as well as in liquid-liquid double emulsion droplets and observe the growth and morphology of these colonies as a function of time and environment. Our results can give insight into the behavior of bacterial colonies in confined spaces that can have applications in the areas of food science, cosmetics, and medicine.
NASA Astrophysics Data System (ADS)
Valchev, Galin; Dantchev, Daniel
2015-07-01
We study, using general scaling arguments and mean-field type calculations, the behavior of the critical Casimir force and its interplay with the van der Waals force acting between two parallel slabs separated at a distance L from each other, confining some fluctuating fluid medium, say a nonpolar one-component fluid or a binary liquid mixture. The surfaces of the slabs are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials ensuring the so-called (+,+) boundary conditions. The slabs, on the other hand, influence the fluid by long-range competing dispersion potentials, which represent irrelevant interactions in renormalization-group sense. Under such conditions, one usually expects attractive Casimir force governed by universal scaling function, pertinent to the extraordinary surface universality class of Ising type systems, to which the dispersion potentials provide only corrections to scaling. We demonstrate, however, that below a given threshold thickness of the system Lcrit for a suitable set of slabs-fluid and fluid-fluid coupling parameters the competition between the effects due to the coatings and the slabs can result in sign change of the Casimir force acting between the surfaces confining the fluid when one changes the temperature T , the chemical potential of the fluid μ , or L . The last implies that by choosing specific materials for the slabs, coatings, and the fluid for L ≲Lcrit one can realize repulsive Casimir force with nonuniversal behavior which, upon increasing L , gradually turns into an attractive one described by a universal scaling function, depending only on the relevant scaling fields related to the temperature and the excess chemical potential, for L ≫Lcrit . We present arguments and relevant data for specific substances in support of the experimental feasibility of the predicted behavior of the force. It can
Valchev, Galin; Dantchev, Daniel
2015-07-01
We study, using general scaling arguments and mean-field type calculations, the behavior of the critical Casimir force and its interplay with the van der Waals force acting between two parallel slabs separated at a distance L from each other, confining some fluctuating fluid medium, say a nonpolar one-component fluid or a binary liquid mixture. The surfaces of the slabs are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials ensuring the so-called (+,+) boundary conditions. The slabs, on the other hand, influence the fluid by long-range competing dispersion potentials, which represent irrelevant interactions in renormalization-group sense. Under such conditions, one usually expects attractive Casimir force governed by universal scaling function, pertinent to the extraordinary surface universality class of Ising type systems, to which the dispersion potentials provide only corrections to scaling. We demonstrate, however, that below a given threshold thickness of the system L(crit) for a suitable set of slabs-fluid and fluid-fluid coupling parameters the competition between the effects due to the coatings and the slabs can result in sign change of the Casimir force acting between the surfaces confining the fluid when one changes the temperature T, the chemical potential of the fluid μ, or L. The last implies that by choosing specific materials for the slabs, coatings, and the fluid for L≲L(crit) one can realize repulsive Casimir force with nonuniversal behavior which, upon increasing L, gradually turns into an attractive one described by a universal scaling function, depending only on the relevant scaling fields related to the temperature and the excess chemical potential, for L≫L(crit). We present arguments and relevant data for specific substances in support of the experimental feasibility of the predicted behavior of the force. It can
Berk, H.L.
1992-08-06
An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.
Structural and electronic properties of sodium clusters under confinement
NASA Astrophysics Data System (ADS)
Nagare, Balasaheb J.; Kanhere, Dilip G.; Chacko, Sajeev
2015-02-01
Using real-space density functional theory, electronic structure and equilibrium geometries of sodium clusters in the size range of 2-20 atoms have been calculated as a function of confinement. We have examined the evolution of the five lowest isomers as a function of volume for six different compressions. The minimum volume considered is about 1 /15 to 1 /10 of the free-space box volume. We observe a strong tendency for isomeric transitions in many cases, with the higher isomers evolving into the ground state under confinement. In general the clusters tend to become more spherical. The changes in the total energies and the geometries are not significant until the volume gets reduced beyond the 1/3 of the original volume. In this sense, the clusters are not easy to compress. Once the critical volume is reached, the changes in the total energies and geometries are rapid. It turns out that the increase in the total energy is mainly due to the ion-ion and Hartree energies of electrons. We also address how anisotropic confinement affects the geometry of clusters. We further show that geometries obtained with anisotropic confinement are strongly supported by the simulation of clusters inside a carbon nanotube using a hybrid quantum-mechanical and molecular-mechanics approach.
The development of a laterally confined laboratory fan delta under sediment supply reduction
NASA Astrophysics Data System (ADS)
Zhang, Xiaofeng; Wang, Siqiang; Wu, Xi; Xu, Shun; Li, Zhangyong
2016-03-01
In previous fan delta experiments, the effect of lateral confinement was generally ignored as these fans were usually unconfined with semiconical geometries. However, in gorge areas, fan development is usually laterally confined by valley walls. This study investigates autogenic processes of fan deltas in a laterally confined experimental tank. The experiment is divided into three phases. The sediment supply is held constant within each phase, so the autogenic processes of the fan are separated from the allogenic forcings. Results indicate that laterally confined fan deltas have higher progradation and aggradation potential, more regular channel braiding, and more even transverse sedimentation than unconfined fans. Besides, responses of fan deltas to sediment supply reduction are investigated in this research. At the initiation of the second and third phases, sediment feed rates are instantaneously reduced so that the allogenic forcings are predominant. Observations show that under sediment supply reduction, channelization on fan deltas are more pronounced and durations of the fluvial cycles are longer. The adjustment of fan morphology becomes slower as the self-regulation capacity of the fan decreases with reduced sediment supply.
Hot electron confinement in a microwave heated spindle cusp
NASA Astrophysics Data System (ADS)
Prelas, M. A.
1991-08-01
The Plasma Research Laboratory at the University of Missouri-Columbia was established with awards from the McDonnell Douglas Foundation, ARMCO, Union Electric, Black and Vetch, Kansas City Power and Light, the National Science Foundation, and DOE. The Plasma Research Lab's major effort is the Missouri Magnetic Mirror (MMM or M(exp 3)) Project. The technical goals of MMM have been (1) Diagnostic Development, (2) Plasma Physics in the Cusp geometry, (3) plasma-wall interactions, (4) impurity effects in a steady-state plasma, and (5) Development of Diagnostics for use in harsh plasma processing environments. The other major goal of MMM has remained providing a facility for hands-on training in experimental plasma physics. The major experimental facility of MMM is the MMM Modified Experiment (M4X). Other research efforts in the Plasma Research Laboratory include small efforts in cold fusion, toroidal magnetic confinement, and inertial confinement and a potentially major effort in direct conversion of nuclear energy.
Hot electron confinement in a microwave heated spindle cusp
Prelas, M.A.
1991-08-01
The Plasma Research Laboratory at the University of Missouri-Columbia was established with awards from the McDonnel Douglas Foundation, ARMCO, Union Electric, Black and Vetch, Kansas City Power and Light, the National Science Foundation, and DOE. The Plasma Research Lab's major effort is the Missouri Magnetic Mirror (MMM or M{sup 3}) Project. The technical goals of MMM have been (1) Diagnostic Development, (2) Plasma Physics in the Cusp geometry, (3) plasma-wall interactions, (4) impurity effects in a steady-state plasma, and (5) Development of Diagnostics for use in harsh plasma processing environments. The other major goal of MMM has remained providing a facility for hands-on training in experimental plasma physics. The major experimental facility of MMM is the MMM Modified Experiment (M4X). Other research efforts in the Plasma Research Laboratory include small efforts in cold fusion, toroidal magnetic confinement, and inertial confinement and a potentially major effort in direct conversion of nuclear energy.
Investigation of failure mode transition in ceramics under confinement
Ravichandran, G.; Chen, W.; Ortiz, M.
1995-12-31
A newly developed experimental technique is used to investigate the failure behavior of ceramics in multi-axial compression. The axial loading is provided by a split Kolsky (Hopkinson) compression bar and the radial confinement is provided by shrink fit sleeves on the cylindrical specimens. Confinement pressures on the order of 1 GPa have been achieved. As the confinement is increased on the specimen, the failure mode changes from axial splitting under no confinement to conical faulting under moderate confinement. Experimental data have been obtained for several engineering ceramics in the strain rate range of 10{sup -3} to 10{sup 3} s{sup -1}. The peak or failure strength increases with increasing confinement. The increase in strength over its unconfined strength for a given level of confinement remains independent of the strain rate. The data from multiaxial loading experiments suggest that the engineering ceramics follow the Drucker-Prager model for pressure sensitive dilatant materials. This model is used to predict the localization modes in axi-symmetric geometries. The predictions are compared with experimental results for the limit load and the geometry of the fault. The implications of the proposed constitutive and failure model for the performance of engineering ceramics under multi-axial loading are discussed.
NASA Astrophysics Data System (ADS)
Behera, Laxmidhar; Sen, Mrinal K.
2014-10-01
We have derived a shallow subsurface 2-D tomographic P-wave velocity image of the Deccan Volcanic Province (DVP) of India using first-arrival traveltime data along a 90-km-long N-S trending seismic profile in the Deccan Syneclise region. The tomographic image depicts smooth velocity variations of Quaternary and Tertiary (2.0-3.0 km s-1) sediments, basalts/traps (5.0-5.5 km s-1), sub-trappean Mesozoic sediments (4.3-4.5 km s-1) as well as the basement (5.9-6.1 km s-1) geometry down to a maximum depth of 5.0 km. Due to Late Cretaceous volcanism and outpouring of basaltic lava flows, this region is affected by numerous dyke intrusions and thick basaltic trap (2-3 km) exposed on the surface and surrounded by graben structures due to deep basinal faults forming a large igneous province. Although sub-basalt imaging is a major challenge for the oil industry, with the help of tomographic imaging technique of first-arrival seismic refraction data, we were able to image sub-trappean Mesozoic sediments (<0.75 km) deposited below the two sequences of thick basaltic flows above the basement. The imaged Mesozoic sediments are expected to contain hydrocarbon because of their wide extension in this sedimentary basin with suitable trapping mechanism due to basalts. The robustness of the velocity image is assessed through numerous tests like velocity perturbations, χ2 estimates, rms residuals of traveltime fit, uncertainty estimates through computation of ray-density or hits and series of checkerboard resolution tests with velocity anomalies having different cell size. The thickness of the basalt and the sub-trappean Mesozoic sediments along with the basement geometry obtained from tomography are constrained through ray-trace modelling and pre-stack depth migration (PSDM) of the wide-angle reflection phases for different shot gathers along the profile.
NASA Astrophysics Data System (ADS)
Lourenço, S. A.; Teodoro, M. D.; González-Borrero, P. P.; Dias, I. F. L.; Duarte, J. L.; Marega, E.; Salamo, G. J.
2012-06-01
The competition between confinement potential fluctuations and band-gap renormalization (BGR) in GaAs/AlxGaAs quantum wells grown on [1 0 0] and [3 1 1]A GaAs substrates is evaluated. The results clearly demonstrate the coexistence of the band-tail states filling related to potential fluctuations and the band-gap renormalization caused by an increase in the density of photogenerated carriers during the photoluminescence (PL) experiments. Both phenomena have strong influence on temperature dependence of the PL-peak energy (EPL(T)). As the photon density increases, the EPL can shift to either higher or lower energies, depending on the sample temperature. The temperature at which the displacement changes from a blueshift to a redshift is governed by the magnitude of the potential fluctuations and by the variation of BGR with excitation density. A simple band-tail model with a Gaussian-like distribution of the density of state was used to describe the competition between the band-tail filling and the BGR effects on EPL(T).
Learning Geometry through Dynamic Geometry Software
ERIC Educational Resources Information Center
Forsythe, Sue
2007-01-01
In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…
Interfacial electrofluidics in confined systems
Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G.F.)
2016-01-01
Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films. PMID:27221211
Interfacial electrofluidics in confined systems
NASA Astrophysics Data System (ADS)
Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G. F.)
2016-05-01
Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films.
Interfacial electrofluidics in confined systems.
Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A; Zhou, Guofu G F
2016-01-01
Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it's potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films. PMID:27221211
Confinement & Stability in MAST
NASA Astrophysics Data System (ADS)
Akers, Rob
2001-10-01
Transition to H-mode has been achieved in the MAST spherical tokamak (ST) for both ohmically and neutral beam heated plasmas (P_NBI ~ 0.5-1.5MW), resulting in double-null diverted discharges containing both regular and irregular edge localised modes (ELMs). The observed L-H power threshold is ~10 times higher than predicted by established empirical scalings. L-H transition in MAST is accompanied by a sharp increase in edge density gradient, the efficient conversion of internal electron Bernstein waves into free space waves, the onset and saturation of edge poloidal rotation and a marked decrease in turbulence. During ELM free periods, a reduction in outboard power deposition width is observed using a Langmuir probe array. A novel divertor structure has been installed to counter the resulting increase in target heat-flux by applying a toroidally varying potential to the divertor plasma, theory suggesting that convective broadening of the scrape off layer will take place. Global confinement in H-mode is found to routinely exceed the international IPB(y,2) scaling, even for discharges approaching the Greenwald density. In an attempt to further extend the density range (densities in excess of Greenwald having been achieved for plasma currents up to 0.8MA) a multi-pellet injector has been installed at the low-field-side. In addition, high field side fuelling can be supplied via a gas-feed located at the centre-column mid-plane, this technique having been found to significantly enhance H-mode accessibility and quality. A range of stability issues will be discussed, including vertical displacement events, the rich variety of high frequency MHD seen in MAST and the physics of the Neoclassical Tearing Mode. This work was funded by the UK Department of Trade and Industry and by EURATOM. The NBI equipment is on loan from ORNL and the pellet injector was provided by FOM.
Condensation of topological defects and confinement
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Wotzasek, Clovis
2004-11-01
We study the static quantum potential for a theory of antisymmetric tensor fields that results from the condensation of topological defects, within the framework of the gauge-invariant but path-dependent variables formalism. Our calculations show that the interaction energy is the sum of a Yukawa and a linear potentials, leading to the confinement of static probe charges.
On scale symmetry breaking and confinement in D = 3 models
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Helaÿel-Neto, José A.
2008-10-01
Within the framework of the gauge-invariant, but path-dependent, variables formalism, we study the connection between scale symmetry breaking and confinement in three-dimensional gluodynamics. We explicitly show that the static potential profile contains a linear potential, leading to the confinement of static charges. Also, we establish a new type of equivalence among different three-dimensional effective theories.
Metal-organic frameworks as host materials of confined supercooled liquids
NASA Astrophysics Data System (ADS)
Fischer, J. K. H.; Sippel, P.; Denysenko, D.; Lunkenheimer, P.; Volkmer, D.; Loidl, A.
2015-10-01
In this work, we examine the use of metal-organic framework (MOF) systems as host materials for the investigation of glassy dynamics in confined geometry. We investigate the confinement of the molecular glass former glycerol in three MFU-type MOFs with different pore sizes (MFU stands for "Metal-Organic Framework Ulm-University") and study the dynamics of the confined liquid via dielectric spectroscopy. In accord with previous reports on confined glass formers, we find different degrees of deviations from bulk behavior depending on pore size, demonstrating that MOFs are well-suited host systems for confinement investigations.
Computer simulation studies of confined liquid-crystal films
NASA Astrophysics Data System (ADS)
Wall, Greg D.; Cleaver, Douglas J.
1997-10-01
In this paper we present results from molecular dynamics simulations performed using a system of Gay-Berne particles confined between two substrates in a slab geometry. We use a nonseparable anisotropic molecule-substrate interaction potential and investigate weak and moderate molecule-substrate coupling strengths. We find that for both coupling strengths a well-defined, tilted molecular layer forms at each wall and that the pretilt angle and layer density are only weakly dependent on temperature as the central region is cooled through isotropiclike and nematiclike regions. The orientationally ordered fluid formed at the center of the film is tilted in sympathy with the surface layers. At low temperatures, however, where the central region adopts a layered arrangement, a sharp change is observed in the pretilt angle. This transition is more marked in the weak-coupling system where the high-temperature tilted surface layers adopt an approximately planar arrangement at low temperatures and the system resembles a bookshelf-geometry smectic film. In the moderate-coupling system, the surface layers maintain some tilt in the presence of the layered central region, leading to a smectic-stripe phase arrangement.
Shum, D.K.; Bryson, J.W.; Merkle, J.G.
1993-09-01
This study presents preliminary estimates on whether an shallow, axially oriented, inner-surface finite-length flaw in a PWR-RPV would tend to elongate in the axial direction and/or deepen into the wall of the vessel during a postulated PTS transient. Analysis results obtained based on the assumptions of (1) linear-elastic material response, and (2) cladding with same toughness as the base metal, indicate that a nearly semicircular flaw would likely propagate in the axial direction followed by propagation into the wall of the vessel. Note that these results correspond to initiation within the lower-shelf fracture toughness temperature range, and that their general validity within the lower-transition temperature range remains to be determined. The sensitivity of the numerical results aid conclusions to the following analysis assumptions are evaluated: (1) reference flaw geometry along the entire crack front and especially within the cladding region; (2) linear-elastic vs elastic-plastic description of material response; and (3) base-material-only vs bimaterial cladding-base vessel-model assumption. The sensitivity evaluation indicates that the analysis results are very sensitive to the above assumptions.
NASA Astrophysics Data System (ADS)
Kepčija, N.; Huang, T.-J.; Klappenberger, F.; Barth, J. V.
2015-03-01
Quantum confinement of a two-dimensional electron gas by supramolecular nanoporous networks is investigated using the boundary elements method based on Green's functions for finite geometries and electron plane wave expansion for periodic systems. The "particle in a box" picture was analyzed for cases with selected symmetries that model previously reported architectures constructed from organic and metal-organic scattering centers confining surface state electrons of Ag(111) and Cu(111). First, by analyzing a series of cases with systematically defined parameters (scattering geometry, potentials, and effective broadening), we demonstrate how the scattering processes affect the properties of the confined electrons. For the features of the local density of states reported by scanning tunneling spectroscopy (STS), we disentangle the contributions of lifetime broadening and splitting of quantum well states due to coupling of neighboring quantum dots. For each system, we analyze the local electron density distribution and relate it to the corresponding band structure as calculated within the plane-wave expansion framework. Then, we address two experimental investigations, where in one case only STS data and in the other case mainly angle-resolved photoemission spectroscopy (ARPES) data were reported. In both cases, the experimental findings can be successfully simulated. Furthermore, the missing information can be complemented because our approach allows to correlate the information obtained by STS with that of ARPES. The combined analysis of several observations suggests that the scattering potentials created by the network originate primarily from the adsorbate-induced changes of the local surface dipole barrier.
Morphology of diblock copolymers under confinement
NASA Astrophysics Data System (ADS)
Ackerman, David; Ganapathysubramanian, Baskar
The structure adopted by polymer chains is of particular intrest for materials design. In particular, a great deal of effort has been made to study diblock polymers due to the importance they have in industrial applications. The bulk structure of most systems has been the most widely studied. However, when under the effect of confinement, the polymer chains are forced to adopt structures differing from the familiar bulk phases. As many applications utilize polymers in sizes and shapes that lead to these non bulk structures, the confinement effects are important. A commonly used tool for computationally determining structures is the continuum self consistant field theory (SCFT). We discuss our highly scalable parallel framework for SCFT using real space methods (finite element) that is especially well suited to modelling complex geometries. This framework is capable of modeling both Gaussian and worm like chains. We illustate the use of the software framework in determining structures under varying degrees of confinement. We detail the method used and present selected results from a systematic study of confinement using arbitrary structures.
Combinatorial Geometry Printer Plotting.
Energy Science and Technology Software Center (ESTSC)
1987-01-05
Picture generates plots of two-dimensional slices through the three-dimensional geometry described by the combinatorial geometry (CG) package used in such codes as MORSE and QAD-CG. These plots are printed on a standard line printer.
Order, Disorder and Confinement
D'Elia, M.; Di Giacomo, A.; Pica, C.
2006-01-12
Studying the order of the chiral transition for Nf = 2 is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the transition by use of a novel strategy in finite size scaling analysis. The specific heat and a number of susceptibilities are compared with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. Results are in agreement with those found by studying the scaling properties of a disorder parameter related to the dual superconductivity mechanism of color confinement.
NASA Astrophysics Data System (ADS)
Taylor, Marika
2006-03-01
Two charge BPS horizon free supergravity geometries are important in proposals for understanding black hole microstates. In this paper we construct a new class of geometries in the NS1-P system, corresponding to solitonic strings carrying fermionic as well as bosonic condensates. Such geometries are required to account for the full microscopic entropy of the NS1-P system. We then briefly discuss the properties of the corresponding geometries in the dual D1-D5 system.
ERIC Educational Resources Information Center
McDonald, Nathaniel J.
2001-01-01
Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…
BOWERS,RICHARD; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSLKA,WALTER; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,CRAIG L.; PETERSON,BOB; PETERSON,DARRELL; RUGGLES,LAURENCE E.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; VESEY,ROGER A.
1999-11-01
Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch magnet on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {approx}85 eV for a duration of {approx}10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approx}122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approx}150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T{approx}(P/A){sup 1/4}. P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.
Sandord, T.W.L.; Olson, R.E.; Chandler, G.A.; Hebron, D.E.; Mock, R.C.; Leeper, R.J.; Nash, T.J.; Ruggles, L.E.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.; Bowers, R.L.; Matuska, W.; Peterson, D.L.; Peterson, R.R.
1999-08-25
Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch target on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {minus}85 eV for a duration of {approximately} 10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approximately} 122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approximately} 150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation (T-(P/A){sup 1/4}). P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.
Spin-Orbit Activated Confinement Resonances
NASA Astrophysics Data System (ADS)
Keating, David; Manson, Steven; Deshmukh, Pranawa
2016-05-01
At high enough Z relativistic effects become important contributors to even the qualitative nature of atomic properties. This is likely to be true for confined atoms as well. One relativistic effect of interest is the spin-orbit activated interchannel coupling of a pair of spin-orbit doublet channels. This interaction is possible owing to the spin-orbit interaction breaking the degenerancy among the electrons of a subshell allowing, for example, the 5p3/2 and 5p1/2 subshells of mercury (Z = 80) and the 6p3/2 and 6p1/2 of radon (Z = 86), to interact. To explore the effect confinement has on spin-orbit activated interchannel coupling, a theoretical study of the 5p subshell of mercury and the 6p subshell of radon both confined in a C60 cage has been performed using the relativistic-random-phase approximation (RRPA) methodology. The effects of the C60 potential modeled by a static spherical well which is reasonable in the energy region well above the C60 plasmons. It is found in the photoionization cross sections of the 5p3/2 of confined mercury and the 6p3/2 of confined radon an extra confinement resonance due to spin-orbit activated interchannel coupling with the respective np1/2 photoionization channels.
Mobility in geometrically confined membranes.
Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia
2011-08-01
Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion. PMID:21768336
Materials self-assembly and fabrication in confined spaces
Ramanathan, Nathan Muruganathan; Kilbey, II, S Michael; Ji, Dr. Qingmin; Hill, Dr. Jonathan P; Ariga, Katsuhiko
2012-01-01
Molecular assemblies have been mainly researched in open spaces for long time. However, recent researches have revealed that there are many interesting aspects remained in self-assemblies in confined spaces. Molecular association within nanospaces such as mesoporous materials provide unusual phenomena based on highly restricted molecular motions. Current research endeavors in materials science and technology are focused on developing either new class of materials or materials with novel/multiple functionalities which is often achived via molecular assembly in confined spaces. Template synthesis and guided assemblies are distinguishable examples for molecular assembly in confined spaces. So far, different aspects of molecular confinements are discussed separately. In this review, the focus is specifically to bring some potential developments in various aspects of confined spaces for molecular self-assembly under one roof. We arrange the sections in this review based on the nature of the confinements; accordingly the topological/geometrical confinements, chemical and biological confinements, and confinements within thin film, respectively. Following these sections, molecular confinements for practical applications are shortly described in order to show connections of these scientific aspects with possible practical uses. One of the most important facts is that the self-assembly in confined spaces stands at meeting points of top-down and bottom-up fabrications, which would be an ultimate key to push the limits of nanotechnology and nanoscience.
NASA Astrophysics Data System (ADS)
Nunes, I.; JET Contributors
2016-01-01
Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is
NASA Astrophysics Data System (ADS)
Zhang, Yongxian; Yikilmaz, M. Burak; Rundle, John B.; Yin, Xiangchu; Liu, Yue; Zhang, Langping; Wang, Zijin
2015-08-01
Based on the load/unload response ratio (LURR) theory, spatial and temporal variation of Y/ Y c (value of LURR/critical value of LURR under 90 % confidence) in the western United States and its adjacent area (31°-44°N, -128° to -112°E) during the period from 1980 to 2011 was studied. The selected study area was zoned into 20 sub-regions, in each of which the fault geometry and the focal mechanisms were very similar such that the stress fields were almost uniform. The loading and unloading periods were determined by calculating perturbations in the Coulomb failure stress in each sub-regions induced by earth tides. Earthquakes occurring in these sub-regions were identified as a loading or unloading type, and the response rate was chosen as the Benioff strain that can be calculated from earthquake magnitude M. With a time window of 1 year, a time moving step of 1 month, a space window of a circle region with a radius of 100 km, and a space moving step of 0.5° latitudinally and longitudinally, snapshots of the evolution of Y/ Y c were generated. Scanning results show that obvious Y/ Y c anomalies can be detected near the epicenter of all big earthquakes larger than M6.5 in regions with reasonable seismic monitoring abilities. They also show Y/ Y c anomalies occurred several years prior to the big earthquakes and the lasting time of the anomaly is from one year to several years. For some LURR anomalous regions, however, no earthquakes occurred. According to the characteristics of LURR anomalies, two regions with a high risk of big earthquakes were detected. One is between the northern region of the Bay Area and the Mendocino triple junction (38°-40°N, -124° to -122°E) and the other is between Lake Tahoe and Mono Lake (37.5°-39.5°N, -120° to -118°E) along the border of California and Nevada.
Magnetohydrodynamically generated velocities in confined plasma
Morales, Jorge A. Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.
2015-04-15
We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.
Electrofreezing of confined water.
Zangi, Ronen; Mark, Alan E
2004-04-15
We report results from molecular dynamics simulations of the freezing transition of TIP5P water molecules confined between two parallel plates under the influence of a homogeneous external electric field, with magnitude of 5 V/nm, along the lateral direction. For water confined to a thickness of a trilayer we find two different phases of ice at a temperature of T=280 K. The transformation between the two, proton-ordered, ice phases is found to be a strong first-order transition. The low-density ice phase is built from hexagonal rings parallel to the confining walls and corresponds to the structure of cubic ice. The high-density ice phase has an in-plane rhombic symmetry of the oxygen atoms and larger distortion of hydrogen bond angles. The short-range order of the two ice phases is the same as the local structure of the two bilayer phases of liquid water found recently in the absence of an electric field [J. Chem. Phys. 119, 1694 (2003)]. These high- and low-density phases of water differ in local ordering at the level of the second shell of nearest neighbors. The results reported in this paper, show a close similarity between the local structure of the liquid phase and the short-range order of the corresponding solid phase. This similarity might be enhanced in water due to the deep attractive well characterizing hydrogen bond interactions. We also investigate the low-density ice phase confined to a thickness of 4, 5, and 8 molecular layers under the influence of an electric field at T=300 K. In general, we find that the degree of ordering decreases as the distance between the two confining walls increases. PMID:15267616
Structure factor of a Gaussian chain confined between two parallel plates.
Liao, Yi; Miao, Bing
2015-04-28
We study the structure factor of a single Gaussian chain confined between two macroscopic parallel plates theoretically. The chain propagator is constructed in terms of the eigen-spectrum of the Laplace operator under the Dirichlet boundary condition enforced at the two plates, by which the confinement effect enters the treatment through size-dependent eigen-spectrum. In terms of the series expansion solution for the chain propagator, we first calculate the confinement free energy and the confinement force for an arbitrary confinement strength. It is found that the confinement force scales to the distance between the two confining surfaces with a power of -3 for strong confinements and of -2 for weak confinements. Based on the ground state dominance approximation for strong confinements and the Euler-Maclaurin formula for weak confinements, we develop approximation theories for the two limit situations, which agree with the numerical results well. We further calculate the structure factor of the confined Gaussian chain in this slit geometry. While the scattering function of the transverse chain fluctuations perpendicular to the confinement direction is still a Debye function form, the structure factor for the longitudinal fluctuations along the confinement dimension starts with the monotonic Debye function behavior for weak confinements and develops a decaying oscillation behavior with the increase of confinements. The numerical results for the structure factor are also interpreted by developing approximation theories in different confinement regimes. Finally, the orientational average of the anisotropic structure factor is performed and an analytic expression for the averaged structure factor is derived under the ground state dominance approximation for strong confinements. PMID:25933787
Cell migration in confinement: a micro-channel-based assay.
Heuzé, Mélina L; Collin, Olivier; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu
2011-01-01
This chapter describes a method to study cells migrating in micro-channels, a confining environment of well-defined geometry. This assay is a complement to more complex 3D migration systems and provides several advantages even if it does not recapitulate the full complexity of 3D migration. Important parameters such as degree of adhesion, degree of confinement, mechanical properties, and geometry can be varied independently of each other. The device is fully compatible with almost any type of light microscopy and the simple geometry makes automated analysis very easy to perform, which allows screening strategy. The chapters is divided into five parts describing the design of different types of migration chambers, the fabrication of a mold by photolithography, the assembly of the chamber, the loading of cells, and finally the imaging on live or fixed cells. PMID:21748692
The Microcomputer and Instruction in Geometry.
ERIC Educational Resources Information Center
Kantowski, Mary Grace
1981-01-01
The microcomputer has great potential for making high school geometry more stimulating and more easily understood by the students. The microcomputer can facilitate instruction in both the logico-deductive and spatial-visual aspects of geometry through graphics representations, simulation of motion, and its capability of interacting with the…
Thermal Conductivity of Liquid He-4 near the Superfluid Transition in Restricted Geometries
NASA Technical Reports Server (NTRS)
Liu, Yuanming
2003-01-01
We present measurements of the thermal conductivity near the superfluid transition of He-4 in confined geometries. The confinements we have studied include: cylindrical geometries with radii L=.5 and 1.0 microns, and parallel plates with 5 micron spacing. For L=1.0 microns, measurements at six pressures were conducted, whereas only SVP measurements have been done for other geometries. For the 1-D confinement in cylinders, the data are consistent with a universal scaling for all pressures at and above T(sub lambda). There are indications of breakdown of scaling and universality below T(sub lambda). For the 2-D confinement between parallel plates, the preliminary results indicate that the thermal conductivity is finite at the bulk superfluid transition temperature. Further analyses are needed to compare the 2-D results with those in bulk and 1-D confinement.
Totally confined explosive welding
NASA Technical Reports Server (NTRS)
Bement, L. J. (Inventor)
1978-01-01
The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.
Topological confinement and superconductivity
Al-hassanieh, Dhaled A; Batista, Cristian D
2008-01-01
We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.
NASA Technical Reports Server (NTRS)
Horzela, Andrzej; Kapuscik, Edward
1993-01-01
An alternative picture of classical many body mechanics is proposed. In this picture particles possess individual kinematics but are deprived from individual dynamics. Dynamics exists only for the many particle system as a whole. The theory is complete and allows to determine the trajectories of each particle. It is proposed to use our picture as a classical prototype for a realistic theory of confined particles.
Inertial Confinement fusion targets
NASA Technical Reports Server (NTRS)
Hendricks, C. D.
1982-01-01
Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.
Not Available
1990-02-01
The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards. This is to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber. This is the first quarterly technical progress report under this contract. Accordingly, a summary of the cleanup concept and the structure of the program is given here.
Energy confinement in tokamaks
Sugihara, M.; Singer, C.
1986-08-01
A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston.
Riemannian geometry of fluctuation theory: An introduction
NASA Astrophysics Data System (ADS)
Velazquez, Luisberis
2016-05-01
Fluctuation geometry was recently proposed as a counterpart approach of Riemannian geometry of inference theory (information geometry), which describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dpξ(x|θ). This theory states a connection among geometry notions and statistical properties: separation distance as a measure of relative probabilities, curvature as a measure about the existence of irreducible statistical correlations, among others. In statistical mechanics, fluctuation geometry arises as the mathematical apparatus of a Riemannian extension of Einstein fluctuation theory, which is also closely related to Ruppeiner geometry of thermodynamics. Moreover, the curvature tensor allows to express some asymptotic formulae that account for the system fluctuating behavior beyond the gaussian approximation, while curvature scalar appears as a second-order correction of Legendre transformation between thermodynamic potentials.
On the Dirac Structure of Confinement
Adam P. Szczepaniak; Eric S. Swanson
1997-04-01
The Dirac structure of confinement is shown to be of time like-vector nature in the heavy quark limit of QCD. This stands in contradiction with the phenomenological success of the Dirac scalar confining potential. A resolution is achieved through the demonstration that an effective scalar interaction is dynamically generated by nonperturbative mixing between ordinary and hybrid Q {bar Q} states. The resolution depends crucially on the collective nature of the gluonic degrees of freedom. This implies that dynamical gluonic effects are vital when attempting to incorporate fine structure in models of the Q {bar Q} interaction.
Confinement of water droplets on rectangular micro/nano-arrayed surfaces.
Kašpar, Ondřej; Zhang, Hailong; Tokárová, Viola; Boysen, Reinhard I; Suñé, Gemma Rius; Borrise, Xavier; Perez-Murano, Francesco; Hearn, Milton T W; Nicolau, Dan V
2016-07-01
Micro-patterned surfaces with alternate hydrophilic and hydrophobic rectangular areas effectively confine water droplets down to attolitre volumes. The contact angle, volume, and geometry of the confined droplets as a function of the geometry and physico-chemical properties of the confining surfaces have been determined by phenomenological simulations, validated by atomic force microscopy measurements. The combination between experiments and simulations can be used for the purposeful design of arrays with surface-addressable hydrophobicity employed in digital microfluidics and high-throughput screening nanoarrays. PMID:27270705
NASA Astrophysics Data System (ADS)
Anatole von Lilienfeld, O.
2013-08-01
Generalised gradient approximated (GGA) density functional theory (DFT) typically overestimates polarisability and bond-lengths, and underestimates force constants of covalent bonds. To overcome this problem we show that one can use empirical force correcting atom centred potentials (FCACPs), parametrised for every nuclear species. Parameters are obtained through minimisation of a penalty functional that explicitly encodes hybrid DFT forces and static polarisabilities of reference molecules. For hydrogen, fluorine, chlorine and carbon the respective reference molecules consist of H2, F2, Cl2 and CH4. The transferability of this approach is assessed for harmonic frequencies in a small set of chlorofluorocarbon molecules. Numerical evidence, gathered for CF4, CCl4, CCl3F, CCl2F2, CClF3, ClF, HF, HCl, CFH3, CF2H2, CF3H, CHCl3, CH2Cl2 and CH3Cl indicates that the GGA+FCACP level of theory yields harmonic frequencies that are significantly more consistent with hybrid DFT values, as well as slightly reduced molecular polarisability.
Hajfathalian, Maryam; Gilroy, Kyle D; Golze, Spencer D; Yaghoubzade, Ali; Menumerov, Eredzhep; Hughes, Robert A; Neretina, Svetlana
2016-06-28
Galvanic replacement reactions carried out on solid core-shell structures typically yield a noble metal nanorattle geometry in which a mobile core is contained within a hollowed shell. Here, we adapt this colloidal synthesis to substrate-based structures to obtain a fundamentally altered product in which an immobilized core is separated from the shell by a well-defined gap, an architecture unobtainable using colloidal techniques and that offers unique advantages in terms of generating plasmonic near-field effects within the confines of a single structure. In the devised route, Wulff-shaped templates of Au, Pt, or Pd, formed through the dewetting of ultrathin films, are first transformed into core-shell structures through the reduction of Ag(+) ions onto their surface and then further transformed through the galvanic replacement of Ag with Au. Through suitable adjustments to the shell geometry, the epitaxial relationship with the substrate, and the extent to which the shell is replaced, it is possible to generate an entire family of nanostructures in which a Wulff-shaped core is confined within a nanoshell, nanocage, or nanoframe, where, in all cases, bonds formed between the structure and the substrate preclude motion. With the potential to tune the gap width, the geometry of the confining structure, and the composition of the core, shell, and substrate, these structures could find application as catalytic nanoreactors able to drive both single-step and cascade reactions or as plasmon-based sensing elements for biological and chemical detection. PMID:27172588
Isotopic Effects on Covalent Bond Confined in a Penetrable Sphere.
Sarsa, Antonio; Alcaraz-Pelegrina, José M; Le Sech, Claude
2015-11-12
A model of confinement of the covalent bond by a finite potential beyond the Born-Oppenheimer approximation is presented. A two-electron molecule is located at the center of a penetrable spherical cavity. The Schrödinger equation has been solved by using the diffusion Monte Carlo method. Total energies, internuclear distances, and vibrational frequencies of the confined molecular system have been obtained. Even for confining potentials of a few electronvolts, a noticeable increase in the bond energy and the nuclear vibrational frequency is observed, and the internuclear distance is lowered. The gap between the zero point energy of different molecular isotopes increases with confinement. The confinement of the electron pair might play a role in chemical reactivity, providing an alternative explanation for the tunnel effect, when large values of primary kinetic isotopic effect are observed. The Swain-Schaad relation is still verified when confinement changes the zero point energy. A semiquantitative illustration is proposed using the data relative to an hydrogen transfer involving a C-H cleavage catalyzed by the bovine serum amine oxidase. Changes on the confining conditions, corresponding to a confinement/deconfinement process, result in a significant decrease in the activation energy of the chemical transformation. It is proposed that confinement/deconfinement of the electron-pair bonding by external electrostatic forces inside the active pocket of an enzyme could be one of the basic mechanisms of the enzyme catalysis. PMID:26484576
Active nematics confined within a shell
NASA Astrophysics Data System (ADS)
Zhang, Rui; Zhou, Ye; Rahimi, Mohammad; de Pablo, Juan; dePablo Team
Active fluids exhibit many striking flow patterns when confined within complex geometries. For example, recent work has demonstrated that when a thin film of extensile microtubules is confined within a vesicle, the four + 1 / 2 defects periodically oscillate between a tetrahedral and a planar configuration (Keber, et al. Science (2014). Here we employ hybrid lattice Boltzmann simulations to study the dynamics of active nematics confined between two concentric spherical surfaces. We find that in both extensile and contractile systems, the four defects are coupled with noticeable macroscopic velocities and they move along their symmetry axes, eventhough in different patterns. We observe that in extensile systems with moderate activity, defects repel each other due to elastic forces, and their collective motion leads to the same patterned dynamics as observed in the above experiment. We further show that this periodic dynamics is accompanied by oscillations of the defect velocity, system's elastic energy, and the emergence and annihilation of vortices. We also observe that with stronger activity, the extensile system evolves to chaos. In contrast, the contractile system remains passive for the entire activity range, with defects being attracted to each other in pairs.
Confined Water as Model of Supercooled Water.
Cerveny, Silvina; Mallamace, Francesco; Swenson, Jan; Vogel, Michael; Xu, Limei
2016-07-13
Water in confined geometries has obvious relevance in biology, geology, and other areas where the material properties are strongly dependent on the amount and behavior of water in these types of materials. Another reason to restrict the size of water domains by different types of geometrical confinements has been the possibility to study the structural and dynamical behavior of water in the deeply supercooled regime (e.g., 150-230 K at ambient pressure), where bulk water immediately crystallizes to ice. In this paper we give a short review of studies with this particular goal. However, from these studies it is also clear that the interpretations of the experimental data are far from evident. Therefore, we present three main interpretations to explain the experimental data, and we discuss their advantages and disadvantages. Unfortunately, none of the proposed scenarios is able to predict all the observations for supercooled and glassy bulk water, indicating that either the structural and dynamical alterations of confined water are too severe to make predictions for bulk water or the differences in how the studied water has been prepared (applied cooling rate, resulting density of the water, etc.) are too large for direct and quantitative comparisons. PMID:26940794
Simulating tumor growth in confined heterogeneous environments
NASA Astrophysics Data System (ADS)
Gevertz, Jana L.; Gillies, George T.; Torquato, Salvatore
2008-09-01
The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics.
Geometry Dependence of Stellarator Turbulence
H.E. Mynick, P. Xanthopoulos and A.H. Boozer
2009-08-10
Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.
ERIC Educational Resources Information Center
Morris, Barbara H.
2004-01-01
This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…
Geometry of multihadron production
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.
ERIC Educational Resources Information Center
Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem
2009-01-01
Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…
Euclidean Geometry via Programming.
ERIC Educational Resources Information Center
Filimonov, Rossen; Kreith, Kurt
1992-01-01
Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability and compares it to…
ERIC Educational Resources Information Center
Lyublinskaya, Irina; Funsch, Dan
2012-01-01
Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…
Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores.
Wang, Sen; Javadpour, Farzam; Feng, Qihong
2016-01-01
We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%--samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems. PMID:26832445
Electrokinetic confinement of axonal growth for dynamically configurable neural networks.
Honegger, Thibault; Scott, Mark A; Yanik, Mehmet F; Voldman, Joel
2013-02-21
Axons in the developing nervous system are directed via guidance cues, whose expression varies both spatially and temporally, to create functional neural circuits. Existing methods to create patterns of neural connectivity in vitro use only static geometries, and are unable to dynamically alter the guidance cues imparted on the cells. We introduce the use of AC electrokinetics to dynamically control axonal growth in cultured rat hippocampal neurons. We find that the application of modest voltages at frequencies on the order of 10(5) Hz can cause developing axons to be stopped adjacent to the electrodes while axons away from the electric fields exhibit uninhibited growth. By switching electrodes on or off, we can reversibly inhibit or permit axon passage across the electrodes. Our models suggest that dielectrophoresis is the causative AC electrokinetic effect. We make use of our dynamic control over axon elongation to create an axon-diode via an axon-lock system that consists of a pair of electrode 'gates' that either permit or prevent axons from passing through. Finally, we developed a neural circuit consisting of three populations of neurons, separated by three axon-locks to demonstrate the assembly of a functional, engineered neural network. Action potential recordings demonstrate that the AC electrokinetic effect does not harm axons, and Ca(2+) imaging demonstrated the unidirectional nature of the synaptic connections. AC electrokinetic confinement of axonal growth has potential for creating configurable, directional neural networks. PMID:23314575
Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores
Wang, Sen; Javadpour, Farzam; Feng, Qihong
2016-01-01
We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%—samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems. PMID:26832445
Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores
NASA Astrophysics Data System (ADS)
Wang, Sen; Javadpour, Farzam; Feng, Qihong
2016-02-01
We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%—samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems.
Electrokinetic confinement of axonal growth for dynamically configurable neural networks
Honegger, Thibault; Scott, Mark A.; Yanik, Mehmet F.; Voldman, Joel
2013-01-01
Axons in the developing nervous system are directed via guidance cues, whose expression varies both spatially and temporally, to create functional neural circuits. Existing methods to create patterns of neural connectivity in vitro use only static geometries, and are unable to dynamically alter the guidance cues imparted on the cells. We introduce the use of AC electrokinetics to dynamically control axonal growth in cultured rat hippocampal neurons. We find that the application of modest voltages at frequencies on the order of 105 Hz can cause developing axons to be stopped adjacent to the electrodes while axons away from the electric fields exhibit uninhibited growth. By switching electrodes on or off, we can reversibly inhibit or permit axon passage across the electrodes. Our models suggest that dielectrophoresis is the causative AC electrokinetic effect. We make use of our dynamic control over axon elongation to create an axon-diode via an axon-lock system that consists of a pair of electrode `gates' that either permit or prevent axons from passing through. Finally, we developed a neural circuit consisting of three populations of neurons, separated by three axon-locks to demonstrate the assembly of a functional, engineered neural network. Action potential recordings demonstrate that the AC electrokinetic effect does not harm axons, and Ca2+ imaging demonstrated the unidirectional nature of the synaptic connections. AC electrokinetic confinement of axonal growth has potential for creating configurable, directional neural networks. PMID:23314575
Not Available
1990-07-01
The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards using a cleanup technology appropriate to small scale coal combustors. This to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS), which consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via vortex finder outlets, one at either end of the tube. Liquid is introduced into the chamber and is confined within the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. During this quarter a comprehensive series of cleanup experiments have been made for three CVS configurations. The first CVS configuration tested gave very efficient fine particulate removal at the design air mass flow rate (1 MM BUT/hr combustor exhaust flow), but had over 20{double prime}WC pressure drop. The first CVS configuration was then re-designed to produce the same very efficient particulate collection performance at a lower pressure drop. The current CVS configuration produces 99.4 percent cleanup of ultra-fine fly ash at the design air mass flow at a pressure drop of 12 {double prime}WC with a liquid/air flow ratio of 0.31/m{sup 3}. Unlike venturi scrubbers, the collection performance of the CVS is insensitive to dust loading and to liquid/air flow ratio.
Spontaneous ordering and vortex states of active fluids in circular confinement
NASA Astrophysics Data System (ADS)
Theillard, Maxime; Ezhilan, Barath; Saintillan, David
2015-11-01
Recent experimental, theoretical and simulation studies have shown that confinement can profoundly affect self-organization in active suspensions leading to striking features such as directed fluid pumping in planar confinement, formation of steady and spontaneous vortices in radial confinement. Motivated by this, we study the dynamics in a suspension of biologically active particles confined in spherical geometries using a mean-field kinetic theory for which we developed a novel numerical solver. In the case of circular confinement, we conduct a systematic exploration of the entire parameter space and distinguish 3 broad states: no-flow, stable vortex and chaotic and several interesting sub-states. Our efficient numerical framework is also employed to study 3D effects and dynamics in more complex geometries.
Confinement Contains Condensates
Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.
2012-03-12
Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.
Confinement Vessel Dynamic Analysis
R. Robert Stevens; Stephen P. Rojas
1999-08-01
A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.
The Properties of Confined Water and Fluid Flow at the Nanoscale
Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G
2009-03-09
This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.
Aerofractures in Confined Granular Media
NASA Astrophysics Data System (ADS)
Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.
2015-04-01
We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image
Review of Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Haines, M. G.
The physics of inertial confinement fusion is reviewed. The trend to short-wavelength lasers is argued, and the distinction between direct and indirect (soft X-ray) drive is made. Key present issues include the non-linear growth of Rayleigh-Taylor (R-T) instabilities, the seeding of this instability by the initial laser imprint, the relevance of self-generated magnetic fields, and the importance of parametric instabilities (stimulated Brillouin and Raman scattering) in gas-filled hohlraums. Experiments are reviewed which explore the R-T instability in both planar and converging geometry. The employment of various optical smoothing techniques is contrasted with the overcoating of the capsule by gold coated plastic foams to reduce considerably the imprint problem. The role of spontaneously generated magnetic fields in non-symmetric plasmas is discussed. Recent hohlraum compression results are presented together with gas bag targets which replicate the long-scale-length low density plasmas expected in NIF gas filled hohlraums. The onset of first Brillouin and then Raman scattering is observed. The fast ignitor scheme is a proposal to use an intense short pulse laser to drill a hole through the coronal plasma and then, with laser excited fast electrons, create a propagating thermonuclear spark in a dense, relatively cold laser-compressed target. Some preliminary results of laser hole drilling and 2-D and 3-D PIC simulations of this and the > 10^8 Gauss self-generated magnetic fields are presented. The proposed National Ignition Facility (NIF) is described.
Chirally symmetric but confining dense, cold matter
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential {mu} and obtain a clear chiral restoration phase transition at the critical value {mu}{sub cr}. Below this value the spectrum is similar to the previously obtained one at {mu}=0. At {mu}>{mu}{sub cr} the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
Chirally symmetric but confining dense, cold matter
NASA Astrophysics Data System (ADS)
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential μ and obtain a clear chiral restoration phase transition at the critical value μcr. Below this value the spectrum is similar to the previously obtained one at μ=0. At μ>μcr the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
On the geometry of stiff knots
NASA Astrophysics Data System (ADS)
Pierre-Louis, O.
2009-09-01
We analyse the geometry of a thin knotted string with bending rigidity. Two types of geometric properties are investigated. First, following the approach of von der Mosel [H. von der Mosel, Asymptotic Anal. 18, 49 (1998)], we derive upper bounds for the multiplicity of crossings and braids. Then, using a general inequality for the length of 3D curves derived by Chakerian [G.D. Chakerian, Proc. of the American Math. Soc. 15, 886 (1964)], we analyze the size and confinement of a knot
NASA Astrophysics Data System (ADS)
Chwiej, T.
2016-03-01
We simulate the electron transport in a vertical bi-layer nanowire in order to study an influence of the lateral confinement's shape on a spin polarization of wire's conductance. The active part of considered quantum wire constitutes a double inverted heterojunction In0.52 Al0.48 As / In0.53 Ga0.47 As which nanostructure can be fabricated in molecular beam epitaxy process while the lateral confinement potential can be finally formed by means of cleaved overgrowth or surface oxidization methods giving the desired rectangular and smooth lateral confinement. In calculations we take into account interaction between charge carriers using DFT within local spin density approximation. We show that if the magnetic field is perpendicular to the wire axis, the pseudogaps are opened in energy dispersion relation E (k) what in conjunction with spin Zeeman shift of spin-up and spin-down subbands may enhance the spin polarization of conductance with reference to a single layer wire. For nanowire with rectangular lateral confinement potential we found that the electron density has two maximums localized at wire edges in each layers. This modificates strongly all magnetosubbands giving up to four energy minimums in lowest subband and considerably diminishes widths of pseudogaps what translates into low maximal spin polarization of conductance, not exceeding 40%. This drawback is absent in wire with smooth lateral confinement. However, in order to gain a large spin polarization simultaneous tuning of magnetic field as well as the Fermi energies in both layers of nanowire are required.
CUSP Energetic Particles: Confinement, Acceleration and Implications
NASA Technical Reports Server (NTRS)
Chen, Jiasheng
1999-01-01
The cusp energetic particle (CEP) event is a new magnetospheric phenomenon. The events were detected in the dayside cusp for hours, in which the measured helium ions had energies up to 8 MeV. All of these events were associated with a dramatic decrease and large fluctuations in the local magnetic field strength. During January 1999 - December 1999 covered by this report, I have studied the CEP events by analyzing the POLAR, GEOTAIL, and WIND particle and magnetic field data measured during the geomagnetic quiet periods in 1996 and one geomagnetic storm period in 1998. The simultaneous observations indicated that the ion fluxes in the CEP events were higher than that in both the upstream and the downstream from the bow shock. The pitch angle distribution of the helium ions in the CEP events was found to peak around 90 deg. It was found that the mirror parameter, defined as the ratio of the square root of the integration of the parallel turbulent power spectral component over the ultra-low frequency (ULF) ranges to the mean field in the cusp, is correlated with the intensity of the cusp MeV helium flux, which is a measure of the influence of mirroring interactions and an indication of local effect. It was also found that the turbulent power of the local magnetic field in the ultra-low frequency (ULF) ranges is correlated with the intensity of the cusp energetic helium ions. Such ULF ranges correspond to periods of about 0.33-500 seconds that cover the gyroperiods, the bounce periods, and the drift periods of the tens keV to MeV charged particles when they are temporarily confined in the high-altitude dayside cusp. These observations represent a discovery that the high-altitude dayside cusp is a new acceleration and dynamic trapping region of the magnetosphere. The cusp geometry is connected via gradient and curvature drift of these energized ions to the equatorial plasma sheet as close as the geostationary orbit at local midnight. It implies that the dayside cusp is
Dynamics of Confined Water Molecules in Aqueous Salt Hydrates
Werhahn, Jasper C.; Pandelov, S.; Yoo, Soohaeng; Xantheas, Sotiris S.; Iglev, H.
2011-04-01
The unusual properties of water are largely dictated by the dynamics of the H bond network. A single water molecule has more H bonding sites than atoms, hence new experimental and theoretical investigations about this peculiar liquid have not ceased to appear. Confinement of water to nanodroplets or small molecular clusters drastically changes many of the liquid’s properties. Such confined water plays a major role in the solvation of macro molecules such as proteins and can even be essential to their properties. Despite the vast results available on bulk and confined water, discussions about the correlation between spectral and structural properties continue to this day. The fast relaxation of the OH stretching vibration in bulk water, and the variance of sample geometries in the experiments on confined water obfuscate definite interpretation of the spectroscopic results in terms of structural parameters. We present first time-resolved investigations on a new model system that is ideally suited to overcome many of the problems faced in spectroscopical investigation of the H bond network of water. Aqueous hydrates of inorganic salts provide water molecules in a crystal grid, that enables unambiguous correlations of spectroscopic and structural features. Furthermore, the confined water clusters are well isolated from each other in the crystal matrix, so different degrees of confinement can be achieved by selection of the appropriate salt.
ERIC Educational Resources Information Center
Emenaker, Charles E.
1999-01-01
Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)
ERIC Educational Resources Information Center
Chern, Shiing-Shen
1990-01-01
Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)
Noncommutative Geometry and Physics
NASA Astrophysics Data System (ADS)
Connes, Alain
2006-11-01
In this very short essay we shall describe a "spectral" point of view on geometry which allows to start taking into account the lessons from both renormalization and of general relativity. We shall first do that for renormalization and explain in rough outline the content of our recent collaborations with Dirk Kreimer and Matilde Marcolli leading to the universal Galois symmetry of renormalizable quantum field theories provided by the renormalization group in its cosmic Galois group incarnation. As far as general relativity is concerned, since the functional integral cannot be treated in the traditional perturbative manner, it relies heavily as a "sum over geometries" on the chosen paradigm of geometric space. This will give us the occasion to discuss, in the light of noncommutative geometry, the issue of "observables" in gravity and our joint work with Ali Chamseddine on the spectral action, with a first attempt to write down a functional integral on the space of noncommutative geometries.
Proof in Transformation Geometry
ERIC Educational Resources Information Center
Bell, A. W.
1971-01-01
The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)
Energy Science and Technology Software Center (ESTSC)
2005-01-01
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and onmore » top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.« less
NASA Astrophysics Data System (ADS)
Osborne, I.; Brownson, E.; Eulisse, G.; Jones, C. D.; Lange, D. J.; Sexton-Kennedy, E.
2014-06-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Geometry-induced modification of fluctuation spectrum in quasi-two-dimensional condensates
NASA Astrophysics Data System (ADS)
Roy, Arko; Angom, D.
2016-08-01
We report the structural transformation of the low-lying spectral modes, especially the Kohn mode, from radial to circular topology as harmonic confining potential is modified to a toroidal one, and this corresponds to a transition from simply to multiply connected geometry. For this we employ the Hartree–Fock–Bogoliubov theory to examine the evolution of low energy quasiparticles. We, then, use the Hartree–Fock–Bogoliubov theory with the Popov approximation to demonstrate the two striking features of quantum and thermal fluctuations. At T = 0, the non-condensate density due to interaction induced quantum fluctuations increases with the transformation from pancake to toroidal geometry. The other feature is, there is a marked change in the density profile of the non-condensate density at finite temperatures with the modification of trapping potential. In particular, the condensate and non-condensate density distributions have overlapping maxima in the toroidal condensate, which is in stark contrast to the case of pancake geometry. The genesis of this difference lies in the nature of the thermal fluctuations.
Entropic stochastic resonance without external force in oscillatory confined space.
Ding, Huai; Jiang, Huijun; Hou, Zhonghuai
2015-05-21
We have studied the dynamics of Brownian particles in a confined geometry of dumbbell-shape with periodically oscillating walls. Entropic stochastic resonance (ESR) behavior, characterizing by a maximum value of the coherent factor Q at some optimal level of noise, is observed even without external periodic force in the horizontal direction, which is necessary for conventional ESR where the wall is static and the particle is subjected to the force. Interestingly, the ESR can be remarkably enhanced by the particle gravity G, in contrast to the conventional case. In addition, Q decreases (increases) with G in the small (large) noise limit, respectively, while it non-monotonically changes with G for moderate noise levels. We have applied an effective 1D coarsening description to illustrate such a nontrivial dependence on G, by investigating the property of the 1D effective potential of entropic nature and paying special attention to the excess part resulting from the boundary oscillation. Dependences of the ESR strength with other related parameters are also discussed. PMID:26001449
Entropic stochastic resonance without external force in oscillatory confined space
Ding, Huai; Jiang, Huijun; Hou, Zhonghuai
2015-05-21
We have studied the dynamics of Brownian particles in a confined geometry of dumbbell-shape with periodically oscillating walls. Entropic stochastic resonance (ESR) behavior, characterizing by a maximum value of the coherent factor Q at some optimal level of noise, is observed even without external periodic force in the horizontal direction, which is necessary for conventional ESR where the wall is static and the particle is subjected to the force. Interestingly, the ESR can be remarkably enhanced by the particle gravity G, in contrast to the conventional case. In addition, Q decreases (increases) with G in the small (large) noise limit, respectively, while it non-monotonically changes with G for moderate noise levels. We have applied an effective 1D coarsening description to illustrate such a nontrivial dependence on G, by investigating the property of the 1D effective potential of entropic nature and paying special attention to the excess part resulting from the boundary oscillation. Dependences of the ESR strength with other related parameters are also discussed.
Spatial confinement governs orientational order in patchy particles
NASA Astrophysics Data System (ADS)
Iwashita, Yasutaka; Kimura, Yasuyuki
2016-06-01
Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli.
Fluorescence Recovery after Photobleaching in Confined Polymer Thin Films
NASA Astrophysics Data System (ADS)
Gray, Laura A. G.; Brangwynne, Clifford P.; Priestley, Rodney D.
Over the past twenty years many studies have shown a reduction in the glass transition temperature (Tg) of thin polymer films confined on the nanoscale when supported on non-attractive substrates or free-standing. The depth dependence of Tg has been measured using thin layers of fluorescently tagged polymer to localize the dye within a larger polymer film stack, revealing a decrease in local Tg tens of nanometers into the film. These results have been explained by the propagation of enhanced mobility from the free-surface into the polymer film. Fewer direct measurements of molecular mobility have been made in confined polymer systems. Here, we present the results of fluorescence recovery after photobleaching (FRAP) experiments investigating the mobility of fluorescently doped and labeled methacrylate-based polymers confined in thin film geometries. Bleaching and recovery was monitored using a laser-scanning confocal microscope that enabled us to bleach arbitrary micron-sized shapes to monitor diffusion in polymer melts.
Spatial confinement governs orientational order in patchy particles
Iwashita, Yasutaka; Kimura, Yasuyuki
2016-01-01
Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli. PMID:27264521
Self-organizing human cardiac microchambers mediated by geometric confinement
NASA Astrophysics Data System (ADS)
Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.
2015-07-01
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.
Self-organizing human cardiac microchambers mediated by geometric confinement
Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.
2015-01-01
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial–mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity. PMID:26172574
Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement
NASA Astrophysics Data System (ADS)
Nygârd, Kim; Sarman, Sten; Hyltegren, Kristin; Chodankar, Shirish; Perret, Edith; Buitenhuis, Johan; van der Veen, J. Friso; Kjellander, Roland
2016-01-01
Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.
Effect of hydrodynamic interactions in confined active suspensions
NASA Astrophysics Data System (ADS)
Ezhilan, Barath; Saintillan, David
2014-11-01
The dynamics of biologically active suspensions in confined geometries is investigated by incorporating accurate boundary conditions within the kinetic theory framework [Saintillan and Shelley, Phys. Fluids. (2008)]. Even in the absence of wall hydrodynamic interactions or imposed flow, swimming microorganisms have a tendency to accumulate at confining boundaries due to self-propulsion. Satisfying a zero wall-normal translational flux condition on the active particle probability distribution function captures this effect. Using a moment-closure approximation, analytical expressions for the equilibrium concentration/polarization profiles are derived in the dilute limit. As particle density increases, we expect particle-particle hydrodynamic interactions to become significant and to destabilize these equilibrium distributions. Using a linear stability analysis and 3D finite volume simulation of the equations for the orientational moments, we study in detail the effect of fluid coupling on the stability properties of the equilibrium states in confined active suspensions.
Holographic thermalization in a quark confining background
Ageev, D. S. Aref’eva, I. Ya.
2015-03-15
We study holographic thermalization of a strongly coupled theory inspired by two colliding shock waves in a vacuum confining background. Holographic thermalization means a black hole formation, in fact, a trapped surface formation. As the vacuum confining background, we considered the well-know bottom-up AdS/QCD model that provides the Cornell potential and reproduces the QCD β-function. We perturb the vacuum background by colliding domain shock waves that are assumed to be holographically dual to heavy ions collisions. Our main physical assumption is that we can make a restriction on the time of trapped surface formation, which results in a natural limitation on the size of the domain where the trapped surface is produced. This limits the intermediate domain where the main part of the entropy is produced. In this domain, we can use an intermediate vacuum background as an approximation to the full confining background. We find that the dependence of the multiplicity on energy for the intermediate background has an asymptotic expansion whose first term depends on energy as E{sup 1/3}, which is very similar to the experimental dependence of particle multiplicities on the colliding ion energy obtained from the RHIC and LHC. However, this first term, at the energies where the approximation of the confining metric by the intermediate background works, does not saturate the exact answer, and we have to take the nonleading terms into account.
Inertial confinement fusion method producing line source radiation fluence
Rose, Ronald P.
1984-01-01
An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.
NASA Astrophysics Data System (ADS)
Pinet, Nicolas
2013-03-01
Geological information, seismic reflection profiles and potential field data are used to study the geometry of the Middle Paleozoic Gaspé Belt (eastern Canada) that has been interpreted in various ways in the past. On the western edge of the Gaspé Belt, in the Matapédia area, growth strata are imaged on seismic profiles and testify of normal (or transtensional) motion during the period spanning the Silurian (and possibly Late Ordovician) to earliest Devonian along several faults, including the Shickshock-Sud Fault. In this area, Acadian deformation during the Middle to Late Devonian is associated with relatively modest shortening (less than 20%) accommodated by broad open folds, steeply-dipping neo-formed faults and inversion of previously formed faults. Neo-formed faults cut the entire Middle Paleozoic succession and offset the Ordovician Taconian unconformity suggesting that no sedimentary interval acted as an efficient décollement level. Toward the SE, the Sainte-Florence Fault divides rock assemblages with different paleogeographic settings and structural styles. Increase in tectonic complexity and amount of shortening to the south of the fault is interpreted as resulting of a vise effect between two basement blocks.
Ambipolar potential formation in TMX
Correll, D.L.; Allen, S.L.; Casper, T.A.
1981-05-05
TMX experimental data on ambipolar potential control and on the accompanying electrostatic confinement are reported. New results on the radial dependence of the central-cell confining potential are given. Radial and axial particle losses as well as scaling of the central-cell axial confinement are discussed.
Dancing droplets: Contact angle, drag, and confinement
NASA Astrophysics Data System (ADS)
Benusiglio, Adrien; Cira, Nate; Prakash, Manu
2015-11-01
When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.
Exact Solutions for Confined Model Systems Using Kummer Functions
NASA Astrophysics Data System (ADS)
Burrows, B. L.; Cohen, M.
We treat model systems where an electron is confined in a region of space. The particular models considered have solutions which may be expressed in terms of the Kummer functions. Both standard and non-standard Kummer functions are used in these models and a comprehensive summary of the usual and exceptional Kummer functions is given. The definition of confinement is widened to treat radial confinement in any spherical shell, including the asymptotic region and cases where the electron is confined to a lower dimension. Initially we consider the theory in K dimensional space and then give particular examples in 1, 2, and 3 dimensions. A commonly treated model is the radially confined hydrogen atom in 3 dimensions with an infinite barrier on a confining sphere so that the wavefunction is identically zero on this sphere. We have extended this model to treat a more general model of spherical confinement where the derivative of the charge density is zero on the confining sphere. It is shown that the analogous models for the radial harmonic oscillator and radial constant potentials may be treated using a generic technique.
NASA Astrophysics Data System (ADS)
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W.
1992-01-01
This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.
Thermostating highly confined fluids.
Bernardi, Stefano; Todd, B D; Searles, Debra J
2010-06-28
In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes. PMID:20590213
Students Discovering Spherical Geometry Using Dynamic Geometry Software
ERIC Educational Resources Information Center
Guven, Bulent; Karatas, Ilhan
2009-01-01
Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…
Spherical microwave confinement and ball lightning
NASA Astrophysics Data System (ADS)
Robinson, William Richard
This dissertation presents the results of research done on unconventional energy technologies from 1995 to 2009. The present civilization depends on an infrastructure that was constructed and is maintained almost entirely using concentrated fuels and ores, both of which will run out. Diffuse renewable energy sources rely on this same infrastructure, and hence face the same limitations. I first examined sonoluminescence directed toward fusion, but demonstrated theoretically that this is impossible. I next studied Low Energy Nuclear Reactions and developed methods for improving results, although these have not been implemented. In 2000, I began Spherical Microwave Confinement (SMC), which confines and heats plasma with microwaves in a spherical chamber. The reactor was designed and built to provide the data needed to investigate the possibility of achieving fusion conditions with microwave confinement. A second objective was to attempt to create ball lightning (BL). The reactor featured 20 magnetrons, which were driven by a capacitor bank and operated in a 0.2 s pulse mode at 2.45 GHz. These provided 20 kW to an icosahedral array of 20 antennas. Video of plasmas led to a redesign of the antennas to provide better coupling of the microwaves to the plasma. A second improvement was a grid at the base of the antennas, which provided corona electrons and an electric field to aid quick formation of plasmas. Although fusion conditions were never achieved and ball lightning not observed, experience gained from operating this basic, affordable system has been incorporated in a more sophisticated reactor design intended for future research. This would use magnets that were originally planned. The cusp geometry of the magnetic fields is suitable for electron cyclotron resonance in the same type of closed surface that in existing reactors has generated high-temperature plasmas. Should ball lightning be created, it could be a practical power source with nearly ideal
Confinement from gluodynamics in curved space-time
Gaete, Patricio; Spallucci, Euro
2008-01-15
We determine the static potential for a heavy quark-antiquark pair from gluodynamics in curved space-time. Our calculation is done within the framework of the gauge-invariant, path-dependent, variables formalism. The potential energy is the sum of a Yukawa and a linear potential, leading to the confinement of static charges.
Confinement from gluodynamics in curved space-time
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Spallucci, Euro
2008-01-01
We determine the static potential for a heavy quark-antiquark pair from gluodynamics in curved space-time. Our calculation is done within the framework of the gauge-invariant, path-dependent, variables formalism. The potential energy is the sum of a Yukawa and a linear potential, leading to the confinement of static charges.
Kepčija, N.; Huang, T.-J.; Klappenberger, F. Barth, J. V.
2015-03-14
Quantum confinement of a two-dimensional electron gas by supramolecular nanoporous networks is investigated using the boundary elements method based on Green’s functions for finite geometries and electron plane wave expansion for periodic systems. The “particle in a box” picture was analyzed for cases with selected symmetries that model previously reported architectures constructed from organic and metal-organic scattering centers confining surface state electrons of Ag(111) and Cu(111). First, by analyzing a series of cases with systematically defined parameters (scattering geometry, potentials, and effective broadening), we demonstrate how the scattering processes affect the properties of the confined electrons. For the features of the local density of states reported by scanning tunneling spectroscopy (STS), we disentangle the contributions of lifetime broadening and splitting of quantum well states due to coupling of neighboring quantum dots. For each system, we analyze the local electron density distribution and relate it to the corresponding band structure as calculated within the plane-wave expansion framework. Then, we address two experimental investigations, where in one case only STS data and in the other case mainly angle-resolved photoemission spectroscopy (ARPES) data were reported. In both cases, the experimental findings can be successfully simulated. Furthermore, the missing information can be complemented because our approach allows to correlate the information obtained by STS with that of ARPES. The combined analysis of several observations suggests that the scattering potentials created by the network originate primarily from the adsorbate-induced changes of the local surface dipole barrier.
ERIC Educational Resources Information Center
Martin, John
2010-01-01
The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.
ERIC Educational Resources Information Center
Case, Christine L.
1991-01-01
Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)
ERIC Educational Resources Information Center
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
ERIC Educational Resources Information Center
Hartz, Viggo
1981-01-01
Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)
Hsü, K J; Hsü, A J
1990-01-01
Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061
Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740
ERIC Educational Resources Information Center
KLIER, KATHERINE M.
PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…
Geometry of spinor regularization
NASA Technical Reports Server (NTRS)
Hestenes, D.; Lounesto, P.
1983-01-01
The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.
ERIC Educational Resources Information Center
Cooper, Brett D.; Barger, Rita
2009-01-01
The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…
Gate-defined Quantum Confinement in Suspended Bilayer Graphene
NASA Astrophysics Data System (ADS)
Allen, Monica
2013-03-01
Quantum confined devices in carbon-based materials offer unique possibilities for applications ranging from quantum computation to sensing. In particular, nanostructured carbon is a promising candidate for spin-based quantum computation due to the ability to suppress hyperfine coupling to nuclear spins, a dominant source of spin decoherence. Yet graphene lacks an intrinsic bandgap, which poses a serious challenge for the creation of such devices. We present a novel approach to quantum confinement utilizing tunnel barriers defined by local electric fields that break sublattice symmetry in suspended bilayer graphene. This technique electrostatically confines charges via band structure control, thereby eliminating the edge and substrate disorder that hinders on-chip etched nanostructures to date. We report clean single electron tunneling through gate-defined quantum dots in two regimes: at zero magnetic field using the energy gap induced by a perpendicular electric field and at finite magnetic fields using Landau level confinement. The observed Coulomb blockade periodicity agrees with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates quantum confinement with pristine device quality and access to vibrational modes, enabling wide applications from electromechanical sensors to quantum bits. More broadly, the ability to externally tailor the graphene bandgap over nanometer scales opens a new unexplored avenue for creating quantum devices.
Cooperative Length Scale and Fragility of Polystyrene under Confinement
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Guo, Yunlong; Priestley, Rodney
2012-02-01
While thin films are an attractive model system to investigate the impact of confinement on glassy behavior, extending studies beyond thin films to geometries of higher dimensionalities is vital from both scientific and technological viewpoints. In this talk, we present the impact of confinement on the characteristic length at the glass transition as well as the fragility for confined polystyrene (PS) nanoparticles under isochoric conditions. We measure the glass transition temperature (Tg), fictive temperature (Tf) and isochoric heat capacity of silica-capped PS nanoparticles as a function of diameter via differential scanning calorimetry. From the measurement of Tf, we obtain the isochoric fragility, and via the fluctuation formula, the characteristic length at the glass transition. We illustrate that confinement under isochoric conditions for PS nanoparticles leads to a significant increase in the isochoric fragility while the characteristic length is reduced with size. At the minimum the results demonstrate a relationship between fragility and the characteristics length of isochorically-confined polymer that is not intuitive from the Adam-Gibbs theory.
NASA Astrophysics Data System (ADS)
Prástaro, Agostino
2008-02-01
Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.
Coronal Electron Confinement by Double Layers
NASA Astrophysics Data System (ADS)
Li, T. C.; Drake, J. F.; Swisdak, M.
2013-12-01
In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons. The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and also find a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.
Psychopathological effects of solitary confinement.
Grassian, S
1983-11-01
Psychopathological reactions to solitary confinement were extensively described by nineteenth-century German clinicians. In the United States there have been several legal challenges to the use of solitary confinement, based on allegations that it may have serious psychiatric consequences. The recent medical literature on this subject has been scarce. The author describes psychiatric symptoms that appeared in 14 inmates exposed to periods of increased social isolation and sensory restriction in solitary confinement and asserts that these symptoms form a major, clinically distinguishable psychiatric syndrome. PMID:6624990
ITER EDA design confinement capability
NASA Astrophysics Data System (ADS)
Uckan, N. A.
Major device parameters for ITER-EDA and CDA are given in this paper. Ignition capability of the EDA (and CDA) operational scenarios is evaluated using both the 1 1/2-D time-dependent transport simulations and 0-D global models under different confinement ((chi((gradient)(T)(sub e)(sub crit)), empirical global energy confinement scalings, chi(empirical), etc.) assumptions. Results from some of these transport simulations and confinement assessments are summarized in and compared with the ITER CDA results.
Confinement of Fractional Quantum Hall States
NASA Astrophysics Data System (ADS)
Willett, Robert; Manfra, Michael; West, Ken; Pfeiffer, Loren
2008-03-01
Confinement of small-gapped fractional quantum Hall states facilitates quasiparticle manipulation and is an important step towards quasiparticle interference measurements. Demonstrated here is conduction through top gate defined, narrow channels in high density, ultra-high mobility heterostructures. Transport evidence for the persistence of a correlated state at filling fraction 5/3 is shown in channels of 2μm length but gated to near 0.3μm in width. The methods employed to achieve this confinement hold promise for interference devices proposed for studying potential non-Abelian statistics at filling fraction 5/2. R.L. Willett, M.J. Manfra, L.N. Pfeiffer, K.W. West, Appl. Phys. Lett. 91, 052105 (2007).
Numerical Studies of Properties of Confined Helium
NASA Technical Reports Server (NTRS)
Manousakis, Efstratios
2003-01-01
We carry out state of the art simulations of properties of confined liquid helium near the superfluid transition to a degree of accuracy which allows to make predictions for the outcome of fundamental physics experiments in microgravity. First we report our results for the finite-size scaling behavior of heat capacity of superfluids for cubic and parallel-plate geometry. This allows us to study the crossover from zero and two dimensions to three dimensions. Our calculated scaling functions are in good agreement with recently measured specific heat scaling functions for the above mentioned geometries. We also present our results of a quantum simulation of submonolayer of molecular hydrogen deposited on an ideal graphite substrate using path-integral quantum Monte Carlo simulation. We find that the monolayer phase diagram is rich and very similar to that of helium monolayer. We are able to uncover the main features of the complex monolayer phase diagram, such as the commensurate solid phases and the commensurate to incommensurate transition, in agreement with the experiments and to find some features which are missing from the experimental analysis.
Don't Fence Me In: Free Meanders in a Confined River Valley
NASA Astrophysics Data System (ADS)
Eke, E. C.; Wilcock, P. R.
2015-12-01
The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.
An introduction to Minkowski geometries
NASA Astrophysics Data System (ADS)
Farnsworth, David L.
2016-07-01
The fundamental ideas of Minkowski geometries are presented. Learning about Minkowski geometries can sharpen our students' understanding of concepts such as distance measurement. Many of its ideas are important and accessible to undergraduate students. Following a brief overview, distance and orthogonality in Minkowski geometries are thoroughly discussed and many illustrative examples and applications are supplied. Suggestions for further study of these geometries are given. Indeed, Minkowski geometries are an excellent source of topics for undergraduate research and independent study.
Alternative approaches to plasma confinement
NASA Technical Reports Server (NTRS)
Roth, J. R.
1978-01-01
The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.
Tandem mirror plasma confinement apparatus
Fowler, T. Kenneth
1978-11-14
Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.
Mode confinement in photonic quasicrystal point-defect cavities for particle accelerators
NASA Astrophysics Data System (ADS)
Di Gennaro, E.; Savo, S.; Andreone, A.; Galdi, V.; Castaldi, G.; Pierro, V.; Masullo, M. Rosaria
2008-10-01
In this letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavities for particle accelerators. Specifically, for representative geometries, we study the properties of the fundamental mode (as a function of the filling fraction, structure size, and losses) via two-dimensional and three-dimensional full-wave numerical simulations, as well as microwave measurements at room temperature. Results indicate that for reduced-size structures, aperiodic geometries exhibit superior confinement properties by comparison with periodic ones.
Solvent cavitation under solvophobic confinement.
Ashbaugh, Henry S
2013-08-14
The stability of liquids under solvophobic confinement can tip in favor of the vapor phase, nucleating a liquid-to-vapor phase transition that induces attractive forces between confining surfaces. In the case of water adjacent to hydrophobic surfaces, experimental and theoretical evidence support confinement-mediated evaporation stabilization of biomolecular and colloidal assemblies. The macroscopic thermodynamic theory of cavitation under confinement establishes the connection between the size of the confining surfaces, interfacial free energies, and bulk solvent pressure with the critical evaporation separation and interfacial forces. While molecular simulations have confirmed the broad theoretical trends, a quantitative comparison based on independent measurements of the interfacial free energies and liquid-vapor coexistence properties has, to the best of our knowledge, not yet been performed. To overcome the challenges of simulating a large number of systems to validate scaling predictions for a three-dimensional fluid, we simulate both the forces and liquid-vapor coexistence properties of a two-dimensional Lennard-Jones fluid confined between solvophobic plates over a range of plate sizes and reservoir pressures. Our simulations quantitatively agree with theoretical predictions for solvent-mediated forces and critical evaporation separations once the length dependence of the solvation free energy of an individual confining plate is taken into account. The effective solid-liquid line tension length dependence results from molecular scale correlations for solvating microscopic plates and asymptotically decays to the macroscopic value for plates longer than 150 solvent diameters. The success of the macroscopic thermodynamic theory at describing two-dimensional liquids suggests application to surfactant monolayers to experimentally confirm confinement-mediated cavitation. PMID:23947875
Scaling behaviour for the water transport in nanoconfined geometries
NASA Astrophysics Data System (ADS)
Chiavazzo, Eliodoro; Fasano, Matteo; Asinari, Pietro; Decuzzi, Paolo
2014-04-01
The transport of water in nanoconfined geometries is different from bulk phase and has tremendous implications in nanotechnology and biotechnology. Here molecular dynamics is used to compute the self-diffusion coefficient D of water within nanopores, around nanoparticles, carbon nanotubes and proteins. For almost 60 different cases, D is found to scale linearly with the sole parameter θ as D(θ)=DB[1+(DC/DB-1)θ], with DB and DC the bulk and totally confined diffusion of water, respectively. The parameter θ is primarily influenced by geometry and represents the ratio between the confined and total water volumes. The D(θ) relationship is interpreted within the thermodynamics of supercooled water. As an example, such relationship is shown to accurately predict the relaxometric response of contrast agents for magnetic resonance imaging. The D(θ) relationship can help in interpreting the transport of water molecules under nanoconfined conditions and tailoring nanostructures with precise modulation of water mobility.
Scaling behaviour for the water transport in nanoconfined geometries
Chiavazzo, Eliodoro; Fasano, Matteo; Asinari, Pietro; Decuzzi, Paolo
2014-01-01
The transport of water in nanoconfined geometries is different from bulk phase and has tremendous implications in nanotechnology and biotechnology. Here molecular dynamics is used to compute the self-diffusion coefficient D of water within nanopores, around nanoparticles, carbon nanotubes and proteins. For almost 60 different cases, D is found to scale linearly with the sole parameter θ as D(θ)=DB[1+(DC/DB−1)θ], with DB and DC the bulk and totally confined diffusion of water, respectively. The parameter θ is primarily influenced by geometry and represents the ratio between the confined and total water volumes. The D(θ) relationship is interpreted within the thermodynamics of supercooled water. As an example, such relationship is shown to accurately predict the relaxometric response of contrast agents for magnetic resonance imaging. The D(θ) relationship can help in interpreting the transport of water molecules under nanoconfined conditions and tailoring nanostructures with precise modulation of water mobility. PMID:24699509
NASA Astrophysics Data System (ADS)
Souriau, Jean-Marie
1983-01-01
Differential geometry, the contemporary heir of the infinitesimal calculus of the 17th century, appears today as the most appropriate language for the description of physical reality. This holds at every level: The concept of “connexion,” for instance, is used in the construction of models of the universe as well as in the description of the interior of the proton. Nothing is apparently more contrary to the wisdom of physicists; all the same, “it works.” The pages that follow show the conceptual role played by this geometry in some examples—without entering into technical details. In order to achieve this, we shall often have to abandon the complete mathematical rigor and even full definitions; however, we shall be able to give a precise description of the connection of ideas thanks to some elements of group theory.
NASA Astrophysics Data System (ADS)
Smania, Daniel
2007-07-01
We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and ``complex bounds'', two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with 1 -dimensional unstable manifold.
Failures of information geometry
NASA Astrophysics Data System (ADS)
Skilling, John
2015-01-01
Information H is a unique relationship between probabilities, based on the property of independence which is central to scientific methodology. Information Geometry makes the tempting but fallacious assumption that a local metric (conventionally based on information) can be used to endow the space of probability distributions with a preferred global Riemannian metric. No such global metric can conform to H, which is "from-to" asymmetric whereas geometrical length is by definition symmetric. Accordingly, any Riemannian metric will contradict the required structure of the very distributions which are supposedly being triangulated. It follows that probabilities do not form a metric space. We give counter-examples in which alternative formulations of information, and the use of information geometry, lead to unacceptable results.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Structures of cholesteric liquid crystals confined in rectangular micro-channels
NASA Astrophysics Data System (ADS)
Wei, Qi-Huo; Guo, Yubing; Xiang, Jie; Lavrentovich, Oleg
When cholesteric liquid crystals are confined in various geometries, the interplays between the boundary conditions, the bulk structures and different length scales (pitch, penetration depth, and confinement size) may cause frustration and formation of intriguing topological defects and disclination lines. This paper presents our recent studies on the structures of cholesteric liquid crystals confined in rectangular microchannels with homeotropic alignments. The rectangular microchannels with various sizes and aspect ratios are made in glass substrates by using modern nanofabrication techniques. Detailed liquid crystal structures and their optical characterizations will be presented as a function of the channel depth and width. Work was supported by ACS PRF 53018-ND7.
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less
Emergent Complex Network Geometry
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra
2015-05-01
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.
Emergent Complex Network Geometry
Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra
2015-01-01
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS_{3}/CFT_{2} correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS_{3} whose kinematic space is two-dimensional de Sitter space.
Chirally Symmetric but Confined Hadrons at Finite Density
NASA Astrophysics Data System (ADS)
Ya. Glozman, L.; Wagenbrunn, R. F.
At a critical finite chemical potential and low temperature QCD undergoes the chiral restoration phase transition. The folklore tradition is that simultaneously hadrons are deconfined and there appears the quark matter. We demonstrate that it is possible to have confined but chirally symmetric hadrons at a finite chemical potential and hence beyond the chiral restoration point at a finite chemical potential and low temperature there could exist a chirally symmetric matter consisting of chirally symmetric but confined hadrons. If it does happen in QCD, then the QCD phase diagram should be reconsidered with obvious implications for heavy ion programs and astrophysics.
The virial theorem for the smoothly and sharply, penetrably and impenetrably confined hydrogen atom.
Katriel, Jacob; Montgomery, H E
2012-09-21
Confinement of atoms by finite or infinite boxes containing sharp (discontinuous) jumps has been studied since the fourth decade of the previous century, modelling the effect of external pressure. Smooth (continuous) counterparts of such confining potentials, that depend on a parameter such that in an appropriate limit they coincide with the sharp confining potentials, are investigated, with an emphasis on deriving the corresponding virial and Hellmann-Feynman theorems. PMID:22998251
The Geometry of Quasar Outflows
NASA Astrophysics Data System (ADS)
Ganguly, Rajib
2012-10-01
Quasar outflows are important for understanding the accretion and growth processes of the central black hole, but also potentially play a role in feedback to the galaxy, halting star formation and infall of gas. A big uncertainty lies in the geometry and density of these outflows, especially as a function of ionization and velocity. We aim to tackle this using the archival COS M grating spectra of 266 quasars. We separate the geometry of outflows into two parts: the solid angle subtended around the black hole, and the distance of the outflow from the central engine. Large numbers of quasars with high resolution spectra are required for each aspect of this statistical investigation. First, we will determine which/how many absorption-line systems are intrinsic through both partial covering methods and statistical assessments. Second, we will consider the incidence of intrinsic absorbers as a function of quasar property {e.g., radio-loudness, SED shape, black hole mass, bolometric luminosity}. This will reveal what determines the solid angle. This can only be done at moderate redshifts where quasars with a larger range of properties are observable, and hence requires HST/COS. Third, we will use the wide range of diagnostic lines to constrain the physical conditions of the absorbers. We will target the CIII*1175 complex and apply photoionization models to constrain the densities and ionization parameters. This will provide the largest set yet of intrinsic absorbers with systematic distance constraints. In tandem with the solid angles, this work will inform models regarding the geometry of quasar outflows.
Density Shock Waves in Confined Microswimmers
NASA Astrophysics Data System (ADS)
Tsang, Alan Cheng Hou; Kanso, Eva
2016-01-01
Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.
Density Shock Waves in Confined Microswimmers.
Tsang, Alan Cheng Hou; Kanso, Eva
2016-01-29
Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels. PMID:26871357
Nuclear Quantum Effects in H(+) and OH(-) Diffusion along Confined Water Wires.
Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David E
2016-08-01
The diffusion of protons and hydroxide ions along water wires provides an efficient mechanism for charge transport that is exploited by biological membrane channels and shows promise for technological applications such as fuel cells. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we focus on two aspects of this process that are often disregarded because of their high computational cost: the use of first-principles potential energy surfaces and the treatment of the nuclei as quantum particles. We consider proton and hydroxide ions in finite water wires using density functional theory augmented with an apolar cylindrical confining potential. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition that takes explicitly into account the delocalization of the charge in the Grotthus-like mechanism. We include nuclear quantum effects (NQEs) through the thermostated ring polymer molecular dynamics method and model finite system size effects by considering Langevin dynamics on the potential of mean force of the charged species, allowing us to extract the same "universal" diffusion coefficient from simulations with different wire sizes. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate water-water distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire. PMID:27440483
Interplay of explosive thermal reaction dynamics and structural confinement
NASA Astrophysics Data System (ADS)
Perry, W. Lee; Zucker, Jonathan; Dickson, Peter M.; Parker, Gary R.; Asay, Blaine W.
2007-04-01
Explosives play a significant role in human affairs; however, their behavior in circumstances other than intentional detonation is poorly understood. Accidents may have catastrophic consequences, especially if additional hazardous materials are involved. Abnormal ignition stimuli, such as impact, spark, friction, and heat may lead to a very violent outcome, potentially including detonation. An important factor influencing the behavior subsequent to abnormal ignition is the strength and inertia of the vessel confining the explosive, i.e., the near-field structural/mechanical environment, also known as confinement (inertial or mechanical). However, a comprehensive and quantified understanding of how confinement affects reaction violence does not yet exist. In the research discussed here, we have investigated a wide range of confinement conditions and related the explosive response to the fundamentals of the combustion process in the explosive. In our experiments, a charge of an octahydrotetranitrotetrazine-based plastic bonded explosive (PBX 9501) was loaded into a gun assembly having variable confinement conditions and subjected to a heating profile. The exploding charge breached the confinement and accelerated a projectile down the gun barrel. High bandwidth pressure and volume measurements were made and a first-law analysis was used to obtain enthalpy and power from the raw data. These results were then used to quantify reaction violence. Enthalpy change and power ranged from 0-1.8 kJ and 0-12 MW for 300 mg charges, respectively. Below a confinement strength of 20 MPa, violence was found to decline precipitously with decreasing confinement, while the violence for the heaviest confinement experiments was found to be relatively constant. Both pressure and pressurization rate were found to have critical values to induce and sustain violent reaction.
Landscape as a Model: The Importance of Geometry
Holland, E. Penelope; Aegerter, James N; Dytham, Calvin; Smith, Graham C
2007-01-01
In all models, but especially in those used to predict uncertain processes (e.g., climate change and nonnative species establishment), it is important to identify and remove any sources of bias that may confound results. This is critical in models designed to help support decisionmaking. The geometry used to represent virtual landscapes in spatially explicit models is a potential source of bias. The majority of spatial models use regular square geometry, although regular hexagonal landscapes have also been used. However, there are other ways in which space can be represented in spatially explicit models. For the first time, we explicitly compare the range of alternative geometries available to the modeller, and present a mechanism by which uncertainty in the representation of landscapes can be incorporated. We test how geometry can affect cell-to-cell movement across homogeneous virtual landscapes and compare regular geometries with a suite of irregular mosaics. We show that regular geometries have the potential to systematically bias the direction and distance of movement, whereas even individual instances of landscapes with irregular geometry do not. We also examine how geometry can affect the gross representation of real-world landscapes, and again show that individual instances of regular geometries will always create qualitative and quantitative errors. These can be reduced by the use of multiple randomized instances, though this still creates scale-dependent biases. In contrast, virtual landscapes formed using irregular geometries can represent complex real-world landscapes without error. We found that the potential for bias caused by regular geometries can be effectively eliminated by subdividing virtual landscapes using irregular geometry. The use of irregular geometry appears to offer spatial modellers other potential advantages, which are as yet underdeveloped. We recommend their use in all spatially explicit models, but especially for predictive models
Orientational order in two-dimensional confined active suspensions
NASA Astrophysics Data System (ADS)
Tsang, Alan Cheng Hou; Kanso, Eva
2013-11-01
Geometric confinement in physical space is important for the studies of the collective motion of active suspensions. The reasons are two-fold: motile biological micro-organisms or active collides are always subject to different types of confinement in their swimming environment; The existence of confinement can significantly affects hydrodynamic interactions between the swimmers and thus changes the nature of collective motion. We focus on the situation when the swimmers are confined between two parallel plates such that the motion of the particles are restricted to two dimensions. In this case, the far-field hydrodynamic effect of a swimmer is no longer given by a force-dipole, which has been used in numerous studies on discrete numerical simulations and continuum theories. Instead, the far-field effect of a confined swimmer is given by a potential-dipole. Using a potential-dipole model in doubly-periodic domain, we perform numerical simulations to probe into the collective dynamics of confined active suspensions. We show that isotropic suspensions of swimmers are unstable and develop long time polar orientation order. This results in coherent clusters swimming in the same direction, reminiscent to the collective behavior usually observed in phenomenological models.
Order-disorder structural transition in a confined fluid
NASA Astrophysics Data System (ADS)
de la Calleja-Mora, E. M.; Krott, Leandro B.; Barbosa, M. C.
2016-05-01
In this paper we analyze the amorphous/solid to disordered liquid structural phase transitions of an anomalous confined fluid in terms of their fractal dimensions. The model studied is composed by particles interaction through a two-length scales potential confined by two infinite plates. This fluid that in the bulk exhibits water-like anomalies under confinement forms layers of particles. We show that the fluid at the contact layer forms at high densities structures and transitions that can be mapped into fractal dimensions. The multi-fractal singularity spectrum is obtained in all these cases and it is used as the order parameter to quantify the structural transitions for each stage on the confined liquid. This mapping shows that the fractal dimension increases with the density and with the temperature.
Novel confinement of liquid crystals in Janus droplets
NASA Astrophysics Data System (ADS)
Wei, Wei-Shao; Jeong, Joonwoo; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.
2015-03-01
In this work we create and investigate Janus droplets composed of liquid crystal (LC) and polymer. The Janus droplets are formed when homogeneous droplets of LC-polymer-solvent phase separate into LC and polymer regions during solvent evaporation through aqueous continuous phase. This scheme enables us to realize unique confinement geometries for LCs such as spherical caps and bowls, which are difficult to be achieved via other systems. The morphologies and surface anchoring conditions can be controlled by changing the size of droplets, the volume ratio between LC and polymer, and the type/concentration of surfactants in aqueous background phase. We explore a variety of defects in these novel confined geometries including dislocations and focal conic defects of smectic LCs. Nematic and cholesteric LCs are also explored. Models that balance the energetics of bulk elasticity and surface anchoring determine the director configurations of confined liquid crystals (LCs). This work is funded by NSF Grant DMR-1205463, NSF MRSEC Grant DMR-1120901, and NASA Grant NNX08AO0G.
Neuronal activity controls transsynaptic geometry.
Glebov, Oleg O; Cox, Susan; Humphreys, Lawrence; Burrone, Juan
2016-01-01
The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792
Weyl gravity and Cartan geometry
NASA Astrophysics Data System (ADS)
Attard, J.; François, J.; Lazzarini, S.
2016-04-01
We point out that the Cartan geometry known as the second-order conformal structure provides a natural differential geometric framework underlying gauge theories of conformal gravity. We are concerned with two theories: the first one is the associated Yang-Mills-like Lagrangian, while the second, inspired by [1], is a slightly more general one that relaxes the conformal Cartan geometry. The corresponding gauge symmetry is treated within the Becchi-Rouet-Stora-Tyutin language. We show that the Weyl gauge potential is a spurious degree of freedom, analogous to a Stueckelberg field, that can be eliminated through the dressing field method. We derive sets of field equations for both the studied Lagrangians. For the second one, they constrain the gauge field to be the "normal conformal Cartan connection.''Finally, we provide in a Lagrangian framework a justification of the identification, in dimension 4, of the Bach tensor with the Yang-Mills current of the normal conformal Cartan connection, as proved in [2].
Neuronal activity controls transsynaptic geometry
Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan
2016-01-01
The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792
Effects of wetting and anchoring on capillary phenomena in a confined liquid crystal.
De Las Heras, D; Velasco, E; Mederos, L
2004-03-01
A fluid of hard spherocylinders of length-to-breadth ratio L/D=5 confined between two identical planar, parallel walls--forming a pore of slit geometry--has been studied using a version of the Onsager density-functional theory. The walls impose an exclusion boundary condition over the particle's centers of mass, while at the same time favoring a particular anchoring at the walls, either parallel or perpendicular to the substrate. We observe the occurrence of a capillary transition, i.e., a phase transition associated with the formation of a nematic film inside the pore at a chemical potential different from micro(b)-the chemical potential at the bulk isotropic-nematic transition. This transition terminates at an Ising-type surface critical point. In line with previous studies based on the macroscopic Kelvin equation and the mesoscopic Landau-de Gennes approach, our microscopic model indicates that the capillary transition is greatly affected by the wetting and anchoring properties of the semi-infinite system, i.e., when the fluid is in contact with a single wall or, equivalently, the walls are at a very large distance. Specifically, in a situation where the walls are preferentially wetted by the nematic phase in the semi-infinite system, one has the standard scenario with the capillary transition taking place at chemical potentials less than micro(b) (capillary nematization transition or capillary ordering transition). By contrast, if the walls tend to orientationally disorder the fluid, the capillary transition may occur at chemical potentials larger than micro(b), in what may be called a capillary isotropization transition or capillary disordering transition. Moreover, the anchoring transition that occurs in the semi-infinite system may affect very decisively the confinement properties of the liquid crystal and the capillary transitions may become considerably more complicated. PMID:15267357
Spatial Variations in Carbon Storage along Headwater Fluvial Networks with Differing Valley Geometry
NASA Astrophysics Data System (ADS)
Wohl, E. E.; Dwire, K. A.; Polvi, L. E.; Sutfin, N. A.; Bazan, R. A.
2011-12-01
We distinguish multiple valley types along headwater fluvial networks in the Colorado Front Range based on valley geometry (downstream gradient and valley-bottom width relative to active channel width) and the presence of biotic drivers (beaver dams or channel-spanning logjams associated with old-growth forest) capable of creating a multi-thread channel pattern. Valley type influences storage of fine sediment, organic matter, and carbon. Deep, narrow valleys have limited storage potential, whereas wide, shallow valleys with multi-thread channels have substantial storage potential. Multi-thread channels only occur in the presence of a biotic driver. Given the importance of headwater streams in the global carbon cycle, it becomes important to understand the spatial distribution and magnitude of carbon storage along these streams, as well as the processes governing patterns of storage. We compare carbon stored in three reservoirs: riparian vegetation (live, dead, and litter), instream and floodplain large wood, and floodplain soils for 100-m-long valley segments in seven different valley types. The valley types are (i) laterally confined valleys in old-growth forest, (ii) partly confined valleys in old-growth forest, (iii) laterally unconfined valleys with multi-thread channels in old-growth forest, (iv) laterally unconfined valleys with single-thread channels in old-growth forest, (v) laterally confined valleys in younger forest, (vi) recently abandoned beaver-meadow complexes with multi-thread channels and willow thickets, and (vii) longer abandoned beaver-meadow complexes with single-thread channels and very limited woody vegetation. Preliminary results suggest that, although multi-thread channel segments driven by beavers or logjams cover less than 25 percent of the total length of headwater river networks in the study area, they account for more than three-quarters of the carbon stored along the river network. Historical loss of beavers and old-growth forest has
Ice-Confined Basaltic Lava Flows: Review and Discussion
NASA Astrophysics Data System (ADS)
Skilling, I.; Edwards, B. R.
2012-12-01
Basaltic lavas that are interpreted as having been emplaced in subglacial or ice-confined subaerial settings are known from several localities in Iceland, British Columbia and Antarctica. At least four different types of observations have been used to date to identify emplacement of basaltic lavas in an ice-rich environment: i) gross flow morphology, ii) surface structures, iii) evidence for ice-confined water during emplacement, and iv) lava fracture patterns. Five types of ice-confined lava are identified: sheets, lobes, mounds, linear ridges and sinuous ridges. While the appearance of lavas is controlled by the same factors as in the submarine environment, such as the geometry and configuration of vents and lava tubes, flow rheology and rates, and underlying topography, the presence of ice can lead to distinct features that are specific to the ice-confined setting. Other types have very similar or identical equivalents in submarine environment, albeit with some oversteepening/ice contact surfaces. Ice-confined lavas can form as (1) subaerial or subaqueous lavas emplaced against ice open to the air, (2) subaqueous lavas emplaced into pre-existing sub-ice drainage networks, and (3) subaqueous lavas emplaced into ponded water beneath ice. Their surface structures reflect the relationship between rates of lava flow emplacement at the site of ice-water-lava contact, ice melting and water drainage. Variations in local lava flow rates could be due to lava cooling, constriction, inflation, tube development, ice melting, ice collapse, lava collapse, changes in eruption rate etc. Episodes of higher lava flow rate would favour direct ice contact and plastic compression against the ice, generating oversteepened and/or overthickened chilled margins, cavities in the lava formed by melting of enveloped ice blocks (cryolith cavities) and structures such as flattened pillows and lava clasts embedded into the glassy margins. Melting back of the confining ice generates space to
Isolation and confinement - Considerations for colonization
NASA Technical Reports Server (NTRS)
Akins, F. R.
1978-01-01
This paper discusses three types of isolation (sensory/perceptual, temporal, and social) that could adversely affect mankind in space. The literature dealing with laboratory and field experiments relevant to these areas is summarized and suggestions are given for dealing with these problems within the space colony community. Also, consideration is given to the potential effects of physical confinement and the need for usable space. Finally, a modification of Maslow's hierarchy of needs is proposed as a theoretical framework to understand and investigate mankind's psychological needs in space.
Perlite for permanent confinement of cesium
NASA Astrophysics Data System (ADS)
Balencie, J.; Burger, D.; Rehspringer, J.-L.; Estournès, C.; Vilminot, S.; Richard-Plouet, M.; Boos, A.
2006-06-01
We present the potential use of expanded perlite, a metastable amorphous hydrated aluminium silicate, as a permanent medium for the long-term confinement of cesium. The method requires simply a loading by mixing an aqueous cesium nitrate solution and expanded perlite at 300 K followed by densification by sintering. The formation of pollucite, CsAlSi2O6, a naturally occurring mineral phase, upon careful heat treatment is demonstrated by X-ray diffraction. Leaching tests on the resulting glass-ceramics reveal a very low Cs departure of 0.5 mg m-2 d-1.
Graded geometry and Poisson reduction
Cattaneo, A. S.; Zambon, M.
2009-02-02
The main result extends the Marsden-Ratiu reduction theorem in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof. Further, we provide an alternative algebraic proof for the main result.
Geometry Career Unit: Junior High.
ERIC Educational Resources Information Center
Jensen, Daniel
The guide, the product of an exemplary career education program for junior high school students, was developed to show how geometry can be applied to real-life career-oriented areas and to bring a practical approach to the teaching of geometry. It is designed to show how some of the theorems or postulates in geometry are used in different careers.…
ERIC Educational Resources Information Center
Instructional Objectives Exchange, Los Angeles, CA.
Behavioral objectives, each accompanied by six sample test items, for secondary school geometry are presented. Objectives were determined by surveying the most widely used secondary school geometry textbooks, and cover 14 major categories of geometry, with sections on set theory and introductory trigonometry. Answers are provided. Categories…
Computer-Aided Geometry Modeling
NASA Technical Reports Server (NTRS)
Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)
1984-01-01
Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.
CORRELATIONS IN CONFINED QUANTUM PLASMAS
DUFTY J W
2012-01-11
This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar; Zyczkowski, Karol
2006-05-01
Quantum information theory is at the frontiers of physics, mathematics and information science, offering a variety of solutions that are impossible using classical theory. This book provides an introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. After a gentle introduction to the necessary mathematics the authors describe the geometry of quantum state spaces. Focusing on finite dimensional Hilbert spaces, they discuss the statistical distance measures and entropies used in quantum theory. The final part of the book is devoted to quantum entanglement - a non-intuitive phenomenon discovered by Schrödinger, which has become a key resource for quantum computation. This richly-illustrated book is useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied. The first book to focus on the geometry of quantum states Stresses the similarities and differences between classical and quantum theory Uses a non-technical style and numerous figures to make the book accessible to non-specialists
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that
Confined Visible Optical Tamm States
NASA Astrophysics Data System (ADS)
Feng, F.; Ouaret, K.; Portalupi, S.; Lafosse, X.; Nasilovski, M.; de Marcillac, W. Daney; Frigerio, J.-M.; Schwob, C.; Dubertret, B.; Maître, A.; Senellart, P.; Coolen, L.
2016-05-01
Optical Tamm states are two-dimensional (2D) electromagnetic modes propagating at the interface between a Bragg mirror and a metallic film. When a thin (a few tens of nm) metallic micron-radius disk is deposited on a Bragg mirror, optical Tamm states can be confined below the disk surface, creating a Tamm-states cavity. We describe here the photoluminescence properties of colloidal semiconductor nanocrystals embedded in a Tamm cavity. Tamm states confinement effects are demonstrated and analysed as a function of the disk diameter, and compared with finite-elements simulations.
CONFINEMENT OF HIGH TEMPERATURE PLASMA
Koenig, H.R.
1963-05-01
The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)
Nartowski, K P; Tedder, J; Braun, D E; Fábián, L; Khimyak, Y Z
2015-10-14
The nanocrystallisation of complex molecules inside mesoporous hosts and control over the resulting structure is a significant challenge. To date the largest organic molecule crystallised inside the nano-pores is a known pharmaceutical intermediate - ROY (259.3 g mol(-1)). In this work we demonstrate smart manipulation of the phase of a larger confined pharmaceutical - indomethacin (IMC, 357.8 g mol(-1)), a substance with known conformational flexibility and complex polymorphic behaviour. We show the detailed structural analysis and the control of solid state transformations of encapsulated molecules inside the pores of mesoscopic cellular foam (MCF, pore size ca. 29 nm) and controlled pore glass (CPG, pore size ca. 55 nm). Starting from confined amorphous IMC we drive crystallisation into a confined methanol solvate, which upon vacuum drying leads to the stabilised rare form V of IMC inside the MCF host. In contrast to the pure form, encapsulated form V does not transform into a more stable polymorph upon heating. The size of the constraining pores and the drug concentration within the pores determine whether the amorphous state of the drug is stabilised or it recrystallises into confined nanocrystals. The work presents, in a critical manner, an application of complementary techniques (DSC, PXRD, solid-state NMR, N2 adsorption) to confirm unambiguously the phase transitions under confinement and offers a comprehensive strategy towards the formation and control of nano-crystalline encapsulated organic solids. PMID:26280634
Structure of confined polymer thin films subject to shear
NASA Astrophysics Data System (ADS)
Smith, G. S.; Kuhl, T. L.; Hamilton, W. A.; Mulder, D. J.; Satija, S.
2006-11-01
Using neutron reflectivity and the newly developed Shear Confinement Cell (SCC), we have directly quantified the density distribution of opposing neutral polymer brushes confined between parallel plates in good solvent conditions. With an average separation between the plates of approximately 1000 Å, our measurements show that the density profile in the overlap region between opposing polymer brushes flattens consistent with predictions from molecular dynamics simulations. A significant increase in density at the anchoring surfaces due to compression of the brush layers is observed. This compression or collapse of the brushes in restricted geometries strongly suggests that high-density brushes do not interpenetrate significantly in good solvent conditions. In addition, for the first time, we have measured the effects of an applied shear stress on the sample. We find that for neutral brushes, shear creates a totally new disentangled structure which surprisingly relaxes only after a time span of a few weeks.
Shapes of minimal-energy DNA ropes condensed in confinement
Šiber, Antonio
2016-01-01
Shapes of a single, long DNA molecule condensed in a confinement of a virus capsid are described as conformations optimizing a model free energy functional accounting for the interplay between the bending energy of the DNA and the surface energy of the DNA bundled in a “rope”. The rope is formed by bundled DNA brought together by (self-)attractive interactions. The conformations predicted by the model depend on the shape of the confinement, the total amount of the packed DNA but also on the relative contributions of the bending and surface energies. Some of the conformations found were not predicted previously, but many previously proposed DNA conformations, some of which are seemingly contradictory, were found as the solutions of the model. The results show that there are many possible packing conformations of the DNA and that the one which realizes in a particular virus depends on the capsid geometry and the nature of condensing agents. PMID:27364168
Defect topologies in chiral liquid crystals confined to mesoscopic channels
NASA Astrophysics Data System (ADS)
Schlotthauer, Sergej; Skutnik, Robert A.; Stieger, Tillmann; Schoen, Martin
2015-05-01
We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.
Defect topologies in chiral liquid crystals confined to mesoscopic channels
Schlotthauer, Sergej Skutnik, Robert A.; Stieger, Tillmann; Schoen, Martin
2015-05-21
We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.
3D cancer cell migration in a confined matrix
NASA Astrophysics Data System (ADS)
Alobaidi, Amani; Sun, Bo
Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.
An electrostatically and a magnetically confined electron gun lens system
NASA Technical Reports Server (NTRS)
Bernius, Mark T.; Man, Kin F.; Chutjian, Ara
1988-01-01
Focal properties, electron trajectory calculations, and geometries are given for two electron 'gun' lens systems that have a variety of applications in, for example, electron-neutral and electron-ion scattering experiments. One nine-lens system utilizes only electrostatic confinement and is capable of focusing electrons onto a fixed target with extremely small divergence angles, over a range of final energies 1-790 eV. The second gun lens system is a simpler three-lens system suitable for use in a uniform, solenoidal magnetic field. While the focusing properties of such a magnetically confined lens systenm are simpler to deal with, the system does illustrate features of electron extraction and Brillouin flow that have not been suitably emphasized in the literature.
5D non-symmetric gravity and geodesic confinement
NASA Astrophysics Data System (ADS)
Ghosh, Suman; Shankaranarayanan, S.
2013-09-01
This work focuses on an unexplored aspect of non-symmetric geometry where only the off-diagonal metric components along the extra dimension, in a 5-dimensional spacetime, are non-symmetric. We show that the energy densities of the stationary non-symmetric models are similar to that of brane models thereby mimicking the thick-brane scenario. We find that the massive test particles are confined near the location of the brane for both growing and decaying warp factors. This feature is unique to the non-symmetric nature of our model. We have also studied the dynamical models where standard 4D FLRW brane is embedded. Our analysis shows that the non-symmetric terms deconfine energy density at the early universe while automatically confine at late times.
Shapes of minimal-energy DNA ropes condensed in confinement
NASA Astrophysics Data System (ADS)
Šiber, Antonio
2016-07-01
Shapes of a single, long DNA molecule condensed in a confinement of a virus capsid are described as conformations optimizing a model free energy functional accounting for the interplay between the bending energy of the DNA and the surface energy of the DNA bundled in a “rope”. The rope is formed by bundled DNA brought together by (self-)attractive interactions. The conformations predicted by the model depend on the shape of the confinement, the total amount of the packed DNA but also on the relative contributions of the bending and surface energies. Some of the conformations found were not predicted previously, but many previously proposed DNA conformations, some of which are seemingly contradictory, were found as the solutions of the model. The results show that there are many possible packing conformations of the DNA and that the one which realizes in a particular virus depends on the capsid geometry and the nature of condensing agents.
Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J.T.; Schneider, Kai
2014-10-01
A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analytical solutions. The test cases considered are two-dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.
NASA Astrophysics Data System (ADS)
Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J. T.; Schneider, Kai
2014-10-01
A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analytical solutions. The test cases considered are two-dimensional Taylo-Couette flow, the z-pinch configuration, three dimensional Orszag-Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylo-Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.
Confining the scalar field of the Kaluza-Klein wormhole soliton
Clement, G. )
1989-08-01
The Maison five-to-three dimensional reduction, generalized to the case of five-dimensional general relativity with sources, is applied to the problem of confining the scalar field of the Kaluza-Klein wormhole soliton by a very weak perfect fluid source, without affecting the spatial geometry of this localized solution.
Chalvet, F; di Franco, C; Terrinoni, A; Pelisson, A; Junakovic, N; Bucheton, A
1998-04-01
Gypsy is an endogenous retrovirus present in the genome of Drosophila melanogaster. This element is mobilized only in the progeny of females which contain active gypsy elements and which are homozygous for permissive alleles of a host gene called flamenco (flam). Some data strongly suggest that gypsy elements bearing a diagnostic HindIII site in the central region of the retrovirus body represent a subfamily that appears to be much more active than elements devoid of this site. We have taken advantage of this structural difference to assess by the Southern blotting technique the genomic distribution of active gypsy elements. In some of the laboratory Drosophila stocks tested, active gypsy elements were found to be restricted to the Y chromosome. Further analyses of 14 strains tested for the permissive vs. restrictive status of their flamenco alleles suggest that the presence of permissive alleles of flam in a stock tends to be associated with the confinement of active gypsy elements to the Y chromosome. This might be the result of the female-specific effect of flamenco on gypsy activity. PMID:9541538
Optically defined mechanical geometry
NASA Astrophysics Data System (ADS)
Barasheed, Abeer Z.; Müller, Tina; Sankey, Jack C.
2016-05-01
In the field of optomechanics, radiation forces have provided a particularly high level of control over the frequency and dissipation of mechanical elements. Here we propose a class of optomechanical systems in which light exerts a similarly profound influence over two other fundamental parameters: geometry and mass. By applying an optical trap to one lattice site of an extended phononic crystal, we show it is possible to create a tunable, localized mechanical mode. Owing to light's simultaneous and constructive coupling with the structure's continuum of modes, we estimate that a trap power at the level of a single intracavity photon should be capable of producing a significant effect within a realistic, chip-scale device.
Critique of information geometry
Skilling, John
2014-12-05
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.
NASA Astrophysics Data System (ADS)
Correa, Diego H.; Silva, Guillermo A.
2008-07-01
We discuss how geometrical and topological aspects of certain 1/2-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.
Correa, Diego H.; Silva, Guillermo A.
2008-07-28
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.
Critique of information geometry
NASA Astrophysics Data System (ADS)
Skilling, John
2014-12-01
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.
Mirror Confinement Systems: project summaries
Not Available
1980-07-01
This report contains descriptions of the projects supported by the Mirror Confinement Systems (MCS) Division of the Office of Fusion Energy. The individual project summaries were prepared by the principal investigators, in collaboration with MCS staff office, and include objectives and milestones for each project. In addition to project summaries, statements of Division objectives and budget summaries are also provided.
Momentum Confinement at Low Torque
Solomon, W M; Burrell, K H; deGrassie, J S; Budny, R; Groebner, R J; Heidbrink, W W; Kinsey, J E; Kramer, G J; Makowski, M A; Mikkelsen, D; Nazikian, R; Petty, C C; Politzer, P A; Scott, S D; Van Zeeland, M A; Zarnstorff, M C
2007-06-26
Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.
Confinement physics for thermal, neutral, high-charge-state plasmas in nested-well solenoidal traps.
Dolliver, D D; Ordonez, C A
1999-06-01
A theoretical study is presented which indicates that it is possible to confine a neutral plasma using static electric and solenoidal magnetic fields. The plasma consists of equal temperature electrons and highly stripped ions. The solenoidal magnetic field provides radial confinement, while the electric field, which produces an axial nested-well potential profile, provides axial confinement. A self-consistent, multidimensional numerical solution for the electric potential is obtained, and a fully kinetic theoretical treatment on axial transport is used to determine an axial confinement time scale. The effect on confinement of the presence of a radial electric field is explored with the use of ion trajectory calculations. A thermal, neutral, high-charge-state plasma confined in a nested-well trap opens new possibilities for fundamental studies on plasma recombination and cross-field transport processes under highly controlled conditions. PMID:11969700
NASA Technical Reports Server (NTRS)
Samuelsen, G. S.; Sowa, W. A.; Hatch, M. S.
1996-01-01
A series of non-reacting parametric experiments was conducted to investigate the effect of geometric and flow variations on mixing of cold jets in an axis-symmetric, heated cross flow. The confined, cylindrical geometries tested represent the quick mix region of a Rich-Burn/Quick-Mix/Lean-Burn (RQL) combustor. The experiments show that orifice geometry and jet to mainstream momentum-flux ratio significantly impact the mixing characteristic of jets in a cylindrical cross stream. A computational code was used to extrapolate the results of the non-reacting experiments to reacting conditions in order to examine the nitric oxide (NO) formation potential of the configurations examined. The results show that the rate of NO formation is highest immediately downstream of the injection plane. For a given momentum-flux ratio, the orifice geometry that mixes effectively in both the immediate vicinity of the injection plane, and in the wall regions at downstream locations, has the potential to produce the lowest NO emissions. The results suggest that further study may not necessarily lead to a universal guideline for designing a low NO mixer. Instead, an assessment of each application may be required to determine the optimum combination of momentum-flux ratio and orifice geometry to minimize NO formation. Experiments at reacting conditions are needed to verify the present results.
Open-ended magnetic confinement systems for fusion
Post, R.F.; Ryutov, D.D.
1995-05-01
Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ``closed`` and `open``. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research.
Final report [Molecular simulations of complex fluids in confined geometrics
Gehrke, Stevin H.; Jiang, Shaoyi
2002-07-22
This award supports collaborative research between Kansas State University and Sandia National Laboratories on the topic ''Molecular simulations of complex fluids in confined geometries.'' The objectives of this work are to develop new methodologies for fast and accurate simulations, and to apply simulations to various problems of interest to DOE. The success of this work will address several deficiencies in Sandia's capabilities in the area of molecular simulations. In addition, it provides educational opportunities for students and will enhance the science and technology capabilities at Kansas State through partnership with the national laboratories.
Magnetospheric vortex formation: self-organized confinement of charged particles.
Yoshida, Z; Saitoh, H; Morikawa, J; Yano, Y; Watanabe, S; Ogawa, Y
2010-06-11
A magnetospheric configuration gives rise to various peculiar plasma phenomena that pose conundrums to astrophysical studies; at the same time, innovative technologies may draw on the rich physics of magnetospheric plasmas. We have created a "laboratory magnetosphere" with a levitating superconducting ring magnet. Here we show that charged particles (electrons) self-organize a stable vortex, in which particles diffuse inward to steepen the density gradient. The rotating electron cloud is sustained for more than 300 s. Because of its simple geometry and self-organization, this system will have wide applications in confining single- and multispecies charged particles. PMID:20867249
Complex Plasmas in Narrow Channels: Impact of Confinement on the Local Order
Klumov, B. A.
2008-10-15
Two-dimensional (2D) and three-dimensional (3D) quasi-equilibrium configurations of a complex (dusty) plasma in narrow channels are investigated using the molecular dynamics simulations for various confining potentials (confinements). The dynamics of the microparticles is described within the framework of a Langevin thermostat with allowance for the pair interaction between charged particles, which is described by a screened Coulomb potential (Yukawa potential). Two types of confinement: the parabolic electrostatic potential and hard elastic wall are considered. It is shown that the confinement strongly affects the crystallization and the local order of the microparticles in the system under consideration; in particular, the appearance of a new quasicrystalline phase induced by the hard wall confinement is revealed in 3D case.
‘Square root’ of the Maxwell Lagrangian versus confinement in general relativity
NASA Astrophysics Data System (ADS)
Mazharimousavi, S. Habib; Halilsoy, M.
2012-04-01
We employ the 'square root' of the Maxwell Lagrangian (i.e. √{FμνFμν }), coupled with gravity to search for the possible linear potentials which are believed to play role in confinement. It is found that in the presence of magnetic charge no confining potential exists in such a model. Confining field solutions are found for radial geodesics in pure electrically charged Nariai-Bertotti-Robinson (NBR)-type spacetime with constant scalar curvature. Recently, Guendelman, Kaganovich, Nissimov and Pacheva (2011) [7] have shown that superposed square root with standard Maxwell Lagrangian yields confining potentials in spherically symmetric spacetimes with new generalized Reissner-Nordström-de Sitter/anti-de Sitter black hole solutions. In NBR spacetimes we show that confining potentials exist even when the standard Maxwell Lagrangian is relaxed.
Dipole Transport: a New Confinement Paradigm
NASA Astrophysics Data System (ADS)
Kesner, J.; Garnier, D.; Mauel, M.
2014-10-01
In a tokamak-like device turbulence will grow up to a level determined by non-linear processes. The associated transport, in combination with particle and energy sources then determines the density and temperature profiles of the plasma. This paradigm is fundamentally different for a plasma that is confined in a dipole field. In a dipole, levitated to avoid losses to the supports, the plasma will assume a stationary profile determined only by the specific volume, V (Ψ) , (which is determined by the magnetic geometry). Independent of the source and sink profiles for particles and energy, turbulence will grow up to a sufficient level so that diffusion and pinch dynamics will establish stationary profiles characterized by ne ~ 1 / V and p ~ 1 /V 5 / 3 . This process is observed in magnetospheric plasmas and we have observed it in the laboratory in LDX. For example, with edge fueling in LDX we observed that the stationary (peaked) density profile (n ~ 1 / V) was established by a turbulence-driven density pinch whereas in recent experiments with core (pellet) fueling turbulence was observed to relax the density back to the stationary profile on a similar timescale. Supported by the NSF-DOE Partnership in Plasma Science Grants DE-FG02-00ER54585 and PHY-1201896.
Azimuthal field instability in a confined ferrofluid
NASA Astrophysics Data System (ADS)
Dias, Eduardo O.; Miranda, José A.
2015-02-01
We report the development of interfacial ferrohydrodynamic instabilities when an initially circular bubble of a nonmagnetic inviscid fluid is surrounded by a viscous ferrofluid in the confined geometry of a Hele-Shaw cell. The fluid-fluid interface becomes unstable due to the action of magnetic forces induced by an azimuthal field produced by a straight current-carrying wire that is normal to the cell plates. In this framework, a pattern formation process takes place through the interplay between magnetic and surface tension forces. By employing a perturbative mode-coupling approach we investigate analytically both linear and intermediate nonlinear regimes of the interface evolution. As a result, useful analytical information can be extracted regarding the destabilizing role of the azimuthal field at the linear level, as well as its influence on the interfacial pattern morphology at the onset of nonlinear effects. Finally, a vortex sheet formalism is used to access fully nonlinear stationary solutions for the two-fluid interface shapes.
Azimuthal field instability in a confined ferrofluid.
Dias, Eduardo O; Miranda, José A
2015-02-01
We report the development of interfacial ferrohydrodynamic instabilities when an initially circular bubble of a nonmagnetic inviscid fluid is surrounded by a viscous ferrofluid in the confined geometry of a Hele-Shaw cell. The fluid-fluid interface becomes unstable due to the action of magnetic forces induced by an azimuthal field produced by a straight current-carrying wire that is normal to the cell plates. In this framework, a pattern formation process takes place through the interplay between magnetic and surface tension forces. By employing a perturbative mode-coupling approach we investigate analytically both linear and intermediate nonlinear regimes of the interface evolution. As a result, useful analytical information can be extracted regarding the destabilizing role of the azimuthal field at the linear level, as well as its influence on the interfacial pattern morphology at the onset of nonlinear effects. Finally, a vortex sheet formalism is used to access fully nonlinear stationary solutions for the two-fluid interface shapes. PMID:25768610
Planetary Image Geometry Library
NASA Technical Reports Server (NTRS)
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
Towards assessing the violence of reaction during cookoff of confined energetic materials
Baer, M.R.; Kipp, M.E.; Schmitt, R.G.; Hobbs, M.L.
1996-11-01
An analysis of post-ignition events in a variable confinement cookoff test (VCCT) geometry is presented aimed toward predicting the level of violence during cookoff of confined thermally-degraded energetic materials. This study focuses on the dynamic events following thermal initiation whereby accelerated combustion interacts with confinement. Numerical simulations, based on a model of reactive multiphase mixtures, indicate that the response of energetic material is highly dependent upon thermal/mechanical damage states prior to ignition. These damaged states affect the rate of pressurization, dynamic compaction behavior and subsequent growth to detonation. Variations of the specific surface area and porosity produced by decomposition of the energetic material causes different responses ranging from pressure burst to detonation. Calculated stress histories are used in estimating breakup of the VCCT confinement based on Grady-Kipp fragmentation theory.
Radial guiding-center drifts and omnigenity in bumpy-torus confinement systems
NASA Astrophysics Data System (ADS)
Hazeltine, R. D.; Catto, P. J.
1982-07-01
Collisional transport of a high temperature plasma across the confining field of a bumpy torus magnetic confinement system which depends sensitively upon the functional form of the radial quiding center drift, and thus upon details of the confinement geometry is discussed. A general and relatively explicit formula for the radial drift is derived, using the large aspect-ratio results of a previous equilibrium study. Allowance is made for: (1) arbitrary toroidal variation of the confining field; (2) field distortion due to plasma currents; (3) noncircular deformation of the toroidal field coils. The analysis pertains only to the plasma core, and not to the high beta annuli (electron rings) which are usually present in experiments. The question of bumpy torus omnigenity whether any bumpy torus field configuration is consistent with a vanishing, or nearly vanishing, radial drift, is also investigated. It is found that omnigenity does not occur in the vicinity of the magnetic axis.
Information geometry of Bayesian statistics
NASA Astrophysics Data System (ADS)
Matsuzoe, Hiroshi
2015-01-01
A survey of geometry of Bayesian statistics is given. From the viewpoint of differential geometry, a prior distribution in Bayesian statistics is regarded as a volume element on a statistical model. In this paper, properties of Bayesian estimators are studied by applying equiaffine structures of statistical manifolds. In addition, geometry of anomalous statistics is also studied. Deformed expectations and deformed independeces are important in anomalous statistics. After summarizing geometry of such deformed structues, a generalization of maximum likelihood method is given. A suitable weight on a parameter space is important in Bayesian statistics, whereas a suitable weight on a sample space is important in anomalous statistics.
Enzymatic reactions in confined environments
NASA Astrophysics Data System (ADS)
Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter
2016-05-01
Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.
Influence of confinement on thermodiffusion
NASA Astrophysics Data System (ADS)
Hannaoui, Rachid; Galliero, Guillaume; Hoang, Hai; Boned, Christian
2013-09-01
This work focuses on a possible influence of a nanoporous medium on the thermodiffusion of a fluid "isotopic" mixture. To do so, we performed molecular dynamics simulations of confined Lennard-Jones binary equimolar mixtures using grand-canonical like and non-equilibrium approaches in sub- and super-critical conditions. The study was conducted in atomistic slit pore of three adsorbent natures for various widths (from 5 to 35 times the size of a molecule). The simulation results indicate that for all thermodynamic conditions and whatever the pore characteristics, the confinement has a negligible effect on the thermal diffusion factor/Soret coefficient. However, when considered separately, the mass diffusion and thermodiffusion coefficients have been found to be largely influenced by the pore characteristics. These two coefficients decrease noticeably when adsorption is stronger and pore width smaller, a behavior that is consistent with a simple hydrodynamic explanation.
Enzymatic reactions in confined environments.
Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter
2016-05-01
Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems. PMID:27146955
INVESTIGATION OF CONTAMINANT TRANSPORT FROM THE SAGINAW CONFINED DISPOSAL FACILITY
Pilot biomonitoring and monitoring studies were conducted at the Saginaw Confined Disposal Facility (CDF), Saginaw Bay, Lake Huron, during 1987 to develop methods to assess the potential for magnitude of 1) contaminant transport from the dike interior to the outside environment, ...
Trapping ultracold atoms in a time-averaged adiabatic potential
Gildemeister, M.; Nugent, E.; Sherlock, B. E.; Kubasik, M.; Sheard, B. T.; Foot, C. J.
2010-03-15
We report an experimental realization of ultracold atoms confined in a time-averaged, adiabatic potential (TAAP). This trapping technique involves using a slowly oscillating ({approx}kHz) bias field to time-average the instantaneous potential given by dressing a bare magnetic potential with a high-frequency ({approx}MHz) magnetic field. The resultant potentials provide a convenient route to a variety of trapping geometries with tunable parameters. We demonstrate the TAAP trap in a standard time-averaged orbiting potential trap with additional Helmholtz coils for the introduction of the radio frequency dressing field. We have evaporatively cooled 5x10{sup 4} atoms of {sup 87}Rb to quantum degeneracy and observed condensate lifetimes of longer than 3 s.
Inertial-confinement-fusion targets
Hendricks, C.D.
1981-11-16
Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques have been devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.
Ion beam inertial confinement target
Bangerter, Roger O.; Meeker, Donald J.
1985-01-01
A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.
Nanoparticle Order through Entropic Confinement
NASA Astrophysics Data System (ADS)
Zhang, Ren; Lee, Bongjoon; Stafford, Christopher; Douglas, Jack; Bockstaller, Michael; Karim, Alamgir
As has been addressed in colloidal science, visual order transitions can be achieved with entropy contributions alone. Herein, entropy-driven ordering of nanoparticle (NP) structures is generated where entropy increase and visual order are achieved simultaneously. We study an ``athermal'' NP-polymer blends where NPs are densely grafted with polymer brush of the same chemical composition as the polymer matrix. Visual order of the NPs is induced by geometrically confining the thin film blends with meso-scale topographic patterns. When the residual layer thickness of the patterned blend films approaches the nanoparticle dimension, exclusive segregation of NPs to less confining imprinted mesa region occurs. This preferential segregation of NPs, defined by partition coefficient K = 0, is attributed to purely entropic penalty, where K denotes the particle density ratio at highly confined residual layer to that at mesa region. We further demonstrate K is fully tunable and even invertible with increasing matrix chain dimension. The associated entropic free energy change (ΔF = - ln K) is calculated to explain NP segregation preference. Accordingly, variation of residual layer thickness and polymer matrix molecule size can both affect NP distribution among patterned thick and thin regions.
Holographic confinement in inhomogeneous backgrounds
NASA Astrophysics Data System (ADS)
Marolf, Donald; Wien, Jason
2016-08-01
As noted by Witten, compactifying a d-dimensional holographic CFT on an S 1 gives a class of ( d - 1)-dimensional confining theories with gravity duals. The proto-typical bulk solution dual to the ground state is a double Wick rotation of the AdS d+1 Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the S 1, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attracted to regions where the eigenvalues of the Hessian are large and positive in directions orthogonal to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the confining vacuum above its zeroth order value.
Confinement of Non-neutral Plasmas in Stellarator Magnetic Surfaces
NASA Astrophysics Data System (ADS)
Brenner, Paul
2011-12-01
The Columbia Non-neutral Torus (CNT) is the first experiment designed to create and study small Debye length non-neutral plasmas confined by magnetic surfaces. This thesis describes experimental confinement studies of non-neutral plasmas on magnetic surfaces in CNT. Open orbits exist in CNT resulting in electron loss rates that are much faster than initially predicted. For this reason a conforming boundary was designed and installed to address what is believed to be the primary cause of open orbits: the existence of a sizable mismatch between the electrostatic potential surfaces and the magnetic surfaces. After installation a record confinement time of 337 ms was measured, more than an order of magnitude improvement over the previous 20 ms record. This improvement was a combination of the predicted improvement in orbit quality, a reduced Debye length that resulted in decreased transport due to the perturbing insulated rods, and improved operating parameters not indicative of any new physics. The perturbation caused by the insulated rods that hold emitters on axis in CNT is a source of electron transport and would provide a loss mechanism for positrons in future positron-electron plasma experiments. For these reasons an emitter capable of creating plasmas then being removed faster than the confinement time was built and installed. Measurements of plasma decay after emitter retraction indicate that ion accumulation reduces the length of time that plasmas are confined. Plasmas have been measured after retraction with decay times as long as 92 ms after the emitter has left the last closed flux surface. Experimental observations show that obstructing one side of an emitting filament with a nearby insulator substantially improves confinement. As a result, experiments have been performed to determine whether a two stream instability affects confinement in CNT. Results indicate that the improvement is not caused by reducing a two stream instability. Instead, the
Quantum chromodynamics near the confinement limit
Quigg, C.
1985-09-01
These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means for going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment.
Emergent phenomena in manganites under spatial confinement
NASA Astrophysics Data System (ADS)
Shen, Jian; Z. Ward, T.; F. Yin, L.
2013-01-01
It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high-Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom—charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization. In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation. Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS “electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.
Confinement Driven by Scalar Field in 4d Non Abelian Gauge Theories
Chabab, Mohamed
2007-01-12
We review some of the most recent work on confinement in 4d gauge theories with a massive scalar field (dilaton). Emphasis is put on the derivation of confining analytical solutions to the Coulomb problem versus dilaton effective couplings to gauge terms. It is shown that these effective theories can be relevant to model quark confinement and may shed some light on confinement mechanism. Moreover, the study of interquark potential, derived from Dick Model, in the heavy meson sector proves that phenomenological investigation of tmechanism is more than justified and deserves more efforts.
On a holographic model for confinement/deconfinement
Bayona, C. A. Ballon; Boschi-Filho, Henrique; Braga, Nelson R. F.; Zayas, Leopoldo A. Pando
2008-02-15
We study the thermodynamics of the hard wall model, which consists of the introduction of an infrared cutoff in asymptotically AdS spaces. This is a toy model for confining backgrounds in the context of the gauge/gravity correspondence. We use holographic renormalization and reproduce the existence of a Hawking-Page phase transition recently discussed by Herzog. We also show that the entropy jumps from N{sup 0} to N{sup 2}, which reinforces the interpretation of this transition as the gravity dual of confinement/deconfinement. We also show that similar results hold for the phenomenologically motivated soft wall model, underlining the potential universality of our analysis.
DEVELOPMENT OF A METHODOLOGY FOR REGIONAL EVALUATION OF CONFINING BED INTEGRITY
For safe underground injection of liquid waste, confining formations must be thick, extensive, and have low permeability. Recognition of faults that extend from the potential injection zone to underground sources of drinking water is critical for evaluation of confining-bed integ...
Detection of confinement and jumps in single-molecule membrane trajectories
NASA Astrophysics Data System (ADS)
Meilhac, N.; Le Guyader, L.; Salomé, L.; Destainville, N.
2006-01-01
We propose a variant of the algorithm by [R. Simson, E. D. Sheets, and K. Jacobson, Biophys. 69, 989 (1995)]. Their algorithm was developed to detect transient confinement zones in experimental single-particle tracking trajectories of diffusing membrane proteins or lipids. We show that our algorithm is able to detect confinement in a wider class of confining potential shapes than that of Simson Furthermore, it enables to detect not only temporary confinement but also jumps between confinement zones. Jumps are predicted by membrane skeleton fence and picket models. In the case of experimental trajectories of μ -opioid receptors, which belong to the family of G-protein-coupled receptors involved in a signal transduction pathway, this algorithm confirms that confinement cannot be explained solely by rigid fences.
Analytic Coleman-de Luccia Geometries
Dong, Xi; Harlow, Daniel; /Stanford U., ITP /Stanford U., Phys. Dept.
2012-02-16
We present the necessary and sufficient conditions for a Euclidean scale factor to be a solution of the Coleman-de Luccia equations for some analytic potential V ({psi}), with a Lorentzian continuation describing the growth of a bubble of lower-energy vacuum surrounded by higher-energy vacuum. We then give a set of explicit examples that satisfy the conditions and thus are closed-form analytic examples of Coleman-de Luccia geometries.
GPS: Geometry, Probability, and Statistics
ERIC Educational Resources Information Center
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Achievement in Writing Geometry Proofs.
ERIC Educational Resources Information Center
Senk, Sharon L.
In 1981 a nationwide assessment of achievement in writing geometry proofs was conducted by the Cognitive Development and Achievement in Secondary School Geometry project. Over 1,500 students in 11 schools in 5 states participated. This paper describes the sample, instruments, grading procedures, and selected results. Results include: (1) at the…
NASA Astrophysics Data System (ADS)
Micheletty, P. D.; Goode, J.; Pierce, J. L.; Buffington, J. M.
2011-12-01
Over human time scales (10-1 - 102 yr), alluvial mountain rivers respond to changes in sediment input and discharge through adjustments in reach-scale morphology (width, depth, grain size, and, to some degree, slope). Channel confinement (valley-width relative to the bankfull channel width) in these systems can strongly influence the magnitude of channel response. We compared channel responsiveness to flood events (50-100 yr) within the last 5 years in unconfined and confined valley segments on the Olympic Peninsula, western Washington. Field measurements of cross-sectional averaged width and depth in 20 confined and 20 unconfined valleys are compared to the bankfull dimensions predicted from established downstream hydraulic geometry relationships for the region. We expect that measured bankfull geometry of confined reaches will be significantly greater than the predicted bankfull dimensions, which would suggest that the morphology of confined channels is more responsive to flood events. In unconfined channels floodplains are large enough to disperse over-bank flows, which can limit the effect of peak discharges on channel morphology, whereas confined channels are forced to disperse the extra energy exerted by peak flows into increased shear stress along their bed and banks. Results from this study can aid modeling efforts to predict future changes in channel geometry and aquatic habitat in response to climate change or land use at the basin scale.
Quantum states of confined hydrogen plasma species: Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Micca Longo, G.; Longo, S.; Giordano, D.
2015-12-01
The diffusion Monte Carlo method with symmetry-based state selection is used to calculate the quantum energy states of \\text{H}2+ confined into potential barriers of atomic dimensions (a model for these ions in solids). Special solutions are employed, permitting one to obtain satisfactory results with rather simple native code. As a test case, {{}2}{{\\Pi}u} and {{}2}{{\\Pi}g} states of \\text{H}2+ ions under spherical confinement are considered. The results are interpreted using the correlation of \\text{H}2+ states to atomic orbitals of H atoms lying on the confining surface and perturbation calculations. The method is straightforwardly applied to cavities of any shape and different hydrogen plasma species (at least one-electron ones, including H) for future studies with real crystal symmetries.
Chiral Langrangian with confinement from the QCD Langrangian
Yu A. Simonov
2002-01-01
An effective Langrangian for the light quark in the field of a static source is derived systematically using the exact field correlator expansion. The lowest Gaussian term is bosonized using nonlocal colorless bosonic fields and a general structure of effective chiral Langrangian is obtained containing all set of fields. The new and crucial result is that the condensation of scalar isoscalar field which is a usual onset of chiral symmetry breaking and is constant in space-time, assumes here the form of the confining string and contributes to the confining potential while the rest bosonic fields describe mesons with the q{rvec q} quark structure and pseudoscalars play the role of Nambu-Goldstone fields. Using derivative expansion the effective chiral Langrangian is deduced containing both confinement and chiral effects for heavy-light mesons. The pseudovector quark coupling constant is computed to be exactly unity in the local limit in agreement with earlier large N{sub c} arguments.
Inertial-Electrostatic Confinement (IEC) Fusion For Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using IEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois @ Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using EEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois@Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
Capillary smectization and layering in a confined liquid crystal.
de Las Heras, D; Velasco, E; Mederos, L
2005-01-14
Using density-functional theory, we have analyzed the phase behavior of a model liquid crystal confined between two parallel, planar surfaces (i.e., the so-called slit pore). As a result of confinement, a rich phase behavior arises. The complete liquid-crystal phase diagram of the confined fluid is mapped out as a function of wall separation and chemical potential. Strong commensuration effects in the film with respect to wall separation lead to enhanced smectic ordering, which gives capillary smectization (i.e., formation of a smectic phase in the pore), or frustrated smectic ordering, which suppresses capillary smectization. These effects also produce layering transitions. Our nonlocal density-functional-based analysis provides a unified picture of all the above phenomena. PMID:15698132
Limits of downstream hydraulic geometry
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2004-10-01
Adjustments to flow width, depth, and velocity in response to changes in discharge are commonly characterized by using downstream hydraulic geometry relationships. The spatial limits of these relationships within a drainage basin have not been systematically quantified. Where the erosional resistance of the channel substrate is sufficiently large, hydraulic driving forces presumably will be unable to adjust channel form. Data sets from 10 mountain rivers in the United States, Panama, Nepal, and New Zealand are used in this study to explore the limits of downstream hydraulic geometry relationships. Where the ratio of stream power to sediment size (Ω/D84) exceeds 10,000 kg/s3, downstream hydraulic geometry is well developed; where the ratio falls below 10,000 kg/s3, downstream hydraulic geometry relationships are poorly developed. These limitations on downstream hydraulic geometry have important implications for channel engineering and simulations of landscape change.
Lobachevsky's Geometry and Research of Geometry of the Universe
NASA Astrophysics Data System (ADS)
Brylevskaya, L. I.
2008-10-01
For the first time N. I. Lobachevsky gave a talk on the new geometry in 1826; three years after he had published a work "On the fundamentals of geometry", containing all fundamental theorems and methods of non-Euclidean geometry. A small part of the article was devoted to the study of geometry of the Universe. The interpretation of geometrical concepts in pure empirical way was typical for mathematicians at the beginning of the XIX century; in this connection it was important for scientists to find application of his geometry. Having the purpose to determine experimentally the properties of real physical Space, Lobachevsky decided to calculate the sum of angles in a huge triangle with two vertexes in opposite points of the terrestrial orbit and the third -- on the remote star. Investigating the possibilities of solution of the set task, Lobachevsky faced the difficulties of theoretical, technical and methodological character. More detailed research of different aspects of the problem led Lobachevsky to the comprehension of impossibility to obtain the values required for the goal achievement, and he called his geometry an imaginary geometry.
Optimizing Stellarators for Energetic Particle Confinement using BEAMS3D
NASA Astrophysics Data System (ADS)
Bolgert, Peter; Drevlak, Michael; Lazerson, Sam; Gates, David; White, Roscoe
2015-11-01
Energetic particle (EP) loss has been called the ``Achilles heel of stellarators,'' (Helander, Rep. Prog. Phys. 77 087001 (2014)) and there is a great need for magnetic configurations with improved EP confinement. In this study we utilize a newly developed capability of the stellarator optimization code STELLOPT: the ability to optimize EP confinement via an interface with guiding center code BEAMS3D (McMillan et al., Plasma Phys. Control. Fusion 56, 095019 (2014)). Using this new tool, optimizations of the W7-X experiment and ARIES-CS reactor are performed where the EP loss fraction is one of many target functions to be minimized. In W7-X, we simulate the experimental NBI system using realistic beam geometry and beam deposition physics. The goal is to find configurations with improved neutral beam deposition and energetic particle confinement. These calculations are compared to previous studies of W7-X NBI deposition. In ARIES-CS, we launch 3.5 MeV alpha particles from a near-axis flux surface using a uniform grid in toroidal and poloidal angle. As these particles are born from D-T reactions, we consider an isotropic distribution in velocity space. This research is supported by DoE Contract Number DE-AC02-09CH11466.
Universal behavior of hydrogels confined to narrow capillaries
Li, Yang; Sarıyer, Ozan S.; Ramachandran, Arun; Panyukov, Sergey; Rubinstein, Michael; Kumacheva, Eugenia
2015-01-01
Flow of soft matter objects through one-dimensional environments is important in industrial, biological and biomedical systems. Establishing the underlying principles of the behavior of soft matter in confinement can shed light on its performance in many man-made and biological systems. Here, we report an experimental and theoretical study of translocation of micrometer-size hydrogels (microgels) through microfluidic channels with a diameter smaller than an unperturbed microgel size. For microgels with different dimensions and mechanical properties, under a range of applied pressures, we established the universal principles of microgel entrance and passage through microchannels with different geometries, as well as the reduction in microgel volume in confinement. We also show a non-monotonic change in the flow rate of liquid through the constrained microgel, governed by its progressive confinement. The experimental results were in agreement with the theory developed for non-linear biaxial deformation of unentangled polymer gels. Our work has implications for a broad range of phenomena, including occlusion of blood vessels by thrombi and needle-assisted hydrogel injection in tissue engineering. PMID:26596468
Theory of Activated Relaxation in Nanoscale Confined Liquids
NASA Astrophysics Data System (ADS)
Mirigian, Stephen; Schweizer, Kenneth
2014-03-01
We extend the recently developed Elastically Cooperative Nonlinear Langevin Equation(ECNLE) theory of activated relaxation in supercooled liquids to treat the case of geometrically confined liquids. Generically, confinement of supercooled liquids leads to a speeding up of the dynamics(with a consequent depression of the glass transition temperature) extending on the order of tens of molecular diameters away from a free surface. At present, this behavior is not theoretically well understood. Our theory interprets the speed up in dynamics in terms of two coupled effects. First, a direct surface effect, extending two to three molecular diameters from a free surface, and related to a local rearrangement of molecules with a single cage. The second is a longer ranged ``confinement'' effect, extending tens of molecular diameters from a free surface and related to the long range elastic penalty necessary for a local rearrangement. The theory allows for the calculation of relaxation time and Tg profiles within a given geometry and first principles calculations of relevant length scales. Comparison to both dynamic and pseudo-thermodynamic measurements shows reasonable agreement to experiment with no adjustable parameters.
Structure and Dynamics of Confined Alcohol-Water Mixtures.
Bampoulis, Pantelis; Witteveen, Jorn P; Kooij, E Stefan; Lohse, Detlef; Poelsema, Bene; Zandvliet, Harold J W
2016-07-26
The effect of confinement between mica and graphene on the structure and dynamics of alcohol-water mixtures has been studied in situ and in real time at the molecular level by atomic force microscopy (AFM) at room temperature. AFM images reveal that the adsorbed molecules are segregated into faceted alcohol-rich islands on top of an ice layer on mica, surrounded by a pre-existing multilayer water-rich film. These faceted islands are in direct contact with the graphene surface, revealing a preferred adsorption site. Moreover, alcohol adsorption at low relative humidity (RH) reveals a strong preference of the alcohol molecules for the ordered ice interface. The growth dynamics of the alcohol islands is governed by supersaturation, temperature, the free energy of attachment of molecules to the island edge and two-dimensional (2D) diffusion. The measured diffusion coefficients display a size dependence on the molecular size of the alcohols, and are about 6 orders of magnitude smaller than the bulk diffusion coefficients, demonstrating the effect of confinement on the behavior of the alcohols. These experimental results provide new insights into the behavior of multicomponent fluids in confined geometries, which is of paramount importance in nanofluidics and biology. PMID:27337245
Universal behavior of hydrogels confined to narrow capillaries
NASA Astrophysics Data System (ADS)
Li, Yang; Sarıyer, Ozan S.; Ramachandran, Arun; Panyukov, Sergey; Rubinstein, Michael; Kumacheva, Eugenia
2015-11-01
Flow of soft matter objects through one-dimensional environments is important in industrial, biological and biomedical systems. Establishing the underlying principles of the behavior of soft matter in confinement can shed light on its performance in many man-made and biological systems. Here, we report an experimental and theoretical study of translocation of micrometer-size hydrogels (microgels) through microfluidic channels with a diameter smaller than an unperturbed microgel size. For microgels with different dimensions and mechanical properties, under a range of applied pressures, we established the universal principles of microgel entrance and passage through microchannels with different geometries, as well as the reduction in microgel volume in confinement. We also show a non-monotonic change in the flow rate of liquid through the constrained microgel, governed by its progressive confinement. The experimental results were in agreement with the theory developed for non-linear biaxial deformation of unentangled polymer gels. Our work has implications for a broad range of phenomena, including occlusion of blood vessels by thrombi and needle-assisted hydrogel injection in tissue engineering.
Controlling defects in nematic and smectic liquid crystals through boundary geometry
NASA Astrophysics Data System (ADS)
Beller, Daniel A.
Liquid crystals (LCs), presently the basis of the dominant electronics display technology, also hold immense potential for the design of new self-assembling, self-healing, and "smart" responsive materials. Essential to many of these novel materials are liquid crystalline defects, places where the liquid crystalline order is forced to break down, replacing the LC locally with a higher-symmetry phase. Despite the energetic cost of this local melting, defects are often present at equilibrium when boundary conditions frustrate the material order. These defects provide micron-scale tools for organizing colloids, focusing light, and generating micropatterned materials. Manipulating the shapes of the boundaries thus offers a route to obtaining new and desirable self-assembly outcomes in LCs, but each added degree of complexity in the boundary geometry increases the complexity of the liquid crystal's response. Therefore, conceptually minimal changes to boundary geometry are investigated for their effects on the self-assembled defect arrangements that result in nematic and smectic-A LCs in three dimensions as well as two-dimensional smectic LCs on curved substrates. In nematic LCs, disclination loops are studied in micropost confining environments and in the presence of sharp-edged colloidal inclusions, using both numerical modeling and topological reasoning. In both scenarios, sharp edges add new possibilities for the shape or placement of disclinations, permitting new types of colloidal self-assembly beyond simple chains and hexagonal lattices. Two-dimensional smectic LCs on curved substrates are examined in the special cases where the substrate curvature is confined to points or curves, providing an analytically tractable route to demonstrate how Gaussian curvature is associated with disclinations and grain boundaries, as well as these defects' likely experimental manifestations. In three-dimensional smectic-A LCs, novel self-assembled arrangements of focal conic domains
Effect of confinement during cookoff of TATB
NASA Astrophysics Data System (ADS)
Hobbs, M. L.; Kaneshige, M. J.
2014-05-01
In practical scenarios, cookoff of explosives is a three-dimensional transient phenomenon where the rate limiting reactions may occur either in the condensed or gas phase. The effects of confinement are more dramatic when the rate-limiting reactions occur in the gas phase. Explosives can be self-confined, where the decomposing gases are contained within non-permeable regions of the explosive, or confined by a metal or composite container. In triaminotrinitrobenzene (TATB) based explosives, self-confinement is prevalent in plastic bonded explosives at full density. The time-to-ignition can be delayed by orders of magnitude if the reactive gases leave the confining apparatus. Delays in ignition can also occur when the confining apparatus has excess gas volume or ullage. Understanding the effects of confinement is required to accurately model explosive cookoff at various scales ranging from small laboratory experiments to large real systems.
Role of geometry and topological defects in the one-dimensional zero-line modes of graphene
NASA Astrophysics Data System (ADS)
Bi, Xintao; Jung, Jeil; Qiao, Zhenhua
2015-12-01
Breaking inversion symmetry in chiral graphene systems, e.g., by applying a perpendicular electric field in chirally stacked rhombohedral multilayer graphene or by introducing staggered sublattice potentials in monolayer graphene, opens up a bulk band gap that harbors a quantum valley-Hall state. When the gap size is allowed to vary and changes sign in space, a topologically confined one-dimensional (1D) zero-line mode (ZLM) is formed along the zero lines of the local gap. Here, we show that gapless ZLM with distinguishable valley degrees of freedom K and K' exist for every propagation angle except for the armchair direction that exactly superpose the valleys. We further analyze the role of different geometries of top-bottom gated device setups that can be realized in experiments, discuss the effects of their edge misalignment, and analyze three common forms of topological defects that could influence the 1D ZLM transport properties in actual devices.
Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions
NASA Astrophysics Data System (ADS)
Amendt, Peter; Bellei, Claudio; Ross, J. Steven; Salmonson, Jay
2015-02-01
Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014), 10.1063/1.4874330]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured.
Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions.
Amendt, Peter; Bellei, Claudio; Ross, J Steven; Salmonson, Jay
2015-02-01
Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured. PMID:25768614
Simulations of artificial swimmers in confined flows
NASA Astrophysics Data System (ADS)
Brandt, Luca; Zhu, Lailai; Gjølberg, Eerik
2012-11-01
Miniature swimmming robots are potentially powerful for microobject manipulation, such as flow control in lab-on-a-chip, localized drug delivery and screening for diseases. Magnetically driven artificial bacterial flagella (ABF) performing helical motion is advantegous due to high swimming speed and accurate control. Using boundary element method, we numerically investigate the propulsion of ABF in free space and near solid boundaries. Step-out at high actuation frequencies, wobbling and near-wall drifting are documented, in qualitative agreement with recent experiments. We aim to explore the effect of swimmer shape on the performance, thus benefiting design of efficient microswimmers. Propulsion of ABF confined by a solid wall with and without background shear flow is also studied, with a focus on wall-induced hydrodynamic interaction and its influence on the stability of the motion. Funding by VR (the Swedish Research Council) and Linne flow centre at KTH is acknowledged.
Wang, Bing; Zhou, Xiaoyan; Wang, Dongqi; Yin, Jun-Jie; Chen, Hanqing; Gao, Xingfa; Zhang, Jing; Ibrahim, Kurash; Chai, Zhifang; Feng, Weiyue; Zhao, Yuliang
2015-02-14
Preparation of heterogeneous catalysts with active ferrous centers is of great significance for industrial and environmental catalytic processes. Nanostructured carbon materials (NCM), which possess free-flowing π electrons, can coordinate with transition metals, provide a confinement environment for catalysis, and act as potential supports or ligands to construct analogous complexes. However, designing such catalysts using NCM is still seldom studied to date. Herein, we synthesized a sandwich structured ternary complex via the coordination of Fe-loaded humic acid (HA) with C=C bonds in the aromatic rings of carbon nanotubes (CNTs), in which the O/N-Fe-C interface configuration provides the confinement environment for the ferrous sites. The experimental and theoretical results revealed octahedrally/tetrahedrally coordinated geometry at Fe centers, and the strong hybridization between CNT C π* and Fe 3d orbitals induces discretization of the atomic charges on aromatic rings of CNTs, which facilitates O2 adsorption and electron transfer from carbon to O2, which enhances O2 activation. The O2 activation by the novel HA/Fe-CNT complex can be applied in the oxidative degradation of phenol red (PR) and bisphenol A (BPA) in aqueous media. PMID:25580558
Cylindrical confinement of semiflexible polymers
NASA Astrophysics Data System (ADS)
Vázquez-Montejo, Pablo; McDargh, Zachary; Deserno, Markus; Guven, Jemal
2015-06-01
Equilibrium states of a closed semiflexible polymer binding to a cylinder are described. This may be either by confinement or by constriction. Closed completely bound states are labeled by two integers: the number of oscillations, n , and the number of times it winds the cylinder, p , the latter being a topological invariant. We examine the behavior of these states as the length of the loop is increased by evaluating the energy, the conserved axial torque, and the contact force. The ground state for a given p is the state with n =1 ; a short loop with p =1 is an elliptic deformation of a parallel circle; as its length increases it elongates along the cylinder axis with two hairpin ends. Excited states with n ≥2 and p =1 possess n -fold axial symmetry. Short (long) loops possess energies ≈p E0 (n E0 ), with E0 the energy of a circular loop with same radius as the cylinder; in long loops the axial torque vanishes. Confined bound excited states are initially unstable; however, above a critical length each n -fold state becomes stable: The folded hairpin cannot be unfolded. The ground state for each p is also initially unstable with respect to deformations rotating the loop off the surface into the interior. A closed planar elastic curve aligned along the cylinder axis making contact with the cylinder on its two sides is identified as the ground state of a confined loop. Exterior bound states behave very differently, if free to unbind, as signaled by the reversal in the sign of the contact force. If p =1 , all such states are unstable. If p ≥2 , however, a topological obstruction to complete unbinding exists. If the loop is short, the bound state with p =2 and n =1 provides a stable constriction of the cylinder, partially unbinding as the length is increased. This motif could be relevant to an understanding of the process of membrane fission mediated by dynamin rings.
Order in very cold confined plasmas
Schiffer, J.P. |
1995-12-31
The study of the structure and dynamic properties of classical systems of charged particles confined by external forces, and cooled to very low internal energies, is the subject of this talk. An infinite system of identical charged particles has been known for some time to form a body-centered cubic lattice and is a simple classical prototype for condensed matter. Recent technical developments in storage rings, ion traps, and laser cooling of ions, have made it possible to produce such systems in the laboratory, though somewhat modified because of their finite size. I would like to discuss what one may expect in such systems and also show some examples of experiments. If we approximate the potential of an ion trap with an isotropic harmonic force F = {minus}Kr then the Hamiltonian for this collection of ions is the same as that for J. J. Thomson`s ``plum pudding`` model of the atom, where electrons were thought of as discrete negative charges imbedded in a larger, positive, uniformly charged sphere. The harmonic force macroscopically is canceled by the average space-charge forces of the plasma-, and this fixes the overall radius of the distribution. What remains, are the residual two-body Coulomb interactions that keep the particles within the volume as nearly equidistant as possible in order to minimize the potential energy. The configurations obtained for the minimum energy of small ionic systems [2] in isotropic confinement are shown in figure 1. Indeed this is an `Exotic Atom` and fits well into the subject of this symposium honoring the 60th birthday of Professor Toshi Yamazaki.
Electromelting of Confined Monolayer Ice
NASA Astrophysics Data System (ADS)
Qiu, Hu; Guo, Wanlin
2013-05-01
In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.
Electromelting of confined monolayer ice.
Qiu, Hu; Guo, Wanlin
2013-05-10
In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water. PMID:23705718
Thermoelectricity in Confined Liquid Electrolytes.
Dietzel, Mathias; Hardt, Steffen
2016-06-01
The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which-for narrow channels-may cause thermovoltages larger in magnitude than for the classical Soret equilibrium. PMID:27314730
Thermoelectricity in Confined Liquid Electrolytes
NASA Astrophysics Data System (ADS)
Dietzel, Mathias; Hardt, Steffen
2016-06-01
The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which—for narrow channels—may cause thermovoltages larger in magnitude than for the classical Soret equilibrium.
Confined Space Imager (CSI) Software
Karelilz, David
2013-07-03
The software provides real-time image capture, enhancement, and display, and sensor control for the Confined Space Imager (CSI) sensor system The software captures images over a Cameralink connection and provides the following image enhancements: camera pixel to pixel non-uniformity correction, optical distortion correction, image registration and averaging, and illumination non-uniformity correction. The software communicates with the custom CSI hardware over USB to control sensor parameters and is capable of saving enhanced sensor images to an external USB drive. The software provides sensor control, image capture, enhancement, and display for the CSI sensor system. It is designed to work with the custom hardware.
A double-layer based model of ion confinement in electron cyclotron resonance ion source
Mascali, D. Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G.; Torrisi, G.; Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria ; Sorbello, G.; Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania
2014-02-15
The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.
Proton radiography of PBX 9502 detonation shock dynamics confinement sandwich test
Aslam, Tariq D; Jackson, Scott I; Morris, John S
2009-01-01
Recent results utilizing proton radiography (P-Rad) during the detonation of the high explosive PBX 9502 are presented. Specifically, the effects of confinement of the detonation are examined in the LANL detonation confinement sandwich geometry. The resulting detonation velocity and detonation shock shape are measured. In addition, proton radiography allows one to image the reflected shocks through the detonation products. Comparisons are made with detonation shock dynamics (DSD) and reactive flow models for the lead detonation shock and detonation velocity. In addition, predictions of reflected shocks are made with the reactive flow models.
Quantum Consequences of Parameterizing Geometry
NASA Astrophysics Data System (ADS)
Wanas, M. I.
2002-12-01
The marriage between geometrization and quantization is not successful, so far. It is well known that quantization of gravity , using known quantization schemes, is not satisfactory. It may be of interest to look for another approach to this problem. Recently, it is shown that geometries with torsion admit quantum paths. Such geometries should be parameterizied in order to preserve the quantum properties appeared in the paths. The present work explores the consequences of parameterizing such geometry. It is shown that quantum properties, appeared in the path equations, are transferred to other geometric entities.
Distance geometry and geometric algebra
NASA Astrophysics Data System (ADS)
Dress, Andreas W. M.; Havel, Timothy F.
1993-10-01
As part of his program to unify linear algebra and geometry using the language of Clifford algebra, David Hestenes has constructed a (well-known) isomorphism between the conformal group and the orthogonal group of a space two dimensions higher, thus obtaining homogeneous coordinates for conformal geometry.(1) In this paper we show that this construction is the Clifford algebra analogue of a hyperbolic model of Euclidean geometry that has actually been known since Bolyai, Lobachevsky, and Gauss, and we explore its wider invariant theoretic implications. In particular, we show that the Euclidean distance function has a very simple representation in this model, as demonstrated by J. J. Seidel.(18)
Thomson scattering from inertial confinement fusion plasmas
Glenzer, S.H.; Back, C.A.; Suter, L.J.
1997-07-08
Thomson scattering has been developed at the Nova laser facility as a direct and accurate diagnostic to characterize inertial confinement fusion plasmas. Flat disks coated with thin multilayers of gold and beryllium were with one laser beam to produce a two ion species plasma with a controlled amount of both species. Thomson scattering spectra from these plasmas showed two ion acoustic waves belonging to gold and beryllium. The phase velocities of the ion acoustic waves are shown to be a sensitive function of the relative concentrations of the two ion species and are in good agreement with theoretical calculations. These open geometry experiments further show that an accurate measurement of the ion temperature can be derived from the relative damping of the two ion acoustic waves. Subsequent Thomson scattering measurements from methane-filled, ignition-relevant hohlraums apply the theory for two ion species plasmas to obtain the electron and ion temperatures with high accuracy. The experimental data provide a benchmark for two-dimensional hydrodynamic simulations using LASNEX, which is presently in use to predict the performance of future megajoule laser driven hohlraums of the National Ignition Facility (NIF). The data are consistent with modeling using significantly inhibited heat transport at the peak of the drive. Applied to NIF targets, this flux limitation has little effect on x- ray production. The spatial distribution of x-rays is slightly modified but optimal symmetry can be re-established by small changes in power balance or pointing. Furthermore, we find that stagnating plasma regions on the hohlraum axis are well described by the calculations. This result implies that stagnation in gas-filled hohlraums occurs too late to directly affect the capsule implosion in ignition experiments.
Pattern formation in confined chemical gardens
NASA Astrophysics Data System (ADS)
De Wit, Anne; Haudin, Florence; Brau, Fabian; Cartwright, Julyan
2014-05-01
Chemical gardens are plant-like mineral structures first described in the seventeenth century and popularly known from chemistry sets for children. They are classically grown in three-dimensional containers by placing a solid metal-salt seed into a silicate solution. When the metal salt starts dissolving in the silicate solution, a semi-permeable membrane forms by precipitation across which water is pumped by osmosis from the silicate solution into the metal salt solution, further dissolving the salt. Above a given pressure, the membrane breaks. The dissolved metal salt solution being generally less dense than the reservoir silicate solution, it rises as a buoyant jet through the broken membrane and further precipitates in contact with the silicate solution, producing a collection of mineral forms that resemble a garden. Such gardens are the subject of increased interest as a model system to understand pattern formation in sea-ice brinicles and hydrothermal vents on the seafloor, among others. All these self-organized precipitation structures at the interface between chemistry, fluid dynamics and mechanics share indeed common chemical, mechanical and electrical properties. In this framework, we study experimentally spatial patterns resulting from the growth of chemical gardens in confined quasi-two-dimensional (2D) geometries upon radial injection of a metallic salt solution into a silicate solution in a horizontal Hele-Shaw cell. We find a large variety of patterns including spirals, fingers, worms, filiform tubes, and flower-like patterns. By exploring the phase space of reactant concentrations and injection flow rates, we observe transitions between these spatio-temporal structures resulting from a coupling between the precipitation reaction, mechanical effects and hydrodynamic instabilities.
Are polymers glassier upon confinement?
NASA Astrophysics Data System (ADS)
Napolitano, Simone; Spiece, Jean; Martinez-Tong, Daniel E.; Sferrazza, Michele; Nogales, Aurora
Glass forming systems are characterized by a stability against crystallization upon heating and by the easiness with which their liquid phase can be transformed into a solid lacking of long-range order upon cooling (glass forming ability). Here, we discuss on the the thickness dependence of the thermal phase transition temperatures of poly(L-lactide acid) thin films supported onto solid substrates. The determination of the glass transition (Tg), cold crystallization (TCC) and melting (Tm) temperatures down to a thickness of 6 nm via ellipsometry, permitted us to build up parameters describing glass stability and glass forming ability. We observed a strong influence of the film thickness on the latter, while the former is not affected by 1D confinement. Remarkably, the increase in Tg/Tm ratio, a parameter related to glass forming ability, is not accompanied by an increase in TCC-Tg, as observed on the contrary, in bulk metallic glasses. We explained this peculiar behavior of soft matter in confinement considering the impact of irreversible adsorption on local free volume content.
Soft confinement for polymer solutions
NASA Astrophysics Data System (ADS)
Oya, Yutaka; Kawakatsu, Toshihiro
2014-07-01
As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa et al. (Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 5249).
Electrokinetic ion transport in confined micro-nanochannel.
Wang, Junyao; Liu, Chong; Xu, Zheng
2016-03-01
In this paper, a confined micronanochannel is presented to concentrate ions in a restricted zone. A general model exploiting the Poisson-Nernst-Plank equations coupled with the Navier-Stokes equation is employed to simulate the electrokinetic ion transport. The influences of the micronanochannel dimension and the surface charge density on the potential distribution, the ion concentration, and the fluid flow are investigated. The numerical results show that the potential drop depends mainly on the nanochannel, instead of the confined channel. Both decreasing the width and increasing the length enhance the ion enrichment performance. For a given nanochannel, ultimate value of ion concentration may be determined by the potential at the center point of the nanochannel. The study also shows that the enrichment stability can be improved by increasing the micronanochannel width, decreasing the micronanochannel length and reducing the surface charge density. PMID:26995194
Confinement in the Presence of External Fields and Axions
NASA Astrophysics Data System (ADS)
Gaete, P.; Guendelman, E. I.
For a theory with a pseudo-scalar coupling φ F˜ F and in the case that there is a constant electric or magnetic strength expectation value, we compute the interaction potential within the structure of the gauge-invariant but path-dependent variables formalism. While in the case of a constant electric field strength expectation value the static potential remains Coulombic, in the case of a constant magnetic field strength the potential energy is the sum of a Yukawa and a linear potentials, leading to the confinement of static charges.
Confinement effects from interacting chromo-magnetic and axion fields
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Spallucci, Euro
2006-05-01
We study a non-Abelian gauge theory with a pseudo scalar coupling phiTr(F*μνFμν) in the case where a constant chromo-electric, or chromo-magnetic, strength expectation value is present. We compute the interaction potential within the framework of gauge-invariant, path-dependent, variables formalism. While in the case of a constant chromo-electric field strength expectation value the static potential remains Coulombic, in the case of a constant chromo-magnetic field strength the potential energy is the sum of a Coulombic and a linear potential, leading to the confinement of static charges.
The Dilemma of Descriptive Geometry
ERIC Educational Resources Information Center
Boleslavski, Moshe
1977-01-01
Proposes that engineering students undergo a preparatory summer school training program in fundamentals of engineering drawing, descriptive geometry, and mathematics prior to being admitted to regular engineering studies. (SL)
Emergent geometry from quantized spacetime
Yang, Hyun Seok; Sivakumar, M.
2010-08-15
We examine the picture of emergent geometry arising from a mass-deformed matrix model. Because of the mass deformation, a vacuum geometry turns out to be a constant curvature spacetime such as d-dimensional sphere and (anti-)de Sitter spaces. We show that the mass-deformed matrix model giving rise to the constant curvature spacetime can be derived from the d-dimensional Snyder algebra. The emergent geometry beautifully confirms all the rationale inferred from the algebraic point of view that the d-dimensional Snyder algebra is equivalent to the Lorentz algebra in (d+1)-dimensional flat spacetime. For example, a vacuum geometry of the mass-deformed matrix model is completely described by a G-invariant metric of coset manifolds G/H defined by the Snyder algebra. We also discuss a nonlinear deformation of the Snyder algebra.
Inertial Confinement Fusion R&D and Nuclear Proliferation
Robert J. Goldston
2011-04-28
In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.
Mixed confinement regimes during equilibrium confinement spectroscopy of DNA
Gupta, Damini; Sheats, Julian; Muralidhar, Abhiram; Miller, Jeremy J.; Huang, Derek E.; Mahshid, Sara; Dorfman, Kevin D.; Reisner, Walter
2014-01-01
We have used a combination of fluorescence microscopy experiments and Pruned Enriched Rosenbluth Method simulations of a discrete wormlike chain model to measure the mean extension and the variance in the mean extension of λ-DNA in 100 nm deep nanochannels with widths ranging from 100 nm to 1000 nm in discrete 100 nm steps. The mean extension is only weakly affected by the channel aspect ratio. In contrast, the fluctuations of the chain extension qualitatively differ between rectangular channels and square channels with the same cross-sectional area, owing to the “mixing” of different confinement regimes in the rectangular channels. The agreement between experiment and simulation is very good, using the extension due to intercalation as the only adjustable parameter. PMID:24908035
Fixed-Node Monte Carlo Studies of Excitons in Confined Geometries
NASA Astrophysics Data System (ADS)
He, Song; Zacharia, I.; Zacharia, I.
1997-11-01
We study the properties of excitons in CEO quantum wires by the fixed-node Monte Carlo method in connection with recent experiments. The results of our calculations indicate that 1. as a function of the well width in a stem-arm symmetric structure at Al concentration of x = 0.3, the energy shift between the well and wire excitons reaches a peak value of about 25 meV at a well width of 25 Å; 2. the Coulomb interaction plays an important if not the dominant role. Depending on the well width, the correlated electron-hole Coulomb energy can be as large as 20 meV. The anisotropy in the projected density of the hole is significantly suppressed by electron-hole correlation; 3. the binding energy enhancement can be up to 70% at the optimal well widths; 4. there is more than one bound state in the center of mass motion of the exciton in the direction perpendicular to the quantum wire. This is markedly different from the single particle case where only one bound state exists; 5. comparison between our numerical results and experimental data show that the effective mass approximation with one hole band is sufficient for the computation of various energies of the exciton in typical experimental structures around well widths 70 Å.